
Python Framework for Wind Turbines
Enabling Test Automation of MoWiT
Johannes Fricke1 Marcus Wiens1 Niklas Requate1

 Mareike Leimeister1
1Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems,

Germany,
{johannes.fricke, marcus.wiens, niklas.requate,

mareike.leimeister}@iwes.fraunhofer.de

Abstract
The development and simulation of engineering systems,
especially wind turbines, is becoming increasingly
complex and elaborate. At the Fraunhofer Institute for
Wind Energy Systems (IWES), the in-house tool MoWiT
(Modelica library for Wind Turbines) is being developed
for load simulation. MoWiT is based on the modeling
language Modelica and is constantly evolving. It is, thus,
also becoming more and more enhanced. This results in
an increased need for automation for the complex
simulation setups and a need for quality assurance of
simulation code used. Test automation is used to always
ensure the quality of the code. The automation of various
simulations and the test automation for the load simulation
code are provided by PyWiT (Python Framework for
Wind Turbines), which will be presented here in more
detail.

Keywords Modelica, MoWiT, Python, Wind Turbines,
Test Automation

1 Introduction
To represent different operating conditions of wind
turbine systems, hundreds of input parameters are used for
the various load simulations. Additionally, the simulation
models for realistic estimation of loads and their influence
on the wind turbine are getting more and more complex.
This paper presents the Python Framework for Wind
Turbines (PyWiT), which is developed at the Fraunhofer
Institute for Wind Energy Systems (IWES). PyWiT
further automates the load simulations written in Modelica
using the Modelica Library for Wind Turbines (MoWiT)
– also developed at Fraunhofer IWES. In addition, PyWiT
is used for test automation of the load simulations to be
able to automatically detect unsuitable or incorrectly
implemented models and, thus, contribute to the quality
control of MoWiT in an automated manner. The procedure
for such a test automation is described in this paper and
explained based on some examples.

1.1 Motivation
In the load simulation of wind turbines, numerous cases
of environmental conditions are simulated in conjunction
with different operating conditions of the wind turbines.
In the design of wind turbines, for example, these include
the so-called "design load cases", which comprise several
hundred to thousands of simulations for a single wind
turbine. In addition to normal operation under various
wind conditions (speeds, profiles over the height, inclined
flows, turbulence) and – if offshore – also wave and
current conditions, these also include fault load cases in
which the turbine shuts down under certain conditions and
extreme weather conditions, such as gusts, extreme waves,
and strong currents. Furthermore, to reduce dependence
on chance, all simulations are run with multiple seeds for
wind and waves. The combination of all these parameters
results in a high number of simulations, which can only be
performed with reasonable effort through automation.

All the systems in MoWiT interact with each other,
which means that, when the code is changed in one model
in MoWiT, there can be changes in the results for many or
all the system parts at the same time.

1.2 Problem Description
As explained previously numerous combinations of input
parameters (e.g., wind speed, angle of attack, seed for
creating the wind fields, turbulence, etc.) are used in the
load simulation of wind turbines. This results in a high
three- or four-digit number of simulations for a single
turbine. The combination of all these parameters by hand
is therefore only possible with great effort and automation,
with respect to both combinatorics and the execution of
the simulations, as well as further processing of the
simulation results (error checking, sorting, filtering,
further evaluations) is inevitable.

Due to the strong coupling within MoWiT, even small
changes or code optimizations, as well as new
implementations of models, can quickly lead to different
results in many parts of the entire wind energy system
model. To prevent unwanted changes, e.g., due to
unsuitable models or incorrect implementation, tests are
implemented that automatically compare reference results

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

403

of the simulations with results of the current
implementation. Thereby, the effects of changes in the
code in different subsystems of the wind turbine, as well
as in the different output parameters (forces, moments,
generator power, etc.) can be detected and evaluated.

This paper introduces the Python Framework for Wind
Turbines PyWiT and explains its structure in more detail.
It is described how the program is structured, as well as
how and for which practical applications, in particular for
the test automation of MoWiT, it is used.

2 Material and Methods
In this section the used materials and methods are
presented. After a short introduction to MoWiT, on which
the framework PyWiT is based, PyWiT is explained in
more detail. Beside the rough program flow, the different
modular designed functions are described.

