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Abstract
This paper reports on the development of GitWorks, an
open platform for democratizated Model-Based Design
of cyber-physical systems (CPS). The GitWorks platform
is currently under development by Perpetual Labs Ltd in
collaboration with the Open Source Modelica Consortium
(OSMC)1 and the OpenCAESAR project2. In this paper,
we present our vision for the platform, its system archi-
tecture and a prototype implementation. We also present
a case study that demonstrates the use of the proposed
platform for enabling the seamless integration of Model-
ica models into a broader range of systems engineering
processes for complex product development. In the long-
term, the platform also aims to enable the integration of
Modelica tools with advanced systems engineering pro-
cesses that rely on other domain specific languages (e.g.
SysML v2, BPMN, etc.).
Keywords: MBD, MBSE, Modeling, Simulation, Interop-
erability, Cyber-Physical Systems, Semantic Twin, Real-
time Collaboration

1 Introduction
The Modelica language (Elmqvist, Mattsson, and Ot-
ter 1998; Fritzson and Engelson 1998) has a growing
user community that produces a large and constantly-
increasing code base of models. However, there is a
lack of tools to address a number of advanced model-
management use cases, such as semantic search, analy-
sis, cross-referencing, checking, component selection au-
tomation, for a large body of models (Johansson, Pop,
and Fritzson 2005). Despite recent developments (Sirin
et al. 2015; Isasi, Noguerón, and Wijnands 2015; Hus-
sain et al. 2022), tool support for the integration of Mod-
elica models into advanced Model-Based Systems Engi-
neering (MBSE) practices remains limited (Larsen et al.
2016). This hinders the reuse of models within the Mod-
elica community, and particularly in an industrial context,
can greatly limit the potential for adoption of Modelica

1https://openmodelica.org/home/consortium
2https://www.opencaesar.io/

tools within integrated Model-Based Design (MBD) and
product development processes.

There are multiple engineering processes that precede
modeling and simulation within a complex product de-
velopment lifecycle. The information generated by these
processes defines the structure, configuration, and input
parameter data used by the executable system models. For
example:

1. The definition of operational scenarios and associ-
ated system requirements. These define the critical
behaviors that the system must achieve, the circum-
stances under which they must be achieved, and other
non-functional properties of the product.

2. The definition of the high-level architecture of the
system. This includes the system’s hierarchical di-
vision into different subsystems, their components,
parameter values, and interconnections. Alternative
design solutions can be evaluated against the criteria
defined in (1) via simulation.

Many tools and formalisms can be used in these phases to
capture the system information as part of an MBSE frame-
work, such as UML, SysML, AADL, FMDesign, BDPM,
and OPM (J. Ma et al. 2022; Basnet et al. 2022). Integra-
tion of system simulation and analysis with such MBSE
models is difficult to achieve, particularly during the early
phases of the system lifecycle, because domain-specific
models often lack a common notation (Madni and Siev-
ers 2018). Collecting, aggregating and exchanging infor-
mation at the system level is complex and often error-
prone, which hampers system-wide visibility in a multi-
disciplinary concurrent design setting (McDermott et al.
2020). This limits the ability to analyze system-level re-
quirements (such as performance and dependability) in the
early design phases, causing the postponement of design
decisions to later phases. This, in turn, reduces possible
opportunities to study alternative solutions and validation
of fitness for purpose. It also increases costs, in terms of
time and skill, of design refinements if irreversible consec-
utive design decisions are made in the early stages of the
development (Stirgwolt, Mazzuchi, and Sarkani 2022).
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The limitations of current MBSE frameworks and their
poor integration with system simulation environments,
such as Modelica-based tools, contribute to an increased
barrier-to-entry for the adoption of MBD. These issues
are especially acute for Small and Medium Enterprises
(SMEs) that typically do not have the resources to link
Commercial-Off-The-Shelf (COTS) tools into integrated
tool chains and lack the in-house expertise to develop cus-
tom models from scratch.

GitWorks aims to democratize access to MBD for
SMEs, independent developers and academia. GitWorks
has been designed as a turn-key solution for model man-
agement and integration provided with the convenience of
a Software as a Service (SaaS) product. It includes the
GitWorks Commons which provides a searchable reposi-
tory of models, tools and services with a try-before-you-
buy business model. It also includes a Web application for
integrated data and knowledge management, as well as a
web-based collaborative Modelica editor.

This paper describes the early design and implementa-
tion of GitWorks. Specifically, the contributions of this pa-
per are three-fold: First, we propose a system architecture
for the platform to support model-based design and engi-
neering of cyber-physical systems. Second, we develop a
prototype implementation of the GitWorks platform that is
focused on enabling the seamless integration of Modelica
models into a broader range of MBSE activities. Third, we
conduct a preliminary case study to demonstrate the use of
the proposed platform for the federated design and engi-
neering of an aircraft passenger air conditioner (PACK)
system.

The rest of this paper is organized as follows. Section 2
provides an overview of our vision for the GitWorks plat-
form, describing its design goals, conceptual system archi-
tecture, and user interfaces. Section 3 describes the proto-
type implementation of GitWorks and tooling for enabling
the use of Modelica in the larger MBSE process. Section 4
presents a preliminary case study to demonstrate the use of
the GitWorks for the federated design and engineering of
a PACK system. Finally, Section 5 concludes the paper
and provides some brief remarks on directions for future
work.

