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Abstract 
This paper showcases how Modelica technology can be 
leveraged for real-time applications using a cloud native 
simulation platform, Modelon Impact™. The platform 
allows for real-time, two-way communication of data, 
from the IoT connected plant to a physical model and, 
from the physical model to a dashboard for plant 
monitoring and control. The communication relies on 
open standards and REST-API, which makes it possible 
to implement digital twins for various applications, such 
as plant monitoring, predictive maintenance, fault 
isolation or controls. The paper describes a state 
estimation workflow where data is transmitted back and 
forth to the simulation platform via Message Queuing 
Telemetry Transport (MQTT) and where Node-Red is 
used for the end-user interface. 

Keywords:     Digital twin, State estimation, Cloud 
native Modelica platform, MQTT, Node-RED, REST-
API. 

1 Introduction 
A digital twin is a virtual representation of a real-world 
physical system or process (a physical twin) that serves 
for practical purposes, such as system simulation, 
integration, testing, monitoring, and maintenance. 
Modelica provides a clear separation between model 
and analysis definition which has proven successful in 
various applications over the years, also touching digital 
twins as illustrated in the following examples. 

In motorsports, digital twins of the car, the track, and 
sometimes even the human driver are used in software-
in-the-loop or hardware-in-the-loop configurations. The 
Modelon Vehicle Dynamics Library® (VDL, 2022) for 
instance has been used to define digital twins since well 
over a decade. Driven both by cost and regulations, a 
successful team in any of the higher leagues such as F1 
or NASCAR have virtual representations of each of the 
cars they put on the racetrack. There are various 
applications with the common purpose to predict or 
estimate vehicle behavior beyond what is feasible or 
even allowed to investigate while the race car is driven 
on the racetrack. 

Figure 1 shows a setup where a digital twin of the car 
is used to investigate the vehicle behavior on a certain 
part of the track in more detail. This model is used in 

offline as well as real-time applications. In the picture, 
the boundary conditions of the car are given from track 
and race data and includes for example track curvature, 
lateral acceleration, and throttle position. Since the 
model contains detailed representation of the race car’s 
mechanics the workload of critical components such as 
tires, springs, and dampers can be estimated. 

 

 

Figure 1. Digital twin of race car from the NASCAR 
series. Diagram view with race car and boundary 
conditions (top) and 3D visualization (bottom). The arrows 
show the estimated individual tire forces. 
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In other applications, such as predictive maintenance 
or fault detection, the physical model needs to be used 
in combination with an algorithm to extract valuable 
information from the process in operation. This can be 
achieved by exporting the physical model to a scripting 
environment such as Matlab or Python using the 
Functional Mock-up Interface (FMI) standard. 
(Ruggaber and Brembeck, 2021; Gonzalez, et al., 2017; 
Andrén, et al., 2015) demonstrate how various variants 
of Kalman filters can be implemented for state and 
parameter estimation, also exploiting the directional 
derivatives defined by the FMI 2.0 standard. The 
combined usage of Modelica, FMI and the scripting 
environment has been proven to be successful for 
optimal start-up of power plants in offline mode (Dietl 
et al., 2014).  For rapid testing and deployment of the 
state estimators without any need for scripting 
environment, the estimation algorithm can also be 
embedded according to the FMI standard as a Functional 
Mockup Unit (FMU), as shown in (Brembeck et al., 
2011), (Bonvini et al, 2014), (Laughman and Bortoff, 
2020). This however requires manual adaptation work 
for every considered plant model. 

Data exchange is also an essential component that 
sets requirements on the digital twin implementation in 
terms of connectivity and openness. This can be 
achieved by integrating a plant model as FMU into a 
connected data management or control system as it was 
done in (ENGIE, 2022). Modelon Impact™ was used 
there to derive a digital twin of a solar photovoltaic 
power plant in Chile and to train fault detection 
algorithms. The model was run online, and its predictive 
nature permitted to detect and isolate component 
failures. In (Dietl and Link, 2018) the communication 
between the control system and the simulation platform 
relied on OPC-UA. The authors implemented and 
deployed a Moving Horizon state model predictive 
controller based on Modelon’s optimization toolchain.  

 

The mentioned examples have in common that they 
showcase the industrial value and the feasibility of 
digital twin type analyses based on Modelica and FMI 
technologies. They also illustrate the need for a 
framework that allow for a more systematic way of 
implementing and deploying models for real-time 
applications. The objective is to achieve a modular and 
flexible implementation to keep the model and the 
analysis separated and thereby facilitate code reuse for 
multiple applications. 

This paper showcases how this can be achieved with 
Modelon Impact, a cloud-native Modelica-environment 
with public APIs. The paper is structured to first outline 
the relevant properties of Modelon Impact in Section 2, 
prediction, and correction in Section 3, followed by a set 
of select applications in Sections 4-5.  

