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Abstract
The introduction of cyber-physical systems has been a re-
cent development in energy systems. Cyber-physical sys-
tems contain digital components for applications such as
monitoring or control. In many cases, modeling multiple
aspects of such cyber-physical systems poses a challenge
to conventional simulation tools. In addition, recent mod-
eling approaches, such as data-driven modeling, are be-
ing applied. The combination of such data-driven models,
which may consist of a different architecture than tradi-
tional models, with traditional models can be implemented
through co-simulation methods. In co-simulation, compo-
nents created from different simulation tools can be com-
bined and coupled through standardized interfaces. This
work presents a framework for data-driven model genera-
tion and co-simulation. The framework is implemented
in Python and Dymola and is based on the Functional
Mock-up Interface (FMI) standard. The framework im-
plements the creation of data-driven models in Python, the
generation of Functional Mock-up Units (FMUs) through
the frameworks uniFMU and pythonFMU, as well the
creation of a testbench model in Dymola and the co-
simulation of this model. The framework is demonstrated
on the application of a solar collector from a single family
house heating system.
Keywords: Energy Systems, Modeling and Simulation,
Data-driven Modeling, Co-Simulation

1 Introduction
The area of energy systems covers a wide range of ap-
plications, such as heating, cooling or electrical power
systems. All these systems have in common that their
demand for energy must be met by the energy providers
while their energy demands are constantly growing. To
respond to the increasing demand, energy providers have
recently been focusing on embedding cyber-technologies
into their systems in order to monitor and optimize sys-
tem operation. This means that state-of-the-art energy
systems are being extended into complex cyber-physical
systems (Lund et al., 2017). The analysis of such cyber-
physical energy systems poses new challenges in the area
of simulation and modeling due to these systems’ com-
plexity (Palensky, 2014). Cyber-physical systems com-
bine computational systems with other physical systems,

meaning that their analysis requires combined modeling
techniques for different system types. While the modeling
of certain components can be implemented in specialized
simulation tools, the full modeling of a combined system
is a more difficult task. To model cyber-physical energy
systems, different approaches exist, which can be clas-
sified into three groups: white-box, gray-box and black-
box modeling (Arendt et al., 2018). White-box methods
include traditional physical modeling methods based on
system dynamics. Gray-box models may also be based on
system dynamics, but may contain assumptions or approx-
imations. Black-box models may consist of a completely
different architecture than the underlying system. Tradi-
tionally, energy systems are modeled in simulation tools
based on the physical relations of their components. Phys-
ical models are created by analysing the physical prop-
erties of the system, and these models are implemented
mostly as white-box or gray-box models and based on the
knowledge of the system dynamics and parameters. In or-
der to model and simulate these systems, often numerical
solvers are used to solve the underlying differential equa-
tions, as described by (Gomes et al., 2018). The numerical
simulation methods are then implemented by simulation
tools such as, for instance, Dassault Systemes Dymola®,
MathWorks® Matlab/Simulink or EnergyPlus™. In con-
trast to traditional modeling, the data-driven modeling ap-
proach has recently been gaining popularity. Data-driven
models are mainly based on modeling the underlying sys-
tem as a black box. This means that the architecture and
the parameters of the system are arbitrary, any structure
can be used as a model. Data-driven models are mainly
implemented by machine learning (ML) methods, such as
linear regression models, decision-tree based models or
neural networks. In the data-driven approach, the models
are trained on existing measurement data by using opti-
mization methods. This approach was applied for instance
in (Ghofrani et al., 2020) and (Xu et al., 2019). The ad-
vantage of the data-driven modeling approach is that the
ML models are trained based on measurement data and
do not require exact system knowledge and parameters.
While domain knowledge is helpful in creating the mod-
els, it is not necessary to know all features of the under-
lying system beforehand. A recent approach in cyber-
physical systems modeling is the combination of physical
and data-driven models in a co-simulation (CS) environ-

