
A Cloud-native Implementation of the Simulation as a
Service-Concept Based on FMI

Moritz Stüber1 Georg Frey1

1Chair of Automation and Energy Systems, Saarland University, Germany,
{moritz.stueber,georg.frey}@aut.uni-saarland.de

Abstract
Providing modelling and simulation capabilities as a ser-
vice promises to increase their value by improving accessi-
bility for non-expert users and software agents as well as
by leveraging cloud-computing technology to scale sim-
ulation performance beyond the capabilities of a single
computer. In order to reach this potential, implementa-
tions must align their design with the architectural styles
of cloud computing applications and the web in general.
We present an open-source, cloud-native Simulation as
a Service (SIMaaS)-implementation that gives access to
models and allows simulating them on the web. The im-
plementation uses Functional Mockup Units (FMUs) for
co-simulation as an executable form of a model and relies
on FMPy for simulation. It is realized as a microservice in
the form of a REST-based HTTP-API. Functionality and
performance are demonstrated by using the service to cre-
ate ensemble forecasts for PV systems and to search for an
optimal parameter set using a genetic algorithm. Concep-
tual limitations and the resulting opportunities for further
work are summarized.
Keywords: simulation as a service, cloud-native simula-
tion, service-oriented software architecture, FMI 2.0

1 Introduction
There exist scenarios in which it is useful to execute sim-
ulations on a distributed set of computing resources that
can be scaled according to demand and beyond the ca-
pabilities of a single machine. Examples for this include
simulations which are part of a series of many simulations
to be evaluated as a whole; as for example in parameter
fitting or sensitivity analysis applications. Also, simula-
tions might be part of a (recurring) larger process, such as
providing necessary forecasts for flexibility management
in the context of smart grids.

The term cloud computing denotes a set of desirable
characteristics for accessing a set of computing resources
over the internet, as well as characteristic service models
and deployment models (Mell and Grance 2011). From a
user’s point of view, the essential characteristics are that
software or computing resources are available as a ser-
vice via the internet, meaning that the resources are read-
ily available without the need for manual installation of
hardware and/or software. Consumers can use services

without the need for human activity on the side of the
provider (on-demand self-service), often without apparent
limitations, and they have access to metrics for their ser-
vice usage (measured service). Users are billed according
to service usage in terms of these metrics (pays-as-you-go
cost model).

Cloud-based end-user applications usually integrate
several services to realize their functionality as it has been
found that programmers can effectively realize the de-
sirable characteristics of cloud computing by exposing
pieces of functionality as a set of independent services in
a so-called Service-oriented Architecture (SOA). In the
abstract, SOA is “a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control
of different ownership domains” (OASIS 2006, line 864),
where a service is defined as the “mechanism by which
needs and capabilities are brought together” (OASIS 2006,
line 174). More specifically, a service can be seen as
the offer to perform work for others; as the service inter-
face which specifies information model, behaviour model
and applicable usage policies; and as a specific service in-
stance.

In practice, SOAs can be successfully realized as a
set of microservices in the form of Representational
State Transfer (REST)-based Hypertext Transfer Proto-
col (HTTP)-Application Programming Interfaces (APIs)
which exchange machine-readable representations such as
JavaScript Object Notation (JSON) and define their in-
terface according to a formal specification such as the
OpenAPI Specification (OAS). The term microservice is
used to point out that services best implement exactly one
functionality only (“do one thing well”). Representational
State Transfer (REST) is the name of the architectural
style of the web, in other words a name for its key de-
sign principles. Consequently, a REST-based1 HTTP-API
attempts to implement these design principles, acknowl-
edging the sucess of the web and attempting to inherit its
positive properties.

Applications which are intentionally designed to work
well in the cloud and consequently realize the de-
sired characteristics are called Cloud-native Applications
(CNAs). The goal of the presented work is to pro-

1Using the term REST-based instead of RESTful indicates that the
developers are aware that the term “RESTful” is frequently misused and
that their software does not fully realize the REST constraints.

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

393

vide a state of the art Simulation as a Service (SIMaaS)-
implementation based on an established open standard for
model export and to represent the ability to perform sim-
ulations as REST-compatible as possible withouth actu-
ally realizing the so-called Hypermedia As The Engine Of
Application State (HATEOAS) constraint. Furthermore, it
should be shown that the desired characteristics implied
by the term “cloud-native” are realized.

The remainder of this paper is organized as follows: first,
the concepts and abstractions for providing software as
a service in general and the motivation for providing
modelling and simulation as a service (MSaaS) are out-
lined in section 2. The high-level requirements that follow
from the choice of concepts are summarized. Second, the
software architecture and software stack for the developed
solution are explained in section 3. Restrictions posed on
Functional Mockup Units (FMUs) to be used with the im-
plemented software are stated. Third, exemplary use cases
for demonstrating functionality and performance are de-
scribed in section 4. Last, related work is outlined in sub-
section 5.1 and conceptual limitations of the devised so-
lutions as well as the resulting opportunities for further
research are discussed in subsection 5.2.

2 Concepts
Providing MSaaS is a multi-faceted endeavour at the in-
tersection of modelling and simulation (M&S), informa-
tion science and software development and -operations
(DevOps). The core hypothesis of MSaaS is that usability
and reuse can be increased by making M&S functionality
available to a broader audience via the internet; that func-
tionality can be improved by facilitating the composition
of M&S resources; and that performance can be improved
by deploying applications in the cloud (see Stüber, Exel,
and Frey 2018, section 2 for a detailed explanation and
references to original research).

Three recent reviews on MSaaS outline the design space
and identify high-level requirements and architectural
choices that should guide the design and implementation
of specific MSaaS solutions.

