Object Manipulation and Assembly in Modelica

Robert Reiser!

!nstitute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{firstname.lastname}@dlr.de

Abstract

This paper introduces a new library for the manipulation
and assembly of 3D objects using Modelica. The method
is based on collision detection, contact dynamics, position
and orientation control as well as states for object manip-
ulation. The aim is a stable and efficient simulation of
these processes close to real physics. 3D objects (both el-
ementary shapes and CAD objects) can be added from the
library browser to a model by drag-and-drop and are di-
rectly capable of being manipulated by multiple grippers
and conveyors or being assembled to an assembly. This
allows a high degree of flexibility and the modeling effort
can be decreased significantly.

Keywords: manipulation, grasping, gripper, assembly,
collision detection, contact dynamics, state machine

1 Introduction

The manipulation and assembly of objects is widely used
in multiple domains (e.g. in the production industry). This
leads to a high relevance for the modeling and simulation
of these processes. However, current simulation tools are
either specialized standalone software with restricted flex-
ibility (Miller and Allen 2004; Leé6n et al. 2010) or em-
bedded in plant planning software and therefore limited
to this specific domain (Kiihn 2006). On the other hand,
the object-oriented modeling language Modelica (Model-
ica Association 2017) offers cross-domain flexibility.

In the work of Ferretti et al. (2006), a gripper was mod-
eled and simulated using the Modelica Multibody Library
(Otter, Elmqvist, and Mattsson 2003). The Modelica Con-
tact Library of Oestersotebier, Wang, and Trichtler (2014)
aims at the idealized simulation of contacts with non-
central contact blocks. In both works, the contact pairs are
pre-defined in the model. Therefore, an object cannot be
grasped by multiple grippers and can only be placed on the
same ground. Elmgqvist et al. (2015) introduced a frame-
work for multibody contacts in Modelica using the dis-
crete element method where objects interact without pre-
defined connections. However, due to their complexity, all
models are not well suited for real time simulations.

The new solution presented in this paper aims at the
stable simulation of manipulation and assembly processes
in real-time close to real physics. The contact dynamics
model is therefore simplified and only used for the con-
tact between object and ground or conveyor and the initial
contact between object and gripper jaws. The stable con-

tact between object and gripper or within assemblies is
achieved by a "fixed connection" (nstead of contact forces
and torques (see subsection 3.3). 3D objects can be added
to a model without any pre-defined connection and are di-
rectly capable of being manipulated or assembled.

The developed library (which is currently only used in-
ternally) combines the flexibility of a non-causal, object-
oriented Modelica multi-body environment with the per-
formance of a collision detection algorithm in a linked
C library. Precise simulations of the contact and fric-
tional forces or multipoint contacts are out of the scope
of this work. However, the library is modular and can be
extended in multiple ways, e.g. adding precise physical
models for object contact.

The following section gives an overview of the library
including the blocks which can be used for modeling and
information about the usage of the library. Section three
deals with the models and algorithms including contact
detection, contact dynamics, hold control and manipula-
tion logic. The next section presents the concepts of object
manipulation and assembly.

In addition, two applications are shown, one for the ob-
ject manipulation and one for the assembly of an object.
In conclusion, the advantages and disadvantages of the so-
Iution as well as future developments are discussed.

2 Overview

The first part of this section is about the available blocks
and the second part about the usage of the library. Figure 1
shows the structure of the library.

v =@ Manipulation
© Documentation
] Examples
v Blocks
v Grippers
= TwolawGripper
v[J ManipulatedObjects
= BoxManipulatedObject
vJ GroundObjects
= Table
v[] Conveyors
= Conveyor
Internal

Figure 1. Overview of the library structure.

DOI
10.3384/ecp21181433

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

433

Object Manipulation and Assembly in Modelica

2.1 Blocks

The available blocks are shown in Figure 2 (visualization)
and 3 (model) and introduced in the following subsections.

