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Abstract 
This paper presents an approach on how to train a Neural 

Network model based on a detailed physical Modelica 

model. The necessary steps to generate training data 

from simulation will be explained as well as the 

generation process of a surrogate model. It will be 

shown, how the surrogate will be re-integrated into the 

Modelica system model. A benchmark based on 

accuracy and simulation performance will be 

performed. The tools used are Modelon Impact, an 

online modeling and simulation platform, the 

TensorFlow/Keras toolbox in a Jupyter Notebook which 

provides a Python-based interface for generating Neural 

Networks, and the Modelica Neural Network Library 

that provides functions for constructing Neural 

Networks within Modelica. The approach is 

demonstrated on an automotive fuel cell model which is 

part of an overall vehicle system model. One possible 

application is to train the neural network via repeated 

simulations and then to reuse it as an embedded software 

component for efficiently estimating fuel use and range 

for various driving cycles and ambient conditions.  

Keywords: Machine Learning, Neural Networks, 

Hybrid Models, Hydrogen, Fuel Cell.  

1 Introduction 

Model-based system design and engineering plays a 

major role, not only in the development of new technical 

systems but also in supporting efficient usage or 

operation. On the one hand, Modelica as an open-

standard multi-domain programming language can be 

used to describe complex technical systems on a 

fundamental basis. Text-book equations are often 

implemented on a component level, which can then be 

used to allow a graphical composition of system models 

using connection ports at the model interfaces to provide 

boundary conditions locally and close the equation 

system. Applying good modeling practices, replaceable 

models for different components can be implemented, 

allowing fidelity adaptation of the system by choosing 

different component models for different applications. 
Some applications require complex mathematical 

formulations that are necessary to describe a physical 

problem accurately and thereby sacrificing on 

computational performance during simulation of the 

model. Machine learning on the other hand allows 

creating models based on data without necessarily 

understanding the correlations between the inputs and 

the outputs on a fundamental basis. Neural Networks are 

a common approach to create models that can accurately 

predict the outputs based on different input 

combinations after the model has been trained 

sufficiently well. Neural Networks consists of node 

layers that are structurally inspired by the biological 

brains that can transmit signals to other neurons based.  

Due to their similarity with the biological counterpart, 

Neural Networks are categorized as a method of 

artificial intelligence (AI).  

A hybrid physical-AI based model can consist of both 

components: models derived from first principal physics 

as well as data-based models such as Neural Networks. 

Especially the availability of physical component 

models providing an extensive data base for training, 

allows creation of hybrid models which can achieve 

better simulation performance while not sacrificing 

accuracy for a given question. Known physical relations 

in specific components can be used to train surrogate 

models in physics-guided machine learning processes 

[1]. That way, computationally expensive components 

can be replaced, and simulation performance can be 

increased if the specific component is not of interest for 

a specific set of internal calculations but needed to 

provide boundary conditions for other components in a 

system. In comparison to other regression techniques, 

like map or polynomial fitting, the Neural Network 

based approach allows for representation of strong non-

linearities superior to polynomial fitting while allowing 

a higher degree of freedom and less data need compared 

to a 1:1 data mapping. Especially when more than two 

independent inputs need to be mapped, standard map-

based approaches quickly run into limitations of limited 

matrix dimensions in various tools which is less critical 

for Neural Networks. In this paper, an approach will be 

presented that uses a detailed physical fuel cell model of 

a fuel cell vehicle to generate a reduced order model of 

the fuel cell itself to study fuel consumption for different 

driving cycles. Section 2 will introduce the problem and 
the underlying physical sub-models in detail. In section 

3, the workflow to create the hybrid model will be 
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described. Section 4 will show a benchmark of accuracy 

and performance of the hybrid model against the 

detailed physical model and section 5 will show the 

result for a long-term driving cycle simulation.  

2 Problem Statement 

Following the trends to reduce greenhouse gas 

emissions and save resources, one proposed approach 

for the mobility sector is hydrogen-powered fuel cells to 

generate electricity on demand and allowing a sufficient 

range while reducing the battery size drastically. A 

comprehensive model of such a fuel-cell vehicle has 

been developed in Modelica, a comprehensive summary 

on the underlying sub models has been published [2], 

[3].  

The use-case of this paper is to calculate the range of the 

vehicle for a long route as quickly as possible and 

thereby demonstrate the performance improvement of a 

hybrid-model consisting of physical components and 

trained Neural Network models. Other potential 

improvements such as model solvability and robustness 

will not be discussed here.   

A high-level schematic of the model in the Modelica 

modeling and simulation platform Modelon Impact is 

shown in Figure 1.  

