
DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 115115

Enhancing SSP creation using sspgen

Lars Ivar Hatledal1 Eirik Fagerhaug1

1Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Norway
{laht}@ntnu.no

Abstract
The System Structure and Parameterization (SSP) stan-
dard is a tool independent standard to define complete
systems consisting of one or more components, includ-
ing its parameterization, that can be transferred between
simulation tools. Thus the SSP standard is a natural ex-
tension to the Functional Mock-up Interface (FMI) stan-
dard, allowing systems of components, rather than just in-
dividual components, to be simulated in a growing num-
ber of supported tools. This paper introduces sspgen, a
textual Domain Specific Language (DSL) for generating
SSP archives. The aim of the DSL is to greatly simplify
the creation of SSP compatible simulation systems. ssp-
gen is written in the Kotlin programming language, which
provide syntax highlighting and static code analysis in se-
lected tools, full access to Java compatible libraries, and
more importantly a scripting context so that sspgen defi-
nitions can be easily shared and executed on demand. As
the DSL is based on a generic programming language, it
enables complex expressions to be evaluated for the pur-
pose of e.g., pre-simulation and initialization of variables.
The DSL also performs validation and through integration
with the Open Simulation Standard - Interface Specifica-
tion (OSP-IS) even allows more complex connections to
be formed than the single scalar connections that the SSP
standard defines, while still retaining compliance. Fur-
thermore, the DSL handles automatic packaging of its ref-
erenced content into a ready-to-use SSP archive. As a
whole, the introduced package makes it easier to create,
modify and share SSP systems.
Keywords: Co-simulation, Domain Specific Language,
Functional Mock-up Interface, System Structure and Pa-
rameterization

1 Introduction
The System Structure and Parameterization (SSP) stan-
dard (Köhler et al. 2016) released in 2019, is a tool-
independent format for the description, packaging and
exchange of system structures and their parameteriza-
tion. The SSP is comprised of a set of XML-based for-
mats to describe a network of component models with
their signal flow and parametrization, as well as a ZIP-
based packaging format for efficient distribution of entire
systems, including any referenced models and other re-
sources. The SSP contributes to maximizing re-usability
of models and parameters across tools and use cases. An

Table 1. Tools supporting SSP import and simulation (v1.0).

Name Vendor License
SYNECT Model
Management dSPACE commercial

OMSimulator OpenModelica free
Model.CONECT AVL commercial
FMI Bench PMFS commercial

easySSP eXXelent
solutions

free +
commercial

Simcenter System
Architect Siemens commercial

Simcenter Studio Siemens commercial
Dymola Dassault Systèmes commercial
libcosim OSP free
Vico NTNU free
Ecos NTNU free

SSP (file extension .ssp) is a zip archive containing one
or more XML documents, at least one named System-
Structure.ssd, declaring the structure of the simulation.
The archive also contains any referenced components, like
Functional Mock-up Units (FMUs) and other resources.
Thanks to the SSP, and provided that the SSP does not
contain non-optional implementation specific annotations,
a simulation system can be defined once and later simu-
lated in multiple tools. Currently, the SSP is supported
by a number of free and commercial tools. See Table 1
for an overview of tools that support SSP import and sub-
sequent execution. In (Lars I Hatledal et al. 2021), the
authors made use of SSP to describe a simulation sys-
tem that were simulated in a number of compatible open-
source importers. More specifically Vico, OMSimulator,
libcosim, FMPy, and FMI Go!. The latter two required a
slight modification to the SSP description file as they did
not support the final publicly released version of the stan-
dard (1.0). Thus, they are not present in the provided table
of supported tools. In this example, the SSP proved its
usefulness by allowing the same definition of a system to
be tested and benchmarked in several tools.

