
Importing FMU-3.0: challenges in proper handling of clocks

Masoud Najafi Ramine Nikoukhah

Altair Engineerng, France {masoud,ramin}@altair.com

Abstract
Compared to FMI-2.0, FMI-3.0 provides support for
events and clocks. The behavior of the FMU in the pres-
ence of events and clocks introduces new challenges for
importing FMUs in block diagram environments such as
Altair Activate and Scicos. This paper discusses some of
these challenges and proposes implementation strategies
for supporting the import of FMI-3.0 in Activate.
Keywords: FMI-3.0, Synchronous clock, Signal based
tool, Modelica tool

1 Introduction
The Functional Mock-up Interface (FMI) (Modelica As-
sociation, 2022) has become a de-facto tool independent
standard for the exchange of dynamic models and for co-
simulation. FMI-3.0 (Specification, 2022) version of the
standard introduces many new features that allow for more
advanced modeling and support for co-simulation algo-
rithms. Clocks allow the synchronization of events be-
tween Functional Mock-up Units (FMUs) and the sim-
ulator (importer). Several new data-types and multi-
dimensional arrays are also supported (Junghanns et al.,
2021).

Activate is a modeling and simulation tool developed
by Altair Engineering based on the open-source academic
simulation software Scicos (INRIA). Activate environ-
ment can be used to create models of dynamical systems
as signal-based block-diagrams. The basic blocks, such
as FMUs can be interconnected to build complex model.
This is very similar to the way diagrams are built in the
SSP 1 (System Structure and Parametrization) standard.

Activate can also be used to create Modelica diagrams
(Nikoukhah and Furic, 2009). The integration of the Mod-
elica part of the model is done first by the aggregation
of the Modelica components and creation of a Modelica
program which is then processed by the Modelica com-
piler.2 In Activate, the Modelica compiler provides an
FMU block replacing the Modelica components in the
original model.

Because of this FMI based integration of Modelica in
Activate, Activate has been providing FMU import sup-
port through an Activate FMU block. More generally this
block is also used for importing FMUs from other sources.

1https://ssp-standard.org/
2The Modelicac compiler is used to to compile and generate code

for the modelica program in Scicos; the MapleSim compiler is used to
generate an FMU in Activate.

The support of FMI-2.0 in the Activate environment had
already been challenging and specific solutions had to be
developed; the main problem being the way input-output
dependencies are defined and treated in Activate and in
FMU. See (Nikoukhah et al., 2017).

With FMI-3.0 and the introduction of the notions of
clock, activation and synchronization, the FMU import in
Activate presents new challenges. Even though the ac-
tivation signals and synchronism have been part of the
Activate semantics from the beginning, the small seman-
tic differences between FMI-3.0 and Activate formalism
makes it so that an FMU cannot be imported as a basic
block in Activate. This was already not the case in some
situations with FMI-2.0, as was presented in (Nikoukhah
et al., 2017). With FMI-3.0, the problem becomes more
involved.

This paper presents the difficulties and the solutions en-
visaged to provide maximum support for FMI-3.0 import
in Activate. First a short overview of the way Activate
handles activations (clocks) is provided and the differ-
ences with the FMI-3.0 treatment of clocks are discussed.

In Section 4, the solutions for importing FMI-3.0 in
Activate are presented by considering different types of
clocks. Each section provides an FMU example to illus-
trate the process.

2 Activate environment and activation
signals

2.1 Double layer implementation
In the Activate environment, a model is constructed using
blocks. The compiler however does not operate on these
blocks; it interacts with Atomic Units3 (AU). In many
cases a block is associated with a single AU, but not al-
ways: a block may produce a diagram containing multi-
ple connected AUs. This diagram produced programmati-
cally by the block may depend on the values of the block
parameters. Specifically, the choice of the AU(s), their
parameters, and the topology of the diagram is specified
by an OML4 function associated with the block, which
constructs the diagram based on the values of the block
parameters.

The ability to programmatically instantiate an AU or a
diagram of AU(s) is a powerful mechanism which is used

3Also called basic blocks.
4A matrix based interpreted matrix-based language similar to Scilab,

Octave, Matlab.

