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Abstract
Since its 3.3 release, Modelica offers the possibility to
specify models of dynamical systems with multiple modes
having different DAE-based dynamics. However, the han-
dling of mode changes by the current Modelica tools is not
satisfactory. An important difficulty is the occurrence of
impulsive behavior at some mode changes, for some vari-
ables. In this paper, we propose a compile-time algorithm
for identifying such impulsive behaviors and quantifying
them in terms of their magnitude orders. Such algorithm
can be used as an additional step of the structural analysis
of Modelica models.
Keywords: multimode DAE, structural analysis, impulsive
behaviors

1 Introduction
Modelica and other languages supporting object-oriented
modeling of physical systems rely on the formalism of
DAEs. Compilers of such languages perform sophisti-
cated preprocessing prior to generating simulation code
(Casella 2015). Index analysis and reduction (Mattsson
and Soderlind 1993) is one such important processing,
where selected equations are differentiated one or more
times until the Jacobian matrix with respect to the lead-
ing variables (i.e., the variables of maximal differentiation
degree in the system) becomes structurally regular.

Since its 3.3 release, Modelica offers the possibility
of specifying multimode dynamics, by describing state
machines with different DAE dynamics in each different
state (Elmqvist et al. 2012). This feature enables describ-
ing large complex cyber-physical systems with different
behaviors in different modes.

While being very valuable, this possibility has been the
source of serious difficulties for non-expert users. Al-
though many large-scale complex Modelica models are
properly handled, some physically meaningful models do
not give rise to correct simulation results—it is actually
not difficult to construct such problematic programs, thus,
chances are significant to produce such bad cases in large
models. Benveniste, Caillaud, and Malandain (2020) pro-
poses a structural analysis that is valid for multimode DAE
models, both within each mode and at mode changes, il-
lustrated in the companion paper (Benveniste, Caillaud,
and Malandain 2021).

One specific problem is due to the existence, in many
physical models, of impulsive behaviors for some vari-

ables. With existing tools, such models give rise to simu-
lations collapsing at runtime. Impulsive behaviors are al-
ready a problem from a mathematical standpoint, as they
do not fall within the existing concepts of solutions of a
DAE system—the definition used in (Campbell and Gear
1995) assumes smoothness of the trajectories.

To cope with this issue, distributions were considered
by some authors. To our knowledge, the most compre-
hensive approach was provided by Stephan Trenn. In his
PhD thesis (Trenn 2009a) and his article (Trenn 2009b), he
pointed out the difficulty in defining piecewise smooth dis-
tributions: several mathematically coherent definitions of
the “Dirac part” of such a distribution can be considered,
so that it has no intrinsic definition. This indicates that dis-
tributions are not the ultimate answer to deal with impul-
sive variables in multimode DAE systems. Still, Liberzon
and Trenn (2012) were able to define complete solutions
for a class of switched DAE systems in which each mode
is in quasi-linear form and switching conditions are time-
based, not state-based.

Another important step forward was done in (Ben-
veniste, Caillaud, Elmqvist, et al. 2019). An interesting
subclass of multimode DAE systems was identified, which
possibly exhibit impulsive variables at mode changes.
They extend the “quasi-linear systems” proposed by Trenn
in the sense that switching conditions are no longer re-
stricted to time-based ones, instead including state-based
switching conditions. The analysis and discretization
schemes proposed in (Benveniste, Caillaud, Elmqvist, et
al. 2019) are mathematically sound. Building on this
work, Martin Otter has developed the ModiaMath1 tool
for semi-linear multimode DAE systems. Since this work,
this approach was refined and extended by the authors of
this paper (Benveniste, Caillaud, and Malandain 2020),
and is illustrated on examples in (Benveniste, Caillaud,
and Malandain 2021).

Contribution of this paper: A complete structural
analysis of multimode DAE systems was only recently
proposed by the authors of this paper. In particular, this
approach distinguishes between long modes, in which the
dynamics is continuous-time and governed by a DAE sys-
tem for a positive duration, and transient modes, which are
zero duration events at which restarts can occur; note that,
as a result, chattering behavior such as encountered when

1https://modiasim.github.io/ModiaMath.jl/
stable/man/Overview.html
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applying sliding mode control is not supported.
We develop here another important aspect of our ap-

proach, by focusing on impulsive behaviors. We explain
this aspect on the Cup-and-Ball example, a mild variation
of the popular 2D pendulum in which the straight rod is re-
placed by a rope. When the rope gets straight, an impulse
typically occurs for the tension if an idealized model is
considered. To analyze this behavior, we propose a gen-
eral compile-time analysis, acting as an additional step of
the multimode structural analysis presented in the com-
panion paper (Benveniste, Caillaud, and Malandain 2021).

Since distributions fail to properly handle impulsive be-
haviors in general, our mathematical tool for this is non-
standard analysis (Robinson 1996; Cutland 1988; Lind-
strøm 1988), which allows for a correct use of infinities
and infinitesimals in mathematical analysis. We use this
setting in two ways:

• First, we discretize the DAE dynamics in each long
mode using an explicit first-order Euler scheme with
an infinitesimal time step ∂ ; this provides us with
an approximation of the DAE solutions up to an in-
finitesimal error. Infinitesimal time steps are also
used to capture restarts at mode changes: the values
of states in the new mode are computed, from val-
ues before the change, in one or several infinitesimal
time steps.