DOI
10.3384/ecp193165

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

165



ment. The term co-simulation describes the combination
of different simulation tools or environments. This may
include a combination of continuous-time and discrete-
time models, as well as simulation tools like Dymola or
Matlab/Simulink. In co-simulation, different systems are
integrated into a global environment. The co-simulation
approach is used in applications such as building con-
trol systems, especially in model-predictive control (Wang
et al., 2019). Applications in energy systems modeling or
control often contain feedback loops containing compo-
nents implemented in different simulation tools. These
components must be coupled with each other through a
defined interface. For this purpose, organizations such
as the Modelica Association or the Institute of Electrical
and Electronics Engineers (IEEE) have developed stan-
dards for co-simulation interfaces, such as the High-Level
Architecture (HLA) (IEEE, 2010) or FMI (Modelica As-
sociation, 2020) standard. These standardized interfaces
can be implemented by various tools without having to
adapt the models for each simulation environment and
are supported by different simulation tools. Additionally,
these interfaces can be implemented by data-driven mod-
els, which may be created in programming languages such
as Python. For our work, the FMI standard was selected.
The FMI standard is developed by the Modelica Associ-
ation, with current version FMI 2.0 (Modelica Associa-
tion, 2020). The standard defines an interface for cou-
pling models of different types and architectures. The
FMI standard defines the format of models that are com-
patible to the standard as FMU. Simulation tools such
as Dassault Systemes Dymola® (Dymola) or Simulink of-
fer the option to generate FMUs from an existing model.
For data-driven models, there are open-source tools avail-
able to export these models into the FMU format, such as
the pythonFMU framework (Hatledal et al., 2020) and the
uniFMU framework (Legaard et al., 2021).

1.1 Related Work
In energy systems modeling, different co-simulation
frameworks have been created for the purpose of com-
bining models created different simulation tools. For
instance, several frameworks based on the FMI stan-
dard have been developed.The Maestro framework (Thule
et al., 2019) implements a co-simulation orchestration en-
gine for discrete-time and continuous-time co-simulation.
The framework is implemented in Java, Scala and C and
is based on the FMI standard. This framework sup-
ports Hardware-in-Loop (HiL) co-simulation. The Cy-
DER (Nouidui et al., 2019) framework focuses on sim-
ulation for smart power grids. The framework is imple-
mented in Python and suports HiL simulation. The Cy-
DER framework offers the tool Simulator2FMU, which
makes the interfaces of different power grid simulators
compatible to the FMI standard. The main simulation
is executed through the Python library PyFMI . In addi-
tion, smaller frameworks that focus on certain simulation
tools have been developed. For the communication be-

tween Python and Dymola, several Python libraries have
been developed. The Python library buildingspy (Wetter
and USDOE, 2019) supports communication from Python
to Dymola as well as to the Modelon Inc. OPTIMICA
Compiler Toolkit. The Python package dymat (Rädler,
2013) supports reading and writing of Dymola output
files. Based on existing Python libraries, different co-
simulation frameworks have been developed. A Python-
Modelica framework specialized for wind turbines called
MoWIT was created in (Leimeister, 2019). This frame-
work is based on the buildingspy library. Another frame-
work called PyMo was created by (Febres et al., 2014).

1.2 Main Contribution
This work presents a workflow called HybridCosim that
combines the creation of data-driven models with co-
simulation. In this workflow, data-driven models are auto-
matically created and then combined with physical mod-
els inside a co-simulation environment. The workflow is
based on the FMI standard 2.0. The data-driven models
are created in Python, converted into FMUs, and then sim-
ulated in Dymola as a part of an automatically generated
testbench. The framework supports the creation of ML
models of different architectures, as well as simulation in
Dymola. The framework is demonstrated on a case study
of a solar collector.

2 Methodology
The presented framework consists of four steps. Firstly,
a data-driven model of an existing system is trained in
Python. This model is then converted into an FMU. For
the FMU, a Modelica testbench model is generated. Fi-
nally, the testbench is simulated in Dymola. An overview
of the created workflow is given in Figure 2.

Figure 1. Co-Simulation Workflow
The first three steps of the workflow are executed purely

in Python, the last step is executed through Python and
Dymola. While the simulation itself is executed in Dy-
mola, the orchestration and the result post-processing are
done in Python. This framework is based on the research
in (Falay et al., 2021) and (Wilfling et al.).
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2.1 Model Training
To create data-driven models, we implemented a basic
framework in Python to train models of different archi-
tectures, such as linear regression models, decision tree-
based models or Support Vector Machine (SVM) mod-
els. These models could be created based on different
datasets and feature configurations. The models are based
on the research in (Schranz et al.) and the Python pack-
ages scikit-learn (Pedregosa et al., 2011) and statsmodels
(Seabold and Perktold, 2010).

