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Abstract
To improve the quality of model-based development and
to reduce testing effort DevOps practices gain more and
more importance. However, most system engineers are
not DevOps specialists and there are a lot of manual steps
involved when writing build pipelines and configurations
of simulations. For this purpose, an abstract graph-based
meta-data model is proposed. This allows auto-generation
of scenario descriptions for the DCP standard and code
for the build server where the simulation is set up and
executed. A simple use case is described as an example
of how this could be applied in practice. Furthermore, a
Python implementation of a DCP master and a simple FMI
to DCP wrapper are presented in this work.
Keywords: Continuous Integration, DevOps, MBSE,
NoSQL Graph Data Bases, DCP, SysML, UML, SSP

1 Introduction
To tackle the growing complexity of software on elec-
tronic control units (ECUs) in cars or co-simulation of
physical phenomena of different parts of the vehicle the
use of practices from software development is on the rise.
Especially DevOps plays an important role. According
to Bass, Weber, and Zhu (2015) DevOps is a set of prac-
tices intended to reduce the time between committing a
change to a system and the change being placed into pro-
duction while ensuring high quality.

However, while DevOps is well established in software
development there remain a few challenges when simula-
tions come into play. Simulations are often very complex
and need a lot of expert knowledge from other fields like
mechanical or electrical engineering. Thus, there is a need
to provide frameworks which need only little knowledge
of DevOps tools like build servers to enable the applica-
tion of proper development practices.

Furthermore, when performing model-based engineer-
ing there may be several components available from pre-
vious or parallel projects. Thus, it would be convenient
to integrate them in the current workflow and test the sys-
tem in several variations (models, versions, or different
parameters). Hence, it would be more efficient to allow
automatic setup of existing artifacts and pipelines from an
abstract description provided in UML, SysML or the SSP

standard and then generate the necessary simulation setup
from that description, at least in a semi-automatic fashion.
For this, the Distributed Co-Simulation Protocol (DCP)
standard was chosen since it allows abstract description
of co-simulation configuration for very different kinds of
setups. In Section 2 a simple use case is provided as an
illustrating example.

To achieve this goal an abstract graph data structure
is introduced in Section 3 to build the link between sys-
tem engineering tasks, DevOps and co-simulation. Fur-
thermore, it is shown that the data structure is suited for
data transformations between general scenario descrip-
tions and co-simulation scenarios and we will discuss the
implementation of the use case in more detail in Section 4.

2 A Simple Use Case
In this section a typical process in development of simu-
lation models and the roles involved are described. A use
case for this process is derived. The challenges and poten-
tial benefits of applying dedicated DevOps methods are
highlighted.

2.1 Use Case Description
The following scenario is considered. A system engineer
wants to test two related software components. Their com-
mon behavior defines a system, which is subject to usage
in product development projects at a later point in time.
They know that there are two prototypes from develop-
ment available but they want to rely on the nightly version
to use the most up to date version. They want to experi-
ment and incorporate small changes, hence the software
components have to be build from scratch in a regular
fashion. To use them, the system engineer has to

• get access to the code,
• build a pipeline (or script) and
• set up a co-simulation scenario and run it.

See Figure 1 for a schematic of the use case. The con-
tent of the red box highlights what the system engineer has
to define. The code, shown in green boxes, is maintained
by developers. The boxes in blue are related to process
automation. Typically, a DevOps engineer is responsible
for implementing these activities. A clear separation of
tasks enables every member of the team to focus on their
respective role in the process.
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Figure 1. Schematics of a Simple Build and Simulation Pipeline

• The system engineer defines the system designs in-
cluding model boundaries, their scope and in partic-
ular the flow of model signals between models. This
can either be done from scratch or by working in part
with previously established models.

• The model developer creates the models and their
implementation according to the previously defined
system design.

• The DevOps engineer provides build pipelines – or
templates for build pipelines – to build the models
and deploy the resulting instances of these models as
artifacts.

Similarly pipelines for running the simulation need to be
provided. These pipelines should be as flexible as possible
to be parametrized for different configurations and situa-
tions. In Figure 2 the description of the simulation partic-
ipants is depicted. Here as an example UML was used for
the proof of concept. However, this is not limited to UML
since other standards like SysML or SSP could be used for
the transformation as well since they are easily parsable.

