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Abstract
This paper describes a collaborative digital twin ap-
proach for equipment dimensioning and selection in
industrial process plants. Dynamic process simulator
(Apros) was used to model the process and its automa-
tion, including pumps, while a product specific dy-
namic simulator (Virtual Drive) was used to model the
motor and frequency converter. This approach allows
all stakeholders to design and dimension the process
equipment together in a holistic and energy optimal
way. Simulation can be used to reach an optimal equip-
ment solution that prevents overdimensioning, leading
to up-front and total life-cycle cost savings.

Co-simulation was made possible by implementing
a prototype Functional Mock-up Interface (FMI) for
both Apros 6 and Virtual Drive, allowing Apros to
import Virtual Drive as a Functional Mock-up Unit
(FMU). This paper shows how the FMI solution can be
used for finding energy optimal selections for pumps
and related powertrain products.
Keywords: co-simulation, functional mock-up interface,
apros, virtual drive, optimization

1 Introduction
Over 40% of the world’s electricity is currently consumed
by electric motors in buildings and industrial applications,
and approximately 75% of these industrial motors run
pumps, fans and compressors. This is a machinery cat-
egory that is highly potential for major energy efficiency
improvements. Considering the huge number of indus-
trial electric motor-frequency converter systems in opera-
tion (roughly 300 million), global electricity consumption
could be reduced up to 10% if these process applications
were properly optimized. Thus, significant savings can be
achieved in processes when using system-level optimiza-
tion and right-sized components. (Waide and Brunner
2011; Motor-driven Equipment Research Package 2021).

Processes, systems and industrial plants are tradition-
ally designed and dimensioned by several stakeholders.
Usually an EPC (engineering, procurement and construc-
tion company) has the main responsibility of a project by
handling the design, procurement and construction work.
Subcontractors, such as system integrators and OEMs

(original equipment manufacturers), are used to deliver the
required technical systems and equipment for an indus-
trial plant. Processes are usually divided into sub-systems,
which are designed and dimensioned separately by dif-
ferent stakeholders. Different process equipment such as
motors, frequency converters, pumps and fans are dimen-
sioned by OEMs based on the overall specification of the
system. This traditional way of designing a process is
called the waterfall model, see Figure 1 for an example
of such a design process. Process design challenges and
approaches has been investigated in chemical engineering
and process systems engineering for decades and a lot has
been written about it. We will not delve deep into the
available literature on the topic, but Vega et al. (2014),
Nishida, Liu, and Ichikawa (1976) and Westerberg (2004)
are great starting points.

Figure 1. A traditional way of designing a process (Vega et al.
2014).

Due to separate design steps, waterfall model lacks
system-level optimization of the process. In the absence
of overall coordination of the process design, each stake-
holder adds their own risk margins to the sizing of the de-
sign to ensure that each and every component fulfills the
critical process requirements. This leads to overdimen-
sioning of the system components. When all these sepa-
rate pieces of equipment are combined into a functional
process system, such as a pumping line, the whole system
runs inefficiently, using too much energy with too high
costs.

Our collaborative digital twin approach combines
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decision-making by including all stakeholder’s equipment
selections in one model. A digital twin is a virtual rep-
resentation of a physical phenomenon, e.g. an industrial
plant. Digital twins have been investigated as a method
for improving process designs and collaboration between
stakeholders, e.g. by introducing modular designs (Jia-
peng et al. 2019) or by using big-data (Fei et al. 2018).

In a collaborative digital twin approach, all stakehold-
ers design and dimension the process equipment together.
With the virtual model, the behaviour and performance of
the whole process can be simulated before any physical
implementations. Dynamic simulation and system-level
optimization allows processes to be optimized and high
risk margins and overdimensioning to be avoided, while
still finding suitable equipment that fulfill the critical pro-
cess requirements.

In our case, system-level dynamic simulation was run
using Apros 6 (2021)® process simulator and Virtual
Drive (2021) simulator together in co-simulation. The his-
tory of Apros goes back to the commissioning of the Lovi-
isa nuclear power plant in Finland in the 1970s. A suitable
starting point for a scientific description of Apros is Lap-
palainen (2019) and the references therein.

