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Abstract  
Models that correctly describe the dynamic behavior of 
vapor compression cycle at low or zero refrigerant mass 
flow rates are valuable because they can be used to 
handle low load, on/off cycling and inactive component 
conditions. However, low- or zero-flow simulation 
imposes significant computational challenges because 
of high frequency oscillations in mass flow. We explore 
techniques that may be used for improving robustness 
and performance of low- or zero-flow simulation. 
Comparisons are conducted to demonstrate the efficacy 
of the proposed techniques. It is shown that these 
techniques can result in simulations that are more robust 
and significantly faster than real-time.  
Keywords: Modelica, zero flow, heat exchanger 
modeling, dynamic simulation, vapor compression cycle 

1 Introduction 
Numerical simulations are widely employed in the 
modern day HVAC&R (Heating, Ventilation, Air-
Conditioning and Refrigeration) industries to assist in 
the design and optimization of advanced products in 
response to the increasing pressure of cost reduction and 
high-energy efficiency standards. With the aid of 
simulation tools, design engineers can evaluate a 
conceptual product design on computers instead of 
building real systems and conducting expensive tests in 
the laboratory, thereby shortening the time required for 
design cycles.  

In general, vapor compression system simulations 
can fall into one of two categories: steady-state or 
transient. The evaluation of the steady-state, full-load 
performance of vapor compression systems is often used 
to determine the system capacity and size. However, 
vapor compression systems rarely operate under steady-
state conditions, and dynamic models are more adequate 
for a realistic representation of the system response.  
These models are typically used for two types of studies: 
(1) examining small-scale changes in the refrigerant-
side behavior, such as flow instabilities, and (2) 
examining larger system-level changes, such as system 
behavior during start-up, shut-down, or defrosting.  
While many models can typically reproduce small-scale 

behavior quite accurately, the increased complexity and 
nonlinearity associated with large-scale transients often 
results in predictions that have much lower accuracy. 

Low and zero-flow phenomena are often encountered 
in the operation of vapor compression systems with 
large transients, including on/off cycling of air-
conditioning systems, operating mode switch of variable 
refrigerant flow systems, and reverse-cycle defrosting of 
heat pump systems as examples. Simulation of system 
dynamics under such conditions presents numerical 
challenges, such as problems with robustness and an 
attendant increase in simulation time due to direction 
switching flows. In recognition of these problems, 
Dermont et al. (2016) proposed an approach to improve 
zero-flow simulation based on a systematic analysis of 
heat transfer coefficients. Although this approach was 
shown to increase simulation robustness under (near) 
zero-flow conditions, the presented use cases ran much 
slower than real time. In his sole-authored paper, 
Zimmer (2020) suggested that regularization schemes 
were required to improve model robustness against zero 
mass flow without giving further details. Li (2020) 
discussed the computational improvement from table-
based refrigerant property calculation models with 
Analytical Jacobians. However, the implementation of 
such methods is a long-term task and requires 
significant effort. We are thus motivated to explore 
effective numerical techniques to improve the 
performance of zero-flow simulations, especially 
focusing on robustness and improvements in the 
simulation speed, with a goal of achieving faster than 
real-time dynamic simulation. 

The remainder of the paper is organized as follows. 
In Section 2, we present a regularized pressure drop 
model that has significant benefits for these on/off 
transient simulations. In Section 3, we discuss the 
advantages and disadvantages of static and dynamic 
heat transfer coefficient models. In Section 4, we 
describe the single pressure heat exchanger model and 
its potential to speed up the zero-flow simulation. 
Conclusions from this work are then summarized in 
Section 5. 
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2 Pressure Drop Model 
The finite volume method is often used to discretize the 
governing equations that describe the dynamics of 
refrigerant flow because it has been highly successful in 
approximating the solution of a wide range of thermal-
fluid systems and maintaining quantity conservation. In 
many of these types of models, a staggered grid scheme 
is utilized to decouple the mass and energy balance 
equations from the momentum balance equation. As a 
result, the mass and energy balances are calculated 
within the volume cells while the momentum balance is 
calculated within the flow cells, as depicted in Fig. 1.  

