A Portable and Secure Package Format for Executable Simulation
Modules based on WebAssembly

Moritz Allmaras®!  Andrés Botero Halblaub?

Harald Held> Tim Schenk?

I'Siemens Energy Global GmbH & Co. KG, Germany, moritz.allmaras@siemens—energy.com
2Siemens AG, Germany, {andres.botero, harald.held, tim.schenk}@siemens.com

Abstract

We propose a new format (Digital Twin Assembly —
dtasm) for self-contained executable co-simulation mod-
ules that is portable and sandboxed, yet offers perfor-
mance close to native machine code and is sufficiently
lightweight for running on embedded devices. Dtasm is
based on WebAssembly, a standardized bytecode format
for a stack-based virtual machine originally developed
for high-performance computations in web browsers. A
language-independent binary interface for such modules
is described that is functionally comparable to FMI for co-
simulation but not tied to a particular programming lan-
guage. We discuss the benefits and drawbacks of this ap-
proach and how it can address some specific issues for ex-
ecutable simulation modules running in parallel with the
operation of real systems.

Keywords: Simulation Modularization, Portability, Sand-
boxing, WebAssembly

1 Introduction

Recent industry trends towards digitization of production
facilities, plants, infrastructure and transportation have
amplified the need for digital twins not only during the
design and engineering of such systems, but also for sup-
porting their commissioning, automation and control dur-
ing operation. Use cases for such digital twins performing
online simulation range from virtual sensing, model pre-
dictive control and anomaly detection to optimal operation
scheduling (Boschert, Heinrich, and Rosen 2018; Tao and
Zhang 2017; Rasheed, San, and Kvamsdal 2020).

In contrast to the offline use of modeling and simulation
during design and engineering of systems, the execution
of numerical simulations in parallel to the operation of a
real-world system presents some challenges that typically
do not arise in offline scenarios:

* Computation needs to be sufficiently fast to keep up
with the progress of the real-world system, so some
kind of (soft or hard) real-time constraint needs to be
fulfilled.

e The simulation needs to run robustly and reliably
without human intervention for extended periods of
time.

*Corresponding author

* Failure modes need to be predictable and their ef-
fects deterministic. Online simulations often per-
form safety critical tasks in control and automa-
tion systems for which rigorous regulations regard-
ing testing and certification procedures are applica-
ble.

* The hardware on which online simulations are exe-
cuted is heterogeneous. Computing devices used for
carrying out online numerical simulations often need
to operate close to the "shop floor" of the actual phys-
ical systems to keep signal latency low. Hence, the
hardware in use varies between different plants. The
type of devices in use ranges from specialized mi-
crocontrollers (MCUs) to programmable logic con-
trollers (PLCs) to industrial PCs depending on the
specific application and scenario.

While the significance of each of these requirements
varies from application to application, they are major con-
tributors to the fact that online simulations in industrial ap-
plications are often customized solutions and cannot eas-
ily be re-used. Also, many established system simula-
tion tools have their own ways of exporting online-capable
simulations, often through code generation or compilation
of binaries with a proprietary API (see, e.g., Schijndel
(2014)), which further limits the reusability and compos-
ability of the resulting executable simulation modules.

On the other hand, as most of the industrial systems of
interest are composed of smaller subsystems and compo-
nents, the digital twin of such a system could also be mod-
eled as a composition of smaller, independent subsystem
or component twins. Just like for a physical asset such as
a pump, gear box or conveyor belt, the same brand and
model is deployed in many different real-world systems,
the same should be possible for their digital twin coun-
terparts: The digital twin of a component should be inde-
pendent of the authoring tool used for its creation and be
re-usable across as many different contexts and environ-
ments as possible.

In the future, components may be equipped with their
own digital twins from the factory, and modularity is a ma-
jor requirement for being able to integrate such supplier-
provided twins into a complex system simulation. An im-
plication of such a scenario is that the authors of digital
twins are different from the plant operators running the

DOI
10.3384/ecp21181443

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

443



A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

twins on their infrastructure. Hence, an elevated level of
trust between producers and consumers of online digital
twins is required, and security boundaries need to be de-
fined that encapsulate supplier-provided twins in a safe,
yet performant sandbox during their online execution.

In this text, we present a new format for self-contained
executable digital twins that is both portable and sand-
boxed, yet allows close-to-native compute performance
and is sufficiently lightweight to be used on embedded
systems.

1.1 State of the Art

The modularization of industrial simulations has started
to gain traction with the more widespread adoption
of the Functional Mock-Up Interface (FMI) standard
(Blochwitz, Otter, Arnold, et al. 2011; Blochwitz, Otter,
Akesson, et al. 2012), which specifies a tool-independent
interface and packaging format (Functional Mock-Up
Unit (FMU)) for simulation modules. The FMU format
allows system simulation tools to export self-contained
simulation modules in such a way that they can be reused
in different environments and by different tools than they
have been authored in. FMI distinguishes Model Ex-
change (ME) and Co-Simulation (CS) modules, where Co-
Simulation modules include a numerical solver and hence
are most suitable for packaging executable simulations.
FMUs may contain code as binaries ("binary FMU") or
C sources ("source FMU") or both. The code contained in
an FMU exposes a set of C functions that are specified by
the FMI standard.

