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Abstract 
Data reconciliation aims at improving the accuracy of 

measurements by reducing the effect of random errors in 

the data. This is achieved by introducing redundancies on 

the measured quantities in the form of constraints based 

on fundamental physical laws such as mass, momentum 

and energy balance equations. These constraints are called 

the auxiliary conditions. Modelica is an equational 

language that was conceived to express models based on 

first principle physics for the purpose of behavioral 

simulation. This paper shows how to reuse such models 

for the purpose of data reconciliation. The novelty is to 

automatically extract the auxiliary conditions from the 

Modelica model. Then the reconciled values are computed 

using a least square method constrained by the auxiliary 

conditions, as specified by the VDI 2048 standard. The 

new method has been implemented in OpenModelica. A 

simple example built with ThermoSysPro illustrates the 

method in detail. 

Keywords: data reconciliation, Modelica, model reuse, 

cyber-physical systems, structural analysis 

1 Introduction 

The safe and efficient operation and maintenance of power 

plants rely on plant data. Therefore, ensuring the quality 

of plant measurements such as pressures, temperatures 

and mass flow rates is essential. However, plant data are 

subject to measurement errors that put a limitation on their 

efficient use for plant monitoring, diagnosis and prognosis 

because they lead to uncertainties in the assessment of the 

plant state. The consequence is a decrease in production 

because of safety regulations that put stringent limits on 

plant operation. It is therefore important to compute the 

best estimates of the measurement uncertainties in order 

to regain satisfactory operational margins. Best estimates 

can be obtained by combining statistics on the data with a 

priori knowledge from the expert expressed in the form of 

physical models. Data reconciliation has been conceived 

for the process industry with this principle in mind and is 

the subject of the VDI 2048 standard (VDI, 2017). It has 

been used for several process related issues such as 

finding lost megawatts in power plants (Langenstein et al., 

2004) or detecting sensor and actuator faults in hydraulic 

systems (Bedjaoui et al., 2008). This paper follows the 

VDI 2048 standard methodology. 

Data reconciliation aims at improving the accuracy of 

measurements by reducing the effect of random errors in 

the data. The main difference between data reconciliation 

and other data improvements techniques is that data 

reconciliation uses a model to express the physical 

constraints on the variables of interest and adjusts their 

measured values such that the estimates satisfy the 

constraints: the variables are thus reconciled. The physical 

constraints on the variables of interest are called the 

auxiliary conditions. The main benefit of introducing 

redundancy in the form of auxiliary conditions is that the 

estimates have lower uncertainties than the initial 

measurements.   

Dedicated tools such as VALI (Belsim, 2021) exist to 

perform data reconciliation, but they require the physical 

models to be specifically developed for that purpose. This 

makes data reconciliation costly and difficult to use. A 

natural answer to that problem is to perform data 

reconciliation on existing Modelica models (Modelica 

Association, 2021), developed and validated for the 

general purpose of plant operation at large.  

The objective of this paper is to present a new method 

to perform data reconciliation using Modelica models. 

The novelty of the method lies in the automatic extraction 

of the auxiliary conditions from the Modelica model. 

Once the auxiliary conditions are extracted, the variables 

of interest can be reconciled using the inputs provided by 

the user in the form of measurement data and correlation 

matrices, and the numerical procedure described in the 

VDI 2048 standard.  

Although dynamic data reconciliation is possible 

(Bedjaoui et al., 2008; Bai and Thibault, 2010), the VDI 

2048 standard considers only steady-state data 
reconciliation, which means that measurements are 

conducted while the system is under quasi steady-state 

conditions. For the parts of the system where this 

assumption is not valid, additional uncertainties must be 

added to fluctuating quantities. Therefore, the new 
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method presented in this paper only applies to static 

models, i.e. models with physical laws expressed in the 

form of algebraic equations. These models can be 

obtained by removing the differential part of the physical 

equations. Also, the VDI 2048 assumes that the auxiliary 

conditions are exact physical laws. This means that the 

model should be sufficiently representative of the real 

system, for instance that leaks, or other serious 

disturbances, are not overlooked. For the quantities such 

as temperatures that cannot be represented by exact 

physical laws, e.g. when dealing with thermal 

correlations, additional uncertainties must be added to the 

quantities to account for the uncertainties in the physical 

laws. The uncertainties on variables of interest that cannot 

be directly measured such as specific enthalpies can be 

obtained using uncertainty propagation techniques 

(Dutfoy et al., 2009). 

The data reconciliation method is summarized in 

Section 2. The new algorithm to automatically extract the 

auxiliary conditions from a Modelica model is given and 

applied to perform data reconciliation on the simple 

example of a splitter in Section 3. 

2 Data Reconciliation in a Nutshell 

2.1 Mathematical Formulation 

Let �̂� = {�̂�𝑖}1≤𝑖≤𝑛  be measurements on physical 

quantities 𝑥 = {𝑥𝑖}1≤𝑖≤𝑛  that are constrained by exact 

physical laws represented by a set of algebraic equations 

𝒞 such that  

  𝒞(�̅�) = 0 (1) 

where �̅� denotes the vector of the true values of 𝑥. The 

true values are unknown, and the objective is to provide 

the best estimates for them. Notice that in general the 

measurements do not satisfy Equation (1): 𝒞(�̂�) ≠ 0. 
The random unbiased error 𝜀𝑖  on measurement �̂�𝑖  is 

described by a Gaussian noise around �̅�𝑖: 
 �̂�𝑖 = �̅�𝑖 + 𝜀𝑖    (2) 

with   

 𝜀𝑖 = 𝒩(0,𝜎
2)  (3) 

𝒩(0,𝜎2) being a Gaussian distribution of mean value 0 

and standard deviation 𝜎. This is valid according to the 

central limit theorem if a sufficient number of 

measurements are conducted with sufficient accuracy. 

The mean value of Equation (2) yields the true value of �̂�𝑖:  
 �̅�𝑖 = 𝐸(�̂�𝑖)    (4) 

However, computing the true value using Equation (4) 

requires a sufficient number of measurements with 

different sensors and measuring techniques to avoid 

biases, which is impractical when dealing with a large 

number of measured quantities.  

To find an estimate of the true value, the VDI 2048 

standard states that the Gaussian distribution is applicable, 

even with only one measured value for each variable 𝑥𝑖. 
This assertion is justified by the fact that each measured 

value deviates from the true value by a sum of random, 

mostly independent deviations that makes the central limit 

theorem applicable with good approximation. 