 

 
Figure 1.  Staggered grid scheme 

 
Since the inertia term, dynamic pressure wave and 

gravity effect in the momentum equation are usually of 
minor importance in these applications, they are often 
neglected in heat transfer analyses to reduce the 
modeling complexity (Brasz and Koenig, 1983). As a 
result, the discretized governing equations for 1-D flow 
are often given as 
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Pressure and specific enthalpy are often selected as 

state variables to avoid non-linear algebraic equations 
when they are the independent properties in the media 
models. The equations of mass and energy can then be 
rewritten using the time-derivative of pressure and 
specific enthalpy based on the chain rule.  

It is evident from Eq. (3) that the pressure difference 
between adjacent volumes is solely determined by the 
frictional pressure loss. The frictional pressure drop is 
often a complex nonlinear function of Reynolds number 

and thus mass flow rate, and is often impossible to invert 
analytically. Since the pressures in each control volume 
are known at each time step, numerical iterations may 
be required to solve mass flow rate based on pressure 
difference, resulting in slower simulations.  

Unlike the steady-state models that are often used for 
system design and require high prediction accuracy, 
dynamic models are widely used over much wider 
operating ranges and thus require high robustness and 
high efficiency, which is sometimes achieved at the 
expense of accuracy or fidelity to published frictional 
pressure loss correlations (Idelchik, 1986). Therefore, 
simplified models are often used to reduce modeling 
complexity and improve simulation speed. Among 
those, the following model approximating the frictional 
pressure loss (Laughman and Qiao, 2018) Δ𝑝𝑝 = 𝑓𝑓(�̇�𝑚) 
is expressed as  

 

 0 0/ bp K p m m    (4) 

 
where p0 and �̇�𝑚0  are the parameters in the nominal 
condition, and K and b (often greater than 1) are curve-
fitting constants. This relation is not only less nonlinear 
than the original correlation-based relations, but it is 
also easily invertible and can allow the pressure loss to 
be calculated as a function of the mass flow rate, or vice 
versa. As such, the resulting system simulations have 
much faster performance, since the nonlinear 
dependence on the variety of input variables is removed 
from the relation and the integrator can take much larger 
steps. One can easily invert Eq. (4) and obtain the 
derivative of mass flow rate with respect to pressure 
drop  
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Eq. (5) suggests that �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝)is not Lipschitz 

continuous and becomes increasingly sensitive to 
pressure drop as it approaches zero and eventually the 
derivative becomes infinite when mass flow is zero. 
Meanwhile, we can examine the time derivative of the 
mass flow  
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Eq. (6) shows that the time derivative of the mass 

flow rate is very large when the mass flow rate is small, 
indicating that Eq. (6) is a stiff ODE. One can make a 
simple analogy between Eq. (6) and the ODE 𝑦𝑦′ =
−𝑎𝑎𝑦𝑦 (𝑎𝑎 > 0) . To obtain a stable solution with the 
Explicit Euler method, the time step must satisfy Δ𝑡𝑡 <
2/𝑎𝑎. When 𝑎𝑎 is very large, the time step becomes very 
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small, which is exactly the case for Eq. (6) since 𝑎𝑎 =
− �̇�𝑚0

𝑏𝑏

(𝑏𝑏𝑏𝑏Δ𝑝𝑝0)
𝑑𝑑(Δ𝑝𝑝)
𝑑𝑑𝑑𝑑

1
�̇�𝑚𝑏𝑏 is infinite when the mass flow is zero.  

The point with infinite derivative is often called 
singularity point. In consequence of this behavior, the 
simulation often stalls for off-cycle conditions of vapor 
compression systems in which mass flow rate is 
extremely low. A conventional remedy for this behavior 
is to replace the singular part with locally non-singular 
substitute resulting in a finite derivative at the point; this 
process is often referred to as regularization. According 
to Dermont et al. (2016), a regularized pressure drop 
correlation is necessary for a complex thermo-fluid 
model to compute under zero flow conditions. The built-
in implementation of power function that employs such 
regularization for terms in Eq. (4) can be found in 
Modelica.Fluid.Utilities.regPow. 
 