As previously mentioned, the SSP is a collection of
XML file(s) declaring the content, connections and pa-
rameterization of a simulation as well as any resources,
like models, required to run the simulation. Given a set of
components, e.g., FMUs, the simulation structure can be
formalized in an XML file and zipped together with any

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA116 115

resources required. This can be done using nothing else
than an text editor and built-in OS capabilities for zip-
ping a folder. However, this approach is tedious, time-
consuming and error prone. The resulting SSP archive
may include formal and/or logical errors that will not sur-
face until it is loaded into a simulation tool. Depending
on the tool used, the source of any errors reported may be
non-obvious. Furthermore, XML is a static text-format,
which means that parameters must be provided exactly.
I.e., a number like PI/2 must be pre-computed and man-
ually typed as e.g., 1.57079632679, which is tedious and
may lead to accuracy issues depending on the number of
decimal points included. Another issue arises with sys-
tems that contain similar components, which expects sim-
ilar or identical connectors and parameterization options.
Declaring such a system in XML leads to excessive copy-
pasting and performing changes is error prone as the same
logical variable needs to be kept track of during modifica-
tion throughout the document. Another concern is bit-rot,
which occurs when some file is left unused and unmain-
tained, possibly due to poor understanding of the con-
tent. Manually generated SSP archives are prime subjects
of bit-rot as maintaining them requires substantial knowl-
edge, which typically dwindles over time and might dis-
appear once the archive is transferred to some other recip-
ient.

A domain-specific language (DSL) provide a notation
tailored toward some application-domain, and is based on
the relevant concepts and features of that domain (Van
Deursen and Klint 2002). This paper introduces sspgen,
a DSL that aims to ease the creation of SSP archives by
providing an accessible and easy to use language construct
that is more powerful than manually editing XML or us-
ing graphical tools. The solution benefits from existing
tooling and provides integration with other standards and
tools in order to enhance SSP development.

The rest of the paper is organized as follows; first some
related work is given, followed by a presentation of the
sspgen software. Finally, a conclusion and notes on future
works is given.

2 Related works
Manually creating SSP configurations using basic and
readily-available tools, as previously mentioned, is not the
only alternative available today.

OMSimulator (Ochel et al. 2019) is a co-simulation
framework that allow both import and export of SSP
archives. Moreover, it features a simplified Python in-
terface to the underlying C/C++ library for accessibility
that can be used to import, define and export SSP con-
figurations. easySSP is a graphical, web-based, tool for
generating SSP archives. Like graphical tools in gen-
eral, it favours easy-of-use and accessibility over flexibil-
ity. However, large simulations quickly becomes cluttered
and editing in a graphical tool has some of the same chal-
lenges as editing XML directly.

Additionally, tools using alternative system formats
than SSP exists. Daccosim NG (Évora Gómez et al.
2019) is a co-simulation framework that features a desk-
top graphical users interface (GUI) for establishing a sim-
ulation graph. The graph may be exported in a custom
format only supported by Daccosim, or as an FMU that it-
self contains other FMUs. The latter allows the system to
be loaded into any FMI based simulation tool. While ac-
cessible, this solution adds a dependency to an additional
solver and the generated FMU is inflexible as it does not
allow modifications without re-running the original pipe-
line. kopl is a graphical tool for generating systems com-
patible with the Open Simulation Platform - System Struc-
ture (OSP-SS), which is a format similar to the SSP. By
supporting the OSP-IS, connection points are fewer, thus
making the system as a whole easier to reason with. The
downside is that the format produced is currently only
compatible with libcosim and eventual tools built on-top
of it.

Unlike the graphical tools mentioned, sspgen offers a
executable, text-based solution that is more flexible, per-
forms validation, is less verbose than XML, allows arbi-
trary expressions to be computed as input to the document,
and as a novelty, combines the OSP-IS standard with SSP.
The DSL defines much of the same concepts and struc-
ture as is found in the standard, making the learning curve
less steep for users already familiar with the SSP standard.
As the solution is text-based, modifications can be eas-
ily shared and version-controlled. The solution is further
elaborated in the following section.

3 sspgen
This section introduces sspgen, a Kotlin DSL for generat-
ing SSP archives that is publicly available as a Maven ar-
tifact. Kotlin is a statically typed programming language
that runs on the Java Virtual Machine (JVM) that is inter-
operable and comparable with the more known Java lan-
guage, but offers additional features and a offer a less ver-
bose syntax. Any and all libraries available for Java are
usable by Kotlin and visa versa. Today, Kotlin is mostly
known as the main programming language for Android
applications, however it is also used as a replacement for
JavaScript in web-applications and Java for desktop ap-
plications. Thanks to its intuitive type-system and smart
use of closures, Kotlin is a very suitable and powerful lan-
guage for building an embedded DSL. That is, a DSL that
is implemented within a host language. While embed-
ded DSLs in general are less flexible than external DSLs,
which use an independent interpreter or compiler, embed-
ded DSLs typically benefit from existing tooling. Kotlin
for instance, supports a scripting context that allow Kotlin
code to be executed without the need for a build-system.
While executing a script, any third party dependencies are
automatically resolved and the code is compiled on-the-
fly. The stand-alone Kotlin compiler that makes this pos-
sible is bundled with the IntelliJ integrated development