2 Enabling cloud infrastructure 
Modelon Impact (Modelon Impact, 2022) is a cloud-
native systems modelling and simulation environment 
that enables connectivity through public APIs. Modelon 
Impact generates and runs FMUs on the cloud. It is also 
possible to upload third party Modelica packages and 
use them either as dependencies or editable models. 
Modelon supports connectivity to version control 
software like Git and SVN. Modelon Impact also 
features installation on private clouds to ensure data 
security. Figure 2 shows an overview of the connectivity 
options that are offered. In this paper we will focus on 
the APIs that allow for 3rd party tools to communicate 
with the compute engine in Modelon Impact. 

Modelon Impact communicates through a 
Representational State Transfer (REST) API, that 
enables remote controlling from other applications such 
as Microsoft Excel, Jupyter (Kluyver, et al., 2016), and 
custom web apps. The Modelon Help Center (Modelon 
Help Center, 2022) contains detailed information of the 
available REST API calls. 

Figure 2. Modelon Impact is prepared to work in an eco-system with well-defined communication through 
public APIs. 
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Modelon Impact has client libraries in Python and 
JavaScript wrapping around the low-level web-interface 
(REST API) which makes it easy to programmatically 
connect and interact with a Modelon Impact server. 

The client libraries help with:                                             
 Defining and executing simulations on the 

Impact server. 
 Compiling models on the server and 

downloading them as FMUs. 
 Fetching results and do post-processing. 
 Authenticate users against Modelon Impact. 
 Creating and automating custom workflows in 

your favorite programming language 
 

The client libraries enable the execution of 
workflows orchestrated on a client and executed on a 
Modelon Impact server, which may be running 
remotely. With sufficient login credentials and an API 
Key, Modelica models may be uploaded, compiled, and 
executed on a server. The results can be either processed 
on the server with a custom function or downloaded to 
the client for further analysis. 

An analysis could be set up and executed and relevant 
trajectories plotted using the Python client library in a 
few lines of code as shown in Figure 3. Further 
information about the usage of the API is given for each 
application below. 

 

                     

Figure 3. Sample code to remotely operate Modelon 
Impact using a Python client library. 

3 State Estimator implementation 
As mentioned in the introduction, state estimation is an 
important component in digital twin applications. It can 
be used to filter noisy measurements, estimate key 
variables that cannot be reliably measured or estimate 
unknown parameters in the plant model. All state 
estimators, from standard to advanced Kalman Filters or 
Moving Horizon Estimators (MHE), share a similar 
structure as shown in Figure 4. They are driven by the 
plant inputs and measurements and generate estimates 
of key performance indicators. The physical plant model 

is often extended by a disturbance model to cope with 
modelling errors or unknown parameters.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Schematics of an observer model that 
generates estimates of key variables from plant inputs, 
measurements, a plant model and eventually a disturbance 
model. 

Such estimation workflows can be conveniently 
implemented and deployed using Modelon Impact and 
standard technologies and communication protocols. A 
dashboard for plant monitoring is built on Node-RED 
(NR) (Node-RED, 2022) where the data flow between 
the nodes of plant, digital twin/observer, and the NR 
dashboard visualized as shown in Figure 5. 

 

Figure 5. Modelon Impact and Node-RED based data flow 
for plant monitoring. 

 A combination of the Modelon Impact JavaScript 
client library and MQTT (MQTT Protocol, 2022), a 
publish/subscribe messaging protocol in the backend 
facilitates the two-way data exchange, where the plant 
measurement data are published on a specific topic to a 
central MQTT message broker and Modelon Impact acts 
as subscriber and listens to this topic. The measurement 
values received are fed to a custom function 
implementing an Extended Kalman filter as state 
estimator. The Kalman filter consists of two parts: a 
combined plant and disturbance model in Modelica for 
the prediction step and a Python script that implements 
the correction step. The plant estimates are then further 
broadcasted to the plants NR dashboard though the 

Session B: Thermal and power system (2)
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MQTT broker. The authenticated user would call 
Modelon Impact to simulate the digital twin using the 
JavaScript APIs to Modelon Impact. Key performance 
indicators along with state variables and estimates 
would be published in the plant dashboard as shown in 
Figure 6 for fault prevention and predictive 
maintenance. NR dashboard compares model predicted 
state variables and corrected estimates from Extended 
Kalman Filter (EKF) along with live measurements 
from the real plant. 

 

Figure 6. NR flow for plant dashboard. 

The workflow is independent of the estimator type. If 
needed, one could implement a customer function for 
each estimation approach: Kalman filter, EKF, 
Unscented Kalman Filter (UKF) or MHE. The whole 
digital twin implementation is modular and flexible: 
plant model, algorithm for estimation, integration 
algorithms, monitoring dashboard are all separate, can 
be maintained and developed independently. 

