
[Industrial Paper] Performance Measurement and

Finding Challenges in Using FMUs

to Perform Scenario-Based Testing in a Cloud Environment

Katsuya Tsuzuki1 Takashi Yamada1 Kensuke Araki1
1 dSPACE Japan K.K., Japan, {ktsuzuki, tyamada, karaki}@dspace.jp

Abstract
This paper describes the implementation of the scenario-

based testing, a test method for autonomous driving

software, by coupling a plant model described using

MATLAB/Simulink with another plant model provided

as functional mock-up unit (FMU) on a cloud platform.

During the implementation of plant models into the

cloud environment using the functional mock-up

interface (FMI), there are problems and countermeasure

challenges were identified. In addition, the impacts of

integrating multiple models on simulation time by

parallelizing test cases are measured.

Keywords: Model-based Development, Cloud

computing, Scenario- Based Testing

1 Introduction

In recent years, the automotive industry has been at a

turning point that is characterized by two trends. One is

the trend toward electrification, and the other is

intellectualization (Yamada, 2020; dSPACE Japan,

2013). The trend for intellectualization is a shift of

technical development from advanced driving

assistance systems (ADAS), such as automatic

emergency brake (AEB) systems, to autonomous

driving (AD) systems.

As vehicles become more electrified and intelligent,

an in-vehicle system for controlling components in the

vehicle gets more complicated. Developing components

across multiple domains, including electrical,

mechanical, fluid, and control systems, becomes

essential, and there was an issue with interfacing

components from multiple domains on a simulation

platform. FMI, a standard proposed by the Modelica

Association, solves this problem.

There is a solid demand for applying model-based

development (MBD) to AD system development for

efficient development and validation. The PEGASUS

project, a public-private project funded by the German

federal government, discussed what validation

environment and methods for AD systems should be. As

a result, a testing method using MBD tools was

proposed in the project, what was called “scenario-

based testing” (PEGASUS project, 2019).

Scenario-based testing is a test method

characterized by automatic new test case generation

based on past test results. It is helpful to efficiently

perform AD system validation with a limited number of

test workloads by automatically finding test parameters

that should be intensively tested. Scenario-based testing

was also proposed in ISO21448:2022 Road vehicle

Safety of the intended functionality (SOTIF) for AD

software safety functionality, which was published in

June 2022 (ISO, 2022).

Compared to validating a conventional real-time

control system such as an internal combustion engine

control system, the number of test cases for AD system

validation is still large, even when the scenario-based

testing method is applied. An AD system validation

environment needs to manage such a large number of

tests.

People expect the adaption of a cloud computing

environment to be one of the solutions to this challenge.

In cloud computing, users access computation resources

via the Internet. On a cloud computing platform, tests

can be performed in parallel while flexibly increasing or

decreasing required computing resources depending on

the number / scale of the tests.

However, there are few examples using cloud

computing for system validation using MBD tools,

although Yamada, Araki, and Tsuzuki reported some

cases at JSAE 2022 Spring and Autumn Congress

(Yamada et al., 2022; Araki et al., 2022).

Based on this background, this paper summarizes

the challenges faced in integrating multiple plant models

using a FMU to realize a prototype system for AD

system verification by scenario-based testing in a cloud

environment. In addition, we carry out several scenario-

based tests in the environment, and the simulation times

are measured to compare execution time with and

without the FMU. Furthermore, we parallelize the

execution of several test cases, compare the impact of

parallelization on the simulation time and discuss how

FMU affects execution time when test cases are

parallelized.

DOI
10.3384/ecp193141

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

141

This paper is organized as follows. Section 2

describes the experimental test system and the models

to be simulated. Section 3 and Section 4 describes the

experiment results of the test system execution

described in Section 2, and the results obtained from the

experiments, respectively. Section 5 lists challenges

identified during the experiments performed in Section

3 and discusses how we can solve challenges. Section 6

concludes the paper with limitations and future works.

2 Experimental Environment

An experimental environment for validating automated

driving algorithms using FMU in a cloud environment

was built and tested in the following three steps.

Our goal in this section is to integrate the plant

model with a FMU to a cloud environment, which is

suitable for scenario-based testing. Section 2.1

describes a plant model used in simulation and how it is

integrated to an on-premise simulation environment on

Microsoft Windows, which was commonly used to

validate a conventional system so far. In section 2.2 we

explain how the plant model, designed to be used on

Windows, is ported to a Linux environment, which is an

operating system commonly used in a cloud platform.

