Distributed Parameter Pneumatics

Felix Fischer!

Katharina Schmitz!

'RWTH Aachen University — Institute for
Fluid Power Drives and Systems (ifas), Germany, { f. fischer, katharina.schmitz}@ifas.rwth-aachen.de

Abstract

Pneumatics is a branch of engineering that deals with the use
of pressurized air or gases to create mechanical motion. It in-
volves the study and application of systems and components
such as air compressors, valves, cylinders, and actuators to
control and transmit power through the use of compressed
air. For highly dynamic events in pneumatic systems, such as
fast switching processes in automation technology, lumped-
parameter simulation is not sufficient to correctly calculate
the pressure build-up in pipes. The propagation and re-
flections of different pressure waves and refraction waves
cannot be accounted for by the zero-dimensional models
provided by the Modelica.F1luid library. Therefore, this
paper presents a method for calculating such events using
the finite volume method. The library presented in this paper
uses Godunov’s scheme and an arbitrary Riemann solver
and gas model to calculate the time evolution inside 1D or
2D discretized pneumatic components, as well as systems
composed of these components.

Keywords: pneumatics, simulation, partial differential
equation, distributed parameters, library

1 Introduction

The Distributed Parameters Pneumatics library allows for
the calculating of transient events in pneumatic systems
composed of pipes, valves, open and closed endings as well
as connecting components such as T-connectors. These
components are described in partial differential equations.
These kinds of models consider the spatial distribution of
parameters, such as temperature, density, and pressure;
they are called distributed parameter models. This paper
describes the theoretical foundation for the library as well
as the core details of its implementation.

The theoretic background of the library discussed in
this paper is introduced in section 2. The details of the
implementation using Modelica is presented in section 3.
The components of the library are validated using the
analytical results of Sod-like tests, see section 4, as well
as using experiments in section 5.

1.1 Motivation

While the Modelica fluid library is a suitable tool for cal-
culating slow pressure changes in fluid systems used in hy-
draulics, pneumatics, and process engineering, it cannot be
used to describe the fast fluctuations in pneumatic systems
in the build-up phase of increasing or decreasing pressure.

This is important, for example, when analyzing the inter-
action of different fast-moving actuators in an automation
system. Another example of an application outside of pneu-
matics where the description of highly dynamic movements
of gases is essential is gas transport in process engineering.

Modelica.Fluid uses zero-dimensional components,
described by a single set of ordinary differential equations.
These equations calculate changes in the quantities pressure
p,temperature 7', and density p only in terms of time and not
of space. Therefore, these components can only describe the
overall change of the averaged quantities inside of them over
time. These types of models are called lumped parameter
systems.

This is especially relevant for directional components
like T- or X-pieces. The ideal T-connectors implemented
in Fluid do not distinguish between the different directions.
Therefore, a pressure wave entering an X-piece would be
transmitted immediately to all three other sides without any
difference and without any time delay between them. In
areal X-piece, most of the pressure wave propagates to the
opposite side.

A possible solution for this problem is the discretization
of a single pipe component into a set of smaller pipes, which
are described by the same underlying ordinary differential
equations as the primitive component. This approach is
called the finite volume method for solving partial differen-
tial equations. Modelica Fluid provides a discretized model
with Modelica.Fluid.Pipes.DynamicPipe.

1.2 Sod Test

The standard method for the evaluation and test of finite
volume method for gas dynamics is the Sod Test. This test is
a fictional shock tube experiment. At time # =0, the left half
of the tube contains an ideal gas at high pressure, whereas
the right half contains gas at a lower pressure. Both halves
have an equal diameter and are directly connected. Initially,
the gas in the whole tube is at the same temperature.

While the original paper by Sod uses a certain set of
fixed and dimensionless initial pressures p, densities p and
velocities v =0, the analytical solution is known and well
studied for every chosen set of start values (Sod 1978). Thus,
can be used for the verification of gas dynamics simulations.
The set-up of a Sod-like test and the pressure and rarefaction
waves occurring in this test can be seen in Figure 1.

The standard method of initialization Modelica Fluid
uses the system model. It includes the initial pressures as
well as the initial temperature and the initial velocities. The

DOI
10.3384/ecp20485

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

85

Distributed Parameter Pneumatics

o \

rarefaction wave shock wave

Figure 1. Set up and time evolution of the Sod test

density p can be calculated from the pressure and the tem-
perature using the chosen gas law (e.g., the ideal gas law).
In this work, the same method of initialization is used and
therefore the systems are initialized using realistic values
rather than abstract standard values. The start values are
listed in Table 1. The Medium is Air. In the one-dimensional
case, the diameter of the pipe has no influence on the results.

Table 1. Parameters of Sod-like test used in this work

Description Symbol Start value
Initial temperature T 20°C
Pressure in the left half PL 6 bar
Pressure in the right half PR 1 bar
Length of the pipe L 2m
Discretization N 100
Modelica solver DASSL
Tolerance 1x1076
6 el LT L LT T ryryrryryrrryrrrrprrrrrrrrrT
simulation
analytical
5r J
2af]
g3t ;
o
2r J
1 C 1 1 1 1 I 1 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

position [m]

Figure 2. Sod test of staggered DynamicPipe at 1 ms

A sod test of the staggered model DynamicPipe
from Modelica Fluid can be seen in Figure 2. There is
a large discrepancy between the analytical result and the
simulation (Isaac Backus 2017). Thus, this library is not
suitable for highly dynamic gas simulations.

