
Handling Multimode Models and Mode Changes in Modelica

Albert Benveniste1 Benoît Caillaud1 Mathias Malandain1

1Inria Centre de Rennes Bretagne Atlantique, University of Rennes 1, France,
{albert.benveniste,benoit.caillaud,mathias.malandain}@inria.fr

Abstract
Since its version 3.3, the Modelica language offers the
possibility to model multimode systems having different
DAE-based dynamics in each mode, thanks to the intro-
duction of state machines. When the differentiation index
and structure varies with mode changes, compilers gener-
ate erroneous simulation code, often resulting in runtime
exceptions. We propose in this paper a multimode struc-
tural analysis for both multiple modes and mode change
events and we show how correct code for restarts can be
generated. Our approach is illustrated on two simple but
representative mechanical systems.
Keywords: multimode DAE, structural analysis

1 Introduction
Since version 3.3, the Modelica language offers the pos-
sibility of specifying multimode dynamics, by describing
state machines with different DAE dynamics in each dif-
ferent state (Elmqvist, Gaucher, et al. 2012). This feature
enables describing large complex cyber-physical systems
with different behaviors in different modes.

While being undoubtedly valuable, multimode model-
ing has been the source of serious difficulties for non-
expert users of the current generation of Modelica tools.
Indeed, while many large-scale Modelica models are
properly handled, some physically meaningful models do
not result in correct simulations with most Modelica tools.
As such problematic models are actually easy to construct,
the likelihood of such bad cases occurring in large models
is significant.

It is unfortunately unclear which multimode Modelica
models will be properly handled, and which ones will fail.
As a consequence, quite often, end users have to ask Mod-
elica experts, or even tool developers themselves, to tweak
their models in order to make them work as expected.
While it is accepted that physical modeling itself requires
expertise, requiring expertise in how to get around tool
idiosyncrasies is not desirable. This situation hinders a
wider spreading of Modelica tools among a larger class of
users, such as Simulink-trained engineers.

As our review of two examples will reveal, this prob-
lem is mainly due to an inadequate structural analy-
sis, performed during compilation. As far as we know,
no industrial-strength Modelica tool implements a mode-
dependent structural analysis—a few academic prototypes
address this difficulty in part, see Section 3. Worse, it

is not even understood what kind of structural analysis
should be associated with mode change events.

Some years ago, we started a project aiming at address-
ing all the above issues. In this paper we explain our
approach, by illustrating it on two simple yet physically
meaningful examples that current Modelica tools fail to
properly simulate. The use of nonstandard analysis al-
lows us to perform the analysis of both modes and mode
changes in a unified framework, including the handling
of transient modes and that of impulsive mode changes.
Standardization techniques are then used in order to gen-
erate effective code for restarts at mode changes. As an ef-
ficient implementation of such methods in Modelica com-
pilers would greatly expand the class of multimode mod-
els amenable to reliable numerical simulation, we hint at
possible mechanizations towards the end of the paper; this
aspect is developed in both the companion paper (Ben-
veniste, Caillaud, and Malandain 2021). and the previ-
ously published article (Caillaud, Malandain, and Thibault
2020).

2 Two problematic examples
We review two small examples of multimode DAE sys-
tems and analyse how they are handled by two state-of-
the-art Modelica tools, OpenModelica and Dymola.

2.1 An ideal clutch

Figure 1. An ideal clutch with two shafts.

The clutch depicted in Figure 1 is an idealized clutch
interconnecting two rotating shafts. It is assumed that this
system is closed, meaning that the two shafts are not con-
nected to anything else, whence the corresponding model:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

if γ do ω1−ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(1)

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

507

In model (1), the dynamics of each shaft i is described by
ODE ω ′i = fi(ωi,τi) for some, yet unspecified, function fi,
where ωi is the angular velocity and τi is the torque applied
to shaft i. Depending on the value of the input Boolean
variable γ , the clutch is either engaged (γ = T, the constant
“true”) or released (γ = F, the constant “false”). When the
clutch is released, the two shafts rotate freely: no torque
is applied to them (τi = 0). When the clutch is engaged,
it ensures a perfect join between the two shafts, forcing
them to have the same angular velocity (ω1−ω2 = 0) and
opposite torques (τ1 + τ2 = 0). When γ = T, equations
(e3,e4) are active and equations (e5,e6) are disabled, and
vice-versa when γ = F. If the clutch is initially released,
then, at the instant of contact, the relative speed of the
two rotating shafts jumps to zero; as a consequence, an
impulse is expected on the torques.

The model yields an ODE system when the clutch is
released, and a DAE system of index 1 when the clutch is
engaged (see Section 5.1).

The clutch in Modelica: Figure 2 details the Modelica
model of the Ideal Clutch system. It is a faithful transla-
tion in the Modelica language of the two-mode DAE (1),
except that the two differential equations have been lin-
earized. Also, the trajectory of the input guard γ (here
called g) has been fully specified: it takes the value T be-
tween t1 and t2 and F otherwise.

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1; Real f2;
equation

der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

Figure 2. Modelica code for the idealized clutch.

This model is deemed structurally nonsingular by the
two Modelica tools we had the opportunity to test:
OpenModelica 1.17.0 (Fritzson et al. 2020) and Dymola
2021 (Dassault Systèmes AB 2020). However, none
of these tools generates correct simulation code from
this model. Indeed, simulations fail precisely at the in-
stant when the clutch switches from the uncoupled mode

(g=false) to the coupled one (g=true). This is evi-
denced by a division by zero exception, as shown in Fig-
ure 3.

Figure 3. Division by zero exceptions with Dymola 2021 (top)
and OpenModelica 1.17.0 (bottom) occuring when simulating
the Ideal Clutch Modelica model.

The cause of this exception is that none of these tools
performs a multimode structural analysis. Instead, the
structure of the model is assumed invariant, and a Dummy
Derivatives method (Mattsson and Soderlind 1993) is im-
plemented, which is correct on single-mode DAE sys-
tems, whereas it may fail on multimode systems unless the
model structure is independent of the mode. The structural
analysis methods in these tools do not detect that the dif-
ferentiation index jumps from 0 to 1 when the shafts are
coupled, and that the structure is not invariant. The divi-
sion by zero results from the pivoting of a linear system of
equations that becomes singular when g becomes equal to
true.