• Second, we compute impulse orders, i.e., orders of
magnitude of algebraic variables at mode changes,
for both long and transient modes, with reference to
the infinitesimal time step ∂ ; for example, an order
of 1/∂ for an algebraic variable indicates that this
variable is impulsive.

We develop a compile-time calculus that evaluates the
impulse order of every algebraic variable, thus reveal-
ing its impulsive/non-impulsive nature. Finite impulse or-
ders can be used to renormalize impulsive variables when
implementing a numerical scheme that approximates the
restart values for each state variable of the system, thus
improving conditioning.

In the next section, we investigate the Cup-and-Ball ex-
ample, a two-mode variation of the celebrated pendulum
in Cartesian coordinates. In Section 3, we develop the im-
pulse analysis in its generality and explain how it can be
mechanized.

2 The Cup-and-Ball example
We sketch here a multimode extension of the popular ex-
ample of the pendulum in Cartesian coordinates (Pan-
telides 1988), namely the Cup-and-Ball game illustrated
by Figure 1. A ball, modeled by a point mass, is attached
to one end of a rope, while the other end of the rope is
fixed, to the origin of the plane in the model. The ball
is subject to the unilateral constraint set by the rope, but
moves freely while the distance between the ball and the

origin is less than its actual length. The system is assumed
closed and subject to no external interaction.

Figure 1. The Cup-and-Ball game.

2.1 The model

The considered model of the two-dimensional Cup-and-
Ball game is:


0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0≤ L2−(x2+y2) (κ1)
0≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
×λ (κ3)

(1)

where the dependent variables are the position (x,y) of the
ball in Cartesian coordinates and the rope tension λ .

The subsystem (κ1,κ2,κ3) expresses that the distance
of the ball from the origin is less than or equal to L, the
tension is nonnegative, and one cannot have a nonzero
tension and a distance less than L at the same time.
This is known as a complementarity condition, written as
0≤ L2−(x2+y2)⊥ λ ≥ 0 in the nonsmooth systems liter-
ature (Acary and Brogliato 2008), and is an adequate mod-
eling of ideal valves, diodes (Cellier and Kofman 2006,
Chapter 9.10), and contact in mechanics.

Note that, not only an impulsive behavior is expected
on the torques, but an other possible difficulty is present,
as subsystem (κ1,κ2,κ3) of (1) leaves the impact law at
mode change insufficiently specified; it could be fully
elastic, fully inelastic, or in between. We expect both of
these aspects to be detected at compile time, using some
kind of structural analysis.

However, before such a structural analysis is possible,
some changes are required in the model. As a matter of
fact, constraints κ1 and κ2 are unilateral, which is not
supported by Modelica and related languages. Therefore,
using the technique presented in (Mattsson, Otter, and
Elmqvist 1999), we redefine the graph of this complemen-
tarity condition as a parametric curve, represented by the
following three equations:

s = if γ then−λ else L2−(x2+y2)
0 = if γ then L2−(x2+y2) else λ

γ = [s≤ 0]
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which allows us to rewrite model (1) as follows:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(2)

We then observe that the subsystem collecting equations
(k0)–(k4) is a logico-numerical fixpoint equation, with de-
pendent variables x,y,λ ,γ . A possible solution would con-
sist in performing a relaxation, by iteratively updating the
numerical variables based on the previous value for the
guards, and then re-evaluating the guard based on the up-
dated values of the numerical variables, hoping for a fix-
point to occur. Such fixpoint equation, however, can have
zero, one, several, or infinitely many solutions. No char-
acterization exists that could serve as a basis for a (graph-
based) structural analysis. We thus decided to refuse solv-
ing such mixed logico-numerical systems. As a conse-
quence, we are unable to evaluate guard γ , so that the
mode the system is in cannot be determined: model (2)
is rejected.

To break the fixpoint equation defining γ , we choose
to restrict ourselves to guards defined by left-limits; in
this example, this yields γ = [s− ≤ 0], where s−(t) =def
limu↗t s(u) (the modification is highlighted in red):

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s− ≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(3)

We are now ready to associate a structural analysis to
model (3) that will be valid both in long modes with
DAE dynamics, and at mode changes. To achieve this,
we will replace derivatives by their corresponding forward
Euler schemes, which will bring everything to a discrete
progress of time (both continuous dynamics and mode
changes).

To avoid introducing approximation errors, we will use
an infinitesimal time step ∂ , which is made mathemati-
cally formal by relying on nonstandard analysis.

2.2 Using nonstandard analysis
Nonstandard analysis (Robinson 1996; Lindstrøm 1988;
Benveniste, Bourke, et al. 2012) extends the set R of real
numbers into a superset ?R of hyperreals (also called non-
standard reals) that includes infinite sets of infinitely large
numbers and infinitely small numbers. Key properties of
hyperreals, needed for the informal discussion of the Cup-
and-Ball example, are the following:

There exist infinitesimals, defined as hyperreals that
are smaller in absolute value than any real number: an
infinitesimal ∂ ∈ ?R is such that |∂ | < a for any positive
a ∈ R. For x,y two hyperreals, write x ≈ y if x− y is an
infinitesimal.

All relations, operators, and propositional formulas
that are valid over R are also valid over ?R. For exam-
ple, ?R is a totally ordered set. The arithmetic operations
+, ×, etc. can be lifted to ?R. We say that a hyperreal
x is finite if there exists some standard finite positive real
number a such that |x|< a.