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 117115

environment (IDE), but it can also be downloaded directly
from the official Kotlin repository on GitHub. Using In-
telliJ, however, is encouraged as it adds auto-completion,
static-code-analysis, syntax highlighting and enables the
script to be executed through a GUI as opposed to the
command line.

Listing 1. Kotlin script skeleton demonstrating basic usage of
sspgen.
@f i l e : DependsOn ("info.laht.sspgen:dsl:0.5.2")

import no . n tnu . i h b . s s pg en . d s l . *

s s p ("...") {
r e s o u r c e s {

f i l e ("path/to/FMU.fmu")
}
s s d ("...") {

sys tem ("...") {
e l e m e n t s {

component ("FMU" , "resources/FMU.fmu") {
c o n n e c t o r s {

r e a l ("output" , o u t p u t) {
u n i t ("m/s")

}
r e a l ("input" , i n p u t)
i n t e g e r ("counter" , o u t p u t)

}
}

}
c o n n e c t i o n s {}

}
d e f a u l t E x p e r i m e n t (s t a r t T i m e = 1 . 0)

}
} . b u i l d ()

As mentioned, sspgen is powered by Kotlin, and makes
use of closures in such a way that it acts like a DSL. Thus
offering a DSL context within a generic programming lan-
guage. While the package is compatible with Java, it can
only be intuitively used in the context of Kotlin. As shown
in Listing 1, the idea is that users should create a generic
Kotlin script, which then adds sspgen as a dependency.
The script context allows the code to be easily modified,
executed, shared and version-controlled. The actual SSP
archive required for simulation is generated on demand
by running the script, hopefully reducing the likelihood
of bit-rot as maintenance becomes easier. As sspgen runs
in a scripting context, generic expressions can be evalu-
ated, which is immensely powerful. For one, loops can
be used to declare multiple similar connectors as shown in
Listing 2. Furthermore, scripts can make use of any third
party library compatible with Java in order to compute
e.g., parameterization options. Component references are
included either a through a file handle, an URL or as the
path to a PythonFMU script. Using the URL option, the
script definitions can be shared as a single executable file
and easily version-controlled. Another benefit from using
URLs is that the referenced components can be updated
automatically, as re-running the script can be configured
to download the latest version. If this behaviour is not
desired, one could naturally point the URL to a fixed ver-
sion. E.g., if the artifact version-controlled using Git, one

could point the URL to a fixed tag rather than an evolving
branch.

Listing 2. Using loops to declare similarly named connectors.
c o n n e c t o r s {

f o r (i in 0 . . 1 0) {
r e a l ("transform[i].position.x" , i n p u t)
r e a l ("transform[i].position.y" , i n p u t)
r e a l ("transform[i].position.z" , i n p u t)

}
}

Listing 3. Declaring connections using sspgen.
// SSP type connections
c o n n e c t i o n s {

"wheel.p1.f" t o "chassis.p.f"
"chassis.p.e" t o "wheel.p1.e"
"ground.p.f" t o "wheel.p.f"
"wheel.p.e" t o "ground.p.e"

}

// OSP-IS type connections
o s p C o n n e c t i o n s {

"chassis.linear mechanical port" t o
"wheel.chassis port"

"wheel.ground port" t o
"ground.linear mechanical port"

}

Listing 4. Declaring annotations using sspgen.
v a l s t e p S i z e = 1 . 0 / 1 0 0
. . .
d e f a u l t E x p e r i m e n t {

a n n o t a t i o n s {
a n n o t a t i o n ("org.openmodelica") {
"""
<oms:SimulationInformation resultFile=

" r e s u l t s . mat"/>
"""

}
a n n o t a t i o n ("com.opensimulationplatform") {
"""
<osp:Algorithm>
<osp:FixedStepAlgorithm baseStepSize=
" $ s t e p S i z e"/>

