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Abstract 
The design of multirotor drones often relies on optimizing 
its performance in terms of maximum speed requirements 
and hover time. This is well suited to undefined tasks. In 
the case of repetitive tasks, the drone trajectory can be 
added as a third degree of freedom. This paper focuses on 
the use of Modelon Impact and its dynamic optimization 
capabilities to reach a multirotor drone design and 1-D 
trajectory optimization. In comparison to other options 
investigated by the authors in a separate publication, 
Modelon Impact based optimization proved to be much 
simpler, more robust, and faster – for this use case. 
Keywords: Multirotor, Drone, Dynamic optimization, 
Trajectory optimization, Sizing, Modelon Impact, 
Optimica,  

1 Introduction 
Multirotor drones are often associated with toys that are 
fun to pilot. The drone designer does not know in advance 
who will use the drone and how it will be used. Therefore, 
these drones are typically designed based on performance 
requirements. For a toy drone to be fun, the user expects 
it to be fast and to have a satisfying autonomy. The toy 
drone designer often takes as requirement a maximum 
speed and a given hover time. 

On the other side, multirotor drones are also being 
developed for some industry applications for a variety of 
roles – from packages delivery to military assistance or 
payload lifting in substitution to cranes. Contrarily to the 
toy drones, industry drones typically have well defined 
missions often expressed as: 

• Start point: initial elevation, hover time 

• End point: final elevation, horizontal distance from 
the initial point and hover time 

Missions including more points can be described as 
sequences of start and end points. 

Getting back to the sole mission of the drone – in 
comparison to optimizing for performance requirements – 
relaxes an entire degree of freedom: the drone trajectory. 
Solving both the drone sizing and trajectory optimizations 
allows focusing on optimization criteria such as 

minimizing energy consumption or the cost function, if 
willing to associate a cost to the parts that compose the 
drone and its utilization (time of utilization – including 
potential operator – and energy consumption). 

This paper presents how easy it is to perform sizing and 
trajectory optimization of a system within Modelon 
Impact. A drone is selected as example system. A selected 
case study – payload lifting – is introduced in section 2. 
The drone model is discussed in section 3 of this paper, 
with a particular focus on the propeller. In section 4, we 
present the optimization problem, the simplicity of its 
implementation in Modelon Impact and the associated 
results. Finally, section 5 is a collection of advantages that 
come with optimizing using OPTIMICA and Modelon 
Impact. 

2 Case Study – Payload lifting 
2.1 Use Case 
It is typical on construction sites – mostly when 
approaching the end of the construction – to either keep a 
crane operating for a longer period time to lift some minor 
equipment or material, or to carry this payload by human 
strength. While the former solution is often expensive, the 
latter requires manpower and can affect physical health. 
The use of drones to lift these small payloads 
(Draganfly, 2022) is an economically attractive solution 
which has a low impact on physical health. 

 
Figure 1. Illustration of the load lifting use case. 
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This paper focuses on a drone design aimed at a 
repetitive task: small payload lifting – below 25 kg – from 
ground to the top of a building. 

2.2 Main Requirements 
To match the use case presented in section 2.1, the main 
requirements for the drone designs are related to the lifting 
operation in terms of payload and endurance: 

• Payload: The drone shall lift masses up to 25 kg 
during its full operation. 

• Endurance: The drone shall operate at least 
150 climbs of at least 10 m height with 5 seconds 
hovering – for the handling of the payload. 

For this use case, the drone returns to ground without any 
payload and thus with very little energy consumption. 
Should the drone carry payload on the descent, the number 
of climbs would be reduced inevitably. 

3 From Drone Architecture to Model 
This section details the drone architecture, technological 
choices, the sizing problem formulation and discusses the 
associated model. 

3.1 Drone Architecture 
Different architectural choices can be made depending on 
the purpose and the mission. For multirotor drones, the 
main choices are the number of arms and the number of 
propellers per arms but also the materials and technologies 
of the components. 