For every finite hyperreal x∈ ?R, there is a unique stan-
dard real number st(x) ∈ R such that st(x) ≈ x, and
st(x) is called the standard part (or standardization) of x.
Standardizing more complex objects, such as functions or
systems of equations, requires some care (see Theorem 1,
Section 2.5).

Every real function lifts in a systematic way to a hyper-
real function. This allows us to write f (x) where f is a
real function (regardless of its continuity properties) and x
is a nonstandard number.

Continuity and derivatives. Let t 7→ x(t) be an R-
valued (standard) signal (t ∈ R). Then:

x is continuous at instant t ∈ R if and only if,
for any infinitesimal ∂ ∈ ?R, one has x(t +∂ )≈
x(t);

(4)

x is differentiable at instant t ∈ R if and only if
there exists a ∈ R such that, for any infinitesi-
mal ∂ ∈ ?R, x(t+∂ )−x(t)

∂
≈ a. In this case, a =

x′(t).

(5)

We can then consider the time index set T⊆ ?R:

T= 0,∂ ,2∂ ,3∂ , · · ·= {n∂ | n ∈ ?N} (6)

where ∂ is a positive infinitesimal, and ?N denotes the set
of hyperintegers, consisting of all integers augmented with
additional infinite numbers called nonstandard. The im-
portant features of T are: (1) Any finite real time t∈R+,
where R+ denotes the set of nonnegative real numbers, is
infinitesimally close to some element of T (informally, T
covers R+ and can be used to index continuous-time dy-
namics); and (2) T is “discrete”: every instant n∂ has a
predecessor (n−1)∂ (except for n = 0) and a successor
(n+1)∂ .

Let x be a nonstandard signal indexed by T. We de-
fine the forward- and backward-shifted signals x• and •x
through

x•(n∂ ) =def x((n+1)∂ ) and •x((n+1)∂ ) =def x(n∂ ) ,

implying that an initial value for •x(0) must be pro-
vided. For f a function of the tuple X of signals, we set
( f (X))• =def f (X•) where the forward shift X 7→ X• ap-
plies pointwise to all the components of the tuple. For
example, f •(x,y)(t) = f (x(t+∂ ),y(t+∂ )).
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By (5), this allows us to represent, up to an infinites-
imal, the derivative x′ of a signal by its first-order ex-
plicit Euler approximation 1

∂
(x•− x). Solutions of multi-

mode DAE systems may, however, be non-differentiable
and even non-continuous at events of mode change. To
give a meaning to x′ at any instant, we decide to define
it everywhere as the nonstandard first-order Euler incre-
ment.

Hence, we implicitly add to every system the following
two equations, for each state variable x:

x′ =
x•− x

∂
; x′′ =

x•2−2x•+ x
∂ 2 , (7)

where

x•(t) =def x(t +∂ ) ,

x•2(t) =def x(t +2∂ ) and, generally
x•n(t) =def x(t +n∂ ) .

Equation (7) means that the derivatives x′,y′,x′′,y′′ are in-
terpreted using the explicit first-order Euler scheme with
an infinitesimal time step ∂ . Note that (7) implies

x′′ =
x′•− x′

∂
. (8)

This yields the nonstandard expansion of the corrected
model (3):



0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(9)

This model is understood in the nonstandard set-
ting, meaning that the derivatives are expanded using
(7). Therefore, the leading variables in all modes are
λ ,s,x•2,y•2.

We are ready to concentrate on structural analysis and
we will focus on the main difficulty with this Cup-and-
Ball model, namely the mode change γ:F→T, when the
rope gets straight. The reader is referred to the compan-
ion paper (Benveniste, Caillaud, and Malandain 2021) for
omitted details.

2.3 Structural analysis of mode change γ:F→T

Due to equation (k1), the mode γ = T (where the rope
is straight) requires index reduction. We thus augment

model (9) with the two latent equations shown in red:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = L2−(x2+y2)• (k•1)
and 0 = L2−(x2+y2)•2 (k•21 )
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(10)

Note that the two latent equations (k•1) and (k•21 ) were ob-
tained by shifting (k1) forward, not by differentiating it
as usually performed—the two, however, are equivalent
from the structural analysis standpoint, because of equali-
ties (7).

To perform structural analysis at the considered mode
change, we first unfold model (10) at the successive in-
stants

•2t =def t−2∂ , •t =def t−∂ , and t ,

where t denotes the current instant. In the following, equa-
tion (e1) at the instant t− 2∂ (respectively, t− ∂ ) will be
denoted by (•2e1) (resp., (•e1)).

In this unfolding, the two equations (k1) and (k•1) are in
structural conflict with selected equations from the previ-
ous two instants, shown in blue in the following subsys-
tem, whose dependent variables are the leading variables
at instants t−2∂ and t−∂ , namely x,y,•2λ ;x•,y•,•λ :

0 = x−2•x+•2x
∂ 2 + •2λ •2x (•2e1)

0 = y−2•y+•2y
∂ 2 + •2λ •2y+g (•2e2)

0 = x•−2x+•x
∂ 2 + •λ •x (•e1)

0 = y•−2y+•y
∂ 2 + •λ •y+g (•e2)

0 = L2−(x2+y2) (k1)

0 = L2−(x2+y2)• (k•1)

This conflict can be detected from structural informa-
tion only, using the Dulmage-Mendelsohn decomposi-
tion (Dulmage and Mendelsohn 1958). We propose to re-
solve this conflict by applying the following principle:

Principle 1 (Causality) What was done at the previous
instant cannot be undone at the current instant.

