
A renewable heat plant Modelica library for 
dynamic optimization with Optimica 

Thomas Colin de Verdiere1,2     Sylvain Serra2     Sabine Sochard2     Pierre Garcia1 
Pierre Delmas1     Jean-Michel Reneaume2 

1Newheat, France, {thomas.colindeverdiere,pierre.garcia,pierre.delmas}@newheat.fr 
2Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, Pau, France, 

{sylvain.serra,sabine.sochard,jean-michel.reneaume}@univ-pau.fr 

 

Abstract  
Almost half of the energy consumed globally is under 

the form of heat, produced mainly through fossil fuels. 
Switching to using renewable energy instead is a real 
challenge. Combining renewable thermal energy with 
thermal storage is a complex system to operate. To 
harness the full potential of thermal plants, advanced 
control strategies need to be implemented. Dynamic real-
time optimization (DRTO) seems promising to fine tune 
controller setpoints of plants. The goal of our study is to 
ultimately enable DRTO by using Optimica because of its 
ease of use and Modelica’s modularity. This paper 
presents a Modelica library developed to first perform 
offline dynamic optimization with Optimica, and would 
ultimately be used in a DRTO strategy. The library 
enables to model a renewable thermal plant composed of 
solar thermals, heat pumps and thermal storages. The 
model of each subcomponent has been validated. Initial 
dynamic optimizations of plant operation give promising 
results. 

Keywords: Dynamic optimization, Thermal plant, 
Optimica, Solar thermal, Heat pump 

1 Introduction 
Completely replacing fossil fuels for heat production by 

renewable energy requires combining several heat 
sources. The integration of thermal renewable energy in 
conversion/storage/distribution systems, in particular, 
solar thermal energy, faces several obstacles. Renewable 
thermal systems have varying thermal inertias and are 
prone to environmental disturbances. These mixed 
sources have to be well controlled to maximize 
performance and competitiveness of the global system. 

Combining both a mix of renewable thermal energy 
sources and large thermal energy storage is quite 
innovative and has never been implemented in France in 
large scale heat plants. Such innovative systems have 
successfully been built and operated in a few Northern 
European countries. The main learning highlighted by 
those first plants is the need to fine tune system setpoints 
in real time to both maximize energy output and minimize 
operational cost. In China, a study demonstrated that in 
specific cases of large-scale solar heating systems 
integrated with water-to-water heat pumps and pit storage, 

a 16% decrease of the leverage cost of heat (LCOH) can 
be achieved by operation optimization (Zhang et al. 2023). 

Since renewable heat plants are sensitive to external 
variation such as changing weather, electricity cost, and 
heat demand, real-time optimization (RTO) is a method 
that seems perfectly adapted to them. Although it is 
widely used in the field of chemical engineering, using 
RTO in the field of energy is quite recent. Adding 
dynamic optimization would allow to handle the thermal 
inertias of the system. Then, Dynamic Real-Time 
Optimization (DRTO) seems particularly adapted to the 
management of thermal installations combining several 
renewable production sources. 

In our global study, DRTO combined with Non-Linear 
Programming (NLP) will be used to optimize the 
operation of a multi-energy heat plant. The optimization 
will be performed using Modelica language and the 
Optimica Compiler Toolkit (OCT) from Modelon. 

The objective of this optimization is to maximize the 
heat produced by the plant, while minimizing the 
operational cost (mainly electric consumption).  Weather, 
electricity, and heat demand forecasts are included in the 
model. The optimization variables are temperature and 
power setpoints for each heat source. 

The modelling work and initial dynamic optimizations 
are presented in this paper. DRTO theory and results 
won´t be discussed in detail in this paper. 

1.1 Literature review 
JModelica is an open-source platform (Åkesson et al. 

2009) for numerically solving large-scale dynamic 
optimization problems of Modelica models. This tool 
evolved during the years, in particular by including 
CasADi. The actual framework JModelica.org 
(Magnusson and Åkesson 2015) became Optimica 
Compiler Toolkit (OCT) under a Modelon license in 2020. 