Virtual Drive is ABB’s commercial software product,
which can be used to model the electrical behavior of ac-
tual motor and frequency converter products in a simu-
lation environment. Functional Mock-up Interface (FMI)
was used to integrate these two simulators together and
co-simulation provided reliably data about how different
products would run the process. Based on the simulation
results, the most optimal equipment could be selected.

This new way of working was first tested in a demo
simulation in the spring of 2020. In collaboration with a
pump OEM, an optimal pump-motor-frequency converter
combination was dimensioned based on digital twin dy-
namic simulation. In the demo process model, water was
pumped to a water tank which was located 20 meters
above, see Figure 4. The water surface level inside the
tank was attempted to be maintained the same at all times,
and water outflow from the tank was constantly changed.
Dynamic simulation of the system revealed that too small
pump could not deliver enough water to the tank, but too
big pump consumed too much energy. It was also noticed
that the check valve fluttered during the simulation when
using an optimal pump. After adding a feed forward struc-
ture to the process to measure the outflow rate and select-
ing smaller motor and frequency converter with an optimal
pump, it was possible to maintain the water level in the set-
point level, and the energy consumption of the system was
significantly decreased, compared to the oversized config-
uration. This demo confirmed the huge potential in the
new way of working.

2 Methods
Implementing interoperability between two systems can
be done by directly implementing the custom interface of

one of the systems in the other. This means new code must
be written whenever a new system needs to be added. An
alternative approach is mentioned by Nouidui, Wetter, and
Zuo (2014), which is to use existing standards such as the
Functional Mock-up Interface. Implementing the interop-
eratiblity with a standardized interface like FMI gives ad-
ditional compatibility with many other tools in the FMI
ecosystem. In this study, a prototype FMI importer plugin
was developed for Apros, allowing it to be the coordina-
tor and import FMU models. A prototype FMI Wrapper
implementation was developed for Virtual Drive, allow-
ing Virtual Drive to be imported as an FMU model that
internally uses a proxy connection to control an existing
Virtual Drive instance.

2.1 Co-simulation approaches

Meer et al. (2020) describe co-simulation as typically
meaning a scenario where two or more models simulate
simultaneously and periodically require inputs from each-
other. Time-dependent simulations also require the mod-
els to have the same concept of time, i.e. they should
advance an equal amount of time between each data ex-
change point. The models in co-simulation can be created
with different simulators, e.g. because the simulators spe-
cialize in different fields or simply because of familiarity
to the modellers. Co-simulation can be implemented with
local connection, see Nouidui, Wetter, and Zuo (2014) or
distributed connections, see Sadjina et al. (2018). It can be
implemented with custom interfaces or standardized inter-
faces, such as OPC Unified Architecture, e.g. Hensel et al.
(2016) or the FMI standard (2021).

Co-simulation between Apros 6 and Virtual Drive could
feasibly have been implemented in three different ways
in this study. Firstly with a custom approach specific for
Virtual Drive and Apros 6, secondly using OPC Unified
Architecture and thirdly using FMI.

The first approach with a custom solution was ruled
out immediately, as the efforts would not allow interop-
erability with any other systems. The second approach
was more feasible, since Apros 6 already supports OPC
UA, see Miettinen (2012). Further, Virtual Drive imple-
ments OPC Data Access for reading and writing some
variables. Crucially though, not all variables are avail-
able in the OPC DA interface and the simulation control
is implemented only with a custom interface. Thus, im-
plementing co-simulation would require changes directly
to Virtual Drive’s implementation, as well as an OPC UA-
to-DA conversion, such as OPC UA Proxy (2021).

The third approach, FMI, would enhance Apros 6 with
the capability to import FMU models. For Virtual Drive,
an FMI implementation would allow similar interoperabil-
ity with tools in the FMI ecosystem. Further, a client-side
library implementing the entirety of the Virtual Drive’s
custom simulation control interface existed and using that
allowed rapid implementation of the FMI interface in the
form of a prototype FMI Wrapper.
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2.2 Functional Mock-up Interface standard
FMI is a standard that defines a set of functions, in native
C, that a coordinator and a model must implement. It is
supported by many tools, see fmi-standard tools (2021),
and allows linking different simulation software and ex-
change of data. One software component must take the
role of a coordinator that imports other software com-
ponents in the form of Functional Mock-up Units (FMU
models). An FMU model is essentially an archive (i.e.
a .zip file), containing a modelDescription.xml file in the
root, and either binary or source files. On Windows, the
binaries are Dynamic Link Libraries (.dll), while on Linux
they are Shared Objects (.so). The modelDescription.xml
contains a list of variables, metadata about the model, FMI
versions supported by the model and more. (Blochwitz et
al. 2012), (Chen, Huhn, and Fritzson 2011)