2 GitWorks Platform Overview
This section provides an overview of the GitWorks plat-
form, describing its design principles and conceptual sys-
tem architecture. GitWorks aims to overcome several of
the limitations of current systems engineering practices
(Elaasar et al. 2019) by introducing three key concepts and
their related functionalities:

DEMOps: DevOps for Digital Engineering and Man-
ufacturing. Poor configuration management (CM) prac-
tices exacerbate trust issues in current MBSE practices.
DEMOps introduces the notion of a Git-like history of
changes made across inter-related model fragments. En-
ables traceability of information provenance and design

decisions. This refers to the ability to trace from an au-
thority to its design decisions and constraints, and from
the latter to their rationales. Without this capability, a sys-
tem description becomes a disorganized collection of in-
formation artifacts. Enables repeatability. This refers to
the ability to encapsulate the analysis of the system de-
scription, including its dependencies, such that it becomes
repeatable. This is important to maintain confidence in the
analysis over time and use it to assert desirable properties.
Enables durability. This refers to the ability to version
control the information that describes or analyzes a system
in such a way that versions become immutable. Without
this, it is impossible to perform audits and repeat analyses.
Enables efficiency. This refers to the ability to automate
processes using CI/CD practices that would otherwise be
manual and tedious (Elaasar et al. 2019). Without this,
such processes become expensive and error-prone. In Git-
Works, these functionalities are fulfilled by the Projects
environment described in Section 2.1.

Semantic Twin. System information is captured using
a precise language that is rooted in mathematics and for-
mal logic. System descriptions are specified using com-
mon vocabularies consisting of concepts and their proper-
ties and relationships all expressed in a formal language.
This enables digital continuity, which refers to the inter-
operability of system information contained in different
information artifacts that are produced by different par-
ties during different phases of the product lifecycle. It
also enables the augmentation or, in some cases, the re-
placement of typically human-led processes (such as re-
porting, model transformation, and validation & verifica-
tion of system information) through the use of powerful
automations such as logical reasoning, machine learning,
data mining, etc. In GitWorks, these functionalities are
fulfilled by the OML language and the versioned triple
store and associated reasoner (see Section 2.1).

Digital Prototype. In the context of DEMOps, Digi-
tal Prototype refers to the usage of digital environments
to facilitate the co-simulation of engineering models, con-
nection with HardWare-In-the-Loop (HWIL) frameworks
and real-time system data to support Virtual system Inte-
gration, Validation and Verification from the early stages
of the product lifecycle. In GitWorks, these functionalities
are fulfilled by the Modelica Studio environment (see Sec-
tion 3). In its current version, Modelica Studio only sup-
ports editing and simulation of Modelica-based models.
In the future, we aim to introduce advanced functionali-
ties and analyses, such as co-simulation of FMUs, HWIL,
model surrogatization, optimization, uncertainty quantifi-
cation, etc. The Digital Prototype must be supported by a
scalable, cloud-based computational infrastructure to en-
able the more computationally-demanding workflows, and
must also be integrated with the CI/CD pipeline to enable
automation. In GitWorks, this is achieved via the inte-
gration of a standard CI/CD pipeline with a scalable HPC
environment (see Section 2.1).

It should be noted that the concepts of the Digital Proto-
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Figure 1. Conceptual software architecture of the GitWorks Platform3

type and the Semantic Twin are tightly linked and that the
integration of the two enables the realization of new and
powerful workflows. The Digital Prototype acts as a back-
bone to organize and facilitate access to system-related in-
formation scattered through the different engineering arti-
facts. An example application of this idea is provided in
the PACK case study in Section 4. The system architecture
information contained in a SysML model is used to auto-
matically generate the high-level structure of the Modelica
model. Also, queries against the GitWorks Commons, en-
abled by the OML language representation of Modelica,
can be used to find suitable, port-compatible components
to complete the model.

2.1 Conceptual System Architecture
The high-level software architecture of the GitWorks plat-
form is shown in Figure 1. From the perspective its users,
GitWorks provides multiple application environments for
interacting with the platform, to include the GitWorks
Commons for the publishing and reuse of digital engi-
neering artifacts, the GitWorks Projects environment for
Semantic Twin-powered DevOps for digital engineering,
analysis, reporting and management of the digital thread.
In addition to these environments, through Git, OSLC and
REST-based APIs, GitWorks is also designed to integrate
with third-party adapters and plugins for authoring and re-
porting.

3All trademarks, logos and brand names are the property of their
respective owners.

Supporting these application environments, GitWorks
Server is designed as a middleware of essential services,
as well as a nexus for accessing data across organizations
and third-party tools and systems. The GitWorks Server
is implemented as a Spring Boot application and depends
on a GitLab server to provide Git repository hosting and
CI/CD capabilities. GitLab4 is an open-source DevOps
platform based on the popular Git version control system.
GitLab provides a REST API for programmatic access
and manipulation of resources, such as repositories, ar-
tifacts and users. This API is used to implement much of
the Git-centric capabilities provided by GitWorks through
GitLab4J5.