</osp:Algorithm>
"""

}
}

}

namespaces {
namespace ("oms" ,
"http://openmodelica.org/oms")

namespace ("osp" ,
"http://opensimulationplatform.com/SSP/

OSPAnnotations")
}

3.1 Connections
The connections closure in Listing 3 shows how regular
connections between components are made. By default,
outputs are declared on the left hand side of the infix func-
tion to. It is also possible to swap the ordering for all con-
nections by specifying a boolean flag. Declaring optional

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA118 115

linear transformations on the signals formed are achieved
by invoking an instance method on the object returned by
the individual connection objects.

3.2 Annotations
Several SSP importers, like OMSimulator and libcosim,
require tool-specific annotations to be present in the im-
ported XML. This requires users that want to support mul-
tiple tools, and use some tool for creating the SSP, to edit
the generated XML manually. sspgen allows annotations
to be added as plain-text, allowing multiple tools to be
supported without further editing. Listing 4 shows how
annotations are declared using sspgen.

3.3 Validation
sspgen performs several types of validation of the de-
clared content. Firstly, it checks that the connectors refers
to actual variables and that the declared type matches.
Secondly it checks that the connections are valid and
that a connector has been declared for a given variable.
FMI4j (Lars Ivar Hatledal, Zhang, et al. 2018), a JVM li-
brary for importing FMUs, is used to validate FMU com-
ponents based on their modelDescription.xml. sspgen is
also able to recognise proxy-fmu 1 components (a solu-
tion for remote execution of FMUs developed under the
umbrella of the Open Simulation Platform), so that their
modelDescription.xml files can be validated in the same
way as regular FMUs. Furthermore, sspgen can perform
additional checks as part of the integration with OSP-IS
and/or FMI-VDM-Model as explained in more detail be-
low. Currently, FMI version 1.0 and 2.0 for co-simulation
is supported. When working with non-compliant models
or unsupported FMI versions, it is possible to turn of vali-
dation.

3.4 Integration with OSP-IS
The OSP interface specification (OSP-IS) is an addition to
the FMI 2.0 standard for co-simulation which provides a
method for adding semantic meaning to model interface
variables. OSP-IS aims to simplify the model connec-
tion process, and enables validation of semantically cor-
rect simulations (Open Simulation Platform 2020b). In
short, an XML document adhering to the OSP-IS, which
declares more complex input and output variable relation-
ships, can be used by tools that support it to form more
complex and semantically correct connections between
models. Currently, the only tool that natively supports
the OSP-IS is libcosim (Open Simulation Platform 2020a)
from the OSP foundation. sspgen allows OSP-IS connec-
tions to be formed within the DSL, which are later tran-
spiled to single scalar connections that the SSP supports,
while retaining the static type checking during the build
process. Thus, sspgen enables the OSP-IS to be used by
any SSP compatible tool. For example the ospConnec-

1https://github.com/open-simulation-platform/
proxy-fmu

tions shown in Listing 3 are transpiled to the SSP compat-
ible XML as shown in Listing 5

Listing 5. OSP-IS connections transpiled to SSP.
< s s d : C o n n e c t i o n s>

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="wheel"
s t a r t C o n n e c t o r ="p1.f" endElement =
"chassis" endConnec to r ="p.f" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="chassis"
s t a r t C o n n e c t o r ="p.e" endElement =
"wheel" endConnec to r ="p1.e" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="ground"
s t a r t C o n n e c t o r ="p.f" endElement =
"wheel" endConnec to r ="p.f" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="wheel"
s t a r t C o n n e c t o r ="p.e" endElement =
"ground" endConnec to r ="p.e" />

< / s s d : C o n n e c t i o n s>

3.5 Integration with FMI-VDM-Model
sspgen optionally integrates with the FMI-VDM-
Model (Battle et al. 2019) tool created by the INTO-CPS
project. The FMI-VDM-Model is a formal model of the
FMI standard using the VDM Specification Language.
The integration allows optional static analysis of the
included FMUs for informative purposes. To use, simply
provide the path to the FMI-VDM-Model executable
when invoking the sspgen functions validate or build.

