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Abstract
This paper introduces MARCO, a research compiler
aimed at the efficient generation of efficient simulation
code from a large-scale Modelica model. MARCO’s
design goals, requirements, and specifications are dis-
cussed in the paper, as well as the software architec-
ture, the current development status, and a future develop-
ment roadmap. The results of two test cases demonstrate
MARCO’s capability to handle non-trivial Modelica mod-
els with over 10 million equations very efficiently.
Keywords: Modelica, compiler construction, large scale
models

1 Introduction
The Modelica Language, first introduced in 1997, has be-
come a widespread standard in the field of system-level
modelling and simulation, and is now supported by many
different tools, both commercial and open source. For
many years, the focus of Modelica tools was mainly to
support the modelling of individual systems, such as a
robot, a power plant, an air conditioning system, a heat
pump, an aircraft, and so on. Such models are built by
connecting heterogeneous sub-systems belonging to dif-
ferent physical domains (e.g., mechanical, thermal, elec-
trical) and often require the efficient and robust solution
of non-trivial systems of non-linear equations. However,
their scale usually is quite limited, from a few hundred
equations up to one or two hundred thousand equations.
According to how flattening is described in the language
specification (Modelica Association 2021), such models
are transformed into a system of scalar equations involv-
ing scalar variables.

This approach has served the Modelica community well
for about 25 years, but suffers from severe performance
limitations in two cases. One is the case of models con-
taining large array equations, e.g., stemming from the
2D or 3D discretisation of distributed-parameters systems.
The other is the case of systems-of-systems with many re-
peated instances of the same basic components. In both
cases, the typical workflow of today’s Modelica tools turns
out to be inefficient, particularly as regards the time re-
quired to generate the executable simulation code from the

original Modelica source code, and also as regards the size
of the generated code, which contains many repetitions of
essentially the same lines of code. This issue was high-
lighted eight years ago in (Casella 2015), Section 2.6, but
until now, no industrial-grade solutions have been devel-
oped to overcome this problem.

This issue hampers the use of Modelica for effectively
modelling systems-of-systems and large-scale, smart, dis-
tributed systems of all kinds (e.g., smart grids, smart
neighbourhoods, and IoT systems in general). The Model-
ica language perfectly suits the task, as it can conveniently
describe structured multi-domain cyber-physical systems.
Still, tools are not up to the task when the size and com-
plexity grow towards the one million equation threshold,
and beyond.

For example, the French Electrical Transmission Sys-
tem Operator RTE decided several years ago to use Mod-
elica to model and simulate national and continental-wide
power transmission systems. However, limitations in ex-
isting Modelica technology were such that they could use
Modelica to generate the code of individual components,
but then had to write their own simulation engine in the
Dynaωo software (Masoom et al. 2021) to build and sim-
ulate the systems of their interest at the required scale,
within the time frames allotted for real-time monitoring
and management of the French power grid.

To overcome these inefficiencies, four years ago some
of the authors of this paper started a research line with
three main goals:

1. Compile Modelica code into the simulation code
with a low runtime footprint in terms of both mem-
ory and execution time, running on a range of differ-
ent machines, from the workstations typically used
by engineers to run their simulations, to embedded
devices where Modelica models can be deployed as
part of control systems.

2. Exploit arrays of variables, equations, and models as
first-class citizens to drastically cut code generation
time and generated code size and improve simulation
run time. (Schuchart et al. 2015) (Otter and Elmqvist
2017)
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3. Skip the traditional C-code generation step in favour
of generating LLVM-IR code that could be directly
turned into highly optimised machine code.

A very preliminary experimental development was re-
ported in (Agosta et al. 2019), together with a first tenta-
tive roadmap.

Based on that first experience, which could be classified
as TRL-2 and whose results seemed promising, the de-
velopment of the MARCO (Modelica Advanced Research
COmpiler) compiler was started and has since then grown
into a full-fledged research project involving several mas-
ter’s and PhD students, as well as more senior faculty with
Computer Science and with Automation expertise.

The purpose of this paper is thus to present to the Mod-
elica community the current state of the art of this project,
which has now reached TRL-4, together with an updated
roadmap for future work. Some interesting results ob-
tained on non-trivial case studies will also be reported.

The paper is structured as follows: in Section 2, the
MARCO compiler’s objectives, requirements, and specifi-
cations are stated. Section 3 briefly describes the compiler
architecture and its current development status. Section
4.3 reports the results of two non-trivial case studies in-
spired by real-life applications. Section 6 concludes the
paper with some final remarks.

2 Goals, Requirements, Specifications
The main goal of MARCO is to experiment with method-
ologies and algorithms to generate the fastest possible ex-
ecutable code from large Modelica models, and to do it
quickly and efficiently. The medium-term objective is to
handle models with one million to ten million differential-
algebraic equations (DAEs), eventually reaching 100 mil-
lion in the long term, although this may require more fun-
damental breakthroughs.