Finally, in section 2.3 we describe how we integrate the

ported plant model into a cloud simulation environment.

2.1 Plant Model on a Windows PC

The plant model used for the experiments was

prepared in an on-premise Windows PC environment,

which is commonly used today. The simulation model

was prepared based on ASM Traffic, one of the

packages in the dSPACE Automotive Simulation

Models (ASM). ASM Traffic is a model designed to

simulate roads, traffic, buildings, and in-vehicle sensors

around vehicles, and is used for validation of AD and

ADAS electric control units (ECUs).

This time, ASM in dSPACE Release 2021-A was

modified in MATLAB / Simulink R2020a to remove

blocks related to aerodynamics. Functionality

corresponding to the removed aerodynamic block was

implemented in OpenModelica 1.19.2 and output as an

FMU. The output FMU conforms to FMI 2.0 co-

simulation.

The ASM-modified model and the model created

in OpenModelica 1.19.2 were integrated using dSPACE

VEOS, a simulation platform that enables software-in-

the-loop (SIL) simulation on a Windows PC.

As a controller model, which is a model that should

be validated in the SIL simulation system, we used Soft

ECU in this experiment, a simple controller model that

comes with ASM.

Figure 1 shows a schematic of the plant model built

on a Windows PC. Figure 2 shows a screenshot of

dSPACE VEOS Player when the test environment is

being built. It can be seen that the I/O from the controller

model and the plant model are inter-connected.

Figure 1 An overview of Windows simulation

environment.

Figure 2 An example of simulation configuration in an

on-premise environment with dSPACE VEOS Player.

2.2 Cross Compiling Models for Linux

Environment

Linux is the most common operating system for cloud

computing environments. In order to integrate the plant

model in a cloud environment, it was necessary to cross-

compile the model to a Linux environment.

Simulink, ASM, and VEOS support execution on

Linux, and a FMU generated from OpenModelica also

claims to support Linux. Cross-compilation of the plant

model to a Linux environment was performed without

major problems. However, since operating system is

different, it was necessary to check whether there is any

difference in simulation results between the Windows

environment and the Linux environment.

In this paper, Ubuntu 18.04LTS was used as Linux.

Figure 3 shows the plant model that was built on a Linux

environment.

Simulation Platform (VEOS)

OS (Windows)

ModelSoft

ECU

Automotive

Simulation

Model

[Industrial Paper] Performance Measurement and Finding Challenges in Using FMUs to Perform
Scenario-Based Testing in a Cloud Environment

142 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193141

Figure 3 An overview of Linux simulation

environment.

2.3 Plant Model Integration in Cloud

Environment

In the cloud environment, we used dSPACE

SIMPHERA version 22.4, which is an environment for

SIL simulations running on various cloud platforms

such as Microsoft Azure. Taking advantage of the

features of cloud computing, which can secure

computing resources in a scalable and flexible manner,

the tests are distributed and executed in parallel on

multiple computation nodes, enabling the execution of a

huge number of tests, such as those for autonomous

driving applications. Figure 4 illustrates an overview of

simulation environment on a cloud.

Figure 4 An overview of the simulation environment in

the cloud.

SIMPHERA is developed as a Kubernetes cluster

in a cloud environment. Kubernetes is an open source

container orchestration software that is widely used.

Container orchestration is automation of container

deployment, management, scaling, and networking.

The SIMPHERA system is composed of open

source software (OSS) built on a Kubernetes cluster and

software from dSPACE. As OSS, MinIO, an object

storage server compatible with Amazon S3 cloud

storage service, is used for storage management,

PosgreSQL, a relational database management system,

is used as a database for input and result data, and

Keycloak, personal authentication and access

management software, is used for WebUI login

management.

On the other hand, dSPACE software includes

SIMPHERA execution agent, which is equivalent to an

application execution unit that executes jobs for each

parameter to compute scenario-based tests in parallel.

dSPACE VEOS runs as simulation software for

scenario-based testing in SIMPHERA execution agent.

The SIMPHERA system configuration diagram is

shown in Figure 5.

 Figure 5 System overview of dSPACE SIMPHERA

In this study, the private cloud environment shown

in Table 1 was prepared and SIMPHERA was built on

this private cloud environment.

3 Scenario Definition

Using the experimental environment in which the plant

model was implemented in SIMPERA on the cloud

environment as described in Section 2.3, simulations in

the scenario-based test were performed with different

parallelism levels for models with and without FMU,

and the relationship between parallelism and execution

time was measured.

