
Portable runtime environments for Python-based FMUs:
Adding Docker support to UniFMU

Thomas Schranz1 Christian Møldrup Legaard2 Daniella Tola2 Gerald Schweiger1

1Graz University of Technology, Austria, {thomas.schranz,gerald.schweiger}@tugraz.at
2DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, {cml,dt}@ece.au.dk

Abstract

Co-simulation is a means to combine and leverage the
strengths of different modeling tools, environments and
formalisms and has been applied successfully in various
domains. The Functional Mock-Up Interface (FMI) is
the most commonly used standard for co-simulation. In
this paper we extend UniFMU, a tool that allows users
to build Functional Mock-Up Units (FMUs) in virtually
any programming language, to support execution within
Docker. As a result the generated FMUs can be distributed
in an environment containing all runtime dependencies.
To describe the process of creating Dockerized FMUs us-
ing UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs.

Keywords: FMI, Co-Sim, Python, Tool-Coupling, Docker

1 Introduction

Complex, heterogeneous systems can be found through-
out all fields of science and industry. Due to increasing
complexity, market competition and specialization, sys-
tem evaluation and simulation-based analysis has become
more and more difficult (G. Schweiger et al. 2019). How-
ever, there often exist partial models for different parts of
these systems, albeit in different domains and developed
using different tools (Gomes et al. 2018). Co-simulation
is a means to combine and leverage the strengths of dif-
ferent modeling tools, environments and formalisms (Cre-
mona et al. 2019) and has been applied successfully in
various domains (Gerald Schweiger et al. 2018; Pedersen
et al. 2017; Nageler et al. 2018). The Functional Mock-
Up Interface (FMI) was found to be the most promising
standard for continuous time, discrete event, and hybrid
co-simulation in a survey by (G. Schweiger et al. 2019).
FMI is maintained by the Modelica association (Model-
ica Association 2021); it can be used to co-simulate com-
ponents packaged as Functional Mock-Up Units (FMUs),
each of which can be built using a different FMI-enabled
modeling tool.

1.1 Co-Simulation Tools

With Open Modelica (Asghar and Tariq 2010), Simulink1

or 20-sim2 users can generate FMUs based on com-
mon modeling languages such as Modelica or MAT-
LAB/Simulink using a graphical interface. The Universal
Functional Mock-up Unit (UniFMU) (Legaard et al. 2021)
tool allows users to build FMUs from arbitrary code in any
programming language; it supports Python, C# and Java
out-of-the-box. It uses a precompiled binary wrapper that
implements the methods specified in the FMI standard’s
C-headers to spawn a process that executes the FMU’s
actual code. This way the FMU can be built from code
written in an interpreted language or a language that uses
automatic garbage collection. However, this setup, allow-
ing for this kind of flexibility, requires the host machine to
provide the process with all runtime dependencies which
limits portability, especially between different host ma-
chines, and potentially necessitates a complicated setup
procedure.

There exists a number of distributed, FMI-based co-
simulation tools, many of which were analyzed in (Ha-
tledal et al. 2019). However, all of them require a tight
coupling between the co-simulation components and the
master algorithm. ProxyFMU, a tool developed by the au-
thors of (Hatledal et al. 2019) decouples the FMUs, in a
way that they become independent of the master algorithm
in a client/server solution that supports JavaScript, Python,
C++ and the JVM on the client side.

The authors of (Hinze et al. 2018) propose a method
for running FMUs inside Docker containers by placing
the entire FMU archive inside the container and extending
the master algorithm with a remote procedure call proto-
col. A distinction between their work and our approach is
that FMUs generated using UniFMU work with any FMI-
enabled master algorithm without the need to implement
any additional protocols.