At the time of writing, MARCO is not primarily meant
to be a production-grade compiler. As such, it does not
aim at covering the complete range of models that can be
written in Modelica. The idea is to demonstrate the ca-
pability of generating fast executable code fast on a sub-
set of large-scale system models that can be written in
the Modelica language, that are however relevant for in-
dustrial application domains. This sub-set could then be
progressively enlarged as time passes, possibly – but not
necessarily – covering the full range of models that can
be written using the Modelica language. At some point,
MARCO could turn into industrial-grade software, or al-
ternatively be used as a research prototype for implement-
ing such software; it is currently too early to say that.

This project is specifically interested in monitoring and
improving metrics related to the quality of the tool, on top
of the quality of the result. Thus, MARCO aims at opti-
mising the time-to-solution, which is to be intended as the
sum of the time required to generate an executable simula-
tion, plus the proper simulation time of a Modelica model.

Efficient handling of arrays of models and equations
is an essential feature to fulfil this goal. Arrays should
be handled as first-class citizens throughout the entire
toolchain, avoiding expanding them into their scalar con-
stituents, unless strictly required, thus shortening the
structural analysis time and the executable code genera-
tion time.

To generate efficient runtime simulation code, the math-
ematical structure of the problem should be preserved as
much as possible throughout the toolchain, and exploited
during its latest stages to allow the generation of more ef-
ficient machine code.

One important point when handling very large systems
with over a million variables and equations concerns han-
dling the simulation results. The default behaviour of
Modelica compilers is to save all the variable values at
each reporting time step, possibly skipping protected com-
ponents. However, for such large-sized models, this ap-
proach easily leads to massive, multi-GB-sized simula-
tion results files, which are unnecessarily cumbersome and
largely useless since most of those variables have little or
no specific interest for end-users that generally on a rela-
tively small subset of relevant output variables.

The idea is then not only to avoid wasting CPU time
and disk space to store all the simulation results but actu-
ally to structure efficient simulation code around the fact
that only some variables (which can be declared, e.g., as
top-level outputs or listed in a custom annotation) are in-
teresting for the end user. For example, if a certain vari-
able is only of interest as an intermediate computation step
towards the computation of the state derivatives, the gen-
erated code could only store it in some CPU registers so
that not only the time to save it to disk is saved, but also
the time to shuffle it back and forth from the CPU cache to
RAM. In some cases, the computation of certain variables
could even be skipped outright.

Along the same line, Modelica compilers usually gen-
erate code that allows changing parameter values at run-
time without re-building the simulation executable from
scratch. This is of course essential if the build time is com-
parable or even larger than the simulation run time, as it
often is with current Modelica tools. However, this has a
price in terms of less efficient simulation code because of
additional indirection and memory access, as well as leav-
ing less room for extreme machine-code optimisations.

Also, during typical simulation-based studies (includ-
ing parameter optimisation), only a relatively small num-
ber of parameters are subject to change; these are a tiny
fraction of the complete set of parameters for million-
equations models, which could count tens of thousands or
more parameters. Since the goal of MARCO is to generate
code which is as fast as possible and to do it as fast as pos-
sible, all parameters that are determined by binding equa-
tions should be constant-evaluated at compile time. Al-
though it should remain possible to make some exceptions
to support parameter-sweeping or parameter-optimisation
studies, the (few) parameters not to be constant-evaluated

MARCO: An Experimental High-Performance Compiler for Large-Scale Modelica Models

14 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20413



should be declared explicitly.

3 Current Status of MARCO
In this section, we provide an overview of the current sta-
tus of MARCO with respect to the objectives we are aim-
ing to achieve. First, we focus on the software architecture
chosen, which reflects the state-of-the-art in compiler de-
sign and construction. Then we follow with a discussion
of the features currently supported by the compiler, both
in terms of Modelica language features, and in terms of
the set of runtime solvers currently supported for the sim-
ulation code generation.

3.1 Software Architecture
MARCO is written using the C++ language, and it is
based on the technologies developed within the LLVM
project (Lattner and Adve 2004). The LLVM project is
a collection of modular and reusable compiler technolo-
gies. Its most important part are the LLVM core libraries
(often simply referred as LLVM), which provide a mod-
ern target-independent optimizer and code generator for
an increasing amount of processor architectures. LLVM is
a mature project heavily used both in the industry and in
compiler research, and in MARCO we rely on it to imple-
ment the back-end of the compiler, which therefore out-
puts machine code directly instead of C code. Is is worth
noting that using LLVM and its intermediate representa-
tion (LLVM-IR) enables the reuse of the backend optimi-
sations provided by LLVM itself and the possibility of tar-
geting different architectures – i.e. ARM-based embedded
systems and not just PCs based on Intel processors – with-
out the need to implement any additional transformations.