Unlike traditional version control systems, such as
CVS, where changes are managed at the file level, Git
manages changes at the repository level so that for any
particular commit one can recover the precise state of en-
tire repository at that point. To facilitate the management
of artifacts developed and owned by different stakehold-
ers, repositories can be organized into groups that capture
the hierarchical relationships between systems and their
components or the relationships among the different enti-
ties participating in a supply chain.

Leveraging Git’s repository level change management
mechanism, from the artifacts contained in a GitWorks
project repository, GitWorks constructs a versioned Se-
mantic Twin that captures the interdependencies and trace-

4https://www.gitlab.com
5https://github.com/gitlab4j/gitlab4j-api
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Figure 2. The GitWorks Commons UI for Modelica and other digital engineering artifacts

ability links that relate heterogeneous artifacts through the
product lifecycle. The Semantic Twin forms a federated
knowledge graph that is stored as RDF triples in a custom
versioned triple store, which is developed by Perpetual
Labs and is based on Jena (Carroll et al. 2004) TDB2. By
creating trace links between heterogeneous elements, such
as requirements, simulation models, simulation results,
and test results, GitWorks provides traceability of design
changes and branches at the system level and throughout
the product lifecycle, while also allowing each stakeholder
the necessary flexibility in managing their own datasets
and internal development cycles.

GitWorks provides multiple adapters for automatically
enriching the Semantic Twin from a project repository.
While the focus of this paper is on the Modelica adapter
(see Section 3.3), Perpetual Labs is actively working on
adapters for other representations, including SysML and
CAD. These adapters read artifact files from the Git repos-
itory, for example a Modelica library, and extract a seman-
tic representation in the Ontology Modeling Language
(OML).

OML serves as the core ontological language for the
GitWorks platform and was originally developed by the
Jet Propulsion Laboratory as part of the CAESAR project
(Wagner et al. 2020). One of the goals of CAESAR has
been to provide a set of OML vocabularies that capture
some of the common concepts and relations used in sys-
tems engineering (Bayer et al. 2021). OML provides a
foundation with well-defined semantics that can be used

to model different types of engineering artifacts in a se-
mantically consistent and interoperable fashion. OML ex-
tends OWL 2 DL (Web Ontology Language 2 - Descrip-
tion Logic) in such a way that retains the benefits of OWL
2 DL while addressing some of its limitations (Wagner et
al. 2020).

GitWorks Commons. The GitWorks Commons en-
ables the seamless reuse of design and engineering ar-
tifacts across tool, domain and organization boundaries.
Within the GitWorks platform, an artifact is considered
as the basic unit of reuse, where its coarsity depends on
the tool and domain vocabulary. As shown in Figure 2,
a single Modelica file, for example, may contain multiple
models, each of which would be considered an artifact in
the Commons. When the artifacts from a project reposi-
tory are ready for release, these artifacts along with their
dependencies are bundled together as package and then
uploaded to the Commons as a versioned artifact. The
GitWorks leverages GitLab Package Registries to support
multiple package managers, including Maven and npm.
The Commons also supports semantic discovery and inte-
gration of artifacts through a SPARQL endpoint that can
be used to query the metadata extracted from artifacts via
specific adapters (see Section 3.3).

The GitWorks Commons also provides vendors with
multiple publication and deployment possibilities. Ven-
dors can choose whether to allow users to download
sources and/or binaries, or only provide cloud-based ac-
cess. For example, a Modelica model can be published



10.3384/ECP21186         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022   OCTOBER 26-28, DALLAS, TX, USA106 102

as: (1) source code (i.e. a model library), (2) com-
piled FMU (Model-Exchange or Co-Simulation), and/or
(3) as a REST service that can be used in a federated co-
simulation. We are investigating different monetization
strategies for the GitWorks similar to those proposed for
the Digital Manufacturing Commons (DMC) (Beckmann
et al. 2016), including (1) payment for each download
or execution, (2) payment based on computational usage,
and (3) freemium software as a service. To support fed-
erated collaboration for enhanced data security and intel-
lectual property protection, we are also actively working
on the integration of co-simulation engines, specifically
Maestro2 by the INTO-CPS project(Larsen et al. 2016).

GitWorks Projects. The Projects environment is a Se-
mantic Twin-powered Web application for integrated data
and knowledge management, and exploration and visual-
ization of the digital thread across multiple disciplines,
organizations and product lifecycle stages. It enables
the exploration, querying, and modification of OML-
based knowledge base using a Web-based GUI, similar
to WebProtégé (Tudorache, Vendetti, and Noy 2008) for
OWL2, and provides customizable OML vocabularies for
different cyber-physical system lifecycle activities, such
as requirements analysis, system modeling, verification
and maintenance. At its core, a project corresponds to
a Git repository of OML vocabularies and descriptions,
which can be cloned and edited using an OML IDE, such
as Rosetta6 or Luxor7.