2.2 A Cup-and-Ball game

Figure 4. The Cup-and-Ball game.

We sketch here a multimode extension of the popular
example of the pendulum in Cartesian coordinates (Pan-
telides 1988), namely the Cup-and-Ball game illustrated
by Figure 4. A ball, modeled by a point mass, is at-
tached to one end of a rope, while the other end of the
rope is fixed, to the origin of the plane in the model. The
ball is subject to the unilateral constraint set by the rope,
but moves freely while the distance between the ball and
the origin is less than its length. The system is assumed
closed. The model for a 2D-version of this example is:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0≤ L2−(x2+y2) (κ1)
0≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
×λ (κ3)

(2)

Handling Multimode Models and Mode Changes in Modelica

508 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

where the dependent variables are the position (x,y) of the
ball in Cartesian coordinates and the rope tension λ .

The subsystem (κ1,κ2,κ3) expresses that the tension is
nonnegative, the distance of the ball from the origin is less
than or equal to L, and one cannot have a nonzero tension
and a distance less than L at the same time. Constraints κ1
and κ2 are unilateral, which is not supported by Model-
ica and related languages. Therefore, using the technique
presented in (Mattsson, Otter, and Elmqvist 1999), we re-
define the graph of this complementarity condition as a
parametric curve, represented by the following three equa-
tions:

s = if γ then−λ else L2−(x2+y2)
0 = if γ then L2−(x2+y2) else λ

γ = [s≤ 0]
(3)

Similarly to the clutch model, impulsive behavior is ex-
pected on the torques. However, an other possible dif-
ficulty is present: subsystem (κ1,κ2,κ3) of (2) leaves
the impact law at mode change insufficiently specified; it
could be fully elastic, fully inelastic, or in between. Can
both of these aspects be detected at compile time, using
some kind of structural analysis?

The Cup-and-Ball in Modelica: Figure 5 details the
Modelica model of the Cup-and-Ball game. It is a faithful
translation of the two-mode DAE (2) using rewriting (3).
The point mass, modeling the ball, initially stands at the
origin of the plane with zero velocity; the Boolean guard
γ , named gamma in the model, is thus set to false.

model CupAndBall
constant Real g=9.81;
constant Real L=1.0;
Real x(start=0,fixed=true);
Real y(start=0,fixed=true);
Real u(start=0,fixed=true);
Real v(start=0,fixed=true);
Real lambda;
Real s;
Boolean gamma(start=false,fixed=true);
equation

der(x) = u;
der(y) = v;
der(u) + lambda*x = 0;
der(v) + lambda*y + g = 0;
gamma = (s <= 0);
0 = if gamma then L^2 - (x^2 + y^2)

else lambda;
s = if gamma then - lambda

else L^2 - (x^2 + y^2);
end CupAndBall;

Figure 5. Modelica code for the Cup-and-Ball.

As is the case for the clutch model presented above,
this model is deemed structurally nonsingular by both
OpenModelica 1.17.0 and Dymola 2021, but the simu-
lation fails at the instant of mode change. Figure 6 de-
picts the resulting trajectory of variables y and gamma;

it ends when gamma switches from false to true, as
the tool is unable to correctly reinitialize the model af-
ter the mode change. Replacing condition s <= 0 with
last(s) <= 0 in order to break the fixpoint equation
defining variable gamma (see the introduction of Sec-
tion 6) leads to the same simulation results, but with a
division by zero error similar to that shown in Figure 3
occurring at the moment of mode change.

Figure 6. Trajectory of the Cup-and-Ball Modelica model: it
stops around t = 0.452s, when the rope becomes straight.

.

It appears from both exemples that some fundamental
study is needed to correctly simulate multimode models,
and that the problem is twofold: the varying structure of
the model has to be taken into account, and mode changes
have to be handled in a specific fashion.

Smoothing ‘if then else’ equations could help
solve both issues by essentially turning multimode models
into single-mode models, but this requires a delicate and
definitely non-modular tuning, as it depends on the differ-
ent time scales arising in the system. We believe that, as
the tools reputedly support multimode DAE models, they
should handle them correctly.

3 Related work
For the general literature on DAE and Modelica, we
refer the reader to https://www.modelica.org/
publications and (Benveniste, Caillaud, Elmqvist, et
al. 2019; Benveniste, Caillaud, and Malandain 2020).

Elmqvist, Mattsson, and Otter (2014) and Mattsson, Ot-
ter, and Elmqvist (2015) propose a high-level description
of multimode models as an extension to the synchronous
Modelica 3.3 state machines, by using continuous-time
state machines having continuous-time models as “states”.
State machines are transformed so that the resulting
equations can be processed by standard symbolic algo-
rithms supported by Modelica tools. Describing variable-
structure systems with causal state machines is discussed
in (Pepper et al. 2011). Dynamically changing the struc-
tural analysis at runtime is also proposed in (Höger 2014;
Höger 2017), with Höger (2014) proposing a dynamic ex-
ecution of the Σ-method (Pryce 2001), and by Nilsson
and Giorgidze (2010) in the context of their Functional

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

509

Hybrid Modelling paradigm. Such approaches typically
rely on the explicit declaration of reinitializations at mode
changes.

As such, the computation of correct restarts at mode
changes, while being a central issue in multi-mode DAE
systems, is not being tackled in the already mentioned ref-
erences. Some authors still address this issue.

Benveniste, Caillaud, Elmqvist, et al. (2017) tackled
this issue, as well as the problem of varying structure and
index, from a fundamental point of view, by relying on
nonstandard analysis to capture continuous-time dynam-
ics and mode change events in a unified framework. A
first structural analysis algorithm was presented in this pa-
per, by significantly modifying the original Pantelides al-
gorithm (Pantelides 1988). This first attempt suffers from
some deficiencies: the proposed structural analysis does
not boil down to the Pantelides algorithm in the case of
single-mode systems; it involves nondeterministic deci-
sions, an unwanted feature for the mathematical founda-
tion of compilers; and its mathematical study is incom-
plete.