The front-end of MARCO is based on MLIR, also part
of the LLVM project, which represents a novel approach
to building reusable and extensible compiler infrastruc-
tures (Lattner, Amini, et al. 2021). Before MLIR, com-
piler front-ends were often built from the ground up, be-
cause different language features call for different internal
data structures for the code – or, in other words, differ-
ent intermediate representations. However, while these
intermediate representations may differ from each other,
there is a set of common abstract tasks performed on such
representations that does not depend on the semantic of
each operation in the code. MLIR provides a construction
set, so-to-speak, where the compiler developer only has
to declaratively define the set of domain-specific interme-
diate representations they need – called dialects – based
on simple concepts like operations, types, and attributes.
Additionally, MLIR provides built-in dialects for seman-
tics that history has shown to be common amongst multi-
ple programming languages. The implementation of new
dialects and the combination of existing ones contribute
to the definition of Multiple Layers of Intermediate Rep-
resentations of the code, from which the MLIR acronym
stems. In summary, MLIR allows to build compilers with
less human effort, providing a library of primitives that
previously needed to be rewritten from scratch for each

different language.
From a high-level point of view, MARCO is com-

posed of multiple libraries organized as a pipeline. This
pipeline is overall similar to the familiar one known from
the literature (Cellier and Kofman 2006) and already em-
ployed in other state-of-the-art Modelica compilers like
the OpenModelica Compiler. In our compiler design,
however, all the steps required for the causalization of the
model are performed through successive transformations
of a new MLIR dialect explicitly devised for the Model-
ica language. In addition, at the end of the pipeline, the
causalized model in MLIR dialect form is translated into
LLVM-IR code, the intermediate representation (IR) used
by LLVM. Then, we exploit LLVM to translate such code
into an object file, which is then linked with the MARCO
runtime library to obtain the executable simulation. The
translation to LLVM-IR exploits the existing MLIR built-
in dialects and transformations to the maximum possible
extent, greatly reducing the workload required for its im-
plementation.

The MARCO runtime library is also written in C++,
and serves two purposes: the first is to provide the imple-
mentations for functions that are inconvenient to be repre-
sented directly using LLVM-IR; the second is to actually
drive the simulation process, by leveraging other functions
which are instead emitted during the compilation process,
which typically provide information about the compiled
model. It is worth noticing how, even if not strictly nec-
essary for the generation of the simulation, the MARCO
runtime library enables faster development and testing, to-
gether with the possibility of using more complex solu-
tions – like multithreading – that would otherwise be way
more difficult to handle.

3.2 Arrays & Flattening
The first step of the process that transforms a Modelica
model into executable simulation code (Fritzson 2014)
is the so-called flattening (Modelica Association 2021).
During flattening, the models with their variables, param-
eters, and equations are instantiated according to the rules
that govern name lookup, inheritance, and modular com-
position of Modelica models. This first step results in a
set of variable and parameter declarations, a set of record
type definitions, and a set of hybrid DAEs.

The fundamental requirement for preserving arrays as
first-class citizens is to carry out the flattening without ex-
panding array variables into their scalar constituents and
without unrolling array or for-loop equations into their
scalar requirements.

Given the complexity of the Modelica language, this
first step is rather involved and would require substantial
development effort. Luckily, recent advances in the devel-
opment of the OpenModelica Compiler (OMC), namely
the new OMC front-end (Pop et al. 2019) provide this
functionality out of the box. The new OMC front-end pro-
vides more than adequate performance also for very large
models, as long as they are built by instantiating large ar-
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rays of a comparably limited number of classes, which is
typically the case in many systems-of-systems and smart
grid applications. In this case, most of the flattening ef-
fort can be performed once for an array of components
that may count hundreds or thousands of elements, thus
slashing the flattening time dramatically.

Additionally, the new OMC front-end can also process
models that contain a large number of individual instances
of the same class with the same modifier structure, au-
tomatically collecting them in arrays before proceeding
with the rest of the flattening process. This allows to pro-
cess models of systems such as power grids (Bartolini,
Casella, and Guironnet 2019), gas networks (De Pascali et
al. 2022), or district heating networks (Long et al. 2021),
that can be built automatically by translating graph-based
system descriptions into Modelica system models, even-
tually transforming them into array-based models.

Recent advances in the definition of Base Modelica,
formerly known as Flat Modelica (MCP-0031: Base Mod-
elica and MLS modularization 2023), were used to inter-
face the OMC new frontend and the MARCO compiler,
with some extensions to support array-preserving model
descriptions. Specifically, declarations of arrays of models
are turned into the corresponding declarations of arrays of
variables, where the variables of the model array become
array variables; accordingly, the equations of the model
array become array equations, declared via for-loops cov-
ering the entire array index range, see (Casella 2023) for
some concrete examples.

MARCO thus accepts array-preserving Base Modelica
textual models as inputs. Using a textual interface may be
somewhat less efficient than directly accessing the OMC
frontend internal data structures. On the other hand, rely-
ing on a high-level, reasonably stable, human-readable in-
terface, which is presumably going to become a Modelica
Association standard eventually, seems to be the best op-
tion for long-term development, without running the risk
of relying on low-level on features that may change or be-
come obsolete in the future.

This decision allowed to focus the development of
MARCO on the current bottlenecks of the typical Mod-
elica simulation workflow for very large models, namely
the structural analysis, the code generation, and the run-
time execution.

3.3 Supported Modelica Features
Therefore, MARCO relies on the OMC’s new front-end
for flattening, which is a complete, efficient implementa-
tion of the Modelica Language Specification, fully sup-
porting the Modelica Standard Library. From this point
of view, MARCO can accept models built with the most
sophisticated features of Modelica, such as replaceable
classes, conditional components, overconstrained con-
nectors, stream variables, etc., which will be converted
into flat hybrid DAE systems, possibly involving multi-
dimensional arrays of variables.

