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Abstract
Cyber-Physical Systems are ever-increasing in complex-
ity and new methods and tools for developing them are
needed. To support these highly dynamic systems, in-
creasing the flexibility of the modeling languages is de-
sirable. This paper proposes and examines a Modelica
language extension to support dynamic overconstrained
graphs with reconfiguration at runtime. Two applications
of this new feature are also discussed: synchronous AC
power systems and incompressible fluid networks. Re-
ported findings suggest that supporting dynamic overcon-
strained graphs might yield performance benefits and pro-
vide the possibility of simulating systems that can not cur-
rently be simulated in existing Modelica tools.
Keywords: dynamic overconstrained connection graph,
runtime reconfiguration

1 Introduction & Motivation
Overconstrained connector semantics was introduced in
2004 in version 2.1 of the Modelica Language Specifica-
tion (The Modelica Association, 2004). It allows to add
non-flow variables on connectors that are dependent on
each other, which can lead to overconstrained equation
systems when loops are formed in the connection graph. It
also makes topological information about the connection
graph available to the modeller, via the Connections.

*() operators.
Overconstrained connectors have found at least two no-

table applications so far. The first is in the MultiBody
package of the Modelica Standard Library (Martin Otter,
2003), were such a feature allowed to design of the li-
brary in a truly object-oriented way compared to previous
versions. The second one is in the PowerSystems library
(Rüdiger Franke, 2014), where overconstrained connector
variables are used to carry around a reference phase signal
for efficient numerical simulation.

As of the current Modelica Language Specification
(The Modelica Association, 2021), it is only possible to
define static connection graphs, which can be processed at
compile time. This makes the implementation of overcon-
strained connectors in a Modelica compiler rather straight-
forward. However, it introduces a significant limitation
when modelling AC power systems using phasors. In

these models, the phase (or frequency) reference is gen-
erated by one component of the synchronous system (an
infinite bus or a large synchronous generator for islanded
systems) and then distributed throughout the entire con-
nected synchronous system by the overconstrained con-
nector variables. In this context, it is possible to have mul-
tiple independent synchronous systems in the same Mod-
elica model that correspond to structurally disconnected
connections sub-graphs, e.g., two national grids such as
Germany and Denmark connected by an undersea DC
link; each statically connected synchronous network gets
its reference phase or frequency from the root node of its
connection graph. However, in this case, their topology is
fixed at compile time and cannot change at runtime.

When modeling AC transmission systems, particularly
large ones, it is possible that, in case of severe perturba-
tions, some key circuit breakers are switched open, effec-
tively splitting a single synchronous system into multiple
independent synchronous islands, which can permanently
rotate at different frequency. For example, when mod-
elling the European ENTSO-E synchronous system, the
Spanish grid can become isolated by opening a few line
breakers on the French border. Note that modelling this
scenario requires no structural changes in the grid equa-
tions; it just needs some numerical admittance values to
be set to zero.

When this happens, the two (or more) ensuing is-
lands can settle down into new steady states with differ-
ent steady-state frequencies. Hence, if a single, whole-
system-wide reference is still used, the phase angle of
currents and voltages of the islands that do not contain
the root node of the static connection graph will end up
rotating permanently, with a frequency that is the differ-
ence between the local island frequency and the root node
frequency. As a consequence, when the steady-state is
reached, the phasors of the new island will continue to
change sinusoidally. This is very inconvenient from a per-
formance point of view because it prevents variable step-
size solvers from increasing the step size, once the system
settles into the new steady state. It also triggers very fre-
quent recomputations of the system Jacobian if implicit
stiff solvers are used.

This problem could be avoided by allowing to dynami-
cally add or remove the unbreakable branches correspond-
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ing to Connections.branch() statements in the con-
nection graph (of Section 9.4.1 in the Modelica Speci-
fication1), based on the status of the corresponding cir-
cuit breaker components, and to add or remove the equa-
tions that show up in the same if-equation branches where
the Connections.branch() statements are declared. It
would then be possible to break up the original syn-
chronous connections established by transmission lines
when their admittance is brought to zero, thus modelling
the effects of circuit breakers on the synchronous sub-
system topology.

As a consequence, two or more disjoint connection
graphs would be formed at the time of the breaker open-
ings, each corresponding to a new synchronous island.
Therefore, the new graph topology should be analyzed at
this point, picking a new root node for each newly formed
island in the grid. Then, instead of having a single phase
reference for the entire system (which is no longer ad-
equate), one would now have two or more independent
phase references, one for each island, which would en-
sure that the phasor variables of each island reach a steady
state, thus avoiding the persistent sinusoidal oscillations
found in the case of a statically determined connection
topology.