JModelica.org is used since its development in many 
research works, with some in heat production 
optimization. Runvik et al. (2015) developed a short-term 
planning optimization for a district heating system solved 
in two steps, one MILP (Mixed Integer Linear 
Programming) and one NLP using JModelica. More 
recently, Rohde et al. (2020) used JModelica to 
dynamically optimize control setpoints for an integrated 
heating and cooling system, including heat pump and solar 
thermal, with thermal energy storages. 
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Other works used Modelica language to model the heat 
system but chose other ways to optimize the heat 
production. Liu et al. (2018) used Dymola to model the 
system composed of CO2 heat pump coupled with hot and 
cold thermal storages, and genetic algorithm to maximize 
the efficiency of the system. 

Dynamic optimization of heat plants including solar 
thermal and thermal storage using NLP has been also 
performed by Scolan et al. (2020). They optimized the 
design and the control of the plant using the optimization 
software GAMS for modeling and optimization. More 
recently, Untrau et al. (2023) proposed a DRTO of solar 
thermal plant including thermal storage also using GAMS, 
combined with a detailed simulation model of the real 
plant in Matlab. 

1.2 Purpose of this work 
Dynamic optimization with Optimica requires dynamic 

models of the thermal plant formulated with continuous 
equations; discontinuities would be hardly interpreted by 
the time discretization method (collocation method) used 
by OCT. The objective of this research work is to develop 
a library in Modelica compatible with Optimica to model 
a thermal plant composed of a solar thermal field, a heat 
pump, and a thermal energy storage as shown in Figure 1. 
Modelica libraries already exist and model some of the 
components of thermal plants, but either are not 
compatible with Optimica or have too complex fluid 
modeling, which hinders convergence of the optimization. 

This library allows to model and dynamically optimize 
several plant layouts using the modularity of Modelica. 

First, we will present the library and the models used 
for each component of the thermal plant, then we will 
discuss the simulation results, and finally present the 
optimization methodology and the first optimization 
results. 

2 Library 
The library is developed in Modelica language using 

Modelon Impact software. 
Each main component of the library and associated 

controller will be detailed in the following sections. The 
controllers will be used to initialize the optimization 
problem as detailed in section 4. 

2.1 Hydraulic representation and interfaces 
Two different fluids will be used in this library, water 

on storage and process side, and a glycol-based water 
solution on solar side. Glycol-based water solution is used 
to avoid frosting inside the solar field during winter (in 
European countries). 

To simplify modeling, the only hydraulic parameters 
considered in this library are temperature and mass flow 
with constant fluid properties. Density 𝜌 and specific heat 
capacity 𝐶𝑝 only vary of few percents over the operating 
temperature range (40 to 90°C). The main impact of those 
hypotheses is on the viscosity of the glycol-based water 
solution, which is varying a lot over the operating 
temperature range. To further simplify and ensure 
optimization convergence, pressure loss is not modeled 
here. This hypothesis leads to inexact electricity 
consumption of the pump on solar side. However, as the 
main electricity consumption is from the heat pump, 
around 15 times more than the solar pump in the plant 
studied (based on Newheat’s proprietary plant design 
tool), it will only lead to a small error in the overall 
electricity consumption. 

The Modelica connectors used in this library are 
propagating only temperature and mass flow of the fluid. 
The mass flow is generated by the pump and is then 
propagated through each component of the hydraulic loop.  

2.2 Solar Field (SF) 
The solar thermal collector is the equipment used to 

transform solar radiation into heat. The collectors 
modeled here are Flat Plate Collectors (FPC). They 
provide heat at low temperature (below 100°C). Figure 2 
shows the main components of the FPC and how it works.  