2 Theoretic Background

This section contains a brief introduction into the theoretic
background of the simulation library presented in this work.

2.1 Euler Equations

This library is based on the conservative formulation of
the Euler equations. The Euler equations are a simplified
version of the Navier-Stokes equations. They describe the
flow of a fluid without considering the thermal conductivity
and viscosity.

Conservative formulations of partial differential
equations guarantee that the amount of conserved quantities
entering a finite volume is equal to the amount leaving
it. Even if the discretization is very broad, the total and
the local balances of these quantities are conserved. In
non-conservative schemes, the quantities are not conserved
and therefore there can be erroneous sources and sinks
in the calculated solution. Therefore, the error in the
conserved quantities is only acceptable, if the grid is fine
enough (Ferziger, Peri¢, and Street 2020).

The conservative formulation of the one-dimensional
Euler equations takes the following form (Toro 2009, p. 30):

d
0=—"U+VF(U) (1)
U:=(p,pu,E)T 2)
F:= (pu.pu’+p,u(E+p))T 3)
E :=p(%u2+e) 4)

In these equations, p is the density of the gas, u is the
velocity and p is the absolute pressure. The total energy
E (see Equation 4) can be separated into a kinetic and an
internal component. The specific internal energy e(p,p)
is a function of the density and the absolute pressure. The
expression for e is dependent on the gas model used in
the simulation (Toro 2009). The entries of U shown in
Equation 2 are called conserved variables, whereas p, u,
and p are called primitive variables. The vector F shown
in Equation 3 is called the flux vector and is a function of U.

2.2 Riemann Problem

In finite volume methods, each discrete volume has only one
value for U (see Equation 2) at each time step. Therefore, if
two neighboring cells differ in any primitive variable, there
will be a discontinuity in the initial condition of the partial
differential equation. Such a partial differential equation
with an initial condition that is constant everywhere except
for a single discontinuous jump is called a Riemann problem.

The Riemann problem can be imagined as a miniature
version of the Sod test at every cell boundary, see Figure 1.
Analogous to the shock tube, the analytical solution is
known and can be used to calculate the time evolution of
every single finite volume.

86 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20485

Session 1-B: Discrete modeling techniques: FEM, CFD, DEM (Discrete Element Method)

The finite volume method used in this work is Godunov’s
scheme. In Godunov’s scheme, the spatial derivative in
Equation 1 is calculated numerically by evaluating the flux
vector F at the intercell boundary. The one-dimensional
Godunov’s method is given by (Toro 2009, p. 177):

0 1
V() === (F,, -F,_y) 5)
F..) =F(U,,] (6)
U, —U(Z,x,i—) (7)
Ax = Xjp1 —X; 3)

Here, ¢ is the continuous time and x; the discrete position
of a specific finite volume with index i. x + % represents
the position of the boundary between the volume at x; and
the neighboring volume at x; + Ax, see Figure 3.

U,

|
! l

2 3 \

F(Us,s)

| | | |

| I I I
0.5 1.5 25 3.5

Figure 3. Discretizations used in Godunov’s scheme, including
ghost cells

The numerical method used to calculate F(U(¢,x+Ax)) is
called a Riemann solver. If the value U at the intercell bound-
ary is calculated using the analytical solution, the solver is
called an exact solver, otherwise, it is called an approximate
solver. Compared to approximate Riemann solvers, exact
solvers are more complex to construct and implement, and
they are more computationally expensive. This work uses
the approximate Harten-Lax-van-Leer-Contact (HLLC) and
local Lax-Friedrichs solver (Toro 2016). These solvers take
only the two neighboring volumes into account and are there-
fore called first-order methods, as shown in Equation 9.

Fi+% =f(U;,Uis1))
The function f represents the first-order approximate
Riemann solver. The time derivative in Equation 5 is solved
by the Modelica solver.

2.3 Two Dimensional Formulation

To create a system that is more complicated than a single
straight pipe with linear components connected to it,
two-dimensional components are needed. These 2D
components must be discretized in two dimensions, and
a two-dimensional formulation of the finite volume method

is needed. The main difference between the one- and
two-dimensional algorithms is the additional component
of the velocity in the y-direction which must be considered.
Therefore, the state vector U needs an additional fourth
component.

The conservative formulation of the two-dimensional
Euler equations can be described as the following (Toro
2009, p. 104):

oU OF, OF,
0=—— -2 10
ar *ox oy {10
U:= (p,pux,puy,E)T (11)
T
F,:= (pux,pui+p,puxuy,ux(E+P)) (12)
2 T
F,:= (puy,puxuy,puy +p,uy(E+P)) 13)

Here, u, is the gas velocity in y-direction (Schulz-Rinne,
Collins, and Glaz 1993).