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

131



to present to the user as a block, for example through a li-
brary, a complex construction based on a diagram of AUs.
The FMU block is an example of such a construction.

In general, an AU provides computational function
APIs to be used by the simulator. The APIs are C func-
tions that are called by the simulator at different stages of
the simulation: computations of the outputs, of the state
derivatives, of the next discrete state, etc. Activate com-
piler uses AU properties to construct the compiled struc-
ture of the model to be used by the simulator. These prop-
erties include for example the feedthrough properties of
the AUs used by the compiler for proper scheduling of
the activation order of the AUs. The computations done
by the corresponding APIs however are transparent to the
compiler.

Two very special AUs IfThenElse and SwithCase ba-
sic blocks play a fundamental role in defining conditional
operations, used for example for subsampling. They are
actually language constructs similar to if and switch state-
ments in most programming languages, and are treated
in a special way by the compiler. Other “special” AUs
include activation sources such as the InitialActive, Al-
waysActive and SampleClock blocks. The latter produces
an activation signal containing a series of periodic events.
Multiple SampleClock blocks can be used within a model
with identical or different periods. The compiler treats
them as synchronous clocks even if they don’t have iden-
tical periods.

2.2 AU interactions
AUs have input and output ports. These ports are con-
nected by links which represent the sharing of data be-
tween the ports. The value of an input port is provided
by the output port linked to it. The AU of the output port
computes the signal to be read by the AU of the input port,
which in turn computes its outputs, when activated.

In the simple case where all the AUs are “always ac-
tive” (continuous-time dynamics), the Activate compiler
determines the order in which the AUs should be activated
(their APIs called) to guarantee the signals flow properly
in the network. This order is stored in the compiled struc-
ture of the model and used during simulation. It is also
used for code generation.

In many cases however all the AUs in a model are not
“always active”. Consider for example the model of a
physical plant controlled by a discrete-time controller. In
such a model, some of the AUs are continuously activated
(so always active) and others only at the ticks of the con-
troller clock.

In the presence of multiple sources of activations, the
compiler determines the order of block executions for all
possible activation scenarios and stores them in the com-
piled structure to be used by the simulator5 and the code
generator.

5 No online scheduling is ever performed by the simulator.

2.3 Activation signals and AU activation
AUs in Activate are activated by activation signals. The
“always active” signal is an example of such a signal. An
AU activated by such a signal is continuously active. Dis-
crete activation signals define one or more isolated time
instants of activation (called events). An AU activated by
such a signal is activated at these discrete time instants.6

At the graphical level, by default the regular input and
output ports are placed on the sides of the blocks and the
activation input and output ports, respectively, on the top
and at the bottom of the block. The activation ports and
links are red colored.

The block on the left is a general AU with multiple in-
put, output, regular and activation ports. The other two
blocks are special AUs IfThenElse and SwithCase used to
redirect their input activations to one of their output acti-
vation ports depending on the value of their regular inputs.
These two AUs produce output activations which are syn-
chronous with their input activations; something which is
not possible with any other AU.

To simplify the construction of models at the graphical
level, two mechanisms are used in Activate to reduce the
number of activation ports and links:

• Always active AU property: Instead of explic-
itly creating a link from an always active activation
source to the AU, the AU can be declared as having
“always active” property.

• Activation inheritance: if an AU is not declared
always active and does not have any activation in-
put ports, then it can inherit its activations from its
regular input signals. Specifically, it is activated by
the activation signals which have activated the block
which have produced its input signals.

These mechanisms are mere syntactic sugars: the corre-
sponding activation signals are added to the model at a
pre-compilation phase.

An AU may be activated by one or more activation sig-
nals, through one or more activation input ports. See Fig. 1
where the EventDelay block is activated by the union of
two activation signals. The resulting activation signal con-
tains then an initial event and events produced by the block
itself, which are the delayed version of previous events.
This model produces an activation signal consisting of a
series of events evenly spaced in time (like an event clock).