2.1.1 Grippers

The TwoJawGripper is a simple gripper with two jaws
(it is possible to model grippers with more than two jaws).
It can be attached to a robot. The following parameters
can be set by the user. vMax is the maximum speed of the
jaws for closing and opening. jawPenMax defines the
maximum penetration depth for the jaws. Once the jaws
have contact to the manipulated object, the velocity is re-
duced in relation to the penetration until the given max-
imum penetration is reached. The graspDuration is
the time period after which the grasping transitions from
jaw contact to stable grasping and therefore the jaws will
stop the movement. There are two input states: close (jaws
move inwards with the maximum velocity) and open (jaws
move outwards with the same velocity). The gripper only
contains a kinematic model, i.e. the gripper and its jaws
are free of forces and torques.

2.1.2 Manipulated objects

The main object is the BoxManipulatedObject. It
is a cuboid whose dimensions dim can be defined by
the user. Additional parameters are the start position
rStart, the start orientation anglesStart, the mass
m and the inertia tensor as well as visualization proper-
ties. If useJawContact is true, the contact forces and
torques caused by the jaws are used for the duration de-
fined in graspDuration (only for the object and not
for the gripper). If false, the object is directly attached to
the gripper (close to real physics, see section 3).

The object can be used both as cuboid and as CAD ob-

Figure 2. Visualization of Modelica blocks for object manip-
ulation and assembly: TwoJawGripper (attached to robot),
Table (bottom right), BoxManipulatedObject (on top of
the table) and Conveyor (left).

booleanTable

tCPSource
' robot twoJawGripper
L T

boxManipulatedObject

v

T 47

conveyor

?

{1,-1.8,0
fixed2
{1,050

fixed1

=
r=

Figure 3. Modelica model with robot, TwoJawGripper,
Table, BoxManipulatedObject and Conveyor.

ject. For the latter, the CAD object is only used for visual-
ization, i.e. the cuboid is still used for contact. Therefore,
it is possible to manually set the surface for grasping (e.g.
only a part of the CAD object is covered by the cuboid).

2.1.3 Ground objects

The Table can be used as a ground object and is param-
eterized by the dimensions dim and visualization proper-
ties. The BoxManipulatedObject can be placed on
a Table, which does not use forces and torques.

2.14 Conveyors

For the movement of objects, the Conveyor model can
be used. It is also free of forces and torques and rep-
resents a moving belt which leads to a relative veloc-
ity of the BoxManipulatedObject. The resulting
friction forces and torques move the object. The user
can set the parameters units (number of belt elements),
velocity, the belt dimensions, the frame dimensions
and visualization properties. It can be placed horizontally
or oblique to the ground. It is capable of moving objects
upwards within a angle which depends on the contact pa-
rameters set for the BoxManipulatedObject.

2.2 Usage

Blocks can be added from the library browser to a model
by drag-and-drop. There are no connections between the
objects in the model because contacts are not pre-defined.
All objects are directly capable for manipulation or as-
sembly. For the BoxManipulatedObject, the start
position and the start angles have to be defined. The ini-
tial position must be on top of a Table or Conveyor.
An initialization within a closed gripper is planned, but
not yet implemented. The parameter useJawContact
is true by default.

The TwoJawGripper has to be attached to a robot.
If the graspDuration (i.e. the period after the activity
transitions from jaw contact forces to stable grasping) is
changed, it must be changed both for the gripper and the
BoxManipulatedObject.

434

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181433

Session 6A: Interoperability

3 Models and algorithms

This section shows the main models and algorithms used
for the manipulation and assembly of objects. At first, the
contact detection concept is introduced. In addition, the
models for object forces and hold control are explained.
The last subsection contains the manipulation logic.

3.1 Contact detection with libced

The contact detection of the presented Manipulation li-
brary is done by libced, a library for the calculation of
collisions and penetrations between objects (Fiser 2018).
It is written in C, open source under the 3-clause BSD li-
cense (Open Source Initiative 2020) and implements the
following contact detection algorithms:

* Gilbert-Johnson-Keerthi (GJK)
* Expand-Polytope-Algorithm (EPA)
¢ Minkowski Portal Refinement (MPR)

For the purpose of this paper, the MPR algorithm is used
because it is more stable.