The weight or half-width confidence interval for  �̂�𝑖  is 

defined by: 

 𝑤�̂�,𝑖 = 𝜆𝑝 ∙ 𝜎�̂�,𝑖    (5) 

where 𝜎�̂�,𝑖 = √𝐸[(�̂�𝑖 − �̅�𝑖)2] is the standard deviation of 

�̂�𝑖  and 𝜆𝑝  is the quantile of normal distribution with 

probability 𝑝.  Then �̅�𝑖  lies within the confidence 

interval �̂�𝑖 ± 𝜆𝑝 ∙ 𝜎�̂�,𝑖 with the probability 𝑝: 

 𝑃(|�̅�𝑖 − �̂�𝑖| ≤ 𝜆𝑝 ∙ 𝜎�̂�,𝑖) = 𝑝  (6) 

For  𝑝 = 95% , 𝜆𝑝 = 1.96  which yields the following 

confidence interval:  

 𝑤�̂�𝑖 = 𝜆95% ∙ 𝜎�̂�,𝑖 = 1.96 ∙ 𝜎�̂�,𝑖    (7) 

The covariance matrix of �̂� is defined as: 

 𝑆�̂� = {
𝑆�̂�,𝑖,𝑖 = 𝜎�̂�,𝑖

2

𝑆�̂�,𝑖,𝑗 = 𝑟�̂�,𝑖,𝑗 ∙ 𝜎�̂�,𝑖 ∙ 𝜎�̂�,𝑗
 (8) 

where the correlation coefficients 𝑟�̂�,𝑖,𝑗  are such that 

|𝑟�̂�,𝑖,𝑗| ≤ 1 . 𝑟�̂�  is the correlation matrix. Expressed as 

function of the weights, the covariance matrix is: 

 𝑆�̂� = {
𝑆�̂�,𝑖,𝑖 = (𝑤�̂�,𝑖 𝜆𝑝⁄ )

2

𝑆�̂�,𝑖,𝑗 = 𝑟�̂�,𝑖,𝑗 ∙ 𝑤�̂�,𝑖 ∙ 𝑤�̂�,𝑗 𝜆𝑝
2⁄

 (9) 

The estimated values are found in the form of the 

reconciled values of 𝑥 which are denoted �̿� in the sequel. 

They are obtained by finding the point in the subspace 

defined by Equation (1) which is closer to measurements 

with lower uncertainties than measurements with higher 

uncertainties. They are thus computed using a least square 

method where the weighing matrix is the inverse of the 

covariance matrix. Therefore, the objective function is: 

 𝐽(𝑥) = (𝑥 − �̂�) ∙ 𝑆�̂�
−1 ∙ (𝑥 − �̂�) (10) 

and the minimization problem to be solved is: 

 {
 𝐽(�̿�) = min𝑥 ((𝑥 − �̂�) ∙ 𝑆�̂�

−1 ∙ (𝑥 − �̂�))

𝒞(�̿�) = 0
 (11) 

The vector of improvements is defined as the difference 

between the estimated values and the measured values: 

 𝜈 = �̿� − �̂� (12) 

The covariance matrices of the reconciled values and 

of the improvements, derived from the general formula of 

error propagation, are respectively: 

 𝑆�̿� =
𝜕�̿�

𝜕�̂�
∙ 𝑆�̂� ∙ (

𝜕�̿�

𝜕�̂�
)
𝑇

 (13) 

 𝑆𝜈 =
𝜕𝜈

𝜕�̂�
∙ 𝑆�̂� ∙ (

𝜕𝜈

𝜕�̂�
)
𝑇
 (14) 

Noticing that  

 𝐷𝑆�̂�
−1(𝜈1, 𝜈2) = 𝜈1 ∙ 𝑆�̂�

−1 ∙ 𝜈2 (15) 

is a scalar product, then 

 𝐽(𝑥) = 𝐷𝑆�̂�
−1(𝑥 − �̂�, 𝑥 − �̂�) = ‖𝑥 − �̂�‖

𝑆�̂�
−1
2  (16) 

is the square of the distance between 𝑥 and �̂� weighted by  

𝑆�̂�
−1. Let 𝑟 be the number of auxiliary conditions (i.e. the 

size of 𝒞), which is also the redundancy level. Solving the 

minimization problem of Equation (11) amounts to 

finding a point �̿� on the r-dimensional surface defined 

by  𝒞(𝑥) = 0  which is the orthogonal projection of the 
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measured point �̂� on the surface 𝒞(𝑥) = 0. The projection 

is done according to a metrics such that the coordinates of 

the projected point are closer to measurements with lower 

uncertainties than to measurements with higher 

uncertainties. The uncertainties of the reconciled values 

are thus reduced because the distance from the true values 

to the orthogonal projection is always smaller than the 

distance to the initial point: 

 ‖�̿� − �̅�‖
𝑆�̂�
−1
2 ≤ ‖�̂� − �̅�‖

𝑆�̂�
−1
2  (17) 

Moreover, the higher the value of r, the higher the 

uncertainty reduction because each time r is increased by 

one unit, one additional orthogonal projection is 

performed to a smaller subspace that brings the reconciled 

values closer to the true values. Thus, data reconciliation 

provides the best estimate of the variables of interest from 

the measured values  �̂�𝑖, the weights 𝑤�̂�𝑖 and the auxiliary 

conditions 𝒞(�̅�) = 0. 

The optimization problem of Equation (11) can be 

solved using the Lagrange multiplier method. The 

Lagrangian is: 

  𝐿(𝑥, 𝜆) = 𝐽(𝑥) + 2 ⋅ 𝜆𝑇 ⋅ 𝒞(𝑥)  (18) 

 where 𝜆  are the Lagrange multipliers. The values of 

𝑥 that yield the minimum value of 𝐽(𝑥) are obtained by 

solving the following equation system: 

 {
 
𝜕𝐿

𝜕𝑥
= 2 ∙ 𝑆�̂�

−1 ∙  (𝑥 − �̂�) + 2 ∙
𝑑𝒞

𝑑𝑥

𝑇
⋅ 𝜆 = 0

𝜕𝐿

𝜕𝜆
= 𝒞(𝑥) = 0

 (19) 

The vector of contradictions is defined as: 

 𝑢 = (�̂� − �̅�) − (�̿� − �̅�) = �̂� − �̿� (20) 

Therefore, the vector of contradictions corresponds, in 

absolute value, to the vector of improvements. Its square 

value is:  

 𝐽0 = ‖𝑢‖𝑆�̂�
−1
2 = 𝐽(�̿�) = 𝑢 ∙ 𝑆�̂�

−1 ∙ 𝑢 (21) 

Because 𝑢 is standard normally (i.e. 𝒩(0,1)) distributed, 

𝐽0 being the square of 𝑢 is a 𝜒2-distributed function of r 

degrees of freedom (according to VDI 2048). Therefore, 

the following relationship holds with statistical certainty 

of probability p: 

 𝐽0 ≤ 𝜒𝑟,𝑝
2  (22) 

If Condition (22) is not satisfied, then the result for the 

reconciled values should be rejected because the vector of 

contradictions is too large. This can happen if some 

improvements are too large making the corresponding 

reconciled values fall out of their confidence ranges. This 

can be checked with the following individual tests: 

 |�̿�𝑖 − �̂�𝑖| √𝑆𝜈,𝑖,𝑖⁄ ≤ 𝜆𝑝  (23) 

where 𝑆𝜈,𝑖,𝑖 is the ith diagonal element of the covariance 

matrix of the improvements. From the physical viewpoint, 

the failure of Condition (23) means that the constraints are 

not fully representative of the actual system behavior 

(e.g., some system leaks are not modelled), thus that the 

assumption that the constraints are exact physical laws is 

not verified, or that the measurements are incorrect (e.g., 

due to faulty sensors or poor estimations of their 

confidence level). 