First, Shahin, Babar, and Chauhan map out the
Architecture Design Space (ADS) for MSaaS by present-
ing the results of a Systematic Literature Review (SLR)
performed with the aim to identify and describe the state
of the art (Shahin, Babar, and Chauhan 2020). They cate-
gorize the primary studies considered according to differ-
ent criteria such as the architectural style, the main drivers
for architectural decisions, and quality attributes. Addi-
tionally, they ponder the implications of the chosen ar-
chitectures and identify strenghts and weaknesses. The
authors conclude that MSaaS-realizations most often use
a layered approach to build applications; that container-
ization is employed to improve deployability; and that ef-
fective interfaces for end users that hide complexity and
technicalities motivate their development (Shahin, Babar,
and Chauhan 2020, section 5).

Second, Hannay, Berg, et al. (2020) reason about the in-
frastructure capabilities they deem necessary for realizing
entire MSaaS ecosystems at scale. Based on “a systemati-
zation of concepts from ongoing deliberations on MSaaS”
(Hannay, Berg, et al. 2020, section 3), the authors first
review the service concepts of the North Atlantic Treaty
Organization (NATO) MSaaS reference architecture (Han-
nay and Berg 2017) and then elaborate on the functional-
ity required for realizing MSaaS ecosystems. Their rea-
soning is structured around the themes data management,
service description and -discovery, composition and inter-
operability and the management of different components.
The findings are mostly conceptual in nature, likely useful
for verbalizing and contextualizing design questions and
-decisions when faced with implementing specific SOAs
containing M&S capabilities. The authors also note that
solutions for supporting, yet – from an operational per-
spective – highly relevant functionality such as logging,
metering and monitoring are readily available.

Third, Kratzke and Siegfried (2020) focus on the con-
sequences expected from leveraging the cloud for M&S
services. Using their work on and definition of CNAs
(Kratzke and Quint 2017) as a basis, they propose a def-
inition for what Cloud-native Simulations (CNSs) are in
terms of a textual definition (Kratzke and Siegfried 2020,
section 4.3), a cloud-native simulation stack and a cloud
simulation maturity model. They summarize the soft-
ware engineering trends in cloud computing as the evo-
lution of deployment strategies to maximize resource uti-
lization (smaller deployment units, elasticity); the use of
microservices as an architectural style that supports the
aforementioned; and the emergence of microservice en-
gineering ecosystem components for container orchestra-
tion, monitoring, et cetera. The authors conclude that the
same trends are to be expected for CNS architectures and
that, like CNAs in general, CNSs should strive to isolate
state in a minimum of stateful components.

In alignment with the findings of Kratzke and Siegfried,
section 4.2, we decided to create a microservice realizing
the SIMaaS-concept in the form of a REST-based HTTP-
API, relying on containers as deployment units to be op-
erated on a clustered elastic platform.

As a consequence of the decision for an interface design
based on REST, specifically the uniform interface con-
straints, M&S capabilities need to be represented as re-
sources of which representations can be transferred when
HTTP verbs are applied to them (Verborgh, Hooland, et al.
2015). In other words, a mapping between entities of the
application domain, such as a models and simulation re-
sults, and uniquely identifiable conceptual resources that
constitute the service interface is required.

In the context of the developed SIMaaS-API, the enti-
ties of the application domain to be exposed as resources
are models, model instances, simulations, and simulation
results2.

2The definitions below do not claim to be universally applicable;

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

394 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

Models are well-posed system models that could be sim-
ulated once all parameters are set; but the parameters
are not set yet.

Model instances are system models that do have all pa-
rameters set (either explicitly or by relying on default
values) and could be simulated as soon as initial con-
ditions and input values are provided. The parame-
ters of a model instance cannot be changed; a change
in parameters always leads to a new model instance.

Simulations combine a model instance with initial condi-
tions, input trajectories, a solver and the correspond-
ing solver settings. They also have a state, for ex-
ample new, running or finished, and link to
their result if and only if (iff) it exists. Like model
instances, simulations cannot be changed once they
are created.

Simulation results contain the actual results of exactly
one specific simulation. They cannot be updated ei-
ther.

REST demands that each message must be self-
descriptive, meaning that it must be actionable indepen-
dent of any possible prior interaction with the same client.
To support this, HTTP provides only a few methods with
specified semantics and properties, for example GET or
POST. In combination with the concept of resources, this
means that actions which are prevalent in classical M&S
environments such as Dymola need to be represented dif-
ferently (compare Verborgh, Hooland, et al. 2015, section
3.3). For example, there is no such thing as a SIMULATE
method in HTTP. Assigning a Uniform Resource Loca-
tor (URL) to an action contradicts the idea of resources
and is therefore incompatible with REST. Thus, the action
of starting a simulation is represented instead by POSTing
a representation of a new simulation-resource to the
API. Internally, the API starts the simulation as part of
the handler that registers the new simulation-resource.
Once the simulation is finished, a resource exposing the
simulation result is created.

As a consequence of this design, the application state
(the state of the interaction between service consumer and
service instance) is only stored in the state of the resources
exposed by the service, including their existence or ab-
sence. This is a desired property. However, it also means
that clients need to poll the simulation-resource by re-
peatedly sending GET-requests in order to know about the
existence of a result or the failure of a simulation (compare
subsection 5.2).

Note that the developed SIMaaS-API does not ex-
pose the Functional Mockup Interface (FMI) functions de-
scribed in the standard document (Modelica Association
2020), but more abstract/high-level functionality as out-
lined in Table 1.

they should be seen as specific to the developed software.