 
Figure 2. Flat plate collector 

Solar Field 

Solar Pump 

Recirculation 
Valve 

PHEX 
TTES Heat Pump 
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To process 

From process 

Figure 1. Typical heat plant assembly 
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The solar field is usually composed by several parallel 
loops of collectors, and each loop is composed by several 
collectors in series. This layout is described in Figure 3. 

 
Figure 3. Solar field layout 

2.2.1 Model 

The model follows the standard ISO/FDIS 9806:2017 
(International Standard 2017), using the quasi-dynamic 
equation of solar thermal collectors. This standard 
determines characteristic parameters for each collector 
(𝜂, 𝑐ଵ, 𝑐ଶ and 𝑐ହ in our model). 

 
Figure 4. Solar field model 

The whole solar field is modeled as an equivalent panel 
with 𝐴𝑟𝑒𝑎 equal to the whole solar field area, assuming a 
uniform distribution between each panel loop of the solar 
field, whose power is 𝑄ௌி

̇ .  
The model in Figure 4 is described by equations 

(1)(2)(3), with 𝐺𝑇𝐼 the global irradiance received by the 
collectors, �̇� the mass flow inside the solar field, 𝑇 
the ambient temperature, and 𝑇 , 𝑇௨௧ , 𝑇  the inlet, 
outlet and mean temperatures of the solar field. 

𝑄ௌி
̇ = 𝐴𝑟𝑒𝑎 (𝜂 𝐺𝑇𝐼 − 𝑐ଵ (𝑇 − 𝑇) −

𝑐ଶ (𝑇 − 𝑇)ଶ − 𝑐ହ
ௗ ்

ௗ௧
) 

(1) 

𝑄ௌி
̇ = �̇� 𝐶𝑝 (𝑇௨௧ − 𝑇) (2) 

𝑇 =
𝑇 + 𝑇௨௧

2
 (3) 

2.2.2 Control 

In most solar thermal plants, the outlet temperature of 
the solar field is controlled to follow a temperature 
setpoint which could vary within the year. This 
temperature is controlled thanks to the mass flow inside 
the panels. Thus, the mass flow to be provided by the solar 
pump is calculated in the simulation to get the temperature 
setpoint at the outlet of the solar field by solving equations 
(1)(2)(3) without the differential term, as standardly done 
in solar thermal plants. 

2.3 Plate Heat Exchanger (PHEX) 
A heat exchanger is needed to transfer heat from the 

solar field loop (filled with glycol-based water) to the 
storage and supply loop (filled with water). PHEX are 
used in most solar thermal plants operating at low 
temperature (below 100°C). 

2.3.1 Model 

 
Figure 5. Plate Heat Exchanger model (icon from DLR 

ThermoFluid Stream Library) 

PHEX in Figure 5 is modelled with constant efficiency 
(𝜀ுா between 0 and 1, a value of 0.9 is used to match 
Newheat’s plants data) in equation (4) and is used to have 
the heat capacity flow ratio equals to 1 in equation(5). 

�̇� = 𝜀ுா �̇�ଵ 𝐶𝑝ଵ (𝑇ଵ, − 𝑇ଶ,) (4) 

𝑅 =
�̇�ଵ 𝐶𝑝ଵ

�̇�ଶ 𝐶𝑝ଶ
= 1 (5) 

The energy conservation gives those latest equations to 
get the outlet temperatures: 

�̇� = �̇�ଵ 𝐶𝑝ଵ (𝑇ଵ, − 𝑇ଵ,௨௧) (6) 

�̇� = �̇�ଶ 𝐶𝑝ଶ (𝑇ଶ,௨௧ − 𝑇ଶ,) (7) 

2.3.2 Control 

The mass flow on side 2 will be computed to always 
respect the equality of the two heat capacity flows as in 
equation (5). 