function regPow 
  extends Modelica.Icons.Function; 
  input Real x; 
  input Real a; 
  input Real delta=0.01; 
  output Real y; 
algorithm  
  y := x*(x*x+delta*delta)^((a-1)/2); 
end regPow; 
 
This regPow function approximates 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)|𝑥𝑥|𝑎𝑎  and is 
regularized with finite derivatives around the singular 
point. In this function, the parameter delta is used to 
specify the regularization range. When abs(x) << 
delta, the regularization results in a linear 
approximation for the original function with the 
Lipschitz constant to be unity. Although the built-in 
implementation successfully eliminates the singularity 
point, it can be further improved. Consequently, one 
more parameter can be added to regPow so that different 
types of regularization can be formulated.  

 
function regPowGen 
  extends Modelica.Icons.Function; 
  input Real x; 
  input Real a; 
  input Real delta=0.01; 
  input Real b=1; 
  output Real y; 
algorithm  
  y := x^b*(x*x+delta*delta)^((a-b)/2); 
end regPowGen; 
 

With different values for the parameter b, different 
approximations can be obtained for the original 
function. When b = a, the regPowGen function is 
equivalent to the original power function without 
regularization. With b = 1, the function is the same as 
the built-in function regPow. Fig. 2 shows different 
regularization schemes for the pressure loss relation in 
the neighborhood around the singularity point. Without 
regularization, the derivative at the origin is infinite and 

the mass flow rate is extremely sensitive to the change 
in pressure loss around the singularity point, which can 
cause simulation of low- or zero-flow conditions to 
crash. The simulation performance does improve with 
the built-in approach, but is still far from satisfactory 
because small pressure differences can still result in 
large variations in mass flow. With b = 3, a cubic 
approximation is used around the singularity point and 
the Lipschitz constant is much smaller. As a result, the 
mass flow rate becomes far less sensitive to pressure 
differences so that the solver can take much larger step 
sizes. 
 

 
Figure 2.  Different types of regularization for pressure 

loss relation 
 
To evaluate the efficacy of different types of 

regularization, off-cycle transients of a room air-
conditioning system, illustrated in Fig. 3, were 
simulated. The system ran steadily before it was shut 
down at 500 sec. The off-cycle period then lasted for 
4500 sec and the simulation ended at 5000 sec. As 
shown in Fig. 4, adequate regularization can make a 
substantial improvement to the simulation performance. 
With the built-in regPow function for the simplified 
pressure loss relation, it took more than 23000 sec of 
CPU time to finish a 5000 sec simulation. However, 
with modified regularization scheme (b=3), it only took 
around 1700 sec to finish the simulation and CPU time 
was reduced by more than 10 times. Reducing the 
sensitivity of the mass flow rate to the pressure 
difference around the singularity point can thus be a key 
for faster simulation of low or zero flow conditions. No 
changes in the component models were required with 
the proposed regularization scheme. Please note that the 
proposed cubic approximation should be directly 
applied to the function that calculates the mass flow rate 
given the pressure drop, i.e., �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝) . This 
regularization scheme exhibits no robustness issues in 
our models since the inverse function �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝) 
can be easily computed. If the inverse function �̇�𝑚 =
𝑓𝑓−1(Δ𝑝𝑝) cannot be obtained, one needs to be cautious 
when applying the proposed scheme due to the possibly 
resulting numerical issues.  

dp/dp0

No regularization (b=a)
Built-in regularization (b=1)
Modified regularization (b=3)
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Figure 3.  Modelica model of a room air-conditioning 

system 
 

 
Figure 4.  CPU time vs. simulation time with different 

types of regularization 

3 Heat Transfer Coefficient Model 
The description of local heat transfer coefficients 
(HTCs) in the simulation models of thermofluid systems 
can be particularly challenging, as the correlations are 
usually formulated with accuracy as the primary 
concern, and with little regard for computational 
considerations. Consequently, they can be difficult to 
incorporate into system-level models of thermofluid 
systems as they may be extremely nonlinear. 
Meanwhile, these correlations are usually defined only 
for specific flow conditions or refrigerant phases, so that 
there will inevitably be significant discontinuities 
between regions of the validity for specific correlations. 
Dynamic simulation presents additional difficulties as 
the unknown refrigerant mass flow rates, pressures, and 
specific enthalpies preclude the use of any initial 
information about the phase of the refrigerant 
(condensation, evaporation, liquid, or vapor) or the flow 
regime (laminar or turbulent), so the correlations must 

be defined in a manner which encompasses a wide range 
of flow conditions. 