2.2 Numerical Resolution 

The VDI 2048 standard recommends linearizing 

Equation (1) under the assumption that the improvements 

𝜈 are small:  

  𝒞(𝑥) = 𝒞(�̂�) +
𝑑𝒞

𝑑𝑥
(�̂�) ⋅ (𝑥 − �̂�) (24) 

and use an iterative method to solve Equation (19). This 

amounts to constructing the suite {𝑥𝑘}0≤𝑘≤𝑁 such that: 

 

{
 
 

 
 

𝑥0 = �̂�

𝑆�̂�
−1 ⋅ (𝑥𝑘+1 − 𝑥𝑘) +

𝑑𝒞

𝑑𝑥

𝑇
(𝑥𝑘) ⋅ 𝜆𝑘 = 0

𝒞(𝑥𝑘) +
𝑑𝒞

𝑑𝑥
(𝑥𝑘) ⋅ (𝑥𝑘+1 − 𝑥𝑘) = 0

�̿� = 𝑥𝑁

 (25) 

𝑁 is chosen to satisfy the convergence criteria: 

  𝐿(𝑥𝑁, 𝜆𝑁) 𝑟⁄ < 𝜀  (26) 

𝜀 being a small number such as 𝜀 = 10−10, and 𝑟 being 

the size of 𝒞. 

Equation (25) can be rewritten as follows: 

 

{
 

 
𝑥0 = �̂�

𝑥𝑘+1 = 𝑥𝑘 − 𝑆�̂� ⋅ 𝐹𝑘
𝑇 ∙ 𝜆𝑘

𝐹𝑘 ∙ 𝑆�̂� ∙ 𝐹𝑘
𝑇 ∙ 𝜆𝑘 = 𝒞(𝑥𝑘)

�̿� = 𝑥𝑁

 (27) 

with  

  𝐹𝑘 =
𝑑𝒞

𝑑𝑥
(𝑥𝑘) (28) 

From Equation (19) and Equation (24), the reconciled 

values are: 

  �̿� = �̂� − 𝑆�̂� ∙ 𝐹𝑁
𝑇 ∙ (𝐹𝑁 ∙ 𝑆�̂� ∙ 𝐹𝑁

𝑇)−1 ∙ 𝒞(�̂�) (29) 

From equations (13), (14) and (29), the correlation 

matrices of the improvements and of the reconciled values 

are given by: 

  𝑆𝜈 = 𝑆�̂� ∙ 𝐹𝑁
𝑇 ∙ 𝐹∗ (30) 

  𝑆�̿� = 𝑆�̂� − 𝑆𝜈 (31) 

where 𝐹∗ is the solution of the equation 

  (𝐹𝑁 ∙ 𝑆�̂� ∙ 𝐹𝑁
𝑇) ∙ 𝐹∗ = 𝐹𝑁 ∙ 𝑆�̂� (32) 

3 Performing Data Reconciliation 

with Modelica Models 

3.1 Physical Laws and Boundary Conditions 

A valid Modelica model is always a square model. A 

square model has as many unknown variables as 

equations to compute them. The model equations can be 

divided into two groups: 

• The group of physical equations that represent 

physical laws such as the mass, momentum or energy 

balance equations, or empirical laws such as thermal 

or pressure losses correlations. This group is always 

underdetermined because physical laws express 

constraints between physical quantities, but do not 

provide any means to compute them in a unique way.  

• The group of boundary conditions that provide the 

additional constraints to the group of physical 

equations to form a square system. Boundary 

conditions represent assumptions on the 
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environment of the system that are necessary to 

undertake a numerical experiment through 

simulation. 

Let us take the Ohm’s law as a simple example. The 

equation 𝑈 = 𝑅 ∙ 𝐼 expresses a constraint between the 

voltage U, the resistance R and the current I. To compute 

numerical values out of this equation, one must provide 

values for exactly two quantities in the form of boundary 

conditions, e.g., 𝑈 = 220 𝑉 and 𝑅 = 50 Ω, or provide a 

physical correlation to e.g. compute 𝑅 as a function of the 

temperature 𝑇 , in such case other boundary conditions 

related to the thermal condition of the system must be 

provided. 

3.2 Well-posedness of the Data Reconciliation 

Problem 

As boundary conditions do not represent physical laws, 

they cannot be part of the auxiliary conditions. Therefore, 

to use a valid Modelica model to represent the auxiliary 

conditions of a data reconciliation problem, the boundary 

conditions that are related to the variables of interest 

must be automatically removed from the Modelica model 

before computing the reconciled values. Each removed 

boundary condition must be replaced by a variable of 

interest in the sense explained in Section 3.6. It will be 

shown in the sequel that this action reduces by one unit 

the number of auxiliary conditions. When reducing the 

number of auxiliary conditions, it can happen that some 

variables of interest are not constrained anymore by any 

auxiliary condition. 

 Therefore, for the data reconciliation problem to be 

well-posed, the following conditions must be met: 

  𝑓 = 𝑛 − 𝑟 ≥ 1  (33) 

  𝑟 ≥ 1  (34) 
𝒞(𝑥1, … , 𝑥𝑛) = 0 (35) 

where 𝑓 is the number of degrees of freedom, 𝑛  is the 

number of variables of interest and 𝑟 is the number of 

auxiliary conditions (or number of redundancies). 

Condition (35) means that all variables of interest must 

appear in at least one auxiliary condition. The variables of 

interest that do not appear in any auxiliary condition 

cannot be reconciled (which means that their reconciled 

values are equal to their measured values). 

A valid Modelica model being a square model, 𝑓 = 0  

and Condition (33) is thus violated. This is another way to 

state why the model must be pre-processed to be fit for 

data reconciliation. The extraction algorithm presented in 

the sequel decreases the value of  𝑟 by removing boundary 

conditions until no boundary conditions related to the 

variables of interest are left. Violation of Conditions (34) 

and (35) can thus happen when a group of variables of 

interest is related to a larger group of boundary conditions. 