In this paper, we investigate the effects of relaxing
the constraints imposed on If-Equations (in Section 8.3.4
of the Modelica Specification2) by allowing a special If-
equation construct where the Connectors.branch oper-
ator is allowed within these equations, thus making it pos-
sible to change the connection graph dynamically at run-
time.

The applicability and usefulness of this concept are
demonstrated in Section 2, using simple conceptual mod-
els in two different application domains: AC power sys-
tems and closed incompressible fluid networks. It is
shown that in these two cases, the structural variability of
the system of equations brought by the proposed exten-
sion is indeed very limited and can be handled by small
extensions of existing Modelica compilers. A prototype
implementation of this feature in the OpenModelica.jl Ju-
lia framework is presented in Section 3. Simulation re-
sults obtained with the prototype implementations are dis-
cussed in Section 4, while Section 5 concludes the paper
with final remarks and suggestions for future work.

2 Dynamic Overconstrained Connec-
tors in Modelica

A current limitation of Overconstrained Connectors in
Modelica is that they cannot be used in If-Equations3.

1https://specification.modelica.org/
maint/3.5/connectors-and-connections.html#
overconstrained-equation-operators-for-connection-graphs

2https://specification.modelica.org/maint/3.
5/equations.html#if-equations

3https://specification.modelica.org/
maint/3.5/connectors-and-connections.html#
restrictions-of-connections-and-connectors

In this paper we relax this condition by allowing the
Connections.branch() operator to occur within If-
Equations, hence allowing conditional Connection oper-
ators.

To showcase this feature we developed an experimen-
tal package called DynamicOverconstrainedConnectors4,
containing three sub-packages. The first contains concep-
tual models of AC grids, using Complex types to repre-
sent phasors. The second contains the very same models,
albeit with separate Real variables for the real and imagi-
nary part - this is meant for experimental compiler frame-
works that cannot handle operator records. Finally, the
third contains conceptual models of incompressible fluid
networks.

2.1 Use case: AC power systems
The main simplifying assumptions for this use case are:

• Purely inductive transmission lines.

• Idealized synchronous generators that impose a volt-
age at their port with fixed magnitude and a phase
equal to the rotor angle.

• Droop-based primary frequency control of the gen-
erators.

• The reference frame for the phasors is rigidly con-
nected to the rotor of the generator that is selected as
the root node in the connection graph.

Listing 1 contains the definition of the overconstrained
connectors; all quantity are in per-unit, to avoid any scal-
ing issues.

Listing 2 shows two alternative implementations for the
transmission line model with an embedded line breaker.
The first is made possible by the current static connection
graphs, whereby the unbreakable branches are always ac-
tive, and the frequency reference is always the same at
the two ports. The second uses the proposed extension,
whereby the unbreakable branch is only active when the
breakers are closed; so is the equality constraint between
the phase reference on the two ports.

Listing 3 shows the conceptual synchronous genera-
tor model, which sets the overconstrained reference fre-
quency variable to its own frequency if selected as the root
node of the connection graph.

Listing 1. AC overconstrained connector.

type ReferenceAngularSpeed
extends SI.PerUnit;
function equalityConstraint

input ReferenceAngularSpeed omega1;
input ReferenceAngularSpeed omega2;
output SI.PerUnit residue[0];

end equalityConstraint;
end ReferenceAngularSpeed;

4https://github.com/looms-polimi/
DynamicOverconstrainedConnectors

Towards Modeling and Simulation of Dynamic Overconstrained Connectors in Modelica

36 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19335



connector ACPort
SI.ComplexPerUnit v(re(start = 1));
flow SI.ComplexPerUnit i;
ReferenceAngularSpeed omegaRef;

end ACPort;

Listing 2. AC Transmission line models.

partial model TransmissionLineBase
parameter SI.PerUnit B = -5.0;
discrete SI.PerUnit B_act;
Boolean closed;
Boolean open;
Boolean close;
ACPort port_a;
ACPort port_b;

equation
port_a.i = Complex(0,B_act)*

(port_a.v - port_b.v);
when open then
closed = false;
B_act = 0;

elsewhen close then
closed = true;
B_act = B;

end when;
...