Current limitations in the range of the models that

MARCO can turn into efficient simulation code thus only
regard the mathematical structure of the model rather than
its object-oriented structure.

MARCO only supports continuous-time variables and
equations at the time of this writing. Although we ac-
knowledge that this limitation is particularly severe for
practical applications, on the other hand, MARCO already
enables us to demonstrate the scaling capabilities of the
compiler with respect to the model’s size. Support of
discrete variables, event-handling, if-equations and when-
equations is planned for the near future.

Thanks to recently developed array-based extensions of
matching and sorting algorithms (Fioravanti et al. 2023),
MARCO can very efficiently handle the causalization of
array-based DAEs, including multi-dimensional arrays.
The output of this phase is the matching of continuous
slices of these arrays with corresponding for-loop equa-
tions and the ordering of their solution in Block Lower
Triangular (BLT) form.

In fact, one interesting result proven in (Fioravanti et
al. 2023) is that the optimal matching problem in the
case of arrays (where optimal means that the arrays slices
and corresponding array-equations should have the max-
imum possible size) is in general an NP-complete prob-
lem. Heuristics were then developed to efficiently handle
roto-translation of index – i.e., cases where the equations
in for-loop involve exchanging indexes and adding fixed
offsets, as shown in Listing 1.

Listing 1. Example of array equations with fixed offset

Real x[N, M];
Real y{N, M];

equation
for i in 2:N-1 loop

for j in 1:M loop
x[i,j] = y[j, i + 1] + x[i - 1, j];

end for;
end for;

MARCO supports arbitrary Modelica functions, possi-
bly with inlining, with the exception of external functions,
whose support is planned for the future. It can also differ-
entiate functions using AD techniques (Neidinger 2010)
whenever needed for Jacobian computations.

The support for records is currently being implemented,
including the support of operator records, which is neces-
sary for power system models using Complex numbers, a
potentially very interesting application, in the near future.

At the time of writing, index reduction, dummy deriva-
tives and state variable changes are not yet supported. Al-
though this lack also represents a severe limitation for a
Modelica compiler, there are some interesting application
fields – e.g., modelling the thermal dynamics of buildings
and district heating systems, as well as electro-mechanical
modelling of power transmission and distribution systems
– where these features are not needed.
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3.4 Runtime Solvers
Regarding the runtime solvers, the initial goal of MARCO
is to demonstrate its potential in two categories of appli-
cation scenarios.

The first one involves non-stiff models that may be
simulated with explicit ODE integration methods. This
is also useful for co-simulation or real-time simulation,
possibly running on embedded hardware using FMI or e-
FMI. In this case, fixed-time-step explicit Euler’s method
is used. More sophisticated higher-order explicit integra-
tion methods such as Runge-Kutta could be implemented,
but they do not represent a priority as long as MARCO re-
mains a technology demonstrator rather than a full-fledged
production-level tool.

In this context, it may be necessary to solve algebraic
loops at each time step corresponding to strong compo-
nents in the BLT. Currently, MARCO is restricted to small
linear systems that can be solved efficiently in closed-form
by symbolic manipulation. The integration of sparse lin-
ear (KLU) and nonlinear (Kinsol) solvers with symbolic
Jacobian code generation is planned for the near future.

The second scenario instead involves systems which are
stiff or involve large algebraic systems of equations. In
this case, the design choice was to rely on the open-source
DAE solver IDA from the Sundials tool suite (Gardner et
al. 2022), which provides the efficient solution of large,
sparse DAE models using BDF algorithms, with adaptive
step size and error control.

IDA optionally requires the (sparse) Jacobians of the
DAE formulation of the system with respect to all the vari-
ables and to the state derivatives to solve the implicit BDF
formula, and it goes without saying that an overall effi-
cient implementation requires computing such Jacobians
analytically, to reduce the time spent computing Jacobians
and also to avoid unnecessary iterations of the BDF solver
caused by poor Jacobians. MARCO is thus endowed with
automatic differentiation algorithms and generates effi-
cient code to compute the Jacobians required by IDA.

To reduce the size of the implicit system that IDA needs
to solve at each iteration of the solution of the BDF for-
mula, the results of the causalization algorithm are ex-
ploited: instead of passing to the IDA solver the complete
DAE system F(x, ẋ,v, t) = 0), where x is the vector of state
variables, v the vector of all algebraic variables, and t the
time variable, a reduced system of equations Fr(x, ẋ,w, t)
is passed instead, where w is the vector of the algebraic
variables that are unknowns of implicit systems; the other
algebraic variables are computed by sequences of assign-
ments that correspond to the explicit solutions of equa-
tions that have 1×1 blocks on the BLT diagonal (Scuttari
et al. 2023). In other words, IDA is directly used to solve
the linear and nonlinear implicit algebraic equations and
the (stiff) differential equations, while the results of the
causalization steps are used to compute all the other vari-
ables explicitly in the generated code.

While a single thread currently carries out the sequen-

tial part of the residual computation, the subsequent com-
putation of the residuals matched to ẋ and w and of the
Jacobian element is carried out by parallel threads, since
they can be computed independently. In the future, also
the sequential part could be parallelised.