1.2 Contributions
In this paper we extend UniFMU using the virtualization
environment Docker3, such that the FMUs can be shipped
with all runtime dependencies. We provide a general

1http://www.mathworks.com/products/simulink
2http://www.20sim.com
3https://www.docker.com

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

419



mechanism that can be leveraged for all languages sup-
ported by the tool. The resulting FMUs have nearly the
same portability as compiled FMUs (except for the depen-
dency on Docker) and require no language-specific setup
procedure, but still allow the use of non-compiled lan-
guages and languages that use automatic garbage collec-
tion. To explain the process of creating Dockerized FMUs
using UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs. The UniFMU tool (with the extensions for Dock-
erization) is available on Github4. The FMUs described in
this paper can be found in a separate repository5.

The rest of the paper is structured as follows. First, sec-
tion 2 introduces a robotic arm and a controller which is
used as a case study throughout the paper. Next, section 3
provides an introduction to UniFMU and describe how the
robotic arm and controller can be implemented as FMUs
using the tool. Then, section 4 describes the extension
of UniFMU that allows FMUs and their dependencies to
be deployed inside Docker containers. Afterwards, sec-
tion 6 provides a discussion of the results and outlines fu-
ture work on the tool. Finally, section 7 provides conclud-
ing remarks.

2 Case Study
To exemplify the process of using UniFMU we consider
the case of modeling a robotic arm coupled to a controller
as depicted in Figure 1. The example is chosen to high-
light how different modeling formalisms can be realized
by the tool. Specifically, the robotic arm described in
subsection 2.1 is inherently continuous, whereas the con-
troller described in subsection 2.2 is discrete.

RobotController

Figure 1. Connection between controller and robot model.

2.1 Robotic Arm
The robotic arm is modeled as a controlled inverted pen-
dulum. The states of the system are its angle θ , the an-
gular velocity ω and the current running through the coils
of the electrical motor i. The dynamics of the robotic arm
are described by Equation 1. Note that contrary to the vi-
sualization shown in Figure 7 the model only considers a
single joint that rotates around a single axis.

f (x) =


θ̇

ω̇

i̇

=


ω

K·i−b·ω−m·g·l·cos(θ)
J

u·Vabs−R·i−K·ω
L

 (1)

4https://github.com/INTO-CPS-Association/
unifmu

5https://github.com/Daniella1/robot_unifmu

where:
The derivative of the angle θ̇ is, per definition, equal

to the velocity of the arm ω . The derivative of the an-
gular velocity ω̇ is determined by the torque coefficient
K = 7.45 s−2A−1, the current i, the motor-shaft fric-
tion b = 5.0 kg · m2 · s−1 and the gravity acting on the
arm, denoted by m · g · l · cos(θ), with m = 5.0 kg, g =
9.81ms−2, l = 1.0 m. The change in current is determined
by the input from the controller u, the voltage across the
coils Vabs = 12.0 V , the resistance R = 0.15 Ω and the mo-
tor’s inductance L = 0.036 H.

2.2 Controller
A proportional-integral-derivative (PID) con-
troller (Åström and Murray 2010) is used to generate the
control signals sent to the robotic arm. The continuous
formalization of the controller is given by:

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd ė(t) (2)

where e(t) is a measure of the error of the variable being
controlled and Kp, Ki and Kd are coefficients used to tune
how the proportional and derivative terms are weighted.
In case of the robot, the controller is trying to minimize
the error between the desired angle θ ∗(t) and the true an-
gle θ(t). Thus, the error is defined as e(t) = θ ∗(t)−θ(t).

In practice, most controllers are implemented digitally,
which means that derivatives and integrals must be re-
placed by discrete approximations. There are several ways
to do this, the simplest being to replace derivatives by first-
order differences

ė(tk)≈ ėk =
ek − ek−1

T
,

and integrals by sums∫ tk

0
e(tk)≈ Ek =

N

∑
n=1

ekn ·T

where ek = e(tk), T is the sampling time and N = tk/T
is the number of samples between time 0 and tk. After re-
placing the continuous definitions in Equation 2 we obtain
an equation that can be implemented on a discrete con-
troller

uk = Kpek +KiEk +Kd ėk (3)