This differential equation is solved numerically using
a two-dimensional Godunov’s scheme, as described in
Equation 5. In this case, the flux vectors at all four intercell
boundaries have to be calculated using a 2D version of
a Riemann solver. In this work, an adapted version of
the local Lax-Friedrichs solver has been used for two 2D
discretized meshes.

3 Implementation in Modelica

This section describes how this library is structured and
how the finite volume method described in section 2 is
implemented in Modelica.

3.1 General Structure

The general structure closely follows the structure of the
Modelica.Fluidlibrary, to keep the library as compatible
with it as possible. The models make use of replaceable
packages and inheritance to keep the code reusable. Due
to this structure and the use of a sub-package, it is possible
to quickly exchange the selected gas model or the Riemann
solver. The internal structure of the models is based on the
finite volume library presented by Sielemann (Sielemann
2012b).

The package TransientPneumatics is separated into

three sub-packages:

1. parts: This package contains the useable components
in this library, such as pipes and valves. Furthermore,
it contains the sub-package Base in which the one- or
two-dimensional discretized pipe sections are located.
These discretized sections are used by the regular parts
as attributes.

2. Solvers: This package contains the different se-
lectable Riemann-Solvers (OneD, TwoD) and gas mod-
els (Media).

3. systems: This package contains the base template for
new systems as well as simulation models for testing
this library.

DOI
10.3384/ecp20485

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

87

Distributed Parameter Pneumatics

3.2 Components

The different components contain the initialization, the
border conditions, and the connectors. The discretization
and the solutions of the partial differential equations
are delegated to the reusable models in the sub-package
TransientPneumatics.Parts.Base. The general
structure of a component is shown in Listing 1.

Listing 1. Basic structure of a component in this library

within TransientPneumatics.Parts;
model Part "Example of a part"
import Modelica.Units.SI;
replaceable package Medium
= TransientPneumatics
.Solvers.Media.Ideal.Example
constrainedby TransientPneumatics
.Solvers.Media.Base
"Medium";
replaceable package Solver
= TransientPneumatics.Solvers.HLLC (

redeclare package Medium = Medium)
constrainedby
TransientPneumatics.Solvers.OneD
"Solver";
Modelica

.Fluid.Interfaces.FluidPort_a left (
redeclare package Medium=Medium)
"Left connector";

Modelica

.Fluid.Interfaces.FluidPort_b right (
redeclare package Medium=Medium)
"Right connector";

parameter Integer N = 20
"Number of finite volumes";
public
SI.AbsolutePressure pressure[N]
"Absolute pressure in component";
protected
Base.PipeBase discretization(
redeclare package Medium=Medium,
redeclare package Solver=Solver,
N=N)
"Reusable base model";
end Part;

The base models in Parts.Base have the following
structure:

Listing 2. Basic structure of the base model containing the logic
of every pipe section

within TransientPneumatics.Parts.Base;
model PipeBase
"Base class for pipe sections"
import Modelica.Units.SI;
replaceable package Medium
= TransientPneumatics
.Solvers.Media.Ideal.Example
constrainedby TransientPneumatics
.Solver.Media.Base "Medium";
replaceable package Solver
= TransientPneumatics.Solvers.HLLC (
redeclare package Medium = Medium)
constrainedby TransientPneumatics
.Solvers.OneD "Solver";
parameter Integer N = 20

of finite volumes";
SI.Length L =1
"Length of the pipe";
parameter SI.Diameter diameter =
"Diameter of pipe";
protected
final SI.Area cross_section
= Modelica
.Constants.pi x diameter”2 / 4
"Cross section of pipe";

"Number
parameter

0.001

final SI.Length delta_x = L/N;
Real U[
N, 3] "Conserved variable vectors";
public

Medium.ThermodynamicState
volume_left, volume_right;
SI.MassFlowRate
flow_rate_left, flow_rate_right;
// finite volumes at the border
Medium.ThermodynamicState volume [N]
"Records containing
the primitive variables";
SI.MassFlowRate flow_rate[N]
"Mass flow rate in each volume";
// kept public for initialization
equation
// the
differential
end PipeBase;

equations are put here

The primitive variables pressure and density are con-
tained in the record ThermodynamicState. Additionally,
the gas velocity u can be calculated using the mass flow rate
rir and the cross-section a:

(14)

Based on the primitive variables, the conserved variables
U can be calculated according to Equation 2 in the function
Solver.primitiveToConserved. The set of equations
in Listing 2 is chosen to avoid the implementation of a
function for the conversion from the conserved variables
to the primitive variables, because there is no function to set
a thermodynamicState record from the pressure and the
density in the Modelica standard library (Sielemann 2012a).
The function Solver.monotoneF lux calculates the flux
vector as a function of the neighboring cells according to
the solver, as seen in Equation 9.

The implementation of the sets of differential equations
into Modelica is shown in Listing 3.