2.4 Tank thermal energy storage (TTES) 
TTES is an essential element of solar thermal plants, it 

allows desynchronizing solar heat production and process 
heat demand, as the heat production depends on a 
fluctuating solar irradiance. During the charge phase the 
solar field provides heat to the tank (cold water from the 
bottom is warmed up by the solar field before coming back 
to the top of the tank). Conversely, during the discharge 
phase the tank provides heat to the process (hot water from 
 the top of the tank transfers heat to cold water coming 
from the process). 

The tank used in this work is an insulated water tank. 

2.4.1 Model 

Different tank models are available in the literature 
(Dumont et al. 2016). The model used in this work is a 
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one-dimensional model called Multi-Node. Tank is 
vertically discretized in n layers (or nodes) with uniform 
temperature, considering a constant and incompressible 
volume of water in the tank (Figure 6).  

 
Figure 6. Spatial discretization of TTES (Scolan et al. 2020) 

The equation governing the stratified thermal model for 
conduction and convection is the energy equation (8) 
(Hawlader et al. 1988). 

డ்(௫,௧)

డ௧
+ 𝑣 

డ்(௫,௧)

డ௫
= (𝛼 + 𝜖௧) 

డమ்(௫,௧)

డ௫మ +
 

ఘ  ௌ
 (𝑇(𝑡) − 𝑇(𝑥, 𝑡)) 

(8) 

Where 𝑇(𝑥, 𝑡)  is the storage fluid temperature 
dependent on height 𝑥 and time 𝑡, 𝑣 the flow velocity, 𝛼 
the thermal diffusivity, 𝜖௧ the diffusion coefficient due to 
turbulent mixing caused by buoyancy effect, 𝑈 the overall 
heat transfer coefficient, 𝑆 the tank cross-sectional area, 
and associated 𝑃 perimeter. 

The tank is discretized into n nodes from equation (8) 
using a finite difference method (Scolan et al., 2020). 
Each layer is exchanging heat with its neighboring, spatial 
derivatives being then expressed by second order finite 
differences. 

In the studied heat plant, solar heat and heat pump could 
lead to a temperature inversion in the tank (an upper layer 
which is colder than a lower one). It generates a mixing 
flows called buoyancy effect or plume entrainment 
(Hawlader et al. 1988). A model of buoyancy was 
implemented in Modelica IBPSA library (IBPSA 2013). 
Based on IBPSA model we implemented an equivalent 
model computing �̇�௩, as a mixing mass flow between 
layer i and layer i-1 following equations (9)(10)(11). 

𝑇ௗ, = 𝑇 − 𝑇ିଵ (9) 

�̇�௩, = ൜
𝑧 𝑇ௗ, , 𝑇ௗ() ≥ 0

0, 𝑇ௗ() < 0
 (10) 

𝑧 =
𝑚௬

𝜏. 1𝐾
 (11) 

where 𝜏 is a time constant for mixing. 

2.5 Water-to-water Heat Pump 
The first heat pump used in this work is a water-to-

water compression heat pump.  

Heat pump could be used in several ways in a thermal 
plant. In this work, as shown Figure 1, the solar heat stored 
in the tank is used as cold source (evaporator side); the 
condenser side is warming up the cold water coming from 
the industrial process. 

2.5.1 Model 

 
Figure 7. Heat pump model 

To model the heat pump, we need a simplified model 
because detailed one would be too complex for 
optimization and prevent convergence. We decided to 
neither model the refrigerant fluid inside the heat pump 
nor its dynamics. 

The heat pump is modeled using Coefficient Of 
Performance (COP) modeling with evaporator and 
condenser temperatures mapped on a datasheet. The heat 
pump can be used at partial load. We first assume that 
COP does not vary with the load of the heat pump. 