2.1 Modelica Library for Wind Turbines
MoWiT, which is available free of charge for academic
use, is developed in-house at Fraunhofer IWES as a
completely object-oriented simulation tool for fully
coupled aero-hydro-servo-elastic simulations of wind
turbines on- and offshore, with bottom-fixed or even
floating substructures. It is written in the open-source
object-oriented and equation-based modeling language
Modelica, which can be used for various engineering
systems to solve multi-physics problems. Detailed
information on the development of MoWiT, as well as on
the structure and components of this library can be found
in the literature (Leimeister et al.2020; Leimeister and
Thomas. 2017; Thomas et al. 2014; Strobel et al. 2011).

2.2 Python Framework for Wind Turbines
PyWiT, developed in-house at Fraunhofer IWES, is a
program coded in Python to manage simulations of wind
energy systems modeled in MoWiT. These simulations
are executed in Dymola (Dymola2021). The current
PyWiT version consists of six modules:

• Input Module,

• Experiment Generator (incl. Design of Experiments),

• Package Creator,

• Wind Field Generator,

• Simulation Manager, and

• Post-processing.

The single modules are organized in three main groups
“Input Generation”, “Simulation Manager”, and “Post-
processing”, as it is shown in Figure 1 by the simplified
activity diagram. It shows the possible processing paths
depending on the input point and decisions (indicated by
the diamond symbols) for a single input file. A simplified
presentation for one input file was chosen since the
additional loops for multiple files are unnecessary for the
understanding of the structure. The three main groups
represent the code structure and the responsibility of the
specific code. Additionally, the diagram shows the
intersection between the main groups. The single groups
are explained in more detail in the following subsections.

Figure 1 Simplified activity diagram for PyWiT

Design of
Experiments

Derived
Template

Custom
Template

Setup
Translation

Setup
Simulation

Post-
Processing

Setup Wind
Generator

Input YAML

Experiment
Generator

Serial
Processing

Parallel
Processing

Input Module Simulation Manager Post-Processing

Experiment
Group

Setup
Package

Simulation
Results

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

404 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

Input Manager
PyWiT is controlled by YAML files, which define a
structured format. A structured input file, which contains
all input parameters necessary for the simulations, can be
created for the user without programming knowledge.
PyWiT is started by specifying the input file(s) and the
available processors. The input files are processed by the
Experiment Generator into experiment groups, which are
handled by the Simulation Manager. The Experiment
Generator is responsible for sorting the data from the input
file and parameterizing the input objects. Each input file
results into one experiment group, which defines one set
of simulations for a single model. A single simulation is
represented by a data object, which contains all necessary
information for independent simulation. Furthermore,
there are three different types of input for the Input
manager according to Figure 1. The usual YAML input
specifies a fixed number of simulations by varying
parameter lists. A single simulation is defined based on the
common index for all lists, which leads to the requirement
of equal length for all varying parameter lists. An example
for the varying parameter lists is given in Listing 1.

Listing 1. Input Parameters
windSpeed: [9, 11, 13]

yawAngle: [-8, 0, 8]

randomSeed: [1, 2, 3]

This would result in three simulations, where the first
configuration is given by the first element of every list.
Derived templates offer simulation setups for, e.g., wind
speed ranges or other commonly simulated cases.

Every input file has the option of using the Design of
Experiments module. The Design of Experiments is used
to expand the input files by creating the varying parameter
lists from the combination of small parameter lists to
obtain a large number of simulations. Currently, the
Design of Experiments is based on the pyDOE2 library
(PyPi.org2021) and only combinatorial designs are
considered. The module offers designs, which are
commonly used in wind turbine simulations. A simple
example is given in Listing 2.

Listing 2. List created by Design of Experiments
windSpeed: [9, 9, 9, 11, 11, 11, 13, 13, 13]

yawAngle: [-8, 0, 8, -8, 0, 8, -8, 0, 8]

randomSeed: [1, 2, 3, 1, 2, 3, 1, 2, 3]

The parameter lists for wind speed and yaw angle from
Listing 1 are combined in a “full factorial” design, which
is the combination of each list elements of the first list with
all the other lists elements. This leads to nine simulations.
Additionally, using a “copy-stretch” design, the random
seed variable list from Listing 1 has been copied to the
appropriate length. Initially, the random seed list has three

elements and is therefore appended twice to itself to reach
a length of nine.

