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Abstract 

Cable-pulley systems consist of several segments of 

cables, winches, and pulleys, which are used in a wide 

range of engineering applications such as lifting 

equipment and pulley systems. However, its dynamics 

simulation has been a tough issue in the Modelica 

community. The absolute nodal coordinate formulation 

(ANCF) uses global displacements and slopes at nodes to 

describe the geometry of the deformed body, which allows 

the derivation of constant mass matrices and zero-valued 

quadratic velocity dependent centrifugal and Coriolis 

forces. In the last two decades this method shown its 

powerful capacity to model flexible multi-body systems. 

This paper presents an object-oriented approach to model 

cable-pulley system, where flexible cables are discretized 

using ANCF cable elements. It is compatible with the 

Modelica Multibody Library by using a unified frame 

interface and enables coupled analysis of cables and rigid 

bodies. The paper provides a rich set of application 

examples showing the ease and efficiency of the 

Modelica-based component drag-and-drop modelling way 

for modelling cable-pulley systems. 

Keywords: cable, pulley, absolute nodal coordinate 

formulation, Modelica, MWORKS 

1 Introduction 

Flexible multi-body systems are defined as complex 

dynamic systems consisting of rigid and flexible bodies 

connected in different ways (Shabana 1997). It focuses on 

the coupling between the body’s deformation and its 

large-scale spatial motion. Many approaches have been 

proposed based on different engineering background, such 

as the floating frame of reference approach (Likins 1967), 

the incremental finite element method (Shabana 1996) and 

the absolute nodal coordinate formulation (Shabana 1996) 

which will be used in this paper. Small deformations 

superimposed on large rigid body displacements have led 

to the well-known floating frame of reference formulation. 

It is used by various commercial dynamics analysis 

software but is usually considered unsuitable when the 

object undergoes large deformations and rotational 

motions. The absolute nodal coordinates method can solve 

these challenging problems, especially when the object 

under study is a flexible object floating in space, such as a 

thin film of a solar sail or a tethered net used to capture 

space debris (Liu 2013; Shan 2020). 

Drive systems consisting of cables and pulleys are widely 

used in lifting equipment. The dynamics modelling of 

cables has been extensively investigated in recent years. 

The simplest way is reduced to linear springs with length-

dependent stiffnesses, neglecting the cable weight and 

inertia forces (Rouvinen 2005). Such massless cables are 

certainly excellent in simulation efficiency, but when 

lateral vibrations and bending deformations become 

critical, the method becomes inadequate. Accurate 

modelling of the cable dynamic requires the use of non-

linear finite element methods. Absolute nodal coordinate 

formulation has been used to great effect in modelling the 

dynamics of cables (Berzeri 2000). 

Another area of interest is the simulation of the contact 

behavior of cables and pulleys. Modelling of contact 

forces is not always necessary, for example in (Aufaure 

1993) Aufaure proposes a cable pulley element based on 

the assumption of complete elasticity, where the 

supporting pulley can slide frictionlessly along the cable. 

It brings the benefit of computational efficiency but does 

not reflect the actual situation as well. The most common 

way of establishing the contact force between the cable 

and the pulley is to use the penalty method. It derives from 

the simplest phenomenon that no penetration occurs 

between objects in contact (Lugrís 2011). In the penalty 

method the contact force is related to the penetration depth. 

Different contact models are proposed, for example 

normal contact forces can be modeled as the spring 

damping model, the Hertz’s model and the non-linear 

damping model, and tangential friction forces can be 

modelled as the Coulomb friction model, the Hollars 

model (Botta 2017) and the bristle contact model. An 

alternative approach to modelling the cable pulley contact 

is to use the unilateral constraints and linear 

complementarity problem approach for numerical 

treatment (Pfeiffer 1996). Using this method, the normal 

and tangential contact forces are related to the unilateral 

constraint as Lagrange multipliers. 