For an AU having more than one activation input port,
the AU is activated if any of the input ports receives an ac-
tivation. In that case, the computational function API can
know what activation(s) has caused the activation of the

6More generally an activation signal may define a union of isolated
points and time intervals as activation times. But this level of generality
is not pertinent to the FMI import issue considered here.

Importing FMU-3.0: challenges in proper handling of clocks

132 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131



Figure 1. A new activation signal can be constructed from two
or more activation signals where the activation times of the new
signal is the union of the activation times of the other signals.
This operation is realized by the EventUnion block as shown in
this diagram.

AU. For example if the AU has two activation input ports,
then it can be activated either because an activation signal
has been received on its first input, on its second input or
on both synchronously.7 The way by which the activation
has occurred is coded as an integer (the binary coding of
the integer represents the input ports at the origin of the
AU activation, so function call). In the case of AU with
two activation input ports, the integer can take values 1,
2 and 3. The API can perform different computations for
each value of the integer.

Even though the AU can be activated through differ-
ent combinations of activation signals, there are no indi-
vidual activation signals associated with each output port
of the AU. The outputs are updated at times correspond-
ing to the union of all the activations activating the AU.
So, the activation signals associated with the outputs are
all identical; the AU cannot associate individual activation
signals to the AU outputs. Even if an output of the AU is
not computed by the AU computational function API for
a particular activation, it is considered to be up to date and
is treated as if it had been recomputed (signals in Activate
are persistent). This property is in contrast to the FMU-3
way of associating outputs to different clocks, making it
impossible to represent an imported FMU as a single AU
in the general case.

An AU can have activation output ports. An AU can-
not generate an event which is synchronous with the event
which has activated it. The generated event is delayed
with respect to the activation of the block. The time delay
can be set to zero, making the two events having the same
time, but not synchronous. Synchronous events can only
be generated by two special AUs IfThenElse and Swith-
Case. For details see (Campbell et al., 2010; Ext, 2022).
This is another reason why a single AU cannot always rep-
resent an imported FMU-3.

The explicit treatment of Activation signals in Activate
makes the import of FMU-3’s amenable but not necessar-
ily as single AUs (basic blocks). This was the case al-
ready for FMU-2, as we will recall in the next section.
We will then show how FMU-3’s can be imported as Ac-
tivate blocks including multiple AUs. From the user point
of view, this process is completely transparent. They will

7Here we assume that the block is not continuously active.

place the FMU block from the palette in the diagram and
edit its parameter to point to the FMU to import. The
block will then read the content of the FMU and program-
matically create the content of the block.

3 Activate FMU block for importing
FMI-2.0 FMUs

This section recalls the way FMU-2’s are imported in Ac-
tivate. The process was in part presented in (Nikoukhah
et al., 2017). The import of FMU-2 was a simpler task
because there were no clocks and clock activations to
consider; the system was always active. The main diffi-
culty had to do with the way output/input dependencies
are specified in FMI. In an AU, output/input dependen-
cies are expressed as a vector of dependencies specifying
which inputs affect any of the outputs. So, the dependency
is solely a property of an input port. The reason is that an
AU computes all of its outputs during a single activation,
i.e., in the same API call, so all of its dependent inputs
must be up to date when the call is made. An FMU on the
other hand specifies output/input dependencies as a matrix
specifying which output depends on which known vari-
ables including individual inputs. The FMU provides rou-
tines that allow the computation of output ports separately
and take advantage of variable caching.

One way to deal with this discrepancy is to simply
project the matrix of dependencies provided by the FMU
into a vector of dependencies as required by Activate.
This conservative approach properly assigns dependencies
in Activate but "loses" information along the way. When
one or more FMUs are imported in an Activate model, this
may lead to the detection of algebraic loops by the Acti-
vate compiler that are not true algebraic loops (artificial
algebraic loops). The result is that valid algebraic-loop-
free models may end up not compilable by Activate.