end TransmissionLineBase;

model TransmissionLine
extends TransmissionLineBase;

equation
port_a.omegaRef = port_b.omegaRef;
Connections.branch(port_a.omegaRef,

port_b.omegaRef);
end TransmissionLine;

model TransmissionLineVariableBranch
extends TransmissionLineBase;

equation
if closed then

port_a.omegaRef = port_b.omegaRef;
Connections.branch(port_a.omegaRef,

port_b.omegaRef);
end if;

end TransmissionLineVariableBranch;

Listing 3. AC generator model.

model Generator
parameter SI.PerUnit V = 1;
parameter SI.Time Ta = 10;
parameter SI.PerUnit droop = 0.05;
parameter Integer p = 0;
ACPort port;
SI.PerUnit Ps = 1, Pc, Pe;
SI.Angle theta(start=0, fixed = true);
SI.PerUnit omega(start=1, fixed = true);

equation
der(theta) =
(omega - port.omegaRef)*omega_n;

Ta*omega*der(omega) = Ps + Pc - Pe;
port.v = CM.fromPolar(V, theta);
Pe = -CM.real(port.v*CM.conj(port.i));
Pc = -(omega-1)/droop;
Connections.potentialRoot(

Figure 1. System3 model diagram.

port.omegaRef, p);
if Connections.isRoot(port.omegaRef) then

port.omegaRef = omega;
end if;

end Generator;

These components are used to build several test cases in
the demonstration package; this paper focuses on the most
relevant ones.

The base system model System3 is built as shown in
Fig. 1, using standard TransmissionLine components
with static overconstrained connector semantics. Its con-
nection graph is shown in Fig. 2, and it contains three un-
breakable branches, seven connections, one broken con-
nection, and one root node.

The system is initially fully connected, and undergoes
an initial transient to get to its steady-state. At t = 10,
the break of line T2 is tripped open, so two synchronous
island are formed, one containing G1, L1, T1a, T1b, and
the left connector of T2, the other containing G2, L2, and
the right connector of T2. The two islands settle to differ-
ent steady-state frequency, but unfortunately there is only
one reference frequency (set by G1), so the phasors of the
right-hand-side island keep on rotating forever.

The next test model System4 uses dynamic over-
constrained TransmissionLineVariableBranch com-
ponents instead. In this case, the connection diagram is
initially the same as in Fig. 2, but after t = 10 it becomes
as shown in Fig. 3: the deactivation of the unbreakable
branch of T2 splits the graph into two disconnected graphs,
each with its own root node. From the point of view of the
equation count, the additional equation brought in by the
extra root node is balanced by the de-activated conditional
equality equation of T2. In this way, also the phasors of
the right-hand-side island eventually settle down to a con-
stant value, because they are now referred to their proper
reference, namely G2.port.omegaRef.

The test model System6 is the same as System4, except
that T1a is tripped open at t = 10, instead of T2. In this
case the system remains fully connected, and a single root
node can be used throughout the entire transient.

The model System7, shown in Fig. 4, demonstrates the
use of root node priority. Two synchronous islands are
formed when line T2 is tripped open. The right-hand-side
one contains two generators, G2 and G3, which both con-
tain potential root nodes. In this case, G3 is selected as root
node, since it has a higher priority than G2. This mecha-
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Figure 2. Static connection graph for System3.
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Figure 3. The connection graph for System4 after t = 10.
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Figure 4. System7 model diagram.

Figure 5. System9 model diagram.

nism can be used to ensure that the larger generators are
selected as reference nodes, by setting priorities correlated
to the generator size.

Finally, another interesting modelling feature can be
implemented with dynamic overconstrained connectors in
synchronous AC system models. Consider the system
shown in Fig. 5, with the three loads consuming 0.8, 0.1
and 0.1 p.u. power, respectively. Suppose that the total
consumption threatens to cause a network breakdown, be-
cause the generator G1 does not have enough power to sup-
ply it reliably. In such a case, the network operator can opt
for some load shedding, i.e., it can trip open the line T1,
preserving the service for the largest load L1, instead of
risking a complete system blackout.

When this happens, L2 and L3 remain connected to an
island without any power generation capability. Since load
models normally prescribe a certain active and reactive
consumption, the absence of any generation capacity in
the island means that the system equations have no fea-
sible solution, like in the equation x2 + 1 = 0. As a con-
sequence, the simulation aborts as soon as T1 is tripped
open, and it is not possible to continue the simulation of
the left-hand-side island, even though it is perfectly func-
tional and capable to carry on operating.