Listing 3. Set of differential equation to be solved in each pipe
section

equation
for i in 1:N loop
U[i] = Solver.primitiveToConserved (
volume[i], flow_rate[i],
cross_section);
end for;
// Godunov's method
// left border
der (U[1]) =1 / delta_x * (
Solver.monotoneFlux (

88 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20485

Session 1-B: Discrete modeling techniques: FEM, CFD, DEM (Discrete Element Method)

volume_left, flow_rate_left,

volume[l], flow_rate[l],

cross_section)

— Solver.monotoneFlux (
volume[1l], flow_rate[l],
volume[2], flow_rate[2],
cross_section));

// center section
for i in 2:N-1 loop

der (U[i]) =1 / delta_x * (
Solver.monotoneFlux (

volume[i-1], flow_rate[i-1],
volume[i], flow_rate[i],
cross_section)

- Solver.monotoneFlux (
volume[i], flow_rate[i],
volume[i+1l], flow_rate[i],
cross_section));

end for;
// right border

// analogous to left border

3.2.1 2D Components

The two-dimensional base models are implemented analog
to Listing 2; in this case, the conserved variables are stored
in an N X M array: U[N, M, 3]. For 2D components,
it needs to be differentiated between pipe section with
round or rectangular cross-sections. When implementing
rectangular cross-sections, it must be considered, that
depending on the discretization the cross-section for
flow in the x-direction can differ. In the case of circular
cross-sections, the cross-section a(y) for flow in the
y-direction (perpendicular to the orientation of the pipe)
depends on the y-position, as indicated in Figure 4.

Figure 4. Cross-section of circular 2D pipes

3.3 Connectors

Each component is connected to the neighboring com-
ponents using connectors. The connectors are the same
connectors used in Modelica.Fluid. In this work, the
ghost cell method is used to connect the connectors to
the finite volumes. This approach is based on the work
presented by Lopez (Lépez 2006). Due to the connectors
being identical to the default ports, it is possible to
connect the distributed parameter components developed
in this work to the concentrated parameter components
contained in Modelica.Fluid. This is demonstrated in
Figure 5, where a graphical representation of a system in
OpenModelica’s OMEdit can be seen.

pipe @ ppe &

Figure 5. Two distributed parameter pipes connected to two
concentrated parameter endings from Modelica.Fluid in
OMEdit using connectors

The ghost cells on the left side of the base pipe are defined
by the additional values volume_left and flow_rate_-
left. The variables for the right ghost cells are accordingly
named volume_right and flow_rate_right. These
values are related to the connectors by the following
equations in the model of the parts shown in Listing 1:

Listing 4. Relation between the ghost cells and the connectors

discretization.volume_left
= Medium.setState_ph (
left.p, actualStream(left.h_outflow));
discretization.volume_right
= Medium.setState_ph(
right.p, actualStream(
right.h_outflow));
discretization.flow_rate_left
= left.m_flow;
discretization.flow_rate_right
= - right.m_flow;
left.m_flow = discretizaion.flow_rate[l];
right.m_flow = —-discretiation.flow_rate[N];
left.h_outflow = Medium.specificEnthalpy (
discretization.volume[1l]);
right.h_outflow = Medium.specificEnthalpy (
discretization.volume[N])

In this work, the direction of flow is defined as left to right.
A negative mass flow rate would therefore indicate a flow
from right to left. Therefore, the sign for flow entering from
the right connector must be inverted.

3.4 Pipe Endings

After enough time, every wave propagating in a finite pipe
will hit either a closed or an open pipe ending. In both cases,
the wave will be reflected on the ending and another wave
will travel in the opposite direction. These open and closed
boundary conditions are implemented into this library as
separate models using the ghost cell approach shown in
(Kratschun 2020).

34.1 Closed Ending

In the case of the reflection at a closed ending, the reflective
boundary condition states that there is no velocity compo-
nent in the x-direction at the boundary. This can be imple-
mented using with the ghost cell approach by adding another
volume with equal, but opposite velocity to the neighboring
volume (LeVeque 2012, Chapter 7). Analogous to the
connectors, a reflection on the left border of a part (Listing 1)
can be implemented by adding the following lines:

Listing 5. Reflection on a closed ending at the left border of a part

discretization.volume_left

DOI
10.3384/ecp20485

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

89

Distributed Parameter Pneumatics

= discretization.volume[l];
discretization.flow_rate_left
= —discretization.flow_ratel[l];

3.4.2 Open Ending

In the case of reflection at an open end, the reflective
boundary condition states that there can be any velocity
at the boundary, but there are conditions on the intensive
variables on the volume next to the open end. The ghost
cell at this end has the same velocity as the connected end,
but depending on the direction of the flow, the temperature,
and the pressure are fixed. Due to conservation of energy,
the gas velocity at the end will overshoot compared to the
wave packets inside the tube. Thus, the reflection at an open
tube end can be intuitively understood to be caused by the
discontinuity in acoustic impedance. The open end can be
implemented by using the following additional lines:

Listing 6. Reflection on an open ending at the left border of a part

parameter SI.AbsolutePressure p_start
= system.p_ambient
"Environmental pressure";
parameter SI.Temperature T_start
= system.T_ambient
"Environmental temperature";
equation
if discretization.flow_rate[l] > O
then
discretization.volume_left
= Medium.setState_pT(
p_start, T_start);
else
discretization.volume_left
= Medium.setState_pT (
p_start, discretization.T[1]);
end if;
discretization.flow_rate_left
= discretization.flow_rate[l];

3.5 Valve

Sod-like tests can be used for the analytical validation of
amodel. When trying to replicate a shock tube experiment
on a test rig, a rapid 2/2-valve is needed, preferable switch
times below 1 ms. But even in that case, the valve will
have an influence on the propagation of the pressure waves,
which cannot be neglected. Therefore, a model for valves
is needed for the experimental validation of this library.