2.2 Challenges
Although the tasks described in the previous subsection
are manageable in general, they suffer from several well-
known problems. First of all, the entire process is con-
sidered complex, and involves many different tasks as
sources for faults and errors. Fixing problems is time con-
suming and unnoticed errors can lead to disasters. Espe-
cially setting up the infrastructure for builds is not always
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Figure 2. System described in UML

straight forward and needs proper configuration manage-
ment. This includes setup of scripts, pipelines, specific
software versions, etc. This may be an additional chal-
lenge for someone with little software engineering back-
ground. Even with the help of the developers and DevOps
engineers it may be cumbersome. Staff might not be avail-
able all the time. Reaction time might be limited, so sev-
eral of the arising issues may not be fixed immediately.
For these reasons it would be desirable to have dedicated
mechanism in place. This paper contributes by (1) intro-
ducing a method for setup of simulation-driven develop-
ment processes that rely on graphs, (2) provision of an
implementation consuming these graphs, automating the
build process, and generate prototypical systems for sim-
ulation and testing.

3 Co-Simulation Process Graphs and
the DCP Standard

In this section the idea of using a process graph for sim-
ulation execution is elaborated. The used co-simulation
standards are presented and the specific challenges of us-
ing graph-based DevOps methods for configuration man-
agement are identified. An theoretical overview of the im-
plementation is given.

3.1 Motivation
There are several data formats and tools available to tackle
the tasks for the systems engineer described in the previ-
ous section. However, the main problem for modern en-
gineers are the interfaces and steps which are necessary to
go from one domain to the other. Co-simulation protocols
like DCP on the one hand solve this problem from the view
of simulation by providing uniform interfaces and descrip-
tions of the simulation participants. Graph-based work-
flow descriptions on the other hand allow setting up con-
tinuous integration pipelines, as discussed e.g., for Gitlab
CI in (Pundsack 2018). Nevertheless, when dealing with
simulations there are problems. Existing graph-based so-
lutions for workflow descriptions either rely on structural
properties like having no directed cycles (directed acyclic
graphs or DAGs for short) or only work in an online set-
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Figure 3. Comparison FMI-based simulation and DCP-based
Simulation

ting. This stems from the fact that orders of workflows
can only be described by a graph if there are no cycles,
but when dealing with closed loop simulations such cy-
cles are introduced naturally. It is beneficial for optimiza-
tion, analysis and resource management tasks and auto-
matic code generation of build scripts to provide a data
structure which works offline and still describes all depen-
dencies and all communication ways.

3.2 Co-Simulation Standards

The FMI standard has greatly simplified the exchange of
simulation models across tool boundaries (Blochwitz et al.
2012). However, a corresponding standard for real-time
systems that includes network communication is miss-
ing. The Distributed Co-Simulation Protocol (DCP) is
an application-level communication protocol, designed
for cost-effective development processes and opportuni-
ties to easily integrate models into simulation environ-
ments (Krammer and Blochwitz 2018). It standardizes
the exchange of simulation-related configuration informa-
tion and data (Modelica Association Project DCP 2019).
The DCP standard fills this gap of FMI by standardizing
the behavior of the model and the exchanged messages on
the level of the communication protocol to simplify the
integration of different real-time systems. It reduces the
configuration effort required drastically thereby increas-
ing the efficiency of tests and simulations. See Figure 3
for a comparison of the two standards, for FMI see (FMI-
Working-Group 2020, p.97). Furthermore, the DCP stan-
dard defines a way to describe scenarios by providing a
specified XST tranformation for scenarios which can be
directly used for the automatic configuration of the sim-
ulation setup (Krammer and Benedikt 2018). Hence it is
perfectly suited for the goals of the use case from the fore-
going section, and we can use it as leverage for the au-
tomation of the whole workflow.