Based on the choice of resources and a decision on how
to represent actions of the application domain in terms
of the addition/update/removal of resources, the service
interface can be specified. Several specification formats
exist, of which the OpenAPI Specification (OAS)3 has
gained widespread support. Formally specifying the ser-
vice interface has several benefits: first, the service in-
terface description serves as unambiguous documentation
both for users and developers of the service. Second, parts
of the service implementation can be automatically gen-
erated from the service description, such as routines for
input validation, the routing of requests or a website ren-
dering the OAS for human users. Third, test cases for ver-
ifying that the API behaves as advertised can be generated
automatically from the service description.

However, relying on the OAS to specify an interface
that exposes models and the ability to simulate them
quickly leads to a conceptual problem: the OAS is a static
interface description written at design time, whereas the
parameters for model instantiation and triggering simula-
tions depend on the models to be used with the SIMaaS-
instance, which are only added at run time.

Three solutions to this problem suggest themselves.
First, the interface description could be kept so generic
that the differences between models are abstracted. This
would severly diminish the advantages of using a formal
service description outlined in the penultimate paragraph
and is therefore undesirable.

Second, the OAS could be regenerated dynamically
each time a model is added to or removed from the
SIMaaS-instance. This allows the OAS to be specific
enough to fully realize its potential. The translation of
constraints on parameters and inputs such as maximum or
minimum values or unit specifications can be automated
as long as these constraints are present in the model. This
approach is realized in the SIMaaS-implementation pre-
sented in this paper.

The third approach would be to not use a service inter-
face description at all and let users explore the capabilitites
of the server dynamically by following links. This is how
human users navigate websites as they are good at finding
a way to achieve their goal on a web page and understand
possible consequences of clicking links without actually
following them. However, this is a challenging tasks for
software agents and subject to ongoing research under the
term “hypermedia API”. The possibilities for turning the
presented SIMaaS-implementation into a hypermedia API
will be discussed further in subsection 5.2.

3 Implementation
Below, the software architecture and software stack cho-
sen to realize our goal of providing a state of the art
SIMaaS-implementation based on FMI as an established
open standard for model export are described. For prac-
tical reasons, some requirements are posed on FMUs to

3https://github.com/OAI/OpenAPI-Specification

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

395

Table 1. Overview of the service interface in terms of HTTP methods, exposed resources and their meaningful combinations.

Method Resource Description

POST /models Add a new model to the API-instance
GET /models/{model-id} Retrieve a model representation from the API
DELETE /models/{model-id} Delete a model representation from the API
POST /models/{model-id}/instances Instantiate a model for a specific system
GET /models/{model-id}/instances/{instance-id} Get a representation of a specific model instance
POST /models/{model-id}/instances/{instance-

id}/experiments
Trigger the simulation of a model instance by defining
an experiment

GET /models/{model-id}/instances/{instance-
id}/experiments/{experiment-id}

Retrieve a representation of a specific experiment def-
inition and its status

GET /models/{model-id}/instances/{instance-
id}/experiments/{experiment-id}/result

Retrieve a representation of the results of a specific
simulation run

be used with the service, which are explained in subsec-
tion 3.2. In order to get the exact same simulation results
from simulation of the FMU as when simulating the model
in a Modelica environment, the sequence of calling the
FMI methods implemented in FMPy had to be changed as
explained in subsection 3.3.

3.1 Software Architecture
Figure 1 shows the high-level software architecture. Ex-
actly one component (A) provides the service interface
in the form of a HTTP-API and stores the state, in other
words the resources exposed. At least one, but potentially
tens or even hundreds of stateless workers (W) run sim-
ulation jobs that they pull from a task queue (Q1). The
simulation results are propagated back to component A
through a second queue (Q2). Both queues do not store
data permanently, and neither do the workers. Requests
from users do not reach the API component directly but
instead arrive at a reverse proxy (R). This reverse proxy is
responsible for providing an encrypted Hypertext Transfer
Protocol Secure (HTTPS) connection to the outside world.

The specific software components and libraries used for
implementation were chosen based on the criteria that they
are well-suited for the job; Free/Libre and Open-source
Software (FLOSS); represent the state of the art; and that
their use avoids re-implementing functionality that already
has stable implementations.

The HTTP-API (A) possibly receives many requests at
once, most of which result in requests to storage or other
services which are operations that are very slow compared
to pure computations, meaning that significant amounts
of time are spent waiting. Therefore, Node.js4 was cho-
sen as the programming language as it provides excellent
support for non-blocking input-output (IO) operations us-
ing promises and the async/await-syntax. Also,
it is commonly used for implementing HTTP-APIs and
consequently offers many useful libraries that support im-
plementation, such as the Express-framework5 and the

4https://nodejs.org
5https://expressjs.com

openapi-backend6. Incoming requests are checked
for validity against their schema in the OAS. Valid re-
quests are then propagated to the appropriate handlers,
which alter or retrieve resource state and enqueue simu-
lation requests if necessary.

The internal representation of a simulation job couples
the worker implementation to the API. Workers retrieve
these representations from the task queue, which is im-
plemented using Celery7, using RabbitMQ8 as the mes-
sage broker (Q1). As a result of only coupling API and
worker through the task representation, the workers can
use Python9 as programming language. This enables the
use of the pandas10 package for representation and manip-
ulation of time series, and allows using FMPy11 for sim-
ulating FMUs. FMPy was chosen because it can be used
natively from within a Python environment; because it is
actively maintained and developed under an open-source
license; and because FMPy and its dependencies can be
installed easily, also as part of a container image. Worker
instances can be added or destroyed according to demand
and jobs are automatically distributed across all worker
instances that are available. Upon finishing a simulation
job, the results are propagated back to component A using
Redis12 as the result backend (Q2).

API and worker are implemented according to the
twelve-factor app13-method, which is the name of a set of
best practices for developing, operating and maintaining
Software as a Service (SaaS).

