
[Industrial paper] Digital Twin Applications Using a Cloud Native
Modelica Platform

Abhilash Kumar1 Arunkumar Narasimhan1 Tharrini Rajendran1 Stéphane Velut2
1Modelon Engineering Pvt. Ltd., India, arunkumar.narasimhan@modelon.com

2Modelon AB, Sweden, stephane.velut@modelon.com

Abstract
This paper showcases how Modelica technology can be
leveraged for real-time applications using a cloud native
simulation platform, Modelon Impact™. The platform
allows for real-time, two-way communication of data,
from the IoT connected plant to a physical model and,
from the physical model to a dashboard for plant
monitoring and control. The communication relies on
open standards and REST-API, which makes it possible
to implement digital twins for various applications, such
as plant monitoring, predictive maintenance, fault
isolation or controls. The paper describes a state
estimation workflow where data is transmitted back and
forth to the simulation platform via Message Queuing
Telemetry Transport (MQTT) and where Node-Red is
used for the end-user interface.

Keywords: Digital twin, State estimation, Cloud
native Modelica platform, MQTT, Node-RED, REST-
API.

1 Introduction
A digital twin is a virtual representation of a real-world
physical system or process (a physical twin) that serves
for practical purposes, such as system simulation,
integration, testing, monitoring, and maintenance.
Modelica provides a clear separation between model
and analysis definition which has proven successful in
various applications over the years, also touching digital
twins as illustrated in the following examples.

In motorsports, digital twins of the car, the track, and
sometimes even the human driver are used in software-
in-the-loop or hardware-in-the-loop configurations. The
Modelon Vehicle Dynamics Library® (VDL, 2022) for
instance has been used to define digital twins since well
over a decade. Driven both by cost and regulations, a
successful team in any of the higher leagues such as F1
or NASCAR have virtual representations of each of the
cars they put on the racetrack. There are various
applications with the common purpose to predict or
estimate vehicle behavior beyond what is feasible or
even allowed to investigate while the race car is driven
on the racetrack.

Figure 1 shows a setup where a digital twin of the car
is used to investigate the vehicle behavior on a certain
part of the track in more detail. This model is used in

offline as well as real-time applications. In the picture,
the boundary conditions of the car are given from track
and race data and includes for example track curvature,
lateral acceleration, and throttle position. Since the
model contains detailed representation of the race car’s
mechanics the workload of critical components such as
tires, springs, and dampers can be estimated.

Figure 1. Digital twin of race car from the NASCAR
series. Diagram view with race car and boundary
conditions (top) and 3D visualization (bottom). The arrows
show the estimated individual tire forces.

DOI
10.3384/ecp19375

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

75

In other applications, such as predictive maintenance
or fault detection, the physical model needs to be used
in combination with an algorithm to extract valuable
information from the process in operation. This can be
achieved by exporting the physical model to a scripting
environment such as Matlab or Python using the
Functional Mock-up Interface (FMI) standard.
(Ruggaber and Brembeck, 2021; Gonzalez, et al., 2017;
Andrén, et al., 2015) demonstrate how various variants
of Kalman filters can be implemented for state and
parameter estimation, also exploiting the directional
derivatives defined by the FMI 2.0 standard. The
combined usage of Modelica, FMI and the scripting
environment has been proven to be successful for
optimal start-up of power plants in offline mode (Dietl
et al., 2014). For rapid testing and deployment of the
state estimators without any need for scripting
environment, the estimation algorithm can also be
embedded according to the FMI standard as a Functional
Mockup Unit (FMU), as shown in (Brembeck et al.,
2011), (Bonvini et al, 2014), (Laughman and Bortoff,
2020). This however requires manual adaptation work
for every considered plant model.

Data exchange is also an essential component that
sets requirements on the digital twin implementation in
terms of connectivity and openness. This can be
achieved by integrating a plant model as FMU into a
connected data management or control system as it was
done in (ENGIE, 2022). Modelon Impact™ was used
there to derive a digital twin of a solar photovoltaic
power plant in Chile and to train fault detection
algorithms. The model was run online, and its predictive
nature permitted to detect and isolate component
failures. In (Dietl and Link, 2018) the communication
between the control system and the simulation platform
relied on OPC-UA. The authors implemented and
deployed a Moving Horizon state model predictive
controller based on Modelon’s optimization toolchain.

