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Abstract

We propose and implement a generic scheduling frame-
work for OpenModelica to eliminate the simulation code
corresponding to inactive components in a system-level
model. This framework allows the model developer to
auto-generate models corresponding to the discrete be-
havior of the underlying system, and then schedule their
simulations. It also provides a Scheduler library in
the Modelica language to help the model developer eas-
ily generate the schedule. The benefit of this approach
is demonstrated with and without real-time simulations of
a batch distillation system. The proposed approach also
helps implement a sequential modular simulation to arrive
at initial guesses for flowsheets, whose equations can then
be solved simultaneously using the standard, equation-
oriented, approach of Modelica.

Keywords: Schedule, OPC UA, OpenModelica, Batch dis-
tillation, Steady-state, Variable-structure modeling, Se-
quential modular simulation

1 Introduction

The ability to model discrete behavior is an important re-
quirement in industrial systems, even in continuous plants,
such as refineries. The reason is that these plants also need
to be cold started and shut down in case of emergencies.
Unless startup and shutdown procedures are clearly un-
derstood, one cannot even take the lab-scale discoveries
to the plant level for manufacturing. Hence, the ability to
correctly model discrete behavior is an important require-
ment.

System-level modeling of a huge and complex system
has become a common methodology for system engineer-
ing design (Pop et al. 2019). Such modeling can include
several hierarchies of subsystems and a large number of
components. Most general-purpose simulators broadly
fall into one of the following three categories based on
the way they process the information in the system under
simulation: discrete event, continuous, and hybrid, i.e., a
combination of the continuous and discrete-event simula-
tion.

The simulators treat the system-level modeling as a
single unit for efficient compilation to generate the sim-

ulation code and run the simulation itself. That is, the
system-level modeling design is no longer preserved, and
all its hierarchy and components are compiled and simu-
lated entirely. A similar software framework is observed
as a part of the typical process of translation and execu-
tion of a system-level model in most of the Modelica tools
(Fritzson 2014), including the open-source OpenModelica
compiler (Pop et al. 2019). Such frameworks can lead to
the compilation and simulation of inactive subsystems and
components, leading to some difficulties.

In order to address the main issue of constantly run-
ning simulation code that is not required, we propose a
generic scheduling framework. It describes the discrete
behavior of the system to be modeled in terms of a sched-
ule. This framework also helps schedule their simulations
(Section 2). Section 3 discusses the related work within
and outside the Modelica context. In Section 4, we present
a prototype developed for this framework that lever-
ages the OpenModelica Simulation Environment (Fritz-
son et al. 2020) along with a Modelica library called
Scheduler. Sections 5 and 6 demonstrate the bene-
fits of the proposed approach in a batch distillation col-
umn and process flowsheeting, respectively. The last sec-
tion is devoted to the conclusion and future work. In
our work, the system-level modeling primarily involves
variable-structure systems.

2 Scheduling Framework

To understand the motivation behind this work, let us con-
sider the following example. Consider the cold startup of
an overflow tank connected to a pumped flow tank, as
shown in Figure 1. Initially, there is no liquid in both
tanks. Until the liquid level rises in the first tank to the
level of the outflow line, there can be no liquid in the sec-
ond tank. Without the liquid, starting the pump will dam-
age it. In addition, suppose that we have to calculate the
liquid density in the second tank. Unless suitable precau-
tions are taken, there could be difficulties in the calcula-
tion because of the zero volume of the liquid. There are
three different ways to handle this situation:

1. Noticing zero volume in the tank, do not calculate the
density nor implement any calculation that requires
density.
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Figure 1. System-level model of two interacting tanks

2. Assume that there is always a small amount of liquid
present in the second tank and calculate the density.

3. Do not even attempt to simulate the second tank until
the liquid starts coming from the first tank.

The first approach increases the load on the model de-
veloper. They must anticipate all the different ways the
modeling assumptions can be violated and take corrective
actions. The second approach results in erroneous calcu-
lations, however small they may be.