In this work, the valve is modeled as a plate orifice with
changing diameter (Kratschun 2020). An orifice can be
implemented into a finite volume method by calculating
the flux vectors F based on the orifice equation (Schmitz
2022). The orifice equation is only valid for ideal gases, and
it depends on the isentropic exponent k.

(15)

C), is the heat capacity at constant pressure and C, is the
heat capacity at constant volume. For ideal gases, « is
constant. If the pressures are not very high, the ideal gas law

is usually a good approximation. Therefore, « is calculated
as the fraction of heat capacities for all gas laws and is
potentially not constant.

The orifice equation is only valid for stationary gases. To
include dynamic effects, this work uses the total pressure
instead of the static absolute pressure if the velocity is
directed towards the orifice:

Prot. =p+pu*/2 (16)

According to the orifice equation, gas will only ever flow
from the side with higher pressure to the side with lower
pressure. In the following, it is assumed that the pressure to
the left of the orifice p; is higher than the pressure to the right
pr. These equations can be implemented bidirectionally
with Modelica by using conditional statements.

The velocity of the gas flowing through the orifice u,
increases when the pressure ratio Il decreases up to a
critical ratio Il . For lower ratios, the velocity remains
constant (Schmitz 2022, p. 45):

m=2

o (17)
Hcrit.:(%)“ (18)
necun AL TS
v () :=\/%(ni_n“:l) (20)

Here, p; is the pressure to the left of the orifice and a,
is the area of the opening of the orifice. c4 denotes the
discharge coefficient and is dependent on the geometry of
the orifice. The components of the new flux vector can thus
be calculated depending on the condition of the flow:

Fi=u,p; (2D
Fy= pillerie. TT<Tep. (22)
Pr IT > Ty,
1
F3=uu(pl(iug+€(P1,Pl))+F2) (23)

In Equation 23, e¢(p,p) denotes the specific internal energy
as a function of the absolute pressure and the density of the
gas.

When a pressure wave reaches a partially closed valve or
an orifice from either direction, some fraction of the wave
will be reflected at the orifice while another fraction will
be transmitted according to the orifice equation. To include
this effect into the model of the orifice, this work uses the
combined flux approach presented in (Kratschun 2020):

F:a—"Fc+(1—a—o)F0 24)
a a

Where F. is the flux created by the reflection on a closed
ending, (see subsection 3.4) and F,, orifice flux presented
in this section.

90

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20485

Session 1-B: Discrete modeling techniques: FEM, CFD, DEM (Discrete Element Method)

3.6 Stability of the Simulation

The simulations using the staggered components in this
library are stable. Usually, when using explicit schemes for
hyperbolic differential equations, the Courant-Friedrichs-
Lewy (CFL) condition must be obeyed as a necessary
condition for stability (Courant, Friedrichs, and Lewy 1928,
Page 61):

|u|AtSl

(25)

To enforce or check this condition, it would be necessary
to check the current simulation time step At in run time,
which is not possible in Modelica. Therefore, the finite
volume method should not be used with explicit Modelica
solvers like the Euler method. In this work, the implicit
DASSL solver has been used (Petzold 1982), which is
unconditionally stable, although slower than typical explicit
solvers. In case of an event in Modelica, DASSL will
reduce to the Euler method. Therefore, the stability of the
simulation can only be guaranteed by avoiding any events,
or by using an a-stable solver. An example for an a-stable
solver are implicit Runge-Kutta methods.

4 Analytical Validation

The different components, solvers, and gas laws are
validated using the analytical results of the sod test
described in subsection 1.2. A graphical representation
of the system can be seen in Figure 5. In this system,
two pipes with equal lengths are initialized with different
pressures and connected using a connector in the center.
The simulation parameters are listed in Table 1.

4.1 Solvers

A comparison of the different solvers can be seen in
Figure 6. The results with both solvers follow the analytical

L L L L R B
—— Lax-Friedrichs]

HLLC

analytical

=

w
T

pressure [bar]

, A
1.25 1.50

position [m]

1— 1 1 1
0.00 0.25 0.50 0.75

1.75 2.00

1
1.00

Figure 6. Comparison of Sod tests with the local Lax-Friedrichs
Solver and the HLLC solver at 1 ms

solution. The simulated solutions are approaching the

analytical result with increasing degree of discretization.

Thus, the solvers have been implemented successfully.

The results by the HLLC solver are closer to the analyt-
ical solution at every point. The difference in calculation
time between both solvers is negligible. For this reason, the
HLLC solver is preferred for all simulations in this library.