Each component is intended to be deployed as a con-
tainer. Containers are a lightweight packaging format for
an application and all of its dependencies. They are guar-
anteed to run on any host that runs a compatible container

6https://github.com/anttiviljami/
openapi-backend

7https://github.com/celery/celery
8https://www.rabbitmq.com
9https://www.python.org

10https://pandas.pydata.org
11https://github.com/CATIA-Systems/FMPy
12https://redis.io
13https://12factor.net

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

396 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

reverse proxy
(NGINX)

SIMaaS-API
(Node.js)

task queue
(Celery)

worker instances
(Python, FMPy)

- validate input
- route requests
- enqueue tasks
- store resource state
- serve resource
 representations
- cache results (for
 limited time)

message broker
(RabbitMQ)

result backend
(Redis)

W1

Wn

Q1

Q2

ARagents

HTTPS

HTTP amqp amqp

RESPRESPHTTP
HTTPS

Figure 1. Software architecture of the SIMaaS-implementation.

engine, for example the Podman14 engine. Containers
are also the basic building blocks for deploying on clus-
tered elastic platforms such as Kubernetes15. As such,
using containers as the deployment unit for the compo-
nents of the developed SIMaaS-implementation enables
their use on such platforms, which in turn enables using
advanced operation strategies such as automatic scaling in
response to demand or load-balancing requests between
several containers running the same component.

The source code for the SIMaaS-API and the workers
are available subject to the conditions of the MIT license16

at https://github.com/UdSAES/simaas-api
and https://github.com/UdSAES/
simaas-worker, respectively. For message bro-
ker and result backend, stock container images can
be used, which are for example available on Docker
Hub17. Consult the README documents in the API and
worker-repositories for details.

3.2 Requirements on FMUs
FMI 2.0 for co-simulation can be seen as a way to export
models and the corresponding solver in an open, widely
supported way. In other words, a FMU can be seen as
a standalone executable format of a single model using a
single solver for simulation. Obviously, the capabilities
and intended usage of FMI are more diverse; but for the
purpose of this work, we adopt this limited view.

In order to facilitate the implementation of the envi-
sioned software, we impose additional restrictions on the
FMUs concerning their parameterization, the supported
platforms for which binaries must exist, and the defini-
tion of inputs, outputs and parameters to be exposed via
the API. Note that none of these restrictions impose lim-
its on the actual models or their simulation; they merely
represent a concretization of the format supported by the
developed software.

Schmitt et al. (2015) investigated different possibili-
ties to parameterize models in Dymola with respect to

14https://podman.io
15https://kubernetes.io
16https://spdx.org/licenses/MIT.html
17https://hub.docker.com

their subsequent export as FMU. In section 3.3 of their
paper, they describe a method that “becomes favorable
if the user wants to exchange whole data sets of one
and the same model” (Schmitt et al. 2015, section 3.3),
which is exactly the case for the SIMaaS-implementation.
In short, parameters inside the model are set by inter-
component references to a record. This record has a pa-
rameter filename, which must be set to the path of a file
containing the values. All actual model parameters are set
by reading this file during model initialization. This can,
for example, be achieved using the DataFiles package
distributed with Dymola or one of the functions provided
in Modelica.Utilities.

The second requirement is that inputs and out-
puts of the models must be listed as such in the
modelDescription.xml file of the FMU because the
schemata for the trajectories that a service user needs to
supply/can expect as a result, which are part of the OAS,
are derived from this information.

Last, the FMU must contain binaries for GNU/Linux as
the containers are intended to be deployed on GNU/Linux
host systems.

3.3 FMI Calling Sequence
In FMI 2.0 for co-simulation, direct feedthrough is for-
bidden18. FMPy ensures this by calling the FMI func-
tions in the order fmi2GetXXX(), fmi2SetXXX(),
fmi2DoStep() in the simulateCS()-function19.

In some cases, this leads to significant differences be-
tween the simulation results of a model simulated natively
(for example in Dymola) and the simulation of the cor-
responding FMU. As an example, consider the simula-
tion of a model that calculates the power generated by a
photovoltaic (PV) module as a function of ambient con-
ditions (irradiance in the horizontal plane, temperature,
wind speed) and the orientation of the PV module. For
this calculation, the irradiance in the horizontal plane has

18Compare https://github.com/CATIA-Systems/FMPy/
issues/89#issuecomment-522949757

19https://github.com/CATIA-Systems/FMPy/blob/
69ec43813e6d5f8eb79da0d17c181fe57271f8ac/fmpy/
simulation.py#L1171

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

397

to be converted to the plane of array (POA), which re-
quires the sun’s position relative to the module. At 07:00
a.m., the sun’s position at 07:00 a.m. is calculated because
the calculation is part of the model. At this time instant,
inside the FMU, the irradiance data available is the data
for 06:45 a.m. (assuming an output interval of 15 minutes)
because of the calling sequence chosen by FMPy. When
using Dymola to natively simulate the Modelica model,
the irradiance data for 07:00 a.m. is used as intended.

For the special case of using FMUs as a portable ex-
port format of single models that are ready to be sim-
ulated using a single solver contained in the FMU, this
unnecessarily introduces systematic errors. Therefore,
we use a fork of FMPy which calls fmi2SetXXX(),
fmi2DoStep() and fmi2GetXXX() in this order for
the implementation of SIMaaS-workers.

4 Demonstration
The ensemble forecast for the power produced by a PV
system and the search for an optimal parameter set by
means of a genetic algorithm (GA) serve as examples for
demonstrating the use of the SIMaaS-implementation.