The GitWorks platform leverages GitLab to provide
DevOps capabilities for project repositories, to include
Git-based version control, issue management, and CI/CD.
To enable Semantic Twin-powered authoring and report-
ing, every project repository on GitWorks is backed by
both a Git repository and a corresponding RDF triple
store. The versioned RDF triple store serves as a cache to
accelerate semantic queries against the repository and can
be reconstructed directly from the files in the Git repos-
itory. A project can import artifacts from the GitWorks
Commons as dependencies, forming a federated knowl-
edge graph that enables all the stakeholders of a complex
engineering system to make specific system information
and data available to other project participants indepen-
dently of the specific tools that they are using (i.e. a Se-
mantic Twin).

An HPC CI environment based on GitLab Runner and
the Slurm Workload Manager8 is under active develop-
ment, and enables computational expensive analyses such
as simulation-based requirements verification, uncertainty
quantification and optimization to be seamlessly inte-
grated into the DEMOps pipeline. We have already tested
different analysis toolkits using our HPC CI environment,
to include UncertainPy (Tennøe, Halnes, and Einevoll
2018) and Dakota (Adams et al. 2020). We are working

6https://github.com/opencaesar/oml-rosetta/
7https://github.com/opencaesar/oml-luxor
8https://slurm.schedmd.com/documentation.html

to provide seamless support for surrogate-assisted meth-
ods to accelerate computationally expensive analyses us-
ing methods such as pre-trained surrogate models for ac-
celerated simulation, as done by JuliaSim (Rackauckas et
al. 2021), and dynamically generated surrogates, as done
by GreyOpt (Nachawati and Brodsky 2021), for enhanced
optimization.

GitWorks Community. Finally, the Community envi-
ronment enables users and organizations on the platform
to connect with one another in a kind of social network for
Digital Engineering. Each user is provided with a profile
page that contains a public bio with an activity stream and
links to associated published artifacts, project workspaces,
and organizations.

3 Modelica Tooling for the GitWorks
This section describes the prototype implementation of
the GitWorks tooling for enabling the use of Modelica in
the larger MBSE process. Specifically, we report on the
progress of our development of: (1) Modelica Studio, a
Semantic Twin-powered Modelica text and diagram edi-
tor for VSCode for Web, (2) OMFrontend.js9, a reusable
and open-source AGPLv3-licensed library for the pars-
ing and analysis of Modelica source code, which serves
as the foundation of Modelica Studio, and (3) the Mod-
elicaOML adapter, also based on OMFrontend.js, for au-
tomatically enriching the Semantic Twin from Modelica
artifact repositories.

3.1 Modelica Studio
We have developed Modelica Studio as a VSCode for Web
extension that serves as a Semantic Twin-powered author-
ing environment for Modelica. Modelica Studio, shown
in Figure 3, is designed to support three levels of collab-
oration: (1) federated, in-the-large collaboration enabled
by the GitWorks Commons, (2) Git-based collaboration,
using branches and pull requests, and (3) real-time collab-
oration, using the VSCode LiveShare extension10.

While several attempts have been made towards the de-
velopment of a Web-based Modelica editor, significant
limitations preclude their use as a collaborative Modelica
development environment for the GitWorks:

Modelon Impact (Elmqvist, Malmheden, and An-
dreasson 2019) is a closed-source, cloud-based platform
that provides a Modelica diagram and code editor that
runs in a Web browser. While it runs in the browser, the
implementation appears to require an independent server-
side session for each editor instance, where the Optimica
Compiler Toolkit (OCT) is used to construct and maintain
a semantic model that mirrors what is opened in the edi-
tor. This approach simplifies the logic on the client-side,
however, the critical dependency on continuous server-
side processing for each editor instance can quickly add up

9https://github.com/OpenModelica/OMFrontend.
js

10https://visualstudio.microsoft.com/services/
live-share/
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Figure 3. Modelica Studio, a Semantic Twin-powered Modelica editor extension for VSCode for Web

to extensive computational resource requirements, espe-
cially for open DevOps and collaborative platforms, such
as GitHub. Although the Modelon community provides
an open-source JavaScript client11, it is tightly-coupled to
the Modelon Impact platform.

WebMWorks (Wan et al. 2013) is also a closed-source,
cloud-based platform that provides a Web-based Model-
ica diagram and code editor. WebMWorks follows a simi-
lar implementation approach to Modelon Impact, but uses
the OpenModelica Compiler (OMC) (Fritzson, Pop, et
al. 2020) instead of OCT to maintain the server-side, se-
mantic model that mirrors what is opened in the editor.
TongYuan, the developers of WebMWorks, do not appear
to currently offer access to WebMWorks.

WebGME-DSS (Kecskes et al. 2019) is an open-
source, cloud-based modeling environment that provides
a Web-based Modelica diagram-only editor. The imple-
mentation is based on GME, where a translator is used
to convert the interface of a Modelica model into an in-
stance of a GME-based meta-model representing a sub-
set of the Modelica language. Although WebGME-DSS
is open-source (MIT-licensed), WebGME-DSS only sup-
ports a small subset of the Modelica language and does
not appear to be actively maintained.