3.3 The Co-Simulation Process Graph
To use the leverage of the tools available without introduc-
ing a new software chain a graph-based meta-data model
was introduced which allows the description of workflows
and simulation scenarios in a unified manner. The so-
called co-simulation process graph was formally defined
in (S. H. Reiterer et al. 2020) and is an extension to the
classical process graph (Tick 2007). It solves the prob-
lem of cycles introduced by closed loop simulations and
models without the need of separating the workflow se-
quence and the topology of the simulations. By definition
a co-simulation process graph is a directed graph with the
following properties:

• The set of nodes consists of data nodes, transforma-
tion nodes, master nodes, signal nodes and commu-
nication (or gateway) nodes.

• To represent the instantiation of a process or the us-
age of a signal inside a simulation, copies of the
nodes which represent these instances are made. In-
stances have to be directly connected to their origi-
nals.

• Instead of using the bi-partite structure to represent
data transformations, only instances of processes can
connect to data nodes to perform operations. In this
way, the nodes which perform operations and their
instantiation can be determined with a suitable al-
gorithm, which determines a different partition of
the graph with help of the defined structure, to pro-
vide the correct order of executions. This is neces-
sary since it is allowed that transformation nodes are
neighboring, e.g., a Docker container which is built
and then used for executing a program afterwards.

• An information node can never be the successor or
predecessor of another information node. A process
must be placed in between. However, neighboring
process nodes are allowed. This may happen if a
program-performing transformation at a later stage
is modified beforehand by another process (e.g., pa-
rameterization of tools).

• A simulation is a sub-graph with the following prop-
erties: a) It contains the instance of a master node. b)
The instance of the master node is connected to all
instances of signal nodes that belong to the simula-
tion. c) All the other nodes inside the simulation (i.e.
the simulation participants and communication gate-
ways) neighbor a signal instance. d) Each instance
of a signal is only allowed to appear once inside a
simulation.

• Cycles are only allowed inside a simulation sub-
graph.

A more detailed description of the data structure and anal-
ysis of the used algorithms can be found in the paper (S.
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Reiterer and Kalab 2021), which was recently accepted in
the International Journal of Simulation and Process Mod-
elling. An example is shown in Figure 4. A possible exam-
ple is that the nodes c1 and c2 represent software sources
(e.g., source code of a model) b represents a build tool like
CMAKE and b1 and b2 represent two processes of this
build tool which are started, which leads to the simulation
units P1 and P2, while the node M represents a simulation
master. After the build in stage 1) the simulation is exe-
cuted and the master is configured by the information con-
tained in the node M and gets additional parameters from
node I, while the node O represents the output of the sim-
ulation. The nodes i j and o j represent in- and outgoing
signals like velocity or acceleration, while g j represents
the communication protocols (e.g., a network protocol like
IP) for j = 1,2.

It can be shown that a co-simulation process graph can
efficiently be transformed into a DAG. Those transforma-
tions are based on contractions which are of particular im-
portance since they allow a simplification of the graph to
make the representation more accessible for human users,
because the data structure was designed to be computer
friendly and can become quite complex.

The transformation nodes can also be filled with ex-
isting scripts and code snippets to improve reusability of
existing build scripts. This way the graph structure can
be either directly used as a simple low code platform for
programming pipelines or linked with existing technolo-
gies to make the combination of the continuous integra-
tion world with the realm of simulations easier. Since it is
a universal data structure it is not necessary to introduce
new tooling but allows linking the existing tools into the
framework.

See Figure 5 for the database view on the build graph
for the adaptive cruise control (ACC) function as a further
example. This graph contains all necessary steps for the
build steps of the ACC function participant. Additionally,
the database holds the signals which are associated with
the participant which should be used in the scenario de-
scription for the DCP simulation. Several manufacturers
have fixed catalogs of signals which are allowed to use.

Storing them in the database together with simulation
participant helps developers to avoid using wrong signals.

4 Implementation
In this section the details of the implementation are pre-
sented. This includes the description of the used simula-
tion participants and how the co-simulation standards are
used. Further the configuration management using meta-
data embedded in the process graph and the deployment of
the resulting configuration to the simulation are discussed.