Minkowski Portal Refinement is a collision detection
algorithm developed by Gary Snethen (Snethen 2008). It
is similar to the GJK algorithm.

Both are limited to convex shapes and use the
Minkowski difference which can be described as "the re-
gion swept by Object A translated to every point negated
in Object B" (Serrano 2016). It is widely used in colli-
sion detection because the location of the origin indicates
if both objects collide. If the Minkowski difference in-
cludes the origin, there is a collision. (Serrano 2016)

The MPR algorithm also uses the Support Function,
which is a "function that takes a convex hull (or convex
polygon) and a support vector representing a direction of
search. The function returns the point on the body that is
farthest in the sense of a plane sweep using the support
vector" (Newth 2013).

The MPR algorithm in 2D can be described as follows
(Snethen 2008; Newth 2013) and is shown in Figure 4.
In general, it consists of two phases: portal discovery and
portal refinement.

The portal discovery starts from the Minkowski differ-
ence between two objects and the origin O (Figure 4a).

* The phase begins with the definition of an interior
point VO within the Minkowski difference (e.g. the
geometric center). The origin ray is then defined as
the ray from V0 to O (Figure 4b).

* With the origin ray, the first support point V1 is de-
termined based on the support function. The second
support point V2 is discovered by a ray perpendicular
to the vector from VO to V1 (Figure 4c, 4d).

* The support points V1 and V2 are now defining a
portal. If the origin passes through this portal, the al-
gorithm continues with the second phase. If not, the

Vi
0 -
'\u
Vo
(a) (b) (e)
Vi Vi
%
®
vi Yi(ew)

(@ (h) 0]

Figure 4. Phases of the MPR algorithm (Snethen 2008). The
initial portal is discovered so that the ray from the interior point
VO to the origin O passes through (V1 and V2 define the initial
portal). This portal is then refined until the origin is on the inside
of the portal (V1 and V2 (new) define the final portal). The shape
represents the Minkowski difference between two objects.

process above continues with finding a new support
point in normal direction to the portal (Figure 4e, 4f).

The portal refinement starts from an initial portal.

* It is checked, if O is inside the portal. If this is not
the case (Figure 4f), the portal will be refined.

* A normal perpendicular to the current portal is cre-
ated to find the next support point V3 and a new por-
tal is created (Figure 4g, 4h).

* This step is repeated until O is inside the portal (Fig-
ure 4i).

The MPR algorithm in 3D is similar with the portal be-
coming a triangle instead of a line segment. Based on the
MPR algorithm, libced is able to determine if two objects
collide and if so to calculate the position, direction and
maximum depth of the collision.

The interface between libccd and Modelica is based on
unpublished work of Hellerer (2019). With this library it
is possible to define the mentioned object types in Model-
ica and perform collision detection in Modelica based on
libced.

In addition, the unpublished library of Buse (2021) adds
collision groups and the memory handling on C, which
enables the usage of collision objects in Modelica models
by drag-and-drop.

In the context of object manipulation, the contact detec-
tion is limited to a single contact, i.e. an object can collide

DOI
10.3384/ecp21181433

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

435

Object Manipulation and Assembly in Modelica

BoxManipulatedObject
A

Fnormal

—— Ground contact object

Table

Figure 5. Contact between BoxManipulatedObject
and Table based on the contact dynamics model. The
BoxManipulatedObject contains an object for ground
contact (green dotted, invisible in simulation visualization) with
larger dimensions to compensate the lower stiffness necessary
for fast simulations.

with multiple other objects, but only the contact with the
maximum depth is transferred to Modelica.

3.2 Contact dynamics model

This model is used for forces and torques between objects,
both for ground contact (object is placed on a table or con-
veyor) and jaw contact (interaction between jaws and the
grasped object).