However, in the online simulation scenarios outlined
above, FMI also presents some challenges regarding
portability and the enforcement of security boundaries be-
tween the co-simulation master and the FMU instances:

* Binary FMUs only support the target platforms they
have been explicitly compiled for, i.e. the relevant
target platforms have to be known at compile time.

* Native binaries are difficult to sandbox from their ex-
ecuting environment. If loaded into a native process,
an FMU assembly can directly interact with the OS
kernel through system calls, and hence affect overall
system integrity. Hence, the use of native binaries in-
process requires a high level of trust in the authoring

party.

* From the point of view of the embedding application,
it is hard to determine upfront if a binary FMU is
actually self-contained or requires additional depen-
dencies to be dynamically linked at runtime (such as
specific version of C or C++ runtime libraries). The
availability of the correct version of such runtime de-
pendencies has to be ensured though, and they are not
specified in the model description.

e The runtime interface of FMI is specified in terms
of C function calls, hence implementation of the in-
terface in programming languages other than C and

C++ need to rely on the foreign function interface
(FFI) mechanisms of the respective programming
language. While this is common practice in most
programming languages, the implementation of the
FMI runtime interface is often less ergonomic and
safe than in C and C++.

* Source FMUs expose their internal implementation
and thus are not viable in many industrial con-
texts where intellectual property (IP) protection is
paramount.

* Source FMUs need an extra build step before they
can be executed, and the FMI standard does not spec-
ify the details of this build step. Consequently, the
build step is often proprietary to the generating tool
and thus difficult to automate across FMUs created
by different tools.

These limitations can impact the ability to exchange
and re-use FMUs across different applications and hard-
ware environments. In particular, additional measures are
necessary to enforce security boundaries between the host
environment and the code supplied by an FMU. An exam-
ple for such measures is execution in separate processes
connected through an interprocess communication (IPC)
mechanism (see e.g. Hatledal et al. (2019)). However, the
additional operational complexity of such multi-process
setups is considerable, and on many embedded targets the
necessary infrastructure and resources may not be avail-
able.

1.2 Digital Twin Assembly

Digital Twin Assembly is based on WebAssembly (Haas
et al. 2017), a W3C-standardized bytecode format for
a stack-based virtual machine, that has originally been
developed to enable high-performance computations in-
side web browsers. The core WebAssembly specifica-
tion (Rossberg 2019) is slim and low-level and is meant
as a compilation target for compilers of high-level pro-
gramming languages. Since it is independent of any other
web technology, WebAssembly has recently seen increas-
ing adoption in applications outside web browsers, such
as server-side execution of user-supplied code (Hall and
Ramachandran 2019), smart contract applications (Zheng
et al. 2021) and Internet of Things (Jacobsson and Willén
2018). We define a simple and portable interface to such
WebAssembly modules that functionally resembles FMI
for co-simulation, but is not tied to specific platforms or
language ecosystems.

1.3 Outline

Section 2 discusses the available options for the packag-
ing of executable simulation modules. In section 3, We-
bAssembly as the target format of dfasm is introduced, as
well as the application binary interface (ABI) that has been
developed to interact with simulations packaged as We-
bAssembly modules, and the strengths and weaknesses of

444

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181443



Session 6A: Interoperability

the proposed format are discussed. Section 4 deals with
prototypical implementations of dtasm runtimes and mod-
ules that were created in the course of this work. The per-
formance of dtasm is compared with that of native binaries
for some exemplary cases. In section 5, we summarize
our findings and give an outlook on some further topics
regarding online simulation that dtasm could potentially
help to address.

2 Packaging of Executable Simulation
Modules

In this text, the definition we will use for executable sim-
ulation modules is very similar to co-simulation modules
in the sense of FMI:

* Modules carry a machine-readable description of the
model containing information such as model meta-
data, input, state and output variables, default values,
validity ranges for experimental conditions and ca-
pabilities of the module’s implementation.

* Modules allow the creation of independent instances
of the executable simulation.

* Values for constant parameters can be supplied and
initial conditions for state variables can be set.

* Progressing the module instance’s state from ¢; to ¢,
consists of the steps:

1. Values for the input variables at time ¢; are sup-
plied to the module instance,

2. atime step from ¢; to ;41 is calculated,

3. values for output variables and states at time
tiy1 are returned.

* The internal state of a module instance can be reset to
the time step immediately preceding the current time
step.

* Instances can be terminated and disposed of at any
time.

The normal sequence of invocation for online simula-
tions (without considering potential reset of timesteps) is
depicted in 1. Just like for a co-simulation FMU, no re-
strictions on the internal implementation of the simula-
tor are imposed. It could, e.g., implement a numerical
solver for a differential algebraic equation (DAE), a for-
ward evaluation of a trained machine learning model or
even some simple table lookup mechanism.