(Trenn 2009b; Trenn 2009a) are important works as
they point out the difficulty in defining piecewise smooth
distributions. Liberzon and Trenn were able to define
complete solutions for a class of switched DAE systems
in which each mode is in quasi-linear form (Liberzon and
Trenn 2012): notably, switching conditions are time-based
only.

In (Benveniste, Caillaud, Elmqvist, et al. 2019), an in-
teresting subclass of multimode DAE systems was iden-
tified, which possibly exhibit impulsive variables at mode
changes. They extend the “quasi-linear systems” proposed
by Trenn et al.; in particular, switching conditions are no
longer restricted to be time-based, but can be state-based.
Nevertheless, the analysis and discretization schemes pro-
posed in (Benveniste, Caillaud, Elmqvist, et al. 2019) are
mathematically sound. Building on this work, Elmqvist
and Otter have developed the ModiaSim1 Julia packages
for semi-linear multimode DAE systems. It turns out that
the general approach of the present paper coincides with
the schemes proposed in (Benveniste, Caillaud, Elmqvist,
et al. 2019) when applied to the considered subclass. Our
present contribution thus extends and significantly im-
proves that work. An in-depth comparison can be found
in (Benveniste, Caillaud, and Malandain 2020).

4 Our contributions
Structural analysis of mode changes and code genera-
tion for restarts: We develop a structural analysis that
is valid at any time, that is, for both continuous dynam-
ics and mode changes. Impulsive behaviors may occur at
mode changes for certain variables. Whereas the few cur-
rent tools able to handle such situations discover them at
runtime, our structural analysis covers these situations and
handles them at compile time.

1https://modiasim.github.io/docs/index.html

Rejecting or accepting programs on a clear basis, at
compile time: Our structural analysis is precise enough
to properly identify models that are structurally over- or
under-specified at mode change events. In turn, mode-
dependent index/state/dynamics are not reasons for rejec-
tion: our approach handles such cases.

We now move to developing our approach by dis-
cussing the two examples from Section 2.

5 The ideal clutch
Its model was given in (1). We first analyze separately the
model for each mode of the clutch. Then, we focus on
mode changes and propose a comprehensive analysis.

5.1 Separate Analysis of Each Mode
In the released mode, i.e., when γ = F in System (1), the
two shafts are independent and one obtains the following
two independent ODEs for ω1 and ω2:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

τ1 = 0 (e5)
τ2 = 0 (e6)

(4)

In the engaged mode, however (γ = T), the two velocities
and torques are algebraically related:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

ω1−ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(5)

System (5) is a DAE. Its structural analysis tells that equa-
tion (e3) must be differentiated and added to the model (it
is highlighted in red):

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

ω1−ω2 = 0 (e3)
ω ′1−ω ′2 = 0 (e′3)
τ1 + τ2 = 0 (e4)

(6)

Although this change of differentiation index is the root
cause of the runtime exceptions shown in Figure 3, solv-
ing this issue would not be enough for the correct simula-
tion of the model, because of the need of handling mode
changes.

As a matter of fact, while the cold initialization of the
engaged mode yields 6 dependent variables for only 5
equations, thus leaving one degree of freedom (the com-
mon velocity of the two shafts), the mode change γ : F→
T, when the clutch gets engaged, is physically determi-
nate, which makes the point that mode changes cannot be
handled as “cold restarts”.

Inferring by hand the reset values for rotation velocities
when the clutch gets engaged is definitely non-trivial. Fur-
thermore, these values depend on the whole system model,
so that the task of determining them becomes complex if
external components are added.

It is therefore highly desirable, for this example, to let
the compiler infer these reset values from model (1).

Handling Multimode Models and Mode Changes in Modelica

510 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

5.2 Mapping model to nonstandard analysis
If DAE dynamics is approximated in discrete time, then
the whole model becomes discrete-time. To avoid the
problem of approximation error, our idea is to use an “in-
finitesimal” time step in the discrete time approximation.
This will yield an approximation up to an infinitesimal ac-
curacy.

This can be made rigorous by relying on nonstandard
analysis (Robinson 1996; Lindstrøm 1988; Benveniste,
Caillaud, and Malandain 2020), which extends the set R of
real numbers to a superset ?R of hyperreals that includes
infinite sets of infinitely large numbers and infinitely small
numbers.

For the understanding of this paper, it is enough to know
the following about nonstandard analysis. There exist in-
finitesimals, defined as hyperreals that are smaller in abso-
lute value than any real number. The arithmetic operations
+, ×, etc., and usual relations, are lifted to ?R. For ev-
ery finite hyperreal x ∈ ?R, there is a unique standard real
number st(x) ∈ R such that st(x)− x is infinitesimal, and
st(x) is called the standard part (or standardization) of x.
Standardizing functions or systems of equations, however,
requires some care. One important issue is derivatives.
For t 7→ x(t) an R-valued (standard) signal (t ∈ R),

x is differentiable at instant t∈R if and only if there
exists a∈R such that, for any infinitesimal ∂ ∈ ?R,
x(t+∂)−x(t)

∂
−a is infinitesimal; then, a = x′(t).

(7)

We can then consider the time index set T⊆ ?R:

T= 0,∂ ,2∂ ,3∂ , · · ·= {n∂ | n ∈ ?N} (8)

where ?N denotes the set of hyperintegers, consisting of
all integers augmented with additional infinite numbers
called nonstandard, and ∂ is an arbitrary, but fixed, in-
finitesimal.2 The following features of T are important:
(1) any finite real time t∈R is infinitesimally close to
some element of T (hence, T covers R and can be used
to index continuous-time dynamics); and (2) T is “dis-
crete”: every instant n∂ has a predecessor (n−1)∂ (except
for n = 0) and a successor (n+1)∂ .

Let x be a nonstandard signal indexed by T. The
forward- and backward-shifted signals x• and •x are de-
fined by:

x•(n∂) =def x((n+1)∂) and •x((n+1)∂) =def x(n∂) ,

implying that an initial value for •x(0) must be provided.
For f (X) a function of the tuple X of signals, we set
(f (X))• =def f (X•) where the forward shift X 7→ X• ap-
plies pointwise to all the components of the tuple. For
example, f •(x,y)(t) = f (x•,y•) = f (x(t+∂),y(t+∂)).