The above two approaches necessitate solving all sub-
systems, including the inactive ones. This approach is
not acceptable if the objective is to do minimal model-
ing, such as arriving at the initial guess of a large num-
ber of model equations by solving a few equations at a
time, as explained in Section 5. The advantage of the min-
imal modeling approach is that it does not require setting
up initial guesses for inactive models. The third approach
does not have the difficulties mentioned above, provided
we have the capability to simulate at the correct time. In
this work, we attempt to create this capability to simulate
only the required models.

2.1 Schedule for System-Level Modeling

The active components or subsystems of a system can be
effectively determined through its discrete behavior. The
same can be modeled through discrete events in terms of a
schedule. Thus, the model developer constructs a schedule
of dependent tasks and events for system-level modeling.
An event indicates a condition based only on the currently
scheduled task. It specifies the next task to be scheduled
when the event triggers. l.e., the condition is satisfied.
Note that the condition can involve just the simulation
time so that it does not constrain the variable-structure
model to generate events from its state. A task can include
a set of components, subsystems, or several systems. It
will be simulated only when activated based on the target
of the event associated with the currently scheduled task.
From the above description, the following are the observed
properties of any schedule for system-level modeling:

* An event is associated with only one task and spec-
ifies only one task to be scheduled next. A task
can have several events associated with it, which can
schedule only one of the several next tasks depending
on the order of the events being triggered.

furnishes System-Level Model
e and
Schedule

Model Developer

Scheduling Engine

'

Start Simulation
of Task

¢ Trigger Event
Monitor Event

A

Condition

Condition
Satisfied?

Figure 2. Generic Workflow for Simulation Scheduling

End Simulation

* The schedule turns out to be a directed and connected
graph with an alternate sequence of tasks and events.
Each node in such a graph represents the pair of a
task and its associated events. The worst-case sched-
ule can be a complete graph.

* The graph can have backward and forward edges
with respect to a node. However, there is no self-
loop back to a node as it has no practical significance
and can be handled within the node itself.

» This graph is compliant with control workflow pat-
terns (Russell, Van Der Aalst, and Ter Hofstede
2016) such that only one node gets activated at any
point of simulation time, and the directionality be-
tween the nodes is preserved. As analyzed from the
first property, the possible control patterns include
unstructured loop, sequence, exclusive choice, and
simple merge. These patterns are considered for im-
plementation in Section 3.

2.2 Simulation Scheduling

Figure 2 shows the generic simulation scheduling once
the model developer provides the system-level model and
its schedule. The scheduling engine is an intermediate
layer between the system-level modeling and the under-
lying simulation tool. The engine parses the model and
simulates only the first task based on the schedule pro-
vided. The events associated with the task are monitored
to evaluate their conditions. If any of them is satisfied,
then the corresponding event gets triggered. The engine
then simulates the next task in the schedule from the point
in simulation time where the previous task left. The pro-
cess repeats until the end of the entire simulation time.
The above framework descriptions and schedule prop-
erties divide the system-level modeling into discrete parts
of the components or subsystems. Thus, it also divides
the single continuous simulation into multiple but efficient
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smaller and faster simulations of tasks. The efficiency
is achieved in terms of smaller executable code size and
lesser memory requirements for each task when compared
to the entire simulation done with existing frameworks.
The same is noticeable from the demonstration discussed
in Section 6. Otherwise, it can waste CPU cycles as the
data can keep on shuffling between the CPU cache and
the RAM (Pop et al. 2019). As only one task will be sim-
ulated at any given point of the simulation time, the goal
is thus achieved by not simulating the rest of the inactive
tasks. Therefore, the unnecessary running of the simu-
lations for the inactive tasks is prevented, which anyway
will not impact the simulation of the current task.

The framework is independent of the underlying sim-
ulation tool and the modeling language it uses. As a re-
sult, it also permits real-time and interactive simulations
and does not require any rework of the existing simulation
tools. Note that the interactive simulation here indicates
that one can interact with the model during its simulation
by monitoring and optionally modifying the state of the
model as per the requirement.