Simulation Manager
The Simulation Manager takes care of the four different
stages of processing for the experiment groups:

• Create Package,

• Translation,

• Generate Wind Fields,

• Simulation,

The processing of the experiment groups is separated into
two steps. First, the Simulation Manager splits all
Experiment Groups according to their runtime flags, so
that each of the four stages described above are performed
one after the other. The stages Wind Field Generation,
Translation, and Simulation can be performed in parallel.
The Package Creation is not parallelized, since it needs
only a computing time in the range of milliseconds.

It is possible to execute these steps independently of
each other if the prerequisites for the specific step are
already fulfilled. For example, it is possible to perform the
Translation step (possibly with the following steps)
without creating a package, if a package already exists. It
is also possible to create only wind fields if they are to be
used for other purposes than the simulation with PyWiT.
These wind fields are created by automatically writing
input files for TurbSim (Bonnie J. Jonkman2009), which
generates wind fields from these input files.

Furthermore, the step for creating packages implies that
the dependencies of all modules containing the physical
relationships of a wind turbine are determined in MoWiT
and all functions necessary for the simulation of a
particular model are copied together so that their
dependency is maintained. This package can then be
translated with Dymola, i.e., the physical
interdependencies are compiled into C code and result in
a translated model. This model already contains all the
necessary input parameters, which, however, can be
replaced by means of PyWiT to run different simulations
based on the same model.

Subsequently, the physical equations are solved
iteratively by Dymola. The results of each simulation are
MAT files, which contain time series for all previously
defined output parameters, as well as log files, which
contain information about set parameters and possible
errors in the simulation.

In addition to common time-series simulations, it is
also possible to perform modal analyses and subsequently
create Campbell diagrams.

Post-processing
The post-processing is constantly extended and includes
at the current level:

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

405

• Sorting, moving, and renaming of simulation results,

• Conversion of simulation results to CSV or NETCDF
data format,

• Clustering and averaging of specific time ranges for
entry into an Excel spreadsheet for verification of
results,

• Creating plots of different time series, probability
density functions (PDFs), and power spectral densities
(PSDs),

• Comparison if two time series are identical, and

• Fast Fourier transformations of different time series.

All Post-Processing modules described herein can be
executed in connection with or independently of
simulations. Furthermore, all these modules run
independently as a stand-alone version and can be used for
already existing files or new simulation results.

Test Automation
Through the various methods presented in this section,
PyWiT can be used for test automation of MoWiT in
addition to automatically performing simulations for
further development of wind turbines. The nature of the
input through YAML files allows the setup of different
tests of the models created in MoWiT, for which a package
is automatically generated, compiled, and simulated.
Afterwards, the different Post-processing modules can be
used to check the results of the test simulations and
compare them with reference results if necessary. For
example, it is possible to store a simulation file that has
been validated as a reference in the MoWiT structure and
to define this as a reference in the input file. The test model
is then simulated and, first, the log files of the test
simulation are checked for errors. Depending on the test,
the time series of the test simulation can then be compared
with the time series of the reference simulation. It is also
possible to create different plots or statistical data based
on the comparison. The comparison between the reference
results and the new simulation results are generated
automatically, but the decision whether changes to the
code must be made based on these comparisons is
currently the responsibility of an experienced engineer.

The test automation can either be started manually,
which is useful, for example, when a new model is written
in MoWiT before it is merged from the develop branch
into the master branch. In addition, it is possible to run
certain tests automatically on a regular basis (under
Windows, for example, through the task scheduler) to
obtain regular information about the quality of MoWiT.

3 Results
As described in the previous section, PyWiT offers
extensive possibilities for automating simulations and

various tasks around these simulations. Through the
Design of Experiments, it is possible to create various
combinations of input parameters by minimal user input
and to run simulations with them. Different Post-
processing modules can be used to evaluate the
simulations on the one hand and to test the MoWiT code
on the other hand. Thus, PyWiT extends the existing
MoWiT tool and automates otherwise labor-intensive and
error-prone tasks, leading to higher quality results and
reduction of working time and, hence, costs in wind
turbine development.

