
DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9393

A Playground for the Modelica Language

Michael M. Tiller1

1modelica.university, michael.tiller@gmail.com

Abstract
This paper introduces a Modelica playground which al-
lows users to experiment with the Modelica language
without having to install any specific Modelica tools. This
web-based application also contains content and lessons
that provide users with a guided tour of the language and
the opportunity for advanced users to create domain spe-
cific content built on top of this same infrastructure. This
paper will explain the various open source technologies
employed in creating this application and discuss poten-
tial future work to further enhance the experience for the
user as well as the reach for Modelica itself.
Keywords: Modelica, education, interactive, animation,
playground, web

1 Introduction
1.1 Playgrounds
To help "onboard" users, many programming languages
include a web-based environment that allows users to see
working fragments of code in that language. What makes
such an environment a playground is that it allows these
code fragments to be edited and compiled as well. This
enables users to explore the language and understand at
least the basics of different syntactic constructs without
having to install any of the normal tooling associated with
the language.

These playgrounds are not only useful tools for users
to "try out" a language before committing to installing all
the tooling, they are also very useful as educational tools.
Such playgrounds often include examples of specific fea-
tures of the languages. In a sense, they are used to help
"sell" users on the design of the language or help explain
difficult concepts by giving the users running examples
(created by language experts) to help users understand
the particularly idiomatic ways of accomplishing various
tasks in that language.

The reality is that Modelica lags behind many other
language ecosystems. This is, in part, due to a lack of
resources. Modelica is, after all, something of a niche
language. Nevertheless, this application was developed in
part because applications like VPython (Bruce Sherwood
2022) are being used in a classroom context to teach stu-
dents about math and physics through the use of 3D vi-
sualization. But using VPython is quite tedious compared
to Modelica because users must implement all the numer-
ical methods themselves. By creating the Modelica Play-

ground, we hope to provide a better platform for students.

1.2 Goals
This project was developed with several goals in mind:

• Freely Available: As with all other content at
https://modelica.university, this con-
tent is made freely available. The goal here is to sup-
port, to the greatest extent possible, those interested
in learning the Modelica language. There are many
tools out there with greater commercial resources
than those in the Modelica community which is why
it is important that the unique value and capabilities
inherent in Modelica are demonstrated by material
that is as accessible as possible.

• Collaboration: When using the Modelica Play-
ground, users create models (and post-processing re-
ports). This can involve a significant amount of ef-
fort. As such, it should be possible for users to easily
save, share and publish their work.

• Visualization: For most programming language
playgrounds, it is sufficient to simply capture out-
put from the running program and display that. But
Modelica is a modeling language and the "output"
of Modelica code is (generally) time-varying simula-
tion results. So in order for the user to fully com-
prehend what their code "means" in a mathemati-
cal sense, it is essential that visualization tools are
available to bring those simulation results to life. Al-
though there are many ways to visualize data in a
web browser, we don’t want the user to be required
to become a frontend web developer with full knowl-
edge of Javascript, HTML and CSS in order to craft
their visualizations. For this reason, a no/low-code
approach was taken requiring minimal amounts of
imperative code to be written.

• Extensible: This application is about more than just
teaching people Modelica. It is to provide a means
to communicate ideas via Modelica code. This plat-
form has been designed explicitly to allow ordi-
nary users to create content that can be organized
into "lessons" such that these lessons can be shared
among users without the need to edit the source code
of the playground application itself.

• Privacy: Cookie consent popups have become ubiq-
uitous since the rollout of GDPR. While it is use-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA94 93

ful to track the popularity of the tools hosted at
modelica.university, there is no useful pur-
pose in tracking users as individuals. As such, there
is no cookie consent popup because there are no
cookies being dropped in the user’s browser. It sim-
ply isn’t necessary to track users in order to accom-
plish this application’s goals. Sorry Google.

2 Modelica Editor
The first aspect of the Modelica Playground that we
shall discuss is the Modelica editor. The Model-
ica editor, shown in Figure 1, is built on top of
Monaco (Microsoft 2022a), the code editor that pow-
ers Visual Studio Code (Microsoft 2022d), a widely
used open source integrated development environ-
ment. The Monaco platform provides a playground
of its own at: https://microsoft.github.io/
monaco-editor/playground.html.

Figure 1. Modelica code editor in Modelica Playground

Currently, the Modelica editor provides syntax high-
lighting as well as "error decoration" (both syntax errors
and compilation errors). The implementation details of
these features will be discussed shortly. Monaco itself is
quite a powerful platform and hopefully other features that
it provides will be incorporated in the future.