2.2 Interfacing - FMI
In our work, the FMI standard was used as an interface
between models of different types. Therefore, the mod-
els had to be converted into the FMU format, for which
the uniFMU framework (Legaard et al., 2021) and the
pythonFMU framework (Hatledal et al., 2020) were eval-
uated. The uniFMU framework allows to export models
from different programming languages such as Python,
C#, Matlab or Java into an FMU. uniFMU supports the
FMI standard 2.0 and contains a graphical user interface
to generate and validate FMUs. The pythonFMU frame-
work supports FMU generation from Python files.

FMU Creation

In our work, machine learning models implemented
in Python can be translated into FMU format through
the pythonFMU or uniFMU framework. While the
pythonFMU framework supports the generation of a full
FMU from a Python model, the uniFMU framework re-
quires additional steps for creating the FMU. The FMU
format contains a model description in Extensible Markup
Language (XML), in which the model interface, consist-
ing of the model inputs, outputs and parameters, and the
basic model structure, which may include dependencies,
is defined. To create an FMU through uniFMU, the model
description must be adapted to the interface of the model.

For the FMU creation through uniFMU, a method to
adapt the FMU model description automatically depend-
ing on the required inputs and outputs for the model was
created. When using the framework, either of the two
frameworks can be selected.

2.3 Automatic Testbench Creation
In our framework, Dymola was selected as the main sim-
ulation master, therefore our top-level model had to be
implemented in Dymola. To automatically create a sim-
ple testbench for the FMU, a Python module was created.
This module could generate a Modelica model based on
input data, a specification of input and output features, and
the FMU file. In addition, components created in Model-
ica could be imported and added to the model. The data-
driven model was imported into Dymola and connected to
Dymola-native modules or other FMUs. With this struc-
ture, it was possible to create fully-coupled systems, such
as feedback control loops, or simpler systems with fewer
components.

2.4 Simulation
For the generated top-level model including the FMU, a
co-simulation was executed in the Dymola environment.
This simulation was implmented using parts of the pro-
cess created in (Wilfling et al.). In our implementation, the
main control for the simulation is implemented in Python.
The Python controller then sends commands to Dymola,
which executes the simulation. The simulation commands
are based on Modelica .mos scripts, which are automati-
cally generated in Python. Figure 2 gives an overview of
the implemented simulation method.

Result Evaluation

Simulation Setup

Simulation Start

Open Testbench 

Import FMU

Execute Simulation
Result File

Modelica Script

Modelica Script

Figure 2. Python-Dymola Communication, c.f. (Wilfling et al.)

Alternatively, the testbench could be simulated directly
through Dymola.

2.5 Framework Implementation
The framework was implemented mainly in Python. The
framework is structured into four Python packages, each
of which contains a step of the workflow. For each pack-
age, an example testscript is available to execute the op-
erations of the step. In addition, all steps can be executed
in combination as a full workflow run. In this case, the
four steps are executed sequentially. During the execution
of each workflow step, different files are created, which
are then used by the next steps. The combined workflow
requires two components as inputs: a dataset, and a con-
figuration file containing definitions of the model inputs
and outputs. Figure 3 depicts the full workflow structure
with input and output files.

ML Training:

main.py

main.py

Export Model 

Description

Create FMU

main.py

Create Modelica Testbench 

Create Input Data TXT

Python Scripts

model.py

Simulation_FMUTest.py

Run Simulation

Plot results

Figure 3. Workflow structure. Input files to the workflow are
marked in red, automatically created output files are marked in
yellow.

File Structure

The results of an experiment using the combined frame-
work are stored inside a directory structure containing all
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automatically generated files including the models and the
simulation results. An overview of this structure is given
in Figure 4.

Plots

Testbench Package

Input Data

Training Plots

MAT Files

CSV FilesPickle File

JSON Parameter File

FMU Interface

Pickle Files

JSON Parameter Files

Main script – model.py

Backend Scripts

Runscripts

Additional Packages

Figure 4. Directory Structure.

The structure is separated into three directories: one for
the model training results, one for the FMU files, and one
for the Dymola testbench and simulation results.

3 Case Study
To demonstrate the proposed framework, a case study on
a use case from the energy domain was performed. For
this purpose, a solar collector from a single-family house
heating system was selected (Wilfling et al.). In a single-
family house, the main heating demand is generated from
the central heating for the rooms and the warm water con-
sumption. In order to give options to optimize the heating
energy consumption of such a house, the heating system
should be modeled as accurately as possible. For this pur-
pose, two different architectures for the data-driven model
were evaluated.