The code that executes the necessary requests is writ-
ten in Python in a concurrent fashion using Python’s
async/await mechanism and an asynchronous HTTP
library20. Request sequences such as the sequence for trig-
gering and retrieving the results of a specific simulation
(POSTing a new simulation resource, polling its status us-
ing repeated GET requests, GETting the result) are obvi-
ously still executed in order for each individual simula-
tion, but they are executed in parallel for several differ-
ent simulations, thereby testing/showing the ability of the
SIMaaS-API to handle many requests at once.

Like the API and worker implementations, the
demonstration code is available under the MIT li-
cense on GitHub: https://github.com/UdSAES/
simaas-demo. Please refer to the README and the
code itself for details.

4.1 Ensemble Forecast for PV Systems
A single trajectory of values such as those obtained as the
result of simulating a model implemented in Modelica im-
plies a level of exactness that does not fairly reflect the
uncertainties inherent to modelling process, parameteriza-
tion, and simulation.

One way to better understand and/or communicate the
actual meaning of a simulation is to perform a number of
simulation runs with slight variations in parameterization,
input trajectories and/or initial conditions as an ensemble
forecast. Ensemble forecasts created by varying the in-
put trajectories of each simulation run are representative of
situations where multiple simulations of the same model
instance are required.

Here, we use the repeated simulation of a model of a
photovoltaic (PV) system with the members of an ensem-

20https://github.com/aio-libs/aiohttp

ble weather forecast as input trajectories as an example.
The PV system model is exported from the pv-systems
library (Stüber 2020) according to the requirements on the
FMUs given in subsection 3.2. The FMU is then added to
the SIMaaS-instance and the request bodies to be sent for
triggering the individual simulation runs are prepared by
collecting the different weather forecasts. Once they are
ready, all request sequences are started in parallel. De-
pending on the number of workers that are started, the
simulations are either carried out in sequence (exactly one
worker) or in parallel (more than one worker).

Admittedly, executing one ensemble forecast consist-
ing of nine individual forecasts based on a computation-
ally lightweight model does not require the computing re-
sources of several nodes in the cloud. However, the ad-
vantage of using the SIMaaS-API instead of executing the
FMU locally quickly becomes visible when considering
that realistic real-world users for such ensemble forecasts
would be utility companies responsible for stabilizing a
section of the electricity grid. In this scenario, ensemble
forecasts for all renewable energy sources in the relevant
grid section would be required as part of flexibility man-
agement processes, likely to be re-calculated several times
per day.

4.2 Component Selection Using a Genetic Al-
gorithm

The second example for demonstration purposes is the
search for an optimal set of values for the components of a
temperature-dependent electrical circuit as shown in Fig-
ure 2, given the desired voltage at p2 over the temperature
range from −10 °C to 60 °C.

Figure 2. Thermistor network.

Suppose the resistors can each take one of the 70 values
of the E24-series between 300 Ω and 220 kΩ and suppose
there are nine possible values for both the resistance at
reference temperature and the temperature coefficient B
of the two thermistors. Then, there are 704 ∗92 ∗92 =

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

398 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

157529610000 different solutions, each resulting in a dif-
ferent voltage over temperature-curve. A rough estimate,
assuming a Central Processing Unit (CPU) time of 0.05 s
per simulation, puts the total time for testing every permu-
tation at around 250 years.

One possible alternative, suggested in an article on
edn.com (EDN 2008), is to use a genetic algorithm (GA)21

to search for a good solution without trying every permu-
tation. Each possible combination of component values is
seen as an individual. The fitness of an individual is eval-
uated by how close the voltage at p2 matches the desired
voltage over the relevant temperature range, for example
in terms of the Root Mean Square Error (RMSE). Because
the determination of the fitness of an individual is indepen-
dent of other individuals, the fitness values for an entire
generation can be evaluated in parallel. After the fitness
of each individual in a population is determined, the best
results are recorded and the next generation is created by
cross-over and mutation (subject to user-defined probabil-
ities). The algorithm is terminated by setting a threshold
for either an acceptable fitness value or a fixed number of
generations.

This example represents a situation where different
model instances are simulated with the same input. For
finding good solutions, a few hundred simulations are
likely required, many of which can be executed in par-
allel given a sufficiently high number of worker instances.
Using a SIMaaS-instance deployed on a clustered elastic
platform instead of running the GA locally becomes really
beneficial iff the number of individuals in a generation is
higher than the number of CPUs available locally.

Because the example is merely intended to serve as a
proof of concept, no detailed analysis of the performance
was carried out – neither with respect to the speed-up
achieved, nor with respect to the overhead introduced by
the additional software layers and the exchange of data
over the network.

For implementation of the GA, the Distributed Evolution-
ary Algorithms in Python (DEAP) framework (Fortin et al.
2012) was used. A tiny Modelica package containing the
necessary models and an example ready to be simulated in
Dymola is included in the simaas-demo-repository.

5 Discussion
While the use cases described in the previous section illus-
trate that there are scenarios for which the developed soft-
ware works and has benefits over other approaches, there
are some conceptual limitations inherent to its design that
should be discussed. Before summarizing these issues, we
outline related work within the Modelica community.

5.1 Related Work
The concept of MSaaS has been discussed extensively in
the literature. We refer the interested reader to key publi-
cations (Cayirci 2013; MSG-131 2015; Hannay, Berg, et

21See Pelikan (2011) for an excellent introduction.

al. 2020; Shahin, Babar, and Chauhan 2020; Kratzke and
Siegfried 2020) and focus this section on previous work
within the Modelica community.

Tiller (2014) motivates the use of web technologies for
the design of engineering tools in general, detailing po-
tential benefits for non-expert users. The FMQ platform
and its HTML5-based interface for human users are out-
lined; the use of a hypermedia API as the backend of the
FMQ platform is hinted at, but no details are given. The
FMQ platform also uses FMUs as an executable form of a
single model to be simulated using a single solver. It is a
proprietary product of Xogeny, Inc.