An example of an evaluation from test automation is
shown in Figure 2.

Figure 2 Comparison of the moment around the x-axis on a
blade of a reference model and a model with shifted
aerodynamic axis in the blade

Here, two models with identical input parameters were
compared. They differ in the position of the aerodynamic
axis in the blades of the wind turbine, which has an
influence on almost all result variables. As an example,
the moment in the root of a blade is shown here. In this
case, the blue line is considered the reference model,
which means that those results come from a valid
simulation. The orange line is compared to that valid
simulation, to see if the code still works reasonable. The
plot is created automatically, while the interpretation of
the results is made by hand. The mean values of the two
values only have small differences, but the changed
aerodynamic axis leads to higher-frequency oscillations
that are superimposed on the reference signal. Such a
figure, or one like it, can be evaluated by an experienced
engineer to determine if there are errors in the code and
where they may lie.

4 Discussion
The presented PyWiT framework eases the setup of
various simulation studies. Adjustments of simulation

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

406 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

setups are simplified and sped up by taking advantage of
object-oriented programming methods for the definition
of simulation cases. This is especially useful in the setup
of simulation series according to standards, e.g.,
(IEC2019; DNV GL. 2016). Along with the specific
standard, the simulation series can be defined by derived
YAML templates from class instances, which are
initialized by specific wind turbine parameters. Common
variable definitions are distributed to different simulation
cases by class inheritance. Specific wind conditions can
be implemented as single classes and used as modules in
the simulation series class.

Furthermore, high flexibility can be maintained by
implementation in individual packages. By the separation
of Experiment Generator and Simulation Manager the
coupling between code blocks is reduced. This makes
code adjustments more efficient. The Experiment
Generator produces single experiments, which can be
analyzed and thereby the errors in the setup are reduced.
An example would be the settings for wind conditions like
the wind shear. They can be specified for the generated
wind fields or directly in MoWiT but should be only set
in one of these options. The Design of Experiments for
this framework is carried out often for variables with more
than two levels. Since a full factorial design leads to a high
number of simulations, a combinatorial design offers a
possibility to reduce the simulation amount. However, a
combinatorial design could lead to bias in a simulation
series, when correlating influences are combined in the
design.

Implementation of a simulation framework can be a
complicated task. Our example shows one way of
structuring the required steps from the simulation
definition to the execution. A guideline for other
developers/researchers would be to develop code, which
can be changed without much effort. The reduction of
coupling in the code, aim for high flexibility, and coding
principles like DRY (Wilson et al.2014) are helping to
achieve that goal.

5 Outlook
PyWiT is already at a stage of development where it can
take over many tasks automatically; however, it is still in
constant further development. In addition to various
modules for Post-processing, also for the extension of test
automation, the applications Load Simulation
Verification, Distributed Computing with HTCondor, and
Optimization, which will be explained in the following,
are already ongoing or planned. At the end, further
planned advancements are briefly discussed.

5.1 Load Simulation Verification
Load Simulation Verification is a methodology, applied at
Fraunhofer IWES (Huhn and Popko2020), for comparing
different load simulation codes, such as FAST (Jason
Jonkman2018; DNV GL, 2018) or Bladed (DNV GL,

2018; DNV GL, 2018), etc.), with MoWiT. In addition to
various plots with time series, PSDs, and PDFs, the focus
here is on an XLSX file in which various sensors are
available for different input parameters. This XLSX file is
reviewed and evaluated by an experienced engineer and
any deviations in the simulations are evaluated.
An automatic execution of the simulations in MoWiT for
the verification and a subsequent creation of the different
plots, as well as the filling of the XLSX file, is in the alpha
version and is currently being tested in different projects.

5.2 Distributed Computing with HTCondor
In order to efficiently use computing resources, which are
often distributed over several computers, a distributed
computing system has been developed at Fraunhofer
IWES based on the open-source software HTCondor
(HTCondor2021). This system distributes the simulations
to the available computing resources and manages the
simulations that are entered into the queue system by
different users. The already tested system can easily be
extended by further computing resources. An integration
of the system for distributed simulation in PyWiT is
currently under development.