There is no solution to this problem as long as the FMU
block is to be implemented as a single AU. But as it was
stated previously, Activate blocks can implement a dia-
gram of AUs, the topology of which can depend on block
parameters. It turns out, (Nikoukhah et al., 2017), that the
matrix output/input dependency information provided by
the FMUs can be implemented by a properly constructed
diagram of AUs. The diagram would include a distinct AU
associated with each output port, in charge of computing
the output, and the diagram constructed so that its topol-
ogy reflects the output input dependencies. Consider for
example an FMU with 2 inputs and 2 outputs where the
only output input dependency is that the first output de-
pends on the first input. Then the FMU block could create
the diagram shown in Fig. 2.

The dependency information is provided in the FMU
XML file, which is available as a block parameter of the
Activate FMU block. By reading and parsing the XML
inside the FMU, the block generates a diagram of AUs.
The diagram contains a central AU, always present, and an
AU associated with each FMU output. The input ports of

Session D: Tools, FMI related

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

133



Figure 2. In this example, the first output depends directly on
the first input. The second output does not depend directly on
any input.

these AUs and their connections are tailored to the depen-
dency information read from the XML file. In particular
the AU associated with an output will have an input corre-
sponding to an input of the FMU only if the corresponding
output input dependency property is true.

Figure 3. A central AU, always present, handles the state up-
date tasks of the FMU and provides the FMU structure to the
AUs in charge of computing the outputs. The output AUs are
only connected directly to the inputs of the block if there is a
corresponding output input dependency as specified in the FMU
XML file.

The central AU includes the simulation APIs for state
derivative computation and discrete state updates, etc., and
does not have any input dependency. All the AUs in the
network use the same internal structure, which is instanti-
ated by the central AU. The central AU provides this struc-
ture to the other AUs through its output port.

The central AU is also endowed with an activation input
and an activation output port. These ports are connected
together with an activation links. The delayed events reac-
tivating the central AU are used to implement time-events
in FMI-2.0.

Fig. 3 shows a typical diagram resulting from the import
of an FMU with 2 inputs and 4 outputs.

4 FMI-3.0 support
FMI-3.0 provides a number of new features for both
Model-Exchange and Co-Simulation (Gomes et al., 2021).
Some of the new features of FMI-3.0 are intrinsically sup-
ported in Activate. For example AU input output ports
are not limited to scalars; they can be of type matrix and

of different data types. But even though AUs have acti-
vation (clock) input and outputs, the semantic differences
between FMI-3.0 clocks and Activate activations does not
allow a simple mapping of FMI clocks into Activate acti-
vation signals.

Different types of FMI clocks require different treat-
ments during the import process, as shown in the follow-
ing sections. For each clock type in FMI-3.0, an FMU has
been considered and the way it is imported in Activate is
explained. Note that the way the clock is handled is FMI-
3.0 is independent of the FMU type, i.e., the FMU can
be either Model-Exchange or Co-Simulation8. The FMU
examples work identically for both FMU types.

4.1 Triggered input clocks
It may seem natural to map an FMU-3 with multiple input
triggered clocks into an AU with multiple activation input
ports. This however is not semantically correct because
different outputs of the FMI may be associated with dif-
ferent clocks, i.e., outputs may be differently clocked. But
in an AU, all the outputs of the AU are computed on the
union of all the activations activating the AU. So, a sin-
gle AU can capture this aspect of the FMU behavior only
if all the outputs of the FMU are associated with all of
its clocks. Any other clock association requires a specific
treatment.

Figure 4. The diagram resulting from the import of an FMU-3
with 2 triggered clocks.

Consider the imported diagram in Fig. 3 and assume ad-
ditionally that the imported FMU is an FMU-3 with two
triggered input clocks where the first output is a clocked
variable associated with the first clock, the second out-
put is a clocked variable associated with the second clock
and the last output associated with both. The third out-
put is continuous-time (its variability attribute is
continuous). The FMU block importing this FMU will
instantiate9 in the Activate model as shown below

8The Scheduled Execution FMU type has not been considered in this
paper

9The block ports are automatically adjusted to the FMU specification

Importing FMU-3.0: challenges in proper handling of clocks

134 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131



Its underlying diagram is shown in Fig. 4. The
gen_out3 block is declared always active.

