
10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA56 56

Multirotor drone sizing and trajectory
optimization within Modelon Impact

Clément Coïc1 Marc Budinger2 Scott Delbecq3
1Modelon, Germany, clement.coic@modelon.com

2Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-
ISAE-Mines Albi-UPS, Toulouse, France

3ISAE-SUPAERO, Université de Toulouse, France

Abstract
The design of multirotor drones often relies on optimizing
its performance in terms of maximum speed requirements
and hover time. This is well suited to undefined tasks. In
the case of repetitive tasks, the drone trajectory can be
added as a third degree of freedom. This paper focuses on
the use of Modelon Impact and its dynamic optimization
capabilities to reach a multirotor drone design and 1-D
trajectory optimization. In comparison to other options
investigated by the authors in a separate publication,
Modelon Impact based optimization proved to be much
simpler, more robust, and faster – for this use case.
Keywords: Multirotor, Drone, Dynamic optimization,
Trajectory optimization, Sizing, Modelon Impact,
Optimica,

1 Introduction
Multirotor drones are often associated with toys that are
fun to pilot. The drone designer does not know in advance
who will use the drone and how it will be used. Therefore,
these drones are typically designed based on performance
requirements. For a toy drone to be fun, the user expects
it to be fast and to have a satisfying autonomy. The toy
drone designer often takes as requirement a maximum
speed and a given hover time.

On the other side, multirotor drones are also being
developed for some industry applications for a variety of
roles – from packages delivery to military assistance or
payload lifting in substitution to cranes. Contrarily to the
toy drones, industry drones typically have well defined
missions often expressed as:

• Start point: initial elevation, hover time

• End point: final elevation, horizontal distance from
the initial point and hover time

Missions including more points can be described as
sequences of start and end points.

Getting back to the sole mission of the drone – in
comparison to optimizing for performance requirements –
relaxes an entire degree of freedom: the drone trajectory.
Solving both the drone sizing and trajectory optimizations
allows focusing on optimization criteria such as

minimizing energy consumption or the cost function, if
willing to associate a cost to the parts that compose the
drone and its utilization (time of utilization – including
potential operator – and energy consumption).

This paper presents how easy it is to perform sizing and
trajectory optimization of a system within Modelon
Impact. A drone is selected as example system. A selected
case study – payload lifting – is introduced in section 2.
The drone model is discussed in section 3 of this paper,
with a particular focus on the propeller. In section 4, we
present the optimization problem, the simplicity of its
implementation in Modelon Impact and the associated
results. Finally, section 5 is a collection of advantages that
come with optimizing using OPTIMICA and Modelon
Impact.

2 Case Study – Payload lifting
2.1 Use Case
It is typical on construction sites – mostly when
approaching the end of the construction – to either keep a
crane operating for a longer period time to lift some minor
equipment or material, or to carry this payload by human
strength. While the former solution is often expensive, the
latter requires manpower and can affect physical health.
The use of drones to lift these small payloads
(Draganfly, 2022) is an economically attractive solution
which has a low impact on physical health.

Figure 1. Illustration of the load lifting use case.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5756

This paper focuses on a drone design aimed at a
repetitive task: small payload lifting – below 25 kg – from
ground to the top of a building.

2.2 Main Requirements
To match the use case presented in section 2.1, the main
requirements for the drone designs are related to the lifting
operation in terms of payload and endurance:

• Payload: The drone shall lift masses up to 25 kg
during its full operation.

• Endurance: The drone shall operate at least
150 climbs of at least 10 m height with 5 seconds
hovering – for the handling of the payload.

For this use case, the drone returns to ground without any
payload and thus with very little energy consumption.
Should the drone carry payload on the descent, the number
of climbs would be reduced inevitably.

3 From Drone Architecture to Model
This section details the drone architecture, technological
choices, the sizing problem formulation and discusses the
associated model.

3.1 Drone Architecture
Different architectural choices can be made depending on
the purpose and the mission. For multirotor drones, the
main choices are the number of arms and the number of
propellers per arms but also the materials and technologies
of the components.

As the main usage of such a drone is in urban area, it
was decided to select a fully electric drone design. Indeed,
electric motor emit less pollution – in terms of emissions,
smell, and noise – than the combustion ones. In the
presented work, a single architecture is considered for the
multirotor drone. The architecture is presented in Figure 2
and is composed of:

1. Four (4) fixed pitch propellers

2. Four (4) out-runner brushless motors

3. Four (4) electronic speed controllers (ESC) mainly
made from MOSFET inverters

4. One (1) battery based on Li-Ion cells

5. One (1) mechanical structure (frame) consisting of
four (4) arms and one (1) central body

Investigating variable architecture designs is let as
perspective to this work.