Before talking about syntax in more detail, it is impor-
tant to point out one way that the Modelica Playground
deviates from most Modelica tools. For most Model-
ica tools, the user compiles a model. The understanding
is that this model will be instantiated implicitly by the
compiler and that the model is, in some sense, the funda-
mental compilation unit.

As shown in Figure 1, the Modelica Playground doesn’t
take this approach because no root level restricted class is
required. The reason for this is that by allowing the user
to start with simple variables and equations, no previous
knowledge about restricted classes or object oriented pro-
gramming features are required. As a result, the typical
code fragments found in the Modelica Playground read
more like a program in an interpreted programming lan-
guage like Python or Javascript. The goal in making this

change is to lower the barrier of entry for new users and
provide them with an initial context that is more familiar
and intuitive.

2.1 Syntax Highlighting
Syntax highlighting is an essential requirement for any
kind programming language renderer whether it simply
be rendering source code on a page or implementation
of a text editor. The Monaco system provides something
called Monarch (Microsoft 2022b) for implementing syn-
tax highlighting as a series of simple rules. The goal, with
Monarch, is to avoid the need to implement a complete
language parser and instead reduce the process down to
one that can be accomplished with a collection of regular
expressions. This can certainly be done with Modelica,
but that isn’t how syntax highlighting is implemented in
the Modelica Playground.

Ultimately, syntax highlighting is simply about identi-
fying the semantic significance of regions of text in the
source code. While Monarch does this via regular expres-
sions, the Modelica playground actually uses a full blown
Modelica parser. Normally, this would probably be con-
sidered overkill. But there are two reasons this is reason-
able in this case. First, the Modelica Playground doesn’t
deal with large quantities of code so the extra computa-
tional effort required to do a complete parsing of the code
isn’t really that significant and doesn’t really impact re-
sponsiveness of the user interface. Second, the particular
parser we are using is actually purpose built for these kinds
of tasks.

The parser we are using was created using Tree-sitter
(Brunsfeld 2022). There are two aspects of Tree-sitter that
make it well suited for our purposes. The first is that it
was developed specifically as an incremental parser. What
that means is that it is designed to parse source code that
is constantly changing. The typical use case that an in-
cremental parser would concern itself with is syntax high-
lighting source code in a text editor. The goal is to quickly
re-parse the source code after text has been inserted or
deleted in a certain range. The parser itself is designed to
reuse as much of the effort from previous parsing passes
as possible. Although in a playground context where the
source code is small, this is of minimal benefit. But the
parser itself could be reused in other contexts with larger
files. The other aspect of Tree-sitter that makes it well
suited for our purposes is the fact that it compiles down to
WebAssembly (WebAssembly Community Group 2022).
It does this by first compiling a C language implementa-
tion of the parser and then using Emscripten (Empscripten
Contributors 2021) to compile that into Web Assembly.
The result is near native performance in the browser.

The resulting parser has been open-sourced as
Modelica-tree-sitter (Michael M. Tiller 2022b). Because
tree-sitter is developed and used by Github, its existence
will hopefully lead to a future where Modelica source code
is natively highlighted on Github (and perhaps other plat-
forms).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9593

2.2 Error Handling
Error handling comes in two varieties. The first is basic
syntax errors. These can be easily detected by the same
parser that is used to generate the syntax highlighting. Un-
fortunately, one of the current limitations in Tree-sitter is a
lack of good diagnostic messages from generated parsers.
As a result, the decoration of syntax errors in Model-
ica simply identifies the text where a syntax error occurs
but doesn’t provide much useful information beyond that.
There are several open issues related to this topic asso-
ciated with the Tree-sitter project and the authors appear
to recognize these limitations. Hopefully future versions
of Tree-sitter will address these limitations which could
translate into better syntax error diagnostics in Modelica
Playground.

The other type of error that Modelica Playground han-
dles are compilation errors. These errors are more seman-
tic in nature and are reported back from the OpenMod-
elica compiler (Open Modelica Consortium 2022) used
by Modelica Playground to compile the Modelica source
code. Fortunately, OpenModelica errors include informa-
tion about the text range for each error. And, unlike the
syntax errors, they include considerable information about
the nature of the error. All of this is leveraged by the
Monaco platform in providing text decorations over the
regions of text that, when hovered over (see Figure 2),
elaborate on the nature of the error contained there.

Figure 2. Semantic Error Highlighting

3 Simulation
Of course, editing Modelica code is just the beginning of
what is required in order to engage readers with the Mod-
elica language. The next logical component is to enable
simulation of those models. For many language play-
grounds, code is compiled and then run and the textual
output of the program is captured and relayed back to the
user. But in this case, we need to compile the code, run a
simulation and relay the simulation results back.