The libced uses support functions which are defined by
the geometry of the shapes during the initialization of the
simulation. During simulation, the current position, ori-
entation and velocity of all collision objects are constantly
transferred to the libccd. In return, information about the
collision are transferred to Modelica. These are the posi-
tion, direction and depth of a collision.

The contact dynamics model is simplified so that a fast
and stable simulation close to real physics is possible. The
normal force is based on a spring-damper-model:

)]

Foormal = k- Spenetration T d- Vpenetration

where Spenerrarion 18 the penetration depth and Vvpenerrarion
the velocity of the penetration. The spring constant k and
the damping constant d are set by the user. For the calcu-
lation of the friction force, the simplified Coulomb friction
model from (Andersson, Soderberg, and Bjorklund 2007)
is used:

Ffriction =u- Foormal * Sign(vtangenlial) (2
which is simplified to
Ffriction =H- Foormai - tanh(ktanh : Vtangential) (3)

where U is the coefficient of friction and vsgpgensial the tan-
gential velocity. For simulation performance, sign() is re-
placed by tanh(), scaled by the coefficient k; ;.

Since hard contacts decrease the performance of the
simulation significantly, it is possible to use soft contact

parameters, i.e. lower stiffness (e.g. for ground contact).
To prevent objects from sinking in the ground when soft
contacts are used, the dimensions for the contact object
can be extended which compensates for the lower stiffness
and leads to visualizations close to reality. The dimension
for the ground contact object dinggynq 18 calculated by:

dimgyoung = dim+ = . | 2 4)
V)

where dim is the dimension, m the mass and k the the
spring constant of the BoxManipulatedObject.

The BoxManipulatedObject contains three con-
tact dynamics models for ground and both jaw contacts,
each with its own collision object. Therefore, the contact
parameters can be set specifically for each contact. Fig-
ure 5 shows the BoxManipulatedObject and its col-
lision object for ground contact. The larger dimension of
the ground contact object compensates the lower stiffness
of the contact. The jaw contact objects are similar to the
ground contact object (see Figure 6). Each contact object
generates a force and torque which are summarized in the
BoxManipulatedObject.

3.3 Hold control

The hold control generates a "fixed connection" between
two objects and is used for stable grasping and stable as-
sembly. The concept consists of two objects:

* A low-level object (LLO) which is held by the top-
level object. It contains a controller for position and
orientation control.

* The top-level object (TLO) which is only necessary
for collision detection.

| Gripper |
-—Jaw
FJawA FJawB
——+—— BoxManipulatedObject
—— Jaw contact objects
Table

Figure 6. Contact between BoxManipulatedObject and
TwoJawGripper based on the contact dynamics model. The
BoxManipulatedObject contains one object for each jaw
contact (blue dotted, invisible in simulation visualization).

436

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181433

Session 6A: Interoperability

Gripper
Top-level object (TLO)
IGripper
v/
ro o
eocX | BoxManipulatedObject
——Low-level object (LLO)
Table

Figure 7. Hold control used for the gripper. The LLO (invisi-
ble in simulation visualization) gets the position and orientation
from the TLO (invisible in simulation visualization). Based on
the initial difference (rp), the target position and orientation is
calculated and a PI-controller is used to keep the object there.

The procedure can be described as follows:

At first, the collision detection is disabled for the TLO.
Then it is moved into the LLO to get a penetration. From
the moment the LLO object should be held in place by
the TLO (i.e. the gripper closes), the ability of the TLO
to collide is activated. The LLO recognizes a collision
and stores the initial difference in position and orientation
between both objects:

)
(6)

ro = TGripper : (rBax - rGripper)

T
To = Tgox - TGripper

where rp,, is the position and Tpex the rotation matrix of
the box. From the moment the gripper begins to close, the
LLO recieves continuously the position (7Gyipper) and ori-
entation (Tgyipper) Of the TLO. Based on this information
and the stored initial difference, it is possible to calculate
the target position and orientation for the object:

I'Target = Y'Gripper + TGripperT 1o (7)
TTarget =To- TGripper 3

A Pl-controller and a gravity compensation for the
weight are finally used to keep the LLO in the target posi-
tion and orientation.