Figure 2. Multirotor drone architecture and components.

3.2 Discussion on the Drone Model Fidelity
As for physical systems, a simulation model is developed
for a given purpose. This purpose guides technological
choices on the model development, such as general
assumptions, the physical effects modeled, the level of
details, the smoothing, etc. These are all gathered within
the so-called model fidelity.

The purpose of the multirotor drone model for this
paper is to perform a component sizing and
simultaneously optimize the 1-D trajectory of the drone to
perform a well-defined task. From these two purposes, we
can extract a few technological choices.

Sizing purpose
Implications on model causality
When it comes to sizing a system based on a desired
trajectory – here, imposed by the optimization algorithm
– , it is often necessary to reverse the power chain. This is
also known as bicausality.

A performance simulation of the drone model would
typically require a known load at the propellers and would
compute the resulting speed of the drone, for a given
command. On the contrary, a sizing scenario would
provide both the load at the rotors and the drone speed.
These two variables define the required power output,
which can be propagated upstream on the power chain to
compute the require power at the power generation or
storage – here, the battery.

As the design validation would require a performance
simulation, the acausality of the Modelica language is
clearly a benefit to solve sizing problems. The sizing
solving requires propagating the power variables through
the component ports in one way or another – e.g. by
having flow and non-flow which product would lead to the
power or by adding the power to a connector.

Selection of model complexity
For cost reasons, we assume the drone will be assembled
using off-the-shelf components. The sizing problem thus
consists mainly of finding a good order of magnitude for
each component size. Therefore, physical effects to be
modeled should only be the dominant ones and their

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA58 56

implementation complexity could be quite low.
Consequently, scaling laws are used to design the
components and efficiencies are often used to assume
losses – instead of overloading the model with multiple
separate physical losses, e.g. each separate friction.

Optimization purpose
Most optimization algorithms rely on gradients to define
on which direction they should perform the next step. This
means that the variables of the model should, at least, be
continuous and derivable. A special effort is made in the
Modelica code to respect this constrain.

In addition, minimum, maximum and nominal values of
the design variables are provided to allow respectively to
bound and normalize the variables and equations – key for
optimization convergence.

Finally, dynamic optimization benefits from having
both an initial and a nominal trajectory that match the
specified requirements – without necessarily be optimal.
This is easily achieved by simulating first the drone
behavior with a smooth trajectory command. Here, the
acausality of the Modelica language becomes once more
convenient.

3.3 Drone Model – Focus on Propeller
The drone Modelica model serves two purposes:

1. It includes the scaling laws for all components to
allow their sizing.

2. It encodes the physics equations to model the flight
performance and power consumption.

The component sizing models used are scaling laws,
linear regressions of data sheet and surrogate models –
detailed by Budinger (2020). The physics equations are
well known equations from components and are presented
by Delbecq (2021). It is however relevant to present here
the propeller model, as a representative component of the
drone.

The propeller represents a key component in the drone
propulsion chain. Its performance can be expressed as a
function of two coefficients CT and CP, respectively
expressing thrust (1) and mechanical power (2) equations:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑇𝑇𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4 (1)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 = 𝐶𝐶𝑃𝑃𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛3𝐷𝐷5 (2)

where ρair represents the air density in [kg/m3], n the
rotational speed in [rev/s] and D the propeller diameter in
[m].

While CT and CP are dimensionless, they are not
constant. These depend on further variables such as the
blade pitch p, the air Bulk Modulus K, the relative airspeed
V (normal to the rotor plane). It is here assumed that:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉) (3)

→ 𝐶𝐶𝑇𝑇 = 𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉)/(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4) (4)

Performing a dimensional analysis on these equations
allows identifying a reduced set of dimensionless
variables that can define this equation. Note that
Buckingham’s theorem gives us the insight that these
dimensionless variables are in number of 3 (6 variables
and 3 units dimensions). The detailed dimensionless
analysis is available on request – please email the authors.
This gives us the following three dimensionless numbers:

• The pitch to diameter ratio: 𝛽𝛽 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝ℎ/𝐷𝐷.

• The advance ratio: 𝐽𝐽 = 𝑉𝑉/ (𝑛𝑛𝐷𝐷).