Applying Principle 1 leads to erasing, in model (10),
equations (k1) and (k•1) at the instant of mode change
•γ=F,γ=T. This yields the following system:

at
[ •γ=F

γ=T

]
:


0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)•2 (k•21 )
0 = λ + s (k2)

(11)

It uniquely determines all the leading variables from the
state variables x,y and x•,y•. In turn, equations (k1) and
(k•1), which were erased from this model, are not satisfied.
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At the next instant, i.e., when •2γ=F,•γ=T,γ=T, the
same argument is used. We thus erase, in model (10), the
only equation (k1) at the next instant. This yields the fol-
lowing system:

at

 •2γ=F
•γ=T
γ=T

 :


0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21 )
0 = λ + s (k2)

(12)

Note that (k•1) is a consistency equation that is satisfied
by the state variables x•,y•. In turn, equation (k1), which
was erased from this model, is not satisfied. At subsequent
instants, equation erasure is no longer needed: the process
amounted to delaying by a few nonstandard instants the
satisfaction of some of the constraints in the new mode,
which actually took zero standard time. This completes
the nonstandard structural analysis of the mode change γ :
F→T, i.e., when the rope gets straight.

2.4 Impulse analysis at mode change γ : F→ T

We now focus on identifying possible impulsive behav-
iors at this mode change. This is achieved by analyzing
nonstandard systems (11) and (12) defining the values for
restart. The intent is that the former will set the restart
positions, whereas the latter will set the restart velocities.

Our impulse analysis not only identifies impulsive vari-
ables but also quantifies their order of magnitude, thanks
to the following notion of impulse order:

Definition 1 (Impulse order and analysis)

1. Given a nonstandard system of equations E defining
the values for restart, say that a dependent variable
x has impulse order o ∈R in E, if the solution of sys-
tem E is such that x∂−o is provably a finite non-zero
(standard) real number. Let [[x]] denote the impulse
order of x. By convention, the constant 0 has impulse
order −∞.

2. Say that x is impulsive if [[x]]> 0.

3. The impulse analysis of a system of equations S is the
system of constraints satisfied by the impulse orders
of the dependent variables of S.

Impulse analysis relies on the following generic as-
sumption, which expresses that DAE within long modes
must be reinitialized with finite values for the state vari-
ables:

Assumption 1 State variables are not impulsive; that is,
for any state variable v, one has [[v]]≤ 0.

As an example, if, in the new mode, a variable x is dif-
ferentiated up to order n, then its (n− 1)-th derivative is
a state variable and thus subject to Assumption 1. Conse-
quently, its k-th order derivatives for k = 0, . . . ,n− 2 are
continuous at the considered mode change.

We are now ready to successively analyze Systems 11
and 12.

System (11): The state variables are x,y,x′,y′. By As-
sumption 1, we get the following prior information, which
expresses that velocities are not impulsive:

[[x′•− x′]]≤ 0 ; [[y′•− y′]]≤ 0 . (13)

Conditions (13) imply that positions should be continuous.
While performing our impulse analysis, we include equa-
tion (8) relating second derivatives and first derivatives.
System (11) involves equation (e1) : x′′+λx=0, which, by
using (8), rewrites

x′•− x′+∂λx = 0 . (14)

By (13), equation (14) implies [[λ ]] ≤ 1. Exploiting all
equations of System (11) yields the following information

[[λ ]] = [[s]]≤ 1 , (15)

whereas other dependent variables have impulse order
zero. System (12) is handled similarly, with the same con-
clusion. In Section 3, we mechanize the impulse analy-
sis for an arbitrary restart system. Prior to doing this, we
now explain how this impulse analysis can be exploited
for generating effective code for restart.

2.5 Using impulse analysis in code generation
Code generation for restarts consists in standardizing non-
standard systems (11) and (12). See the introduction of
Section 2.2 for the meaning of “standardization”; note,
however, that standardizing systems of equations requires
more care than standardizing numbers, due to impulsive
behaviors and singularity issues that result.

We can exploit the impulse analysis through the fol-
lowing three different approaches. The method of Sec-
tion 2.5.1 is mostly described for didactic purposes, as it
requires the symbolic elimination of variables, which can
be very costly or even impossible in nonlinear systems. In
practice, the methods of Sections 2.5.2 and 2.5.3 shall be
used; both of these sections briefly address this topic.

2.5.1 Eliminating impulsive variables

When this is practical, the simplest method from a con-
ceptual point of view is to eliminate impulsive variables
from the restart system, as they are of no use for restarting
the new mode.

We still focus here on the standardization of the mode
change γ : F→ T, i.e., when the rope gets straight. Our
task is to standardize systems (11) and (12), by target-
ing discrete-time dynamics, for the two successive instants
composing the restart phase. This will provide us with
restart values for positions and velocities.