The forces and torques are only present in the low-level
object: in the grasped object (not in the gripper) and in the
sub-assembly (not in the assembly).

Figure 7 shows the application of the hold control
model for a gripper. The TwoJawGripper contains a
TLO. It is invisible in the visualization and penetrates the
BoxManipulatedObject, which contains the LLO.

3.4 Manipulation logic

The manipulation logic is used to switch between the
states of a BoxManipulatedObject. There are the
following states (see Figure 8):

1. GroundContact (initial state): The object can
be placed on a ground object (e.g. Table) or a
Conveyor.

2. JawContact (grasping part with jaw interaction
until hold control is used): Both ground contact
forces and jaw contact forces are used. This state
is only used if useJawContact is true.

3. Grasping (based on hold control): The object is at-
tached to the TwoJawGripper based on hold con-
trol for position and orientation. The transition from
state 2 to state 3 is done if the graspingTime is
over or if the grasping is stable (minimum relative
rotation and movement between jaw and object).

4. Assembly: Is used if the object is placed in an as-
sembly and grasping is over. Grasping is always
higher prioritized than Assembly.

5. Delay (between Assembly and Grasping):
This is necessary for the following condition:

* The object is part of an assembly.
» Assembly and object are grasped by a gripper.

e useJawContact is enabled.

In this case, the object would normally be instantly
controlled by the gripper. This delay holds the ob-
jectin Assembly state until JawContact for the
assembly is done. This state is necessary, if e.g. the
basis of an assembly is slightly rotated by the jaws:
all parts of the assembly have to be rotated as well.

The transitions between the states (shown in Figure 8) are
defined as follows:

a := graspingActive and useJawContact and
not stableGrasping and not
assemblyActive

b, ¢, £, g := graspingActive and (not

useJawContact or useJawContact and ((
stableGrasping or (time >=
graspInitTime + graspDuration))))

° /\ /\
l a b f e

| GroundContact |#|Grasping |gﬁ| Assembly |

Figure 8. Manipulation states and their transitions.

DOI
10.3384/ecp21181433

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

437

Object Manipulation and Assembly in Modelica

d := not graspingActive and assemblyActive

graspingActive and useJawContact and
not stableGrasping and assemblyActive

h := not graspingActive and not
assemblyActive

)
I

4 Object manipulation and assembly

In this section, the concepts of object manipulation and
assembly are shown. This includes the placement of ob-
jects on ground and on conveyors, grasping objects with
grippers and the assembly of objects.

4.1 Object placement on ground

A BoxManipulatedObject contains a ground con-
tact object with the underlying contact dynamics model.
Based on this, the object can be placed on a Table as
mentioned in subsection 3.2 and shown in Figure 5.

4.2 Object transport with conveyors

The same model is used if the object is placed on
a Conveyor. The only difference is the velocity
of the Conveyor which leads to a movement of the
BoxManipulatedObject (see subsubsection 2.1.4).

Conveyors can be attached together. The subsequent
conveyor has to be slightly lower relative to the previous
one to avoid the BoxManipulatedObject from being
stuck between both Conveyors.

4.3 Object grasping with grippers

An object can be grasped by all TwoJawGrippers.
The BoxManipulatedObject contains two jaw con-
tact objects to apply forces and torques from both gripper
jaws (see subsection 3.2).

In addition, hold control is used for a stable connection
between object and gripper as explained in subsection 3.3.

A transfer of a BoxManipulatedObject from one
TwoJawGripper to another is possible to cover a wide
range of applications.

~_

Figure 9. Assembly with sub-assembly. R is assembled to S and
both S and G are assembled to A. The vectors are showing the
position differences between the object origins.

4.4 Object assembly

The assembly of objects is based on the same principle
as grasping, namely the hold control concept introduced
in subsection 3.3. The BoxManipulatedObject con-
tains a TLO and a LLO for assembly.