2It is proved in (Benveniste, Caillaud, and Malandain 2020) that the
simulation code that is finally generated does not depend on the choice
of this infinitesimal time step.

Using (7), we represent, up to an infinitesimal, the
derivative x′ of a signal by its first-order explicit Euler ap-
proximation 1

∂
(x•−x). Solutions of multi-mode DAE sys-

tems may be non-differentiable or even non-continuous at
events of mode change. To give a meaning to x′ at any
instant, we define it everywhere as

x′ =def
1
∂
(x•− x) . (9)

The nonstandard expansion of two-mode system (4,6) is:

ω•1−ω1
∂

= f1(ω1,τ1) (e∂
1)

ω•2−ω2
∂

= f2(ω2,τ2) (e∂
2)

if γ do ω1−ω2 = 0 (e3)
and ω•1 −ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(10)

Note that the latent differentiated equation (e′3) of model
(6) has been replaced by the forward shifted equation (e•3)
(both are equivalent from a structural point of view). The
state variables are ω1, ω2 whereas the leading variables
are now τ1, τ2, ω•1 , ω•2 , in both modes γ = F and γ = T.
This yields a sort of explicit Euler scheme for model (1),
which is exact up to infinitesimals within each mode. The
structural analysis is correct in each mode.

5.3 Structural analysis of mode change γ:F→T

We focus on mode change γ : F→ T, when the clutch gets
engaged. At the considered instant, we have •γ = F and
γ = T. We unfold System (10) at the two successive (pre-
vious and current) instants by taking the actual values for
the guard at those instants into account:

previous
instant
γ = F

ω1−•ω1

∂
= f1(

•ω1,
•τ1) (•e∂

1)
ω2−•ω2

∂
= f2(

•ω2,
•τ2) (•e∂

2)
•τ1 = 0
•τ2 = 0

current
instant
γ = T

ω•1−ω1
∂

= f1(ω1,τ1)
ω•2−ω2

∂
= f2(ω2,τ2)

ω1−ω2 = 0 (e3)
ω•1 −ω•2 = 0
τ1 + τ2 = 0

(11)

We regard System (11) as an algebraic system of equations
with dependent variables •τi,ωi;τi,ω

•
i for i = 1,2, i.e., the

leading variables of System (10) at the previous and cur-
rent instants. System (11) is structurally singular, as it in-
cludes the following subsystem3 which has five equations

3Over- and underdetermined subsystems are structurally found
by computing the Dulmage-Mendelsohn decomposition of the sys-
tem (Dulmage and Mendelsohn 1958).

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

511

and only four dependent variables ω1,ω2,
•τ1,

•τ2:

ω1−•ω1
∂

= f1(
•ω1,

•τ1) (•e∂
1)

ω2−•ω2
∂

= f2(
•ω2,

•τ2) (•e∂
2)

•τ1 = 0
•τ2 = 0
ω1−ω2 = 0 (e3)

(12)

We resolve this conflict by applying the following princi-
ple:

Principle 1 (causality) What was done at the previous
instant cannot be undone at the current instant.

Applying (1) leads to removing, from subsystem (12), the
conflicting equation (e3). This yields the following non-
standard code for the restart at mode change γ : F→ T:

ω1,ω2,
•τ1,

•τ2 set by previous instant
ω•1 = ω1 +∂ × f1(ω1,τ1)

ω•2 = ω2 +∂ × f2(ω2,τ2)

ω•1 −ω•2 = 0
τ1 + τ2 = 0

(13)

The consistency equation (e3) : ω1 − ω2 = 0 has been
removed from System (13), thus modifying the original
model. However, this removal occurs only at mode change
events γ : F→ T. What we have done amounts to delaying
by one nonstandard instant the satisfaction of some of the
constraints in force in the new mode γ = T. Since our time
step ∂ is infinitesimal, this takes zero standard time.

5.4 Generating effective code for restart at
mode change γ : F→ T

We wish to use System (13) by identifying current values
for the states ωi with the left-limits ω

−
i i.e., the values of

the velocities just before the mode change. From these
values, we would then compute the restart values for the
velocities ω

+
i =def ω•i , together with the torques τi.

Unfortunately, hyperreals are unknown to computers,
hence, System (13) cannot be used as such, but needs to
be standardized, by “washing out” ∂ . Since the time step
∂ is infinitesimal, it is tempting to get rid of of it in (13) by
simply setting ∂ = 0. Unfortunately, doing this leaves us
with a structurally singular system, since the two torques
are then involved in only one equation.

This problem of structural singularity is in fact due to
the existence of impulsive variables. To discover them in
a systematic way, we perform an impulse analysis.

Impulse analysis: Before engaging the clutch, we must
generically assume ω1−ω2 6= 0. Since ω•1−ω•2 = 0 holds,
(ω•1−ω•2)−(ω1−ω2)

∂
= f1(ω1,τ1)− f2(ω2,τ2) cannot be finite

because, if it was, then the function ω1−ω2 would be con-
tinuous, contradicting the assumption that ω1−ω2 6= 0.
Hence, the hyperreal f1(ω1,τ1)− f2(ω2,τ2) is necessar-
ily infinite. However, we assumed continuous functions

fi and finite state (ω1,ω2). Thus, one of the torques τi
must be infinite at mode change, and because of equation
(e4) : τ1 + τ2 = 0, both torques are in fact infinite, i.e., are
impulsive.

Eliminating impulsive variables: We now assume that
the fi’s are linear in the torques, i.e., each fi has the form

fi(ωi,τi) = ai(ωi)+bi(ωi)τi , (14)

where b1 and b2 are the inverse moments of inertia of
the rotating masses and a1 and a2 are damping factors
divided by the corresponding moments of inertia. This
yields the following system of equations, to be solved for
ω•1 ,ω

•
2 ,τ1,τ2 at the instant when γ switches from F to T:
ω•1 = ω1 +∂ (a1(ω1)+b1(ω1)τ1) (e∂

1)

ω•2 = ω2 +∂ (a2(ω2)+b2(ω2)τ2) (e∂
2)

ω•1 −ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

(15)

We now eliminate the impulsive variables from Sys-
tem (15), namely, the two torques. Using (e4) yields
−τ2 = τ1 =def τ . Premultiplying the system of equations{

ω•1 = ω1 +∂ (a1(ω1)+b1(ω1)τ) (e∂
1)

ω•2 = ω2 +∂ (a2(ω2)−b2(ω2)τ) (e∂
2)

by the row matrix
[

b2(ω2) b1(ω1)
]

yields

b2(ω2)ω•1 +b1(ω1)ω•2 =
b2(ω2)(ω1 +∂ a1(ω1))+b1(ω1)(ω2 +∂ a2(ω2)) .