By (15), tensions λ and λ • are both candidates to be im-
pulsive, hence so are s and s• by (k2,k•2). We eliminate the
impulsive variables by ignoring (k2,k•2), combining (e1)
and (e2) to eliminate λ , and (e•1) and (e•2) to eliminate λ •.
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This yields:

at
[ •γ=F

γ=T

]
:
{

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•2

(16)

at

 •2γ=F
•γ=T
γ=T

 :


0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(17)

In System (16), we expand second derivatives using (7),
whereas, in System (17), we expand them using (8). Con-
sequently, System (16) has dependent variables x•2,y•2,
whereas System (17) has dependent variables x′•,y′•. We
are now ready to standardize the two systems.

System (16) to define restart positions: We expand
second derivatives using (7):{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y+∂ 2gx
0 = L2−(x2+y2)•2

(18)

Setting ∂ = 0 in System (18) yields a structurally regular
system, so that we can invoke the following result, proved
in (Benveniste, Caillaud, and Malandain 2020):

Theorem 1 (standardizing systems of equations) For
H : Rn+1 → Rn a C 1 (standard) function, consider the
nonstandard system of equations H(∂ ,X) = 0 where
X is a n-vector of variables. If system H(0,X) = 0 is
structurally nonsingular, then setting ∂ = 0 in system
H(∂ ,X) = 0 yields the correct standardization of it, mean-
ing that the solution x∗(∂ ) of H(∂ ,X) = 0 standardizes as
the solution x∗ of H(0,X) = 0.

By this theorem, setting ∂ = 0 in System (18) yields the
correct standardization of it:{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y
0 = L2−(x2+y2)•2

Then, in the resulting system, we interpret x and x• as the
left-limit x− of state variable x in previous mode, and x•2

as the restart value x+ for the new mode. This yields{
0 = (y+− y−)x−− (x+− x−)y−

0 = L2−(x2+y2)+
(19)

which determines the restart values for positions. Note
that the constraint that the rope is straight is satisfied.
Furthermore, as 0 = L2−(x2+y2)− also holds (the rope
is straight at the mode change), x+ = x−,y+ = y− is the
unique solution of (19): positions are continuous.

System (17) to define restart velocities: We expand
second derivatives using (8):

0 = (y′•− y′)x− (x′•− x′)y+∂ .gx
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(20)

By expanding x•2 = x•+ ∂x′•, the right-hand side of the
last equation rewrites

L2−(x2+y2)•2 = L2−(x2+y2)•

+ 2∂ (x•x′•+ y•y′•)
+ ∂ 2

(
(x′•)2 +(y′•)2

)
= 0 (using (20))

+ 2∂ (x•x′•+ y•y′•)
+ O(∂ 2)

(21)

Using this expansion of L2−(x2+y2)•2, setting ∂ = 0 in
(20) yields{

0 = (y′•− y′)x− (x′•− x′)y
0 = x•x′•+ y•y′• (22)

where the dependent variables are now x′•,y′•, whereas
other variables are state variables whose values are de-
termined by previous time steps. Note that System (22)
is structurally regular, so that we can invoke Theorem 1,
showing that System (22) is the correct standardization of
System (20). We are now ready to get effective code for
the restart. In System (22), we perform the following sub-
stitutions, where superscripts − and + denote left- and
right-limits, and the continuity of positions is used:

x = x− ; x• = x+ and x′ = x′− ; x′+ = x′• (23)

and similarly for y. This finally yields{
0 = (y′+− y′−)x−− (x′+− x′−)y−

0 = x+x′++ y+y′+
(24)

System (24) determines x′+ and y′+, which are the veloc-
ities for restart. The second equation guarantees that the
velocity will be tangent to the constraint. With (19) and
(24), we determine the restart conditions for positions and
velocities. Invariants from the physics are satisfied.

This is a satisfactory solution when the elimination of
impulsive variables is practical. In our example, they en-
tered linearly in the restart system, so that elimination was
straightforward. When this is not the case, elimination be-
comes costly or even impossible. Moreover, generalizing
and mechanizing this elimination process appears to be a
very difficult task. We thus need to look for alternatives
for computing the velocities for restart.

2.5.2 Rescaling impulsive variables

Focus again on System (12). Impulse analysis told us that
λ ,s both have impulse order ≤ 1. We thus rescale them
accordingly:

λ̂ =def ∂
1×λ and ŝ =def ∂

1×s (25)
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Using this rescaling together with expansion (8), Sys-
tem (12) rewrites

0 = x′•− x′+ λ̂x (e1)

0 = y′•− y′+ λ̂y+∂g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21 )

0 = λ̂ + ŝ (k2)

(26)

In System (26), (k•1) is a consistency equation satisfied as
a result of performing System (11) at the previous instant.
We can also discard equation (k2), which only serves to
determine the auxiliary variable s. Thus, we are left with
the sub-system collecting equations (e1),(e2),(k•21 ). We
can again expand the right-hand side of (k•21 ) by using
(21). In the resulting system, we can safely set ∂ ← 0
since it yields the following structurally regular system:

0 = x′+− x′−+ λ̂x− (e1)

0 = y′+− y′−+ λ̂y− (e2)

0 = 0 = x+x′++ y+y′+ (k•21 )

(27)

System (27) determines x′+ = x′•,y′+ = x′•, and the
rescaled impulsive tension λ̂ , as functions of state vari-
ables x′,y′,x,y, which were identified with the left-limits
of velocities and positions at previous mode. Note that
eliminating the rescaled tension λ̂ from System (27) yields
System (24).