2.1 Packaging Options

For packaging such executable simulation modules, there
are two common variants:

1. Packaging native machine code targeting certain
platforms.

2. Packaging the simulation’s source code in some
given programming language.

Binary packaging allows only the explicitly supported
platforms to execute the simulation modules. On other
platforms, virtualization mechanisms could be utilized,

but in practice such virtualization is complex and expen-
sive in terms of the needed compute and memory re-
sources and hence often not a feasible option at least on
embedded devices.

For source packaging, the sources need to be compiled
to native machine code by the embedder of the module
prior to execution on the target hardware. This allows
the source code to be compiled by specialized compilers
for the target hardware. In this case, the packaging for-
mat needs to specify the exact supported feature set of
the programming language, as well as all necessary op-
erations for compiling the source code to native machine
code. This option places the burden of compilation on the
embedder of the module, which in many cases necessi-
tates manual intervention and prevents the automated de-
ployment of such packages. Providing simulation’s source
code also exposes the intellectual property of the imple-
mentation, which is frequently a major obstacle for the
adoption of such package formats in industrial contexts.

Another option somewhat in between 1 and 2 is the
packaging of intermediate bytecode targeting a virtual in-
struction set architecture (ISA). For execution, the byte-
code is then either interpreted by an application-level vir-
tual machine or compiled to native machine code prior to
execution. Well-known examples of such bytecode for-
mats include Java bytecode, Common Intermediate Lan-
guage (CIL) (as used by the Common Language Run-
time of the .NET platform) and Python bytecode (used
by CPython). Traditionally, bytecode formats have not
received much attention as a target format for numeri-
cal computations since they are considered slow in com-
parison to native machine code due to the overhead in-
curred by interpretation or compilation. However, we be-
lieve that bytecode has some considerable advantages es-
pecially when used in online scenarios. Bytecode formats
are very portable since they do not depend on a certain
hardware instruction set, and they allow efficient sandbox-
ing of executable code by limiting access to resources and
intercepting system calls. However, many of the exist-
ing bytecode formats are rather complex and have explicit
support for some of the high-level constructs of the cor-
responding ecosystem (like garbage collection). Hence,
many of the existing bytecode formats are a poor fit as
compile targets for system-level programming languages
(like C, C++ or Fortran) that are commonly used in nu-
merical simulation.

3 Digital Twin Assembly Format
3.1 WebAssembly Bytecode

Starting in 2015, a bytecode format for a stack-based vir-
tual machine called WebAssembly (Wasm) has been de-
veloped by a working group of the World Wide Web Con-
sortium (W3C). Since then, WebAssembly has reached
stable version 1.0 and gained the status of a W3C-
recommended standard (Rossberg 2019). Its original goal
is the high-performance execution of computational logic

DOI
10.3384/ecp21181443

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

445



A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

=

<

® Ry B3
o - >
s gl NS 5
15 = | % £ <3 S
I Sl 2 als 2| s
2 s © 2lg °els
&S [} o

°
Solve
X(to) >x(t1)

do stept; > t,

)
N—
>
~ -
S 3
S I 2
3 2|s e
Q [0) o —
S = g =
° s
Solve
X(t4) >x(t2)

N

|
to

i 4

t2

Figure 1. Lifecycle and call structure for executable simulation modules.

in web browsers. The WebAssembly specification de-
fines a narrow low-level instruction set, with the inten-
tion that support for emitting Wasm bytecode can be easily
added to existing compiler toolchains. Most notably, the
LLVM compiler infrastructure (Lattner and Adve 2004)
was among the first to include a backend for generating
Wasm output, such that any programming language for
which an LLVM frontend exists can be compiled to Wasm
bytecode. In addition, WebAssembly is strongly and stati-
cally typed, and has a deterministic stack behavior that can
be statically analyzed, allowing interpreters and compil-
ers to aggressively optimize execution of the code. Con-
sequently, WebAssembly modules can be executed with
close to native performance in many scenarios (Jangda et
al. 2019). The narrow instruction set also allows the im-
plementation of lightweight interpreters for execution on
small, resource-constrained devices (Peach et al. 2020).
Sandboxing of the bytecode execution from the host en-
vironment has been an explicit design goal of the We-
bAssembly specification, since it is a paramount require-
ment for use in web browsers, where individual browser
windows need to be kept isolated from each other and the
host environment. Wasm modules cannot directly access
host memory or invoke system calls. Instead, memory is
provided as a contiguous linear block, and access to this
block is bounds-checked by the WebAssembly runtime.
System calls or calls to external libraries need to be ex-
plicitly enabled by the runtime (opt-in model) in order to
be callable from inside the sandbox. WebAssembly mod-
ules are statically linked and do not (yet) support dynamic
linking, so other than function imports and exports, they
are self-contained. In light of the requirements for online
digital twins discussed in section 1, WebAssembly offers
some unique advantages over binary and source packag-
ing:

» The bytecode is portable and can be executed on any
hardware for which a Wasm runtime exists.