This discretization scheme is simple to implement

3 Modeling
In this section, we describe how UniFMU is installed and
how it is used to generate an FMU. We provide a brief
overview of the resulting FMU’s structure and method of
operation. Subsequently, we describe the FMUs used to
model the robotic arm and the controller. For illustrative
purposes both FMUs are implemented in Python, however
in the general case they can be implemented in a mix of
languages.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

420 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419



3.1 Creating an FMU using UniFMU

UniFMU is a command line interface (CLI) that can be
installed through Python’s package installer pip or from
source following the instructions in the official repository.
Installation through pip uses a single command:

pip install unifmu

It should be noted that the FMUs generated with
UniFMU do not require Python during runtime, unless the
FMUs themselves are implemented in Python. To gen-
erate an FMU the tool has to be invoked with the sub-
command generate, and supplied with the language the
FMU is implemented in and the name it should have; for a
Python-based FMU with the name robot this looks like:

unifmu generate python robot

This generates an FMU with the structure shown in Fig-
ure 2. The binaries directory contains a precompiled
wrapper for Windows, Linux and MacOS that implements
the methods specified in the FMI’s C-headers and relays
them to the actual implementation of the FMU found in
the resources directory. model.py defines a class
that declares a set of methods that correspond to the meth-
ods in the FMI standard, such as FMI’s fmi2DoStep
which is implemented by the Python method do_step.
The actual overwrite used to model the robotic arm can be
seen in Listing 1.

robot.fmu

binaries

darwin64

linux64

unifmu.so

win64

resources

model.py

modelDescription.xml

Figure 2. The directory structure for a Python FMU. Note that
several files generated by the tool are omitted for simplicity.

3.2 Robotic Arm FMU

The robotic arm FMU is implemented in Python using a
numerical solver provided by the SciPy (Virtanen et al.
2020) package. The general procedure for solving an ODE
using Scipy is to define a function which evaluates the
derivative for a given combination of state and time. Using
Equation 1 as a reference the function f (·) can be defined
as shown in Listing 1.

Figure 3. Standalone test of robotic arm, with values θ0 = ω0 =
i0 = u(t) = 0.

1 def do_step(
self,current_time,step_size,no_step_prior
):

2 def f(t, y):
3 theta, omega, i = y
4 tau=self.k1*np.cos(theta)
5 domega=(self.K*i-self.b*omega-tau)/

self.J
6 di=(self.V-self.R*i-self.K*omega)/

self.L
7 dtheta=omega
8 return dtheta, domega, di
9 res=solve_ivp(f,(

current_time,current_time+step_size),y0)
10 self.theta,self.omega,self.i=res.y[:,-1]
11 return Fmi2Status.ok

Listing 1. Implementation of the fmi2DoStep method for the
robotic arm FMU.

Given the definition of the derivative, the solve_ivp
function can be used to obtain the solution for the next step
of the FMU and allows users to choose between solvers.
However, it is also possible to use any other Python li-
brary providing numerical solvers or to implement a cus-
tom solver. This is a very flexible solution as it allows
users to choose the type of solver that is suitable for the
particular ODE. After solving the ODE, the newly esti-
mated state is assigned to the instance, where it can be
accessed from other methods and the FMI.

To test the dynamics of the robotic arm FMU, a small
test program is written in Python which invokes the
do_step several times. The results are shown in Figure 3
for initial state and input θ0 = ω0 = i0 = u(t) = 0. We see
that the angle of the robot decreases from 0 to -1 over 10
seconds.

3.3 Controller FMU
The controller-FMU implements a simple control algo-
rithm that determines the signal sent to the motor based on
the difference between the desired and the actual current
angle. Similarly to how Equation 1 was translated into a

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

421



Python function describing the derivative of the state, we
use the control policy Equation 3 as a reference to imple-
ment the expression shown in Listing 2.