Initial equations are also solved using IDA, which acts
as an interface to the underlying sparse Kinsol solver. Cur-
rently, MARCO can only handle square non-singular ini-
tialisation problems, where the number of initial equations
matches the number of differentiated variables plus the
number of fixed = false parameters. The solution of
under and over-determined initialisation problems, which
is closely related to index reduction and dummy deriva-
tives, is currently not yet supported.

Last but not least, MARCO only outputs to the CSV
result file the top-level output variables of the model. An
extension of the array-aware matching and sorting algo-
rithm along the lines of (Manzoni and Casella 2011) could
identify the system equations and variables that are strictly
needed to compute the state derivatives and the top-level
system outputs, allowing to skip the computation of all
other algebraic variables defined in the model. This fea-
ture, which is planned for the near future, will further op-
timise the simulation time.

4 Case Studies
In this section, the results of two case studies are reported
to demonstrate the current capabilities of the MARCO
compiler. These case studies are motivated by real-life
applications; they are simple enough to be contained in a
few dozen lines of code (see the Appendix) but are nev-
ertheless definitely non-trivial to handle, in particular as
regards the need for matching slices of the arrays to sub-
sets of for-loop equations involving them. Also, both case
studies are easily scalable via parameters to test the tool’s
performance with the increasing model size.

4.1 3D Thermal Model of a Microchip
Modern microprocessors feature higher and higher power
density, requiring more and more advanced fluid-based
cooling systems. These models combine 0D and 1D cool-
ing system models, which are conveniently represented in
Modelica, with 3D thermal models of the microchip body
and heat sink body, which need high spatial definition to
identify potentially harmful hot spots.

This is currently achieved by co-simulation set-ups
(Terraneo et al. 2022), where the microchip thermal dy-
namics are simulated by a separate dedicated simulation
tool. However, it would be quite convenient to embed
a detailed 3D thermal model of the microchip directly
within the Modelica model, avoiding the complication and
inconvenience of the co-simulation setup.

This first case study thus demonstrates the capability
of MARCO to handle high spatial resolution 3D thermal
models of solid bodies. The 3D thermal model is built in a
fully object-oriented way, by first defining an elementary
0D Volume model, with a lumped thermal capacitance in
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the middle and 6 thermal conductances and 6 thermal ports
in the directions east, west, north, south, up, and down.
The microchip thermal model is assembled by instantiat-
ing a 3D N×M×P array of such 0D models and connect-
ing them via for loops.

This approach leads to a very compact Modelica source
code with just three for loops, one for each orthogonal
spatial direction. The alternative would be to write the
discretised 3D heat equations directly in the body of the
model, but that requires handling the inner volumes, the
face volumes, the edge volumes, and the corner volumes
differently, leading to a much longer and error-prone code
with many more for loops, and a much higher likelihood of
making some mistakes with the loop indices when writing
the equations for the various cases.

Furthermore, with the full object-oriented approach,
one can connect heat sources or other thermal objects of
arbitrary shape to portions of the outer faces of the 3D mi-
crochip model, e.g. representing specific active semicon-
ductor areas on the microchip surface; unconnected outer
faces are automatically considered as thermally insulated,
thanks to the default connection equations Q_flow = 0

generated by the compiler for unconnected thermal ports.
Handling the non-trivial geometry of such active areas
without using connection equations becomes extremely
complicated and counter-intuitive, as one would also need
to write specific for-loop equations for each rectangular
thermally insulated region.

In the present case study, for simplicity, half of the
lower face of the chip (corresponding to the active semi-
conductor area) was connected to a uniformly distributed
2D heat source, while the other half was left unconnected,
and thus insulated. More elaborate setups could be con-
ceived, e.g. representing active cores on the chip surface.

The upper face of the microchip is instead connected to
a 2D fixed temperature source, corresponding to the sur-
face of the heat sink block. A more realistic model could
include a full thermal model of the heat sink and its cool-
ing system.

This object-oriented model contains a huge number
Nc = O(NMP) of connection equations; each face-to-
face connection of two adjacent 0D blocks generates a
small system of linear equations, corresponding to the se-
ries connection of the two half-conductances of the ad-
jacent 0D blocks in that direction. However, these sys-
tems can be easily solved in closed form, corresponding
to the well-known formula for the conductance of series-
connected conductors, allowing to explicitly compute the
heat flow between the capacitances of adjacent 0D blocks
in each spatial direction without even computing the tem-
perature at the block boundaries. Additionally, thanks to
the array-preserving nature of MARCO, this symbolic so-
lution needs to be carried out only once during code gen-
eration, so it takes a negligible amount of time.

For the sake of this simple case study, only eight output
temperatures were computed and saved, namely the tem-
peratures at the four corners of the upper and lower faces

of the microchip. This enabled the comparison of the sim-
ulation results with those obtained with OpenModelica.

The thermal microchip model was simulated both by
explicit Euler’s algorithm and by IDA, in a test case of
increasing size, up to M = N = 96, P = 32, which leads
to a model with over 4 million DAEs and about 250,000
state variables. The simulation starts at thermal equilib-
rium with zero thermal power input and simulates the re-
sponse of the system to a step increase of the thermal flux
applied to half of the bottom face of the microchip.