Using in addition (e•3) and setting ω• =def ω•1 = ω•2 yields

ω
• = +∂

b2(ω2)ω1 +b1(ω1)ω2

b1(ω1)+b2(ω2)

+∂
a1(ω1)b2(ω2)+a2(ω2)b1(ω1)

b1(ω1)+b2(ω2)
(16)

It is now legitimate to set ∂ = 0 in its right-hand side. This
yields, by identifying st(ωi) = ω

−
i and st(ω•i) = ω

+
i :

ω
+
1 = ω

+
2 =

b2(ω
−
2)ω

−
1 +b1(ω

−
1)ω

−
2

b1(ω
−
1)+b2(ω

−
2)

, (17)

where we recall that st(ω) is the standard part of ω , see
the beginning of Section 5.2. Eq. (17) provides us with the
reset values for the positions in the engaged mode, which
is enough to restart the simulation in this mode.

Figure 7 shows a simulation of the clutch where the re-
sets are computed following this approach. As expected,
the reset value sits between the two values of ω

−
1 and ω

−
2

when γ : F→ T (at t = 5s), and the transition is continuous
at the second reset (at t = 10s). An alternative approach
for the computation of the reset values, which does not
require the elimination of impulsive variables, is devel-
oped in (Benveniste, Caillaud, and Malandain 2020), see
also (Benveniste, Caillaud, and Malandain 2021).

Handling Multimode Models and Mode Changes in Modelica

512 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

Figure 7. Simulation of the clutch model with resets. Mode
change F→ T occurs at t = 5s and mode change T→ F occurs
at t = 10s.

6 The Cup-and-Ball example
Using (3), the original model (2) is rewritten as

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(18)

As stated in Section 2.2, two issues have to be addressed
by our structural analysis: the expected impulsive behav-
ior of the accelerations at mode changes, and the insuf-
ficient specification of the nature (elastic, inelastic or in
between) of the impact.

We implicitly add to model (18) the following two
equations, for each state variable v:

v′ =
v•− v

∂
; v′′ =

v•2−2v•+ v
∂ 2 , (19)

where

v•(t) =def v(t +∂) ,

v•2(t) =def v(t +2∂) and, more generally,
v•n(t) =def v(t +n∂) .

Equation (19) means that the derivatives x′,y′,x′′,y′′ are
interpreted using the explicit first-order Euler scheme with
an infinitesimal time step ∂ . Note that (19) implies

x′′ =
x′•− x′

∂
. (20)

After performing the substitutions given by (19), we ob-
serve that the subsystem collecting equations (k0)–(k4)
is a logico-numerical fixpoint equation, with dependent
variables x•2,y•2,λ ,γ . A possible solution would con-
sist in performing a relaxation, by iteratively updating the
numerical variables based on the previous value for the
guards, and then re-evaluating the guard based on the up-
dated values of the numerical variables, hoping for a fix-
point to occur. Such fixpoint equation, however, can have

zero, one, several, or infinitely many solutions. No char-
acterization exists that could serve as a basis for a (graph-
based) structural analysis. We thus decide to refuse solving
such mixed logico-numerical systems.

As a consequence, we are unable to evaluate guard γ ,
so that the mode the system is in cannot be determined:
model (18) is rejected.

To break the fixpoint equation defining γ , we choose
to systematically introduce infinitesimal delays to guards.
For the Cup-and-Ball, the predicate s≤ 0 then defines the
value of the guard at the next nonstandard instant.4 This
yields the corrected model (21), where the modification is
highlighted in red.

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(21)

This model is understood in the nonstandard setting,
meaning that the derivatives are expanded using (19). The
leading variables in all modes are λ ,s,x•2,y•2.

6.1 Structural analysis of mode change γ:F→T

Due to equation (k1), the mode γ = T (where the rope
is straight) requires index reduction. We thus augment
model (21) with the two latent equations shown in red:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = L2−(x2+y2)• (k•1)
and 0 = L2−(x2+y2)•2 (k•21)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(22)

Note that, as in System 10, the two latent equations (k•1)
and (k•21) were obtained by shifting (k1) forward, which
is equivalent to differentiating it for the structural analy-
sis. To perform structural analysis at the considered mode
change, we unfold model (22) at the successive instants

•2t =def t−2∂ , •t =def t−∂ , and t ,

where t denotes the current instant. In the following, equa-
tion (e1) at the instant t− 2∂ (respectively, t− ∂) will be
denoted by (•2e1) (resp., (•e1)).

4The condition triggering the mode change is based on the positions,
which remain continuous at mode changes, even though the velocities
are discontinuous. As a result, the shifting of this guard by an infinites-
imal time step only yields an infinitesimal change in the values of state
variables, which will be erased by the standardization process, so that
the numerical solution is not impacted by this change in the model.

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

513

In this unfolding, the two equations (k1) and (k•1) are
in conflict with selected equations from the previous two
instants, shown in blue in the following subsystem, whose
dependent variables are the leading variables at instants
t−2∂ and t−∂ , namely x,y,•2λ ;x•,y•,•λ :

0 = x−2•x+•2x
∂ 2 + •2λ •2x (•2e1)

0 = y−2•y+•2y
∂ 2 + •2λ •2y+g (•2e2)

0 = x•−2x+•x
∂ 2 + •λ •x (•e1)

0 = y•−2y+•y
∂ 2 + •λ •y+g (•e2)

0 = L2−(x2+y2) (k1)

0 = L2−(x2+y2)• (k•1)

We resolve this conflict by applying causality Principle 1,
which leads to erasing, in model (22), equations (k1) and
(k•1) at the instant of mode change •γ=F,γ=T. This yields:

at
[•γ=F

γ=T

]
:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(23)

System (23) uniquely determines all the leading variables
from the state variables x,y and x•,y•. In turn, equations
(k1) and (k•1), which were erased from this model, are not
satisfied. At the next instant, i.e., when •2γ=F,•γ=T,γ=T,
the same argument is used. We thus erase, in model (22),
the only equation (k1) at the next instant. This yields:

at

 •2γ=F
•γ=T
γ=T

 :

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(24)

Note that (k•1) is a consistency equation that is satisfied
by the state variables x•,y•. In turn, equation (k1), which
was erased from this model, is not satisfied. At subsequent
instants, equation erasure is no longer needed.