Hauf et al. (2017) describe the history of the FMI stan-
dard, as well as the differences between model exchange
and co-simulation sub-standards within FMI. For the pur-
pose of this study, co-simulation was the only approach
that made sense, since Virtual Drive is a complete pack-
age that contains its own mathematical calculations, es-
sentially a black box from the point-of-view of other sys-
tems.

Functional Mock-up Interface can suffer from some
weaknesses, e.g. its floating-point representation of time
(Fabio et al. 2017). However, in our study this was never
a problem, as the step-sizes were larger than 0.1 seconds.
For such large step sizes, floating-point representation of
time was accurate.

2.3 Apros 6 FMI importer
Apros 6 (2021) contains two main parts, a solver written
in Fortran and a desktop application written in Java. No
version of Apros 6 that has been released to date (Apros
versions 6.10.x and older) comes with built-in support for
importing and simulating FMU models. However, Apros
6 can be extended using Eclipse (2021) based plugins. In
this study, a plugin was created that allows Apros 6.9 and
newer versions to import and simulate FMU models that
support FMI 1.0 and FMI 2.0 co-simulation.

Representing an FMU model in a simulation tool like
Apros was straight forward with user components (UC).
User components in Apros 6 are re-usable blocks that sup-
port scripting using the SCL (2021) language. Input and
output signals on a UC allows data-flow between the FMU
model and other components in the Apros model, while
FMU parameters can be represented using UC properties.
The FMI importer plugin uses Simantics FMIL (2021) as a
Java implementation of the FMILibrary and the user com-
ponent’s SCL scripts import these Java functions. Due to
the technical implementation of the Simantics FMIL, only
x64-bit FMU models are supported in Apros. The compo-
nent call flow and data flow of the plugin’s auto-generated
user components can be seen in Figure 2. Figure 3 shows
an auto-generated Apros 6 user component from an import

FMU model, as it appears in the Apros 6 model browser
and diagram.

Figure 2. Component call- and dataflow for the Apros 6 FMI
importer plugin. Apros 6 triggers user component’s SCL scripts
each step. These scripts internally use the Simantics FMIL im-
plementation, included in the plugin. Apros signals are written
to FMU models as inputs and FMU model outputs are written to
Apros signals

2.4 Virtual Drive’s FMI Wrapper
ABB’s Virtual Drive is a Windows x86 executable that
can be configured using Drive Composer Pro (2021) desk-
top application. Drive Composer Pro requires the add-on
"ABB Virtual Drive" to allow creation, configuration and
simulation of Virtual Drives. DriveSize (2021) is a prod-
uct catalogue look-up tool that shows the size and speci-
fications of ABB’s drive products. These physical prod-
ucts can then be manually created as virtual simulation
models using Drive Composer Pro and Virtual Drive. In
this study, Virtual Drives were created with the specifica-
tions of a pump OEM, using DriveSize tool to find suitable
equipment sizes to represent underdimensioned, overdi-
mensioned and optimal equipment.

Virtual Drive uses the same software as physical drive
equipment. By using Virtual Drive in simulation, rather
than a simple modelica model of a drive and motor, the
models can achieve results that reflect the real-world be-
haviour of drives more accurately.

FMI was possible to implement with two approaches,
either directly or as a proxy. A direct approach would’ve
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Figure 3. An auto-generated user component when importing
an FMU model file using the Apros 6 FMI importer

meant packaging Virtual Drive itself as an FMU model,
while a proxy approach would use an FMU model that
internally uses a remote interface for communication with
the Virtual Drive. The proxy approach was further divided
into two sub-approaches: Tool-coupling or standalone. In
a tool-coupling approach, Virtual Drives would be config-
ured and started outside of the FMU models context and
the FMU model would only connect to existing drives. A
standalone approach would’ve meant packaging the vir-
tual drive executable inside the FMU model and having it
automatically started by the main FMU model.