The extraction algorithm will always satisfy 

Condition (33) because static models always involve 

boundary conditions, at least for energy systems as shown 

in (El Hefni and Bouskela, 2019). 

3.3 Simple Example: Splitter  

This section presents an illustrating example of a splitter 

that will be our companion throughout the rest of the 

paper. 

A splitter is a device that separates an incoming flow 

into two outgoing flows. The physical laws of the splitter 

are the mass, momentum and energy balance equations. 

There is one mass balance equation and one energy 

balance equation to account for the flow separation, and 

three momentum balance equations, one for the incoming 

pipe and one for each outgoing pipe to account for the 

pressure losses inside the pipes. In the following it is 

assumed that all mass flow rates are positive, the fluid 

flowing from the left to the right in each pipe, cf. Figure 1. 

The mass balance equation in the mixing volume is: 

 0 = 𝑄1 − 𝑄2 − 𝑄3 

where 𝑄𝑖 is the mass flow rate of the fluid in the ith pipe. 

The energy balance equation in the mixing volume is: 

 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3 +𝑊 

where ℎ𝑖  is the specific enthalpy of the fluid in the volume 

upstream of the ith pipe, and 𝑊 is the heating power.  

The momentum balance equations in the 3 pipes are: 

 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2 

 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2 

 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2 

where 𝑃𝑖,𝑙  and 𝑃𝑖,𝑟  are resp. the pressure of the fluid 

entering (at the left) and exiting (at the right) the ith pipe 

(subscript l stands for left and subscript r stands for right), 

and 𝑘𝑖  is the pressure loss coefficient in the ith pipe, which 

is assumed to be an exact parameter. 

The pressure 𝑃 inside the mixing volume is related to 

the pressures in the neighboring pipes: 

 𝑃 = 𝑃1,𝑟 

 𝑃 = 𝑃2,𝑙 

 𝑃 = 𝑃3,𝑙 

The specific enthalpies entering the outgoing pipes are 

equal to the specific enthalpy h in the mixing volume: 

 ℎ2 = ℎ 

 ℎ3 = ℎ 

𝑃1,𝑏𝑐 
ℎ1,𝑏𝑐 𝑃, 𝑇 

Measurements to 
be reconciled 

Boundary conditions to be 
eliminated from the model if 
they influence variables to be 

reconciled 

𝑃3,𝑏𝑐 
ℎ3,𝑏𝑐 

𝑄1, 𝑃1, 𝑇1 

𝑄2, 𝑃2, 𝑇2 

𝑄3, 𝑃3, 𝑇3 

𝑃2,𝑏𝑐 
ℎ2,𝑏𝑐 

Figure 1. Splitter 
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The mean pressures inside the pipes are given, by: 

 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄  

 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄  

 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄  

where 𝑃𝑖  is the mean pressure of the fluid in the ith pipe. 

The specific enthalpies in the volumes are related to 

the temperatures by the following equations: 

 ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃 

 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1 

 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2 

 ℎ3 = 𝑐𝑝 ∙ 𝑇3 + 𝑏 ∙ 𝑃3 

where 𝑇𝑖  is the mean temperature of the fluid in the ith 

pipe. 𝑐𝑝  is the specific heat capacity of the fluid and 

𝑏 accounts for the pressure dependence of the specific 

enthalpy. Those two last quantities are assumed to be 

exact parameters. 

This model has 17 equations and 21 unknowns. 

Therefore 4 boundary conditions are needed. There are 

many different possibilities for choosing the boundary 

conditions. For instance, one may fix the pressure at each 

open end of the 3 pipes, or fix the pressure at the inlet of 

the incoming pipe and the mass flow rates inside the 2 

outgoing pipes. Additionally, the specific enthalpy or the 

temperature of the fluid at the inlet of the incoming pipe 

must be fixed, so that 4 boundary conditions are properly 

fixed. The way to select the boundary conditions is 

important to define the proper scenarios to perform 

validation tests of the model, but does not matter for data 

reconciliation as they will be eliminated. 

For the purpose of this example, the equations 

involving boundary conditions are: 

 𝑃1,𝑙 = 𝑃1,𝑏𝑐 

 𝑄2 = 𝑄2,𝑏𝑐 

 𝑄3 = 𝑄3,𝑏𝑐 

 ℎ1 = ℎ1,𝑏𝑐 

where 𝑃1,𝑏𝑐 , 𝑄2,𝑏𝑐 , 𝑄3,𝑏𝑐  and ℎ1,𝑏𝑐  are the boundary 

conditions with fixed values. 

3.4 The Set 𝓒 of Auxiliary Conditions and the 

Set 𝓢 of Intermediate Equations 

The auxiliary conditions 𝒞(𝑥) = 0 must be automatically 

extracted from the Modelica model ℳ(𝑥, 𝑧) = 0, where 

𝑥 are the variables to be reconciled, and 𝑧 are the other 

variables of the model. 

The equations in 𝒞(𝑥) = 0 almost always involve a 

subset 𝑦 of  𝑧 . This is why 𝒞(𝑥) = 0  will be denoted 

𝒞(𝑥, 𝑦) = 0 in the sequel. The vector 𝑥 will be called the 

variables of interest or the known variables as 

measurement values are provided for 𝑥. The vector 𝑦 will 

be called the intermediate variables. 

The extraction problem consists in extracting the set of 

auxiliary conditions 𝒞(𝑥, 𝑦) = 0 and the set 𝒮(𝑥, 𝑦) = 0  
of intermediate equations that compute the intermediate 

variables from the known variables. Therefore, the system 

𝒞(𝑥, 𝑦) = 0  is a non-square problem that has more 

variables of interest than equations, while 𝒮(𝑥, 𝑦) = 0 is 

a square system that has as many equations as 

intermediate variables.  

3.5 Reformulating the Data Reconciliation 

Problem with Sets 𝓒 and 𝓢 

Equation (27) is rewritten to reveal set 𝒮: 

 

{
  
 

  
 

𝑥0 = �̂�

𝒮(𝑥0, 𝑦0) = 0

𝑥𝑘+1 = 𝑥𝑘 − 𝑆�̂� ⋅ 𝐹𝑘
𝑇 ∙ 𝜆𝑘

𝐹𝑘 ∙ 𝑆�̂� ∙ 𝐹𝑘
𝑇 ∙ 𝜆𝑘 = 𝒞(𝑥𝑘)

𝒮(𝑥𝑘, 𝑦𝑘) = 0

�̿� = 𝑥𝑁

 (36) 

with  

  𝐹𝑘 =
𝑑𝒞

𝑑𝑥
(𝑥𝑘, 𝑦𝑘) (37) 

𝐹𝑘  is computed by solving the following equation system: 

  {

𝑑𝒞

𝑑𝑥
=

𝜕𝒞

𝜕𝑥
+
𝜕𝒞

𝜕𝑦
⋅
𝑑𝑦

𝑑𝑥

𝜕𝒮

𝜕𝑥
+
𝜕𝒮

𝜕𝑦
⋅
𝑑𝑦

𝑑𝑥
= 0

 (38) 

The Jacobian matrices 
𝜕𝒞

𝜕𝑥
, 
𝜕𝒞

𝜕𝑦
, 
𝜕𝒮

𝜕𝑥
 and 

𝜕𝒮

𝜕𝑦
 can be computed 

analytically from sets 𝒞 and 𝒮. 