• Energy conservation: 

�̇�ௗ = �̇�௩ + �̇�  (12) 

�̇�ௗ = �̇�ௗ  𝐶𝑝ௗ ൫𝑇ௗ,௨௧ − 𝑇ௗ,൯ (13) 

�̇�௩ = �̇�௩ 𝐶𝑝௩ ൫𝑇௩, − 𝑇௩,௨௧൯ (14) 

• COP modeling: 

The COP is defined as: 

𝐶𝑂𝑃 =
�̇�ௗ

�̇�

 (15) 

We model the COP as a polynomial expression of 
temperature lift between evaporator and condenser. This 
method is used by Fischer et al. (2017) and Ruhnau et al. 
(2019). 

𝐶𝑂𝑃 = 𝑎ଶ 𝛥𝑇௧
ଶ + 𝑎ଵ 𝛥𝑇௧ + 𝑎  (16) 

𝛥𝑇௧ = 𝑇ௗ,௨௧ − 𝑇௩,  (17) 

Coefficients 𝑎 , 𝑎ଵ  and 𝑎ଶ  are determined using the 
datasheet of the heat pump at full load. 

• Compressor modeling: 

The compressor is modeled with a constant efficiency 
𝜂 and its available power �̇�,௫ depends on the 
temperature of the fluid inside him. Fischer et al. (2017) 
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propose to consider only evaporator temperature to 
determine the available power. 

𝜂 =
�̇�

𝑃,

 (18) 

�̇�,௫ = 𝑏ଵ 𝑇௩, + 𝑏  (19) 

Coefficients 𝑏  and 𝑏ଵ  are determined using the 
datasheet of the heat pump at full load. 

Partial load y is defined as below: 

𝑦 =
 �̇�

�̇�,௫

 (20) 

The electric power of the compressor is considered as 
an expenditure in the heat plant operation. 

2.5.2 Control 

To model the COP, we used specific working 
conditions. All operating points are usually given with a 
constant temperature difference between the inlet and 
outlet of evaporator and condenser. We also want to be 
able to control the evaporator and condenser temperatures. 

To control the temperature difference, we need to add a 
pump, and to control the temperature, we need to add an 
ideal three-way valve, on each side as shown Figure 8. The 
valve position and the mass flow are ideally controlled to 
get the temperature setpoints (this means specification 
equations are added to the system to be solved). 

 
Figure 8. Heat pump with recirculation loop model 

The heat pump is turned on when the cold source is 
warm enough (above the minimal temperature accepted at 
evaporator) and the warm source is cold enough (below 
the maximal temperature accepted at condenser). 
𝑇ௗ,௨௧ and y will be computed to follow heat demand 
temperature and mass flow. 

2.6 Pump 
The electricity consumption of the pumps will be 

considered as an expenditure in the heat plant operation. 
Pumps and heat pump are the main operating cost of the 
plant.  

2.6.1 Model 

The electricity consumption of a pump is determined by 
equation (21) where 𝑃,௫  is the electric power 
measured on the real pump at its maximal mass flow 
�̇�௫. 

𝑃 = 𝑃,௫  ൬
�̇�

�̇�௫

൰
ଷ

 (21) 

2.6.2 Control 

The pump works as a mass flow generator, it directly 
provides the mass flow desired. It does not need specific 
control. 

3 Simulation results 
In previous section, all the models have been detailed. 

They need now to be validated with experimental results 
or datasheet, before simulating a full plant. 

3.1 Validation 
All models (except heat pump) are compared to 

measurement from solar thermal plants operated by 
Newheat. For solar field and heat exchangers we used data 
from Solthermalt, a plant owned by Kyotherm providing 
heat to a malthouse (Newheat 2020) in Issoudun, France. 
Tank model has been compared to the one build in 
Lactosol project, a solar plant providing heat to a whey 
powder production site (Newheat 2023) in Verdun, 
France. 

Following sections show the result of comparison 
between the model and the measurements. 

In figures below, time of 0.0 day corresponds to 12AM, 
and 0.5 day to 12PM.  

3.1.1 Solar Field 

 
Figure 9. Solar field validation 

Figure 9 shows the solar global tilted irradiation and the 
outlet temperature of a 5000 m² solar field during three 
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days. Inlet temperature and solar irradiation 
measurements are coming from Solthermalt plant. 