However, if the TransmissionLineVariableBranch

model is employed for line T1, and the load model of
Listing 4 is used, the simulation can be continued.

Listing 4. Extended load model.

model LoadVariableRoot
extends LoadBase;

equation
if port.omegaRef > 0 then
port.v*CM.conj(port.i) = Complex(P,Q);

elseif Connections.isRoot(port.omegaRef)
then

port.v = Complex(0);
else
port.i = Complex(0);

end if;
Connections.potentialRoot(port.omegaRef,

10000);

if Connections.isRoot(port.omegaRef) then
port.omegaRef = 0;

end if;
end LoadVariableRoot;

As long as the load is connected to a connection graph
that contains at least one generator, this will be selected
as root node, because of the much higher priority, and it
(greater than zero) frequency will show up as the overcon-
strained omegaRef variable; hence, the first branch of the
If-equation will be active, setting the active and reactive
power consumption to the given P, Q values.

However, if there are no generators in the dynamically
formed island after the line tripping, then one load in the
island will be selected as root node, and it will set both
omegaRef and the port voltage to zero, thus conceptually
connecting its port to ground. If the load finds itself in
a generator-less island, which is characterized by a zero
omegaRef value, but is not selected as root node, then its
equations will set the absorbed current to zero. As a result,
all voltages and all currents of the generator-less island
will be computed to zero, describing a switched-off sub-
network, while allowing the simulation of the other island
to continue undisturbed.

2.2 Use case: Closed incompressible fluid net-
works

Another use case for dynamic overconstrained connectors
is incompressible fluid networks. This is demonstrated by
the IncompressibleFluid sub-package. For the sake of
brevity, only some short code fragments are reported in
this paper; the reader is referred to the full Modelica code
on GitHub for more details.

Any closed incompressible fluid systems, that is not
connected to any pressure source of sink (e.g. the atmo-
sphere, or a fixed pressure representing the supply point of
a water supply system), needs to be connected to a com-
ponent known as expansion tank or vessel. In real life the
purpose of this component is to set the pressure level of
the circuit, which would otherwise be floating freely, and
also accommodate for the thermal expansion of the fluid
without blowing the circuit up.

When modelling incompressible fluid systems, the ther-
mal expansion effect is normally not explicitly included,
because it is very well compensated by the presence of
such expansion tanks and has a negligible effect on the
actual flow rates, so the density of the fluid is assumed
to be a constant. A very simple expansion tank model
can then just set the pressure at its port to a fixed value;
the entering flow will eventually turn out to be zero,
due to the overall mass conservation of the closed cir-
cuit. This is demonstrated by the System1 model in the
IncompressibleFluid sub-package.

Consider now the System2 fluid model, shown in Fig.
6. The system is closed and circulates a fluid in the left and
right meshes, as well as through the two valves in case the
pressure distribution is not fully symmetric.

As long as at least one of the two valves is open, the
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Figure 6. System2 fluid system model diagram.

closed system is fully connected, so a single expansion
vessel (e.g. Tank1) is required to make sure that all the
pressures around the circuit are well-defined. However,
when both valves are closed, i.e., their flow coefficients set
to zero, the system is effectively split into two independent
closed system. At that point, a second expansion tank is
needed in the right-hand-side half of the circuit, to make
sure that all the pressures there remain well defined.

Without that provision, the equations corresponding to
that part of the system will have a unique solution concern-
ing the mass flow rates, but infinitely many when looking
at the pressures. Although some tools allow to manage
such a situation by picking one of them and continuing
the simulation, it remains a fact that the model in those
conditions is not well-posed.

Note that, as in the case of AC networks, the splitting
into independent sub-systems only depends on numerical
values of some coefficients (line admittances there, flow
coefficients here), not on structural changes of the system
of equations such as, e.g. disabling some connections or
some models in the system.