1 def do_step(self, current_time, step_size,
no_step_prior):

2 err=self.setpoint_t-self.measured_t
3 self.I=self.I+err*step_size
4 D=(err-self.p_err)/step_size
5 self.u=self.Kp*err+self.Ki*self.I+self.Kd

*D
6 self.p_err = err
7 return Fmi2Status.ok

Listing 2. Implementation of the fmi2DoStep method for the
controller-FMU.

In most practical situations, controllers are imple-
mented on a processing unit where updates to the out-
put would happen at a fixed update rate determined by the
controller’s clock frequency and the number of operations
needed at each update.

An implicit assumption of our model is that the step-
size used by the solver matches the update rate of the
controller. For small step sizes, the discrete approxima-
tion implemented by the model remains relatively accu-
rate. However, for larger step sizes the accuracy of the
discretization scheme is reduced, which may ultimately
cause the closed-loop system to become unstable. A
solution to mitigate the discretization error is to use a
more sophisticated discretization scheme, such as Tustin’s
method (Franklin, Powell, and Emami-Naeini 2020).

As in the robotic arm FMU, we can also use any ex-
ternal library for modeling the controller. For instance, a
package such as python-control6, can be used to evaluate
the performance of different controllers.

The functionality of the controller can be verified by
writing a small test program in Python that invokes the
do_step method of the FMU. To examine the closed-loop
behavior, the robot is replaced with a simple linear model
described by the ODE θ̇ = u. Executing the Python test
program, we obtain the step-response of the closed-loop
system (with surrogate model) as depicted in Figure 4.

4 Docker Support
A key contribution of this paper is extending UniFMU so
that the generated FMUs can be executed within a virtu-
alization environment using Docker. To create a Docker-
ized FMU the user can append the –dockerize switch to
UniFMU’s generate subcommand:

unifmu generate python --dockerize robot

The functionality is available for Linux and macOS and
all languages that the tool supports. Windows support
is under development, but is held back by limitations of
Docker’s networking capabilities when running on Win-
dows.

6https://python-control.readthedocs.io/en/0.
8.3/index.html

Figure 4. Standalone test of the controller FMU with using lin-
ear model for plant θ̇ = u, step size = 0.001, setpoint = 1.0

4.1 Setting up the image
A configuration file, referred to as the Dockerfile, pro-
vides instructions to build the environment on any host
machine. An excerpt from the Dockerfile used by
the robotic arm FMU can be seen in Listing 3. The first
line declares that the image for the FMU is assembled
ontop a pre-built Python 3.8. image from the Docker
container library. The second line invokes the package
manager pip to install packages required by the model.
For simplicity, the three dots represent the dependencies
required by the Python backend to communicate with
the binary. The third line instructs Docker to copy the
container_bundle directory into the image. The
container_bundle contains all files that are needed
during runtime, such as the actual model implementation
and all user-generated files and dependencies.

1 FROM python:3.8
2 RUN pip install ... scipy

roboticstoolbox-python matplotlib
3 COPY container_bundle resources
4 ...

Listing 3. Dockerfile used to assemble the image used by FMU
instances.

4.2 Instantiating a Dockerized FMU
The process of creating an instance of a Dockerized FMU
is depicted in Figure 5. The steps are as follows: First, the
binary will ensure that the image declared in the Dock-
erfile has been built. If this is not the case, it will au-
tomatically invoke the Dockerfile to build the image.
Next, from the image a container is created. The container
has access to all dependencies listed in the Dockerfile,
such as Python packages that were installed through pip
and everything inside the container_bundle. Note
that each instance of an FMU is executed within its own
container and removed after use. This ensures that no in-
stances of an FMU share any state or influence each other
directly.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

422 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419



fmi2Instantiate

invoke build of

instantiate imageUniFMU
Binary

Docker Image

robot.py SciPy

python 3.8

Container

Figure 5. Deployment of a model inside the Docker container.

Figure 6. Co-simulation of the controller and the robot with the
set point = 1. Experiments of varying the controller parameters
are shown.