One alternative approach that has been successfully 
used to mitigate the nonlinearities of detailed heat 
transfer coefficient correlations has been the creation of 
simplified models that capture the general trends of 
those detailed correlations without implementing their 
complexity. These simplified correlations can be 
justified via the improved numerical performance of the 
simulation models, which may not even function with 
some of the complex correlations found in the literature, 
as well as the fact that the overall heat transfer 
coefficient for many refrigerant-to-air heat exchangers 
is dominated by the air-side heat transfer coefficient, 
rather than the refrigerant-side heat transfer coefficient.  

A wide variety of forms can be used for these 
relations, depending on the required parametric 
dependence or level of fidelity to the behavior of the 
original correlations. For example, we used a simplified 
heat transfer relation for each phase according to 

 

 0 0/ bK m m   (7) 

 
The constants 0 for the liquid, two-phase, and vapor 
flow regions were calculated by coarsely approximating 
the behavior of the full correlations over their regions of 
validity, and a trigonometric interpolation method was 
used to smoothly transition between phases (Richter, 
2008). 

Laughman and Qiao (2018) proposed the 
incorporation of dynamics into the closure models to 
decouple the heat transfer coefficient from the other 
state variables. This makes the closure variables into 
state variables of the system, and will decouple the value 
of the closure variable in the fluid computations with the 
value of the closure variable calculated from the other 
state variables. In the case of the heat transfer 
coefficient, this may be calculated by 

 

 1 ˆd
dt
  


   (8) 

 
where �̂�𝛼  represents the algebraic heat transfer 
coefficient which can be calculated using either detailed 
or simplified  relations, and  represents the filtered 
version of the heat transfer coefficient. The parameter  
should be tuned to be substantially faster than other time 
constants of the system in order to ensure that it will not 
change the system response. 

This dynamic heat transfer coefficient model has 
proved to be effective at eliminating the spurious 
oscillations caused by the high gain of 𝜕𝜕𝛼𝛼/𝜕𝜕𝜕𝜕  in the 
transition region from vapor phase to two-phase and 
increase model robustness. However, for the case of off-
cycle simulation, the filtered heat transfer model can 
potentially slow down the simulation because it 
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increases the number of state variables in the system. As 
demonstrated in Fig. 5, it took around 3700 sec CPU 
time to finish the same off-cycle simulation of the air-
conditioning system described in Fig. 3 with filtered 
heat transfer coefficient model, which was 2 times 
longer than the CPU time of the simulation with static 
heat transfer coefficient model. It was evident that the 
filtered model slowed down the simulation remarkably 
for the first 500 sec after the system was shut down. 
During this period of time, the refrigerant mass flow 
rates declined dramatically, resulting in a rapid change 
in heat transfer coefficients. Setting ‘log norm true’ 
during the running simulation when using the Modelica 
compiler Dymola 2020x (Dymola, 2020) can determine 
that some of heat transfer coefficient states were causing 
the integrator to be slow. In summary, the filtered heat 
transfer coefficient model can help improve model 
robustness and eliminate the high-frequency numerical 
oscillations, but not necessarily speed up the off-cycle 
simulation. It is recommended that modelers try both 
static and filtered approaches to the heat transfer 
coefficients to choose a more appropriate approach on a 
case-by-case basis.  
 

 
Figure 5.  CPU time vs. simulation time with different 

HTC models 

4 Single Pressure Heat Exchanger 
Model 

Heat exchangers usually require particular attention in 
the modeling of vapor compression cycles because they 
are the main components where exchange of mass, 
energy and momentum take place. Accurate 
mathematical and physical representations for heat 
transfer and fluid flow phenomena in heat exchangers 
are always crucial for the overall cycle simulation. In 
general, three modeling paradigms are often used for 
heat exchanger simulations. In order of increasing 
complexity and sophistication, they are the lumped 
parameter method, the moving boundary method and 
the finite volume method, respectively. 