The mentioned examples have in common that they
showcase the industrial value and the feasibility of
digital twin type analyses based on Modelica and FMI
technologies. They also illustrate the need for a
framework that allow for a more systematic way of
implementing and deploying models for real-time
applications. The objective is to achieve a modular and
flexible implementation to keep the model and the
analysis separated and thereby facilitate code reuse for
multiple applications.

This paper showcases how this can be achieved with
Modelon Impact, a cloud-native Modelica-environment
with public APIs. The paper is structured to first outline
the relevant properties of Modelon Impact in Section 2,
prediction, and correction in Section 3, followed by a set
of select applications in Sections 4-5.

2 Enabling cloud infrastructure
Modelon Impact (Modelon Impact, 2022) is a cloud-
native systems modelling and simulation environment
that enables connectivity through public APIs. Modelon
Impact generates and runs FMUs on the cloud. It is also
possible to upload third party Modelica packages and
use them either as dependencies or editable models.
Modelon supports connectivity to version control
software like Git and SVN. Modelon Impact also
features installation on private clouds to ensure data
security. Figure 2 shows an overview of the connectivity
options that are offered. In this paper we will focus on
the APIs that allow for 3rd party tools to communicate
with the compute engine in Modelon Impact.

Modelon Impact communicates through a
Representational State Transfer (REST) API, that
enables remote controlling from other applications such
as Microsoft Excel, Jupyter (Kluyver, et al., 2016), and
custom web apps. The Modelon Help Center (Modelon
Help Center, 2022) contains detailed information of the
available REST API calls.

Figure 2. Modelon Impact is prepared to work in an eco-system with well-defined communication through
public APIs.

Digital Twin Applications Using a Cloud Native Modelica Platform

76 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19375

Modelon Impact has client libraries in Python and
JavaScript wrapping around the low-level web-interface
(REST API) which makes it easy to programmatically
connect and interact with a Modelon Impact server.

The client libraries help with:
 Defining and executing simulations on the

Impact server.
 Compiling models on the server and

downloading them as FMUs.
 Fetching results and do post-processing.
 Authenticate users against Modelon Impact.
 Creating and automating custom workflows in

your favorite programming language

The client libraries enable the execution of
workflows orchestrated on a client and executed on a
Modelon Impact server, which may be running
remotely. With sufficient login credentials and an API
Key, Modelica models may be uploaded, compiled, and
executed on a server. The results can be either processed
on the server with a custom function or downloaded to
the client for further analysis.

An analysis could be set up and executed and relevant
trajectories plotted using the Python client library in a
few lines of code as shown in Figure 3. Further
information about the usage of the API is given for each
application below.

Figure 3. Sample code to remotely operate Modelon
Impact using a Python client library.

3 State Estimator implementation
As mentioned in the introduction, state estimation is an
important component in digital twin applications. It can
be used to filter noisy measurements, estimate key
variables that cannot be reliably measured or estimate
unknown parameters in the plant model. All state
estimators, from standard to advanced Kalman Filters or
Moving Horizon Estimators (MHE), share a similar
structure as shown in Figure 4. They are driven by the
plant inputs and measurements and generate estimates
of key performance indicators. The physical plant model

is often extended by a disturbance model to cope with
modelling errors or unknown parameters.

Figure 4. Schematics of an observer model that
generates estimates of key variables from plant inputs,
measurements, a plant model and eventually a disturbance
model.

Such estimation workflows can be conveniently
implemented and deployed using Modelon Impact and
standard technologies and communication protocols. A
dashboard for plant monitoring is built on Node-RED
(NR) (Node-RED, 2022) where the data flow between
the nodes of plant, digital twin/observer, and the NR
dashboard visualized as shown in Figure 5.

Figure 5. Modelon Impact and Node-RED based data flow
for plant monitoring.

 A combination of the Modelon Impact JavaScript
client library and MQTT (MQTT Protocol, 2022), a
publish/subscribe messaging protocol in the backend
facilitates the two-way data exchange, where the plant
measurement data are published on a specific topic to a
central MQTT message broker and Modelon Impact acts
as subscriber and listens to this topic. The measurement
values received are fed to a custom function
implementing an Extended Kalman filter as state
estimator. The Kalman filter consists of two parts: a
combined plant and disturbance model in Modelica for
the prediction step and a Python script that implements
the correction step. The plant estimates are then further
broadcasted to the plants NR dashboard though the

Session B: Thermal and power system (2)

DOI
10.3384/ecp19375

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

77

MQTT broker. The authenticated user would call
Modelon Impact to simulate the digital twin using the
JavaScript APIs to Modelon Impact. Key performance
indicators along with state variables and estimates
would be published in the plant dashboard as shown in
Figure 6 for fault prevention and predictive
maintenance. NR dashboard compares model predicted
state variables and corrected estimates from Extended
Kalman Filter (EKF) along with live measurements
from the real plant.