The approach that was chosen was a tool-coupling
proxy approach. Virtual Drive could only be compiled to
x86 architecture, due to limitations in its dependencies.
Thus, the direct approach would also only support x86 ar-
chitecture and thus be incompatible with the Apros FMI
importer plugin. A proxy approach would allow the cre-
ation of an FMU model that supports x64 and x86 archi-
tectures. Additionally, a proxy approach made sense be-
cause Virtual Drive already implemented a custom remote
interface for simulation control, supported by e.g. Drive
Composer Pro. A .NET client-side library implementing
all of these remote function calls had been developed by
ABB prior to this study, written in C#. A tool-coupling ap-
proach was chosen, as this would allow Drive Composer
Pro to still be used in the configuration and monitoring of
Virtual Drives. Version management would also be sepa-
rated from the FMI Wrapper, allowing it to stay up-to-date
with future releases of Virtual Drive and Drive Composer

Pro, as long as the custom remote interface for controlling
Virtual Drive does not changed.

2.5 Apros model
The process under study was modelled using the Apros
simulator as it is intended for system-wide fluid process
modelling. The modelled process is show schematically
in Figure 4.

Figure 4. Schematic of the process under study, showing main
process components and the liquid level control loop.

In the process we pump water to a tank, whose outlet
flow varies. The goal of the level control loop (LIC) is
to keep the liquid level within an allowable range of its
setpoint. In the basic setting the level controller’s output
is the pump rotation speed setpoint. This is given to the
drive+motor (INV) model who in turn returns the pump
shaft torque. The process simulator then uses this value to
determine the pump rotation speed and from that its head.
This head value then goes to the pressure-flow solver of
the simulator. In this case the fluid pressure-flow be-
haviour was modelled as 1D homogenous two-phase flow
using dynamic conservation equations for mass, energy
and momentum. The modelling was done with a graphical
user interface, with no need to explicitly write the govern-
ing equations. In addition to the fluid flow components,
i.e. pipes, valves, pumps and tanks, the model also in-
cluded automation component. Namely, in the model we
implemented a liquid level control loop. In later stages of
the investigation we extended the control loop to include
a feedforward term from the tank outflow measurement.
To test the different drivetrain dimensionings and control
structures, a simulation test sequence was used, see Fig-
ure 5.

3 Results
3.1 FMI Wrapper related results
The prototype FMI Wrapper created during this study im-
plements the FMI 2.0 co-simulation interface. The ex-
isting client-side library, with remote function calls for
Virtual Drive, had been implemented in C#, thus it was
deemed the simplest solution to also write the FMI Wrap-
per in C# and use the existing library directly. A .NET
C# project that compiles into both x86 and x64 Dynamic
Link Libraries (.dll) was created, utilizing FMI c-headers
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Figure 5. Simulation test sequence: Part 1: outflow variables 40
kg/s→ 80 kg/s→ 35 kg/s→ 40 kg/s (light blue curve, primary
y-axis), Part 2: tank level setpoint ramped from 2m to 5m (dark
blue curve, secondary y-axis).

and the existing client-side library. Functions needed to
be explicitly configured using DllExport (2021) for .NET
like Listing 1, in order to make them compatible with na-
tive C, i.e. the FMI specifications.

Listing 1. A generic .NET DllExport usage example. All .NET
projects that need to be compiled as .dll and need compatibility
with native C can use this approach.

[DllExport("fmi2DoStep",
CallingConvention =

CallingConvention.Cdecl)]
public static fmi2Status fmi2DoStep(

IntPtr c,
double currentCommunicationPoint,
double communicationStepSize,
[MarshalAs(UnmanagedType.Bool) bool

noSetFMUStatePriorToCurrentPoint])
{

ModelInstance m = ((GCHandle.c).Target
as ModelInstance);

}

Virtual Drives are given a unique local identifier when
created using Drive Composer Pro. This identifier rep-
resents the local channel used to communicate with that
drive instance. When importing the FMU model of the
FMI Wrapper, this identifier must be set using the FMI
integer-type parameter VirtualDriveLocalNodeID and it
must match the identifier of an existing Virtual Drive in-
stance that is running on the same machine.