In their 2017 presentation of the
modelica.university platform, Tiller and Winkler
motivate the high-level requirements for and architecture
of the Aperion platform by Xogeny, Inc (presumably
the successor of the FMQ platform) in addition to present-
ing the modelica.university website itself. With
regard to concepts and the chosen technology stack, the
Aperion platform seems to be very similar to the work
presented in this paper, but it is a commercial product
and specifics are consequently not available publicly.
With regard to the use of truly RESTful technologies
such as hypermedia representations and generic software
clients that use them, Aperion seems to already have
realized some of our plans for further work as outlined in
subsection 5.2.

Bittner, Oelsner, and Neidhold (2015) outline work on
a web application based on FMI 1.0 for co-simulation.
Compared at a high level, the application’s architecture is
similar to what is presented in section 3 as there is also at
least a conceptual separation between API, storage, sim-
ulation components and front-end. The provided user in-
terface (UI) directly supports ranges for setting parameter
values and seems to be intended for use by engineers. De-
tails or source code are not readily available.

FMIGo!22 is a set of software tools for executing sev-
eral coupled FMUs over the internet. It is described in a
paper by Lacoursière and Härdin (2017) and available23

under the MIT license. In contrast to the concepts of the
SIMaaS-implementation explained in section 2 and the de-
sign concepts of the FMQ platform, FMIGo! choses not
to make use of the design principles of the web (REST)
and instead expose the capabilites of FMI withouth fur-
ther abstraction through the use of (low-level) message
passing protocols. Lacking the simplification of seeing
an FMU as nothing but an executable form of one model
with one solver, FMIGo! allows/demands chosing master
algorithms for co-simulation and exposes necessary nu-
merical details; but this clearly makes it a specialized tool
for simulation experts.

Elmqvist, Malmheden, and Andreasson (2019) present
the Web Architecture for Modeling and Simulation
(WAMS) in terms of several use cases, the correspond-

22https://www.fmigo.net
23https://mimmi.math.umu.se/cosimulation/fmigo

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

399

ing web application aimed at engineers with training in
M&S and a very brief overview of its software architec-
ture. FMUs are used for simulation using PyFMI and it is
claimed that a REST API is used for exposing capabilities
of the server, but the extent to which the REST constraints
are realized remains unclear. It appears that WAMS is an
internal project of Modelon AB.

Since version 0.2.25 (released in November 2020),
FMPy features the possibility to expose the UI of FMPy
including the ability to simulate FMUs as a web applica-
tion. Consequently, this approach falls in line with the
WAMS web application, also intended to be used by en-
gineers, and thus caters to use cases different to those that
motivate the work presented in this paper.

5.2 Results, Limitations and Outlook
The SIMaaS-implementation presented in section 3 has
several desirable characteristics. First, its design reflects
best practice and the state of the art for creating SaaS as
identified by Kratzke and Siegfried (2020). Second, the
decision to decouple API and workers, only linking them
by the internal representation of tasks in the task queue,
means that the implementation of how models are simu-
lated can be changed without having to change the pub-
lic service interface. This includes adding support for
FMUs for model exchange or for non-FMI-based models
as long as they can be expressed in terms of the resources
exposed by the API (models, model instances, simula-
tions, simulation results). For example, a user might have
legacy models written in Matlab or scientific computing
routines written in a general-purpose programming lan-
guage which cannot be exported as a FMU. Third, the
chosen software stack consists of proven and widely used
open-source components.

By deploying it on Kubernetes as an example of a clus-
tered elastic platform, horizontal scalability of the workers
was shown. Graceful handling of the addition or removal
of worker instances is ensured by using Celery as the task
queue implementation. Implementing automatic scaling
of worker instances in response to demand is only a ques-
tion of properly configuring Kubernetes resources.

From our point of view, the additional restrictions posed
on the FMUs to be supported by the software (subsec-
tion 3.2) are reasonable.

Using FMUs for co-simulation according to version 2.0
of the FMI standard allows using the proven solvers pro-
vided by native M&S-environments such as Dymola, but
the workaround for avoiding systematic errors described
in subsection 3.3 is problematic because it is not compli-
ant with the FMI standard and because it requires main-
tenance work to synchronize the fork of FMPy with up-
stream development. Therefore, support for FMUs for
model exchange and/or the upcoming FMI 3.0 standard
should replace the workaround in the future.

As the presented software is predominantly research
software and not a commercial product, some features
that are expected of the latter are not implemented yet.

For example, there is currently no access control (any
user that can reach the API can send all requests); but
it would be straightforward both from a conceptual and
practical persepective to add this, most likely using JSON
Web Tokens (JWTs). The pay-as-you-go cost model is not
currently supported, but it represents mostly an organiza-
tional and operational aspect that most likely should be
implemented using sidecar containers that form a service
mesh (Morgan 2019) and not as part of the application
code, anyway.

There exists neither an explicit threat model nor a sub-
sequent detailed consideration of security aspects. How-
ever, basic measures against misuse were implemented.
First, all requests by users are validated against the
schemata defined in the OAS. These schemata are as spe-
cific as possible, including the use of regular expressions
for string fields. Second, the process inside a container
is run as a non-privileged user to prevent easy privilege
escalation.

In contrast to the aforementioned aspects, which are of
practical nature, there also exist conceptual limitations
that keep the SIMaaS-implementation from reaching its
full potential. The first limitation is that clients are re-
quired to poll resources in order to find out about changes
of their state. This leads to potentially many requests that
would not have been necessary and raises the question
of how to set polling frequencies and eventual timeouts.
Moreover, the answer to this question depends on both the
current server load and the amount of workers available
which cannot be known a priori. It would be possible to
instruct the service to notify the consumer as soon as the
resource state changes, but this would mean that the con-
sumer has to become its own server for accepting such
notifications.