¢ Performance can be close to that of native machine
code, at least in environments where just-in-time
(JIT) or ahead-of-time (AOT) compilation to native

machine instructions is possible.

Module instances are sandboxed and cannot interfere
with each other or the host environment in uncon-
trolled ways.

Implementation of modules can be carried out in any
programming language that supports compilation to
Wasm.

Module code can be statically analyzed for memory
usage and instruction counts.

The runtime has complete control over the execu-
tion such that running bytecode instances can be pre-
empted and a resumable snapshot of an instance’s
state can be taken by the runtime without requiring
explicit support by the module implementation.
There is no undefined behavior, all operations are de-
terministic and hence the computed outputs are iden-
tical across different Wasm runtimes and host envi-
ronments.

As downsides of this approach the overhead due to the
WebAssembly runtime needs to be mentioned (unless the
modules are AOT compiled, which is only possible on lim-
ited set of platforms, and adds an additional compilation
step before execution). On platforms where JIT or AOT
compilation is not available (e.g., on many embedded de-
vices), Wasm modules need to be interpreted which causes
substantial performance degradation.

A WebAssembly module may interact with its host
environment through imported and exported functions.
Function imports are declared by name and signature and
linked by the runtime when the module is instantiated.
Function exports are also declared by name and signature
and can be called by the runtime once the module is instan-
tiated. A further mechanism for exchanging data is the use
of the linear memory blocks. A schematic overview of the
interactions between a Wasm module and its host is shown
in 2.

3.2 Interface

According to the description of executable simulation
modules given in Section 1, the interface that the module

446

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181443



Session 6A: Interoperability

/Host

~

N

WASM Runtime
Module Instance
Stack Linear
Memory
WASM d
Bytecode instantiate
" Module Instructions
. = g2
link = 9 (func $dp_step ((;v?_e $t1) (paran $p0 i32) f::a"?ﬂ $p1 i32) g 9
ETTTTTTPErrr e = > 8. *8' <4— ;;323:? (local $14 £32) (local $15 £32) < 8_ -og
E S b e
— local.tee $13 L
global.set $go
| A
................. »
Interaction at
instance creation
. Host Application
Host functions pp _—
Interaction at

1/

instance runtime

Figure 2. Interactions between WebAssembly modules and the host.

exposes includes the following functionality:

» Retrieve a model description from the module speci-
fying input, state and output variables, module capa-
bilities as well as potential constraints on compatible
timestep lengths,

* create a new instance of the simulation module and
initialize it with given parameters and initial values,

¢ set values for the input variables,

e calculate forward in time by a given timestep,

* retrieve the resulting values of the output and state
variables,

* reset state to the previous timestep,

* terminate the instance.

The creation of such high-level interfaces between We-
bAssembly modules and their host is complicated by the
fact that core WebAssembly only knows four basic data
types (32bit and 64bit variants of integers and floating
point numbers), and the signatures of any declared export
functions need to be expressed in terms of these data types.
More complex data structures can only be exchanged by
serializing them to linear memory, which is accessible
both to the module instance and to the host. Then, pointers
to locations inside linear memory can be passed as argu-
ments to a regular Wasm exported functions (pointers into
linear memory are just offsets from the start of the mem-
ory block). To handle heap allocation inside the linear
memory in a consistent way, a dfasm module exports an
allocator and a corresponding de-allocator function.

Since serialization and de-serialization need to be per-
formed on either side of the Wasm sandbox for this to

work, a serialization format should be chosen that is not
just lightweight, but also has implementations in many
different programming languages. After careful consider-
ation, we picked the FlatBuffers ((FlatBuffers 2021)) se-
rialization library for the dtasm ABI. In FlatBuffers, data
structures are described by a schema written in an inter-
face definition language (IDL), and a compiler provided
by the FlatBuffers project then generates source code for
serialization/de-serialization of such structures for a vari-
ety of target languages. The generated code is very per-
formant and lightweight (e.g., the code generated for C++
is a single, self-contained header file), and code genera-
tion supports a wide range of contemporary programming
languages. Furthermore, FlatBuffers (at least in some
programming languages) allows the validation of binary
buffers for a given schema. This is an important feature for
enforcing the security boundary between host and mod-
ules and for increasing the robustness of implementations.

The sequence of events for invoking a dtasm interface
function generally follows these steps:

* The host assembles the input data into a FlatBuffer,
determines its size and invokes the allocator function
exported by the dfasm module instance to allocate a
buffer in linear memory of the instance.

* The host serializes the input FlatBuffer into the allo-
cated memory block.

e The host allocates an additional buffer (of a default
size) for holding the results of the call.