The generalization to the case where more input trig-
gered clocks are present is straightforward.

4.1.1 Example: Clock tick counter with reset FMU

This FMU increments its output on each input clock
tick.10 The counter is reset to zero on the tick of the sec-
ond input clock. The FMU has two triggered input clocks
and one regular output port. The FMU model description
for these ports are as follows:

<Clock name="input clock" valueReference="4"
causality="input" variability="discrete"
intervalVariability="triggered"
description="counter increments on ticks"/>

<Clock name="Reset clock" valueReference="5"
causality="input" variability="discrete"
intervalVariability="triggered"
description="Resets to zero on ticks"/>

<Int32 name="pre(counter)" valueReference="6"
initial="exact" variability="discrete"
causality="local" description="pre(counter)"
start="0" clocks="4 5"/>

<Int32 name="counter" valueReference="7"
previous="6" initial="calculated"
variability="discrete" causality="local"
description="counter internal value"
clocks="4 5"/>

<Int32 name="output" valueReference="8"
variability="discrete" causality="output"
description="counter value" clocks="4 5"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 5. Note that
since there is no information in the model description of
the FMU about using the time-events by the FMU, the
central AU has always its first output activation port con-
nected to its first input activation port (clock feedback).

4.2 Periodic clocks
In FMI-3.0, a time-based input clock can be defined as
being periodic. The period and the offset of the clock can
be constant or user-defined.

when the block parameters, in particular the FMU name and location,
are provided as block parameters.

10The snippets of the C source code of the FMU are provided in the
Appendix. FMU’s presented in this paper are available upon request.

Figure 5. Importing the clock tick counter with reset FMU in
Activate.

In the corresponding Activate block, such an input
clock is not represented by an activation input port. In-
stead, the periodic clock is explicitly placed inside the di-
agram. Consider again the example with 2 inputs and 4
outputs and two clock inputs but now suppose the second
clock is periodic with period P. The imported diagram can
then be constructed as shown in Fig. 6.

Figure 6. The second FMU clock is periodic. It does not lead
to an input activation port, instead it is realized using a Sample-
Clock block.

Note that the Activate FMU block in this case has only
one activation input port. The periodic clock is placed in-
side the diagram and realized by a SampleClock.11 In or-
der to connect this triggered input-clock to other FMUs,
an output clock port is added to the imported FMU block.
This output activation port looks as follows in the Activate
model

The generalization to more mixed triggered-periodic
clock inputs is straightforward to imagine.

11All the SampleClock s in the model are synchronized by the com-
piler, even if they are in different diagrams.

Session D: Tools, FMI related

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

135



4.2.1 Example: Periodic clock FMU
This FMU creates periodic clock ticks. The period and
shift time (initial offset time) can be set by the user. The
FMU does not have any regular output ports.

<Clock name="Fixed Periodic clock"
valueReference="4" variability= "discrete"
causality="input" intervalVariability="fixed"
intervalDecimal="1.0" shiftDecimal="0.2"
description="Fixed periodic clock "/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 7.

Figure 7. Importing the clock tick counter with reset FMU in
Activate.

Although the periodic clocks of an FMU have
causality=input attribute, these input clocks can be
connected to other FMUs. For example, input periodic
clock can be connected to triggered input clocks of other
FMUs. In a signal based environement such as Acti-
vate, two input ports cannot normally be connected, due
to causality incompatibility. However, with the way these
FMUs are imported in Activate, this type of connection
becomes natural.

The connection of the counter FMU and the periodic
clock FMU is straightforward now and can be done in Ac-
tivate as shown in Fig. 8.

Figure 8. Connection of the periodic clock FMU to the counter
FMU in the Activate model.

4.3 Aperiodic clocks
In FMI-3.0, a time-based input clock can also be de-
fined as being aperiodic, i.e., changing clock and
countdown clock. At each clock tick (or any event
time for countdown clock), the time instant of the
next clock tick is retrieved by the simulator (if any). This
is similar to the way time events are handled in FMI-2.0,
with the difference that the synchronism is ensured by the
fact that the simulator (the importer) clearly activates the
clock tick. Another difference between the ordinary time-
event and aperiodic clocks is that unlike the time-events,
clock ("input") ports can be connected to the triggered in-
put clocks of other FMUs.