 

 

Figure 1: Top level Schematic of the vehicle system 

model, showing the replaceable drive cycle component 

(top left), the ambient condition component (top right) 

as well as the coupled vehicle model with driver, 

controls, drive train, fuel cell and hydrogen tank.  

The model includes a driving cycle input defining the 

desired velocity trajectory for the vehicle. The WLTC2 

Class 2 cycle [4], shown in Figure 2 is used here as a 

reference.   

 

 

Figure 2: WLT2 driving cycle, velocity vs. time used as 

input for the reference scenario (top) and mechanical 

power at the drive-train shaft (bottom)  

 

The vehicle model includes chassis, tires, breaks, and 

interacts with the driver and controls model. Thereby, it 

will define the propulsion power (torque and angular 

velocity) of the motor, considering the aerodynamic 

losses, rolling friction, and braking losses. The hybrid 

drivetrain includes a small battery, battery converter, 

fuel cell converter, and a DC motor. The electric power 

is provided by a proton exchange membrane (PEM) fuel 

cell stack fueled from a hydrogen storage tank.   

3 Hybrid Model Generation 

Workflow  

Generation of Proper Hybrid Models for Smarter 

Vehicles is the core topic of a research project funded 

by the German Federal Ministry for Economic Affairs 

and Climate Action. Different options to generate and 

integrate data-based models with physical Modelica 

models and tools are investigated. [5] have presented an 

approach to replace numerically inefficient and fragile 

non-linear equation blocks with surrogates during 

compilation. Another related workflow will be 

presented here that instead of interacting on the compiler 

level, utilizes the existing Modelica structure of 

replaceable sub-models for each component. This 

concept will be used to not only allow selection of 

different fidelity, first-principle physical models but 

also to integrate Neural Network surrogate models. 

Bringing the model back as part of the original Modelica 

system model will result in a hybrid model that can have 

superior performance and acceptable accuracy, so that it 

can be used for more applications such as those 

requiring real-time capabilities or even deployed as 

conventional FMU or eFMU on embedded hardware 

eventually.  
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3.1 Physical Model (Modelica) 

The detailed Modelica model of the system is illustrated 

in Figure 3. The model includes the following 

components: a PEM fuel stack cell with empirical model 

for polarization, and dynamic mass and energy balance 

for anode, cathode and cooling channels; an ejector 

model to recirculate excessive hydrogen; a humidifier 

model to control the humidity of incoming air and 

recover some of the waste heat in the cooling loop; a 

cooling loop with heat exchange, pump and tank. The 

medium is represented as an ideal gas mixture with 

moisture using the NASA 7-coefficient model including 

the following components: H2, CO, CO2, H20, N2, O2. 

In addition, a simple heating and cooling system has 

been added, considering heat transfer to ambient and 

maintaining a convenient cabin temperature at 293K.   

 

The following figures are giving an indication on the 

complexity of the model:  

• Continuous states:   82 

• Variables:           2572  

• Linear equation blocks:   13  

• Non-linear equation blocks:  4  

 

To calculate fuel consumption for a given route, three 

independent inputs have been identified:  

• Fuel cell power as a resulting output of the 

vehicle model for a given drive cycle (speed 

vs. time). 

• Ambient temperature, primarily affecting the 

vehicles heating/cooling system but also the 

temperature and losses of the fuel cell.  

• Ambient pressure affecting the air compressor 

 

3.2 Modelica Simulation Tool 

Modelon Impact is a cloud native Modelica modeling 

and simulation platform that has been used here. It can 

interact with Python through Rest API, e.g. using 

Jupyter Notebooks [6] or integrating Python scripts 

directly into the user interface using so called Custom 

Functions. Thus, allowing an easy integration of 

physical Modelica models with many AI-based models 

from Python environment.   

3.3 Neural Network model generation 

Classical machine learning can be categorized into 

supervised and unsupervised methods. The goal of the 

generated surrogate for fuel cell component that can be 

used to predict fuel consumption from requested 

electrical power here is to predict data from defined 

inputs, so to perform a regression task and falls into 

supervised methods. Generating Neural Networks 

became a very popular method for Machine Learning, 

yielding a range of tools. Commonly used tools in the 

Python environment includes TensorFlow/Keras 

(developed by Google) and PyTorch (developed by 

Meta). Also, the Julia language provides an efficient 

Figure 3: Overview of the physical system model including a detailed fuel cell stack and a simplified heating and 

cooling system of the car as well as control blocks. The independent inputs used for this study are the fuel cell load, 

the ambient pressure and the ambient temperature indicated by the connection ports on the right 
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environment for generating neural networks and 

combining with FMUs, Modelica [7] or Modia [8].  

The approach presented here relies on using the 

TensorFlow/Keras toolbox in a Jupyter Notebook 

environment to generate a neural network from the 

detailed Modelica model.  