5.3 Optimization
The characteristic of PyWiT of automatically executing
tasks facilitates its usage for mathematical optimization
for a broad range of problems. One can make use of the
various existing open-source optimization libraries in
Python. Optimizing wind turbine parameters was already
possible and extensively used in a previous version of the
framework (Leimeister. 2019; Leimeister et al.2021).
These range from the design optimization of the entire
wind energy system or specific components, such as the
floating support structure, to controller tuning
optimization tasks or further applications. The objectives
are mostly related to cost minimization, load reduction, or
performance improvement (Leimeister et al.2020;
Leimeister et al.2020), but can also address system or
component scaling (Leimeister et al. 2019), as well as
reliability-based design optimization targets (Leimeister
and Kolios2021).

A major advantage of PyWiT for the further use for
solving optimization problems is the modular design.
Various simulations with different parameters used as
optimization parameters can be combined with various
objective functions and constraints which are defined in
the Post-processing module. Therefore, holistic and multi-
disciplinary applications are possible through
combination for realizing any kind of optimization
problem, e.g., multi-objective optimization of different
components or consideration of fatigue and extreme loads.

As for each optimization problem and corresponding
considered system certain optimization algorithms are
more suitable than others, the large number of different
optimization platforms, tools, and algorithms must be

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

407

exploited when aiming for solving diverse optimization
problems. However, each optimization algorithm has
certain parameters and options to be specified. Therefore,
a modular and standardized interface to different Python
optimization libraries is currently developed at Fraunhofer
IWES. It allows the easy use of different optimizers by
utilizing the same input definitions for the optimization
problem, comprising optimization parameters, objectives,
and constraints. PyWiT will be connected to the interface
in future.

5.4 Further Planned Advancements
Further advancements will include the fully automated
creation of different design load cases in a separate
module. The module will make use of the Design of
Experience module and contain the required
parametrization of turbine models and simulation setup.
This will replace the current template-based approach.
Another step includes further implementations for Post-
processing (DNV GL, 2018), which partially already exist
in separate tools. These comprise, among others, fatigue
load evaluation, using Rainflow Counting and Miner’s
rule, as well as other load evaluation methods.

6 Conclusions
In this paper, the Python Framework for Wind Turbines
PyWiT developed at Fraunhofer IWES is described. It was
shown that PyWiT already automates many tasks around
the simulation of wind turbines and, thus, makes the
development of wind turbines faster and cheaper. Besides
the automated input of many parameters by the Design of
Experiments, PyWiT can also be used for test automation
of the simulation code MoWiT to guarantee the quality of
the code. PyWiT is already used for many tasks at
Fraunhofer IWES, including load verification, but is under
constant development, especially in Post-processing.

References
Bonnie J. Jonkman (2009) “Turbsim User's Guide.”

Technical Report. National Renewable Energy
Laboratory.

DNV GL (2016-10) Loads and Site Conditions for Wind
Turbines (Standard DNVGL-ST-0437). November.
DNV GL AS, www.dnvgl.com/. Accessed 9 Oct.
2018.

--- (2018-01) Bladed Theory Manual: Version 4.9. 1 Jan.
2018.

--- (2018-01) Bladed User Manual: Version 4.9. 1 Jan.
2018.

Dymola: (Dynamic Modeling Laboratory) (2021).
Dassault Systèmes, 2021. Accessed 16 Apr. 2021.

HTCondor: High Throughput Computing (2021).
University of Wisconsin, Madison, USA, 2021.
Accessed 16 Apr. 2021.

Huhn, Matthias L., and Wojciech Popko (2020) “Best
Practice for Verification of Wind Turbine Numerical
Models.” Journal of Physics: Conference Series, vol.
1618, p. 52026. doi:10.1088/1742-
6596/1618/5/052026.

IEC (2019-02) Wind Energy Generation Systems - Part 1:
Design Requirements (International Standard IEC
61400-1:2019-02). 4.0th ed. International
Electrotechnical Commission. International Standard.

Jason Jonkman (2018-01) NWTC Information Portal
(FAST). 1 Jan. 2018, nwtc.nrel.gov/FAST. Accessed
21 Apr. 2021.