This completes the nonstandard structural analysis of
the mode change γ : F→T, i.e., when the rope gets straight.

6.2 Getting effective code for restart
Code generation for restarts consists in standardizing non-
standard systems (23) and (24), in a way similar to Sec-
tion 5.4. We focus on the standardization of the mode
change γ : F→ T, i.e., when the rope gets straight. Our
task is to standardize systems (23) and (24), by target-
ing discrete-time dynamics, for the two successive instants
composing the restart phase. This will provide us with
restart values for positions and velocities.

Due to the expansion of derivatives in equations
(e1,e2,e•1,e

•
2), tensions λ and λ • are both impulsive,

hence so are s and s• by (k2,k•2). We eliminate the im-
pulsive variables by ignoring (k2,k•2), combining (e1) and

(e2) to eliminate λ , and (e•1) and (e•2) to eliminate λ •. This
yields:

at
[•γ=F

γ=T

]
:
{

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•2

(25)

at

 •2γ=F
•γ=T
γ=T

 :

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(26)

In System (25) we expand second derivatives using (19),
whereas in System (26) we expand them using (20). Con-
sequently, System (25) has dependent variables x•2,y•2,
whereas System (26) has dependent variables x′•,y′•. We
are now ready to standardize the two systems.

System (25) to define restart positions: We expand
second derivatives using (19):{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y+∂ 2gx
0 = L2−(x2+y2)•2

(27)

Setting ∂ = 0 in this system yields a structurally regular
system. Hence, by a theorem proved in (Benveniste, Cail-
laud, and Malandain 2020), the so obtained system is the
correct standardization of System (27). In contrast, had we
set ∂ = 0 in System (23) (without eliminating impulsive
variable λ), we would get a structurally singular system,
an incorrect standardization.

In System (27) with ∂ = 0, we can interpret x and x• as
the left-limit x− of state variable x in previous mode, and
x•2 as the restart value x+ for the new mode. This yields{

0 = (y+− y−)x−− (x+− x−)y−

0 = L2−(x2+y2)+
(28)

which determines the restart values for positions. The con-
straint that the rope is straight is satisfied. Furthermore, as
0 = L2−(x2+y2)− also holds (the rope is straight at the
mode change), x+ = x−,y+ = y− is the unique solution of
(28): positions are continuous.

System (26) to define restart velocities: We expand
second derivatives using (20):

0 = (y′•− y′)x− (x′•− x′)y+∂ .gx
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(29)

By expanding x•2 = x•+ ∂x′•, the right-hand side of the
last equation rewrites

L2−(x2+y2)•2 = L2−(x2+y2)•

+ 2∂ (x•x′•+ y•y′•)
+ ∂ 2

(
(x′•)2 +(y′•)2

)
= 0 (using (29))

+ 2∂ (x•x′•+ y•y′•)+O(∂ 2)

(30)

Using this expansion, setting ∂ = 0 in (29) yields{
0 = (y′•− y′)x− (x′•− x′)y
0 = x•x′•+ y•y′• (31)

Handling Multimode Models and Mode Changes in Modelica

514 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

where the dependent variables are now x′•,y′•—other vari-
ables are state variables whose values were set at previous
time steps. System (31) is structurally regular, hence, it is
the correct standardization of System (29).

To get effective code for restart, we perform, in (31),
the following substitutions, where superscripts − and +

denote left- and right-limits, and continuity of positions is
used:

x = x− ; x• = x+ and x′ = x′− ; x′+ = x′• (32)

and similarly for y. This finally yields{
0 = (y′+− y′−)x−− (x′+− x′−)y−

0 = x+x′++ y+y′+
(33)

System (33) determines x′+ and y′+, which are the veloc-
ities for restart. The second equation guarantees that the
velocity will be tangent to the constraint. With (28) and
(33), we determine the restart conditions for positions and
velocities. Invariants from the physics are satisfied.

Our reasoning so far produces a behavior in which the
two modes (free motion and straight rope) gently alter-
nate; the system always stays in one mode for some posi-
tive period of time before switching to the other mode.

This indeed amounts to assuming that the impact is
totally inelastic at mode change, an assumption that was
not explicit at all in (21). So, what happened? In fact,
the straight rope mode was implicitly assumed to last for
at least three nonstandard successive instants, since we
allowed ourselves to shift (k1) twice.

6.3 Handling transient modes
Let us instead assume elastic impact, represented by the
cascade of mode changes γ : F → T → F, reflecting that
the straight rope mode is transient (it is left immediately
after being reached).

Consider again model (21). We regard the instant of
the cascade when γ = T occurs as the current instant. We
cannot add latent equations by simply shifting (k1), since
these shifted versions are not active in the mode γ = F. Set

S(T)={(e1),(e2),(k1),(k2)}
S(F)={(e1),(e2),(k3),(k4)}

Systems S•(T) and S•(F) are obtained by shifting once the
equations constituting S(T) and S(F); systems S•k(T) and
S•k(F) are defined similarly for all k ∈N. Consider the dif-
ferentiation array originally proposed by (Campbell and
Gear 1995), except that we take into account the trajectory
T, F, F, . . . for guard γ . Using shifting instead of differen-
tiation yields the following difference array:

An(S) =def
[

S(T) S•(F) S•2(F) . . . S•n(F)
]T (34)

The dependent variables of System An = 0 are x•2,y•2,λ ,
whereas x•(k+2),y•(k+2),λ •(k),k > 0 must be eliminated.
We look for the smallest n such that An = 0 is structurally

nonsingular in this sense. Unfortunately, although shift-
ing (k4) twice in System (21) produces one more equation
involving the leading variables x•2,y•2, this equation also
involves the new variable s•2, which keeps the augmented
system underdetermined; shifting other equations fails as
well. Therefore, the structural analysis rejects this model
as being underdetermined at transient mode γ = T.