4.2 Heat Exchanger Network with Methanol
Another interesting field of application that can easily lead
to large-scale models is thermo-fluid systems, as found in
large industrial plants, district heating systems, and smart
distributed energy systems in general. When modelling
such systems, non-trivial fluid property models are often
needed and computed using functions.

The second test case tries to capture the main features of
these applications in a simple and scalable test model. The
model contains a 2D Nu ×Nh array of heat exchangers,
which are arranged in Nu sequential rows, each containing
Nh parallel heat exchangers, whose outlet flows are then
mixed before being distributed to the next row. Each heat
exchanger is then modelled with Nv finite volumes. The
mass flow rates and heat flows of each heat exchanger are
time-varying, and set up in a way that guarantees that no
two heat exchangers ever operate at the same temperature.
Overall, the number of variables and DAEs of the system
model is O(NuNhNv).

The compressibility of the fluid inside the heat ex-
changers is neglected for simplicity, leading to trivial mass
balance equations. On the other hand, an accurate model
of the relationship between the temperature and the spe-
cific energy and enthalpy was developed using Modelica
functions, using results from (Craven and de Reuck 1986).

4.3 Experimental Results
The results of the simulations of medium-size models
were successfully compared with the simulation results
obtained with the OpenModelica tool, using the same so-
lution algorithm, and were found to agree with the results
produced by MARCO with high accuracy. Then, MARCO
was used to simulate the much larger instances of the test
cases mentioned in the previous two sub-sections, which
are beyond the current capabilities of the OpenModelica
compiler.

All tests were conducted on a server with an i9-
12900KF Intel processor and 96 GB of RAM, running
Linux Ubuntu 20.04 LTS. At the time of this writing, the
results obtained with IDA, although correct, are still not
efficient as expected, so the results summarised in Table 1
and shown in Figures 1 and 2 only refer to explicit Euler’s
method. Results with IDA are expected to be available for
the final revision of this paper.

A direct comparison of the performance of MARCO
against other Modelica tools is beyond the scope of this

MARCO: An Experimental High-Performance Compiler for Large-Scale Modelica Models

18 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20413



Table 1. Compilation and simulation times for largest simulated models.

Equations Steps Compilation time [s] Simulation time [s]

Heat exchangers network 14776202 40000 10.13 33574.76
3D thermal chip 4465160 60000 86.24 605.47

paper. It is worth mentioning, though, that the authors are
not aware of any other Modelica tool which is currently
able to handle models with 15 million equations or at least
to do so with compile times of a few tens of seconds on
low-cost hardware (a 1,500 C gaming machine).

5 Roadmap
The results presented in the previous section demonstrate
that the MARCO compiler can handle non-trivial, array-
based, very large models with very short compile times
and good runtime performance, on a scale of model sizes
currently inaccessible to mainstream Modelica tools.

On the other hand, the class of models that can be cur-
rently handled is minimal. Future development work is
thus planned in different directions.

Record and operator record handling is currently be-
ing addressed and could be completed in time for the fi-
nal version of this paper. Combined with the support of
hybrid systems, this could make MARCO capable of han-
dling large-scale power system models (Bartolini, Casella,
and Guironnet 2019), potentially allowing it to replace the
parts of Dynaωo (Masoom et al. 2021) that currently take
care of assembling the whole system model starting from
the generated C code of individual components.

The addition of external function handling could also
allow tackling models of advanced microchip cooling sys-
tems, including detailed 3D thermal dynamics end us-
ing refrigerant models from the ExternalMedia library
(Casella and Richter 2008).

FMI export and embedded code generation are other
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Figure 1. Heat exchangers network model

promising areas of development.
Finally, handling index reduction, dummy derivatives,

and under/overconstrained initialisation problems could
prove to be very hard. One option for index reduction, as
already planned in (Agosta et al. 2019), is to solve these
problems on a fully scalarised set of equations, adding the
extra differentiated scalar equations to the system that are
needed to make it index-1. All other equations would still
be handled in an array-preserving way, still leading to a
substantial performance advantage compared to the tradi-
tional flat-scalar equation tools.

In the long term, we plan to leverage support from both
the Modelica and LLVM communities. To this end, we
plan to release MARCO as an open-source project once
record handling and hybrid system support are available,
providing the capability to address a sufficiently large
number of real-world large-scale problems.

6 Conclusions
This paper introduced the MARCO compiler, which is
currently developed at the Dipartimento di Elettronica, In-
formazione e Bioingegneria of Politecnico di Milano in
collaboration with Edinburgh Napier University. MARCO
aims at demonstrating algorithms and methodologies to
compile large-scale Modelica models efficiently, produc-
ing fast binary code. It accepts flat, array-preserving Base
Modelica code as input, produced by the new front-end of
the OpenModelica compiler, and causalizes it using novel
array-preserving matching and sorting algorithms. Exe-
cutable code is generated using the LLVM framework:
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Figure 2. 3D thermal chip model
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an LLVM-IR is first produced by the compiler and then
directly turned into efficient, architecture-optimised exe-
cutable code.