3.6 Algorithm to Extract Set 𝓒 and Set 𝓢 

The extraction algorithm relies on the BLT (Block Lower 

Triangular) decomposition of the equation system of the 

full Modelica model ℳ. 

Table 1. BLT of the Splitter. 

Variable Equation 

ℎ1,𝑏𝑐 ℎ1,𝑏𝑐 = 100000.0 binding 

𝑄3,𝑏𝑐 𝑄3,𝑏𝑐 = 2.0 binding 

𝑄2,𝑏𝑐 𝑄2,𝑏𝑐 = 1.0 binding 

𝑃1,𝑏𝑐 𝑃1,𝑏𝑐 = 300000.0 binding 

𝑄1 0 = 𝑄1 − 𝑄2 −𝑄3 

𝑄2 𝑄2 = 𝑄2,𝑏𝑐  

𝑄3 𝑄3 = 𝑄3,𝑏𝑐  

𝑃 𝑃 = 𝑃1,𝑟 

𝑃1 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄  

𝑃2 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄  

𝑃3 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄  

𝑃1,𝑙 𝑃1,𝑙 = 𝑃1,𝑏𝑐  

𝑃1,𝑟 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2 

𝑃2,𝑙 𝑃 = 𝑃2,𝑙 

𝑃2,𝑟 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2 

𝑃3,𝑙 𝑃 = 𝑃3,𝑙 

𝑃3,𝑟 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2 

ℎ ℎ2 = ℎ 
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ℎ1 ℎ1 = ℎ1,𝑏𝑐  

ℎ2 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3 

ℎ3 ℎ3 = ℎ 

𝑇 ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃 

𝑇1 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1 

𝑇2 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2 

𝑇3 ℎ3 = 𝑐𝑝 ∙ 𝑇3 + 𝑏 ∙ 𝑃3 

The BLT is obtained by assigning to each variable 𝑧 of 

ℳ the equation 𝐸𝑧  that computes it. Because there is a 

bijection between the set of equations and the set of 

variables in ℳ, each equation 𝐸𝑧 can be uniquely labelled 

by the name of the variable 𝑧 that it solves. Therefore, the 

term Equation 𝑧 will refer to the equation that solves 𝑧, as 

established by the BLT. The BLT of the Splitter is given 

in Table 1. To avoid any confusion between variables and 

equations, Equation 𝑧 will be denoted �̆�. For instance, �̆�1 
stands for equation  0 = 𝑄1 − 𝑄2 − 𝑄3 , cf. Table 1. A 

binding is a fixed value assigned to a variable (it is not an 

equation although it can be found in the BLT). 

In the following, the BLT of model ℳ will also be 

denoted by ℳ  because the BLT of ℳ  contains all the 

equations of  ℳ . The set ℳ′  is the set ℳ  without the 

binding equations. In the example: 

ℳ′ =ℳ − {ℎ1,𝑏𝑐 , 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐} 

The overall principle of the extraction algorithm is 

shown in Figure 2. The algorithm starts from set 𝒞′ which 

is the set of equations of ℳ′ that compute the variables of 

interest:  

 𝒞′ = �̆� ∩ℳ′ (39) 

Let us assume that the variables of interest are: 

𝑥 = {𝑥𝑖} = {𝑄1, 𝑄2, 𝑄3, 𝑃1, 𝑃2, 𝑃3, 𝑇1, 𝑇2, 𝑇3, 𝑇}. 
Then: 

𝒞′ = {�̆�𝑖} ∩ℳ′ = {�̆�1, �̆�2, �̆�3, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2, �̆�3, �̆�}. 

For each equation �̆�𝑖  in set 𝒞′, set 𝒮𝑖 is built by finding 

the equations in ℳ′ that compute the intermediate 

variables 𝑦𝑖𝑗 involved in �̆�𝑖 as a function of the variables 

of interest which are known variables. This procedure is 

called the chain rule in the following. Its formal 

specification is shown in Listing 1. 

Let us apply the chain rule to equation �̆�3. Equation �̆�3 

involves intermediate variables 𝑃3 and ℎ3. This is denoted 

by �̆�3 → �̆�3 and �̆�3 → ℎ̆3. Then carrying on with this chain 

rule yields: 

�̆�3 → ℎ̆3 → ℎ̆2 → ℎ̆1 → ℎ̆1,𝑏𝑐 → 𝑠𝑡𝑜𝑝. 

The chain rule is stopped because ℎ1,𝑏𝑐  is a boundary 

condition that cannot be included in the data 

reconciliation problem. The outcome of the chain rule 

applied to equation �̆�𝑖  is denoted  𝑟(�̆�𝑖) . The boundary 

condition that made the chain rule fail for equation �̆�𝑖  is 

denoted  𝑏(�̆�𝑖) . If the outcome is positive, i.e. if no 

boundary condition has been encountered, then 𝑟(�̆�𝑖) =
𝑡𝑟𝑢𝑒. Else 𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒. Then: 

  𝒮𝑖 = {�̆�𝑖𝑗|𝑟(�̆�𝑖) = 𝑡𝑟𝑢𝑒} (40) 

Then  𝒮�̆�3 = ∅.  

When applying the chain rule for all equations in 

set 𝒞′, it turns out that  �̆�1 is the only equation for which 

the chain rule is not stopped, in this case because  �̆�1 does 

not involve any intermediate variable. As  �̆�1 does not 

involve any intermediate variable, 𝒮�̆�1 = ∅. 

Set 𝒮 is the union of all sets  𝒮𝑖:  
 𝒮 =∪ 𝒮𝑖 (41) 

Then 𝒮 = ∅. 

Set 𝒞 contains all equations �̆�𝑖 of 𝒞′ whose associated 

set 𝒮𝑖 has been completed without stopping the chain rule.  

�̆�1 is the only equation that complies with this rule, thus 

𝒞 = {�̆�1} 

which corresponds to the mass balance equation.  