4 Digital Twin application 1: Heat 
exchanger fouling estimator 

In this section, the state estimator workflow presented 
earlier is tested on a specific example: fouling 
estimation in a heat exchanger. In real time applications, 
fouling is always a major concern with the use of heat 
exchangers, which gradually degrades system 
performance and component life, while increasing the 
operational costs over time. But fouling cannot be 
measured and often cannot be identified early without 
leveraging live plant data. Fouling will here be 
estimated using a generic custom function 
implementing an Extended Kalman Filter, a heat 
exchanger model from Modelon Thermal Power Library 
and the framework described in the previous section. 
Plant data is here emulated using another heat exchanger 
model that runs on Modelon Impact, exchanging data 
using MQTT protocol. 

Figure 7 shows a heat exchanger (HX) model from 
Modelon Thermal Power Library with open boundary 
conditions. The application in mind here is to estimate 
fouling on the gas side based on five noisy 
measurements, encircled in blue in Figure 7: all inlet and 
outlet temperatures as well as the liquid mass flow rate. 
It is assumed that the gas flow rate is not measurable, 
and it will also be estimated. The heat exchanger model 
is discretized in the flow direction according to a finite 
volume implementation. Each section has then three 

dynamic states, for liquid pressure, liquid temperature, 
and wall temperature. The plant model has been 
extended by a disturbance model to describe the 
unknown gas flowrate and the fouling factor (encircled 
in red in Figure 7). The disturbances are implemented in 
Modelica and assumed to be constant in time although 
they will be varied in the experiment. 

 

Figure 7. Physical plant model using the fouling estimator.  

The measurements from the emulated plant and 
predictions of those measurements from the observer 
model are compared to validate the estimations. In 
Figure 8 showing the estimates, the fouling estimate in 
grey and the gas flow rate estimates are able to follow 
the true value. The offsets are due to the fast dynamics 
of the emulated fouling and gas flow changes, but they 
could be reduced with a more detailed disturbance 
model. 

Figure 8. NR plant monitoring dashboard displaying 
measurements as well as estimates for fouling and gas 
flowrate.  

5 Digital Twin application 2: 
Windmill Fleet 

The previous section illustrates the application of 
Modelon Impact for performance monitoring of a single 
plant. There are a variety of cases where it is necessary 
to monitor a fleet of assets. For example, the growing 
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number of wind farms demand highly reliable integrated 
systems to curtail Operation & Maintenance cost. The 
workflow described in section 4 can be extended to 
implement Digital Twins for online monitoring of a fleet 
of assets that are geographically spread as shown in 
Figure 9. 

Figure 9. The overall digital twin workflow in the case of 
an asset fleet, here a Windmill Fleet. 

The Digital Twin Fleet was implemented similarly as 
the single asset example, using three modules (i) Digital 
Twin Fleet based on a set of Modelica models built in 
Modelon Impact (ii) Real Time wind and plant data at 
various locations (iii) Interactive plant monitoring 
dashboard. 

The plant monitoring dashboard needs to include an 
interactive map component that allows operators to 
select the windmill of interest in the windmill fleet. A 
proof-of-concept has been implemented using 
JavaScript. The map component in the dashboard is 
interactive and allows the user to select the location of 
the windmill of interest. It is a reaction based interactive 
map component containing map data through Google 
API. To the map, several different interface elements 
like overlays for point of interest, zoom in/out, highlight 
selection is added for best user interaction experience. 
Real time wind data for various windfarms in different 
locations were embedded into the map element through 
JavaScript. Real time data for the wind at any selected 
location was fetched from (Trafikeverket’s open API, 
2022). Additionally, the monitoring dashboard has been 
implemented to display the data of the windmill selected 
from the fleet. In this case study, no state estimation 
problem was solved. The goal of the demonstrator was 
instead to show the ability of the technology to deal with 
a fleet of digital twins with respect to plant selection, 
data visualization and bi-directional data exchange 
between the model and the plant data. 

6 Conclusion 
Digital twin applications based on Modelica models 

and FMI standard are not new. Different solutions have 
been suggested in literature and some tested in industrial 
applications. This clearly shows the feasibility and the 
potential of the approach. With Modelon Impact on the 

cloud and its public APIs, the path from systems 
modeling and simulation to digital twin in operation is 
significantly shortened. It also allows for a modular and 
flexible digital twin implementation where models and 
algorithms can be kept separate and be re-used for 
different applications. The NR dashboards powered by 
Modelon Impact Digital Twin are easy to setup and can 
present complex scenarios in easily understandable 
manner. They can also meet the connectivity 
requirements of simulation platform in digital twin 
applications by enabling bi-directional data exchange 
using standard communication protocols. 
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