Rescaling impulsive variables is simpler than eliminat-
ing them. This method is also promising in terms of de-
signing and implementing algorithms for its mechaniza-
tion, as the computation of the impulse orders amounts to
finding a minimal solution to a system of linear unilateral
constraints. Unfortunately, it does not work in full gener-
ality since impulse orders can be infinite, as the following
example shows:

x = exp(y/∂ ) ,

where y is known to have impulse order zero. Indeed, the
impulse order of (y/∂ )n is n. Since the exponential ex-
pands as a power series of infinite support, we deduce that
the impulse order of exp(y/∂ ) is the maximum of all im-
pulse orders of (y/∂ )n, hence it is infinite. Thus, impulsive
variable x cannot be rescaled.

The last method addresses such cases, at the price of a
possibly poor numerical conditioning.

2.5.3 Bruteforce solving of the restart system
When none of the above methods apply, it is still possible
to solve system (26) with ∂ = δ (a small positive time
step) for the original variables λ and s, without rescaling
them.

Then, it is proved in (Benveniste, Caillaud, and Ma-
landain 2020), see also (Benveniste, Caillaud, and Ma-
landain 2021) that solving these systems for their depen-
dent variables and then discarding the values found for the
impulsive variables yields a converging approximation for

the states and velocities at restart. Moreover, first numer-
ical experiments on toy examples showed no issue as long
as the time step δ was kept reasonably high. Of course,
without rescaling, the numerical conditioning is likely to
be less favorable, so that rescaling is recommended when
impulse orders are finite. Works are in progress for the im-
plementation of this method, coupled with the rescaling of
impulsive variables of finite order.

2.6 Handling transient modes: elastic impact
Our reasoning so far produces a behavior in which the two
modes (free motion and straight rope) gently alternate; the
system always stays in one mode for some positive period
of time before switching to the other mode.

This indeed amounts to assuming that the impact is to-
tally inelastic at mode change, an assumption that was
not explicit at all in (9). So, what happened? In fact, the
straight rope mode was implicitly assumed to last for at
least three nonstandard successive instants, since we al-
lowed ourselves to shift (k1) forward twice.

Now, let us instead assume elastic impact, represented
by the cascade of mode changes γ : F→ T→ F, reflecting
that the straight rope mode is transient (it is left immedi-
ately after being reached).

We address transient modes in (Benveniste, Caillaud,
and Malandain 2020; Benveniste, Caillaud, and Ma-
landain 2021). We show that a structural analysis for elas-
tic impact can still be proposed, by suitably adapting the
notion of differentiation array proposed by Campbell and
Gear (1995). The so obtained structural analysis proves
that our original model (1) for the Cup-and-Ball is un-
derspecified at mode change γ : F → T, when the rope
gets straight. This underdetermination implies that the
model is ill-defined, as it admits an infinite number of so-
lutions. Completing it by adding an impact law, which
makes sense from a physicist’s point of view, is also ap-
propriate from the point of view of our structural analysis.

One possible choice is to complete the model with an
elastic impact law. This indeed corrects the restart system
at γ = T in the cascade of mode changes γ : F→ T→ F,
yielding 

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = L2−(x2+y2) (k1)
0 = λ + s (k2)

(28)

where 0 < α < 1 is a damping factor. We proceed again
with the structural analysis. Variables x,y are the states,
so that their values are set by the previous instants. Cur-
rent equation (k1) creates a conflict with the past. Hence,
we discard it from System (28), which leaves us with the
following system:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = λ + s (k2)

(29)
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Model (29) is structurally nonsingular, recalling that y′′

and y′• can be interchanged for the structural analysis.
This refined model is therefore accepted by the structural
analysis.

The impulse analysis proceeds as for the previous case
of inelastic impact and effective code for restart can be
generated.

Note that any impact law could be used instead of the
one added in System (28), as long as it ensures uniqueness
of the solution for a fixed state before the impact.

In (Benveniste, Caillaud, and Malandain 2021), we also
discuss the consequences, for modeling languages such as
Modelica, of the need for stating as a side specification
whether a mode is transient or not.

3 General Impulse Analysis
In this section, we explain how the reasoning used for the
Cup-and-Ball example can be mechanized as a compila-
tion stage following multimode structural analysis. Prior
to developing this, we provide a simplified overview of
said multimode structural analysis.

3.1 Overview of multimode structural analysis
We consider multimode DAE systems possessing long
modes (having DAE-based dynamics for a positive dura-
tion) alternating with finite cascades of transient modes
(having a zero duration, such as the straight rope mode in
the Cup-and-Ball model with elastic impact).

We assume that the information regarding the type of a
mode (long vs. transient) is known by the compiler—the
two different Modelica primitives if and when should be
used to declare long and transient modes, respectively.

In addition, we require that the current mode is defined
by the left-limits of some predicates, see the reasoning
leading to the corrected model (9) for the Cup-and-Ball.

For such models, the structural analysis proceeds ac-
cording to the following steps:

1. The multimode model is mapped to its nonstandard
expansion by using a first-order explicit Euler expan-
sion for derivatives, with infinitesimal time step ∂ ,
and mapping left-limits to values at the previous in-
stant. In particular, the mode at each nonstandard
instant is known at the end of the previous instant.