As the main usage of such a drone is in urban area, it 
was decided to select a fully electric drone design. Indeed, 
electric motor emit less pollution – in terms of emissions, 
smell, and noise – than the combustion ones. In the 
presented work, a single architecture is considered for the 
multirotor drone. The architecture is presented in Figure 2 
and is composed of: 

1. Four (4) fixed pitch propellers 

2. Four (4) out-runner brushless motors 

3. Four (4) electronic speed controllers (ESC) mainly 
made from MOSFET inverters 

4. One (1) battery based on Li-Ion cells 

5. One (1) mechanical structure (frame) consisting of 
four (4) arms and one (1) central body 

Investigating variable architecture designs is let as 
perspective to this work. 

 
Figure 2. Multirotor drone architecture and components. 

3.2 Discussion on the Drone Model Fidelity 
As for physical systems, a simulation model is developed 
for a given purpose. This purpose guides technological 
choices on the model development, such as general 
assumptions, the physical effects modeled, the level of 
details, the smoothing, etc. These are all gathered within 
the so-called model fidelity. 

The purpose of the multirotor drone model for this 
paper is to perform a component sizing and 
simultaneously optimize the 1-D trajectory of the drone to 
perform a well-defined task. From these two purposes, we 
can extract a few technological choices. 

Sizing purpose 
Implications on model causality 
When it comes to sizing a system based on a desired 
trajectory – here, imposed by the optimization algorithm 
– , it is often necessary to reverse the power chain. This is 
also known as bicausality. 

A performance simulation of the drone model would 
typically require a known load at the propellers and would 
compute the resulting speed of the drone, for a given 
command. On the contrary, a sizing scenario would 
provide both the load at the rotors and the drone speed. 
These two variables define the required power output, 
which can be propagated upstream on the power chain to 
compute the require power at the power generation or 
storage – here, the battery.  

As the design validation would require a performance 
simulation, the acausality of the Modelica language is 
clearly a benefit to solve sizing problems. The sizing 
solving requires propagating the power variables through 
the component ports in one way or another – e.g. by 
having flow and non-flow which product would lead to the 
power or by adding the power to a connector. 

Selection of model complexity 
For cost reasons, we assume the drone will be assembled 
using off-the-shelf components. The sizing problem thus 
consists mainly of finding a good order of magnitude for 
each component size. Therefore, physical effects to be 
modeled should only be the dominant ones and their 
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implementation complexity could be quite low. 
Consequently, scaling laws are used to design the 
components and efficiencies are often used to assume 
losses – instead of overloading the model with multiple 
separate physical losses, e.g. each separate friction. 

Optimization purpose 
Most optimization algorithms rely on gradients to define 
on which direction they should perform the next step. This 
means that the variables of the model should, at least, be 
continuous and derivable. A special effort is made in the 
Modelica code to respect this constrain.  

In addition, minimum, maximum and nominal values of 
the design variables are provided to allow respectively to 
bound and normalize the variables and equations – key for 
optimization convergence. 

Finally, dynamic optimization benefits from having 
both an initial and a nominal trajectory that match the 
specified requirements – without necessarily be optimal. 
This is easily achieved by simulating first the drone 
behavior with a smooth trajectory command. Here, the 
acausality of the Modelica language becomes once more 
convenient. 

3.3 Drone Model – Focus on Propeller 
The drone Modelica model serves two purposes: 

1. It includes the scaling laws for all components to 
allow their sizing. 

2. It encodes the physics equations to model the flight 
performance and power consumption. 

The component sizing models used are scaling laws, 
linear regressions of data sheet and surrogate models – 
detailed by Budinger (2020). The physics equations are 
well known equations from components and are presented 
by Delbecq (2021). It is however relevant to present here 
the propeller model, as a representative component of the 
drone. 

The propeller represents a key component in the drone 
propulsion chain. Its performance can be expressed as a 
function of two coefficients CT and CP, respectively 
expressing thrust (1) and mechanical power (2) equations: 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝐶𝐶𝑇𝑇𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4 (1) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 =  𝐶𝐶𝑃𝑃𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛3𝐷𝐷5 (2) 

where ρair represents the air density in [kg/m3], n the 
rotational speed in [rev/s] and D the propeller diameter in 
[m]. 