4.2

In this work, multiple gas laws have been implemented.
Besides the ideal gas law, the Van der Waals gas law has
been implemented as an example of a real gas law. The
main difference between the different gas laws is the
relation between the primitive variables and the specific
internal energy e(p,p). A comparison of the gas laws at
high pressure can be seen in Figure 7. The starting pressure

Gas Laws

700 ———F 7 T T T T T
E —— ideal

real
600 -

analytical 7]

[N

(=

(=)
T

400

pressure [bar]

300

200 £ 1
0.0 0.5

1.0 1.5

position [m]

2.0

Figure 7. Comparison of Sod tests with real and ideal gas law
at a very high-pressure drop at 1 ms

in the left half is 700 bar and on the right half 200 bar. At
the initial conditions shown in Table 1, there is no visual
difference between both solvers. For the high pressures
shown in Figure 7, the results differ significantly. The
analytical solution is only based on the ideal gas law and
agrees therefore with the calculation based on the same law.
The default record ThermodynamicState contained
in Modelica.Fluid contains the pressure and the tem-
perature as basic variables. This leads to instabilities when
solving a system using the DASSL solver of OpenModelica.
The Distributed Parameter Pneumatics simulations library
thus contains an alternative implementation of both Media
and ThermodynamicState with the pressure and the
density as internal variables, as seen in Listing 7. With this
alternative record, the simulation runs flawlessly.

Listing 7. "Replacement for thermodynamic state record"

record ThermodynamicState
"Custom thermodynamic state model"
public
SI.AbsolutePressure p(start =
SI.Density rho(start = 1.2);
end ThermodynamicState;

leb);

The two needed functions Media.setState_ph and
Media.setState_pT return this record as a function of
the pressure and the specific entropy or the pressure and the

DOI
10.3384/ecp20485

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

91

Distributed Parameter Pneumatics

temperature respectively. In the case of the Van-der-Waals
gas equation, there is no closed-form expression for these
functions, and they must be computed iteratively. This
increases the computation time, which is about a factor of 3
larger compared to the ideal gas law. Thus, for low pressures,
which are the most relevant for pneumatic applications, it
is preferred to use the ideal gas law with this library.

4.3 2D Components

A sod test for a two-dimensional component with a circular
cross-section can be seen in Figure 8. The simulated

6"""""""l""l""l""l""|""_
simulation
analytical
5t]
El
2 4r 4
&
=
A
g3r \ .
a
2| N .
1k 1 1 1 1 1 |\| i
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

position [m]

Figure 8. Sod test of a 2D pipe section with circular cross-section
at I ms

pipe is circular, so the pressure curve is calculated in the
x-direction, parallel to the pipe.

The pipe is discretized into 20 segments in the x-direction
and 7 segments in the y-direction. Due to the smaller
discretization compared to the simulation shown in subsec-
tion 4.1, there is a greater difference between the simulation
and the analytical results. In the two-dimensional case, the
calculation time is multiple times larger compared to the
one-dimensional case. Therefore, simulations with a very
high two-dimensional discretization are not feasible on reg-
ular hardware. Another reason for the decreased accuracy
in this simulation is the use of a 2D-Lax-Friedrichs solver
compared to the HLLC solver used in the one-dimensional
case. Nevertheless, the simulated result still approaches the
analytical result with increasing refinement of the grid. Due
to the changing cross-section, it is not possible to perform
auseful Sod test in the y-direction.

In the case of the rectangular cross-section, the same
validation has been performed in both the x-direction and
y-direction and in both cases, the simulation reaches a
similar agreement with the analytical results as for the
circular cross-section.

The implementation of branched connectors like
T-connectors is the principal use of two-dimensional
components. These components can be constructed by the
combination of several two-dimensional sections with either
circular or rectangular cross-sections. The rectangular
cross-sections are needed to attach a pipe section to another

pipe with an angle of 90° because the pipes with round
cross-section taper towards the edge in the y-direction.

S Experimental Validation

The simulation library presented in this work has been
experimentally validated using a test rig for shock test
experiments. The experiment allows the validation of
components in this library, even if there is no known
analytical solution. This is especially relevant for the open
and closed pipe endings, as well as for the valve.

A pneumatic circuit diagram of the test rig can be seen
in Figure 9. The test rig uses two absolute pressure sensors,
one in the high-pressure section and one in the low-pressure
section, to measure the environmental pressure and the
exact pressure of supplied air. Additionally, there are five
highly sensitive piezoelectric relative pressure sensors
along the pipe. These sensors measure the exact curve of
the pressure at their position.

P1 Phigh |;| Plow P4 pPs

o YHY OF

valve

P2 P3

Figure 9. Pneumatic scheme of the test rig used in this work

The low-pressure half is connected to the high-pressure
half by a quick-acting pneumatic valve. According to the
manufacturer, the valve has a cycle time from closed to
open to closed of about 1 ms. In the experiment discussed
in this work, the valve starts in its closed state and is then
opened and closed as fast as possible. No analytical solution
exists for this system. The experimental conditions and the
geometry of the pipes are listed in Table 2.