2. The structural analysis for each specific mode is per-
formed, depending on its long/transient type:

• If the mode is long, then classical struc-
tural analysis applies: by, e.g., using Pryce’s
Σ-method (Pryce 2001), latent equations are
added for the DAE system associated to each
long mode;

• Alternatively, if the mode is transient, a struc-
tural analysis of the difference array associated
to the considered cascade of transient modes is
performed.

3. Having done this, given the mode at the current in-
stant:

• If no mode change occurs, then the (classical)
mode-specific structural analysis applies;

• Otherwise, the conflict that may possibly ex-
ist between consistency equations of the cur-
rent mode and leading equations of the pre-
vious mode is analyzed, using the Dulmage-
Mendelsohn decomposition; conflicting sub-
systems are identified and the equations from
the current instant that cause conflicts are
erased.

Implementing the multimode structural analysis in the
above described form would be very inefficient. For-
tunately, Caillaud, Malandain, and Thibault (2020) pro-
posed a very efficient algorithm for handling all the long
modes simultaneously without enumerating them, and ex-
tended the Σ-method in this “all-modes-at-once” frame-
work. A similar extension of the Dulmage-Mendelsohn
decomposition is being implemented.

3.2 General Rules of Impulse Analysis
3.2.1 Problem setting

Restart systems of equations, as resulting from the struc-
tural analysis at mode changes, are nonstandard systems
of equations of the following generic form:

expand X ′ as X•−X
∂

in 0 = H(X ′,X•,V,X) (30)

where V collects the algebraic variables, X collects the
state variables, and X•−X

∂
is the nonstandard semantics of

X ′. H(·, ·, ·, ·), seen as a vector function in its dotted argu-
ments, is by itself standard, since the equations of system
0 = H are obtained by shifting or differentiating equations
specified by the user. The reason for (30) being nonstan-
dard is indeed twofold:

1. Since X• is involved, the infinitesimal ∂ occurs in
time; and

2. Since X ′ is involved, the infinitesimal ∂ occurs both
in time and space, due to the expansion X ′← X•−X

∂
.

The occurrence of ∂ in time is not an issue: shifted
state variables will correspond to restart values for states,
whereas non-shifted ones correspond to values prior to the
change. In contrast, the occurrence of ∂ in space is the root
cause of possible impulsive behaviors. Identifying them is
the subject of impulse analysis.

3.2.2 The rules of impulse analysis

We now develop the impulse analysis introduced in Def-
inition 1. This analysis is useful as a postprocessing of
structural analysis, prior to generating effective code for
restarts. Note that Assumption 1 is still enforced in what
follows.
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Figures 2 and 3 display the rules defining the translation
of a system of equations of the form (30) into its impulse
analysis, for the restricted class where only rational ex-
pressions are involved.

Figure 2 describes the syntax of a mini-language speci-
fying such systems of equations. The left column of Fig-
ure 3 gives the rules for mapping expressions to their cor-
responding impulse orders. The reason for the inequality
in (R6) is that in the sum e1+e2, the dominant terms in the
expansions of ei as series over ∂ may cancel each other.
For an example of this, see equation (e2) in System (12):
rewriting this equation as −g = y′′+λy, we see a case of
strict inequality for (R6) since gravity g has order zero,
whereas it is equal to the difference of two terms of order
one.

We will use Rule (R6) in the following way, thereby
reinforcing it. Consider an equation

e : z = x+ y .

We can rewrite e in the following equivalent ways: 0 =
x + y− z , x = z− y, or y = z− x. To each of them we
apply the max rule. This yields the following system of
constraints, called the impulse analysis of equation e:

[[z]]≤max{[[x]], [[y]]}
[[0]]≤max{[[x]], [[y]], [[z]]}
[[x]]≤max{[[z]], [[y]]}
[[y]]≤max{[[x]], [[z]]}

(31)

Note that the constraint [[0]] ≤ . . . is vacuously satisfied
since [[0]] = −∞. Then, among the three nontrivial in-
equalities of (31), at least two of them must be saturated.
We will use impulse analysis (31) for handling sums of
terms. This reinforcement of the max rule is formalized
by Rule (R8) of Figure 3, which mechanizes the associa-
tion, to any equation, of its different rewritings.

Using the rules of Figures 2 and 3 in the numerical ex-
pressions, we map any system of rational equations of the
form (30) into a system of constraints over impulse orders.

To cover functions beyond polynomials, we need to
extend R∪ {−∞} with +∞. In this extension, we take
the convention that −∞ + ∞ = −∞, justified by both
Rules (R1,R5) and the equality 0×x = 0 for any nonstan-
dard x. For functions f (x) = ∑

∞
k=0 akxk that can be rep-

resented as absolutely converging power series, we then
get

[[ f (x)]] = [[
∞

∑
k=0

akxk ]] = [[x]].sup(A) , (32)

where A={k | ak 6=0} is the support of the series and
sup(A) is the supremum of set A. In particular, if [[x]] >
0 and if the support of the series is infinite, we get
[[ f (x)]] = +∞.

3.2.3 Particularizing the impulse analysis to systems
of equations for restarts

So far, Rules (R1)–(R8) of the impulse analysis apply to
any system of nonstandard equations. Here we particu-
larize the impulse analysis to systems of equations of the
form (30), where the only reason for ∂ to occur is the ex-
pansion of derivatives using the Euler scheme:

0 = H
(

X•−X
∂

,X•,V,X
)

The dependent variables are X•,V . It will be convenient
to introduce the auxiliary variables

U =def X•−X ,

so that the systems we consider take the following form,
where X•,V,U are the dependent variables:{

0 = H
(U

∂
,X•,V,X

)
U = X•−X

(33)

The following condition for System (33) can be assumed,
based on physical considerations (restart values for an
ODE or a DAE cannot be impulsive):

Assumption 2 Since X is a state, both X (a known value)
and X• must be finite.