3.1 OpenModelica
Let’s start with the compiler itself. As previously men-
tioned, the Modelica Playground runs the OpenModelica
compiler to compile code. Architecturally, the Modelica
Playground application makes a request to an HTTP API
asking that the model be simulated. The model source
code is included in the request. This kind of an approach
admittedly does not scale for dealing with large code
bases. But because this is simply a "playground" (deal-

ing with small fragments of code), it is acceptable. The
backend is implemented using the Go language (which
features its own playground, (Google 2022)). The API
writes the source code to a temporary directory, running
the OpenModelica compiler and then bundling the sim-
ulation results up in the response. Rate limiting is im-
plemented using a worker pool in each server responding
to such requests. These servers are themselves deployed
as Kubernetes Deployment resources and, being state-
less, can be scaled up as needed. The default number of
replicas is two but a horizontal autoscaler could easily be
associated with such a deployment to handle high load sit-
uations.

3.2 Results
For the moment, simulation results are handled in a fairly
simplistic way. The compilation step requests output in
csv format and the API parses that output and identi-
fies which signals are constant at every time interval and
which ones are not. The results returned in the simula-
tion response segregate the signals accordingly. A bet-
ter approach would be to output results in a more "so-
phisticated" output format, like the dsres format, that
was more space efficient (e.g., leveraging things like alias
elimination). But again, the requirements for a playground
are not so demanding.

4 Report Editor
A basic proof of concept of the Modelica Playground pro-
viding a basic text editor and the ability to request sim-
ulation results for Modelica source was put together in a
day or two. But providing a high quality user experience
takes much more effort. Apart from the syntax highlight-
ing and error handling already discussed, adding function-
ality that provides attractive visuals and extensibility takes
a lot more effort. In this section, we’ll talk about how post
simulation reports are generated and all the various pos-
sibilities the Modelica Playground provides developers of
such reports.

5 Report Rendering
If the only purpose of the Modelica Playground were to al-
low users to compile Modelica code without needing to in-
stall tools, then generating simple tables and plots (which
is the default behavior when no post-processing report is
specified) would be sufficient. But this type of approach
limits the kind of narrative that can be associated with a
given model.

Since one of the goals of this project was to build a plat-
form for users to create content that told a story about var-
ious models (and to stitch them together with some degree
of structure), a richer capability was required. Further-
more, previous work has demonstrated that if the platform
itself requires the underlying source code for the appli-
cation to be modified in order to add additional content,
this will put considerable constraints on who can add new

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA96 93

content and how it can be added.
For all of these reasons, the Modelica Playground was

created with a post-processing report generation capabil-
ity whose goal was to bring a no/low code approach to
creating visual content. While MCP-0033 (Tidefelt and
Tronarp 2020) proposes standard annotations for plots, the
rendering functionality in the Modelica Playground goes
well beyond (and could complement) that capability by
opening up vastly more types of visualizations and inter-
activity. The following subsections will address the mov-
ing parts that make this possible.

As shown in Figure 3, the report tab in the Modelica
Playground (found on the left) contains the purely textual
source code for the post-processing report. On the right
the Modelica Playground shows the rendered report (when
simulation results are available).

5.1 Markdown
The heart of the report generation process is Markdown
(John MacFarlane 2021). Markdown is widely used across
the web as an easy to learn format for creating textual con-
tent. Various platforms have extended Markdown in dif-
ferent ways but Commonmark represents a fairly standard
core which works reliably across different platforms.

Markdown brings standard markup support for text,
paragraphs, images, font style, inline HTML, etc. This
is the foundation for generating the reports, but it is sim-
ply the beginning of the transformations that occur. We
have chosen the Remark (Remark 2021) and Rehype (Re-
hype 2022) tool chains because, as we shall see shortly,
they can be quite easily extended via plugins.

These two tools by themselves allow the report textual
description to be rendered on the fly in the right pane. This
ability to immediately preview a report is not only useful
for previewing how the text in the report will appear, it
also works with all the extensions discussed in the remain-
der of this section which means the (report) content creator
can preview mathematical equations, tables, plots and an-
imations all in the context of simulation results. Every
adjustment made to the report provides an instant preview.

5.2 Math
For rendering of mathematical equations, the Model-
ica Playground leverages the remark-math package
(remark-math 2022). This provides both a remark and
rehype plugin for parsing the mathematical markup in
the Markdown content and rendering these equations us-
ing KaTeX (KaTeX 2022), respectively.