OMWeb (Torabzadeh-Tari et al. 2011) is an open-
source platform for editing and simulating Modelica mod-
els in a Web browser. Although OMWeb provides the abil-
ity to edit Modelica code and visualize simulation results,

11https://github.com/modelon-community/
impact-client-js

it does not provide a Web-based Modelica diagram edi-
tor. Furthermore, OMWeb appears to be in maintenance
mode.

The diagram editor of Modelica Studio provides a user
experience similar to that of OMEdit (Fritzson, Pop, et
al. 2020), supporting the composition of new Modelica
models by dragging and dropping Modelica model com-
ponents onto the canvas. Changes made in the diagram ed-
itor are immediately propagated to the text editor, and vice
versa. Noteably, the component palette in Modelica Stu-
dio is also designed to integrate with the GitWorks Com-
mons to provide seamless dependency management. Also,
unlike the other previously mentioned Web-based Model-
ica editors, Modelica Studio is largely serverless and the
rendering and editing of Modelica models is done on the
client without requiring a heavy-weight remote process to
maintain a corresponding semantic representation of the
contents of the editor. This design decision was made to
significantly improve the scalability of the platform and
to help realize the goal of making the GitWorks an open
platform for digital engineering.

As shown in Figure 4, Modelica Studio largely depends
on the OMFrontend.js (see Section 3.2) for the implemen-
tation of the Modelica Language Server to provide text
and diagram editing support for VSCode for Web. Mod-
elica Studio is designed to integrate with the OMWebSer-
vice12 REST API for the simulation of Modelica models
in the browser. OMWebService is developed largely as a

12https://github.com/OpenModelica/OMWebService
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wrapper around the OMC and OMSimulator for simulat-
ing Modelica models, Functional Mock-up Units (FMU),
and System Structure and Parameterization (SSP) models.
In response to a request to run a simulation on a model,
OMFrontend.js sends the flattened simulation model to
OMWebService. The results of the simulation are then
returned as a CSV file, which can then be plotted in Mod-
elica Studio or a third-party application. OMWebService
is developed in Python and uses the OMPython interface
to communicate with the OMC.

3.2 OMFrontend.js
To facilitate the development of Modelica Studio and
other Modelica language tools, we have developed the
OMFrontend.js library that provides an API for analyz-
ing and manipulating Modelica text documents in both
Node.js and Web browser environments. This library han-
dles Modelica parsing, instantiation, flattening, expression
evaluation as well as diagram and SVG icon rendering. It
simplifies the implementation of language service features
in Modelica Studio (see Section 3.1), such as diagnostics,
hovers, links, completion, folding, and formatting. We
also use OMFrontend.js to implement the ModelicaOML
adapter (see Section 3.3) for enriching the Semantic Twin
automatically from Modelica source code.
OMFrontend.js provides a context object that manages the
collection of opened documents and Modelica libraries
and serves as the mechanism for handling references to
Modelica classes defined in different files. The context
object seamlessly resolves Modelica files stored on the lo-
cal file system, virtual Web browser file system, and via
HTTP, depending on whether it is running in a Node.js or
Web browser environment.

While the OpenModelica compiler uses a parser that is
generated from an ANTLR3 grammar, to support browser-
based editing we found the need to develop a new parser
for OMFrontend.js. The new Modelica parser is built
using the tree-sitter13 parser generator. The tree-sitter-
modelica14 project contains the Modelica grammar for
the tree-sitter parser generator. OMFrontend.js then con-
structs an abstract syntax tree from the tree-sitter concrete
syntax tree. This abstract syntax tree is akin to the class
tree described in the Modelica Language Specification
(MLS). Unlike the tree-sitter concrete syntax tree which
is incrementally reparsed, the abstract syntax tree needs to
be reconstructed every time the underlying text changes.
To reduce latency, this is done in a lazy fashion inspired
by the red/green trees15.

3.3 ModelicaOML Adapter
The purpose of the ModelicaOML adapter is to handle the
conversion of Modelica source code and OML conform-

13https://tree-sitter.github.io/tree-sitter/
14https://github.com/OpenModelica/

tree-sitter-modelica
15https://ericlippert.com/2012/06/08/

red-green-trees/

ing to the ModelicaOML vocabulary presented in Fig-
ure 5. This enables the automatic enrichment of the Se-
mantic Twin directly from the Modelica artifact reposi-
tories based on the representation provided by OMFron-
tend.js.

The ModelicaOML vocabulary16 defines concepts such
as Class, Block, Model, Package, Function, Record,
Type to model the Modelica class restrictions and
Component to model the components. The compo-
nent and class prefixes are also modeled as scalar enu-
merations: Prefix and ClassPrefix. There are
also relations that bind these concepts together such as
hasType, hasPrefix, hasClassPrefix, contains,
extendsClass, etc.

4 PACK Case Study
This case study aims to demonstrate how the GitWorks
platform enables collaborative and federated design and
development throughout the systems engineering process.

The system under development is a simplified PACK
unit, which is itself a subsystem of the Environmental
Control System of a passenger aircraft. One of the primary
goals of the PACK is to regulate the temperature, pressure
and humidity of the cabin air (Jennions et al. 2020).