• The air compressibility indicator: 𝐵𝐵 = 𝐾𝐾/(𝜌𝜌𝑛𝑛2𝐷𝐷2)

The analysis on CP reveals the same dimensionless
numbers. As both the thrust and power coefficients are
surface responses, these are better fitted with polynomial
regression rather than with power regression – as
discussed in (Sanchez 2017).

A sensitivity study was conducted in (Budinger 2020)
on the three dimensionless numbers within the domain of
usage of the drone. It showed that both CT and CP are quite
insensitive to the air compressibility indicator, within this
domain. Finally, the fitting revealed the following
equations:

 𝐶𝐶𝑇𝑇 ≈ 0.02791 − 0.06543𝐽𝐽 − 0.23504𝐽𝐽2

+ 0.02104𝐽𝐽3 + 0.11867𝛽𝛽
+ 0.27334𝛽𝛽2 − 0.28852𝛽𝛽3

+ 0.18677𝛽𝛽𝐽𝐽2

(5)

𝐶𝐶𝑃𝑃 ≈ 0.01813 − 0.00343𝐽𝐽 − 0.12350𝐽𝐽2

+ 0.06218𝛽𝛽 + 0.35712𝛽𝛽2

− 0.23774𝛽𝛽3 + 0.07549𝛽𝛽𝐽𝐽
(6)

The surface responses and the corresponding datasets are
presented below for both coefficients.

Figure 3. Surface response of CT and reference dataset (dots).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5956

Figure 4. Surface response of CP and reference dataset (dots).

This gives us the performance model of the propeller, that
needs to be completed by its sizing model. For the
propeller, that parameters of interest are the mass and the
inertia. These are computed based on scaling laws. The
propeller mass Mprop is found to be proportional to the
cube of its diameter. From the mass, the inertia Iprop can
be computed. Note that scaling laws require similar
reference data to scale on to.

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Mref(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟)2
 (7)

Iprop = Mprop(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/2)3/3 (8)

From this complete set of equations, we get the propeller
sizing and associated performance – impacted by the
sizing. Similar models are developed for all components
and the following parts of the paper will focus on the
general sizing problem formulation and optimization
problem, rather than detailing each component. As a
reminder, these equations are available in (Budinger
2020) and the propeller model fidelity is representative of
the rest of the model. If of interest, a more detailed
Modelica performance model is presented by Podlaski
(2020).

3.4 Sizing Problem Formulation
The main sizing scenarios, design drivers and models for
vertical flight applications of multirotor drones are
summarized in Figure 5. Such applications consist of
three sizing scenarios to be considered in the design
problem that are:

1. the hovering flight with the advance ratio of the
propeller J = 0 – as the air speed V is null.

2. the takeoff phase which requires maximum power to
accelerate the drone with an increasing J – increasing
air speed V.

3. the climb phase with a constant vertical speed and
thus constant J.

Figure 5. Design drivers and equations of the multirotor drone.

The overall sizing model has been adapted from (Delbecq
2021) which is tailored for vertical flight applications of
multirotor drones, and should be consulted for a more
detailed sizing formulation.

4 Optimization Problem
4.1 Optimization Problem Formulation
The simultaneous trajectory and design optimization
problem can be formulated as a mass optimization
problem including the trajectory variables (motor torque
command and final time):

minimize 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
with respect to 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑘𝑘𝑁𝑁𝑁𝑁, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚,𝑠𝑠𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠

𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠, 𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑣𝑣𝑝𝑝𝑣𝑣𝑚𝑚𝑏𝑏𝑣𝑣𝑟𝑟, 𝑘𝑘𝑏𝑏𝑝𝑝𝑚𝑚, 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡), 𝑎𝑎𝑚𝑚0, 𝑡𝑡𝑟𝑟
subject to 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚0 − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0

𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑚𝑚 − 𝐸𝐸𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0
𝑈𝑈𝑚𝑚𝑝𝑝𝑚𝑚 − 𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 0
𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑈𝑈𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 0
𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡) − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0

ℎ − 𝑧𝑧(𝑡𝑡𝑟𝑟) ≤ 0
�̇�𝑧(𝑡𝑡𝑟𝑟) = 0

(9)

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA60 56

The objective is to minimize the weight of the vehicle for
the defined mission with respect to design variables such
as the propeller pitch βpro or the nominal motor torque
Tmot. The design has to respect some constraints to respect
the technological constraints of components such as motor
maximum electromagnetic torque Tmot,max as well as
others to respect voltages consistency in the power train
(Umot ≤ UESC and UESC ≤ Ubat). Some consistency
constraints are used to solve multidisciplinary couplings
as suggested by Delbecq (2020) (Emission ≤ Ebat and
MTOWf ≤ MTOW). This also requests to add normalized
design variables such as kMTOW and kbat,mass.