5.3 Custom Components
Another possibility with the remark rendering engine
is to define custom components. As mentioned previ-
ously, Markdown allows HTML code to appears alongside
Markdown syntax. But what the remark engine allows
us to do is effectively "extend" HTML to introduce new
element types and then gives us a hook by which we can
render those custom elements.

Using this functionality, we define two additional spe-
cialized components. The first is the <constants> el-
ement. When rendered, the <constants> element will
be replaced by a table that renders all constant variables
found in the simulation results.

Another custom component provided by the renderer is
the <chart> element. By default, the <chart> element
will be rendered as a plot (using ECharts (Apache Soft-
ware Foundation 2022)) containing all time varying vari-
ables in the simulation results. However, the <chart>
element provides a signals attribute which, when sup-
plied with a comma separated list of signal names, will
display just the signals explicitly listed.

5.4 Templating
So far the rendering has been leveraging functionality that
exists in remark plugins. But one challenge content cre-
ators may face is creating reports that leverage reuseable
Markdown code fragments. Another challenge is the in-
jection of information from the simulation into the report.
The limitation of Markdown itself is that it doesn’t actu-
ally provide any kind of templating functionality. So while
it is excellent for describing content, it isn’t designed at all
for managing it.

This is where Nunjucks (Mozilla Software Foundation
2020) comes in. This is a templating engine written in
Javascript and heavily inspired by the (Python based) Jinja
(Pallets 2022) package. Nunjucks is a templating engine
that allows us to define macros, variables, expressions
and conditional constructs and in this way create reusable
"units" of markdown as well as inject contextual informa-
tion into the rendered report.

Note that the Modelica Playground is written in Type-
Script (another language with its own playground, (Mi-
crosoft 2022c)) and leverages the React (Facebook 2022)
framework. So one might wonder why is another system
for creating reusable units of markdown required?

Why not simply use React components? This was cer-
tainly considered. For example, the MDX (MDX Commu-
nity 2022) platform would have allowed us to mix React
components into our Markdown code. But any solution
that involves React involves code. Recall that one of the
goals here is to have a no/low-code solution. Those cre-
ating content for this application should be able to do it
easily without having to learn React or modify the source
code of the application.

Nunjucks’ learning curve was judged sufficiently easy
to consider it for this purpose. It doesn’t involve "linking"
at all with the underlying application code and can be of-
fered up and exposed to end users in a compartmentalized
way that insulates them from the underlying application’s
architecture and technology stack.

Note that the template processing of Nunjucks is ap-
plied before the markdown processing. In this sense, we
are using Nunjucks as a preprocessor.

In general terms, we are using Nunjucks to render a re-
port. The report might make reference to constant values.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9793

Figure 3. Report textual description vs. rendered report

In such cases, we can refer to those values in Nunjucks ex-
pressions by referencing the predefined constants ob-
ject, e.g., constants.x. Assuming x is an expression in
our simulation results, constants.x will be replaced,
during Nunjucks preprocessing, with the actual simulated
value for x.

But what happens if the result we want to reference is
time varying. Such results have different values at differ-
ent times. Our Nunjucks preprocessor defines a special
object referred to as now. So if y is a time varying vari-
able, we can refer to the "current value" of y as now.y.
Similarly, there is a built in function in Nunjucks called
at and we can use that to refer to the value of a time vary-
ing signal at a particular time e.g., at(1.2).x. Keep in
mind the now objects relies on a notion of what the current
time is. But how do we define "current value"?

The Modelica Playground application is equipped with
a play/pause button and a scrubber controller. The appli-
cation itself assumes, by default, that now represents the
start time of the simulation. But by pressing "play" or
dragging the scrubber control around, the value of now
is automatically updated to the time associated with the
current position of the scrubber. Any Nunjucks output
that depends on the now variable is then automatically re-
rendered.

This templating is particularly useful when dealing with
the potentially verbose constructs associated with the vi-
sualization languages described next.

5.5 2D Visualization
Markdown, like Modelica and HTML, is a declarative ap-
proach to rendering. It doesn’t involve imperative com-
mands for how to render. Instead, it focuses on a de-
scription of what to render and leaves it to the tooling
and the platform to perform the rendering task accord-

ing to the specifications. In order to promote a no/low-
code approach for 2D visualization, a similar approach
was required. Fortunately, browsers have built-in render-
ing capabilities for 2D (and 3D) visualizations. In fact,
the browsers include two such approaches. The first is the
Canvas API (HTML Canvas 2D Context 2011). The prob-
lem with the Canvas API is that it is not declarative. For-
tunately, the other option, Scalable Vector Graphics (Scal-
able Vector Graphics 2018), also known as SVG, is declar-
ative.