The FMI Wrapper was tested in various simulators to
confirm its implementation of the FMI 2.0 co-simulation
interface was correct. The Apros 6 FMI importer plu-
gin created during this study, FMU compliance checker,
FMI Toolbox import (2021) and Simulink FMI import
(2021) were successfully able to import and simulate Vir-
tual Drive through the FMI Wrapper.

With the FMI Wrapper, Virtual Drive gained interoper-
ability with multiple simulation tools, including Apros 6.
It comes in a format that is familiar to those who already
use Virtual Drives, since Drive Composer Pro is still used
for configuring Virtual Drives.

3.2 Apros FMI importer related results
The Apros FMI importer went through two phases of

development: In the first phase, a user component was
manually created to represent the Virtual Drive’s FMI
Wrapper and its parameters, inputs and outputs. This was
created only for the FMI Wrapper and would not have
worked for any other FMU model. In the second phase,
the importer was generalized to allow importing of any
x64-bit FMU models implementing either the FMI 1.0 or
2.0 co-simulation interface.

A copy of the imported FMU file is stored in the auto-
generated user component, which will be copied to a well-
known location within the plugin’s filesystem before an
FMU instance is started. Exporting an Apros model that
contains an auto-generated FMU user component is possi-
ble and a copy of the FMU model will be stored in the ex-
ported Apros model. Importing such a model to an Apros
version without the FMI importer plugin will succeed, but
simulation will fail, as the user components’ SCL scripts
no longer find the required Java implementation.

With the new plugin, modellers can easily import FMU
models to Apros and use them as familiar user compo-
nents, saving modellers’ time and bringing new interoper-
ability options to Apros.
3.3 Process engineering related results
As was describe earlier, the study consisted of simulating
three pumps, each with two drivetrains. In Figure 6 we
present the liquid level behaviour of three pump-motor-
drive combinations.

In the figure we show three drivetrains: the green line is
the so called optimal dimensioning, the yellow line is an
intentionally undersized dimensioning and the brown line
is an oversized case. In the chart we can also see the liquid
level setpoint (blue dotted line) as well as the acceptable
range for the liquid level around it (dotted yellow line and
dotted grey line). The thick lines depicts the liquid level
behaviour during the simulation.

The optimally dimensioned drivetrain keeps the liquid
level in its range, except for a short while during the set-
point change. The underdimensioned drivetrain fails im-
mediately and the liquid level falls to nearly zero. Finally,
the overdimensioned drivetrain keeps the level closer to
the setpoint than the others. This is achieved with a larger
energy consumption. More specifically, the specific en-
ergy consumptions were, respectively: 0.101 kWh/t, 0.278
kWh/t and 0.13 kWh/t. These numbers reflect the utter
failure of the underdimensioned drivetrain: while it is un-
able to achive its target, it also uses a lot of energy in doing
so.

In addition, we experimented with two alternative con-
trol structures. The alternative was to add a feedforward
term from the tank outlet flow measurement. This was in-
vestigated only with the optimally dimensioned case, see
Figure 7.

We see that, as expected, the feedforward control nearly
perfectly compensates the outflow changes. In combina-

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

685



Figure 6. Liquid level behaviour with "optimal" (green line),
"undersized" (yellow line) and "oversized" (brown line) drive-
trains.

Figure 7. Liquid level behaviour with "optimal" drivetrain, us-
ing the two control structures. Green line = before changes, Yel-
low line = after changes.

tion with a smaller motor and frequency converter, it is
able to reduce energy consumption from 0.101 kWh/t to
0.095 kWh/t, a 6% reduction. This is a significant cost and
energy consumption reduction when applied to all drive-
trains in a large process.