4.1 Federated Development of the PACK Sys-
tem

The PACK project comprises seven tasks with a focus on
the systems engineering process: Define project; Define
system requirements; Define system architecture; Define
subsystem behavior; Perform analysis; Verify system re-
quirements; Generate Reports. These tasks are to be per-
formed by specialists with various roles: Project Manager,
System Architect, Lead Systems Engineer and a team of
Design Engineers.

The tasks are performed using either third-party or
GitWorks-hosted tools (e.g. Modelica Studio), and each
task yields one or more artifacts with a particular filetype
(e.g. a SysML or a Modelica model). The GitWorks plat-
form supports this use case in the manner summarized in
Figure 6. This diagram describes how OML adapters are
employed to consolidate the knowledge contained in dif-
ferent modeling artifacts by creating a unified, RDF-based
Semantic Twin.

In this case, the Project Manager creates an OML Git
repository (corresponding to the project) using the Git-
Works Workbench environment. The knowledge regard-
ing the participating organizations, teams and people is
captured by importing the relevant OML vocabularies and
populating an OML description file. In the Workbench
environment, the Project Manager defines the relevant
project tasks and assigns responsibility to members of the
project. A small section of the resulting OML description
is presented in Listing 1, in which five roles have been
defined and tasks assigned.

16https://github.com/OpenModelica/ModelicaOML
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Figure 5. The Modelica Ontology (ModelicaOML Vocabulary)

Listing 1. OML representation of project role definitions
ci ProjectManager : project:Role [

project:hasAssignment DefineProject]
ci SystemEngineer : project:Role [

project:hasAssignment DefinePACKRequirements]
ci SystemArchitect : project:Role [

project:hasAssignment DefinePACKArchitecture]
ci DesignEngineer1 : project:Role [

project:hasAssignment
DefineSubsystemBehavior]

ci DesignEngineer2 : project:Role [
project:hasAssignment PerformAnalysis
project:hasAssignment VerifyPACKRequirements
project:hasAssignment GenerateReports]

Once the Project Manager creates the first commit, the
CI/CD pipeline runs the build scripts which interprets the
OML code into RDF triples and ingests them into the
triple store, effectively integrating the information into the
Semantic Twin. The Project Manager can then save the re-
sulting project structure as a template and publish it as an
OML artifact in the GitWorks Commons for future reuse
and sharing. Once the project repository has been created,
the other participants can review the tasks that have been
assigned to them, and begin contributing to the project.

The lead Systems Engineer defines the overall systems

requirements using a SysML tool. The three requirements
for this system are defined as follows:

1. The mass of the PACK shall be no greater than
100kg.

2. The PACK shall produce Conditioned Air with a
temperature to ±1°K of 293 °K.

3. The PACK shall produce Conditioned Air with a
pressure to ±3kPa of 101 kPa.

The Systems Architect then defines the PACK architec-
ture, also using a SysML tool. For the purposes of this
case study, a simplified architecture for the PACK, com-
prising only the primary heat exchanger and the compres-
sor, is developed. Figure 7 represents this composition of
the PACK and the air flows into, out of, and within the sys-
tem. It is also assumed that the three system requirements
apply to the ‘Cruise’ scenario, during which the tempera-
ture and pressure of the input air flows are assumed to be
fixed and known.
By specifying the SysML repositories as dependencies
within the overall project, the SysML artifacts created
by the actors (in this case, requirements and architec-
ture) are translated into OML and populate the Seman-
tic Twin in accordance with the corresponding OML vo-
cabularies. This translation is performed by the dedicated
SysMLOML adapter within the GitWorks platform. An
example of the resulting OML description (translated from
SysML) is presented in Listing 2. In this listing, only a
portion of the PACK architecture definition is presented -
the flows between the interfaces are also captured by the
OML description but are not shown.

Listing 2. OML representation of PACK architecture
ci PACK : mission:Component [

base:contains HeatExchanger
base:contains Compressor
PL_Mech:hasMass PACKMass]

ci HeatExchanger : mission:Component [
mission:presents p1
mission:presents p2
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Figure 7. SysML representation of the PACK architecture (hx:
Heat Exchanger; comp: Compressor)

mission:presents p3
mission:presents p4
PL_Mech:hasMass HXMass]

ci Compressor : mission:Component [
mission:presents p5
mission:presents p6
PL_Mech:hasMass CompMass]

ci PACKMass : PL_Mech:ComponentMass
ci HXMass : PL_Mech:ComponentMass
ci CompMass : PL_Mech:ComponentMass

This simple example illustrates how the Semantic Twin
can be constructed either directly via the GitWorks Work-
bench environment (e.g. definition of roles and tasks),
or via translation from another artifact (e.g. translation
of requirements and architecture from SysML to OML).
The Semantic Twin can then be used to efficiently query
information about the project and the system (including
time-travel queries to investigate evolution of system de-

(a) (b)

Figure 8. Stages of PACK Modelica model (a) Partial model,
(b) Completed model

sign) or to automatically generate new modeling artifacts
as demonstrated in the next section.

4.2 Semantic Twin-Powered Authoring
Direct integration of the centralized RDF databases into
GitWorks authoring tools allows the users to translate the
architectural and requirements knowledge originally ex-
pressed as SysML artifacts into corresponding Modelica
partial models through the ModelicaOML adapter on the
fly. As such, Figure 8a depicts a partial model generated
from the OML representation of the PACK architecture.