The scenario used in the scenario-based test was

the United Nations Economic Commission for Europe

(UNECE) Automatic Lane Keeping System (ALKS)

Cut-In Driver. This is a validation scenario for the

Simulation Platform (VEOS)

OS (Linux)

ModelSoft

ECU

Automotive

Simulation

Model

Simulation Platform (SIMPHERA)

Model

FMI

A Cloud Platform

Remote

Storage

Soft

ECU

Automotive

Simulation

Model

Table 1 Specifications of Private Cloud.

 loud Specification

CPU 28 logical cores

Memory 48GB

Storage 512GB

OS Ubuntu 20.04LTS

Session D: Tools, FMI related

DOI
10.3384/ecp193141

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

143

ALKS when another vehicle, traveling in adjacent lane,

changes to the own lane.

In Figure 6, an illustration of the UNECE ALKS

Cut-In Driver scenario and the definition of each

parameter are shown.

In this experiment, the speed of the ego vehicle

(Ve0) was varied from 50 km/h to 51 km/h for all two

cases of testing. The scenario parameters used in the

experiment are shown in Table 2.

In SIMPHERA, the WebGUI shown in Figure 7 was

used to implement visually easy-to-understand settings

for the above parameters.

Figure 7 An example of simulation configuration in a

cloud environment with dSPACE SIMPHERA.

4 Experimental Results

Simulations were performed on SIMPHERA for a

model linking ASM and FMU and a model of ASM

alone, changing the parallelism from one to two parallel

jobs for all two cases of scenario-based testing,

respectively, and the execution times were measured.

Parallelism is the maximum number of jobs that can be

executed simultaneously on SIMPHERA and is one of

the parameters that can be given to the execution

environment by the user.

When the parallelism level was set to 1, the

execution time of the ASM stand-alone model was 68.7

[sec], while the execution time of the model linking the

ASM and FMU was 70 [sec]. When the parallelism was

set to 2, the execution times were 35.7[sec] and

36.3[sec], respectively. Figure 8 shows the experimental

results.

The results show that the execution times of the ASM

stand-alone model and the model linking the ASM and

FMU were almost the same.

In addition, when the parallelism level was

changed from 1 to 2, the computation time was inversely

proportional to the parallelism level and almost halved.

Experimental results are shown in Figure 8.

Figure 8 Duration time depending on the degree of

parallelism

In the case of the model in which ASM and FMU

are linked, the computation time may increase compared

to the ASM stand-alone model due to overhead caused

by communication between cores and overhead caused

by communication between ASM and FMU, etc.

However, since the computation time for the

overhead has not increased even if the parallelism level

is increased The overhead due to the parallelism and

communication between the ASM and the FMU are

Figure 6 UNECE ALKS Cut-In Driver Scenario and

Parameters.

Table 2 Scenario, parameters.

Scenario UNECE ALKS Cut-In
Driver

Parameter

variation type

Cross Variation

dx0 11 m (Fix)
Ve0 50 ~ 51 km/h (Δ = 1

km/h)
Vy 3 m/s (Fix)

[Industrial Paper] Performance Measurement and Finding Challenges in Using FMUs to Perform
Scenario-Based Testing in a Cloud Environment

144 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193141

confirmed as not increased as the overhead due to the

communication between the ASM and the FMU.

The reasons for the almost no difference in

computation time between the model linking ASM and

FMU and ASM can be attributed to the fact that the

FMU model created and used for this study is stand-

alone and lightweight, and that the overhead in linking

the ASM and FMU models on dSPACE VEOS used for

the simulation was small. The reasons for the difference

are considered to be the following.

5 Challenges Identified during the

Experiment

During the experimental environments and its execution,

we identified some challenges. In this section we

attempt to list up the challenges faced to the trial.

5.1 Challenges on Operating System

Migration

Prior to the plant model construction on a Windows PC

described in section 2.1, we had created an FMU using

OpenModelica 1.18.1. However, when the FMU output

from OpenModelica 1.18.1 was to be run in a Linux

environment, additional software libraries specific to the

Linux environment had to be installed.

The software libraries that needed to be installed

additionally are, for example, liblapack.so. Other

software libraries that were additionally required are

shown in Talbe3.

However, this issue has been resolved in

OpenModelica 1.19.2, and additional libraries are pre-

installed in the FMU. In this experimental environment,

there was no need to install additional software libraries.

In an on-premise environment, the installation of

libraries may not be so much of a problem because the

person who performs the simulation often has

administrative privileges, but in a cloud environment,

where many users are supposed to use the system, it is

rare for the user to have administrative privileges, and it

is difficult to install additional software libraries.