Instead of minimizing the drone weight, minimizing the
energy could have been used as objective. Unfortunately,
within the time given to investigate this solution, this
seemed to be a less robust option. Minimizing the mass is
a conscious problem simplification – a lower mass means
less energy to carry it. The authors acknowledge that
minimizing the energy might lead to a slightly different
optimum to this problem.

4.2 Optimica Implementation
Modelon Impact (Coïc 2020-b) is a state of the art, cloud-
based modeling and simulation environment, relying on
open standards such as Modelica, FMI and Python.
Modelica models can be developed within Modelon
Impact by composition (drag and drop and connect) of
existing models from available Modelica libraries, or by
writing Modelica code within the code editor. Modelon
Impact compiler, Optimica Compiler Toolkit (OCT),
compiles the models – either in steady-state or dynamic
simulation mode.

As many engineering problems can be cast as
optimization problems – including optimal control,
minimum time problems, optimal design, and model
calibration – Modelon Impact compiler supports
optimization of dynamic and steady state models. This is
achieved relying on the extension of Modelica language
for optimization: OPTIMICA (Åkesson 2008).

As the OPTIMICA language extends the Modelica
language, it is convenient to opt for a similar approach
when formulating an OPTIMICA optimization problem.
Thus, the optimization model could be built as follow:

1. Create an optimization class and provide modifiers
to set up the objective and time constraints.

2. Extend the Modelica model and provide modifiers to
fix or relax parameters as well as minimum,
maximum and nominal values.

3. Optionally add more variables and equations.

4. Add the constraints of the optimization problem.

The Optimica code of the drone optimization is listed in
Listing 1.

Listing 1. OPTIMICA Code of the Drone Optimization
optimization SizingAndTrajectoryOptim (
 objective=M_total(startTime),
 finalTime(free=true, min=1, max=10, start=5))
// Minimize the total drone mass and relax the final simulation
time within bounds.

 import Modelica.Units.SI.DimensionlessRatio;

 extends Drone(
 x(start = 0, fixed=true),
 xp(start = 0, fixed=true),
 a(start = 0, fixed=true),
 beta(free=true, min=0.3, max=0.6, start=0.4),
 D(free=true, min=0, max=1),
 T_nom_mot(free=true, min=0),
 K_mot(free=true, min=0),
 M_bat(free=true, min=0, max=100),
 P_esc(free=true, min=0),
 k_D(free=true, min=0.01, max=1, start=0.05),
 D_out_arm(free=true, min=0.001, max=1));
// Inherit the Modelica drone model, fix initial conditions and relax
design parameters within bounds.

 Modelica.Blocks.Interfaces.RealInput Traj_in;
// Add input to the trajectory to optimize

 DimensionlessRatio n_norm(start=1, fixed=true)=n/n_hover;

 DimensionlessRatio N_norm(min=-1, max=1,
nominal=0.8)=ND/ND_max;

 DimensionlessRatio T_hov_norm(min=0, max=1,
nominal=0.6) = T_hover/T_nom_mot;

 DimensionlessRatio T_norm(min=-1, max=1, nominal=0.95) =
T/T_max_mot;

 DimensionlessRatio U_norm(min=0, max=1, nominal=0.5) =
U_mot/V_bat;

 DimensionlessRatio P_norm(min=0, max=1, nominal=0.5) =
P_mot/P_esc;

 DimensionlessRatio E_norm(min=0, max=1, nominal=0.25) =
E_drone/E_bat;

 DimensionlessRatio sigma_norm(min=-1, max=1,
nominal=0.15) = sigma/sigma_max;
// Create additional normalized variables with bounds as inequality
constraints

equation

 T=Traj_in; // Bind drone trajectory with optimization input

constraint

 x(finalTime) = 10;

 xp(finalTime) = 0;

 a(finalTime) = 0;
// Define end time constraints.

end SizingAndTrahjectoryOptim;

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6156

It appears that the OPTIMICA language is straightforward
for a person used to the Modelica language – which itself
is quite straightforward for many engineers. This way, the
threshold to develop an optimization model is minimized.

4.3 Optimization Results
The result of the optimization problem – solving both the
design (component pre-sizing) and trajectory optimization
problems – are shown in dashed lines, for some variables,
in Figure 6.