While CT and CP are dimensionless, they are not 
constant. These depend on further variables such as the 
blade pitch p, the air Bulk Modulus K, the relative airspeed 
V (normal to the rotor plane). It is here assumed that: 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉) (3) 

→  𝐶𝐶𝑇𝑇 = 𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉)/(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4) (4) 

Performing a dimensional analysis on these equations 
allows identifying a reduced set of dimensionless 
variables that can define this equation. Note that 
Buckingham’s theorem gives us the insight that these 
dimensionless variables are in number of 3 (6 variables 
and 3 units dimensions). The detailed dimensionless 
analysis is available on request – please email the authors. 
This gives us the following three dimensionless numbers: 

• The pitch to diameter ratio: 𝛽𝛽 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝ℎ/𝐷𝐷. 

• The advance ratio: 𝐽𝐽 = 𝑉𝑉/ (𝑛𝑛𝐷𝐷). 

• The air compressibility indicator: 𝐵𝐵 = 𝐾𝐾/(𝜌𝜌𝑛𝑛2𝐷𝐷2) 

The analysis on CP reveals the same dimensionless 
numbers. As both the thrust and power coefficients are 
surface responses, these are better fitted with polynomial 
regression rather than with power regression – as 
discussed in (Sanchez 2017). 

A sensitivity study was conducted in (Budinger 2020) 
on the three dimensionless numbers within the domain of 
usage of the drone. It showed that both CT and CP are quite 
insensitive to the air compressibility indicator, within this 
domain. Finally, the fitting revealed the following 
equations: 

 𝐶𝐶𝑇𝑇 ≈ 0.02791 − 0.06543𝐽𝐽 − 0.23504𝐽𝐽2

+ 0.02104𝐽𝐽3 + 0.11867𝛽𝛽
+ 0.27334𝛽𝛽2 − 0.28852𝛽𝛽3

+ 0.18677𝛽𝛽𝐽𝐽2 

(5) 

𝐶𝐶𝑃𝑃 ≈ 0.01813 − 0.00343𝐽𝐽 − 0.12350𝐽𝐽2

+ 0.06218𝛽𝛽 + 0.35712𝛽𝛽2

− 0.23774𝛽𝛽3 + 0.07549𝛽𝛽𝐽𝐽 
(6) 

The surface responses and the corresponding datasets are 
presented below for both coefficients. 

 
Figure 3. Surface response of CT and reference dataset (dots). 
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Figure 4. Surface response of CP and reference dataset (dots). 

This gives us the performance model of the propeller, that 
needs to be completed by its sizing model. For the 
propeller, that parameters of interest are the mass and the 
inertia. These are computed based on scaling laws. The 
propeller mass Mprop is found to be proportional to the 
cube of its diameter. From the mass, the inertia Iprop can 
be computed. Note that scaling laws require similar 
reference data to scale on to. 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Mref(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟)2
 (7) 

Iprop =  Mprop(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/2)3/3 (8) 

From this complete set of equations, we get the propeller 
sizing and associated performance – impacted by the 
sizing. Similar models are developed for all components 
and the following parts of the paper will focus on the 
general sizing problem formulation and optimization 
problem, rather than detailing each component. As a 
reminder, these equations are available in (Budinger 
2020) and the propeller model fidelity is representative of 
the rest of the model. If of interest, a more detailed 
Modelica performance model is presented by Podlaski 
(2020). 

3.4 Sizing Problem Formulation 
The main sizing scenarios, design drivers and models for 
vertical flight applications of multirotor drones are 
summarized in Figure 5. Such applications consist of 
three sizing scenarios to be considered in the design 
problem that are: 

1. the hovering flight with the advance ratio of the 
propeller J = 0 – as the air speed V is null. 

2. the takeoff phase which requires maximum power to 
accelerate the drone with an increasing J – increasing 
air speed V. 

3. the climb phase with a constant vertical speed and 
thus constant J. 

 
Figure 5. Design drivers and equations of the multirotor drone. 

The overall sizing model has been adapted from (Delbecq 
2021) which is tailored for vertical flight applications of 
multirotor drones, and should be consulted for a more 
detailed sizing formulation. 