3 Related Work

There is no native support, nor is there any Modelica
tool that provides a generalized extension or framework of
the type described here, suitable for all domains (Casella
2019; Jack 2020). Nevertheless, there are attempts at
variable-structure modeling similar to the proposed simu-
lation scheduling workflow (Briese 2018; Mehlhase et al.
2014, Stiiber 2017). Stiiber (2017) further discusses sev-
eral implementations and their drawbacks. They use spe-
cialized forms of the proposed generic simulation schedul-
ing workflow suitable for their applications. One ap-
proach common to all of them involves either the re-
implementation of their existing models or manual work
for generating models with different structures and ex-
ploiting the functionalities of proprietary tools. Also,
none of these related works exhibits real-time and interac-
tive simulation capability. Apart from these application-
specific implementations, there is a need for sequential
modular simulation in OpenModelica (Casella 2021). It
also indicates that no such related generalized work has
been done for OpenModelica.

Outside the Modelica context, the following are the
prior work that attempts to have similar modeling capabil-
ities that we have proposed but simulate as per the existing
framework.

The special-purpose and open-source Ngspice circuit
simulator (Vogt et al. 2021) partially avoids running simu-
lation code that is not required. The components in the cir-
cuit are mapped to a C function through its XSPICE exten-
sion. As a result, the C function gets invoked only when
the signal reaches the corresponding component. How-
ever, this behavior is applicable only for the digital com-
ponents, while the analog simulation of all components is
still running even though they may not be required.

A proprietary and general-purpose simulator, GoldSim,
has conditional containers similar to the conditional task
scheduling in our engine. However, it still keeps on con-
stantly running the code in idle mode for those compo-
nents that are not required (GoldSim Technology Group
2022). Similar functionality is observed with the general-
purpose AnyLogic simulation software (The AnyLogic
Company 2022) and gPROMS (Process Systems Enter-
prise Ltd. 2004), a special-purpose simulator focused on
chemical processes. Another proprietary but discrete-
event simulator, FlexSim, has conditional task functional-
ity. However, again, the components still keep running and
remain idle as described in their tutorial (FlexSim Soft-
ware Products, Inc. 2022).

Another application of variable-structure modeling,
which has received great attention, is the simulation of the
reconfigurable manufacturing system (RMS) that implies
a change in the factory structure. K et al. (2019) and Herps
et al. (2022) demonstrate the simulation of their proposed
manufacturing processes using FlexSim and AnyLogic re-
spectively. However, as mentioned earlier, both software
keeps executing the conditional elements even if they are
redundant. Kahloul, Bourekkache, and Djouani (2016)
use reconfigurable object Petri nets to model and simulate
RMS. It has system-level nets that involve fire and trans-
form transitions and a set of morphisms. It allows chang-
ing between the object net markings and structures corre-
sponding to each configuration. Although this modeling is
similar to the work described here, their entire RMS rep-
resentation is simulated as a single model. It thus loses
the benefit of an already discretized model and the scope
to avoid running redundant simulation code.

The FMI standard in terms of System Structure and Pa-
rameterization (Modelica Association Project SSP 2019)
and Distributed Co-Simulation Protocol (Modelica Asso-
ciation Project DCP 2019) may possibly be exploited to
achieve the goal of our work. These co-simulation stan-
dards, which are out of the scope of this work, shift ef-
forts from simulation run-time (scheduling framework) to
simulation configuration time. However, as the discrete
behavior of the system can be known at run-time, one has
to additionally anticipate different scenarios with variable
structures and generate them only at configuration time.

4 Implementation of Scheduling
Framework for OpenModelica

The primary goal of our work is to run only the simula-
tion code that is required. In the simulation context and
to the model developer, it indicates that the subsystems or
components are to be simulated only when activated, i.e.,
lazily simulated. As mentioned earlier, our implementa-
tion is based on the Modelica language. The systems are
modeled using equations in this language and require all
equations to be solved simultaneously during the entire
simulation. The goal, hence, boils down to preventing un-
necessary solving of the equations governing the behavior
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Figure 3. Structure of the Scheduler library shown in
OMEdit - OpenModelica Connection Editor
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Figure 4. User interfaces for Scheduler library’s important
blocks as shown in OMEdit - OpenModelica Connection Editor

of inactive components or subsystems.

The overall prototype implementation has two parts.
The first one is only the creation of the schedule for the
variable-structure model using the Scheduler library
without any need to re-implement the model. The sec-
ond one is the simulation scheduling using an engine that
leverages the OpenModelica Simulation Environment.