For the main question addressed in the presented use-

case, identifying the fuel consumption for different 

operating inputs, it is assumed that the fuel cell 

dynamics play a minor role and therefore, a quasi-static 

surrogate based on classical Neural Networks can be 

used. This assumption will be verified for a specific 

driving cycle in Section 4. 

To train the model, samples of the three independent 

inputs are prepared, in this case, Saltelli [9] samples are 

used. Saltelli sampling is an efficient way to reduce the 

number of necessary data sets while keeping 

representative behavior over the considered data ranges.  

The number of Saltelli samples will be  

 

#𝑆𝑎 = 𝑁 (2 ∗ 𝐷 + 2) 

 

Where ̀ D` is the number of free parameters, three in this 

study and `N` is the requested number of samples each, 

10 here. Saltelli’s extension of the popular quasi-

random low-discrepancy Sobol sequence is used to 

generate coniform samples of the parameters space. To 

derive the training data set, a range for the inputs was 

specified as follows:  

 

Power:     40kW to 140kW 

Ambient Temperature:   253K to 333K 

Ambient Pressure:  90kPa to 105kPa  

 

As 10 samples in each range where created, the overall 

number of data sets or required simulation points of the 

detailed model is 80.  Important outputs such as fuel 

flow, heating power and fuel cell current for the 

generated datasets are presented in Figure 4. 

 

 

 

Figure 4: Physical model outputs used as training data. 

Showing current (bottom), heating power (middle) and 

fuel consumption (top) for different power (left), 

ambient temperature (middle) and ambient pressure 

(right).    

Using the TensorFlow/Keras package, a structure for the 

Feed Forward Neural Network with an input layer, three 

hidden layers with 5 neurons each and an output layer is 

defined. Hyperbolic tangent Thanh is used as the 

activation function for all the neurons. The structure has 

been defined iteratively, increasing the number of layers 

and neurons until quantitative agreement of the output 

could be achieved without setting a specific criterion.       

After defining the Neural Network model structure, 

the training of the weights and biases for all layers is 

performed using 40 sets of the physical models 

normalized simulation results while the other 40 

normalized output sets are used as test data. During the 

training epochs, the accuracy (mean of squares of errors 

against the reference data) of the prediction improves as 

shown in Figure 5. Normalization of the values is 

required since working with physical SI units, values 

will differ several orders of magnitude.   

 

Figure 5: Accuracy of the Neural Network against the 

reference data from the physical model during training 

and test.   
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3.4 Hybrid Model  

In the next step, the generated neural network model 

needs to be transferred back into the Modelon Impact 

platform. This permits users to benefit from a graphical 

model representation and convenient parameterization, 

structural adaptations, and post-processing. The transfer 

could be implemented in different ways, e.g.: 

• FMU: As most system simulation tools, 

Modelon Impact allows direct import of 

Functional-Mockup units. This basically 

provides a wrapped-C-code with a 

standardized interface. However, FMU export 

from Python environments is currently under 

development and turned out to be not reliably 

working here.    

• Using external C-code directly: a similar 

approach consists in converting the surrogate 

model into C-code. This approach is similar to 

the previous FMU approach with a less strict 

requirement on compliant FMU wrappers, 

however, since the graphical representation 

would first need to be created, this approach 

was not followed here.   

• Implementing in Modelica: Introduced and 

published as “Neural Network Library” by  

[10], the structure of the Neural Network can 

be stored as Modelica code directly. Individual 

Layers can be represented by models, a set of 

pre-defined activation functions are available, 

the coefficients for weights and biases for each 

layer can be stored in the Modelica code or as 

external data file.   

 

The approach presented in this paper will rely on the 

Neural Network Modelica library. The main advantage 

is the absence of compatibility issues and the availability 

of a graphical network representation. A potential 

disadvantage might be the adaption towards larger and 

more complex networks and regular structural updates 

during iterative surrogate generation processes. Figure 6 

Shows the Neural Network structure as a Modelica 

model. It contains three generic inputs (u1, u2, u3), the 

input layer as well as the three hidden layers as 

introduced in the previous section. Connections between 

the layers and to the output (y) are vectorized.  

 

Figure 6: Neural Network Modelica model structure  

4 Benchmark               

To benchmark and validate the Neural Network 

surrogate, a comparison on accuracy, model complexity 

metrics and performance data against the original 

Modelica model is done. Figure 7 shows normalized 

fuel consumptions for the original model vs. the 

TensorFlow prediction and the Modelica surrogate. 

While both predictions usually match well as expected, 

some deviations from the original model can be 

observed due to the simple Neural Network structure 

used here. Also, minor deviations between the surrogate 

from TensorFlow against the surrogate based on 

Modelica can be observed.  