3.6 Integration with PythonFMU
PythonFMU (Lars Ivar Hatledal, Collonval, and Zhang
2020) is a Python framework for developing FMUs using
the Python programming language. sspgen allows com-
ponents written using PythonFMU to be declared in its
source form. sspgen then calls the PythonFMU packaging
tool, which must be pre-installed on the system, during the
build process. This makes it easier to prototype SSP sys-
tems by shortening the development loop. This command
is featured in the DSL, but thanks to the underlying script-
ing context, it is possible for users to write generic code
that produced components from other sources on demand.

4 Conclusion and future work
This paper presents sspgen, a high-level DSL aimed at
easing and enhancing the creation of SSP archives. More
specifically, the DSL enables evaluation of complex ex-
pressions, is less verbose than XML and introduces con-
cepts that makes authoring easier, such as the ability to
copy data between components. Furthermore, the DSL
is written in Kotlin, a statically typed language that of-
fers auto-completion and syntax highlighting. More-
over, Kotlin features a standard library that further expand
the already well-established standard library provided by
Java. Additionally, a vast eco-system of third party li-
braries are readily-available. In the context of sspgen,
such libraries can be used to e.g., compute parameteriza-
tion options for components prior to export. More impor-
tantly, sspgen performs validation of its content so that the
user can address potential issues before actually loading

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 119115

the SSP into a simulation tool. Furthermore, the DSL sup-
ports the OSP-IS standard, allowing more complex con-
nections to be formed, which can be further validated for
semantic correctness. All while retaining compliance with
the SSP standard. The tool is not feature complete ac-
cording to the standard, but covers the necessary features
in order to be effective by the current users and has seen
wide usage internally by researchers and master students
at NTNU campus Aalesund for the purpose of modelling
maritime systems. The tool is largely stable and future
work includes maintenance, documentation and respond-
ing to user requests. Additionally, support for FMI 3.0
and further versions of the SSP standard will be consid-
ered. sspgen is open-source and available from https:
//github.com/Ecos-platform/sspgen under a
permissive license.

Acknowledgements
This work was supported in part by the Project “SFI Off-
shore Mechatronics”, under Grant 237896 from Research
Council of Norway.

References
Battle, Nick et al. (2019). “Towards a Static Check of FMUs in

VDM-SL”. In: International Symposium on Formal Methods.
Springer, pp. 272–288.

Évora Gómez, José et al. (2019). “Daccosim NG: co-simulation
made simpler and faster”. In: Linköping electronic conference
proceedings.

Hatledal, Lars I et al. (2021). “Vico: An entity-component-
system based co-simulation framework”. In: Simulation Mod-
elling Practice and Theory 108, p. 102243.

Hatledal, Lars Ivar, Frédéric Collonval, and Houxiang Zhang
(2020). “Enabling python driven co-simulation models
with pythonfmu”. In: Proceedings of the 34th Interna-
tional ECMS-Conference on Modelling and Simulation-
ECMS 2020. ECMS European Council for Modelling and
Simulation.

Hatledal, Lars Ivar, Houxiang Zhang, et al. (2018). “Fmi4j: A
software package for working with functional mock-up units
on the java virtual machine”. In: The 59th Conference on Sim-
ulation and Modelling (SIMS 59). Linköping University Elec-
tronic Press.

Köhler, Jochen et al. (2016). “Modelica-association-project
“system structure and parameterization”–early insights”. In:
The First Japanese Modelica Conferences, May 23-24, Tokyo,
Japan. 124. Linköping University Electronic Press, pp. 35–
42.

Ochel, Lennart et al. (2019). “Omsimulator–integrated fmi and
tlm-based co-simulation with composite model editing and
ssp”. In: Proceedings of the 13th International Modelica
Conference, Regensburg, Germany, March 4–6, 2019. 157.
Linköping University Electronic Press.

Open Simulation Platform (2020a). libcosim. (Date accessed 11-
May-2022). URL: https : / / github . com / open - simulation -
platform/libcosim.

Open Simulation Platform (2020b). OSP-IS. (Date accessed 11-
May-2022). URL: https : / / opensimulationplatform . com /
specification/.

Van Deursen, Arie and Paul Klint (2002). “Domain-specific lan-
guage design requires feature descriptions”. In: Journal of
computing and information technology 10.1, pp. 1–17.