Thanks to the complete support of the Modelica lan-
guage provided by the OpenModelica front-end, MARCO
is capable of handling Modelica code using all the ad-
vanced object-oriented features of the language. Its cur-
rent limitations regard the mathematical structure of the
flat system, which currently needs to be an index-1, purely
continuous-time dynamical system, possibly involving
Modelica functions.

The generated code can simulate dynamical systems us-
ing explicit Euler’s algorithm or by using the IDA DAE
solver, in which case the code to compute symbolic Jaco-
bians is also generated.

The current capabilities of the MARCO compiler were
demonstrated on two large-scale test cases: 3D object-
oriented thermal models of a microchip with up to 4 mil-
lion equations, and equation-based models of networks
of heat exchangers with a detailed function-based fluid
model, with up to 15 million equations. In both cases,
the compilation time is at most a few tens of seconds and
is one or more orders of magnitude less than the run time.
To the authors’ knowledge, no other Modelica tool can
handle Modelica models at this scale.

Future developments of MARCO in the short term re-
gard the implementation of operator records and event
handling, at which point the release of MARCO as open-
source software is planned. These two additional features
will enable the compilation and simulation of national-
and continental-scale power system models such as those
of the ScalableTestGrids library (Bartolini, Casella, and
Guironnet 2019).

Medium- and long-term developments include support-
ing external functions, code generation for embedded
hardware, FMI export, index reduction, and under/over-
constrained initialisation problems.
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Appendix: Source code of the test cases
The code of the two test cases is reported in this Appendix
for the reader’s convenience. The code has been edited for
conciseness, the full packages can be downloaded from
(TestCases 2023).

Listing 2. Source code of the 3D thermal model of a microchip
package ThermalChipOO
package Interfaces
connector HeatPort
Real T;
flow Real Q;
end HeatPort;
end Interfaces;

package Models
model Volume
parameter Real lambda = 148;
parameter Real rho = 2329;
parameter Real c = 700;
parameter Real Tstart = 273.15 + 40;
parameter Real C, Gx, Gy, Gz;
Interfaces.HeatPort upper, lower;
Interfaces.HeatPort left, right;
Interfaces.HeatPort top, bottom;
Interfaces.HeatPort center;
Real T(start = Tstart, fixed = true);
equation
C*der(T) = upper.Q + lower.Q +

left.Q + right.Q +
top.Q + bottom.Q + center.Q;

upper.Q = Gx*(upper.T - T);
lower.Q = Gx*(lower.T - T);
left.Q = Gy*(left.T - T);
right.Q = Gy*(right.T - T);
top.Q = Gz*(top.T - T);
bottom.Q = Gz*(bottom.T - T);
center.T = T;
end Volume;

model TemperatureSource
Interfaces.HeatPort port;
Real T = 298.15;
equation
port.T = T;
end TemperatureSource;

model PowerSource
Interfaces.HeatPort port;
input Real Q;
equation
port.Q = -Q;
end PowerSource;

partial model BaseThermalChip
parameter Integer N;
parameter Integer M;
parameter Integer P;
parameter Real L = 12e-3;
parameter Real W = 12e-3;
parameter Real H = 4e-3;
parameter Real lambda = 148;
parameter Real rho = 2329;
parameter Real c = 700;
parameter Real Ttart = 273.15 + 40;
parameter Real l = L/N;
parameter Real w = W/M;
parameter Real h = H/P;
parameter Real Tt = 273.15 + 40;
parameter Real C = rho*c*l*w*h;
parameter Real Gx = lambda*w*h/l;
parameter Real Gy = lambda*l*h/w;
parameter Real Gz = lambda*l*w/h;

Volume vol[N,M,P](
each T(start = Tstart, fixed = true),
each C = C, each Gx = 2*Gx,
each Gy = 2*Gy, each Gz = 2*Gz);

TemperatureSource Tsource[N,M]
(each T = Tt);

output Real Tct1 = vol[1,1,1].T;
output Real Tct2 = vol[1,N,1].T;
output Real Tct3 = vol[N,N,1].T;
output Real Tct4 = vol[N,1,1].T;
output Real Tcb1 = vol[1,1,P].T;
output Real Tcb2 = vol[1,N,P].T;
output Real Tcb3 = vol[N,N,P].T;
output Real Tcb4 = vol[N,1,P].T;
equation
for i in 1:N loop
for j in 1:M loop
connect(vol[i,j,1].top,

Tsource[i,j].port);
for k in 1:P-1 loop
connect(vol[i,j,k].bottom,

vol[i,j,k+1].top);
end for;
end for;
end for;
for i in 1:N loop
for k in 1:P loop
for j in 1:M-1 loop
connect(vol[i,j,k].right,

vol[i,j+1,k].left);
end for;
end for;
end for;
for j in 1:M loop
for k in 1:P loop
for i in 1:N-1 loop
connect(vol[i,j,k].lower,

vol[i+1,j,k].upper);
end for;
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end for;
end for;
end BaseThermalChip;

model ThermalChipSimpleBoundary
extends BaseThermalChip;
parameter Real Ptot = 100;
parameter Real Pv = Ptot/(N*M/2);
PowerSource Qsource[N,div(M,2)]
(each Q = Pv);

equation
connect(Qsource.port,

vol[:,1:div(M,2),P].center);
end ThermalChipSimpleBoundary;
end Models;
end ThermalChipOO;