Modelling flexible bodies with the Modelica language is 

not novel and related work can be found in (Ferretti 2005; 

Heckmann 2006). In previous work the flexible bodies 

modelling has generally fallen into two categories. The 
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first is based on the finite element method (FEM) using 

the native Modelica language to discretize the flexible 

body. Considering the complexity of meshing, this 

approach can only deal with simple geometries such as 

beams and plates. The second method is based on the 

floating coordinate method, which models the flexible 

body as a superposition of several eigenmodes. It relies on 

the modal files calculated in advance by structural 

analysis software and can model flexible bodies of 

arbitrary geometry. Therefore, it has a relatively wide 

range of applications. It's worth noting that we can only 

find two commercial cable pulley libraries online. One is 

released by DLR, and another is created by MapleSim. 

The theory behind them seems inaccessible since no 

publications for these libraries can be found. The 

innovation of this paper is to propose an object-oriented 

approach to model flexible cables, where the cable can 

undergo large deformations and rotational motions. The 

compatibility of flexible cables with the Modelica 

Multibody Library is achieved with a unified frame 

interface. 

The paper is organized as follows. In section 2 supporting 

theories is presented. Firstly, the dynamic equations of 

ANCF cable elements are presented in subsection 2.1, 

followed by an explanation in subsection 2.2 of how the 

cable component is compatible with the Modelica 

Multibody Library by a unified frame interface. In 

subsection 2.3 the penalty method is given for modelling 

cable-pulley contact. In subsection 2.4 the constraint 

equations for sliding joints are given. Implementation 

details with the Modelica language are given in section 3. 

Extensive cases are presented in section 4. Finally in 

section 5 the main research results are summarized and 

future related works are looked at. 

2 Fundamentals 

 

Figure 1. Diagram of cable-pulley composition. 

The pulley-cable model is constructed in three main steps, 

as shown in Figure 1: 

1. Division and assembly of cable elements. 

2. Connection of flexible cables to rigid bodies by 

applying positional constraints through the Lagrange 

multiplier method. 

3. Construction contact between cables and pulleys by 

means of the penalty method. 

2.1 ANCF Cable Element 

In the absolute nodal coordinate formulation, the cable 

element is defined in the inertial coordinate system and 

the nodal coordinates are described using the global 

displacements and slopes, which can be expressed as 
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Figure 2. ANCF cable element. 

The global position vector r  of an arbitrary point on the 

neutral axis of a cable element, as shown in Figure 2, can 

be obtained by interpolating the nodal coordinate vector 

with the following expression: 
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where S  is the shape function matrix, which can be 

written as 
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where the functions is  are defined as 

2 3

1 1 3 2s  = − + , 
2 3

2 2s   = − + , 
2 3

3 3 2s  = − , 

3 2
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and /x l = . Applying the principle of virtual work gives 

the dynamic equations of the cable element in matrix form 

as 

k ee + =M Q Q  (4) 

 

where M  is the mass matrix, kQ  is the elastic force vector, 

and eQ  is the external force vector, respectively, with the 

following expressions: 
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where 
3

xg = r , x xxf = r r .Where eQ  can be divided 

into point and distributed forces, with the following 

expressions: 
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where px  is the point of action of the concentrated force, 

pF is the concentrated force vector and ( )d xF  is the 

position-dependent distributed force vector. 

2.2 Rigid-Flexible Modeling 

Using a single cable component does not really solve the 

problems encountered in engineering, as most driven 

systems consist of rigid and flexible bodies. ANCF 

elements can be combined with rigid or flexible bodies 

modelled in natural coordinates to couple the remaining 

components of the system. Here we assume that the cable 

is sufficiently flexible that it cannot transmit moments at 

the point where the cable is connected to the rigid body. 

This assumption is reasonable, especially when 

considering that the bending stiffness of the cable is 

relatively small. We use the Lagrange multiplier method 

to impose only position constraints at the connection of 

the cable to other bodies, modifying Equation (4) as 

follows. 

+ T

e k d= − −Mq  
q

Q Q Q  (8) 

( ) = 0 q  (9) 

 

where q  is a generalized coordinate vector containing 

the nodal coordinates of the flexible body and the natural 

coordinates of the remaining bodies,   is an algebraic 

constraint vector, q its Jacobian matrix and   is the 

Lagrange multipliers vector. Considering the real-world 

energy dissipation, a damping term dQ  is added to the 

right-hand side of the equation, which can be described by 

the Rayleigh damping model as follows: 

( )d  = +Q M K q  (10) 

 

where   and   are two factors. 