Leimeister, Mareike (2019-03) “Python-Modelica
Framework for Automated Simulation and
Optimization.” Proceedings of the 13th International
Modelica Conference, Regensburg, Germany, March
4–6, 2019, March 4-6, 2019, Regensburg, Germany,
The 13th International Modelica Conference,
Regensburg, Germany, March 4–6, 2019. Linköing
University Electronic Press, 2019pp. 51–58.
Linköping Electronic Conference Proceedings.

Leimeister, Mareike, et al. (2020) A Fully Integrated
Optimization Framework for Designing a Complex
Geometry Offshore Wind Turbine Spar-Type Floating
Support Structure.

Leimeister, Mareike, and Athanasios Kolios (2021)
“Reliability-Based Design Optimization of a Spar-
Type Floating Offshore Wind Turbine Support
Structure.” Reliability Engineering & System Safety,
vol. Document 32009L0028, no. 4, p. 107666.
doi:10.1016/j.ress.2021.107666.

Leimeister, Mareike, Athanasios Kolios, and Maurizio
Collu (2020) “Development and Verification of an
Aero-Hydro-Servo-Elastic Coupled Model of
Dynamics for FOWT, Based on the MoWiT Library.”
Energies, vol. 13, no. 8, p. 1974.
doi:10.3390/en13081974.

--- (2021) “Development of a Framework for Wind
Turbine Design and Optimization.” Modelling, vol. 2,
no. 1, pp. 105–28. doi:10.3390/modelling2010006.

Leimeister, Mareike, Athanasios Kolios, and Maurizio
Collu, and Philipp Thomas (2019-06) “Larger MW-
Class Floater Designs Without Upscaling? A Direct
Optimization Approach.” ASME 2019 38th
International Conference on Ocean, Offshore and
Arctic Engineering: Volume 1: Offshore Technology;
Offshore Geotechnics, June 9-14, 2019, Glasgow,
Scotland, UK, ASME 2019 38th International
Conference on Ocean, Offshore and Arctic
Engineering. American Society of Mechanical
Engineers, 2019.

--- (2020) “Design Optimization of the OC3 Phase IV
Floating Spar-Buoy, Based on Global Limit States.”
Ocean Engineering, vol. 202, no. 1, p. 107186.
doi:10.1016/j.oceaneng.2020.107186.

Leimeister, Mareike, and Philipp Thomas (2017-05) “The
OneWind Modelica Library for Floating Offshore

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

408 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

Wind Turbine Simulations with Flexible Structures.”
Proceedings of the 12th International Modelica
Conference, Prague, Czech Republic, May 15-17,
2017, May 15-16, 2017, Prague, Czech Republic, The
12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017. Linköping
University Electronic Press, 2017pp. 633–42.
Linköping Electronic Conference Proceedings.

PyDOE2 1.3.0 (2021-04) PyPi.org. 1 Jan. 2021, pypi.org/
project/pyDOE2/. Accessed 20 Apr. 2021.

Strobel, M., et al. (2011-03) “The OnWind Modelica
Library for OffshoreWind Turbines - Implementation
and First Results.” Proceedings from the 8th
International Modelica Conference, Technical
Univeristy, Dresden, Germany, March 20-22, 2011,
March 20-22, 2011, Dresden, Germany, The 8th
International Modelica Conference, Technical
Univeristy, Dresden, Germany, March 20-22, 2011.
Linköping University Electronic Press, 2011pp. 603–
09. Linköping Electronic Conference Proceedings.

Thomas, Philipp, et al. (2014-03) “The OneWind
Modelica Library for Wind Turbine Simulation with
Flexible Structure - Modal Reduction Method in
Modelica.” Proceedings of the 10th International
Modelica Conference, Lund, Sweden, March 10-12,
2014, March 10-12, 2014, Lund, Sweden, the 10th
International Modelica Conference, Lund, Sweden,
March 10-12, 2014. Linköping University Electronic
Press, 2014pp. 939–48. Linköping Electronic
Conference Proceedings.

Wilson, Greg, et al. (2014) “Best Practices for Scientific
Computing.” PLoS biology, vol. 12, no. 1, e1001745.
Guidelines for effective coding. Write programs for
people, not computers. Let the computer do the work.
Make incremental changes. Don’t repeat yourself (or
others). Plan for mistakes. Optimize software only
after it works correctly. Document design and
purpose, not mechanics. Collaborate.,
doi:10.1371/journal.pbio.1001745.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

409