The generated partial model can be used as a starting
point for the Design Engineers to define the behavior of
the PACK’s components: the heat exchanger and the com-
pressor. Depending on the desired model fidelity, there
are multiple ways of implementing the behavior. For ex-
ample, the total heat transfer rate of the heat exchanger
can be obtained from:

Q = EeCa(Tbleed −Tram) (1)

where Ee is the effectiveness of the heat exchanger, Camin
is the heat capacity of the air stream and Tbleed and Tram are
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the temperatures of bleed and ram air respectively (Poudel
2019). The pressure drop in the heat exchanger can be
calculated via the following equation:

∆P =
f Ltubeρv2

2Dh
(2)

where f is the friction factor, Ltube is the total length of the
heat exchanger, ρ is the air density as a function of temper-
ature, v is the mean stream velocity and Dh is the hydraulic
diameter (Poudel 2019). Traditionally, Equation 1 and
Equation 2 can be implemented manually by engineers
in Modelica language. This can be a time-consuming,
error-prone and costly process. Alternatively, the engi-
neers can sift through many third-party Modelica reposito-
ries available online in the hope of finding the component
model they need (Hussain et al. 2022). Existing Modelica
tools such as OpenModelica and Dymola (Dempsey 2006)
can assist with this task by performing a basic keyword
search. However, this comes with a significant limitation
of only searching within classes currently loaded into the
workspace. Furthermore, such a search is incapable of
analyzing the inherent structural and semantic knowledge
embedded in the models.

In order to alleviate such modeling bottlenecks and
boost model exchange, the GitWorks Commons offers
users a convenient interface to query an RDF database
of published models and libraries to find required com-
ponents and blocks. This approach is based on a physics-
based simulation ontology currently being developed in
OML, and employs the SPARQL query language to of-
fer a set of advanced search techniques such as aggre-
gation, extensible value testing, subqueries, and nega-
tion (Hussain et al. 2022; Kollia, Glimm, and Horrocks
2011). For example, a SPARQL query can be designed
to find another Modelica component with two compati-
ble connector ports. The connector compatibility is es-
tablished by ensuring that the connector variables have
the same name, prefixes and type. Listing 3 shows an
excerpt of such a query which outputs all compatible
Modelica models containing two connector ports carrying
the thermofluidic variables m_flow, p, h_outflow,
Xi_outflow, C_outflow. We are searching for a
model that has two connectors that contain these vari-
ables and the names, types and prefixes of the variables
match. For example, Modelica.Fluid (Casella, Otter, et al.
2006) and ThermoPower (Casella and Leva 2005) libraries
use distinct but compatible connectors which can only be
identified manually or through a SPARQL query. As a re-
sult, the users are presented with compatible components
from all libraries that use the same connector definition.
The result of running the query in Listing 3 is given in
Listing 4, and shows the three compressor models from
the PL_Lib library that are matching. One can note that
most Modelica tools support choicesAllMatching an-
notation which can help populate the dialogs with a list
of matching models - this feature is limited to loaded li-
braries only and extending it would require tool changes.

Having the Modelica models expressed as individuals us-
ing an OML-based vocabulary and searching these using
SPARQL queries against the GitWorks Commons popu-
lated with all the available libraries on the GitWorks plat-
form is a paradigm-changing feature.

The GitWorks Commons displays a list of models and
libraries obtained as a result of the search query and en-
ables the user to inspect the documentation and the code.
As highlighted in (Hussain et al. 2022), it is rare that a
component model can be reused without any modifica-
tions. Therefore, if a suitable component is found, the
engineer can import the selected model into the Modelica
Studio workspace and invite the rest of the team to use
the real-time collaborative functionality of the VSCode
Liveshare extension to modify, complete and check the
full model definition synchronously. The resulting model
definition is shown in Figure 8b. Optionally, component
models can also be seamlessly published in the GitWorks
Commons with dependencies tracked through Modelica’s
uses annotation.

Development of Modelica models, therefore, is greatly
aided by the proposed Semantic Twin technology through
automatic generation of model architecture and facilitat-
ing model reuse and exchange within the community.

4.3 Simulation-based Requirements Verifica-
tion and Reporting

Automating the requirement verification allows engineers
to accelerate the iterative systems engineering process. In
order to enable this capability, the requirements formally
captured by the Semantic Twin in Section 4.1 can be ex-
pressed alongside a behavioral model developed in Mod-
elica.

Several Modelica libraries for simulation-based
requirements verification exist, such as Model-
ica_Requirements, ReqSysPro discussed in (Bouskela
et al. 2022), and vVDR outlined in (Mengist, Buffoni,
and Pop 2021). In this case study, the requirements
and scenario are captured in a vVDR-style verification
scenario model through the ModelicaOML adapter. The
resulting model is shown in Figure 9. The model contains
the design block containing the PACK system defined
in the previous section. It receives the inputs defined
in the scenario block and outputs the calculated values
of system mass and conditioned air temperature and
pressure. These values are then used as inputs in the three
requirements blocks to calculate the verification status of
the corresponding requirements.