4.1 Scheduler - Modelica Library

For the model developer to construct the schedule con-
sisting of tasks and events, we have developed a library,
called Scheduler, in the Modelica language itself. Fig-
ure 3 shows its structure in OMEdit, the OpenModelica’s
connection editor. The Task and Event classes corre-
spond to the schedule’s task and event discussed in Sec-
tion 2, and their user interfaces are shown in Figure 4.
The InitialTask class is the same as the Task class,
except that it indicates the start of the schedule. The
ScheduleRoot class requires the model developer to
specify the top-level model in the hierarchy of system-
level modeling and the general simulation parameters ap-
plicable to all the tasks in the schedule. The schedule
must have an instance of this class. The Interfaces

sub-package provides the desired abstraction to the above-
mentioned classes and is not meant to be used directly.

The classes in the Scheduler library themselves are
available as components, which the model developer can
drag and drop in OMEdit, and also write the Modelica
code to connect the tasks and events. As shown in Fig-
ure 4, the model developer has to provide a list of compo-
nents or subsystems for each task along with the package
name to find these components. There is also a provision
to specify compilation and simulation flags in addition
to those mentioned in the instance of ScheduleRoot
class. These flags will be applicable only to that task. The
event condition needs to be specified for all the events in
the schedule. The schedule can be created within the top-
level model, i.e., in the same file as the top-level model or
outside it as a separate file having the name as Schedule
within the same package.

4.2 Scheduling Engine

As discussed earlier, there is no native support in Modelica
for scheduling. So, the implementation of the scheduling
engine needs to be outside the Modelica context, which
we have done in Python language. The scheduling en-
gine requires only the system-level model and the sched-
ule to be provided by the model developer. It is an ad-
ditional layer between the user’s system-level model and
OpenModelica. That is, it runs on top of the OpenModel-
ica compiler (OMC) in an interactive mode and is loosely
coupled to OMC. It leverages OMC’s ZeroMQ communi-
cation interface through OMPython to take over the typ-
ical compilation and simulation process in OpenModel-
ica. OMPython is a part of the OpenModelica Simulation
Environment and acts as a Python interface to communi-
cate with OMC. The provided schedule is parsed indepen-
dently of OpenModelica per the scheduling framework. It
then distributes the system-level model into several sets of
active subsystems or components preserving the connec-
tions between them, where each set corresponds to a task
in the schedule. As a result, it automatically generates all
the models corresponding to each task on behalf of the
model developer.

The scheduling technique used by the engine is sim-
ilar to the next-event scheduling used commonly in the
discrete-event simulation. That is, when each event is
set up, it creates (schedules) the next procedure (task and
event). Following this scheme, only the initial task to be
run first is compiled and then simulated. The events as-
sociated with the initial task are monitored to evaluate the
corresponding conditions. The next task in the schedule
is activated when one of these events gets triggered. If the
event condition gets satisfied immediately upon the start of
task simulation, then the task simulation is terminated im-
mediately without consuming any further simulation steps
and the next task gets scheduled. The next task is com-
piled and then simulated by transferring the end results of
the previous task to the next. This transfer of end results
ensures the continuity of the state from where the previous
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task left. It acts as initialization conditions for the next
task, by overriding the default ones provided by the model
developer within the model itself. If any other additional
information is not present in the previous or the next task,
then the model developer can still provide it using suitable
OpenModelica simulation flags applicable to that task. An
example of specifying additional information to initialize
the tank height with 5 units is shown in Figure 4 (a). The
above entire process is repeated until the end of the entire
simulation time.

The monitoring of events and evaluation of the associ-
ated conditions is achieved through the OPC UA server
implementation in OpenModelica (henceforth referred to
as the server). OPC UA is an interoperability standard
in industrial applications. The server is suitable for in-
teractive simulation in real-time as well (Kumar et al.
2021). The next section also illustrates the same using
the scheduling framework. Note that the interactive sim-
ulation through OPC UA does not involve any kind of
visual interface or animation, and is out of the scope of
the work described here. The scheduling engine acts as
the OPC UA client and simulates each task with an em-
bedded server. The event monitoring process leverages
the publish-subscribe model of the server. The process
variables (PV) and the manipulated variables (MV) in the
event conditions are subscribed for notifications by the
scheduling engine. As a result, simulation time is saved
by not polling continuously for the changes in PV and MV
over the OPC UA client-server configuration.