Table 2. Experimental Parameters

Variable Value
Environmental temperature 21°C
Environmental pressure 1.01 bar
Pressure in the tank 3.15bar
Length of the left pipe 0.39m
Length of the right pipe 1.985m
Diameter of the pipe 0.7cm
Distance between the valve and p4 0.59m
Fluid used in experiment air

A model of the test rig shown in Figure 9 has been set
up using TransientPneumatics. The ending of the tank
to the left, as well as the connection to the environment to
the right, have been modeled using open endings, which
have been presented in subsection 3.4.

92

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20485

Session 1-B: Discrete modeling techniques: FEM, CFD, DEM (Discrete Element Method)

When implementing the valve, the following parameters
can be set in the simulation, see subsection 3.5:

1. The maximal inner diameter of the orifice a,,

2. The discharge coefficient ¢4
There is no obvious way to map these parameters to
properties of the valve which can be found in its datasheet.
The same is true for the signal chosen in Modelica, which
controls the degree of opening of the valve. The simulation
parameters selected for this model can be found in Table 3.

Table 3. Simulation Parameters

Variable Value
Discharge coefficient c4 0.68
Inner diameter a,, 5.7 mm
Valve signal trapezoidal
Opening time 0.4 ms
Open time 0.2 ms
Closing time 0.4 ms
Discretization of the left pipe 40
Discretization of the right pipe 110
Solver DASSL
Tolerance 1x1076

A comparison between the measured and the simulated
pressure curve at the fourth pressure sensor p4 can be seen
in Figure 10.

T) T T T T
:; simulation
1L.10F experiment -
|
F
_ 105} 4
2 I
=R L
S\
1.00 [\«\ w g
0.95 [jv
: 1 1 1 1 1
20 40 60 80 100
t [ms]
Figure 10. Comparison between the experiment and the

simulation shown in Figure 9 measured at sensor p4

The general shape of the first five double peaks match
each other, and therefore it can be concluded, that the reflec-
tion at the open ending has been successfully implemented.
In the last two peaks, the experiment shows a large dilation
of the reflected pressure waves, which is not represented
by the simulation. In the experiment, the amplitude of
the oscillation decreases at a larger rate compared to the
simulation. This is probably due to wall friction and, to
a lesser degree, thermal transport through the walls of the
pipe. Both effects cannot be yet simulated using this library.

A frequency analysis of the experiment and the simula-
tion is depicted in Figure 11. The first peak corresponds

10F [, — ~ 7~~~ T T T]
simulation
experiment
0.8 | 4
g
206 4
54
&
-
g 04r 4
1)
2
0.2 | 4
]
0.0 & T e ey -
100 200 300 400
f [Hz|

Figure 11. Comparison between the experiment and the simula-
tion of the spectral power spectrum of the signal shown in Figure 10

to the principal eigenfrequency of the air column in the
right pipe of the test rig. The fundamental tone of a tube
of air, which is open at one and closed at the other, can be
found approximately by the following equation (Rienstra
and Hirschberg 2004):

1%

V:E

(26)
Where v is the frequency of the fundamental tone,
V ~ 343ms~! is the speed of sound and L is the length
of the pipe. This equation yields about 43.2 Hz for this
experiment, which is in good agreement with the first peaks
seen in Figure 11.

There are secondary peaks at higher frequencies seen
in the experimental data, which are not present in the
simulation. These peaks are probably due to partial
reflection at the drilling holes of the sensors or at short
cross-section jumps at the screw fittings. The frequency for
two reflections at a closed ending is:

Vv

V=ﬁ

27
According to this formula, the frequency for a reflection
between the valve and p4 is approximately 291 Hz; the dis-
tance between the valve and the connector in between p4 and
pS (see Figure 9) is 1.82 m which corresponds to 209 Hz.

Considering the assumed simplifications, this library has
been successfully validated experimentally.

6 Summary, Evaluation, and Outlook

In this section, this paper is concluded by a summary of
the results, as well as a critical evaluation of the presented
method.

The compilation and simulation time for systems with
two-dimensional components is considerable. Therefore,
this library cannot be used for complex systems with many

DOI
10.3384/ecp20485

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

93

Distributed Parameter Pneumatics

two-dimensional connections. The presented method allows
calculating events in systems with arbitrary gas laws. There-
fore, this library can be helpful for calculating gas transport
in process engineering. Such systems are smaller and have
a simpler topology compared to pneumatic systems, which
allows performing the simulation in a short time.

Realistic systems will contain cross-section jumps and
elastic tubes, which still need to be implemented. The
presented method can further be improved by including
wall friction and thermal conduction. It is possible to
include wall friction, thermal conduction, and elastic tubing
by adding a source term to the differential equations shown
in Listing 2. A cross-section jump can be included by
using the analytical solution of the Riemann problem at
a cross-section jump, similar to the orifice presented in
subsection 3.5 (Han, Hantke, and Warnecke 2012).

The library presented in this work allows for the
calculation of highly dynamic transient events in pneumatic
systems consisting of pipes, valves, connections, and open
or closed endings. The parts have been validated using the
analytic solution of the Sod tests, as well as experimentally.
In general, there is a good agreement between the simulation
and the analytical and experimental results.