Dynamic overconstrained connectors allow solving this
problem. The overdetermined connector can be defined as
shown in Listing 5

Listing 5. A overconstrained fluid connector.

type CircuitIdentifier
extends SI.PerUnit;
function equalityConstraint
input CircuitIdentifier id1;
input CircuitIdentifier id2;
output SI.PerUnit residue[0];

end equalityConstraint;
end CircuitIdentifier;

connector FluidPort
SI.Pressure p;
flow SI.MassFlowRate w;
CircuitIdentifier id;

end FluidPort;

In this case, there is no need to carry around any infor-
mation throughout connected components, as in the previ-
ous case; the only thing that is needed for the modelling
is the information about the dynamic connection graph
topology. However, since the connection graph is always
referred to some overconstrained connector variable, one
possible choice is to define it as an Integer connected cir-

cuit identifier.
The ValveDynamicBranch model is analogous to the

TransmissionLine model; in particular, it has a condi-
tional activated Connections.branch() statement and a
conditionally activated equation stating the equality of the
ID on both connectors; both are only active when the valve
is open, see Listing 6.

Listing 6. Valve model.

model ValveDynamicBranch
extends BaseValve;

equation
if closed then

Connections.branch(inlet.id,outlet.id);
inlet.id = outlet.id;

end if;
end ValveDynamicBranch;

The ExpansionTank model is shown in Listing 7. If
the tank is selected as root node, then it means the tank is
the only component having such a property in the effec-
tively connected circuit; in this case, it sets the port pres-
sure to a fixed parameter value, and the overconstrained
id connector variable to an ID parameter.

If instead, it is not selected as the root node, then it just
acts as a plug, i.e., it sets the port flow rate to zero. This
avoids getting inconsistent systems of equations, which
would arise if two or more expansion tank components
tried to set their port pressure in a connected circuit.

Listing 7. Valve model.

model ExpansionTank
parameter SI.Pressure p0;
parameter Integer id = 0;
parameter Integer priority = 0;

FluidPort inlet;
equation

Connections.potentialRoot(inlet.id,
priority);

if Connections.isRoot(inlet.id) then
inlet.p = p0;
inlet.id = id;

else
inlet.w = 0;

end if;
end ExpansionTank;

When this dynamic overconstrained component is used
for the tanks, the model is always well-posed. Initially,
when the valves are open, only one tank is selected as a
root node and sets the pressure at its port, while the other
tank behaves as a plug. As soon as both valves are closed,
the connection graph is split into two disconnected graphs,
each having its own root node tank. Therefore, each newly
formed sub-circuit ends up with a tank setting its pressure
level.

2.3 Outlook
The two presented modelling scenarios have two impor-
tant factors in common. One is the need to identify effec-
tively connected connection graphs, when some compo-
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nents that normally establish a branch in the graph actu-
ally do not do so in some cases, when parameters such as
admittance or flow coefficients are brought to zero. The
other is the need to set some value in the root node of
the effectively connected sub-graph and then propagate it
through the actually connected sub-network. Many other
models in different domains could have the same require-
ment and, therefore, a similar structure.

As will be discussed in the next section, this modelling
pattern, tackled with dynamic overconstrained connectors,
leads to a very restricted structural variability of the cor-
responding equations, where the overconstrained connec-
tor variables are set by conditional equations that are ac-
tivated when the variable is selected as a root node, and
then propagated throughout the actually connected sub-
network. However, this can be handled in terms of code
generation and runtime code, without requiring general-
purpose handling of structural variability, which is still an
open problem for Modelica tools.

3 Implementation
A typical Modelica Compiler first translates a textual rep-
resentation of a Modelica model into executable simula-
tion code through a series of phases, and the semantics
for overconstrained connectors in the Modelica language
is handled statically during the preprocessing of a model
before the generation of simulation code, see Figure 7.

We choose to implement our extension within Open-
Modelica.jl (Tinnerholm et al., 2022). OpenModelica.jl
is an experimental Modelica implementation implemented
in the Julia language and compiles Modelica code to Mod-
elingToolkit (MTK) (Ma et al., 2021) and is capable of
runtime reconfiguration of models.

To handle the proposed extension for dynamically over-
constrained connectors, we extended the flat Modelica
representation to also contain a self-reference before con-
nections are resolved. Furthermore, we reused the dynam-
ical capabilities of OpenModelica.jl described in (Tinner-
holm et al., 2022).

When the condition for a DOCC-If-Equation such as
the one for the dynamic transmission line in Listing 2 is
fulfilled at the time of the change t∆ the following steps
are taken:

• The simulation halts, and a Connection operator is
either inserted or removed, and the virtual connection
graph is updated.

• A new equation system is derived from the resulting
connections and the changed overconstrained con-
nection graph.

• The system is recompiled with the new equation sys-
tem

• The simulation restarts using the previous values be-
fore the event at t∆.