The solution of the sole trajectory optimization – with
a separate sizing – is presented in full lines. This highlights
the differences in trajectories when sizing is added as part
of the optimization. When combining both, the optimizer
could assess that it was more energy efficient to increase
the size of the propeller, reducing its rotational speed,
allow a smoother trajectory and compensating by a bigger
battery – that can allow the relevant number of ascents.

After scaling to 150 climbs (endurance requirement),
the optimum resulted in a drone weighting about 45 kg
(without payload) with a battery contributing to more than
half of the weight (about 27 kg). A drone designer might
find interesting to investigate an easily replaceable battery
pack in order to reduce the endurance requirement –
leading to potentially more convenient (and safer) drones
to operate.

These results were obtained with similar orders of
magnitude with both Modelon Impact and a comparative
solution based on FAST-OAD (David 2021).

5 The Benefits of Modelon Impact
There are several advantages in using Modelon Impact
compared to a separate optimization with a Python
package or in a dedicated optimization platform such as

OpenMDAO, even if relying on a FMU for the plant
model.

A key advantage of using Modelon Impact is that it
relies on its OPTIMICA compiler and the OPTIMCA
language, as mentioned previous, extends the Modelica
language. Hence, a fair amount of the benefits listed below
are Modelica features serving the optimization purposes.

5.1 Solving Initialization Problem
The Modelica language can deal with both Initial Value
Problem (IVP) and Boundary Value Problem (BVP) for
the model initialization. In the former case, the user
provides the initial values for every state. In the latter, the
number of independent initial values should match the
number of states but is not necessarily their initial values.

Therefore, Modelon Impact compiler solves an initial
problem – different from the dynamic problem – to resolve
the BVP. In this process, the compiler can solve linear and
non-linear systems, which is often not tolerated out of the
box with a different solution. For example, in the Python
optimization, it was necessary to adapt the code, define
iteration variables (coefficient factors) and residuals
(equations that should tend to zero) to solve these non-
linear problems.

5.2 Acausality – One Model Several Purposes
A second advantage is that the Modelica language is
acausal. This way, defining a Drone model based on the
equations of the physics makes it useful for several use
cases: position, speed or torque command. In our example,
we want to optimize the torque trajectory while sizing the
drone. Nevertheless, it is convenient to provide the
optimizer a start trajectory not too far from our
constraints. This is easily achieved by simulating the same

Figure 6. Comparison of resulting trajectories for the trajectory optimization with and without the sizing.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA62 56

model, providing a position trajectory which not
optimized at all but matching our requirements.

5.3 Normalization for Convergence
Modelica models and FMUs usually use variables
expressed in SI units. Variable values may therefore differ
by several orders in magnitude (Coïc 2020-a). A typical
example is thermodynamic models containing pressures,
temperatures and mass flows. Such large differences in
scales may have a severe deteriorating effect on the
performance of numerical algorithms and may in some
cases even lead to the algorithm failing. In order to relieve
the user from the burden of manually scaling variables,
Modelica offers the nominal attribute, which can be used
to automatically scale a model. Modelon Impact compiler
can use these nominal attributes to scale the variables (and
thus objective) of the optimization problem. In addition, it
is possible to provide a reference trajectory for scaling at
every time step of the simulation.

5.4 Derivatives at Hand of the Optimization
Finally, the Optimica language, being an extension of
Modelica, has access to all the equations of the model and
can process these. Thus, the compiler automatically
computes all the derivatives it requires to secure a fast and
robust convergence to a global optimum of the problem.

5.5 Simpler, Faster and More Robust
Modelon Impact solution also proved to be much simpler
than the python with FAST-OAD approach. The Modelica
code wasn’t written differently for performance
simulation and for optimization purposes as it was the case
for its Python version. Also, the optimization problem
formulation in OPTIMICA language is very simply
expressed, as mentioned above (see Listing 1), and does
not diverge much from the Modelica language – which
makes it really easy for a Modelica developer to ramp up
on OPTIMICA

The same optimization problem was solved in Modelon
Impact and using FAST-OAD. For this optimization
problem that consists of 10 design variables, 7 inequality
and 1 equality constraint, Modelon Impact could solve the
problem in less than 30 seconds while it took more than
2 minutes to FAST-OAD. This can be explained by the
different level of information on the model the optimizer
has – by default FAST-OAD does not have access to the
internal derivatives of the model.

Finally, and this might sound unfortunately qualitative,
the Modelon Impact solution was more robust, more
straightforward to converge. While it took several hours
of debugging to get the Python code running and
optimization solving with FAST-OAD, it appeared to
work almost directly with Modelon Impact. In all
transparency, the first attempt did not involve
normalization of the added variables for inequality

constraints, and it failed to converge. Normalizing solved
the issue.