Lumped parameter models simplify the description of 
the characteristics of an inherently spatially distributed 
physical system with mean properties that are assumed 
homogeneous throughout the heat exchanger by 
averaging out the spatial variations. With this approach, 
only the overall mass and energy balances (2 equations) 
are considered and the thermal behavior of heat 
exchangers is modeled as a single control volume. Since 
this approach disregards the spatial variation in 
properties and the distinct differences of the heat 
transfer mechanisms between single-phase and two-
phase, these models inevitably result in the most 
inaccurate predictions amongst these three modeling 
approaches.  

Recently, Qiao and Laughman (2022) developed a 
new low-order heat exchanger model based on the 
lumped parameter approach. Unlike conventional 
lumped parameter models, this new model assumes a 
distribution of refrigerant enthalpy so that the spatial 
variations of refrigerant properties such as density and 
specific enthalpy can be taken into account. The overall 
mass and energy balances to describe the refrigerant 
dynamics are given as 
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It is assumed that refrigerant enthalpy varies 
exponentially in the heat exchanger. Therefore, the local 
refrigerant quality is determined by 
 

     
 

exp 1
exp

1 exp 1 1 exp 1
out inin out x xx xx 
 

  
   

 (11) 

 
where   is the fraction of the heat exchanger covered by 
the portion from the inlet to the location of interest. 
Fractions of vapor, two-phase and liquid zone can be 
readily computed with this enthalpy distribution profile. 
The mean specific enthalpy of refrigerant in the heat 
exchanger can also be determined by 
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where �̅�𝛾 is the mean void fraction of the two-phase flow. 
Since ℎ̅ is a state variable and is known at each time 
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step, Eq. (12) can be used to iterate hout so that the entire 
system is closed. The accuracy of the new models can 
be significantly improved with the addition of 
refrigerant enthalpy profile as compared to moving 
boundary models, but with minimum additional 
computational cost. A full description of this modeling 
approach, which is beyond the scope of the present 
work, can be found in the referenced paper. 

In comparison, the moving boundary method is 
characterized by dividing the heat exchanger into 
different control volumes, each of which exactly 
encompasses a particular fluid phase (vapor, two-phase 
or liquid) and is separated by a moving boundary where 
the phase transition occurs. In contrast to the distributed 
parameter models, the number of control volumes in 
moving boundary models may vary because fluid phases 
can disappear or appear under large disturbances. These 
models may consist of at most three control volumes and 
at least one at a time (6 equations at most). The objective 
of such models is to capture the thermal behavior inside 
these control volumes and time-varying position of 
phase boundaries. Moving boundary models generally 
result in much faster simulations compared to 
distributed parameter models due to their small size 
while more accurately capturing the time-varying 
dynamics of these systems, but these models are 
inherently fragile due to their variable model structures. 
For instance, moving boundary models cannot manage 
zero or reverse flows because these models are designed 
with the strict assumption that refrigerant flow enters the 
heat exchanger from one end, and leaves from the other. 
These models are either are either over- or 
underdetermined if these assumptions are violated (Qiao 
et al., 2016). 

Finite volume heat exchanger models are particularly 
useful for describing spatially dependent phenomena 
and detailed component performance, such as the effect 
of local heat transfer and pressure drops or the branching 
and joining of refrigerant pipes as a result of particular 
circuiting configurations. As discussed earlier, finite 
volume models are comprised of an alternative sequence 
of volume cells and flow cells. The resultant modular 
nature allows great flexibility in system configurations, 
and different component models can be seamlessly 
linked together (Qiao et al., 2015). However, one of the 
disadvantages of this modeling approach is that it 
creates many dynamic pressure states. For a model with 
N control volumes, it has 2N dynamic states, i.e., N 
pressure states and N specific enthalpy states, resulting 
in N mass flow rates that need to be computed based on 
pressure differences. Therefore, 3N equations are 
needed to solve the model. Under off-cycle conditions, 
these N mass flow rates will all decline rapidly and each 
will enter the region where the mass flow rate is highly 
sensitive to pressure difference. This will inevitably 
increase the likelihood that the integrator will 
substantially reduce the step size during the solving 