The second (and more important) limitation concerns
the required use of a static service interface descrip-
tion against which clients hardcode requests, meaning
that client code will break in case the service interface
changes. Dynamically re-generating the service interface
description to account for the different inputs, outputs and
parameters of models can, from an academic perspective,
only be seen as a workaround because a static service
interface description should not be necessary in the first
place. Instead, clients should construct their requests at
run time, based on information present in the representa-
tion received (starting at the root path of the service). This
requires an alternative format for resource representation,
for example the JSON-based Serialization for Linked Data
(JSON-LD), because JSON lacks support for natively en-
coding hyperlinks (Kellogg, Champin, and Longley 2020,
section 3) as well as the ability to explicitly encode the
semantics of data.

Ideally, software clients should be enabled to reason about
the options for advancing the application state at each step
of the interaction in order to make informed decisions
about which state transitions allow them to reach their goal

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

400 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

(a desired resource state) by following links; just like hu-
mans navigate websites. The technical feasibility of this
has been shown by Verborgh, Arndt, et al. (2017). Realiz-
ing such services opens exciting opportunities for building
generic clients that can achieve a class of similar, yet dis-
tinct objectives while being robust against changes of the
service interface as requests are assembled at run time and
not constructed at design time.

We are actively working towards realizing this vision
for the presented SIMaaS-implementation.

6 Conclusion
Previous work within the Modelica community to provide
M&S capabilities as a service can be categorized in three
different directions of work: providing model develop-
ment and/or simulation environments as web applications
in the browser for use by engineers; providing tools for
distributed co-simulation; and transferring M&S function-
ality to the web by translating them to the architectural
style REST, hoping to make use of the positive aspects
of the web’s design principles and cloud computing tech-
nology for M&S tooling as well as facilitating the use of
M&S by software agents in a distributed setting.

The SIMaaS-implementation presented in this paper
falls into the last category. It exposes models in the form
of FMUs for co-simulation and the ability to simulate
them as a REST-based HTTP-API that consists of an API
and several worker components which exchange data us-
ing queues. Worker instances can be scaled horizontally
when deployed on an clustered elastic platform such as
Kubernetes.

The design concepts, software architecture and soft-
ware stack are summarized and put into context by out-
lining related work and the achieved characteristics. Two
exemplary use cases are shown. Development continues
with the aim to fully support the HATEOAS principle
by adding a format for resource representations that en-
ables client-side reasoning, and to demonstrate the abili-
ties gained by doing so.

As of this moment, the presented SIMaaS-
implementation represents a functional building block
for SOAs, intended to be used in combination with other
services. The software is available under a permissive
open-source license, readily available for testing.

Acknowledgements
This work was supported by the SINTEG-project “De-
signetz” funded by the German Federal Ministry of Eco-
nomic Affairs and Energy (BMWi) under grant 03SIN224.

The authors would like to thank Lukas Exel and Florian
Wagner for sharing their views on and experience with
providing modelling and simulation as a service, as well
as for their work on early prototypes of the presented soft-
ware.

References
Bittner, Stefan, Olaf Oelsner, and Thomas Neidhold (2015-09-

18). “Using FMI in a cloud-based Web Application for Sys-
tem Simulation”. In: Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-23,
2015. Linköping University Electronic Press. DOI: 10.3384/
ecp15118845.

Cayirci, Erdal (2013-12). “Modeling and simulation as a cloud
service: A survey”. In: 2013 Winter Simulations Conference
(WSC). IEEE. DOI: 10.1109/wsc.2013.6721436.

EDN, ed. (2008-03-19). Genetic algorithm solves thermistor-
network component values. URL: https : / / www. edn . com /
genetic- algorithm- solves- thermistor- network- component-
values (visited on 2021-05-08).

Elmqvist, Hilding, Martin Malmheden, and Johan Andreasson
(2019-02-21). “A Web Architecture for Modeling and Simu-
lation”. In: Proceedings of the 2nd Japanese Modelica Con-
ference Tokyo, Japan, May 17-18, 2018. Linköping Univer-
sity Electronic Press. DOI: 10.3384/ecp18148255.

Fortin, Félix-Antoine et al. (2012-07). “DEAP: Evolutionary Al-
gorithms Made Easy”. In: Journal of Machine Learning Re-
search 13.70, pp. 2171–2175. URL: http: / / jmlr.org/papers/
v13/fortin12a.html.

Hannay, Jo Erskine and Tom van den Berg (2017-10). “The
NATO MSG-136 Reference Architecture for M&S as a Ser-
vice”. In: Proceedings of the NATO modelling and simulation
group symposium on M&S technologies and standards for
enabling alliance interoperability and pervasive M&S Appli-
cations (Lisbon, Portugal, October 19–20, 2017). STO-MP-
MSG-149, p. 3.

Hannay, Jo Erskine, Tom van den Berg, et al. (2020). “Mod-
eling and Simulation as a Service infrastructure capabilities
for discovery, composition and execution of simulation ser-
vices”. In: The Journal of Defense Modeling and Simula-
tion. Applications, Methodology, Technology. DOI: 10.1177/
1548512919896855.

Kellogg, Gregg, Pierre-Antoine Champin, and Dave Lon-
gley (2020-07). JSON-LD 1.1. W3C Recommendation.
https://www.w3.org/TR/2020/REC-json-ld11-20200716/.
W3C.