4 Analysis
4.1 FMI simulation speed
Speed was not critical during the creation of the Apros
FMI importer nor for the prototype FMI Wrapper for Vir-
tual Drive. However, Apros FMI importer plugin’s speed
has been compared to Simulink 2020b (2021) and FMU
compliance checker (2021). The simulation speeds were
tested with an example ControlledTemperature.fmu (2021)
model, as well as the created FMI Wrapper with and with-
out a connection to Virtual Drive. Without a connection,
each FMI 2.0 function in the wrapper will simply return
immediately, thus allowing us to analyse the speed loss
caused purely by the Apros FMI importer. We simulated
the FMU models in Apros multiple times in one-minute
tests, with a step size of 0.1 and calculated the average
real-time factor (RTF) for the models, with various num-
bers of simultaneous FMU models present in the model.
In Simulink and FMU Compliance Checker, we specified
100 000.0 seconds as the target simulation time for the
fastest cases, and 100.0 seconds for the slowest cases, with
fixed step-size set to 0.1 seconds, and measured how long
it took to simulate. The average of five executions per case
was used.

The results for different simulator programs and differ-
ent number of FMU instances can be seen in Table 1. The
time spent loading and initializing the FMU models was
not taken into account when calculating the total time, but
was observed to be less than 1 second even when using
8 ControlTemperature.fmu models. This should affect the
RTF factor seen in the tables positively by at most 1.7%,
since 1/60 ≈ 1.7, and even then only for cases with 8 si-
multaneous models.

Clearly, the Apros FMI importer plugin is much slower
that the other simulators, when using the ControlledTem-
perature.fmu. However, it should still be much faster with
the unconnected FMI Wrapper than ControlledTempera-
ture.fmu. Instead, it is much slower. The root cause for the
slow speeds was not identified in this study and requires
further investigation. An initial analysis of the speed is-
sue would suggest that the problem is not in the Apros
user component’s themselves, i.e. the speed is not lost due
to Apros simulation pre-step hooks triggering SCL scripts
in the user components and updating signal values, but
rather in the SCL functions and the underlying Java and
C implementation of Simantics FMIL. Similar simulation
speed issue could be seen by executing SCL scripts inde-
pendently, without Apros.

As expected, connecting the Virtual Drive lead to
slower simulation speeds for all simulators. In fact, the
overhead introduced by the custom interface between FMI
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Wrapper and Virtual Drive was so large that all simulators
had at best RTF of around 3.0 for a single Virtual Drive
instance, with step-size 0.1.

Table 1. Average simulation speed, as a real-time-factor (RTF),
with varying number of simultaneous FMU model instances,
step-size 0.1 seconds. RTF of 1.0 correspond to as fast as real-
time, 2.0 means twice as fast as real-time, etc. Simulink 2020b
FMU import, Apros FMI importer plugin and FMU Compliance
Checker were tested. CT = ControlledTemperature.fmu, FW =
FMI Wrapper without a connected Virtual Drive. FW+VD =
FMI Wrapper with a connected Virtual Drive.

Simulator Instances CT FW FW+VD
Simulink 1 333 35000 3.0

-||- 2 298 25000 2.9
-||- 4 230 16000 2.5
-||- 8 136 12000 1.4

Apros 1 132 17.4 3.0
-||- 2 92.3 15.1 1.7
-||- 4 53.9 11.3 0.88
-||- 8 27.8 7.5 0.44

Checker 1 384 46000 3.2

The demonstration Apros model in this study had a dif-
ferent step-size than we used in the simulation speed tests.
Additionally, variable step-sizes are taken, depending on
what the model is currently calculating. This variable
step-size is matched by the FMU instances in the model,
which in turn directly affects the simulation speed. E.g.
small step-sizes were taken by the Apros model when the
check valve fluttered, while larger step-sizes were taken
in steadier states. In the simulation speed tests, we forced
the step-size to always be 0.1 seconds and the model con-
tained only the FMU models.

4.2 Apros FMI importer limitations
Due to the usage of Simantics FMIL as the base im-

plementation for the FMI, x86 FMU models could not
be imported in x64 desktop environments, e.g. in Apros
6 desktop. Further limitations inherited from this base
implementation were a lack of model exchange support.
However, both FMI 1.0 and 2.0 co-simulation standards
were implemented.