process of the model. Based on this reasoning, it is 
anticipated that the off-cycle simulation can be greatly 
accelerated if the dependence of mass flow upon 
pressure difference can be removed. We thus propose a 
heat exchanger model with a single pressure state and 
the governing equations are given as  
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In this new modelling approach, the volume cells 

within the component model share the same pressure. 
The number of dynamic states is N+1, i.e., one pressure 
and N specific enthalpies. Mass flow rates between 
volume cells will be computed through the coupling 
between the equations of mass and energy (Qiao and 
Laughman, 2018). The momentum equation is therefore 
not needed, so that the whole model consists of only 2N 
equations. It is worthwhile to point out that pressure 
drop between components is still taken into account in 
the system model, though the pressure drop is lumped 
together and calculated at the inlet or the outlet of the 
component model depending upon the model structure. 
As a result, the number of pressure states is significantly 
reduced, while the number of flow models calculating 
mass flow based on pressure differences is also 
decreased. These changes can substantially speed up the 
off-cycle simulation.  

With the modified regularization scheme for pressure 
loss relation, static heat transfer coefficient model, and 
single pressure heat exchanger model, the same off-
cycle simulation finished with around 200s of CPU 
time, which was 9 times faster than the conventional 
finite volume models, as shown in Fig. 6. The speedup 
improvement achieved using all of the techniques 
discussed in this work was substantial, given that the 
off-cycle simulation without any of these enhancements 
was more than 100 times slower. The discrepancies 
arising from the approximation of lumped pressure drop 
were minimal, as the system pressures equalize quickly 
under off-cycle conditions, and pressure drops between 
volume cells are negligible. Fig. 7 illustrates the suction 
and discharge pressure transients as well as compressor 
mass flow during off-cycle. The compressor mass flow 
instantly dropped to zero after system was shut down, 
and suction and discharge pressures came to an 
equilibrium shortly afterwards, which somewhat 
justified the key assumption of the proposed single 
pressure heat exchanger modeling approach.  
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Fig. 8 illustrates a vapor compression system with 
two evaporators, which was modified based on the 
results of the single-evaporator system described in Fig. 
3. To further demonstrate the efficacy of the proposed 
enhancement techniques for zero-flow simulation, we 
present another case study, in which the system 
described in Fig. 8 was operated normally for the first 
500 sec with two active evaporator branches, after 
which the first evaporator branch was turned off (the fan 
was off and the valve was closed) and the system 
continued running before being completely shut off at 
3000 sec. The changes in the actuators and the CPU time 
as a function of simulation time were given in Fig. 9. 
This simulation finished smoothly and only took 600 sec 
of CPU time, indicating the effectiveness of the 
proposed techniques. 
 

 
Figure 6.  CPU time vs. simulation time with different 

heat exchanger models 
 

 
Figure 7.  Pressure and compressor flow transients under 

off-cycle operation 

 

 
Figure 8.  A vapor compression system with two 

evaporators 
 

 
Figure 9.  Actuator changes and CPU time vs. simulation 

time for the system in Fig. 8 

5 Conclusions 
This paper explored a set of techniques to improve the 
robustness and speed for zero-flow simulation of vapor 
compression cycles. It was found that reducing the 
sensitivity of mass flow to pressure differences was an 
important key to accelerating the zero-flow simulation. 
This can be achieved by regularizing the pressure loss 
relation with cubic approximation in the neighborhood 
around the singularity point. We also recommend using 
a static heat transfer model because it reduces the 
number of dynamic states if no spurious oscillations 
appear in the simulation. Lumping refrigerant pressure 
drops at the inlet or outlet of heat exchangers or pipes 
also demonstrated value in further speeding up the zero-
flow simulation. These techniques proved to be efficient 
to handle refrigerant dynamics in on/off cycling and 
inactive component conditions. 
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