As observed from the above engine implementation, the
compilation and simulation of each task are done just in
time. That is, the tasks are compiled and simulated only
when they are required. Note that there are no repeated
compilations of the same tasks. The very first compiled
tasks are reused again with a different context whenever
required. It is possible to manually create the model corre-
sponding to each task, compile them and then use them for
manual scheduling. However, it is not feasible and error-
prone when the complexity of the system and schedule
scales up. Thus, the automatic distribution of the system-
level model and simulation scheduling is more efficient
than the manual work for the model developer. The impor-
tance of the problem attempted in this work and the usage
of the proposed framework through the above implemen-
tation is illustrated through two engineering examples, to
be presented next.

S Batch Distillation System

In this section, we explain how the proposed framework
helps reduce the computations in the operation of the
batch distillation column (Figure 5) studied by Kumar et
al. (2021) using an OpenModelica OPC UA client-server
configuration. In this example, a feed stream contain-
ing three chemicals is separated into pure components.
Sharma, Moudgalya, and Shah (2021) operate the opening
and closing of the valves through the StateGraph library

Valve - 1

=l

Tank - 1
. V- Valve - 2
[E— hra
1 -
‘;‘_" Tank - 2
— Al Valve - 3
|

Tank - 2
valve - 4

B4

Batch Distillation Column Tank - 4

"
Figure 5. Batch distillation system for ternary mixture with

product and slop cuts

ScheduleRoot
root

oo

InitialTask Taskl Task2 Task3 Taskd

E- LB

eventl event2 event3 event4

Figure 6. Schedule of the batch distillation system using
Scheduler library

(a) InitialTask: Batch dis-
tillation column with no distil-
late withdrawal

(b) Taskl: Batch distillation
system with Product-1 collected
in Tank-1

Tank-3

(¢) Task2: Batch distillation
system with Slop-1 collected in
Tank-2

(d) Task3: Batch distillation
system with Product-2 collected
in Tank-3

Figure 7. Task-wise sequence of active components of batch
distillation system simulated through the scheduling framework

in OpenModelica, which obviates the need for event con-
structs such as i f—else and when statements. All com-
ponents of the batch distillation system are simulated si-
multaneously in both approaches, irrespective of whether
they are active or not.

The batch distillation system with the product and
slop scheduling in different tanks is modeled through the
Scheduler library. The inlet valves of the product and
slop tanks are controlled according to the purity levels ob-
tained in the distillate. This depends on the mole frac-
tion of components in the distillate and reboiler, respec-
tively. Figure 6 shows the sequence of events and tasks
to be simulated on the occurrence of a particular time or
state event or both. This schedule is created in OMEdit
by drag and drop of five instances of Task class, four in-
stances of Event class, and one mandatory instance of
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ScheduleRoot class. It is defined outside the top-level
model of the batch distillation system (Figure 5) in a sep-
arate file but within the same package. Figure 7 shows the
sequence of subsystems corresponding to the simulated
tasks as per the schedule shown in Figure 6.

Listing 1. Tllustrative Modelica code for top-level model of
batch distillation system

model BatchDistillation
DistillationColumn Column;
Valve Valvel, Valve2, Valve3, Valved;
Tank Tankl, Tank2, Tank3, Tank4;
equation
connect (Column.outflowProductl,
inflow);
connect (Valvel.
connect (Column.
inflow) ;
connect (Valve?2.
connect (Column.
inflow);
connect (Valve3.
connect (Column.
inflow);
connect (Valve4d.outflow,
end BatchDistillation;

Valvel.

outflow, Tankl.inflow);
outflowSlopl, Valve2.

outflow, Tank2.inflow);
outflowProduct2, Valve3.

outflow, Tank3.inflow);
outflowSlop2, Valved.