4 Optimization Problem 
4.1 Optimization Problem Formulation 
The simultaneous trajectory and design optimization 
problem can be formulated as a mass optimization 
problem including the trajectory variables (motor torque 
command and final time): 

minimize 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
with respect to 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑘𝑘𝑁𝑁𝑁𝑁, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚,𝑠𝑠𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠   

𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠, 𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑣𝑣𝑝𝑝𝑣𝑣𝑚𝑚𝑏𝑏𝑣𝑣𝑟𝑟, 𝑘𝑘𝑏𝑏𝑝𝑝𝑚𝑚, 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡), 𝑎𝑎𝑚𝑚0, 𝑡𝑡𝑟𝑟  
subject to 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚0 − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0 

𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑚𝑚 − 𝐸𝐸𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0 
𝑈𝑈𝑚𝑚𝑝𝑝𝑚𝑚 − 𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 0 
𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑈𝑈𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 0 
𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡) − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0 

ℎ − 𝑧𝑧(𝑡𝑡𝑟𝑟) ≤ 0 
�̇�𝑧(𝑡𝑡𝑟𝑟) = 0 

(9) 
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The objective is to minimize the weight of the vehicle for 
the defined mission with respect to design variables such 
as the propeller pitch βpro or the nominal motor torque 
Tmot. The design has to respect some constraints to respect 
the technological constraints of components such as motor 
maximum electromagnetic torque Tmot,max as well as 
others to respect voltages consistency in the power train 
(Umot ≤ UESC and UESC ≤ Ubat). Some consistency 
constraints are used to solve multidisciplinary couplings 
as suggested by Delbecq (2020) (Emission ≤ Ebat and 
MTOWf ≤ MTOW). This also requests to add normalized 
design variables such as kMTOW and kbat,mass. 

Instead of minimizing the drone weight, minimizing the 
energy could have been used as objective. Unfortunately, 
within the time given to investigate this solution, this 
seemed to be a less robust option. Minimizing the mass is 
a conscious problem simplification – a lower mass means 
less energy to carry it. The authors acknowledge that 
minimizing the energy might lead to a slightly different 
optimum to this problem. 

4.2 Optimica Implementation 
Modelon Impact (Coïc 2020-b) is a state of the art, cloud-
based modeling and simulation environment, relying on 
open standards such as Modelica, FMI and Python. 
Modelica models can be developed within Modelon 
Impact by composition (drag and drop and connect) of 
existing models from available Modelica libraries, or by 
writing Modelica code within the code editor. Modelon 
Impact compiler, Optimica Compiler Toolkit (OCT), 
compiles the models – either in steady-state or dynamic 
simulation mode. 

As many engineering problems can be cast as 
optimization problems – including optimal control, 
minimum time problems, optimal design, and model 
calibration – Modelon Impact compiler supports 
optimization of dynamic and steady state models. This is 
achieved relying on the extension of Modelica language 
for optimization: OPTIMICA (Åkesson 2008). 

As the OPTIMICA language extends the Modelica 
language, it is convenient to opt for a similar approach 
when formulating an OPTIMICA optimization problem. 
Thus, the optimization model could be built as follow: 

1. Create an optimization class and provide modifiers 
to set up the objective and time constraints. 

2. Extend the Modelica model and provide modifiers to 
fix or relax parameters as well as minimum, 
maximum and nominal values. 

3. Optionally add more variables and equations. 

4. Add the constraints of the optimization problem. 

The Optimica code of the drone optimization is listed in 
Listing 1. 

Listing 1. OPTIMICA Code of the Drone Optimization 
optimization SizingAndTrajectoryOptim ( 
    objective=M_total(startTime), 
    finalTime(free=true, min=1, max=10, start=5)) 
// Minimize the total drone mass and relax the final simulation 
time within bounds. 

    import Modelica.Units.SI.DimensionlessRatio; 

    extends Drone( 
        x(start = 0, fixed=true), 
        xp(start = 0, fixed=true), 
        a(start = 0, fixed=true), 
        beta(free=true, min=0.3, max=0.6, start=0.4), 
        D(free=true, min=0, max=1), 
        T_nom_mot(free=true, min=0), 
        K_mot(free=true, min=0), 
        M_bat(free=true, min=0, max=100), 
        P_esc(free=true, min=0), 
        k_D(free=true, min=0.01, max=1, start=0.05), 
        D_out_arm(free=true, min=0.001, max=1)); 
// Inherit the Modelica drone model, fix initial conditions and relax 
design parameters within bounds. 