When imported, in the corresponding Activate block,
such an input clock is not represented by an activation in-
put port. Instead, an aperiodic clock (changing clock
or countdown clock) is represented internally by an
input clock and output clock in the central AU block. The
output block is activated by the input clock. This is iden-
tical to the way time-events are handled in Activate. For
example, importing an FMU with an input clock of type
aperiodic results in

The content of this block is shown in Fig. 9.

Figure 9. Importing an FMU with an aperiodic clock in Acti-
vate.

4.3.1 Example: PWM signal generator FMU

This FMU receives a continuous-time signal as input and
creates a PWM (Pulse-Width Modulation) signal. The rate
or the frequency of switching of the PWM is created by a
periodic clock with intervalVariability attribute
set to fixed. The duty cycle of the PWM varies as a
function of the input signal, i.e., at input equal to 0.0, the
duty cycle is 0% and at input equal to 1.0, the duty cycle is
100%. The period and the first tick instant of the switching
(defined by intervalDecimal and shiftDecimal
respectively) are set by the user. In order to create the duty
cycle switchings, a countdown clock is used. At every tick

Importing FMU-3.0: challenges in proper handling of clocks

136 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131



of the periodic clock, the next tick of the countdown clock
is scheduled as a function of the input signal value. For the
sake of clarity, the snippet of the C source code is given in
the appendix.
<Clock name="Base PWM Clock" valueReference="1"
causality="input" variability= "discrete"
intervalVariability="fixed"
intervalDecimal="0.1" shiftDecimal="0.0"
description="PWM Clock" />

<Clock name="DutyCycle clock" valueReference="2"
causality="input" variability="discrete"
intervalVariability="countdown"
description="Duty cycle tick clock" />

<Float64 name="Signal" valueReference="3"
causality="input" variability="continuous"
description="input signal" start="0.1"
clocks="1"/>

<Float64 name="PWM output" valueReference="4"
causality="output" variability="discrete"
description="PWM output" clocks="1 2"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 10.

Figure 10. The content of the PWM FMU when imported in
Activate.

4.4 Triggered output clocks
The FMI triggered output clocks correspond to output ac-
tivation ports of the Activate FMU block. For exam-
ple, if the FMI considered previously additionally has a
triggered output clock, the corresponding Activate FMU
block looks as follows in the Activate model

If the output clock is not synchronous with any of the
input clocks, then the corresponding Activate event can
be generated directly by the central AU. See Fig. 11.

Figure 11. The diagram resulting from the import of an FMU-3
having a periodic clock and an asynchronous output clock, for
example a clock triggered by an internal zero-crossing event.

On the other hand, if an output clock is dependent on (is
synchronous with in the Activate terminology) an input
clock, then it cannot be created as the output of the cen-
tral AU. Only two special “blocks” IfThenElse and Switch-
Case output activations are synchronous with their input
activations.

Consider the same FMU again but now assume the out-
put clock is dependent on the first input clock. The dia-
gram can now be realized as shown in Fig. 12. In this case

Figure 12. The diagram resulting from the import of an FMU-3
having a periodic clock and a synchronous output clock.

the activation of the synchronous clock is “signaled” via
an additional output of the central AU. This Boolean sig-
nal has value true if the clock is to be fired. By feeding
this value to an IfThenElse to generate (or not) the corre-
sponding event, the event becomes synchronous with the
corresponding input event (FMU clock).

Session D: Tools, FMI related

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

137



4.4.1 Example: Conditional sampling FMU
This FMU has a triggered input clock, a triggered out-
put clock, and a regular input port. The triggered output
clock is activated synchronously with the input clock, only
if the regular input of the FMU has a positive value. In
this FMU, there is a direct dependency between the output
clock and the input clock and should be handled correctly.