The variables of interest that can be reconciled are the 

variables of interest involved in set 𝒞 or set 𝒮: 

 �̿� = {𝑥𝑖 ∈ 𝑥|𝑥𝑖 ∈ 𝒞 ∪ 𝒮} (42) 

Figure 2. Principle of the extraction algorithm 

Listing 1. Procedure for extracting set 𝒮𝑖 

set S = empty set; 
set V_eq = set of intermediate variables y in equation �̆�𝑖; 
call extract (S, V_eq, status, fail_eq); 
// S contains 𝒮𝑖, status contains 𝑟(�̆�𝑖),  fail_eq contains 𝑏(�̆�𝑖)ෳ  
 define procedure extract (S, V, status, fail_eq) 
     set status = SUCCEED; 
     for each variable y in V 
         if v is a boundary condition then  
             set status = FAIL; 
         else 
             eq = equation in BLT – {bindings}  that computes y; 
              if eq exists and eq is not in S then 
                 insert eq into S; 
                 set V_eq = set of intermediate variables y in eq; 
                  call extract (S, V_eq, status, fail_eq); 
                 if status == FAIL then 
                     set fail_eq = eq; 
                     exit procedure; 
                 end if; 
             end if; 
        end if; 
    end for; 
end procedure; 
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where 𝑥𝑖 ∈ 𝒞 ∪ 𝒮 means that 𝑥𝑖  is involved in at least one 

equation of 𝒞 ∪ 𝒮 . Then  �̿� = {𝑄1, 𝑄2, 𝑄3} . This means 

that all variables of interest in 𝑥 − �̿� cannot be reconciled: 

𝑥 − �̿� = {𝑃1, 𝑃2, 𝑃3, 𝑇1, 𝑇2, 𝑇3, 𝑇} 
A larger set �̿�, and thus a higher redundancy level, should 

be achievable as the model contains momentum and 

energy balance equations which are appropriate to 

reconcile pressures and temperatures. Therefore, the 

algorithm should carry on in order to get into �̿�  as many 

variables of interest as possible. 

To go forward, the idea is to replace in model ℳ the 

boundary condition 𝑏(�̆�𝑖) that made the chain rule fail for 

variable of interest 𝑥𝑖 by the variable of interest 𝑥𝑖 itself. 

The exact rule is to replace the equation 𝑏(�̆�𝑖)ෳ  that 

computes 𝑏(�̆�𝑖) by equation (𝑥𝑖 = 0). Applying this rule 

to �̆�3  amounts to replacing ℎ̆1,𝑏𝑐  by equation  (𝑇3 = 0) . 

Applying this rule to all variables 𝑥𝑖  such that 𝑟(�̆�𝑖) =
𝑓𝑎𝑙𝑠𝑒 yields a new model ℳ1: 

 
ℳ1 =ℳ− {𝑏(�̆�𝑖)ෳ|𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒}

                         + {(𝑥𝑖 = 0)|𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒}
 (43) 

For the example 

 ℳ1 =ℳ− {ℎ1,𝑏𝑐, 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐} 

+{(𝑇3 = 0), (𝑃3 = 0), (𝑄3 = 0), (𝑄2 = 0)} 

The BLT for ℳ1 is given in Table 2. 

 
Table 2. BLT of ℳ1. 

Variable Equation 

ℎ1,𝑏𝑐 ℎ1,𝑏𝑐 = 100000.0 binding 

𝑄3,𝑏𝑐 𝑄3,𝑏𝑐 = 2.0 binding 

𝑄2,𝑏𝑐 𝑄2,𝑏𝑐 = 1.0 binding 

𝑃1,𝑏𝑐 𝑃1,𝑏𝑐 = 300000.0 binding 

𝑄1 0 = 𝑄1 − 𝑄2 −𝑄3 

𝑄2 𝑄2 = 0 binding 

𝑄3 𝑄3 = 0 binding 

𝑃 𝑃 = 𝑃1,𝑟 

𝑃1 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄  

𝑃2 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄  

𝑃3 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄  

𝑃1,𝑙 𝑃1,𝑙 = 𝑃1,𝑏𝑐  

𝑃1,𝑟 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2 

𝑃2,𝑙 𝑃 = 𝑃2,𝑙 

𝑃2,𝑟 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2 

𝑃3,𝑙 𝑃 = 𝑃3,𝑙 

𝑃3,𝑟 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2 

ℎ ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃 

ℎ1 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3 +𝑊 

ℎ2 ℎ2 = ℎ 

ℎ3 ℎ3 = ℎ 

𝑇 𝑇 = 0 binding 

𝑇1 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1 

𝑇2 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2 

𝑇3 𝑇3 = 0 binding 

 

We now reapply the extraction algorithm to ℳ1.  

ℳ1
′ =ℳ1 − {ℎ1,𝑏𝑐, 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐, 𝑄2, 𝑄3, 𝑇, 𝑇3} 

𝒞1
′ = {�̆�𝑖} ∩ℳ1

′ = {�̆�1, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2}. 

Notice now that 𝒞1
′  is smaller than  𝒞′  by 4 units. 

Extracting set 𝒮 yields: 

�̆�1 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 
�̆�1 → �̆�1,𝑙 → �̆�1,𝑟 → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

�̆�2 → �̆�2,𝑙 → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → �̆�2,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

�̆�3 → ℎ̆3 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

�̆�1 → ℎ̆1 → ℎ̆3 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → ℎ̆2 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

�̆�2 → ℎ̆2 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 
Then: 

𝒞 = {�̆�1, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2} 

and: 

𝒮�̆�1 = ∅ 

𝒮�̆�1 = {�̆�1,𝑙 , �̆�1,𝑟 , �̆�, �̆�3,𝑙 , �̆�3,𝑟} 

𝒮�̆�2 = {�̆�2,𝑙 , �̆�, �̆�3,𝑙 , �̆�3,𝑟 , �̆�2,𝑟} 

𝒮�̆�3 = {ℎ̆3, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟} 

𝒮�̆�1 = {ℎ̆1, ℎ̆3, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟 , ℎ̆2} 

𝒮�̆�2 = {ℎ̆2, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟} 

 
𝒮 = 𝒮�̆�1 ∪ 𝒮�̆�1 ∪ 𝒮�̆�2 ∪ 𝒮�̆�3 ∪ 𝒮�̆�1 ∪ 𝒮�̆�2

                     = {�̆�1,𝑙 , �̆�1,𝑟 , �̆�, �̆�3,𝑙 , �̆�3,𝑟 , �̆�2,𝑙 , �̆�2,𝑟, ℎ̆3, ℎ̆, ℎ̆1, ℎ̆2}
 

Notice that the original model has a 21-equation 

algebraic system to be solved, whereas the extracted 

system for data reconciliation has only an 11-equation 

algebraic system to be solved (in fact two separate 11-

equation algebraic systems, one for solving set 𝒮 and the 

other for computing the Jacobian matrix of set 𝒞, cf. resp. 