Listing 3. Source code of the heat exchanger network
package MethanolHeatExchangersDAE
package Models
model MethanolHeatExchangers
parameter Integer Nu = 3;
parameter Integer Nh = 4;
parameter Integer Nv = 6;
parameter Real w_nom = 1;
parameter Real Q_nom = 500e3;
parameter Real f_w = 1/30;
parameter Real f_Q = 1/100;
parameter Real T0 = 493.15;
parameter Real V = 1;
parameter Real beta = 0.01;
parameter Real UA_nom = 10000;
parameter Real alpha = 0.8;
parameter Real Cw = 10000;
parameter Real p_nom = 20e5;
parameter Real V_v =
V*(1-beta)/(Nu*Nh*Nv);
parameter Real V_m = V*beta/Nu;
parameter Real C_wv = Cw/(Nu*Nh*Nv);
constant Real pi = 3.14159265359;
Real w, w_h;
Real Q[Nh], Q_c[Nu,Nh,Nv];
Real T[Nu,Nh,Nv+1];
Real h[Nu,Nh,Nv+1], h_m[Nu];
Real T_tilde[Nu,Nh,Nv]
(each start = T0, each fixed = true);
Real T_w[Nu,Nh,Nv]
(each start = T0, each fixed = true);
output Real T_m[Nu]
(each start = T0, each fixed = true);
Real rho[Nu,Nh,Nv], rho_m[Nu];
Real cv[Nu,Nh,Nv], cv_m[Nu];
equation
w = w_nom*(1 + 0.2*sin(2*pi*f_w*time));
w_h = w / Nh;
for j in 1:Nh loop
Q[j] = Q_nom/(Nu*Nh)*

(1 + sin(2*pi*f_Q*time + 2*pi*j/Nh));
end for;
for j in 1:Nh loop
T[1,j,1] = T0;
end for;
for i in 2:Nu loop
for j in 1:Nh loop
T[i,j,1] = T_m[i-1];

end for;
end for;
T_tilde = T[:,:,2:Nv + 1];
for i in 1:Nu loop
V_m*rho_m[i]*cv_m[i]*der(T_m[i]) =

w_h*sum(h[i,j,Nv+1] for j in 1:Nh) -
w*h_m[i];

for j in 1:Nh loop
for k in 1:Nv loop
(V_v*rho[i,j,k]*cv[i,j,k])*

der(T_tilde[i,j,k]) =
w_h*(h[i,j,k] - h[i,j,k+1]) +
Q_c[i,j,k];

C_wv*der(T_w[i, j, k]) =
Q[j]/Nv - Q_c[i,j,k];

Q_c[i,j,k] = UA_nom/(Nu*Nh*Nv)*
(w/w_nom)^alpha*(T_w[i,j,k] - T_tilde[i,

j,k]);
end for;

end for;

end for;
for i in 1:Nu loop
rho_m[i] = p_nom/Methanol.R*T_m[i];
h_m[i] = Methanol.h_T(T_m[i]);
cv_m[i] = Methanol.cv_T(T_m[i]);
for j in 1:Nh loop
for k in 1:Nv loop
rho[i,j,k] = p_nom /
(Methanol.R*T_tilde[i,j,k]);

cv[i,j,k] =
Methanol.cv_T(T_tilde[i,j,k]);

end for;
for k in 1:Nv+1 loop
h[i,j,k] = Methanol.h_T(T[i,j,k]);
end for;
end for;
end for;
end MethanolHeatExchangers;

package Methanol
constant Real R = 8.314462/32.04e-3;
constant Real Tc = 512.64;
constant Real f[8] =
{3.90086, 10.9929, 18.3371, -16.3663,
-6.22334, 2.80358, 1.07783, 0.96967};

constant Real g[8] =
{0.0, 4.12575, 3.26973, 3.77492,
2.93574, 8.23747, 10.3312, 0.53326};

function cp_T
input Types.Temperature T;
output Types.SpecificHeatCapacity cp;
protected
Types.PerUnit tau;
Types.PerUnit u[8];
Types.PerUnit x;
algorithm
tau := Tc / T;
u := g * tau;
x := f[1];
for i in 2:8 loop
x := x + f[i]*u[i]^2*exp(u[i])/

(exp(u[i]) - 1)^2;
end for;
cp := x*R;
end cp_T;

function cv_T
input Types.Temperature T;
output Types.SpecificHeatCapacity cv;
algorithm
cv := cp_T(T) - R;
end cv_T;

function h_T
input Types.Temperature T;
output Types.SpecificEnthalpy h;
protected
Types.PerUnit tau;
Types.PerUnit u[8];
Types.PerUnit x;
algorithm
tau := Tc / T;
u := g * tau;
x := f[1]/tau;
for i in 2:8 loop
x := x + f[i]*g[i]/(exp(u[i]) - 1);
end for;
h := R*T*tau*x - 1361.810*tau/Tc;
end h_T;
end Methanol;
end Models;

end MethanolHeatExchangersDAE;
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