5 Results

A co-simulation was configured and run using the two
FMUs with the INTO-CPS tool-chain (Larsen et al. 2016).
We used a fixed step-size solver with a step-size of 0.001
seconds, set the desired angle to 1 radian and plotted θ as
a function of time for various values of Kp,Ki and Kd . The
corresponding plot can be seen in Figure 6. Fig. 7 shows
the robotic arm at an angle of 1 radian. The controller with
Ki = 0 exhibits a substantial steady-state error, whereas the
ones with an integral term converge within 10 seconds.
Besides, it can be seen that controllers with an integral
term cause the system to overshoot the setpoint. Tweaking
the coefficients of the controller allows us to balance the
tendency to overshoot and the steady-state error, such that
they meet the requirements of the application. Methods
based on heuristics exist for tuning PID controllers, which
could be applied to tune the controller for the robotic arm.
However, we considered applying these to be beyond the
scope of this example use case.

Figure 7. A visualization of the robot during the co-simulation.
The measured θ is equal to the set point = 1 rad, when con-
trolled with the PID-controller.

6 Discussion
A central objective of the FMI standard is to facilitate the
exchange of models generated by different tools. To do
so, FMI requires communication through a C-API, which
complicates implementing models in languages that can-
not be compiled into a C-compatible binary. UniFMU cir-
cumvents this issue by providing a generic C-binary that
handles all communication between FMI calls to the FMU
and the FMU’s actual code. Being able to use high-level
programming languages such as Python allows develop-
ers to leverage a large ecosystem of scientific libraries
and thus implement models quickly and efficiently, espe-
cially in contrast to writing everything from scratch. Con-
sider the implementation of the do_step method for the
robotic arm shown in Listing 1. The ODE is declared and
solved in eight lines of code. We believe that this has the
potential to simplify co-simulation for more modeling ap-
plications and engage more developers.

Another aspect to this approach is that the resulting
FMUs can be verified and debugged using the develop-
ment tools of the FMU’s language. For instance, it al-
lowed us to write small test programs for verifying the
FMUs before performing the co-simulation of the system.
In our experience, the ability to effectively test the individ-
ual models greatly reduces the number of issues encoun-
tered when integrating the models.

Using FMUs that require runtime dependencies to be
handled manually is counter-intuitive to the idea of sim-
ple, standardized model exchange. Consequently, in this
work we addressed this issue by providing a way to auto-
matically virtualize the runtime environment with all de-
pendencies inside a Docker container rather than requir-
ing the host machine to provide a suitable environment.
The way this Dockerization was implemented did not af-
fect UniFMU’s precompiled binaries and all changes to
the language-specific backends are simply additional con-

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

423



figuration options instead of hard dependencies on Docker
itself. The latter might be reused in the future to imple-
ment remote deployment.

7 Conclusion
Co-simulation is a key research interest. The FMI stan-
dard is among the most popular interfaces for model ex-
change and co-simulation. There are various tools to gen-
erate FMI-compliant FMUs. UniFMU is one such tool
that allows users to build FMUs from arbitrary code writ-
ten in any language. We used UniFMU to generate two
Python-based FMUs in order to co-simulate a robotic arm
and a controller. However, the resulting FMUs required
the host machine to provide a Python runtime environ-
ment with all dependencies preinstalled, effectively lim-
iting portability and ease of deployment. To address this
issue we extended UniFMU using the virtualization tool
Docker. With our extension, UniFMU is able to gener-
ate FMUs shipped with a Dockerfile that automati-
cally builds a runtime environment inside a container. This
way the FMUs are almost as portable as compiled FMUs
(except for the dependency on Docker) but still support
the use of non-compiled languages. Our extension is not
limited to Python but can be reused for other languages
as well. Besides, the changes we implemented can help
in developing a configuration for remote deployment of
FMUs in the future.

Acknowledgements
The authors would like to thank Thomas Schwengler for
their support with designing the Docker-integration.

The reported research was conducted within the
project NextHyb2 (881150) and project DigitalEner-
gyTwin (873599), which received funding in the frame-
work of ”Stadt der Zukunft” and "Energieforschung", a
research and technology program of the Austrian Ministry
for Transport, Innovation and Technology (BMVIT).