2.3 Pulley and Winch Modeling 

Pulleys and winches are essential components of cable 

drive systems. Simulating the interaction behavior 

between the cable and the pulley or winch can be easily 

achieved using the penalty method in contact dynamics. 

The normal contact force between the pulley and the cable 

is modelled as a non-linear damping model and is 

described by the following equation: 

n n

nf k d  = +  (11) 

 

where k  is the contact stiffness, d  is the contact 

damping,   is the penetration depth between two objects 

in contact, and n  is a factor related to the shape and the 

material of the objects in contact. 

The tangential friction between the pulley and the cable is 

described using the Hollars model with the following 

equation: 
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where tv  is the relative velocity of the two colliding 

objects, 
0t

v  is the velocity threshold for the change from 

static to kinetic friction, nf  is the normal contact force, 

and s  and k  is the coefficient of static and kinetic 

friction, respectively. 

There is no special treatment of contact detection in this 

paper. An exhaustive method is used where points on the 

cable are simply selected at equal intervals. The number 
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of contact detection points should be chosen according to 

the practical situation. The material points on the cable are 

described in the inertial coordinate system, so they need 

to be converted to the body coordinate system of the 

pulley first, and then determine whether contact occurs 

according to the distance from the detection point to the 

pulley's axis of rotation. 

2.4 Sliding Joint Modeling 

The sliding joint used in the absolute nodal coordinate 

formulation was proposed in (Sugiyama 2003) by 

Sugiyama et al. It solves the problem of contact detection 

which cannot be avoided when using the penalty method. 

In engineering, sliding cables for river crossings and tail 

hooks on naval aircraft, for example, can be simplified as 

sliding joints. A frictionless sliding joint can be described 

by following constraint equations: 

( ) ( )

( )
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where, j
x  denotes a point on the cable, i

x denotes a point 

on a rigid or flexible body connected to the cable and   

is the Lagrange multipliers of dimension 3. Derivation of 

the first three constraint equations with respect to time 

yield constraint equations of index 2, which can be written 

as 
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where s  is the arc length coordinate of the sliding point on 

the cable, which is time varying. 

3 Modelica Implementation 

In this section the element division and assembly using the 

Modelica language will be introduced. Some of the 

programming details considered important are explained 

below. Firstly, since the ANCF element mass matrix is a 

constant matrix, it only needs to be calculated once at 

program runtime. In this paper it is achieved by adding 

annotation (Evaluate = true) to the definition of 

the mass matrix. Secondly, a Gauss–Legendre quadrature 

is used to obtain both matrixes and force vectors. It’s a 

standard technique in the finite element method. Five and 

three Gaussian integration points per element are used for 

axial force and bending force calculations, respectively. 
Benefiting from the excellent symbolic processing 

capabilities of the Modelica language, function is used to 

calculate the elastic force vector, using nodal 

displacements as input variables. 

 

Figure 3. Cable component icon. 

The icon for a cable component is shown in Figure 3, 

where the ends of cable are represented using the frame 

interfaces in the Modelica Multibody Library. The ends’ 

positions should equal to the frames’ positions. It can be 

achieved by imposing position constraints using the 

Lagrange multiplier method. The codes are as follows: 

Listing 1. Code example using Lagrange multipliers 

v = der(e); 

a = der(v); 

M * a + transpose(Phi_q) * lamda = Qg - Qe 

- Qd; 

e[1] = frame_a.r_0[1]; 

e[2] = frame_a.r_0[2]; 

e[3] = frame_a.r_0[3]; 

e[n - 5] = frame_b.r_0[1]; 

e[n - 4] = frame_b.r_0[2]; 

e[n - 3] = frame_b.r_0[3]; 

frame_a.t = {0, 0, 0}; 

frame_b.t = {0, 0, 0}; 

frame_a.f = Modelica.Mechanics. 