If two objects are assembled, one object must be de-
fined as base and the other one as module. The user has to
enable the TLO for the base and the LLO for the module.
Then it is possible to "attach" the module to the base.

The same applies if two modules are assembled to a
base. Both modules need an activated LLO and the base
represents the TLO for the hold control model.

For the representation of sub-assembly processes,
the definition of the TLO and LLO is more compli-
cated. Therefore, collision groups are used. For each
collision object, assemblyCollisionGroups and
assemblyIncludedGroups can be defined.

The concept is demonstrated with an example contain-
ing four objects: gray rod (R), orange sub-assembly box
(S), green box (G) and main assembly (A) (see Figure 9).

The following collision groups are defined:

R.assemblyCollisionGroups = {""}
R.assemblyIncludedGroups = {"SubAssembly"}
S.assemblyCollisionGroups = {"SubAssembly"}
S.assemblyIncludedGroups = {"Assembly"}
G.assemblyCollisionGroups = {""}
G.assemblyIncludedGroups = {"Assembly"}
A.assemblyCollisionGroups = {"Assembly"}
A.assemblyIncludedGroups = {""}

This means:

* RisaLLO inrelation to S

* SisaTLO in relation to R and a LLO regarding A
* GisaLLO in relation to A

* AisaTLO in relation to S and G

Figure 9 shows the assembly for the example. The vec-
tors are showing the initial position differences used for
the hold control model. To manipulate an entire assembly,
the TwoJawGripper can only grasp the base object and
not the sub-assemblies. If a TwoJawGripper grasps a
sub-assembly, it can be disassembled.

S Applications

In this section one example for object manipulation and
one for assembly are shown. The simulations are visu-
alized with the DLR Visualization 2 Library (Kiimper,
Hellerer, and Bellmann 2021).

5.1 Object manipulation

In this example, objects are manipulated with grippers (at-
tached to robots) and Conveyors. The model is shown
in Figure 10 and the visualization illustrated in Figure 11.
There are the following objects:

* Orange box on front table (O)

438

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181433

Session 6A: Interoperability

booleanTable3

B

robot3

tCPSource3
twoJawGripper3

=

robuﬁ McJawGrlpper1

>—>
T 4

]

tCPSource‘l

rI

ii

B

tCPSource4

tCPSource2

$$

—

tableBox1

fixedT2

%

tableBox2

booleanTabled

B

robot4 twoJawGripper4

=

vl

2,10}

anTable:

rDbth MoJawGrlpperZ

R

rI

=020}

conveyor1 conveyor2

-
E,ﬁ

000"

r=(1,150)
fixedC1
fixedC2

r={1-152,0}

02722

Figure 10. Modelica model for the manipulation of three objects
(O, G and B) with robots, grippers and conveyors.

¢ Green box on front table (G)
¢ Blue box on back table (B)

At first, the robot in the front grasps object G and places
it on the right of the same Table. The initial orienta-
tion of G is rotated 8 degrees to the lateral surface of the
Table. Since the gripper is held in an orthogonal ori-
entation above the object, the jaws force the object into
the orientation of the gripper. Therefore, G will be placed
in a perfect orientation on the Table. Meanwhile, the
robot in the back moves B to the position between the two
robots in the back. The object is then handed over to an-
other robot (Figure 11 (middle)), while G is moved to the
back Table and O to the right of the Table. Object O
is rotated in the beginning as well. Finally, B is placed
on the Conveyor and moves back to the front, onto the
other Conveyor and then to the Table. The end of the
sequence is shown in Figure 11 (bottom).

The model was tested in Dymola 2020 (64-bit) on Win-
dows 10 on a Intel® Xeon® W-2135 workstation. A Rk-
fix2 solver with the fixed step of 0.001 was used. The
"CPU-time for integration" for the 40 s simulation was
19.1 s. Therefore the model is real-time capable.

5.2 Assembly of an object

This example is the same as mentioned in sub-
section 4.4. It shows the assembly of a mod-
ule cosisting of multiple BoxManipulatedObjects
with TwoJawGrippers and robots including a sub-
assembly. The model is shown in Figure 12. The initial
setting is visualized in Figure 13 (top). There are the four
objects R, S, G and A.