* The host invokes the interface function, passing
pointers to the in- and output buffers as well as their

DOI
10.3384/ecp21181443

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

447



A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

respective sizes.

e The module decodes the input buffer, processes it
and assembles the result into a result FlatBuffer.

* If the output buffer is sufficiently large to hold the
result FlatBuffer, the result is written to the output
buffer and the call returns. If not, the size of the re-
sult is returned, the host allocates a new large enough
output buffer and invokes the interface function again
with the same input.

* The host reads the result FlatBuffer from the output
buffer.

For a given programming language, much of the logic
involved in this procedure can be encapsulated into aux-
iliary libraries, such that the consumers of the ABI don’t
need to deal with the low-level details.

3.3 Model Description

Similar to the model description defined by the FMI stan-
dard, a dfasm module provides a model description that
contains

* metadata about the module (name, id, when and by
what tool it was created),

* module capabilities (e.g., can timesteps be reset, can
the module utilize derivative information),

* alist of model variables together with their causality,
data type and default value,

* infos about valid experiment conditions such as con-
straints on compatible timestep size, start and end
time of simulations.

Model variables can be of causality parameter, input,
local or output, and the supported data types are real, inte-
ger, boolean and string.

A more detailed description can be found as part of
the code repository in (dtasm 2021). The binary for-
mat of the model description is again described by a
FlatBuffers schema. Since FlatBuffers supports creation
of buffers from JSON files that are compatible with the
schema, model descriptions can be authored using JSON
for convenience. The binary representation is then em-
bedded into the module as a byte array literal, and can
be retrieved from instances of the module by invoking the
getModelDescription interface function.

Since module instantiation is already a part of the We-
bAssembly specification, no explicit interface function
is needed for instantiation. Likewise, since WebAssem-
bly modules cannot use any native resources, an explicit
terminate function in the interface is not needed and
instances can be terminated and disposed of simply by un-
loading them from the WebAssembly runtime.

4 Features and Limitations of dtasm

4.1 Features

Using WebAssembly bytecode as the target format for ex-
ecutable simulation modules has some interesting impli-
cations that we discuss in the following. As WebAssem-

bly is a very simple bytecode format, it is easy to target by
compilers for high-level programming languages, which is
confirmed by the number of existing compilers supporting
Wasm as output. On first look bytecode seems like an un-
usual format for executable numerical code. But consid-
ering, e.g., the LLVM compiler architecture (Lattner and
Adve 2004), it is based on a separation between frontend
and backend compilation, where the frontend generates in-
termediate bytecode (LLVM Intermediate Representation
(IR)) that is compiled to native machine code by the back-
end. WebAssembly can be thought of as replacing the in-
termediate bytecode by a portable, well-specified format
that can be easily targeted by other compilers as well. The
development of tools, infrastructure and supporting stan-
dards around WebAssembly has been strongly driven by
the Web community during recent years, which has lead to
a number of high-quality implementations and standards
being available as open source (e.g. Zakai (2011), WASI
(2021), and AssemblyScript (2021)).

Instances of WebAssembly modules can store internal
state on the stack, in linear memory or in global variables
(but as globals are seldomly used for this purpose, we dis-
regard them here). When a module instance is not cur-
rently executing a function, its stack is empty, so that a
snapshot of its state can be created simply by dumping the
content of its linear memory (which is just a contiguous
byte array) to a file. The instance can then be terminated,
a new instance be created and its linear memory read back
from the file, and the new instance then has exactly the
same internal state as the previous one. All this can be
achieved solely from the runtime without any explicit sup-
port by the module implementation. The memory dump is
even portable across different WebAssembly runtimes, as
the mechanism of linear memory is specified by the We-
bAssembly standard. E.g., this method could also be used
to reset timesteps for modules that do not explicitly sup-
port such functionality:

1. Store a dump of the linear memory after each
timestep.

2. If a timestep needs to be reset, the previous dump is
loaded into the instance’s memory to reset its state.

Depending on the size of the module’s memory, this
procedure can be quite expensive, hence explicit timestep
resetting support by the module should be preferred when
available.

Some more advanced features could even include pre-
emption of running module instances by the runtime, relo-
cation to other machines and resumption at the exact state
where preemption happened. Such operations are not yet
widely supported by popular Wasm runtimes, but many
projects are rapidly adding features in this direction. Pre-
emptive multitasking could prevent individual module in-
stances from occupying computational resources and al-
low a fair distribution of resources to all running instances.
Related is the concept of gas counting: The runtime can
monitor the consumed instruction count ("gas") of a We-

448

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181443



Session 6A: Interoperability

bAssembly function and preempt the instance if the in-
struction count exceeds a certain threshold. This could
allow a fair distribution of compute resources among mul-
tiple active module instances.

4.2 Limitations

The WebAssembly standard in its current stage has some
limitations that impact its usefulness as a packaging for-
mat for executable simulations:

* Not all features of low-level programming languages
can be mapped cleanly to WebAssembly. In particu-
lar, non-local jumps, stack unwinding or multithread-
ing do not currently have support in WebAssembly,
although extensions of the standard for supporting
these features are planned.