For our purposes, it is not sufficient to simply render
SVG. A normal Markdown processor can already do that.
What is required for the Modelica Playground is that the
SVG be rendered as a function of the simulation results.
In other words, where numerical literals would appear in
SVG to describe positions, rotations, scaling and transfor-
mations, we require the ability to replace those numeric
literals with simulation results. This is made possible
thanks to the Nunjucks preprocessor described in subsec-
tion 5.3.

Note that these numeric literals might arise from con-
stants in our simulation results. But more often than not,
they arise from time varying variables in our simulation
results. In the former case, we can use the constants
variable described earlier and in the latter case, we can
use the now variable. In this way, any SVG figure that
references the now variable is effectively transformed au-
tomatically into an animation.

5.6 3D Visualization
Just as with 2D animation, our requirement for 3D anima-
tion depends on the ability to provide a declarative rep-
resentation of the 3D scene we wish to render and then
describing it via our templating capabilities in order to
couple it to our simulation results for the purposes of vi-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA98 93

sualization and animation. However, unlike the 2D case,
browsers have no built-in analog to SVG for declarative
specifications of 3D scenes.

But this isn’t the end of the world. The first thing to note
is that browsers do have built-in, hardware accelerated,
3D rendering capabilities in the form of WebGL (WebGL
2022). Also fortunate for us is the existence of a frame-
work called X3D (X3D 2022) that does provide a declara-
tive scheme for describing 3D scenes. Even thought X3D
isn’t built-in to browsers, it can be loaded into any stan-
dard compliant browser so it is the next best thing to a
built-in capability.

So once again, we can leverage the Nunjucks render-
ing to inject numeric values into a declarative scene de-
scription. And once again, references to the now variable
automatically translate into animations of our now three
dimensional scene and thereby satisfying our requirement
for a no/low-code approach to visualization.

5.7 Vega
As mentioned previously, the custom <chart> compo-
nent relies on ECharts for rendering the chart. ECharts is
one of many different visualizations libraries available for
the browser. Another is called Vega (Vega: A Visualiza-
tion Grammar 2022). An important property of the Vega
approach is that it provides a rich visualization grammar.
Through this grammar, users are able to describe a wide
ranging set of data visualizations going well beyond sim-
ple plots as shown in Figure 4.

Just as with SVG and X3D, we have a declarative vo-
cabulary for describing a nearly infinite set of rich visual-
izations. To support this, an additional custom component
was added, the <vega> component. This component can
be used to delimit a JSON object that conforms to the ex-
pected structure of a Vega visualization. In such cases, the
custom component will be replaced, during rendering, by
the actual Vega visualization.

5.7.1 Safe HTML

Allowing users to define their own markup brings with it
some risks. A modern browser is actually quite a powerful
platform and it is the platform that is used for lots of other
important tasks besides visualizing Modelica models and
their results. As such, we need to ensure that the Modelica
Playground doesn’t expose users to any security risks.

Fortunately, the rendering toolchain for remark in-
cludes the rehype-sanitize package (reype-sanitize
2021). While it might seem tempting to blacklist spe-
cific HTML elements (e.g., the <script> element) in
order avoid introducing opportunities for security exploits,
it turns out that blacklisting is impractical. There are sim-
ply too many ways in a modern browser to give people un-
wanted access if you allow users to simply type in "code".

For this reason, rehype-sanitize employs a
whitelisting approach. What this means, in practice, is that
it is necessary to identify explicitly all legal elements and
attributes of those elements and rehype-sanitize

will remove any references to any non-whitelisted ele-
ments. This is a tedious process, but it is one that was
followed in producing the Modelica Playground. The re-
sult is that the Modelica Playground should be a very safe
"sandbox" in which to play around with Modelica code.

6 Content
The default mode for the Modelica Playground is to
present the user with a "blank slate" where they can type
in any Modelica code they wish and create any post pro-
cessing report. There is a table of contents that can be
accessed that provides a few simple examples as a means
of getting started, but the base application is deliberately
quite open ended.

However, there is a mechanism by which specific mod-
els and reports or even collections of models and reports
can be "published" using the Modelica Playground. In this
section, we’ll discuss how this is accomplished.

6.1 Links for Sharing
As a user, if you develop a particular model (and associ-
ated post processing report) that you would like to share
with other users, you can click on the "Copy Link to Clip-
board" button. Doing so copies a URL to the clipboard
(the same URL visible in the browser’s address bar, in
fact).