Tank4.inflow);

Listing 2. Tllustrative Modelica code for InitialTask

model BatchDistillation
DistillationColumn Column;
end BatchDistillation;

Initially, the batch distillation system is operated at to-
tal reflux with no distillate taken out of the system. In this
condition, the valves and tanks connected to the batch dis-
tillation column are idle. So, the initial task is operated
only with the batch distillation column present, and all
other components are excluded as shown in Figure 7 (a).
This corresponds to the InitialTask of the schedule
in row 1 of Table 1. The scheduling engine parses this
task by removing all of the components and their con-
nect equations, except the batch distillation column, from
the Modelica code shown in Listing 1. It communicates
with OMC interactively through OMPython to achieve the
same. Listing 2 shows the illustrative Modelica code for
the resultant model after parsing ITnitialTask.

The communication involves sending commands, that
invoke the appropriate scripting API available in Open-
Modelica, and receiving the status of the command. As
mentioned earlier, the communication is done in the form
of client-server configuration over the ZeroMQ interface,
where the scheduling engine acts as the client and OMC
as the server. In this way, the scheduling engine automati-
cally generates the model for InitialTask without any
manual intervention of the model developer. This model
is kept in memory until it is compiled, but it can also be
dumped into a separate file for the model developer’s ref-
erence.

Once the model corresponding to InitialTask is
generated, it is compiled and its simulation is started by
embedding an OPC UA server with its executable. The

same is already demonstrated by Kumar et al. (2021). This
embedded OPC UA server allows the scheduling engine
to monitor the first event (event1). As soon as the event
condition being satisfied is detected, the scheduling engine
sends another command to gracefully terminate the simu-
lation. It, in turn, saves InitialTask’s current state in
the form of a result file. It can be visualized in OMEdit
by selecting the desired variables in its interface. The end
results from this result file act as the initialization condi-
tion for Taskl. The model generation, compilation, and
simulation for the rest of the tasks are done in a similar
manner as InitialTask.

When the desired purity of the lighter component is
achieved in the distillate, Valve-1 is opened, and the prod-
uct is collected in Tank-1. Accordingly, the next task
is scheduled with the corresponding event condition that
activates the Valve-1 and Tank-1 and is shown in Fig-
ure 7(b). This corresponds to Task1l in Table 1. The
initialization of this task is done with the transfer of end
results (state) from InitialTask. Note that the initial-
ization condition for the distillation column gets overrid-
den here as only its state information is present in the sim-
ulation of InitialTask. Thus, the initialization condi-
tion for Tank-1 and Valve-1 falls back to the default one
already described within the model itself.

In the next task of the schedule, as the purity of the first
component decreases below the desired level in the distil-
late, Valve-1 is closed. So, both Valve-1 and Tank-1 no
longer need to be solved in the simulation and hence are
removed. Simultaneously, Valve-2 is opened, and distil-
late goes to Tank-2 as slop cut, an undesirable product,
and is shown in Figure 7 (c). This corresponds to Task2
in Table 1. Similar to the previous case, the initialization
for this task is done only for the distillation column with
the state from Task1.

When the desired purity of the second component is
achieved in the distillate, it is collected in Tank-3. Cor-
respondingly, Valve-3 is opened, and Valve-2 and Tank-2
are removed from the simulation as shown in Figure 7 (c).
This corresponds to Task3 in Table 1. Similar to the pre-
vious cases, the initialization for this task is done only for
the distillation column with state from Task2.

When the purity level of the second component de-
creases below the desired level in the distillate, the next
step is collecting the slop in Tank-4 until the third com-
ponent reaches the desired purity in the reboiler. As seen
in Figure 9 the purity of the third component reaches de-
sired level well before the distillate is collected in Tank-4.
Hence, Valve-4 is never opened, and so Task4 is never
compiled and simulated.