Additional installation of software libraries is difficult

and should be done with caution.

 In addition, non-compatibility of measurement and

calibration software with Linux may also be an issue.

Software for measurement and on-line calibration of

simulation results after the simulation environment has

been built also requires attention. Although many

companies provide measurement and calibration

software that can be used on-premise, most of them are

Windows versions, and the same software may not be

available for Linux and cloud environments. On the

other hand, some software, such as dSPACE

ControlDesk, is designed to work with simulation

environments in the cloud.

5.2 Challenges arising from the use of FMUs

In this study environment construction, we faced some

issues specific to the use of FMI/FMU that are likely to

occur regardless of whether the system is used in the

cloud or not. Many of these are described in the FMI

guidelines published by the Society of Automotive

Engineers of Japan (JSAE), but are listed again in this

section. The main issues faced were that "the FMU end

time setting is contained within the FMU" and "a bus

cannot be specified as the interface of the FMU.

First, the FMU end time settings are contained in

the FMU, and any attempt to modify them requires

direct editing of the files contained in the FMU.

Otherwise, the operation of the FMU may be stopped

unintentionally by the user, independent of the operation

on the simulation platform.

Next, it is noted that buses cannot be specified for

FMU interfaces; only arrays defined by a scalar value or

a set of scalar values of the same type can be used to

describe interfaces between FMUs and their externals.

The interface between the FMU and the external model

can use variables of various types, preferably in the form

of structures in high-level programming languages or

buses in Simulink.

However, the FMI2.0 specification used in this

study does not support the connection between FMU

and external models using these types and buses, and it

is necessary to separate signal lines that are grouped into

buses and connect them one by one. This leads to an

increase in man-hours required to connect models,

especially when connecting huge models. Regarding

this issue, it is highly likely that FMI3.0 solves this

problem; future research on experiments using FMI3.0

is expected.

6 Concluding Remarks

In this study, we performed scenario-based test jobs for

validating autonomous driving algorithms using FMU

in a cloud environment with different degrees of

parallelism, evaluated the performance of parallel

computation, and compared the computation time with

and without model linkage between ASM and FMU.

Table 3 External libraries referenced by FMU.

External Libraries

liblapack.so.3

libblas.so.3

libgfortran.so.5

libquadmath.so.0

Session D: Tools, FMI related

DOI
10.3384/ecp193141

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

145

The results show that the calculation speed

increases with the degree of parallelism even when the

model linking ASM and FMU is used. In addition, we

examined the point where there is no significant

difference in computation time between ASM and

FMU-linked models and ASM and the reasons for this

difference.

6.1 Future Works

In this study, we evaluated the performance of scenario-

based tests for validating automated driving algorithms

in a private cloud environment by varying the

parallelism of the jobs. Since we have not yet conducted

parallel computation in a public cloud environment,

where computing resources can be flexibly changed, it

remains to be seen whether the trend of results differs

between the two environments and whether the

bottleneck changes.

Also, we evaluated the performance of the

scenario-based test for validating the automatic driving

algorithm using FMUs when the test was run in parallel.

We compared the computation time with and

without FMU collaboration. In this study we used a

single FMU and a small-scale model. What will happen

when multiple or large-scale FMUs are used, and how

we dealing with them will be the subject of future

research.

References
K. Araki, K. Tsuzuki, and T. Yamada (2022): Simulation

Performance for Scenario-based Testing in a Cloud

Environment, 2022 JSAE Annual Congress Autumn

(written in Japanese).

dSPACE Japan (2013): Model-based Development, Nikkei

BP (written in Japanese).

ISO (2022): ISO21448:2022 Road vehicles -Safety of the

intended functionality, available at

https://www.iso.org/standard/77490.html, accessed on 19

Sept 2022.

PEGASUS Project (2019): PEGASUS Method – an Overview,

available at https://www.pegasusprojekt.de/en/home,

accessed on 19 Sept 2022.

T. Yamada (2020): Model-based Development, Technology

Roadmap 2021-2030 Automotive and Energy, Nikkei BP,

p. p. 236 – 239 (written in Japanese).

T. Yamada, K. Araki, and K. Tsuzuki (2022): Challenges and

Countermeasures in Using FMUs to Perform Scenario-

based Testing, 2022 JSAE Annual Congress Spring

(written in Japanese).

[Industrial Paper] Performance Measurement and Finding Challenges in Using FMUs to Perform
Scenario-Based Testing in a Cloud Environment

146 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193141