First, the impulse orders [[X ]] are all known, from previous
nonstandard instants. Next, from Assumption 2 we deduce
the inequalities:

[[X•]]≤ 0 and [[U ]]≤ 0 . (34)

The impulse orders [[V ]] are a priori unknown. We have,
however, more prior information, thanks to the structural
analysis. From the structural analysis at the considered
mode change, we know which consistency equations of
the new mode were conflicting with the dynamics of pre-
vious mode. Formally, call G=0 the subsystem collect-
ing all the equations that were erased while solving this
conflict—for the Cup-and-Ball model (10), at the instant
of mode change •γ=F,γ=T, G collects the bodies of the
two violated consistency constraints (k1) and (k•1).

As a result, G=0 no longer holds at the considered
mode change, and thus, G defines a tuple R of variables
(one per entry of G) called residuals, by setting

R = G , (35)

which are all finite and nonzero. An example of residual in
the Cup-and-Ball is r = L− (x2 + y2), which is both finite
and nonzero at mode change •γ=F,γ=T. The residuals are
found by the structural analysis.

Finally, the system of equations that we need to solve
collects all the above items, namely:

0 = H
(U

∂
,X•,V,X

)
U = X•−X
R = G

(36)
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e ::= 0 | c | ∂ | x | ec | e+ e | e× e
E ::= e = e | E and E

Figure 2. Syntax: E is a system of one or several equations e = e. An expression e is 0, a nonzero (standard) real constant c, the
infinitesimal ∂ , a variable x, the monomial ec, a sum, or a product.

(R1) [[0]] = −∞

(R2) [[c]] = 0
(R3) [[∂ ]] = −1
(R4) [[ec]] = c[[e]]
(R5) [[e1× e2]] = [[e1]]+ [[e2]]

(R6) [[e1 + e2]] ≤ max{[[e1]], [[e2]]}

E ` e = e′

[[E]] ` [[e]] = [[e′]]
(R7)

E ` x = y+ e or
E ` 0 = y− x+ e

}
and E 0 y = x− e

E ` E and y = x− e
(R8)

Figure 3. Rules: The left column displays the impulse order of the primitive expressions. Rule (R7) indicates that [[e]] = [[e′]] is an
equation of the impulse analysis [[E]] if e = e′ is an equation of E; rule (R8) indicates that, if E involves the equation x = y+ e but
not the equation y = x− e, then we augment E with the latter, i.e., we saturate E with the rule x = y+ e =⇒ y = x− e.

with dependent variables X•,V,U,R, and the following
prior information on impulse orders is known:

[[
1
∂
]] = 1 ; [[X•]]≤ 0 ; [[U ]]≤ 0 ; [[R]] = 0 . (37)

System (36) is then mapped to its impulse analysis by us-
ing Rules (R1–R8) of Figures 2 and 3. A suitable con-
straint solver is then used to solve the resulting set of con-
straints on impulse orders, by using side information (37).
The choice of an appropriate constraint solver remains to
be done.

4 Conclusion
The correct handling of truly multimode Modelica models
(in which index and structure may vary with the mode) re-
quires significant add-ons to the existing structural analy-
ses. The companion paper (Benveniste, Caillaud, and Ma-
landain 2021) introduces, by means of two small but rep-
resentative examples, a truly multimode structural analy-
sis that applies both in modes and at mode changes. One
important difficulty is the correct handling of impulsive
behaviors for some variables.

In this paper, we introduced the impulse analysis of
multimode DAE systems, a complement to multimode
structural analysis for Modelica models. Impulse analysis
is performed at compile time, prior to generating simula-
tion code. It allows to identify impulsive variables, along
with the mode changes at which impulsive behavior oc-
curs. When impulsive behaviors occur in a model, then
the conditions for restart at the impulsive mode change
are generally known implicitly, not explicitly. Generat-
ing simulation code for restarts can thus be problematic.
Using our approach based on impulse analysis, impulsive
variables can be properly rescaled, so that correct explicit
code for restarts can be generated.

In this paper, we did not consider the computational
cost of performing true multimode structural analysis at

compile time: unfortunately, the number of modes tends
to be roughly exponential in the size of the model, and the
a priori number of mode changes is at least proportional
to the square of the number of modes. This is a limita-
tion of a model representation in which one characterizes
the subset of equations and variables active in any given
mode.

A possible way of alleviating this issue is by shifting
to a dual representation, that provides predicates charac-
terizing the set of modes in which each equation and each
variable is active. In practice, not only does this approach
lead to a much more compact representation, but it also al-
lows for the design of efficient structural analysis methods
for multimode DAE systems, working in an ‘all-modes-
at-once’ fashion. Such a method was implemented in the
IsamDAE tool, and first results are reported in (Caillaud,
Malandain, and Thibault 2020). The examples coming
with this tool already include thermodynamical, electri-
cal and pneumatic models. Although only the structural
analysis of long modes is currently performed, the imple-
mentation of the structural analysis of mode changes is in
progress.
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