Equations (36) and (38)). 

The variables of interest that can be reconciled are 

those who appear in set 𝒞 or in set 𝒮 . All variables of 

interest appear in set 𝒞 or in set 𝒮, therefore all variables 

of interest can be reconciled:  

�̿� = {�̿�1, �̿�2, �̿�3, �̿�1, �̿�2, �̿�3, �̿�1, �̿�2, �̿�3, �̿�} 

The redundancy level is 6 and the size of the algebraic 

system is divided by approximately 2. The extraction 

algorithm is completed∎ 

If the set of variables of interest is  

𝑥 = {𝑄1, 𝑄2, 𝑄3},  
then: 

𝒞 = {�̆�1} 
𝒮 = ∅ 

�̿� = {�̿�1, �̿�2, �̿�3}  

All variables of interest can be reconciled, the redundancy 

level is 1 and there is no algebraic system to be solved. 

If the set of variables of interest is  
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𝑥 = {𝑃1, 𝑃2, 𝑃3},  
then: 

𝒞 = ∅ 
𝒮 = ∅ 
�̿� = ∅ 

No variable of interest can be reconciled. This is because 

there are too many boundary conditions related to the 

variables of interest. The data reconciliation problem is 

thus ill-posed. 

3.7 Numerical Results 

The inputs for the numerical computations are the 

measured values �̂�𝑖, the weights or half-width confidence 

intervals 𝑤�̂�,𝑖 and the correlation matrix coefficients 𝑟�̂�,𝑖,𝑗. 

In the following examples, the correlation matrix 

coefficients are equal to zero: 𝑟�̂�,𝑖,𝑗 = 0 for 𝑖 ≠ 𝑗. Then 

only the measured values and weights are provided.  

In the computation of Table 3 and Table 4, the values 

for the parameters are 𝑘1 = 𝑘2 = 𝑘3 = 1 bar. kg
−2. s−2,

𝑐𝑝 = 4.2 kJ. kg
−1. °C−1,   𝑏 = 0.19 kJ. bar−1  and  𝑊 =

1 MW. One can verify that the reconciled weights are 

smaller than the measured weights. 

  
Table 3. Inputs for the Splitter 

Variable Measured value Weight 

𝑄1 2.5 kg/s 0.196 

𝑄2 1.15 kg/s 0.196 

𝑄3 1.25 kg/s 0.196 

𝑃1 6.1 bar 0.392 

𝑃2 2.55 bar 0.392 

𝑃3 2.45 bar 0.392 

𝑇 114 °C 1.96 

𝑇1   19 °C 1.96 

𝑇2 113 °C 1.91 

𝑇3 115 °C 1.91 

 
Table 4. Reconciled values for the Splitter 

Variable Reconciled 
value 

Reconciled 
weight 

Individual 
test 

𝑄1 2.49413 kg/s 0.0521606 true 

𝑄2 1.20022 kg/s 0.120607 true 

𝑄3 1.2939 kg/s 0.120293 true 

𝑃1 6.29266 bar 0.250971 true 

𝑃2 2.46206 bar 0.274044 true 

𝑃3 2.34524 bar 0.276126 true 

𝑇 114.124 °C 1.08222 true 

𝑇1     18.5211 °C 1.7887 true 

𝑇2 114.157 °C 1.08159 true 

𝑇3 114.162 °C 1.08158 true 

 

In the computation of Table 5, only the mass flow rates 

are reconciled with the measured values of Table 3. One 

can verify that the reconciled weights are smaller than the 

measured weights but are larger than the values obtained 

when reconciling the mass flow rates with the pressures 

and the temperatures. This is consistent with the fact that 

more information leads to better accuracy. 

 
Table 5. Reconciled values for the Splitter 

Variable Reconciled 
value 

Reconciled 
weight 

Individual 
test 

𝑄1 2.46667 kg/s 0.160033 true 

𝑄2 1.18333 kg/s 0.160033 true 

𝑄3 1.28333 kg/s 0.160033 true 

 

In both calculations, the 𝜒2 -test of Condition (22) is 

satisfied. 

3.8 Interface with Modelica in OpenModelica 

OpenModelica is an open source tool for the modelling 

and simulation of Modelica models (Fritzson et al., 2020). 

The data reconciliation interface with Modelica newly 

implemented in OpenModelica aims at giving the 

possibility to perform data reconciliation on a validated 

Modelica model without having to modify the model. 

To perform data reconciliation, three to four actions 

are necessary: 

1. Tag the boundary conditions.  

2. Tag the variables of interest. 

3. Provide the measured values and weights. 

4. If necessary, provide the correlation coefficients. 

In Modelica libraries, boundary conditions are most 

often to be found in specialized components such as mass 

flow rate, pressure and temperature sources and sinks. The 

tagging of boundary conditions is therefore permanent 

Listing 3. Tagging the variables of interest 
model TSP_Splitter_DR 
  TSP_Splitter splitter( 
     pipe1(Q(uncertain = Uncertainty.refine)), 
     pipe2(Q(uncertain = Uncertainty.refine)), 
     pipe3(Q(uncertain = Uncertainty.refine)),  
     pipe1(Pm(uncertain = Uncertainty.refine)), 
     pipe2(Pm(uncertain = Uncertainty.refine)), 
     pipe3(Pm(uncertain = Uncertainty.refine)), 
     volume(T(uncertain = Uncertainty.refine)), 
     pipe1(T(uncertain = Uncertainty.refine)), 
     pipe2(T(uncertain = Uncertainty.refine)), 
     pipe3(T(uncertain = Uncertainty.refine))); 
equation 
end TSP_Splitter_DR;  

Listing 2. Tagging the boundary conditions 

parameter Real Q0=100 "Fluid mass flow rate"  

annotation(__OpenModelica_BoundaryCondition = 

true); 
  parameter Real h0=100000 "Fluid specific 

enthalpy" 

annotation(__OpenModelica_BoundaryCondition = 

true); 
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and should not interfere with the usual simulation 

activities (i.e. DAE integration from initial conditions). It 

also should not prevent the components to be used with 

tools that do not support data reconciliation. Therefore, 

the tagging of boundary conditions is done with a special 

annotation. In Listing 2, two boundary conditions are 

tagged: the fluid mass flow rate and the fluid specific 

enthalpy. 

The variables of interest are tagged by the user in a 

different way for each data reconciliation problem. The 

tags should not modify the original Modelica model, and 

appropriate checks must be done by the tool to verify that 

the tags refer to existing and eligible variables. Therefore, 

the tagging of variables of interest is done with a special 

modifier. In Listing 3, the name of the original model of 

the splitter is TSP_Splitter. One instance of TSP_Splitter 

is placed in model TSP_Splitter_DR that is especially 

created to perform data reconciliation on the model 

TSP_Splitter. The variables of interest in model 

TSP_Splitter are tagged from model TSP_Splitter_DR 

using the uncertain modifier. Checks are performed 

by the tool to ensure that the tagged variables are eligible 

to be tagged as variables of interest. Thus, the original 

model is not modified and can be used in any Modelica 

tool. The embedding model can however only be used in 

tools supporting data reconciliation.  