Unimplemented functions for FMI 2.0 were all model
exchange functions, as well as:

• fmi2SetRealInputDerivatives

• fmi2GetRealOutputDerivatives

• fmi2CancelStep

• fmi2GetDirectionalDerivative

• fmi2DeSerializeFMUstate

• fmi2SerializeFMUstate

• fmi2SerializedFMUstateSize

• fmi2FreeFMUstate

• fmi2SetFMUstate

• fmi2GetFMUstate

• fmi2Reset

4.3 FMI Wrapper limitations
The prototype FMI Wrapper for Virtual Drive was im-

plemented for both x86 and x64 architectures. The wrap-
per’s FMU model is only available for Windows operating
systems, just like Virtual Drive. The Virtual Drive and the
FMI Wrapper must also physically be located on the same
machine, as the remote interface requires local visibility.
It is a remote interface only in the sense that the Virtual
Drive executable can be started by another program than
the program that imports the FMI Wrapper’s FMU model.

Most configuration of Virtual Drives must still be per-
formed using Drive Composer Pro’s user interface, e.g.
selection of motor and parametrization of the drive’s size.
Most output variables can also only be monitored using
Drive Composer Pro. The prototype FMI Wrapper only
exposes a small sub-selection of variables, such as torque
as output, and motor speed as input. Thus, the FMI wrap-
per in its current state is far from standalone, since users
are unable to define new Virtual Drive instances exclu-
sively using the FMU model and the variables exposed by
it.

Maximum simulation speed continues to be a chal-
lenge, due to time spent by functions in Virtual Drive and
time spent by the custom remote interface between FMI
Wrapper and Virtual Drive. FMI Wrapper was only im-
plemented for the FMI 2.0 co-simulation interface, but not
all functions were implemented. Virtual Drive did not sup-
port saving or loading the internal state, thus state-related
functions could not be implemented.

Unimplemented functions for FMI 2.0 were all model
exchange functions, as well as:

• fmi2SetRealInputDerivatives

• fmi2GetRealOutputDerivatives

• fmi2CancelStep

• fmi2GetDirectionalDerivative

• fmi2DeSerializeFMUstate

• fmi2SerializeFMUstate

• fmi2SerializedFMUstateSize

• fmi2FreeFMUstate

• fmi2SetFMUstate

• fmi2GetFMUstate

5 Discussion
Implementing the prototype FMI Wrapper was remark-
ably simple for Virtual Drive, since there already existed
a complete client-side implementation of Virtual Drive’s
custom simulation interface in a C# library. An initial
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challenge had to be overcome, namely the C#-to-native-
C function exports, but mechanisms for dealing with that
were found.

The FMI Wrapper inherited the limitations of the exist-
ing Virtual Drive remote control interface, e.g. a lack of
storing the internal state of Virtual Drive in a serializable
blob and only having visibility to a small sub-selection of
variables. The prototype FMI Wrapper developed requires
Drive Composer Pro to be used for the creation and con-
figuration of Virtual Drives.

5.1 Future Work
Apros FMI importer and the base Simantics FMIL will
need a thorough investigation to reduce the overhead from
using the Java FMI implementation. Additionally, parallel
execution of FMU models within an Apros model, rather
than serial, will reduce simulation speed losses caused by
simulating multiple simultaneous FMU models.

The interoperability of Apros 6 and Virtual Drive was
only tested with a simple demonstration model during this
study. Future work should include validation of this ap-
proach using a real customer case. A collaborative dig-
ital twin, using Apros 6 dynamic process simulation in
co-simulation with Virtual Drive, should be created to
find the optimal equipment selection of a real-life pro-
cess. Other ABB software and pump OEMs equipment
can be used for a more detailed collaborative digital twin,
assuming their simulation software is compatible with the
Functional Mock-up Interface. Implementing FMI com-
patibility from scratch to these equipment simulators will
be needed as part of future real customer cases, if they do
not already implement it.

5.2 Conclusion
Traditional process design uses a waterfall model for
equipment selection, where multiple sub-contractors add
too high risk margins to the sizing of their equipment in
order to ensure components fulfill critical requirements.
In this paper we presented the first steps towards a collab-
orative digital twin approach as an alternative way of de-
signing a process. This approach aims to remove overdi-
mensioning, leading to up-front cost savings and total life-
cycle cost savings for the whole process.

The approach was demonstrated with a Virtual Drive
instance connected to a simple Apros model that had a
few equipment selection options. However, the approach
should be possible to utilize when optimizing the equip-
ment selection in an entire industrial process plant. The
approach was made possible with interoperability between
simulators and we have presented Functional Mock-up In-
terface as a candidate for achieving this interoperability.
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