<Float64 name="Condition" valueReference="1"
causality="input" variability="discrete"
description="condition for clock" start="0" />

<Clock name="Input clock" valueReference="2"
causality="input" variability="discrete"
intervalVariability="triggered"
description="Input clock from any source"/>

<Clock name="output clock" valueReference="3"
causality="output" variability="discrete"
intervalVariability="triggered" clocks="2"
description="Clock triggers if Condition>0"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 13.

Figure 13. The content of the conditional output clock FMU
when imported in Activate to keep the input/output synchronic-
ity.

4.5 Clocked inputs
The FMU-3 input ports can be clocked, i.e., inputs can
be associated with clocks (both input or output clocks).

When the FMU is imported, this information is used in
the central AU to read inputs only when it can be accessed
and is needed. But this information can also be used in the
construction of the imported diagram so that the clock de-
pendency is exposed to the Activate compiler, thus avoid-
ing possible artificial algebraic loops.

Consider, for example, the FMU imported in the di-
agram in Fig. 4 and assume the corresponding Activate
FMU block is used in the Activate model as follows:

If the second input is associated only with the first
clock, there shouldn’t be any algebraic loops in the model
because there is no dependence of the forth output on the
second input when the second activation input is active.
There is no direct dependence in case of the first activation
either. However the compiler does not see the absence of
dependence of the forth output on the second input. This
information is not coded in the topology of the diagram.

To include the dependence of inputs on clocks, the di-
agram can be modified by conditionally blocking the in-
puts based on corresponding clocks. In the above case,
the model can be modified as shown in Fig. 14. The Sam-
pleHold AU is used here to block the second input except
when the block is activated via the first activation port.
Since it is not activated by the second activation, the model
contains no algebraic loop and can be compiled.

Figure 14. The SampleHold is used to provide the information
that the second input is associated only with the first activation.

The dependence of every input on a clock can be coded
in this way in the diagram.

General FMI-3.0s including multiple input and output
clocks of different types can be imported by the system-
atic application of procedures presented above. This is
done by an OML script which reads to content of the FMU

Importing FMU-3.0: challenges in proper handling of clocks

138 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131



model-description file (XML) and programmatically cre-
ates the required diagram.

5 Conclusion
In this paper, we showed that in general the import of a
single FMU-3.0 cannot be realized by a single basic block
in signal based block diagram environments such as Sci-
cos and Activate. We examined different FMI clock types
and discussed their properties and in particular their dif-
ferences and similarities with the notions of activation,
events and triggering in block diagram environments. We
showed that there is no systematic one to one mapping of
FMI clocks to block activations but the FMI clock behav-
iors can still be realized. The imported FMU is realized
by a diagram containing multiple basic blocks depending
on the type of clocks.

We presented a systematic process for creating this di-
agram in Activate. This process, which incrementally
builds the imported diagram, may result in a diagram with
a large number of blocks if the FMU has multiple clocks,
and inputs and outputs. But the process is completely
transparent to the user who sees the result as a single Ac-
tivate block.

The import process for the user simply requires placing
an FMU block, available in Activate palettes, inside the
diagram and defining the path to the imported FMU as its
parameter. The FMU block is then automatically instanti-
ated with corresponding number of regular and activation
input, output ports. It can then be used similarly to other
Activate blocks in the construction of the Activate model.
The corresponding internal diagram is created when the
model is compiled. The diagram is not exposed to the user.
It is only used internally for the compilation of the model
and the construction of the compiled structure, which is
used for simulation and code generation. By providing
this FMU import feature, Activate can be used as an envi-
ronment for connecting multiple FMUs (both ME and CS)
to create simulation models, while respecting FMI clock
semantics.

References
Altair activate, extended definitions, 2022. URL
https://2021.help.altair.com/2021/
activate/extended_definitions.pdf.

Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine
Nikoukhah. Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4. Springer-Verlag New York, 2010. ISBN 0-
262-16209-1.