* Specialized hardware acceleration units like GPUs
or TPUs are not accessible to WebAssembly mod-
ules. Support would need customized implementa-
tions outside of the Wasm specification.

* WebAssembly modules are statically linked, which
makes them rather large in size (an extension of the
Wasm spec allowing dynamic linking is planned).

* Available development tooling, especially in regards
to debugging support, is lacking behind other more
established ecosystems.

* The size of linear memory blocks is given in multi-
ples of 64kB, which is wasteful on embedded plat-
forms.

* Security of the Wasm sandbox model is not perfect,
e.g., side-channel attacks are not prevented by the
specification but need to be mitigated by runtime in-
dividually.

Also, the general overhead of a WebAssembly runtime
in terms of performance and memory usage is certainly not
negligible. Especially on embedded platforms, AOT com-
pilation or JIT compilation are often not available or not
feasible, so the only option are interpreters that are gen-
erally an order of magnitude slower than native code (see
Wasm3 (2021)). Very small devices with less than 64kB
memory or no support for dynamic memory allocation are
not suitable for running dfasm modules. Performance and
size of the runtime is often a tradeoff: While interpreters
can be very lightweight (Wasm3 is around 100kB in size
when compiled), JIT runtimes on the other hand include
native code generators and thus are often several tens of
megabytes in size.

5 Prototypical Implementation

Several implementations of dtasm runtimes and modules
have been developed during the course of this work, some
of which are available as open source (dtasm 2021).

5.1 Runtimes

Dtasmtime is a dtasm runtime library implemented in Rust
that builds upon (Wasmtime 2021), a popular open source
engine for WebAssembly modules featuring JIT compila-

tion. Dtasmtime supports loading and execution of dtasm
modules as well as saving and loading of instance state to
and from files. Interaction with dtasmtime from Rust ap-
plications happens through a high-level API, while an ad-
ditional lower-level C-compatible API is provided in order
to facilitate integration of the library into C/C++ and other
programming languages.

Additional dfasm runtimes have been implemented
based on the Wasm3 interpreter (Wasm3 2021) and the
V8 JavaScript engine. While Wasm3 by nature of inter-
pretation is substantially slower in execution performance
than JIT or AOT compiling runtimes, it is very lightweight
and allows execution of dfasm modules on embedded tar-
gets such as Arduino-class microcontrollers (see Figure
3). Implementation of a dfasm runtime in JavaScript al-
lowed running dtasm modules inside contemporary web
browsers as well.

5.2 Modules

For demonstration and benchmark purposes, a simple dou-
ble pendulum simulator (based on Wheatland (2004)) has
been implemented in C++ and Rust, and compiled into a
dtasm module using the WASI SDK (2021) in the case
of C/C++ and Rust’s integrated wasm32-wasi target.
Source code for both versions is available (dtasm 2021).

During the course of our experimentation, we also com-
piled dtasm modules from several source FMUs created
by various commercial and open source simulation tools
(Simulink/FMIKit, Dymola, OpenModelica). While most
of the resulting dtasm modules could be successfully com-
piled and executed, some FMUs were found to utilize
C/C++ functionality for error handling (e.g., exceptions,
non-local jumps) that are currently not supported by We-
bAssembly and had to be stubbed in order to compile
successfully. Such dfasm modules were then only opera-
ble under non-error conditions. As some FMUs utilized
resource files that are read at runtime (which core We-
bAssembly does not support), the WASI interface for read-
ing files from the host file system had to be made available
when executing such drasm modules. Accessing external
files violates the self-containedness assumption on dtasm
modules and also may have security implications. If a
direct dtasm export was integrated into such simulation
tools (without the detour through FMU), this issue could
be avoided by embedding additional resource files directly
into the WebAssembly module.

5.3 Performance

One of the most interesting questions regarding dtasm is
the resulting performance overhead when comparing to
execution of native machine code, since this is one of the
major tradeoffs incurred by drasm. This overhead consists
of several distinct contributions:
1. Raw computational performance of WebAssembly
compared to native machine code,
2. overhead afforded by the module interface,
mainly through copying of memory blocks and

DOI
10.3384/ecp21181443

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

449



A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

/ .
EmssEsEERRRE RN Y
o §

Figure 3. Double pendulum simulator generated from a Simulink model running as dtasm module on an ESP32 MCU.

serialization/de-serialization,

3. performance overhead due to how efficiently the
Wasm runtime implements calls to Wasm export
functions and access to the Wasm linear memory,

4. optimization capabilities of the compiler used to cre-
ate the native machine code and the Wasm module
respectively.

Characterization of these overheads in isolation is dif-
ficult and will not be attempted here. The raw perfor-
mance overhead of Wasm for different engine implemen-
tations has been the subject of many benchmarks (see, e.g.,
Jangda et al. (2019), Denis (2021), and Wasm3 (2021)),
in which a best-case factor for JIT-based engines between
1.5 and 2.5 has been found, depending on the workload
and Wasm engine considered.