Figure 8 shows the moles of product and slops in the
batch distillation system. Figure 9 shows the mole frac-
tions of component-1 and component-2 in distillate, and
component-3 in reboiler. These results obtained using
the scheduling framework are the same when performed
with and without real-time simulations. The setup for the
real-time simulation and the above results are identical to
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Table 1. Task-wise distribution of units for the batch distillation Table 2. Number of equations solved per task (as given by
system simulated through the scheduling framework

OpenModelica) compared with previous methods

Task (as | Active Inactive Corres-
per the | Units Units (not | ponding
schedule) (simulated) simulated) Figure
Initial | Distillation | All valves | Figure 7 (a)
Task column and tanks
Taskl Distillation | Valve- Figure 7 (b)
column, 2,34 and
Valve-1 and | Tank-2,3.,4
Tank-1
Task?2 Distillation | Valve- Figure 7 (c)
column, 1,34 and
Valve-2 and | Tank-1,3,4
Tank-2
Task3 Distillation | Valve- Figure 7 (d)
column, 1,24 and
Valve-3 and | Tank-1,2,4
Tank-3

—Molesin Tank-1 ———MolesinTank-2 — Moles in Tank-3

Nurnber of Moles

T T T T T T T T T T T 1
0 2000 4000 6000 8000 1e+04 1.2e+04 1.4e+04 1.6e+04
Time

Figure 8. Moles of distillate collected in tanks

those described by Kumar et al. (2021) using Raspberry
Pi performing real-time simulation in OpenModelica. The
only difference in the setup is that the controller here is
within the batch distillation model instead of Raspberry
Pi. Furthermore, the results here are in agreement with
the simulation results done using the StateGraph library
by Sharma, Moudgalya, and Shah (2021).

Table 2 compares the number of equations solved by
the previous methods with the current scheduling frame-
work for each task. Instead of solving the entire flowsheet
containing the distillation column, four valves, and four

Component-3 in reboiler Component-1 in distillate Component-2 in distillate

Mole Fraction

T T T T
o 2000 4000 6000 8000
time (s)

le+04 | 12e+04  14e+04  1.6e+04

Figure 9. Mole fractions of desired components in distillate

Variable-Structure Number of Equations Solved
Models OPC UA | StateGraph library | Scheduling framework
InitialTask 440 440 260
Task1 440 440 268
Task2 440 440 268
Task3 440 440 268
Distlaton Sysem |+ 440 0

tanks resulting in 440 equations, the scheduling frame-
work solves the active units at a particular event and re-
moves the inactive units from the simulation of the batch
distillation system. All the modeling equations are solved
using DASSL (Brenan, Campbell, and Petzold 1996) in
OpenModelica.

6 Steady-state solution of a flowsheet
through a sequence of calculations

This application is concerned with finding the steady-state
solution to chemical engineering flowsheets described by
a large number of equations. OpenModelica has the ca-
pability to collect the equations from different parts of a
flowsheet and solve them simultaneously. It is an impor-
tant capability, as design problems can be solved easily
in this framework. It is also suitable for dynamic simu-
lations. Unfortunately, having to solve a large number of
equations gives rise to some difficulties. As these are gen-
erally nonlinear equations, initial guesses are required to
solve them. Setting up the initial guess itself is difficult
for a large number of equations, let alone converging to
the steady-state solution.

Let us consider the Methanation flowsheet (Reklaitis
1983) given in Figure 10. In this system, the synthesis
gas, which is a mixture of CO, H;, and a small amount
of CHy, is converted to a higher content of Methane. The
reaction taking place is:

CO+3H, — CH4+ H,O

The feed stream at 93.3°C and the recycle stream are
fed to the mixer, followed by an adiabatic reactor with an

Reactor

Feed Mixer

Heat Exchanger

57

Recycle
Separator

515 B
Cooler 51@
59

Figure 10. Recyle process for the Methanation flowsheet
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Figure 11. Schedule of the Methanation flowsheet using the
Scheduler library

outlet temperature of 537.7°C. The effluent is then cooled
to 260°C in a heat exchanger. The effluent is split into
Methane rich stream containing 50% Methane at 93.3°C,
and the other stream is fed to a separator to remove water.
Methanation flowsheet is modeled and simulated se-
quentially using the scheduling framework. The sched-
ule is shown in Figure 11 and created in a similar manner
as that for the batch distillation system. Again, similar
to the batch distillation system, the initialization of only
those components of subsequent tasks is done for which
the state information is present in the respective previous
task. The initialization of the rest of the components falls
back to the default one described within the model itself.
The following describes the tasks and their scheduling:

* In the first task, a pure feed stream (S1) and the re-
cycle stream (S2) are mixed in the mixer (B1). The
B1 output is sent to another stream, S7. So, the sub-
systems (units) S1, 2, B1, and S7 are active during
InitialTask, and all other units do not partici-
pate in the simulation.