MultiBody.Frames.resolve2(frame_a.R, 

{-lamda[1], -lamda[2], -lamda[3]}); 

frame_b.f = Modelica.Mechanics. 

MultiBody.Frames.resolve2(frame_b.R, 

{-lamda[4], -lamda[5], -lamda[6]}); 

where e is the generalized nodal coordinates vector, and 

n is the number of degrees of freedom. Where frame_a 

and frame_b are the frame interfaces in Figure 3. In order 

to balance the number of equations, the multipliers vector 

lamda is assigned to the flow variable force f in frame_a 

and frame_b. The mechanism behind this is determined 

by the physical meaning of the Lagrange multipliers. 

The following two examples are used to verify the 

correctness of the cable component. Example 1 is set up 

as a flexible cable in a gravity-free environment with a 

fixed left end and a concentrated moment applied at the 

right end. The magnitude of the moment is set to EI L , 

where 1 = , E  is the modulus of elasticity, I  is the 

moment of inertia of the cross section and L  is the length 

of the cable. According to (Gerstmayr 2008), the cable is 

finally stabilized into a semicircle, as shown in Figure 4, 

under the action of this moment. 
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Figure 4. Example 1: Flexible cable bent into a semicircle. 

Example 2 is set up as a cable with one end hinged and 

one end free, the initial configuration is along the positive 

X-axis, the initial angular velocity is along the positive Y-

axis, the magnitude is 4 rad/s, and the direction of gravity 

is set to -Y. The geometric and material properties of the 

cable are as follows: The length of the cable is 1 m, the 

cross-sectional area is 
6 210 f−  m^2, the modulus of 

elasticity is 
9 410 / f  Pa and the density is 

28000 / f  

kg/m^3, where 5f = . The calculated results are compared 

with (Gerstmayr 2006) as shown in Figure 6. It can be 

found that the cable component built on MWORKS agrees 

very well with the results of reference (Gerstmayr 2006). 

 

Figure 5. Example 2: 3D flexible cable pendulum. 

 

Figure 6. Example 2: Y-displacement of the mid-point of the 

three-dimensional pendulum as function of time. 

 

Figure 7. CPU time for simulation as function of degrees of 

freedom. 

To study the simulation performance for the presented 

model, we recorded the CPU time for simulation for 

Example 2 with increasing degrees of freedom. The time 

integration algorithm set to Dassl and the simulation stop 

time set to 2 seconds. As it can be found in Figure 7 that 

the computational cost shows a quadratic polynomial 

relationship with the number of degrees of freedom. For 

this case four cable elements are enough to get a 

converged result. 

  

Figure 8. Pulley and winch component icons. 

 
Figure 9. Diagram view of a simple lifting device. 

The icons of pulley and winch component are shown in 

Figure 8, where the frame interface of pulley component 

and the left frame of winch component is used to connect 

the mounting position. The lower frame of winch 

component is used to connect the cable, as shown in 

Figure 9, where a simple lifting device is constructed. The 
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initial configuration of cable is horizontal, as shown in 

Figure 10. Figure 12 gives the ball’s position and forces 

exerted on it. After a few swings from side to side, the ball 

ends up in a straight up and down position. 

 

Figure 10. Initial configuration. 

 

Figure 11. Final configuration at 30 second. 

 
Figure 12. Force and displacement of body as function of 

time. 

The icon of the sliding joint is shown in Figure 13, where 

the left and right frame represent two ends of the cable, 

and the lower frame is used to connect the object 

suspended. An example of zip line is constructed as shown 

in Figure 14, simulating a rigid body with a horizontal 

initial attitude sliding on a cable under the effect of gravity. 

The initial and final configuration of objects are given in 

Figure 15 and Figure 16 respectively. It can be found in 

Figure 17 that the suspension is finally stabilized near the 

midpoint of the cable after several swings. 

 

Figure 13. Sliding joint component icon. 

 

Figure 14. Diagram view of a zip line model. 

 

Figure 15. Initial configuration (left: front view, right: top 

view). 

 

Figure 16. Final configuration at 20 second (left: front 

view, right: top view). 