To compare performance of the drasm prototype imple-
mentation to native execution, we used the C++ source
code of our double pendulum module and added an outer
loop that runs the simulation for a fixed number of steps,
still using the dtasm interface but directly from C++. This
combination was then compiled to native machine code
using GNU compiler collection (gcc). We performed the
same computation using the LLVM-compiled dtasm mod-
ule running in dtasmtime, and compared execution times.
Figure 4 shows the result for 10 million time steps of the
double pendulum simulator. The overhead of dtasmtime is
found to be around a factor of 2.4.

In an attempt to reduce the influence of 2 and 3 above
(in particular the overhead incurred by the drasm inter-
face), we adapt the implementation of the double pendu-

native (gcc 9.3.0)

dtasmtime 55

o

10 20 30 40 50
Execution time (s)

Figure 4. Execution times of the double pendulum simulator for
107 time steps.

lum simulator to internally perform many small time steps
of fixed size, and reduce the number of steps on the outer
loop, thereby invoking the dtasm interface less often than
in the first case. Figure 5 shows the results for 107 inner
time steps and 10* outer loop steps (amounting to 10° time
steps total).

It can be seen that native and dtasmtime performance
are almost identical in this case. This implies that most
of the overhead incurred by running simulations as dtasm
modules indeed is due to interface calls. We note that the
significance of this comparison is very limited though, be-
cause we only tested a single simulation module. Many
features of more realistic simulators, such as extensive
numerical linear algebra operations, may yield a differ-
ent picture here. Also, no significant code optimizations
have been applied to either the simulation module or the

450

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181443



Session 6A: Interoperability

native (gcc 9.3.0)

29

dtasmtime

0 5 10 20 25 30

15
Execution time (s)

Figure 5. Execution times of the double pendulum simulator for
10° inner time steps and 10* outer time steps.

dtasmtime implementation.

The performance of Wasm interpreters such as Wasm3
was found to be around a factor of 10 slower compared to
dtasmtime. Hence, the performance on embedded devices,
where JIT compilation is not an option due to resource
constraints, must be expected much lower than what is re-
ported above. While AOT compilation to native code may
be another option for such targets, it hinges on the avail-
ability of suitable compilers.

6 Conclusion

Packaging executable simulation modules as native ma-
chine code poses several challenges related to portability
and security: Machine code targets specific hardware plat-
forms and is difficult to sandbox from its execution envi-
ronment. Bytecode formats can help address both of these
issues since they target abstract machines with enforceable
security boundaries. Bytecode formats can serve as com-
pilation targets for higher level programming languages,
and application level virtual machines for bytecode of-
ten support secure sandboxes by design. WebAssembly
in particular is suitable for executable simulation modules
as it focuses on performance and is sufficiently low-level
to be used as compilation target for many of the program-
ming languages typically in use by numerical codes.

In this text, we introduced an efficient and language-
independent interface to WebAssembly modules that in
functionality resembles FMI for co-simulation. We dis-
cussed the rationale for our design decisions as well as the
advantages and drawbacks they entail. The design is suffi-
ciently lean to allow targeting embedded devices, although
the overhead created by the need for a virtual machine is
certainly considerable there.

We demonstrated feasibility by providing prototypical
implementations of dfasm runtimes and modules. A pre-
liminary performance test shows that the main overhead
is due to the module interface (which is not specific to
WebAssembly), but the performance of Wasm itself can
be expected comparable to the performance of native bi-
naries. Simulation code generated by established system
simulation tools can often be compiled into dfasm mod-
ules with manageable effort, allowing dtasm to take ad-

vantage of the existing system simulation ecosystem, e.g.,
through the export of source FMUs that are then compiled
into dtasm modules.

Dtasm modules can be instrumented at runtime in a
way that allows dynamic re-allocation to other compute
nodes at runtime. In the future, this could enable orches-
tration systems that dynamically dispatch running mod-
ule instances to compute nodes according to available re-
sources. Compute nodes close to the shop floor could then
be utilized as a single cluster instead of individually con-
figured devices.

While WebAssembly is still a comparably young tech-
nology, it has beneficial properties regarding portability as
well as sandboxing and shows promising results regarding
performance. It remains to be seen if WebAssembly can
be a relevant technology for packaging numerical simu-
lations in the future. A further adoption would certainly
hinge on support by existing system simulation tools to
export dtasm modules. Using source FMUs as an inter-
mediary for compiling to WebAssembly could be a viable
path forward in this direction.

References

AssemblyScript (2021). “A language made for WebAssembly”.
URL: https://www.assemblyscript.org/ (visited on 2021-03-
14).

Blochwitz, Torsten, Martin Otter, J. Akesson, et al. (2012).
“Functional Mockup Interface 2.0: The Standard for Tool in-
dependent Exchange of Simulation Models”. In: 9th Interna-
tional Modelica Conference. URL: https://elib.dlr.de/78486/.