It should be noted that this could allow for a more gen-
eral treatment of other types of structural variability, e.g.,
conditional connect() statements, since the OpenMod-
elica.jl framework allows for dynamic reconfiguration of
Modelica models.

However, as discussed previously, in some cases, re-
compilation is not necessary. The examples included in
the DynamicOverconstrainedConnectors package all fall
in this category; they are static5, while the virtual over-
constrained connection graph, for System4 as depicted in
Figure 2 and Figure 3, changes its structure during the
simulation.

In the applications showcased by the exemplary library,
the overconstrained variables carry around a scalar value
that is relevant to the behavior of the connected subsys-
tems. For power systems, it is the AC phase or frequency.
For incompressible fluid networks, it is the network ID.
As noted in Section 2.3, this means that the selected root
node sets the value of the overconstrained connector vari-
able, which is then propagated through connection equa-
tions and the conditional equality equations when the cor-
responding Connections.branch() statement is either
activated or deactivated.

For System4 this variable is G1_port_omegaref be-
fore the changes in the virtual connection graph. After this
change, this value is provided by G1_port_omegaref and
G2_port_omegaref as depicted in Figure 3. This means
that some of the general steps of handling this solution de-
scribed earlier can be omitted. Instead of recompiling the
system at time t∆, the set of variables that are part of the
virtual connection graph can instead be reinitialized at that
time t∆ using the root value. Hence, recompilation of the
system is not needed.

In System4 these roots are G1_port_omegaRef and
G2_port_omegaRef after t = 10.0 as depicted in Figure 3.
Instead of recompiling, the second and third steps are as
follows:

• The required modification is derived from the re-
sulting connections and the changed overconstrained
connection graph.

• The causality is changed for the equations involving
the new roots

That is, the difference between the reinitialization ap-
proach and the recompilation approach is that instead of
recompiling the system and regenerating the equations, we
change the reference values of the roots based on the over-
constrained connection graph in the simulation runtime.
In this example this is done by identifying the new roots
and the corresponding root sources. For System4 this is
G2_port_omegaRef with the source being G2_omega. In
the case of System4 only one equation is modified, that of
G2_port_omegaRef.

5The causality changes, but the number of equations and variables
remains the same
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Figure 7. The translation process of a Modelica Compiler. The model is first translated to an internal intermediate representation
(IR) where typing and type checking is performed and where the declared connections are handled and expanded before the
simulation code is generated. The dashed box to the left shows where the new extension is handled in the compilation process.

4 Simulation Results
Handling overconstrained connector variables dynami-
cally at runtime allows for the successful simulation of
models that existing Modelica tools cannot currently han-
dle because of model singularities. It also allows stiff
solvers to increase the step size in some situations, which
leads to improved simulation performance.

In this section, we demonstrate these benefits on a se-
lection of the models presented in Section 2.1.

The systems were simulated using the RODAS5 solver
available from DifferentialEquations.jl (Rackauckas and
Nie, 2017).

4.1 Synchronous Power Grid models
The System3 and System4 models are equivalent with
respect to the generator frequency and power variables
G1.omega, G2.omega, G1.Pe, G1.Pc, G2.Pe, and G2.Pc

. Indeed, the transients of those variables turn out to be
identical in the simulations of the two models.

As explained in Section 2.1, this is not the case for the
voltage and current phasors. Figures 8 and 9 show the real
part of the voltage phasor of G2. During the first 10 sec-
onds (left-hand-side plots), the grid is fully connected in
one synchronous system using the frequency of G1.omega
as reference, so both phasors settle down to a steady state
after about 8 s.

However, when the breaker T2 is tripped open, the
right-hand-side island, to which G2 belongs, settles down
to a slightly different frequency than the left-hand-side
one. As anticipated, the voltage phasor of G2 continues to
oscillate forever in the model with static overconstrained
connectors, while it remains practically constant in the
model with dynamic overconstrained connectors, thanks
to the correct choice of reference frequency after the split-
ting into two islands.

This allows a stiff solver such as RODAS5 to take much
longer steps, completing the simulation with less steps and
less Jacobian calculations, as shown in Table 1.

The situation is similar when comparing the simula-

Figure 8. Plots of the G2.port.v_re variable in System3
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates forever because the system only
has one root node also after the network splitting.

tions of System7, which has a static connection graph, and
System8, which has a dynamic connection graph. When
the breaker of line T2 is opened, two synchronous islands
are formed, one including G1, and one including G2 and
G3.