The measured values and weights are provided in a csv 

file with 3 columns, cf. Listing 4 where the values are 

given in SI units. 

The correlation matrix is provided in an optional 

separate csv file. No correlation matrix file is given for the 

example. 

3.9 Data Reconciliation with ThermoSysPro 

ThermoSysPro is a Modelica library for the modelling 

and simulation of power plants and energy systems at 

large (El Hefni and Bouskela, 2019).  

The ThermoSysPro model of the Splitter is shown in 

Figure 3. It is equivalent to the model proposed in 

Section 3.3, the equations being dispatched in the 

following specialized components: SourceP (pressure 

source), SinkQ (mass flow rate sink), 

SingularPressureLoss (pipes), VolumeBTh (splitter 

volume), HeatSource (thermal power). Therefore, for 

instance the variable splitter.volume.T in Listing 4 is 

the temperature 𝑇 inside the splitter volume. The 

Modelica model has a total of 121 variables and 121 

equations. 

The model components used in the Splitter model are 

modified as follows. 

1. SourceP and SinkQ: The boundary conditions are 

tagged as shown in Listing 2. 

2. VolumeBTh: The temperature is computed from the 

specific enthalpy with equation �̆� in Table 1. 

3. SingularPressureLoss: The pressure loss is 

computed from the mass flow rate with equation �̆�𝑖,𝑟 
in Table 1 for  𝑖 = 1, 2, 3 . The temperature is 

computed from the specific enthalpy with equation 

 �̆�𝑖 in Table 1 for 𝑖 = 1, 2, 3. The mass flow reversal 

equation in each pipe which according to the upwind 

scheme should be (El Hefni and Bouskela, 2019, Eq. 

4.114) 

 ℎ𝑖 = {
ℎ𝑖,𝑙  if  𝑄𝑖 ≥ 0

ℎ𝑖,𝑟   if  𝑄𝑖 < 0
 

 is replaced by  

ℎ𝑖 = ℎ𝑖,𝑙 

under the assumption that mass flow rates are 

positive, in order to avoid dependencies with 

boundary conditions ℎ2,𝑟  and ℎ3,𝑟 so that 

Condition (35) can be satisfied and all temperatures 

can be reconciled. This replacement was performed 

manually but could be done automatically as the sign 

of 𝑄𝑖 is fixed and known beforehand. 

Modifications in points 2 and 3 above are made to avoid 

numerical difficulties when solving the algebraic 

equations. 

The extracted model has 10 variables to be reconciled, 

6 auxiliary conditions and 41 intermediate equations. 

Therefore, the size of the algebraic system to be solved is 

divided by 3.  

The results of the data reconciliation computation with 

ThermoSysPro are shown in Table 6. They are different 

from the results obtained without ThermoSysPro 

displayed in Table 4 because the two splitter models are 

equivalent, but not identical, however results stay within 

their confidence intervals. 

 

pressureSource 

massFlowRateSink
2 

massFlowRateSink
3 

thermalPower 

pipe1 

pipe2 

pipe3 

volume 

Figure 3. ThermoSysPro model of the splitter 

Listing 4. Csv file for the measured values 
Variable name; Measured value; Weight 
splitter.pipe1.Q; 2.50; 0.196 
splitter.pipe2.Q; 1.15; 0.196 
splitter.pipe3.Q; 1.25; 0.196 
splitter.pipe1.Pm; 6.1e5; 0.392e5 
splitter.pipe2.Pm; 2.55e5; 0.392e5 
splitter.pipe3.Pm; 2.45e5; 0.392e5 
splitter.volume.T; 387; 1.96 
splitter.pipe1.T; 292; 1.96 
splitter.pipe2.T; 386; 1.91 
splitter.pipe3.T; 388; 1.91 
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Table 6. Reconciled values with ThermoSysPro 

Variable Reconciled 
value 

Reconciled 
weight 

Individual 
test 

𝑄1 2.49327 kg/s 0.0521266 true 

𝑄2 1.19978 kg/s 0.120619 true 

𝑄3 1.29349 kg/s 0.120306 true 

𝑃1 6.29090 bar 0.250917 true 

𝑃2 2.46296 bar 0.274003 true 

𝑃3 2.34614 bar 0.276086 true 

𝑇 113.987 °C 1.08228 true 

𝑇1     18.351 °C 1.78902 true 

𝑇2 114.019 °C 1.08165 true 

𝑇3 114.025 °C 1.08163 true 

 

4 Conclusion and Future Work 

Performing data reconciliation on a Modelica model 

requires to extract the auxiliary conditions that constrain 

the variables of interest from the Modelica model and 

remove the boundary conditions which are related to the 

variables of interest. This is why, contrary to data 

assimilation (Corona Mesa-Moles et al., 2019), data 

reconciliation cannot be performed on a Modelica model 

in a black box manner.   

An extraction algorithm has been presented and 

applied on a small example with 121 equations built with 

the ThermoSysPro library. The extracted model has 10 

variables to be reconciled, 6 auxiliary conditions and 41 

intermediate equations, which shows that the extraction 

algorithm reduces significantly the size of the algebraic 

system to be solved (here by a factor of 3). Some 

modifications were required in the ThermoSysPro library 

to perform the numerical computations. They mainly 

consisted in simplifying the equations that compute the 

fluid properties and those that compute the specific 

enthalpy according to the upwind scheme. These 

simplifications around the measured values are acceptable 

because data reconciliation assumes that the differences 

between the measured and reconciled values are small. 

This work demonstrates that Modelica can be used for 

other purposes than for initial value problems, and that the 

knowledge embedded in existing models can be utilized 

also for data processing. 

Future work will consist in verifying that the method 

presented in the paper is applicable to larger models. A 

preliminary experiment was conducted on the model of a 

secondary side of a nuclear power plant to compute the 

reactor nominal power. The model has 2002 variables and 

equations and 26 variables to be reconciled. The 

extraction algorithm produced 23 auxiliary conditions and 

553 intermediate equations. This shows that a higher level 

of redundancy and algebraic system reduction can be 

achieved on larger models, making paradoxically data 

reconciliation more efficient to perform on larger 

Modelica models than on smaller ones.  

Future work will also consist in computing the values 

of the boundary conditions from the reconciled values, 

have the new method certified by the VDI 2048 standard 

committee and integrate the new modifier for tagging the 

variables of interest into the Modelica standard. 
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