Acknowledgements

The authors thank the Research Association for Fluid
Power of the German Engineering Federation VDMA for
its financial support. Special gratitude is expressed to the
participating companies and their representatives in the
accompanying industrial committee for their advisory and
technical support.

Nomenclature
Sym Meaning ‘ Sym. Meaning
a cross-section | a, opening of orifice
Cp. Gy heat capacity | cq4 disch. coefficient
E total energy | e sp. internal energy
F flux vector | f general function
L length of pipe | 1 mass flow rate
p abs. pressure | f time
U conserved var. | u gas velocity
Vv speed of sound | x,y position
K heat cap. ratio | v frequency
IT pressureratio | p density of gas
W orifice function

References

Courant, R., K. Friedrichs, and H. Lewy (1928). “Uber die par-
tiellen Differenzengleichungen der mathematischen Physik”.
In: Mathematische Annalen 100.1, pp. 32—74. 1SSN: 0025-5831.
DOI: 10.1007/BF01448839.

Ferziger, Joel H., Milovan Peri¢, and Robert L. Street (2020). Com-
putational methods for fluid dynamics. Fourth edition. Cham:

Springer. ISBN: 978-3-319-99693-6.

Han, Ee, Maren Hantke, and Gerald Warnecke (2012). “Exact
Riemann Solutions to Compressible Euler Equations in Ducts
with discontinuous Cross-Section”. In: Journal of Hyperbolic
Differential Equations 09.03, pp. 403—449. 1SSN: 0219-8916.
DOI: 10.1142/S0219891612500130.

Isaac Backus (2017). Sod shock tube calculator. URL: https://
github.com/ibackus/sod-shocktube (visited on 2023-05-16).
Kratschun, Filipp (2020). “Transient Pneumatic System Simula-
tion: Transiente Simulation pneumatischer Systeme”. Disserta-

tion. Aachen: RWTH. DOI: 10.2370/9783844073997.

LeVeque, RandallJ. (2012). Finite Volume Methods for Hyperbolic
Problems. Cambridge University Press. ISBN: 9780521810876.
Dor: 10.1017/CB0O9780511791253.

Lépez, José Diaz (2006). “Shock Wave Modeling for Model-
ica.Fluid Library using Oscillation-free Logarithmic Recon-
struction”. In: Proceedings of the Sth International MODELICA
Conference. Ed. by Martin Otter and Dirk Zimmer. Vienna: The
Modelica Association, pp. 641-649. URL: https://modelica.org/
events/modelica2006/Proceedings/sessions/Session6b2.pdf.

Petzold, Linda R (1982). Description of DASSL: a differential/al-
gebraic system solver. Tech. rep. Sandia National Labs., Liver-
more, CA (USA).

Rienstra, Sjoerd W and Avraham Hirschberg (2004). “An intro-
duction to acoustics”. In: Eindhoven University of Technology
18, p. 19. URL: https://ayeghsoti.com/wp-content/uploads/
2019/09/boek.pdf (visited on 2023-06-20).

Schmitz, Katharina (2022). Fluidtechnik — Systeme und Kompo-
nenten. 1. Auflage. Diiren: Shaker Verlag. ISBN: 978-3-8440-
8801-4.

Schulz-Rinne, Carsten W., James P. Collins, and Harland M. Glaz
(1993). “Numerical Solution of the Riemann Problem for Two-
Dimensional Gas Dynamics”. In: STAM Journal on Scientific
Computing 14.6, pp. 1394-1414. 1sSSN: 1064-8275. pot: 10.
1137/0914082.

Sielemann, Michael (2012a). “Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design”. Dissertation.
Hamburg: TU Hamburg-Harburg. DO1: 10.15480/882.1111.

Sielemann, Michael (2012b). “High-Speed Compressible Flow
and Gas Dynamics”. In: Proceedings of the 9th International
MODELICA Conference. Ed. by Martin Otter and Dirk Zim-
mer. Linkoping Electronic Conference Proceedings. Linkdping:
Linkoping University Electronic Press, pp. 81-100. ISBN: 978-
91-7519-826-2. DOI: 10.3384/ecp1207681.

Sod, Gary A. (1978). “A survey of several finite difference meth-
ods for systems of nonlinear hyperbolic conservation laws”.
In: Journal of Computational Physics 27.1, pp. 1-31. ISSN:
00219991. port: 10.1016/0021-9991(78)90023-2.

Toro, Elewterio E. (2009). Riemann solvers and numerical methods
for fluid dynamics: A practical introduction. 3. ed. Berlin and
Heidelberg: Springer. ISBN: 978-3-540-49834-6. URL: http:
/Iwww .loc.gov/catdir/enhancements/fy1109/2009921818-
d.html.

Toro, Elewterio F. (2016). “The Riemann Problem”. In: Handbook
of Numerical Methods for Hyperbolic Problems - Basic and
Fundamental Issues. Vol. 17. Handbook of Numerical Analysis.
Elsevier, pp. 19-54. 1SBN: 9780444637895. DOI: 10.1016/bs.
hna.2016.09.015.

94

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20485