Figures 10 and 11 show again the real part of the volt-
age phasor of G2 for the two models, before and after the
splitting. In this case, once the island containing G2 and
G3 is formed, these two generators oscillate against each
other for a while, but eventually end up rotating at the
same speed. When using dynamic overconstrained con-
nectors, the frequency of G3 is used as a reference, so the
voltage phasor of G2 eventually becomes constant, while
it does not in the static overconstrained connector case, for
which the frequency of G1 is still used as a reference.

As in the previous case, using dynamic overconstrained
connectors has beneficial effects in terms of less integra-
tion steps and less Jacobian computations, see Table 1.
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Figure 9. Plots of the G2.port.v_re variable in System4
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates remains practically constant after
the splitting thanks to the correct choice of reference after the
splitting.

Figure 10. Plots of the G2.port.v_re variable in System7
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates forever because the system only
has one root node also after the network splitting.

Figure 11. Plots of the G2.port.v_re variable in System8
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates for a while but then settles to a
constant value after the splitting, thanks to the correct choice of
reference after the splitting.

Table 1. Number of accepted steps and the total number of Ja-
cobians created for Systems 3, 4, 7 and 8. Systems 3 and 4 are
identical except for the use of dynamically overconstrained con-
nectors in System 4. Systems 7 and 8 have the same relationship.

System Accepted Steps Jacobians Created
System 3 565 605
System 4 125 132
System 7 374 389
System 8 169 175

4.2 Incompressible Fluid networks
When simulating System3, as described in Section 2.2,
the first valve is closed at t = 2, and then the second is
closed at t = 4. From that point in time, the algebraic
system of equations determining the circuit pressures and
flows is reported as singular when simulating the system
using the OpenModelica tool (Fritzson et al., 2020).

As anticipated, the reason is that the pressures in the
right-hand-side part of the system have infinitely many so-
lutions6. Model System4 instead uses the proposed exten-
sion and, as expected, the system shows no singularity for
t ≥ 4.

5 Conclusion and Future Work
In this paper, we have illustrated and discussed the benefits
if some of the current constraints of the Modelica language
are lifted, allowing for dynamic overconstrained connec-
tion graph, with application in synchronous AC system
models and closed incompressible fluid system models.
With reference to phasor-based models of synchronous
AC systems, one benefit is that solvers can take much
larger steps and subsequently need to create fewer Jaco-
bians if the system is split into multiple, independent syn-
chronous sub-systems by opening breakers on strategic
transmission lines, as was shown in Section 4. Another
benefit is handling the formation of islands without gener-
ation capacity, avoiding the termination of the simulation
because of unsolvable equations. With reference to the
models of closed hydraulic systems with an incompress-
ible fluid, the benefit is that it is possible to handle the
formation of independent closed sub-systems by closing
valves that separate two or more parts of the circuit with-
out leading to singular systems of equations.

Furthermore, the reconfiguration approach described in
Section 3 could be improved. Currently, runtime recon-
figuration in OpenModelica.jl requires the system to keep
the equation structure before and during simulation; hence
we have to omit important optimisation phases such as re-
moving trivial equality constraints. Consequently, there is
currently a trade-off between optimisation and the speed
of system reconfiguration. Still, if we consider the cost of

6It should be noted that existing Modelica tools can handle this sce-
nario by selecting one of the several solutions.
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recompilation, this approach should be more efficient for
small systems even though it currently only works without
some optimisation phases.

In general, it seems that the extension proposed in this
paper can be implemented with a reasonable effort in
mainstream Modelica compilers, as long as the structure
of the system using it is similar to that of the presented
use cases, which will indeed be the case for a significant
number of real-life use cases.

Although the current study is based on a small set of
examples from a conceptual library, the findings suggest
that dynamically overconstrained connectors could be em-
ployed to simulate real-life systems that is not possible
to simulate in existing Modelica tools and provide possi-
ble performance benefits. Therefore, a direction for fu-
ture work would involve implementing support for dy-
namically overconstrained connectors in the OpenModel-
ica Compiler to investigate the general applicability of this
construct on larger systems, for example using the Power-
Grids library (Bartolini et al., 2019).

The final goal is to get this extension into a future ver-
sion of the Modelica Language Specification, so that it
gets eventually supported by a growing number of Mod-
elica tools, allowing library developers to use it without
concerns about limited support.
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