The user is then asked to provide one more equation.
For example, they could specify an impact law for the ve-
locity y′ by providing the equation (y′)+ =−(1−α)(y′)−,
where 0 ≤ α < 1 is a fixed damping coefficient. This is
reinterpreted in the nonstandard domain as y′• = −(1−
α)y′, yielding the following refined system for use at
mode γ=T within the cascade γ:F→T→F:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = L2−(x2+y2) (k1)
0 = λ + s (k2)

(35)

The modified difference array is now structurally nonsin-
gular. The so modified model is accepted and two-step
restart code for the mode change is generated as before.

6.4 Consequences for the modeling language
Through the Cup-and-Ball example, we demonstrated the
need for the following user-given information: is the cur-
rent mode long or transient? Long / Transient is an infor-
mation regarding modes, that cannot be found by an au-
tomatic inspection of the model. It must be inferred from
understanding the system physics and must be manually
specified. The natural way of performing this is to pro-
vide a different syntax for specifying long modes on the
one hand, and events corresponding to transient modes on
the other hand (mode changes separating two successive
long modes need not be specified).

The ‘if’ and ‘when’ statements of the Modelica lan-
guage are fit candidates for this purpose. We devote the
‘if’ statement to long-lasting modes specified by a pred-
icate, while the ‘when’ statement, pointing to the event
when a predicate switches from F to T, could be further
restricted to be a zero-crossing condition, by which a R-
valued expression crosses zero from below (Bourke and
Pouzet 2013). Using this feature, the Cup-and-Ball exam-
ple with elastic impact is specified as follows:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s− ≤ 0];γ(0) = F (k0)

when γ do y′+ =−αy′− (τ1)
if not γ do 0 = λ (k3)

and 0 = (L2−(x2+y2))− s (k4)

7 Mechanization of the process
The approach developed in Sections 5.4 and 6.2 is a sys-
tematic way to define the solution of a multimode DAE

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

515

system, than can be generalized to large-scale and/or
multi-physics models. However, this reasoning:

• Requires identifying impulsive variables. We present
in companion paper (Benveniste, Caillaud, and Ma-
landain 2021) a calculus for this, which is ready for
automatization in a tool (this is under development
in our IsamDAE tool5).

• Requires eliminating impulsive variables. This is
easy if impulsive variables enter linearly in the
model—this was the case for the clutch and the
cup-and-ball examples. It is highly costly but still
doable if impulsive variables enter polynomially in
the model. It cannot be done practically in other
cases.

• Relies on a clever choice of how to map nonstandard
variables to restart conditions. This was straightfor-
ward for the clutch, but definitely not for the cup-
and-ball (Section 6.2), where expansion (19) for the
derivatives was used for resetting positions, whereas
expansion (20) was used for resetting velocities.

This is not realistic for implementation in a tool, except for
restricted classes of systems in which impulsive variables
enter linearly in the model.

However, in companion paper (Benveniste, Caillaud,
and Malandain 2021) we propose an alternative, which is
a good candidate for implementation, based on an impulse
analysis. This post-processing of the structural analysis
at mode changes is a simple and systematic calculus that
identifies impulsive variables at compile time and quan-
tifies their (possibly infinite) magnitude order, called im-
pulse order. When finite, the impulse order can be used to
rescale impulsive variables, which allows for computing
restart values for state variables as well as rescaled impul-
sive variables. When impulse orders are infinite, rescaling
no longer applies. It is, however, still possible to compute
restart conditions by using the nonstandard equations with
a small positive (standard) time step. This provides con-
verging approximations for the non-impulsive variables
(the state variables in particular).

8 Conclusion
Through the case study of two examples of multimode
DAEs that are currently not handled by the existing
Modelica tools (with the notable exception of Modia-
Math), we presented a mathematically sound and physics-
agnostic compilation process for DAE-based physical sys-
tems modeling languages. This method relies, in particu-
lar, on an extension of structural analysis to multimode
systems, that allows the handling of both modes and mode
changes in a unified framework.

Both examples studied in this paper are multimode
models with mode-dependent differentiation index and

5https://allgo18.inria.fr/apps/isamdae

impulsive behaviour at mode changes, which is not well
supported by existing Modelica compilers. This paper
showed how our approach handles such models: not only
is the structural analysis correctly performed in all con-
tinuous modes, but the computation of restart values at
mode changes is also handled at compile time, unless an
under/over-determination at a mode change event causes
the model to be rejected with proper diagnostics.

Ongoing works include the effective mechanization
of the process, which is detailed in the companion pa-
per (Benveniste, Caillaud, and Malandain 2021). An im-
portant bottleneck of this approach is that it needs to han-
dle all modes and all possible mode changes at compile
time: unfortunately, the number of modes tends to be
roughly exponential in the size of the model, and the a
priori number of mode changes is at least proportional to
the square of the number of modes. This is a limitation of
a model representation in which one characterizes the sub-
set of equations and variables active in any given mode.

A possible way of alleviating this issue is by shifting
to a dual representation, that provides predicates charac-
terizing the set of modes in which each equation and each
variable is active. In practice, not only does this approach
lead to a much more compact representation, but it also al-
lows for the design of efficient structural analysis methods
for multimode DAE systems, working in an ‘all-modes-
at-once’ fashion. Such a method was implemented in the
IsamDAE tool, and first results are reported in (Caillaud,
Malandain, and Thibault 2020). The examples coming
with this tool already include thermodynamical, electri-
cal and pneumatic models. Although only the structural
analysis of long modes is currently performed, the imple-
mentation of the structural analysis of mode changes is in
progress.

Acknowledgements
The authors are indebted to Hilding Elmqvist and Martin
Otter, John Pryce, and Vincent Acary. Khalil Ghorbal par-
ticipated to the first version of this approach.