3.1 Application - Solar Collector
The application of the case study was the supply temper-
ature prediction for a flat-plate solar collector. This col-
lector, which was already available as a physical model
(Falay et al., 2021), should be modeled through a data-
driven model. For the collector, the supply temperature
TS should be predicted based on the return temperature
TR, the mass flow through the collector Vd , the ambient
temperature TA and the solar radiation SGlobal .

Underlying System

According to (Mahanta, 2020), the behavior of a flat-plate
solar collector can be modeled through linear relations.
The main factors affecting the solar collector supply tem-
perature are the heat gain through the solar radiation and
the heat loss to the ambient. While in the active state
of the collector, the heat gain is affected by the mass
flow through the collector. A simplified version of these
relations can define the active behavior of the collector
through Equation 1:

TS = TR +
C1SGlobal

Vd
+

C2(TS −TA)

Vd
(1)

3.2 Data-driven Model
For the solar collector, a data-driven model was created
through the model training part of the framework. To com-
pare different model architectures, two models were cre-
ated, one consisting of a linear regression model and one
using Random Forest (RF) regression. The models were
trained based on measurement data in a duration from
02/2019 to 10/2019, which was sampled with a timestep
of 15 min. For the training, a train-test split of 0.8 was
selected. The trained models were stored in the Pickle
format.

3.3 FMU Creation and Testbench Generation
From the trained models, an FMU was created. After-
wards, a Dymola model to test the FMU was generated.
This Dymola model was generated using the input mea-
surement data and the description of the FMU inputs and
outputs. Figure 5 depicts the generated Dymola model.

Figure 5. Graphical depiction of the generated Dymola model.
The component placement was adapted manually for visualiza-
tion.

The Dymola model contains the FMU and a Modelica
CombiTimeTable containing the measurement data. For
the CombiTimeTable, a text file was automatically gener-
ated from the input data to act as datasource.

3.4 Experimental Results
Finally, a simulation was executed for the generated Dy-
mola model. The simulation duration was set to a time
window of 30 days, with a timestep of 15 min. The results
were post-processed in Python.

Performance Metrics

To evaluate the performance of the model, the metrics
Coefficient of Determination (R2), Coefficient of Variation
of the Root Mean Square Error (CV-RMSE) and Mean
Absolute Percentage Error (MAPE)(Falay et al., 2021)
were selected. The performance metrics for the model are
described in Table 1.

Table 1. Performance Metrics

Model R2 CV-RMSE MAPE

Linear Regression 0.94 0.06 4.58%
Random Forest 0.98 0.04 2.21%
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The performance metrics show the higher accuracy of
the RF model. However, the linear regression model per-
forms only slightly worse than the RF model despite its
simple structure.

Timeseries Analysis

Figure 6 shows the timeseries analysis for the solar col-
lector for a selected period of five days from the simula-
tion duration. The timeseries analysis shows more accu-
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Figure 6. Timeseries Analysis for selected period from simula-
tion.

rate predictions of the data-driven model during daytime
than during nighttime. This behavior was accredited to
the characteristics of the solar collector, which is inactive
during nighttime.

The prediction error plots for the solar collector case
study during the full simulation duration are depicted in
Figure 7.
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Figure 7. Predicted Values for TS

From the prediction error plots, the higher accuracy of
the RF regression model can be observed. The distribution
of the residual error does not show significant anomalies.

4 Conclusion
We present a framework for data-driven model creation
and co-simulation that allows the combination of differ-
ent models. The framework is implemented in Python
and Dymola and is based on the FMI standard. This
framework allows automatic creation of data-driven mod-
els, translation into the FMU format, creation of a Dy-
mola testbench model and simulation in Dymola. A case
study performed on an application from the energy do-
main showed the performance of the created data-driven
models.

4.1 Future Work
The current version of the framework gives many options
for extensions. For instance, it is possible to extend the
model training part of the framework to support additonal
model types. The FMU creation part of the framework
could be extended to support FMI 3.0, as well as include
further extensions from FMI 2.0. Finally, the Dymola sim-
ulation part could be extended to support different simula-
tion masters such as OpenModelica.
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