 

Figure 7: comparing steady-state result points for 

varying power (top), varying ambient temperature 

(center) and varying ambient pressure (bottom)   

In addition to the steady-state analysis, a transient 

scenario has been considered for comparison, involving 

a scheduled load change of the fuel cell power setpoint 

as shown in Figure 8 while keeping the ambient 

temperature and pressure constant. 
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Figure 8: Fuel Cell load setpoint for both the physcial 

model (orange) and the surrogate (blue) model (top) 

and consumed hydrogen fuel flow for the load change 

scenario comparing the results of the original model 

with the surrogate (bottom)  

 
The presented comparison of the fuel consumption 

showing well matching steady-state points with 

maximum differences of 2.7% in full load and 3.6% in 

low load. On the transients, deviations of physical model 

from the Neural Network surrogate model can clearly be 

seen. Effects, such as a control oscillation around 720s 

caused by the internal cooling flow supply of the fuel 

cell stack can not be reproduced by the steady-state 

surrogate.     

 

Key metrics for complexity and performance are 

presented in Table 1, showing the superior performance 

of the Neural Network which is around 500 times faster 

compared to the physical model for this scenario.  

Table 1: Complexity statistics and CPU time of 

surrogate model vs. physical model  

 Surrogate Physical 
Model 

CPU Time 0.12s 49s 

Continuous states 0 82 

Variables 202 2572 

Linear-Equations 
Blocks 

0 13 

 

Based on the performed analysis, it can be concluded 

that for prediction of the fuel consumption for a certain 

load variation within the trained data range, the Neural 

Network model can give reasonable results while being 

significantly better performing due to the removal of 

unused complexity. For the overall fuel consumption 

calculation in this artificial scenario, the accuracy is 

considered sufficiently well comparing with state-of-the 

art range predictions in modern fuel-cell vehicles that 

usually don’t consider as many input parameters.  

5 Simulation Scenario  

A use-case scenario for the Neural Network model of 

the fuel-cell car could be a fuel consumption calculation 

of the vehicle for a given route the driver selects in the 

cars navigation system at different ambient conditions. 

While the physical model is validated and would be able 

to predict accurately from first principles, the model 

execution would take too long for this use-case. This 

fact becomes even more important considering the 

usage of lower-performance hardware used in 

automotive applications due to cost and weight 

advantages. Therefore, the usage of the surrogate model 

is proposed for predicting the fuel consumption of the 

car in a driving cycle, specifically the WLT2P-C2 

introduced in section 2. The resulting fuel consumption 

for this scenario including the possible variation with 

changing boundary conditions is illustrated in Figure 9. 

Plausible outcome can be assumed based on the 

benchmark tests carried out in the previous sections.  

The overall CPU time answering the specific question 

on “how much hydrogen will the vehicle consume for 

the given route under the different environmental 

conditions?” was about 2 seconds for a varying load 

including 5 sets of ambient temperature and 5 sets of 

ambient pressures, resulting in a total of 25 simulation 

scenarios.  

 

 

Figure 9: Resulting hydrogen consumption of the fuel 

cell for the WLTP2 driving cycle scenario with varying 

ambient temperatures and pressures (top) and 

aggregated hydrogen consumption of the fuel cell 

(bottom)  

6 Summary and Outlook 

The presented hybrid approach provides a powerful 

complementary feature to first principle based physical 

modeling which is typically used in Modelica models. 

The potential performance improvement has been 

demonstrated on an automotive fuel-cell use case, 

showing that simulation speed can easily be improved 

by a factor of 500 when only few outputs of a detailed 

model are relevant. The integrated Python interface in 

Modelon Impact allowed a convenient, scripting 
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interface to TensorFlow/Keras and an easy data usage of 

physical model results for Neural Network training. The 

Modelica Neural Network library [10] enabled the usage 

of the generated Neural Network within the Modelica 

environment. The developed workflow can therefore be 

easily used for a variety of applications, including the 

speedup process of complex physical models or their 

sub-models for faster model-based design or 

improvement processes. In addition, application specific 

proper models can be generated and exported, e.g. as an 

FMU allowing the utilization for a subset of relevant 

questions while benefiting from tremendous 

performance improvements. One commonly known 

limitation of Neural Network models not addressed here 

is the usage outside the training data range. Unlike 

physical models, Neural Network models cannot be 

expected to predict behavior that has not been 

sufficiently covered by training data. This can result in 

very wrong predictions. In addition, further work is 

needed on capturing transient effects, as Feed-Forward 

Neural Network approaches only allow a steady state 

representation. However, the tight integration into the 

Modelica environment presented here allows the 

coupling with transient state representations at various 

points of a system model thus providing a promising 

solution for this challenge.     
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