¢ In the second task, the mixed stream (S7), which was
the output of the InitialTask, acts as an input for
this task. It is taken to a reactor (B2) for the Metha-
nation reaction. Hence the units S7, B2, S4, and E'1
are active during Task1.

* In the third task, the product stream from the reactor
acts as input for the heat exchanger. The units 54,
B3, §6, and E2 are active when Task?2 is scheduled.

¢ During Task3, the cooled stream (56) from the heat
exchanger is taken to a splitter (B4) to split the stream
into two material streams. During this task, the units
S6, B4, S9, and S10 are active, and other units do not
participate in the simulation.

* In the fifth task, the S10 output from the previous
task is taken to the separator unit (B5) and separated
to give two output material streams. The units S19,
BS5, §12, 513, and E3 are active during Task4.

* In the final task, i.e., Task5, one of the output
streams from the separator unit (S13) is further
cooled using the cooler unit (B6). In this task, the
units S13, B6, $12, and E4 are active, and other units
do not participate in the simulation.

The results obtained using the scheduling framework are
identical to those shown by Reklaitis (1983). The number

Table 3. Number of equations solved and simulation efficiency
per task (as given by OpenModelica) compared to the entire
Methanation flowsheet

. Number of Executable | Memory Re-
Variable-Structure . . .
Models Equations Code Size quirement
Solved (in KB) (in MB)
Initial Task 648 1126 17.6
Task1 442 842 14.9
Task2 434 833 14.4
Task3 646 1126 16.9
Task4 675 1228 14.3
Task5 434 828 17.1
Entire Methanation 2339 3600 48.4
Flowsheet
Average reduction per
task compared to entire 76.63 % 72.30 % 67.22 %
Methanation flowsheet

of equations solved and the simulation efficiency in terms
of executable code size and memory requirements for each
task are provided in Table 3. Since multiple models are
now compiled through the tasks, one may perceive that the
sum total of code size and the memory requirements in-
crease as compared to the entire flowsheet. However, only
one of the tasks is simulated at any given point in time.
Thus, one has to consider only the resources correspond-
ing to a single task’s code size and memory requirements.
Hence, as mentioned earlier in Section 2, the efficiency
here is determined with respect to a given task only. It is
nearly a three-fourth average reduction in the number of
equations solved and code size, and a two-third average
reduction in memory requirement compared to the simu-
lation of the entire flowsheet. Here also, all the modeling
equations are solved using DASSL in OpenModelica.

7 Conclusion and Future Work

An attempt has been made to tackle the problem of ex-
cluding the simulation code corresponding to the inac-
tive components or subsystems while simulating a system.
This approach generally leads to more correct results. In
some cases, this may be the only way to achieve the end
goals of a simulation. It is achieved by allowing the model
developer to model the discrete behavior of their system
through a schedule.

Construction of a schedule is made possible through a
Modelica library Scheduler, developed in this work.
The scheduling engine is implemented as a layer between
the user model and the OpenModelica simulation environ-
ment. This approach is validated by applying it to the
operation of a batch distillation column that separates a
mixture, along with its real-time and interactive simula-
tion. An example involving the steady-state solution to a
chemical engineering flowsheet through a sequential mod-
ular simulation is also presented. In both cases, the results
are identical to those reported in the literature, obtained
through other approaches.

The future work would involve the performance and op-
timization aspects of the framework and its prototype. As
there is a dependency between any two given tasks, their
simulations cannot be done in parallel. But, their compi-
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lations can definitely be done in parallel, a feature avail-
able even in standard multi-core laptops. OPC UA, being
a protocol on the network, can be a significant bottleneck
(in terms of time and resources) for some models, and can
lead to accuracy issues due to the inherent nature of the
network. So, another method of simulation scheduling
without OPC UA is desired. The usage of either of the
two methods can be left to the model developer to decide
as per their simulation requirements. Another direction to
explore would be to extend the schedule’s workflow pat-
tern to include parallel routing. It would enable indepen-
dent tasks to be simulated simultaneously and possibly in
a distributed manner.
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