5.6 The Benefits of FAST-OAD
There are many applications for which higher model
fidelities are required. FAST-OAD supports easy coupling
with Computational Flow Dynamics or Finite Element
models. FAST-OAD scales also very well with the
number of models involved in the optimization process.
Therefore, the authors value both technologies and,
indeed, some authors are major contributors to FAST-
OAD development.

6 Conclusion
This paper uses a multi-rotor drone (pre-)sizing and
trajectory optimization to illustrate the needs for solving
such a problem. The model fidelity is not necessarily the
highest but constrains on the numerical aspect of the code
are highlighted – e.g. acausality, smoothness, etc. The
models shall be “optimization-friendly”. The propeller
model is detailed to emphasize the level of details
sufficient for such a purpose.

In a second step, the optimization problem has been
expressed, first analytically and then in OPTIMICA
language – supported by Modelon Impact. The solving of
the problem is achieved, and the benefit of this solution
are discussed, in a generic way, and in comparison with
another implementation using Python and FAST-OAD.

The results proved that solving the sizing problem in
combination with the trajectory optimization leads to a
better design, compared to solving both problems
sequentially. All industries could benefit from optimizing
systems – that are meant to exist – in a more complete
manner, e.g. including dynamic optimization of
trajectories.

As a perspective of work, we could show how the same
model serve the purpose of Model Predictive Control of
the multi-rotor drone to actually reach the optimum
trajectory it was designed for. Another axis of
improvement could be to use one of Modelon’s 6 degrees
of freedom drone model to be able to include
environmental constraints – such as a wind field – in the
overall design optimization problem.

References
Åkesson Johan (2008). “Optimica—An Extension of Modelica

Supporting Dynamic Optimization”. In 6th International
Modelica Conference, Bielefeld, Germany, 2008.

Budinger Marc, Aurélien Reysset, Aitor Ochotorena and Scott
Delbecq (2020). “Scaling laws and similarity models for the
preliminary design of multirotor drones”. In Aerospace
Science and Technology, 98. 1-15. ISSN 1270-9638.

Coïc Clément, Moritz Hübel and Matthis Thorade (2020).
“Enhanced Steady-State in Modelon Jet Propulsion Library,
an Enabler for Industrial Design Workflows”. In American
Modelica Conference 2020, Boulder, Colorado, USA.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6356

Coïc Clément, Johan Andreasson, Anand Pitchaikani, Johan
Åkesson and Hemanth Sattenapalli (2020). “Collaborative
Development and Simulation of an Aircraft Hydraulic
Actuator Model”. In Asian Modelica Conference 2020,
Tokyo,Japan.

David Christophe, Scott Delbecq, Sébastien Defoort, Peter
Schmollgruber, Emmanuel Benard, Valérie Pommier-
Budinger (2021). “From FAST to FAST-OAD: An open
source framework for rapid Overall Aircraft Design”. In 10th
EASN Virtual International Conference on Innovation in
Aviation & Space to the Satisfaction of the European Citizens.

Delbecq Scott, Marc Budinger, Clément Coïc, and Nathalie
Bartoli (2021). “Trajectory and design optimization of
multirotor drones with system simulation”. In American
Institute of Aeronautics and Astronautics, Inc, SciTech,
DOI: 10.2514/6.2021-0211.

Delbecq Scott, Marc Budinger and Aurélien Reysset (2020).
“Benchmarking of monolithic MDO formulations and
derivative computation techniques using OpenMDAO”. In
Structural and Multidisciplinary Optimization, Vol. 62,
No. 2, 2020, pp. 645–666. DOI: 10.1007/s00158-020-02521-
7.

Draganfly website – heavy lift, accessed in August 2022.
https://draganfly.com/heavy-lift/

Podlaski Megan, Luigi Vanfretti, Hamed Nademi and Hao
Chang (2020). “UAV Dynamics and Electric Power Systems
Modeling and Visualization using Modelica and FMI”. In
American Modelica Conference 2020

Sanchez Florian (2017). “Génération de modèles analytiques
pour la conception préliminaire de systèmes multi-physiques
: application à la thermique des actionneurs et des systèmes
électriques embarqués”. Doctoral’s thesis. Université
Toulouse 3 Paul Sabatier, France. URL: http://thesesups.ups-
tlse.fr/3555/1/2017TOU30081.pdf.