Figure 6. NR flow for plant dashboard.

The workflow is independent of the estimator type. If
needed, one could implement a customer function for
each estimation approach: Kalman filter, EKF,
Unscented Kalman Filter (UKF) or MHE. The whole
digital twin implementation is modular and flexible:
plant model, algorithm for estimation, integration
algorithms, monitoring dashboard are all separate, can
be maintained and developed independently.

4 Digital Twin application 1: Heat
exchanger fouling estimator

In this section, the state estimator workflow presented
earlier is tested on a specific example: fouling
estimation in a heat exchanger. In real time applications,
fouling is always a major concern with the use of heat
exchangers, which gradually degrades system
performance and component life, while increasing the
operational costs over time. But fouling cannot be
measured and often cannot be identified early without
leveraging live plant data. Fouling will here be
estimated using a generic custom function
implementing an Extended Kalman Filter, a heat
exchanger model from Modelon Thermal Power Library
and the framework described in the previous section.
Plant data is here emulated using another heat exchanger
model that runs on Modelon Impact, exchanging data
using MQTT protocol.

Figure 7 shows a heat exchanger (HX) model from
Modelon Thermal Power Library with open boundary
conditions. The application in mind here is to estimate
fouling on the gas side based on five noisy
measurements, encircled in blue in Figure 7: all inlet and
outlet temperatures as well as the liquid mass flow rate.
It is assumed that the gas flow rate is not measurable,
and it will also be estimated. The heat exchanger model
is discretized in the flow direction according to a finite
volume implementation. Each section has then three

dynamic states, for liquid pressure, liquid temperature,
and wall temperature. The plant model has been
extended by a disturbance model to describe the
unknown gas flowrate and the fouling factor (encircled
in red in Figure 7). The disturbances are implemented in
Modelica and assumed to be constant in time although
they will be varied in the experiment.

Figure 7. Physical plant model using the fouling estimator.

The measurements from the emulated plant and
predictions of those measurements from the observer
model are compared to validate the estimations. In
Figure 8 showing the estimates, the fouling estimate in
grey and the gas flow rate estimates are able to follow
the true value. The offsets are due to the fast dynamics
of the emulated fouling and gas flow changes, but they
could be reduced with a more detailed disturbance
model.

Figure 8. NR plant monitoring dashboard displaying
measurements as well as estimates for fouling and gas
flowrate.

5 Digital Twin application 2:
Windmill Fleet

The previous section illustrates the application of
Modelon Impact for performance monitoring of a single
plant. There are a variety of cases where it is necessary
to monitor a fleet of assets. For example, the growing

Digital Twin Applications Using a Cloud Native Modelica Platform

78 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19375

number of wind farms demand highly reliable integrated
systems to curtail Operation & Maintenance cost. The
workflow described in section 4 can be extended to
implement Digital Twins for online monitoring of a fleet
of assets that are geographically spread as shown in
Figure 9.

Figure 9. The overall digital twin workflow in the case of
an asset fleet, here a Windmill Fleet.

The Digital Twin Fleet was implemented similarly as
the single asset example, using three modules (i) Digital
Twin Fleet based on a set of Modelica models built in
Modelon Impact (ii) Real Time wind and plant data at
various locations (iii) Interactive plant monitoring
dashboard.

The plant monitoring dashboard needs to include an
interactive map component that allows operators to
select the windmill of interest in the windmill fleet. A
proof-of-concept has been implemented using
JavaScript. The map component in the dashboard is
interactive and allows the user to select the location of
the windmill of interest. It is a reaction based interactive
map component containing map data through Google
API. To the map, several different interface elements
like overlays for point of interest, zoom in/out, highlight
selection is added for best user interaction experience.
Real time wind data for various windfarms in different
locations were embedded into the map element through
JavaScript. Real time data for the wind at any selected
location was fetched from (Trafikeverket’s open API,
2022). Additionally, the monitoring dashboard has been
implemented to display the data of the windmill selected
from the fleet. In this case study, no state estimation
problem was solved. The goal of the demonstrator was
instead to show the ability of the technology to deal with
a fleet of digital twins with respect to plant selection,
data visualization and bi-directional data exchange
between the model and the plant data.