Blochwitz, Torsten, Martin Otter, Martin Arnold, et al. (2011-
03). “The Functional Mockup Interface for Tool independent
Exchange of Simulation Models”. In: 8th International Mod-
elica Conference. Ed. by Christoph Clau3. Linkoping Elec-
tronic Conference Proceedings. Linkoping University Press,
pp- 105-114. URL: https://elib.dIr.de/74668/.

Boschert, Stefan, Christoph Heinrich, and Roland Rosen (2018).
“Next generation digital twin”. In: Proc. TMCE 2018.
Vol. 2018, pp. 7-11.

Denis, Frank (2021). “Benchmark of WebAssembly runtimes
— 2021 QI edition”. URL: https :// github. com / jedisct1 /
webassembly - benchmarks/tree/master/2021-Q1 (visited on
2021-03-13).

dtasm (2021). “Digital Twin Assembly - A portable and sand-
boxed package format for executable simulation modules
based on WebAssembly”. URL: https://github.com/siemens/
dtasm (visited on 2021-04-29).

FlatBuffers (2021). “An efficient cross platform serialization li-
brary”. URL: https://google.github.io/flatbuffers/ (visited on
2021-03-13).

Haas, Andreas et al. (2017). “Bringing the Web up to Speed with
WebAssembly”. In: SIGPLAN Not. 52.6, pp. 185-200. DOI:
10.1145/3140587.3062363.

Hall, Adam and Umakishore Ramachandran (2019). “An execu-
tion model for serverless functions at the edge”. In: Proceed-
ings of the International Conference on Internet of Things
Design and Implementation, pp. 225-236.

Hatledal, Lars Ivar et al. (2019). “Fmu-proxy: A framework
for distributed access to functional mock-up units”. In: Pro-

DOI
10.3384/ecp21181443

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

451



A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

ceedings of the 13th International Modelica Conference.
Linkoping University Electronic Press.

Jacobsson, Martin and Jonas Willén (2018). “Virtual machine
execution for wearables based on webassembly”. In: EAI In-
ternational Conference on Body Area Networks. Springer,
pp. 381-389.

Jangda, Abhinav et al. (2019). “Not so fast: Analyzing the per-
formance of webassembly vs. native code”. In: 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pp. 107—
120.

Lattner, Chris and Vikram Adve (2004). “LLVM: A compilation
framework for lifelong program analysis & transformation”.
In: International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004. IEEE, pp. 75-86.

Peach, G. et al. (2020). “eWASM: Practical Software Fault Iso-
lation for Reliable Embedded Devices”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 39.11, pp. 3492-3505. po1: 10.1109/TCAD.2020.
3012647.

Rasheed, Adil, Omer San, and Trond Kvamsdal (2020). “Digi-
tal Twin: Values, Challenges and Enablers From a Modeling
Perspective”. In: IEEE Access 8, pp. 21980-22012.

Rossberg, Andreas (2019). “WebAssembly Core Specification”.
URL: https://www.w3.org/TR/2019/REC- wasm- core- 1 -
20191205/ (visited on 2021-03-14).

Schijndel, A.W.M. (Jos) van (2014). “A review of the applica-
tion of SimuLink S-functions to multi domain modelling and
building simulation”. In: Journal of Building Performance
Simulation 7.3, pp. 165-178. DOI: 10.1080/19401493.2013.
804122.

Tao, Fei and Meng Zhang (2017). “Digital Twin Shop-Floor: A
New Shop-Floor Paradigm Towards Smart Manufacturing”.
In: IEEE Access 5, pp. 20418-20427.

WASI (2021). “The WebAssembly System Interface”. URL:
https://wasi.dev/ (visited on 2021-03-14).

WASI SDK (2021). “WASI-enabled WebAssembly C/C++
toolchain”. URL: https://github.com/WebAssembly/wasi-sdk
(visited on 2021-03-14).

Wasm3 (2021). “Performance”. URL: https : // github . com /
wasm3/wasm3/blob/master/docs/Performance . md (visited
on 2021-03-13).

Wasmtime (2021). “A small and efficient runtime for We-
bAssembly & WASI”. URL: https://wasmtime.dev/ (visited
on 2021-03-13).

Wheatland, Michael S. (2004). “The Double Pendulum”. URL:
http://www.physics.usyd.edu.au/~wheat/dpend_html/ (vis-
ited on 2021-03-14).

Zakai, Alon (2011). “Emscripten: an LLVM-to-JavaScript com-
piler”. In: Proceedings of the ACM international conference
companion on Object oriented programming systems lan-
guages and applications companion, pp. 301-312.

Zheng, Gavin et al. (2021). “WebAssembly (WASM)”. In:
Ethereum Smart Contract Development in Solidity. Singa-
pore: Springer, pp. 317-334. po1: 10.1007/978-981-15-
6218-1_11.

452 Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181443