The model fits quite well to the measurements except 
during night periods. The inlet and outlet temperature 
sensors are in an insulated pipe inside a building; 
therefore, they do not decrease to the ambient 
temperature. In the model, the solar field mean 
temperature decreases to ambient temperature when there 
is no irradiation. As ambient temperature is around 10°C 
and measured inlet around 30°C (instead of 10°C if pipes 
were not insulated), the outlet is logically computed to        
-10°C to keep the mean of the inlet and outlet 
temperatures at 10°C. Since there is no mass flow during 
this period, heat produced by the solar field is not 
impacted. 

3.1.2 Plate Heat Exchanger 

 
Figure 10. PHEX validation – solar side temperature 

 
Figure 11. PHEX validation – storage side temperature 

Figure 10 and Figure 11 show the inlet and outlet 
temperature of the plate heat exchanger between the solar 
loop and the storage. Measurements are coming from the 
same plant and the same days as for the validation of the 
solar field. 

Same as previous section, the model fits well to the 
measurements except when the solar and storage pumps 
are off. 

3.1.3 Tank thermal energy storage  

Measurements are coming from Lactosol plant. A 
3000 m3 insulated water tank is installed in this solar plant 
to buffer the heat provided by the solar field and the 
consumption of the whey powder production site. This 12-

meter-high tank is instrumented with 12 temperature 
sensors (about one every meter). 

Two models are simulated and presented, one with 12 
layers in Figure 12 and one with 60 layers in Figure 13. 
Temperature sensors are compared to the temperature at 
equivalent height in the simulation. 

The measurement period is composed of a 9-hour 
charge phase and an 8-hour discharge phase separated by 
a 7-hour standby phase.  

On the one hand, simulation fits better to measurement 
with 60 layers than with 12. A higher number of layers in 
the tank allows indeed higher temperature gradients which 
are needed to represent the thermocline zone inside the 
tank. But on the other hand, each layer is adding a state 
variable to the model and then increasing the size of the 
optimization problem. 

 
Figure 12. TTES validation – 12 layers 

 
Figure 13. TTES validation – 60 layers 

The number of layers will have to be selected carefully 
to model with a satisfactory accuracy without adding too 
much complexity to the optimization problem. For 
optimization we decided to set the number of layers at 10 
to reduce the size of the optimization problem. 

3.1.4 Heat pump 

Figure 14 below compares the COP at full load between 
the model and the datasheet of an industrial heat pump 
(WWHS ER3b) made by Ochsner Energie Technik. 
Temperatures are given for the secondary medium (water) 
and not the primary medium (refrigerant). 

The model fits well the datasheet for mean temperatures 
but leads to a 6.6% error for cold evaporator temperature. 
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The model overestimates a bit the COP, which results in 
an underestimation of the electricity consumption. 

 
Figure 14. Heat pump COP validation 

All component models are now validated separately. 
The next step is to simulate a full plant with controllers. 

3.2 Full plant simulation  
The simulated plant is a virtual plant composed of a 

solar field of 14248 m², a plate heat exchanger with a 
constant efficiency of 0.9, a 3000 m3 tank, and a 3.1 MW 
heat pump. The layout of the plant is described in Figure 
1. The heat pump is connected to the tank on the 
evaporator side while the condenser side is connected to 
the process. 

The heat consumer is represented with a constant heat 
demand (constant return temperature, and constant mass 
flow and temperature setpoints). The plant is controlled by 
the expert rules defined in section 2. 

The simulation runs over two spring days, the first one 
is cloudy and the second one sunny; Figure 15 represents 
the global irradiation of those two days. An optimization 
of the control of this plant will be performed on the same 
days in section 4.3. 