6 Conclusion
Digital twin applications based on Modelica models

and FMI standard are not new. Different solutions have
been suggested in literature and some tested in industrial
applications. This clearly shows the feasibility and the
potential of the approach. With Modelon Impact on the

cloud and its public APIs, the path from systems
modeling and simulation to digital twin in operation is
significantly shortened. It also allows for a modular and
flexible digital twin implementation where models and
algorithms can be kept separate and be re-used for
different applications. The NR dashboards powered by
Modelon Impact Digital Twin are easy to setup and can
present complex scenarios in easily understandable
manner. They can also meet the connectivity
requirements of simulation platform in digital twin
applications by enabling bi-directional data exchange
using standard communication protocols.

Acknowledgements
Special thanks to Johan Andreasson, Peter Sundström
and John Griffin for their input on motorsports digital
twin applications, and to Emil Fredriksson as well as Ola
Flisback for the implementation of the windmill fleet
example.

References
M. T. Andrén, and C. Wedding, (2015): Development of a

Solution for Start-up Optimization of a Thermal Power
Plant, M.Sc. thesis, Department of Automatic Control,
Lund University, Sweden.

M. Bonvini, M. Wetter, and M. Sohn,(2014), An FMI-based
Framework for State and Parameter Estimation.
10.3384/ecp14096647. In Proceedings of the 10th
International Modelica Conference Lund March 10-12.

J. Brembeck, M. Ottera, and D. Zimmer,(2011): Nonlinear
Observers based on the Functional Mockup Interface with
Application to Electric Vehicles, In Proceedings of the 10th
International Modelica Conference Dresden March 20-
22,2011.

K. Dietl and K. Link, (2018): Startup optimization of
Combined Cycle Power Plants: Controller development and
real plant test results. 5th International Conference on
Control, Decision and Information Technologies (CoDIT),
pp. 599-604, doi: 10.1109/CoDIT.2018.8394850.

K. Dietl, S.G. Yances,A. Anna, J. Akesson, K. Link, and S.
Velut, (2014): Industrial application of optimization with
Modelica and Optimica using intelligent Python scripting.
In Proceedings of the 10th International Modelica
Conference, Lund,March 10-12.

ENGIE: URL https://modelon.com/support/engie-solar-
power-plant-predicitive-maintenance-digital-twin/,2022.

M.Gonzalez, O. Salgado, J. Croes, B. Pluymers, and W.
Desmet, (2017): Model-based virtual sensors by means of
Modelica and FMI. In Proceedings of the 12th International
Modelica Conference, Prague, Czech Republic, May 15-17,
2017, 337-344. 10.3384/ecp17132337.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M.
Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S.
Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing,
and Jupyter development team, (2016): Jupyter Notebooks
– a publishing format for reproducible computational
workflows. Loizides, Fernando and Scmidt,
Birgit (eds.) In Positioning and Power in Academic

Session B: Thermal and power system (2)

DOI
10.3384/ecp19375

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

79

Publishing: Players, Agents and Agendas. IOS Press. pp.
87-90. (doi:10.3233/978-1-61499-649-1-87)

C. Laughman, and S. Bortoff, (2020): Nonlinear State
Estimation with FMI: Tutorial and Applications. In
Proceedings of the American Modelica Conference 2020
Boulder, Co, USA March 23-25 186-195.
10.3384/ecp20169186

Modelon Impact: https://modelon.com/modelon-impact/,
2022.

Modelon Help Center: https://help.modelon.com, for API
https://help.modelon.com/latest/guides/apidocumentation.h
tml, 2022.

Modelon Vehicle Dynamics Library (VDL):
https://modelon.com/library/vehicle-dynamics-library/,
2022.

MQTT Protocol, http://mqtt.org/, 2022

Node-RED, https://nodered.org/, 2022.

J. Ruggaber and J. Brembeck, (2021): A Novel Kalman Filter
Design and Analysis Method Considering Observability
and Dominance Properties of Measurands Applied to
Vehicle State Estimation. Sensors 21, no. 14: 4750.
https://doi.org/10.3390/s21144750

Trafikeverket’s open API for traffic information with weather
data: https://api.trafikinfo.trafikverket.se/, 2022.

Digital Twin Applications Using a Cloud Native Modelica Platform

80 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19375