The simulations are performed using the OMWebSer-
vice (defined in Section 3.1), and the results can be com-
mitted to the relevant Git repository at the same time to
preserve the traceability of the results. At the same time,
the ModelicaOML adapter is invoked to pass the verifica-
tion status of requirements to the Semantic Twin. Table 1
shows the verification status of each of the requirements
defined in Section 4.1.

As a result, all the systems engineering knowledge
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Figure 9. PACK system design model as a part of a verification
scenario model.

Table 1. Requirements verification status

Target Calculated Status

Req. 1 100 kg 97 kg Verified
Req. 2 293 ± 1 K 293.15 K Verified
Req. 3 101 ± 3 kPA 101.4 kPa Verified

generated throughout the project is unified and stored in
the RDF-based Semantic Twin. This enables automated
and intelligent reporting of necessary decision-making in-
formation via querying and reasoning across the whole
dataset. For example, the Lead Systems Engineer may
wish to take a closer look into the project management
and requirement verification aspects of the project by con-
structing a SPARQL query corresponding to the following
natural language expression:

• Return all system-level requirements (with their pro-
posed verification test cases) that have not been ver-
ified and the person responsible for performing the
verification test case.

As another example, the Project Manager may wish to find
out more about the model development and trace its meta-
data information:

• Return the artifact that defines a heat exchanger com-
ponent which ’presents’ a particular interface and the
original author of that artifact.

Such queries can be expressed using SPARQL within the
Workbench environment, and the outputs can be displayed
as tables or graphs. This allows the users to gain insight
that would normally be difficult to attain through other
means.

The PACK case study presented in this section has
demonstrated how the GitWorks platform can be used
to effectively integrate Modelica modeling and simula-
tion environments into the systems engineering process
to achieve simulation-based system verification from the
early stages of the product lifecycle. Artifacts can be auto-
matically generated from other model types (e.g. SysML
to Modelica) via the OML adapters. Modelica models can
be further defined by searching the GitWorks Commons

for relevant and compatible components. Modelica sim-
ulation results can be automatically translated into RDF
to automatically verify requirements. The resulting inte-
grated Semantic Twin can then be queried. In this way,
Modelica models become an invaluable link in the sys-
tems engineering chain by providing added value across
multiple domains, all while maximizing automation and
reducing the effort required.

5 Conclusions and Future Work
We have presented our vision for the GitWorks platform
to enable the democratized model-based design and en-
gineering of cyber-physical systems. We have proposed
a system architecture for GitWorks and have developed
a prototype implementation focused around enabling the
use of Modelica in the larger MBSE process. We have
conducted a preliminary case study that has demonstrated
the use of GitWorks for the federated design and engineer-
ing of a passenger air conditioner system.

Plans for future work include further development of
OML vocabularies and OML adaptors to increase the
number of different modeling paradigms and COTS tools
supported by the platform, increase the maturity of the
user interface for the web applications, and demonstrate
the application to other use cases including satellite sys-
tems and composite structures design and fabrication.
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A Example SPARQL Query

Listing 3. SPARQL query to find a compatible compressor
model
PREFIX m: <http://openmodelica . org/

openmodelica/model ica#>
PREFIX msl: <http://examples/

Model icaStandardLibrary#>

SELECT DISTINCT ?m ?comp1 ?comp2

WHERE {
?m a m:Model .
?m m:contains ?comp1 .
?m m:contains ?comp2 .

?comp1 a m:Component ;
m:hasType ?con1 .

?comp2 a m:Component ;
m:hasType ?con2 .

?con1 a m:Connector . # FlangeA
?con1 m:contains [

a m:Component ;
m:hasName "m_flow" ;
m:hasType msl:ThermoPower.Gas.Flange.Medium.

MassFlowRate
] .
?con1 m:contains [

a m:Component ;
m:hasName "p" ;
m:hasType msl:ThermoPower.Gas.Flange.Medium.

AbsolutePressure
] .
?con1 m:contains [

a m:Component ;
m:hasName "h_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

SpecificEnthalpy
] .
?con1 m:contains [

a m:Component ;
m:hasName "Xi_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

MassFraction
] .
?con1 m:contains [

a m:Component ;
m:hasName "C_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

ExtraProperty
] .
?con2 a m:Connector . # FlangeB

...
}

Listing 4. The result of running the SPARQL query above
{ "head": {

"vars": [ "m" , "comp1" , "comp2" ] } ,
"results": {

"bindings": [
{

"m": { "type": "uri" , "value": "http://
examples/PL_Lib#PL_Lib.Interfaces.
CompressorBase"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Interfaces.CompressorBase.inlet"},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Interfaces.CompressorBase.outlet"}},

{
"m": { "type": "uri" , "value": "http://

examples/PL_Lib#PL_Lib.Components.
Compressor_noMaps"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps.inlet"
},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps.outlet"
}},

{
"m": { "type": "uri" , "value": "http://

examples/PL_Lib#PL_Lib.Components.
Compressor_noMaps_mass"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps_mass.
inlet"},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps_mass.
outlet"}},

]
}

}