The first step is to assemble the rod into the sub-
assembly box. This is done by the left robot. Then both S
and G are assembled to the main assembly by both robots.

Finally, the right robot is able to grasp the entire assem-
bly as shown in Figure 13 (bottom) and to move it to the
second Table in the back.

In this example, the hold control model is used for
grasping and for assembly. R is "attached" to S in the
same way as a box is "attached" to a gripper. S and G are
connected to A similarly.

The same settings as in subsection 5.1 are used to sim-
ulate the model. The 40 s simulation took 14.5 s for inte-
gration, i.e. the model is real-time capable as well.

Figure 11. Manipulation of multiple objects with Grippers
and Conveyors with start (top), object handed over from one
robot to another (middle) and end of sequence (bottom).

DOI
10.3384/ecp21181433

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

439

Object Manipulation and Assembly in Modelica

S R
T I

]

.lo

A
|

tableBox1

tableBox2

fixedT1
110
fixedT2
r=1,150

booleanTable2

robotZ twoJawGrlpperZ

booleanTable

@

robot1

L

=

world floor

yfj—ﬂ‘

tCPSource1 tCPSource2

twoJawGrlpper1

fixedR1
r={0,0,0}

fixedR2

={0,2,0}

Figure 12. Model for the assembly of the objects S, R, A and G.

Figure 13. Assembly of an object including a sub-assembly.
The grey rod is assembled to the orange box and both the sub-
assembly and green box are assembled to the blue base box.

6 Discussion

The successful application of the library for object ma-
nipulation and assembly was demonstrated in the previ-
ous section. Both mentioned models (Figure 10, 12) are
real-time capable. The simulation speed depends on the
number of manipulated objects in the model. Real-time
simulations are currently possible for models with up to
20 objects (depending on the number of robots, grippers,
conveyors and tables in the model). However, the library
still has restrictions and limitations:

e The contact detection algorithm is limited to one
contact, therefore an object can be placed on a ta-
ble but it is not possible to place another object on
top of the former object.

» If an assembly is grasped by a gripper, both the grip-
per and the base-object of the assembly must have
contact (i.e. it is not possible to grasp an assembly
by grasping a sub-assembly of the assembly).

* There are no forces and torques on top level. There-
fore, it is not possible to use the library for robot dy-
namic simulations.

Possible future developments are:

* Forces and torques for the top-level object (e.g. grip-
per) in the hold control model.

¢ Maximum hold force in the gripper. If the force ex-
ceeds the maximum, the connection will be disabled.

7 Conclusion

The combination of the non-causal, object-oriented Mod-
elica multi-body environment and the performant MPR
collision detection algorithm in C are the basis for a new
solution to the modeling and simulation of manipulation
and assembly processes. The real-time capability and sta-
bility were demonstrated in two use cases.

Blocks for manipulated objects, grippers, conveyors
and tables can be added from the library browser to a
model by drag-and-drop. This allows a low modeling ef-
fort with a high flexibility at the same time. The blocks
can be combined with all libraries in the Modelica envi-
ronment. Therefore, this library lays the foundation for
plant simulation on multiple levels of detail.

Acknowledgements

I would like to thank Tobias Bellmann for fruitful discus-
sions regarding the library, Fabian Buse for valuable dis-
cussions about and providing models for contact detec-
tion and contact dynamics, Matthias Hellerer and Bern-
hard Thiele for help with Modelica, Patrick Weber for pro-
viding the basis for the conveyor and Sebastian Kiimper
for help with the visualization (all DLR).

This work benefited from the MFlex 2025 project
founded by the German Federal Ministry for Economic
Affairs and Energy (BMWi).

440

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181433

Session 6A: Interoperability

References

Andersson, Soren, Anders Soderberg, and Stefan Bjorklund
(2007). “Friction models for sliding dry, boundary and
mixed lubricated contacts”. In: Tribology International 40.4.
NORDTRIB 2004, pp. 580-587. por1: 10.1016/j. triboint.
2005.11.014.