Kratzke, Nane and Peter-Christian Quint (2017). “Understand-
ing cloud-native applications after 10 years of cloud comput-
ing - A systematic mapping study”. In: Journal of Systems
and Software 126, pp. 1–16. ISSN: 0164-1212. DOI: 10.1016/
j . jss . 2017 . 01 . 001. URL: http : / / www. sciencedirect . com /
science/article/pii/S0164121217300018.

Kratzke, Nane and Robert Siegfried (2020). “Towards cloud-
native simulations – lessons learned from the front-line of
cloud computing”. In: The Journal of Defense Modeling and
Simulation. Applications, Methodology, Technology. DOI: 10.
1177/1548512919895327.

Lacoursière, Claude and Tomas Härdin (2017-07-04). “FMI Go!
A simulation runtime environment with a client server archi-
tecture over multiple protocols”. In: Proceedings of the 12th
International Modelica Conference, Prague, Czech Repub-
lic, May 15-17, 2017. Linköping University Electronic Press.
DOI: 10.3384/ecp17132653.

Mell, Peter and Timothy Grance (2011). The NIST Definition
of Cloud Computing. NIST Special Publication 800-145. Na-
tional Institute of Standards and Technology. DOI: 10.6028/
NIST.SP.800-145. URL: https://www.nist.gov/publications/
nist-definition-cloud-computing.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

401

Modelica Association (2020-12). Functional Mock-up Interface
for Model Exchange and Co-Simulation Version 2.0.2. Tech.
rep. Linköping: Modelica Association. URL: https : / / fmi -
standard.org.

Morgan, William (2019-11-09). The Service Mesh: What Every
Software Engineer Needs to Know about the World’s Most
Over-Hyped Technology. URL: https : / / buoyant . io / service -
mesh-manifesto (visited on 2021-05-07).

MSG-131, Specialist Team (2015). Modelling and Simulation
as a Service: New Concepts and Service-Oriented Archi-
tectures. Final Report AC/323(MSG-131)TP/608. North At-
lantic Treaty Organization NATO. DOI: 10.14339/STO-TR-
MSG - 131. URL: https : / / www. sto . nato . int / publications /
STO%20Technical%20Reports/STO-TR-MSG-131/$$TR-
MSG-131-ALL.pdf.

OASIS (2006). Reference Model for Service Oriented Architec-
ture 1.0. Tech. rep. URL: http : / /docs .oasis - open .org /soa-
rm/v1.0/.

Pelikan, Martin (2011). “Genetic Algorithms”. In: Wiley En-
cyclopedia of Operations Research and Management Sci-
ence. American Cancer Society. ISBN: 9780470400531. DOI:
10 . 1002 / 9780470400531 . eorms0357. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.
eorms0357. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470400531.eorms0357.

Schmitt, Thomas et al. (2015-09-18). “A Novel Proposal on
how to Parameterize Models in Dymola Utilizing External
Files under Consideration of a Subsequent Model Export
using the Functional Mock-Up Interface”. In: Proceedings
of the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015. Linköping University Elec-
tronic Press. DOI: 10.3384/ecp1511823. URL: https://2015.
international . conference . modelica . org / proceedings / html /
errata /errata_SchmittAndresZieglerDiehl .pdf. Revised ver-
sion.

Shahin, Mojtaba, M. Ali Babar, and Muhammad Aufeef
Chauhan (2020-07-24). “Architectural Design Space for
Modelling and Simulation as a Service: A Review”. In: Jour-
nal of Systems and Software 170, p. 110752. ISSN: 0164-
1212. DOI: 10.1016/j . jss.2020.110752. URL: http:/ /www.
sciencedirect.com/science/article/pii/S0164121220301746.

Stüber, Moritz (2020-12-24). UdSAES/pv-systems: v0.9.0. Ver-
sion 0.9.0. DOI: 10 . 5281 / zenodo . 4392849. URL: https : / /
github.com/UdSAES/pv-systems.

Stüber, Moritz, Lukas Exel, and Georg Frey (2018). “Using
Modelling and Simulation as a Service (MSaaS) for Facil-
itating Flexibility-based Optimal Operation of Distribution
Grids”. In: Proceedings of the 15th International Conference
on Informatics in Control, Automation and Robotics - Volume
2: ICINCO. INSTICC. SciTePress, pp. 613–620. ISBN: 978-
989-758-321-6. DOI: 10.5220/0006899106230630.

Tiller, Michael (2014). “Vehicle Thermal Management – A Case
Study in Web-Based Engineering Analysis”. In: Proceedings
of the 10th International Modelica Conference; March 10-12;
2014; Lund; Sweden. 96. Linköping University Electronic
Press, pp. 1073–1079. DOI: 10.3384/ecp140961073.

Tiller, Michael and Dietmar Winkler (2017-07-04). “model-
ica.university: A Platform for Interactive Modelica Content”.
In: Proceedings of the 12th International Modelica Confer-
ence, Prague, Czech Republic, May 15-17, 2017. Linköping
University Electronic Press, pp. 725–734. DOI: 10 . 3384 /
ecp17132725.

Verborgh, Ruben, Dörthe Arndt, et al. (2017-01). “The Prag-
matic Proof: Hypermedia API Composition and Execution”.
In: Theory and Practice of Logic Programming 17.1, pp. 1–
48. DOI: 10.1017/S1471068416000016. URL: http : / /arxiv.
org/pdf/1512.07780v1.pdf.

Verborgh, Ruben, Seth van Hooland, et al. (2015). “The fallacy
of the multi-API culture: Conceptual and practical benefits
of Representational State Transfer (REST)”. In: Journal of
Documentation 71.2, pp. 233–252. DOI: 10 . 1108 / JD - 07 -
2013-0098.

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

402 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