    Modelica.Blocks.Interfaces.RealInput Traj_in; 
// Add input to the trajectory to optimize 

    DimensionlessRatio n_norm(start=1, fixed=true)=n/n_hover; 

    DimensionlessRatio N_norm(min=-1, max=1, 
nominal=0.8)=ND/ND_max; 

    DimensionlessRatio T_hov_norm(min=0, max=1, 
nominal=0.6) = T_hover/T_nom_mot; 

    DimensionlessRatio T_norm(min=-1, max=1, nominal=0.95) = 
T/T_max_mot; 

    DimensionlessRatio U_norm(min=0, max=1, nominal=0.5) = 
U_mot/V_bat; 

    DimensionlessRatio P_norm(min=0, max=1, nominal=0.5) = 
P_mot/P_esc; 

    DimensionlessRatio E_norm(min=0, max=1, nominal=0.25) = 
E_drone/E_bat; 

    DimensionlessRatio sigma_norm(min=-1, max=1, 
nominal=0.15) = sigma/sigma_max; 
// Create additional normalized variables with bounds as inequality 
constraints 

equation 

    T=Traj_in; // Bind drone trajectory with optimization input 

constraint 

    x(finalTime) = 10; 

    xp(finalTime) = 0; 

    a(finalTime) = 0; 
// Define end time constraints. 

end SizingAndTrahjectoryOptim; 
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It appears that the OPTIMICA language is straightforward 
for a person used to the Modelica language – which itself 
is quite straightforward for many engineers. This way, the 
threshold to develop an optimization model is minimized. 

4.3 Optimization Results 
The result of the optimization problem – solving both the 
design (component pre-sizing) and trajectory optimization 
problems – are shown in dashed lines, for some variables, 
in Figure 6. 

The solution of the sole trajectory optimization – with 
a separate sizing – is presented in full lines. This highlights 
the differences in trajectories when sizing is added as part 
of the optimization. When combining both, the optimizer 
could assess that it was more energy efficient to increase 
the size of the propeller, reducing its rotational speed, 
allow a smoother trajectory and compensating by a bigger 
battery – that can allow the relevant number of ascents. 

After scaling to 150 climbs (endurance requirement), 
the optimum resulted in a drone weighting about 45 kg 
(without payload) with a battery contributing to more than 
half of the weight (about 27 kg). A drone designer might 
find interesting to investigate an easily replaceable battery 
pack in order to reduce the endurance requirement – 
leading to potentially more convenient (and safer) drones 
to operate. 

These results were obtained with similar orders of 
magnitude with both Modelon Impact and a comparative 
solution based on FAST-OAD (David 2021). 

5 The Benefits of Modelon Impact 
There are several advantages in using Modelon Impact 
compared to a separate optimization with a Python 
package or in a dedicated optimization platform such as 

OpenMDAO, even if relying on a FMU for the plant 
model. 

A key advantage of using Modelon Impact is that it 
relies on its OPTIMICA compiler and the OPTIMCA 
language, as mentioned previous, extends the Modelica 
language. Hence, a fair amount of the benefits listed below 
are Modelica features serving the optimization purposes. 

5.1 Solving Initialization Problem 
The Modelica language can deal with both Initial Value 
Problem (IVP) and Boundary Value Problem (BVP) for 
the model initialization. In the former case, the user 
provides the initial values for every state. In the latter, the 
number of independent initial values should match the 
number of states but is not necessarily their initial values. 

Therefore, Modelon Impact compiler solves an initial 
problem – different from the dynamic problem – to resolve 
the BVP. In this process, the compiler can solve linear and 
non-linear systems, which is often not tolerated out of the 
box with a different solution. For example, in the Python 
optimization, it was necessary to adapt the code, define 
iteration variables (coefficient factors) and residuals 
(equations that should tend to zero) to solve these non-
linear problems. 

5.2 Acausality – One Model Several Purposes 
A second advantage is that the Modelica language is 
acausal. This way, defining a Drone model based on the 
equations of the physics makes it useful for several use 
cases: position, speed or torque command. In our example, 
we want to optimize the torque trajectory while sizing the 
drone. Nevertheless, it is convenient to provide the 
optimizer a start trajectory not too far from our 
constraints. This is easily achieved by simulating the same 

 
Figure 6. Comparison of resulting trajectories for the trajectory optimization with and without the sizing. 