This work was supported by the FUI ModeliS-
cale DOS0066450/00 French national grant (2018-
2021) and the Inria IPL ModeliScale large scale
initiative (2017-2021, https://team.inria.fr/
modeliscale/). Dymola licences were provided to the
authors by Dassault Systèmes in the context of the FUI
ModeliScale project.

References
Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.

(2017-04). “Structural Analysis of Multi-Mode DAE Sys-
tems”. In: Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, pp. 253–263.
ISBN: 978-1-4503-4590-3. DOI: 10.1145/3049797.3049806.

Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.
(2019). “Multi-Mode DAE Models - Challenges, Theory and
Implementation”. In: Computing and Software Science - State
of the Art and Perspectives. Ed. by Bernhard Steffen and Ger-
hard J. Woeginger. Vol. 10000. Lecture Notes in Computer

Handling Multimode Models and Mode Changes in Modelica

516 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

Science. Springer, pp. 283–310. ISBN: 978-3-319-91907-2.
DOI: 10.1007/978-3-319-91908-9_16.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2020). “The mathematical foundations of physical systems
modeling languages”. In: Annual Reviews in Control 50,
pp. 72–118. ISSN: 1367-5788. DOI: 10.1016/j.arcontrol.2020.
08.001.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2021-09). “Compile Time Impulse Analysis in Modelica”.
In: Proceedings of the 14th International Modelica Confer-
ence. Linköping University Electronic Press.

Bourke, Timothy and Marc Pouzet (2013-04). “Zélus: A Syn-
chronous Language with ODEs”. In: Hybrid Systems: Com-
putation and Control (HSCC). ACM. Philadelphia, USA,
pp. 113–118.

Caillaud, Benoit, Mathias Malandain, and Joan Thibault (2020-
04). “Implicit Structural Analysis of Multimode DAE Sys-
tems”. In: 23rd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC 2020). Sydney,
Australia. DOI: 10.1145/3365365.3382201.

Campbell, Stephen L. and C. William Gear (1995). “The index
of general nonlinear DAEs”. In: Numer. Math. 72, pp. 173–
196.

Dassault Systèmes AB (2020). Dymola official webpage. Ac-
cessed: 2021-06-28. URL: https://www.3ds.com/products-
services/catia/products/dymola/.

Dulmage, Andrew L. and Nathan S. Mendelsohn (1958). “Cov-
erings of Bipartite Graphs”. In: Canadian Journal of Mathe-
matics 10, pp. 517–534. DOI: 10.4153/CJM-1958-052-0.

Elmqvist, Hilding, Fabien Gaucher, et al. (2012-09). “State Ma-
chines in Modelica”. In: Proc. of the Int. Modelica Confer-
ence. Ed. by Martin Otter and Dirk Zimmer. Modelica Asso-
ciation. Munich, Germany, pp. 37–46.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin Otter (2014-
09). “Modelica extensions for multi-mode DAE systems”. In:
Proc. of the 10th Int. Modelica Conference. Ed. by Huber-
tus Tummescheit and Karl-Erik Arzen. Modelica Associa-
tion. Lund, Sweden.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Höger, Christoph (2014). “Dynamic structural analysis for
DAEs”. In: Proceedings of the 2014 Summer Simulation Mul-
ticonference, SummerSim 2014, Monterey, CA, USA, July 6-
10, 2014. SCS/ ACM, p. 12.

Höger, Christoph (2017). “Elaborate control: variable-structure
modeling from an operational perspective”. In: Proceed-
ings of the 8th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, EOOLT
’17, Weßling, Germany, December 1, 2017. Ed. by Dirk Zim-
mer and Bernhard Bachmann. ACM, pp. 51–60. ISBN: 978-
1-4503-6373-0. DOI: 10.1145/3158191.3158198.

Liberzon, Daniel and Stephan Trenn (2012). “Switched non-
linear differential algebraic equations: Solution theory, Lya-
punov functions, and stability”. In: Automatica 48.5, pp. 954–
963. DOI: 10.1016/j.automatica.2012.02.041.

Lindstrøm, Tom (1988). “An Invitation to Nonstandard Analy-
sis”. In: Nonstandard Analysis and its Applications. Ed. by
N.J. Cutland. Cambridge Univ. Press, pp. 1–105.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist (1999).
“Modelica Hybrid Modeling and Efficient Simulation”. In:

38th IEEE Conference on Decision and Control. Ed. by IEEE,
pp. 3502–3507.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist (2015-
09). “Multi-Mode DAE Systems with Varying Index”. In:
Proc. of the 11th Int. Modelica Conference. Ed. by Hild-
ing Elmqvist and Peter Fritzson. Modelica Association. Ver-
sailles, France.

Mattsson, Sven Erik and Gustaf Soderlind (1993). “Index Re-
duction in Differential-Algebraic Equations Using Dummy
Derivatives”. In: SIAM Journal on Scientific Computing 14.3,
pp. 677–692. DOI: 10.1137/0914043.

Nilsson, Henrik and George Giorgidze (2010). “Exploiting
structural dynamism in Functional Hybrid Modelling for sim-
ulation of ideal diodes”. In: Czech Technical University Pub-
lishing House.

Pantelides, Constantinos C. (1988). “The consistent initializa-
tion of differential-algebraic systems”. In: SIAM J. Sci. Stat.
Comput. 9.2, pp. 213–231.

Pepper, Peter et al. (2011). “A Compositional Semantics for
Modelica-style Variable-structure Modeling”. In: 4th Interna-
tional Workshop on Equation-Based Object-Oriented Model-
ing Languages and Tools.

Pryce, John D. (2001). “A simple structural analysis method for
DAEs”. In: BIT 41.2, pp. 364–394.

Robinson, Abraham (1996). Nonstandard Analysis. Princeton
Landmarks in Mathematics. ISBN: 0-691-04490-2.

Trenn, Stephan (2009a). “Distributional Differential Algebraic
Equations”. PhD thesis. Technischen Universität Ilmenau.

Trenn, Stephan (2009b). “Regularity of distributional differen-
tial algebraic equations”. In: MCSS 21.3, pp. 229–264. DOI:
10.1007/s00498-009-0045-4.

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

517