References
Asghar, Syed Adeel and Sonia Tariq (2010). Design and Imple-

mentation of a User Friendly OpenModelica Graphical Con-
nection Editor. eng.

Åström, Karl Johan and Richard M Murray (2010). Feedback
Systems: An Introduction for Scientists and Engineers. In En-
glish. ISBN: 978-1-4008-2873-9.

Cremona, Fabio et al. (2019-06). “Hybrid Co-Simulation: It’s
about Time”. en. In: Software & Systems Modeling 18.3,
pp. 1655–1679. ISSN: 1619-1366, 1619-1374. DOI: 10.1007/
s10270-017-0633-6.

Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini
(2020). Feedback Control of Dynamic Systems. eng. Eighth
edition, global edition. Harlow, United Kingdom: Pearson
Education Limited. ISBN: 978-1-292-27452-2.

Gomes, Cláudio et al. (2018-07). “Co-Simulation: A Survey”.
en. In: ACM Computing Surveys 51.3, pp. 1–33. ISSN: 0360-
0300, 1557-7341. DOI: 10.1145/3179993.

Hatledal, Lars Ivar et al. (2019-02). “FMU-proxy: A Frame-
work for Distributed Access to Functional Mock-up Units”.
In: pp. 79–86. DOI: 10.3384/ecp1915779. URL: https://ep.
liu.se/en/conference-article.aspx?series=ecp&issue=157&
Article_No=8 (visited on 2021-05-09).

Hinze, Christoph et al. (2018). “Towards Real-Time Capable
Simulations with a Containerized Simulation Environment”.
In: 2018 25th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), pp. 1–6. DOI: 10.1109/
M2VIP.2018.8600827.

Larsen, Peter Gorm et al. (2016). “Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-
CPS project”. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data),
pp. 1–6. DOI: 10.1109/CPSData.2016.7496424.

Legaard, Christian Møldrup et al. (2021). “A Universal Mech-
anism for Implementing Functional Mock-up Units”. In:
11th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications. SIMUL-
TECH 2021. Virtual Event, to appear.

Modelica Association (2021). Functional Mock-up Interface for
Model Exchange and Co-Simulation. https : / / www . fmi -
standard.org/downloads.

Nageler, P. et al. (2018-08). “Novel method to simulate large-
scale thermal city models”. en. In: Energy 157, pp. 633–
646. ISSN: 03605442. DOI: 10 . 1016 / j . energy . 2018 . 05 .
190. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S0360544218310363 (visited on 2021-05-06).

Pedersen, Nicolai et al. (2017). “Distributed Co-Simulation of
Embedded Control Software with Exhaust Gas Recircula-
tion Water Handling System using INTO-CPS:” in: Pro-
ceedings of the 7th International Conference on Simula-
tion and Modeling Methodologies, Technologies and Appli-
cations. Madrid, Spain: SCITEPRESS - Science and Technol-
ogy Publications, pp. 73–82. ISBN: 9789897582653. DOI: 10.
5220/0006412700730082. URL: http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0006412700730082
(visited on 2021-05-06).

Schweiger, G. et al. (2019-09). “An empirical survey on co-
simulation: Promising standards, challenges and research
needs”. en. In: Simulation Modelling Practice and Theory 95,
pp. 148–163. ISSN: 1569190X. DOI: 10.1016/j.simpat.2019.
05.001. URL: https: / / linkinghub.elsevier.com/retrieve/pii /
S1569190X1930053X (visited on 2021-05-06).

Schweiger, Gerald et al. (2018-12). “District energy systems:
Modelling paradigms and general-purpose tools”. en. In: En-
ergy 164, pp. 1326–1340. ISSN: 03605442. DOI: 10.1016/j.
energy.2018.08.193. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0360544218317274 (visited on 2021-05-06).

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python”. In: Nature Meth-
ods 17, pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

424 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419