4.1 General Implementation
The prototype of the graph transformation service was
implemented in Python with usage of the networkX li-
brary (Hagberg, Schult, and Swart 2008). The transforma-
tion service transforms the graph description of the build
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Figure 4. Simple Example of a Co-Simulation Process Graph

pipeline from XML and stores it in a graph database. Here
ArangoDB was used due to the generous license model
for the community edition (BSD like license) and since it
is recommended as one of the stronger candidates (Fer-
nandes and Bernardino 2018). Furthermore, the scenario
description was drawn with the Eclipse plugin Papyrus
since it is one of the few free SysML/UML modeling tools
available which allow export of the UML diagrams as text
file (Lanusse et al. 2009). As a build server Jenkins was
used for which the build pipelines were generated. To ease
the deployment Docker containers were built in which the
simulations could run without worrying if the necessary li-
braries are available on the Jenkins slave which performs
the build process.

4.2 Implementation of the Use Case in Detail
From the abstract description depicted in Figure 2 a sim-
ple XML parser in Python was used to transform the
model exported from Papyrus to generate the necessary
nodes and edges for the simulation subgraph (in the sense
of Subsection 3.3) and the provided meta-information
which was entered into the description is parsed and en-
tered into the nodes.

The service then sends AQL (Arango Query Language)
queries to the graph DB and gets the related build pipelines
for the simulation participants and the master and com-
bines them. After this the DCP description file is gen-
erated from the graph description directly on the build
servers’ workspace where the simulation is executed.
Hereby the graph service enters all connections between
the participants and the configuration of the master. Fur-
thermore, the signals with the used value references are
taken from the database. After that all subgraphs for the
pipelines are connected and the necessary code for the
build server is generated and executed. See Listing 1 for
the generated code. In lines 4-13 the setup of the partic-
ipants is executed. The necessary commands and param-
eters for the setup are stored within the graph database.
In lines 14-18 a simplified configuration file is written
which represents the signal connections via reference val-
ues. However, this configuration is for demonstration
only. Every line in the configuration file config.ini rep-
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resent the connection of one output to one input referred
to by the corresponding participant name and value refer-
ence. For demonstration purposes we simply write these
lines one by one by diverting the output the echo com-
mands to the file. Note that these commands were auto-
matically generated from the structure of the simulation
graph. In a production environment such configuration
data has to be supplied in a structured manner, such as
an XML-file, a prototype which uses an advanced sce-
nario description format exists as well. Finally in line 20
the simulation is started; this is achieved by running the
dcpmaster-service in its own docker. This service in turn
uses the generated configuration file to configure and start
the simulation participants, which were started up before
and were waiting in an idle state for commands.

This pipeline can be subdivided in a build stage and a
simulation stage as depicted in Figure 4. During the build
stage the simulation participants are built. Two models are
to be simulated in the system: An adaptive cruise control
(ACC) function which controls the acceleration of a ve-
hicle based on the speed of the vehicle and the distance
to and speed of a vehicle ahead, if such a vehicle is de-
tected. This ACC functionality is tested by coupling it
with a second model that simulates the entire environment
of the ACC, including the ego-vehicle and its surround-
ings, refer to Figure 2 for the signal flow. Both models are
implemented as C code with accompanying meta-data. A
build pipeline template uses this code and meta-data from
a repository to build the models with their dependencies
resulting in finished artifacts, in this use case two FMUs.
These artifacts are then tested – both with respect to for-
mally complying to the FMI standard as well as their basic
functionality – and subsequently uploaded to an artifact
repository.

In the next step of the build stage the simulation envi-
ronment is set up. Docker containers are build in which
the simulation participants will run. A DCP wrapper for
FMUs was implemented based on the DCPLibrary – the
open-source reference implementation of the DCP. This is
used to the make functionality of each FMU available in a
DCP slave in a distributed FMI master configuration. This
is possible because the DCP standard was designed with
the goal of basic comparability with FMI in mind. Such
a wrapper can be used to integrate existing high-quality
FMU in a networked DCP-simulation or real time system.
During the simulation stage the simulation is configured
and executed. The docker containers – one for each sim-
ulation participant – are started. The configuration of the
scenario is generated from the meta-data of the simulation
graph, the lower part of Figure 4, this includes which input
is connected to which output, parameters and the timing
configuration. This configuration is provided to the DCP
master, which deploys this configuration to the slaves and
starts the simulation. In the use case the DCP master is
implemented in Python, demonstrating the interoperabil-
ity of DCP implementations. A feature was implemented
that reads in a DCP scenario description, containing slave

descriptions of all DCP slaves involved in the scenario and
the desired configuration details, and can generate from
this the necessary configuration sequence to roll out the
configuration and run the simulation. The master con-
trols the simulation with DCP protocol data units (PDUs)
that are sent via network connections to the DCP slaves.
The DCP slaves in turn exchange simulation data via data
PDUs until the master stops the simulation.