This URL can then be emailed to other users. The URL
will include query parameters that encode the text of the
model and report. As a result, anybody who follows the
generated link will be placed in the Modelica Playground
with the associated models and report already pre-loaded.
The results themselves are too bulky to bundle in with the
URL. But since they can be reconstituted simply by press-
ing the "Simulate" button, doing so means that the link
recipient will then see exactly the same visualizations that
the original author saw.

Such link sharing could even be the basis for collabora-
tion since participants could each modify the models they
receive and send them back to the original developer. Sim-
ilarly, professors could assign homework to students and
request the solutions be done in the Modelica Playground
and the students could then copy the link to their solutions
into an email and send them back to the professor.

6.2 Lesson Plans
In some cases, users may want to share more than just a
single model. Instead, they may wish to share a collec-
tion of models that, progressively, tell a story or explain
a topic. In the Modelica Playground application, a collec-
tion of models and their associated post processing reports
is referred to as a lesson plan.

Each lesson in a lesson plan can consist of five distinct
parts:

• metadata: This is used to specify a title for each
lesson as well as an ordering for each lesson.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9993

Figure 4. Samples of various Vega visualizations

• a model: The assumption is that each lesson will
contain exactly one Modelica model.

• explanation (optional): The content of the explana-
tion should be written in Markdown and will be ren-
dered just above the model to provide some introduc-
tory context. Mathematical equations along with 2D
and 3D figures may be used as part of this explana-
tion but they may not reference simulation variables
(since nothing has been simulated at this point).

• a report (optional): This report should be provided
in the format described in Section 4. Unlike the ex-
planation, it may reference simulation results since
it is only rendered once simulation results are avail-
able.

• macros (optional): As mentioned previously, the
model text and report text are encoded in each URL.
This allows users to start from a lesson and poten-
tially modify it for their own purposes. The creator
of the lesson may have included predefined macros
to be used in the post processing report. Since these
are "static" (users aren’t allowed to edit these), they
are not contained in the URL. Instead, they are refer-
enced as part of a templating "preamble" associated
with the lesson itself.

Each lesson is composed of the various parts men-
tioned. These lessons are then bundled together into a les-
son plan. The Modelica Playground expects this complete
lesson plan to be bundled as a single JSON file that con-
forms to the Siren specification (Kevin Swiber 2017). But
knowledge of Siren or the expected structure of that bun-
dle are not required for content creators. Instead, they can
use the lessonplan tool (Michael M. Tiller 2022a) to
create such a file. Once created, the file does not need to
be published on the modelica.university domain.
Instead, it can be hosted anywhere and simply referenced
via the toc query string parameter.

6.3 Examples
For reference, the following are examples of using the les-
son plan functionality to create content. Hopefully, over
time, users will start to create more such content.

• Lesson Plan Sample: The previously mentioned
lessonplan tool used to bundle lessons in-

cludes, in its repository, an admittedly simple
sample lesson plan. The bundled version of
this lesson plan is hosted at https://raw.
githubusercontent.com/mtiller/
lessonplan/master/sample.json.

• Tour of Modelica: A more complete lesson plan is
one that is bundled with the Modelica Playground. It
can be found by clicking on the "Gallery of Lessons"
in the upper right corner of the application. The goal
of this lesson is to walk users through some of the
basic functionality of Modelica.

• Content Creation Tutorial: This lesson plan is also
available in the "Gallery of Lessons". Instead of
teaching users about Modelica, this lesson is ded-
icated to teaching users about the Modelica Play-
ground itself. It presents several examples that
demonstrate the features discussed in this paper re-
garding post processing reports with the hope that,
armed with this knowledge and combined with the
documentation associated with the lessonplan
bundler, users will create additional Modelica Play-
ground content.

7 Data Management
As mentioned previously, one of the goals of this project
was to avoid having to add cookie consent forms. This can
be avoided so long as we avoid GDPR related concerns.
Since this site is free and does not generate revenue in
any way, we have no interest in tracking individual users.
Doing so adds many more complications for absolutely
zero benefit.

This has implications for how data associated with the
application is managed and it is worth spending at least
some time discussing this.

7.1 Analytics
It is quite common for web applications to include
Javascript code that contacts some third party server to
record the activity of visitors. This by itself is not a GDPR
concern. It only becomes a GDPR concern when person-
ally identifying information (PII) is recorded.

While we are interested in how many people utilize
the site and what they utilize it for, we have no inter-
est in being able to associate that activity with identifi-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA100 93

able individuals. For this reason, we wanted to leverage a
tracker that did not record such information. Fortunately,
such analytics tools exist. The first on we tried was from
https://plausible.io. This worked quite well
and we would recommend it as an alternative to Google
and other add targeting motivated trackers. Ultimately,
we ended up using Cloudflare for our analytics. Like
plausible, Cloudflare avoids recording PII data. It
also has the benefit of being part of the Cloudflare plat-
form which also includes many features related to content
distribution, DDoS attack prevention and a whole host of
other features.