10.3384/ECP21186         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022   OCTOBER 26-28, DALLAS, TX, USA62 56

model, providing a position trajectory which not 
optimized at all but matching our requirements. 

5.3 Normalization for Convergence 
Modelica models and FMUs usually use variables 
expressed in SI units. Variable values may therefore differ 
by several orders in magnitude (Coïc 2020-a). A typical 
example is thermodynamic models containing pressures, 
temperatures and mass flows. Such large differences in 
scales may have a severe deteriorating effect on the 
performance of numerical algorithms and may in some 
cases even lead to the algorithm failing. In order to relieve 
the user from the burden of manually scaling variables, 
Modelica offers the nominal attribute, which can be used 
to automatically scale a model. Modelon Impact compiler 
can use these nominal attributes to scale the variables (and 
thus objective) of the optimization problem. In addition, it 
is possible to provide a reference trajectory for scaling at 
every time step of the simulation. 

5.4 Derivatives at Hand of the Optimization 
Finally, the Optimica language, being an extension of 
Modelica, has access to all the equations of the model and 
can process these. Thus, the compiler automatically 
computes all the derivatives it requires to secure a fast and 
robust convergence to a global optimum of the problem. 

5.5 Simpler, Faster and More Robust 
Modelon Impact solution also proved to be much simpler 
than the python with FAST-OAD approach. The Modelica 
code wasn’t written differently for performance 
simulation and for optimization purposes as it was the case 
for its Python version. Also, the optimization problem 
formulation in OPTIMICA language is very simply 
expressed, as mentioned above (see Listing 1), and does 
not diverge much from the Modelica language – which 
makes it really easy for a Modelica developer to ramp up 
on OPTIMICA 

The same optimization problem was solved in Modelon 
Impact and using FAST-OAD. For this optimization 
problem that consists of 10 design variables, 7 inequality 
and 1 equality constraint, Modelon Impact could solve the 
problem in less than 30 seconds while it took more than 
2 minutes to FAST-OAD. This can be explained by the 
different level of information on the model the optimizer 
has – by default FAST-OAD does not have access to the 
internal derivatives of the model. 

Finally, and this might sound unfortunately qualitative, 
the Modelon Impact solution was more robust, more 
straightforward to converge. While it took several hours 
of debugging to get the Python code running and 
optimization solving with FAST-OAD, it appeared to 
work almost directly with Modelon Impact. In all 
transparency, the first attempt did not involve 
normalization of the added variables for inequality 

constraints, and it failed to converge. Normalizing solved 
the issue. 

5.6 The Benefits of FAST-OAD 
There are many applications for which higher model 
fidelities are required. FAST-OAD supports easy coupling 
with Computational Flow Dynamics or Finite Element 
models. FAST-OAD scales also very well with the 
number of models involved in the optimization process. 
Therefore, the authors value both technologies and, 
indeed, some authors are major contributors to FAST-
OAD development. 

6 Conclusion 
This paper uses a multi-rotor drone (pre-)sizing and 
trajectory optimization to illustrate the needs for solving 
such a problem. The model fidelity is not necessarily the 
highest but constrains on the numerical aspect of the code 
are highlighted – e.g. acausality, smoothness, etc. The 
models shall be “optimization-friendly”. The propeller 
model is detailed to emphasize the level of details 
sufficient for such a purpose. 

In a second step, the optimization problem has been 
expressed, first analytically and then in OPTIMICA 
language – supported by Modelon Impact. The solving of 
the problem is achieved, and the benefit of this solution 
are discussed, in a generic way, and in comparison with 
another implementation using Python and FAST-OAD. 

The results proved that solving the sizing problem in 
combination with the trajectory optimization leads to a 
better design, compared to solving both problems 
sequentially. All industries could benefit from optimizing 
systems – that are meant to exist – in a more complete 
manner, e.g. including dynamic optimization of 
trajectories. 

As a perspective of work, we could show how the same 
model serve the purpose of Model Predictive Control of 
the multi-rotor drone to actually reach the optimum 
trajectory it was designed for. Another axis of 
improvement could be to use one of Modelon’s 6 degrees 
of freedom drone model to be able to include 
environmental constraints – such as a wind field – in the 
overall design optimization problem. 
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