Claudio Gomes, Masoud Najafi, Torsten Sommer, Matthias
Blesken, Irina Zacharias, Oliver Kotte, Pierre R. Mai,
Klaus Schuch, Karl Wernersson, Christian Bertsch, Torsten
Blochwitz, and Andreas Junghanns. The fmi 3.0 standard in-
terface for clocked and scheduled simulations. Proceedings
of the 14th International Modelica Conference., 2021.

INRIA. URL http://www.scicos.org.

Andreas Junghanns, Torsten Blochwitz, Christian Bertsch,
Torsten Sommer, Karl Wernersson, Andreas Pillekeit, Irina
Zacharias, Matthias Blesken, Pierre R. Mai, Klaus Schuch,
Christian Schulze, Claudio Gomes, and Masoud Najafi. The
fmi 3.0 standard interface for clocked and scheduled simula-
tions. Proceedings of the 14th International Modelica Con-
ference., 2021.

FMI Website Modelica Association, 2022. URL https://
fmi-standard.org.

Ramine Nikoukhah and Sebastien Furic. Towards a full integra-
tion of modelica models in the scicos environment. Proceed-
ings of the 7th International Modelica Conference., 2009.

Ramine Nikoukhah, Masoud Najafi, and Fady Nassif. A sim-
ulation environment for efficiently mixing signal blocks and
modelica components. Proceedings of the 12th International
Modelica Conference., 2017.

FMI-3.0 Specification, 2022. URL https://
fmi-standard.org/docs/3.0.

A Snippet of the C source code of the
FMU in 4.1.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
/* some code here */
if (comp->clki) {

comp->counter = comp->counter+1;
comp->clki = 0;

}
return fmi3OK;

}

fmi3Status fmi3SetClock(fmi3Instance comp,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {
/* some code here */
if (vr[nvr-1] == 4) {

comp->clki = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

B Snippet of the C source code of the
FMU in 4.2.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
if (comp->clki) {

comp->clki = 0;
}
return OK;

}

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {

Session D: Tools, FMI related

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

139



/* some code here */
if (vr[nvr-1] == 4) {

comp->clki = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

fmi3Status fmi3GetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
fmi3Float64 intervals[],
fmi3IntervalQualifier qualifiers[])
/* some code here */
if (vr[nvr-1] == 4) {

value[nvr-1] = comp->intervalDecimal;
return fmi3OK;

}
return fmi3Error;

}

fmi3Status fmi3SetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Float64 intervals[]) {
/* some code here */
if (vr[nvr-1] == 4) {

comp->intervalDecimal = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

C Snippet of the C source code of the
FMU in 4.3.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
if (comp->clkBase) {

comp->output = 1;
comp->clkBase = 0;
{

double uu;
uu= (comp->signal >= 1.0) ?
1.0 : comp->signal;
uu = (comp->signal <= 0.0) ?
0.0 : comp->signal;
comp->duty=comp->period * uu;

}
}

if (comp->clkCoundown) {
comp->output = 0;
comp->clkCoundown = 0;

}
return fmi3OK;

}

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {
/* some code here */
switch (vr[i]) {
case 1: comp->clkBase = value[i];

break;

case 2: comp->clkCoundown = value[i];
break;

default:
return fmi3Error;

}
return fmi3OK;

}

fmi3Status fmi3GetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
fmi3Float64 intervals[],
fmi3IntervalQualifier qualifiers[])
/* some code here */
if (vr[i] == 1) {

value[ii] = comp->period;
}else{

if (vr[i] == 2) {
qualifiers[ii]=fmi3IntervalNotYetKnown;
if (comp->duty >= 0) {
value[ii]=comp->duty;
if (comp->duty==comp->PreDuty)
qualifiers[ii]=fmi3IntervalUnchanged

else
qualifiers[ii]=fmi3IntervalChanged;

comp->PreDuty=comp->duty;
comp->duty=-1.0;

}
}else{

return fmi3Error;
}

return fmi3OK;
}

fmi3Status fmi3SetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Float64 intervals[]) {
/* some code here */

if (vr == 1) {
comp->period = value;
return fmi3OK;

}
return fmi3Error;

}

Importing FMU-3.0: challenges in proper handling of clocks

140 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131