It is important to note that analytics tools that do not
track individual users do not benefit from the revenue as-
sociated with tracking users. As such, you should expect
to pay for such tools since they do not pay for themselves
by selling information about you to third parties.

7.2 History
The most recent addition to the Modelica Playground ap-
plication is the introduction of user history. Every time a
user runs a simulation, a record is made of that simula-
tion. When you return to the Modelica Playground, you
can access all your previous models, report templates and
results.

Now it might seem like this must be a GDPR concern.
But, in fact, it is quite easy to implement such function-
ality without violating the GDPR guidelines. The rea-
son for this is that the information is not stored server
side. Instead, the information is stored directly in the
users browser. All modern browsers provide something
called the IndexedDb API (World Wide Web Consortium
2021). This API allows applications to store data in a re-
lational database directly on the machine that the browser
was run from. Because the information never leaves the
users computer, it doesn’t violate the terms of the GDPR.

8 Future Work
Before wrapping up, it is worth some time to discuss po-
tential future work to improve the Modelica Playground
even further.

8.1 Improved Link Sharing
As already mentioned, the Modelica Playground allows
users to capture their current work in the form of a special
link. Such links can then be shared with other users via
email, text message, Slack, etc.. But these links can be a
bit problematic because they can be quite long. While this
isn’t generally an issue for the browsers (most browsers
can tolerate very long URLs), it can be a problem for these
various applications used to communicate the links be-
cause some applications impose their own limits on URL
length. For this reason, users may find a "link shortener"
useful.

Of course, there are many existing link shortening ser-
vices and users are welcome to use those. The Modelica
Playground links should work with any such service. But

it is slightly inconvenient to visit a third party web site in
order to create such a link (unless, of course, you have a
browser extension installed that helps with that). An inte-
grated link shortener could help with this.

The complication here is with respect to privacy. This
would result in storing more user information. Further-
more, this information would have to be stored server side
(unlike our current information which is all stored locally
in the browser). Nevertheless, such a system could be
made pretty easily GDPR compliant by simply being care-
ful to only store the content but no information about the
content creator. Most likely, the link shortener would sim-
ply store an association between a content hash and (only)
the content.

Note, the same cannot be said for most existing link
shortening services. By registering a link with them, you
are implicitly opting in to allowing tracking of users who
visit the shortened link.

8.2 Support MSL
Another welcome addition would be the ability to refer-
ence the Modelica Standard Library (MSL) from within
the code written in the Modelica Playground. Although
actually loading the MSL in the browser is probably well
beyond the scope of practical improvements, it could be
loaded server side prior to running the code. This would
slow down simulations because loading the MSL takes a
non-trivial amount of time. But it is quite possible that
references to the MSL could be identified client side and
the server could be told a priori whether or not loading the
MSL was necessary.

Allowing references to the MSL would then allow the
Modelica Playground to easily describe more complex
models leveraging components available from the Mod-
elica Standard Library. For the foreseeable future, such
models would only be represented in their pure text form
(i.e., no diagram rendering). But even that should be rea-
sonably intuitive for users.

8.3 Gist support
At the moment, all user work is stored in the browser. But
another option for storage would be to store content in a
Github Gist. In this case, the content would be available
beyond the user’s browser. While Gists can be marked
"secret", they are still accessible to anybody who has ac-
cess to the Gist id. So while this is possible, it wouldn’t
be implemented unless there was significant interest.

8.4 Simulation Caching
The current HTTP API receives the model content as part
of the payload. The server could easily cache the sim-
ulation results of previous simulations of that particular
model. For models presented in lessons (where the model
is frequently run, unmodified), such a cache could im-
prove the simulation time as perceived by the user (by
avoiding the simulation altogether).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 10193

9 Conclusion
Despite being over 20 years old, Modelica remains a com-
pelling technology. It is at least as relevant and useful now
as it ever was. The goal of the Modelica Playground is to
keep it relevant by making it as accessible or more acces-
sible than alternatives.

By leveraging a variety of open source tools, the Model-
ica Playground provides a platform not only for exploring
the Modelica Language online but also for creating com-
pelling content showcasing Modelica along side interac-
tive 2D and 3D visualizations.

Acknowledgements
This project would have been impossible without the
availability of open source tools like the ones mentioned in
this paper. This application is truly built on the shoulders
of giants.