 

Figure 17. Body’s position as function of time. 

4 Examples for Application 

In this section, several engineering applications have been 

built in the MWORKS.Sysplorer simulation environment. 

The three most representative cases have been selected for 

presentation. 

4.1 Case 1: Belt Drives 

The belt drive model, as shown in Figure 18, consists of 

an active pulley, a passive pulley, and a conveyor belt. 
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The active pulley is driven by a rotational speed signal and 

the passive pulley is connected to a prismatic joint, which 

is driven by a position signal, simulating the tensioning 

process of the conveyor belt. The material and 

geometrical properties of the belt are as follows: modulus 

of elasticity 5.8e6 Pa, density 3500 kg/m^3, belt thickness 

0.006 m, width 0.007 m, initial length 0.724 m. In this 

case the belt is discretized into 15 cable elements and the 

contact detection points are selected at 90 points at equal 

intervals. Figure 19 shows the axial stresses in the 

conveyor belt during tensioning and operation. Figure 20 

gives the reaction forces applied to the active and passive 

pulleys, which are symmetrical. 

 
Figure 18. Diagram view of belt drive model. 

 

 
Figure 19. Stress clouds at different seconds. 

 

Figure 20. Reaction forces on pulleys. 

4.2 Case 2: Cable Nets 

The cable net model is assembled from several single 

cables, with position constraints imposed by Lagrange 

multipliers at the intersection of the cables. Four corner 

points of the net are exposed through the frame interface, 

which can be connected to parts, mechanical joints, and 

force elements. The dynamic behavior of nets in different 

scenarios can be easily simulated by changing the 

boundary conditions at the four corner points, as shown in 

Figure 21. The net configurations at different times are 

shown in Figure 22 and Figure 23. 

  
(a) (b) 

Figure 21. Diagram view of net models in different 

scenarios: (a) four corners fixed, (b) four corners 

moving along the diagonal. 

 

 

Figure 22. Net with four corners fixed. 

 

 

Figure 23. Net with four corners moving along the 

diagonal. 
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4.3 Case 3: Gantry Crane 

Gantry crane is a kind of port lifting equipment, mainly 

used for outdoor loading and unloading operations of 

cargo yards. The simple gantry crane model built in this 

paper, as shown in Figure 24, mainly consists of two 

cables, two winches, a container, and a gantry crane rack. 

It simulates the movement of a container under the 

combined action of the winches and the rack. Figure 25 

illustrates the operating process of the gantry crane. 

Figure 26 gives the position of the container during 

loading and unloading, from the initial position {7.5, 12, 

0} to the final position {-6.5, 12, 10}. 

 
Figure 24. Diagram view of gantry crane model. 

 

  

  

  

Figure 25. Gantry crane operating processes at different 

times. 

 

Figure 26. Cargo position as function of time. 

5 Conclusion 

The simulation of cable drive system covers the area of 

rigid body dynamics, flexible body dynamics, contact 

mechanics, etc. In this paper, the three-dimensional 

flexible cable model is established based on the absolute 

nodal coordinate formulation. Using the Modelica 

Multibody Library, the rigid-flexible coupling analysis is 

accomplished. Utilizing the contact force models, the 

contact behavior between cables and pulleys are realized. 

What have not yet been covered in this paper are the self-

contact of cables, efficient contact detection algorithms, 

advanced cable elements (e.g., ALE-ANCF elements), etc. 

It is noted that, MWORKS.Sysplorer provides an 

extensive and in-depth platform for modelling cable drive 

systems. 

The content covered in this paper is a prototype of a 

commercial cable pulley library. There are still some areas 

of improvement. For example, we did not establish the 

contact relationship between cables and pulleys at the 

graphical level. It concerns the ease of use of the library. 

Another point is that the initial configuration of the cable 

can only be specified as a straight segment at this moment. 

In addition, when the winch is involved in too many turns 

of the cable, the calculation cost brought about by contact 

forces should not be underestimated. More advanced 

technologies such as ALE (Arbitrary-Lagrange–Euler) 

elements will be considered in the future. 
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