Listing 1. Generated Code for Simulation

1 stage(’Stage: Sim77706 77706,Sim888’) {
2 steps{
3 sh ’echo "Run Simuation Sim888"’
4 script {
5 DockerFolder = "

dcp_docker_run"
6 Key = "part1"
7 sh "cd ${DockerFolder}/;

docker-compose up -d $
{Key}"

8 }
9 script {

10 DockerFolder = "
dcp_docker_run"

11 Key = "part2"
12 sh "cd ${DockerFolder}/;

docker-compose up -d $
{Key}"

13 }
14 sh ’echo "ACCenv, 6, ACCFunction,

4" >> config.ini’
15 sh ’echo "ACCenv, 3, ACCFunction,

2" >> config.ini’
16 sh ’echo "ACCenv, 4, ACCFunction,

3" >> config.ini’
17 sh ’echo "ACCenv, 1, ACCFunction,

1" >> config.ini’
18 sh ’echo "ACCFunction, 5, ACCenv,

7" >> config.ini’
19 sh "cp config.ini dcp_docker_run/

dcp_py_master/ACC/"
20 sh "cd dcp_docker_run/; docker-

compose up dcpmaster"
21 } }

The simulation results are then post-processed with a
Python script, zipped and put on an artifact repository,
e.g., JFrog Artifactory, where they can be downloaded. In
Figure 6 an overview of the generation and linking proce-
dure is provided.

5 Conclusion and Outlook
In this work we presented a simple proof of concept to
showcase how CI pipelines could be described in the con-
text of simulations. For this an abstract graph model
was described which can be stored within a database and
can be used for splitting work and autogenerate simula-
tion scenarios out of model descriptions. A simple sim-
ulation was described in UML which was used directly
for generating the simulation configuration within the
pipeline. Furthermore, we demonstrated how the de-
scribed pipelines can be stored within a graph database
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and how it can be used to merge existing pipelines to a
complete workflow containing all necessary steps. For the
simulation part we demonstrated how FMU participants
can be converted to DCP participants and how to roll them
out automatically via Docker containers within the gener-
ated pipeline. Connections between the participants are
automatically set with help of the graph data structure and
participants are automatically started with help of the pro-
vided meta-data. However, it is important to highlight that
this was a mere proof-of-concept. There are a lot of as-
pects regarding proper simulation description which still
are open. Currently only a primitive mapping was used
but there are several aspects regarding system design and
work processes which were not considered yet. Exten-
sions for SysML and SSP are planned to provide a proper
tool for systems engineering. Since the proposed graph
data structure is very abstract and very flexible there are
also quite a few topics which have to be investigated on the
implementation side. One topic is the algorithmic analysis
of the process graph; partial results were presented on the
Grazer Symposium of the Virtual Vehicle (S. H. Reiterer
2020). As already mentioned in Section 3.3 a compan-
ion journal paper was recently submitted and accepted (S.
Reiterer and Kalab 2021). In this work the algorithmic
and modeling aspects of the co-simulation process graph
model are described in detail. Furthermore, strategies to
optimize the resulting pipelines are investigated. Another
big topic is the proper integration of the graph database.
This includes versioning of graph-based pipelines within
the graph database and managing of configuration param-
eters and tool variation. Regarding the DCP standard there
are several questions remaining like defining a compre-
hensive standard for the description of the co-simulation
process graph elements (node and edge data) to ensure
generation of DCP scenario descriptions in a consistent
manner. This would not only open the possibility to de-
scribe DCP simulations as graphs but would also enable
computer aided analysis of the performance of simulations
on a large scale or automatically deploy different varia-
tions of scenarios.
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