I’d also like to thank my daughter, Alisha Tiller. Her
freshman year at Purdue has helped rekindle my passion
for math and physics and I created this tool in large part
so that students like her would have a Modelica based al-
ternative to tools like VPython.

References
Apache Software Foundation (2022). ECharts. Version 5.3.2.

URL: https: / /echarts .apache.org/en/index.html (visited on
2022-03-31).

Bruce Sherwood (2022). VPython. Version 7. URL: https : / /
vpython.org/ (visited on 2022-04-24).

Brunsfeld, Max (2022). Tree-sitter. URL: https : / / tree - sitter .
github.io/tree-sitter/ (visited on 2022-03-03).

Empscripten Contributors (2021). Emscripten. Version 3.1.9.
URL: https://emscripten.org/ (visited on 2021-11-22).

Facebook (2022). React. Version 18.1.0. URL: https://reactjs.org/
(visited on 2022-04-26).

Google (2022). Go Playground. Version 1.18. URL: https://go.
dev/play/ (visited on 2022-04-15).

HTML Canvas 2D Context (2011). URL: https : / /dev.w3 .org /
html5/2dcontext-LC/ (visited on 2011-05-24).

John MacFarlane (2021). Commonmark. Version 0.30. URL:
https://commonmark.org/ (visited on 2021-06-19).

KaTeX (2022). Version 0.5.13. URL: https://katex.org/ (visited
on 2022-04-13).

Kevin Swiber (2017). Siren. Version 0.6.2. URL: https://github.
com/kevinswiber/siren (visited on 2017-04-27).

MDX Community (2022). MDX Playground. Version 2.1.1.
URL: https : / /mdxjs . com/playground/ (visited on 2022-03-
31).

Michael M. Tiller (2022a). Lessonplan. URL: https://github.com/
mtiller/lessonplan (visited on 2022-04-30).

Michael M. Tiller (2022b). Modelica-tree-sitter. URL: https : / /
github.com/mtiller/modelica-tree-sitter (visited on 2022-04-
30).

Microsoft (2022a). Monaco. URL: https://microsoft.github.io/
monaco-editor/ (visited on 2022-04-24).

Microsoft (2022b). Monarch. Version 0.33.0. URL: https : / /
microsoft .github. io /monaco- editor / index .html (visited on
2022-02-03).

Microsoft (2022c). TypeScript Playground. Version 4.6.4. URL:
https://www.typescriptlang.org/play (visited on 2022-04-28).

Microsoft (2022d). Visual Studio Code. URL: https : / / code .
visualstudio.com/ (visited on 2022-04-24).

Mozilla Software Foundation (2020). Nunjucks. Version 3.2.2.
URL: https://mozilla.github.io/nunjucks/ (visited on 2020-07-
20).

Open Modelica Consortium (2022). Open Modelica Compiler.
Version 1.19.0-dev.beta1. URL: https : / / openmodelica . org/
(visited on 2022-04-20).

Pallets (2022). Jinja. Version 3.1.x. URL: https : / / jinja .
palletsprojects.com/en/3.1.x/ (visited on 2022-04-28).

Rehype (2022). Version 12.0.1. URL: https : / / github . com /
rehypejs/rehype (visited on 2022-01-29).

Remark (2021). Version 14.0.2. URL: https : / / remark . js . org/
(visited on 2021-11-18).

remark-math (2022). Version 5.1.1. URL: https : / /github.com/
remarkjs/remark-math (visited on 2022-04-24).

reype-sanitize (2021). Version 5.0.1. URL: https://github.com/
rehypejs/rehype-sanitize (visited on 2021-12-08).

Scalable Vector Graphics (2018). URL: https://www.w3.org/TR/
SVG2/ (visited on 2018-10-04).

Tidefelt, H. and O. Tronarp (2020). Modelica Change Proposal
MCP-0033 Annotations for Predefined Plots. Tech. rep. Mod-
elica Association.

Vega: A Visualization Grammar (2022). Version 5.22.1. URL:
https://vega.github.io/vega/ (visited on 2022-03-25).

WebAssembly Community Group (2022). WebAssembly Speci-
fication. Version 2.0. URL: https : / /webassembly.github. io /
spec/core/ (visited on 2022-04-27).

WebGL (2022). URL: https://www.khronos.org/webgl/ (visited
on 2022-04-24).

World Wide Web Consortium (2021). Version 3.0. URL: https:
//www.w3.org/TR/IndexedDB/ (visited on 2021-10-06).

X3D (2022). URL: https : / / www. web3d . org / x3d / what - x3d
(visited on 2022-04-24).