Buse, Fabian (2021). ContactDynamics. Modelica Library. Un-
published work.

Elmgqvist, Hilding et al. (2015). “Generic Modelica Framework
for MultiBody Contacts and Discrete Element Method”. In:
Proceedings of the 11th International Modelica Conference,
Versailles, France, September 21-23, 2015. The 11th Inter-
national Modelica Conference. Linkoping Electronic Con-
ference Proceedings. Linkoping University Electronic Press,
pp- 427-440. poI: 10.3384/ecp15118427.

Ferretti, Gianni et al. (2006). “Modelling and simulation of a
gripper with Dymola”. In: Mathematical and Computer Mod-
elling of Dynamical Systems 12.1, pp. 89-102. po1: 10.1080/
13873950500071405.

Fiser, Daniel (2018). libccd. Library for collision detection be-
tween two convex shapes. URL: https://github.com/danfis/
libced (visited on 2020-04-28).

Hellerer, Matthias (2019). CollisionDetection. Modelica Li-
brary. Unpublished work.

Kiihn, Wolfgang (2006). Digitale Fabrik. Fabriksimulation fiir
Produktionsplaner. 1. Aufl. Miinchen and Wien: Carl Hanser
Fachbuchverlag. 495 pp. ISBN: 978-3-446-40619-3.

Kumper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021). “DLR Visualization 2 Library - Real-Time Graphical
Environments for Virtual Commissioning”. In: /4th Interna-
tional Modelica Conference 2021. Ed. by Martin Sjolund et
al.

Le6n, Beatriz et al. (2010). “OpenGRASP: A Toolkit for Robot
Grasping Simulation”. In: International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots.
Springer, pp. 109-120. Do1: 10.1007/978-3-642-17319-
6_13.

Miller, Andrew T. and Peter K. Allen (2004). “Graspit! A Ver-
satile Simulator for Robotic Grasping”. In: IEEE Robotics
& Automation Magazine 11.4, pp. 110-122. por: 10.1109/
MRA.2004.1371616.

Modelica Association (2017). Modelica — A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.4. Tech. Rep. Linkdping: Modelica Associa-
tion. URL: https://modelica.org/documents/ModelicaSpec34.
pdf.

Newth, Joshua (2013). “Minkowski Portal Refinement and
Speculative Contacts in Box2D”. Master’s Thesis. San Jose
State University. URL: http://www.cs.sjsu.edu/faculty/pollett/
masters/Semesters/Spring12/josh/joshua_newth.pdf.

Oestersotebier, Felix, Peng Wang, and Ansgar Trichtler (2014).
“A Modelica Contact Library for Idealized Simulation of In-
dependently Defined Contact Surfaces”. In: Proceedings of
the 10th International Modelica Conference, March 10-12,
2014, Lund, Sweden. the 10th International Modelica Con-
ference, March 10-12, 2014, Lund, Sweden. Linkping Elec-
tronic Conference Proceedings. Linkoping University Elec-
tronic Press, pp. 929-937. DOI: 10.3384/ecp14096929.

Open Source Initiative (2020). The 3-Clause BSD License. URL:
https://opensource.org/licenses/BSD-3-Clause.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (2003).
“The New Modelica MultiBody Library”. In: Proceedings

of the 3th International Modelica Conference (Linkoping,
Sweden). Ed. by Peter Fritzson, pp. 311-330. URL: https:
//modelica.org/events/Conference2003/papers/h37_Otter _
multibody.pdf.

Serrano, Harold (2016). Visualizing the GJK Collision detec-
tion algorithm. URL: https://www.haroldserrano.com/blog/
visualizing-the- gjk-collision-algorithm.

Snethen, Gary (2008). Minkowski Portal Refinement in 2D.
XenoCollide. URL: http://xenocollide.snethen.com/mpr2d.
html.

DOI
10.3384/ecp21181433

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

441