 
Figure 15. Full plant simulation - Global Tilted Irradiation 

Inlet and outlet temperatures of the solar field are 
presented in Figure 16. The setpoint given to the solar 
field is 53°C. The outlet of the solar field is following well 
the setpoint except for the second day where the 
irradiation is too strong to limit the outlet temperature 
(because the solar pump is at its maximum speed as it can 
be seen in Figure 17). 

 
Figure 16. Full plant simulation - Solar field temperature 

 
Figure 17. Full plant simulation - Mass flows 

The tank is discretized in 10 layers (layer 1 is the top 
layer and layer 10 is the bottom layer). The first day is too 
cloudy to fill the tank completely, while the second day 
allows filling the tank at higher temperature (Figure 18). 
Evaporator outlet temperature is warmer than tank bottom 
temperature during the second day, which homogenizes 
the temperatures of layers from 3 to 10. 

 
Figure 18. Full plant simulation - Storage temperatures 

 
Figure 19. Full plant simulation - Heat pump temperatures 

Session 1-C: Applications of Modelica for optimization and optimal control 1

DOI
10.3384/ecp20495

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

101



Heat pump temperatures are shown in Figure 19. Heat 
pump is turned on when the top tank layer temperature 
exceeds the minimal temperature accepted at evaporator 
inlet. We can see in Figure 17 when the heat pump is on 
(supplied mass flow at 15kg/s). Finally, the evaporator 
temperature is controlled to be as high as possible while 
staying below its maximum (55°C). 

The plant behaves as expected with validated models. 
We developed and validated a library to simulate 
renewable thermal plants. The next objective is now to 
optimize control variables and see how behave the models 
with optimization solver. 

4 Optimization 
Initial optimization presented in this paper is an offline 

optimization. It means that the optimizer is not yet 
connected to the real plant (or a highly detailed model). 
The goal is to try to optimize the plant in typical days and 
to define the ideal optimization sequences. Once the 
offline optimization is working well enough, it will be 
plugged to the real plant to try real-time optimization 
(optimization launched every hour considering the 
changes in the system states and the updated forecasts). 

4.1 Tools 
The tool used for optimization in this research work is 

Optimica Compiler Toolkit (OCT) under Modelon license 
for academic and commercial use. This tool is coming 
from JModelica.org which became OCT since 2020. 
Magnusson and Åkesson (2015) presented how 
JModelica.org is working. OCT workflow is described in 
Figure 20. 

The first step is to describe the continuous models of 
the system to optimize in Modelica language. Optimica 

language (which is an extension of Modelica language) 
will be then used to describe the constraints and objectives 
of the optimization problem. 

Modelica and Optimica models are transformed into 
optimization problem in the form of DAEs (Differential-
Algebraic system of Equations), which is sent to CasADi, 
before being discretized via orthogonal collocation. 
Finally, the discretized optimization problem is sent to the 
solver (IPOPT) which will optimize the control variables 
of the system. 

4.2 Methodology 
The objective of optimization is to maximize heat 

supplied by the thermal plant, while minimizing 
operational costs. In this first optimization, this equates to 
maximizing global profit of the plant, electricity price 
assumed to be fixed. The control variables to be optimized 
are the outlet temperature of the solar field, evaporator 
outlet temperature, and the activation of the heat pump. 

The optimization is composed of several stages detailed 
in Figure 21: 

• An initial simulation of the plant is done with a 
control strategy, which would be implemented in a 
real plant (expert rules detailed in section 2). This 
simulation provides the optimizer an acceptable 
solution, which is the starting point of the optimizer.  

•  Several optimizations are done successively 
releasing degrees of freedom. Each result is 
initializing the next optimization. Last optimization 
result (with all degrees of freedom together) is then 
used to get optimal trajectories for several setpoints 
of the plant. This iterative approach was chosen to 
improve convergence of the optimization, otherwise 
too complex to be solved directly. 

Figure 21. Optimization methodology 

Figure 20. Optimica Compiler Toolkit workflow 
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• Finally, to perform DRTO, the controller of the real 
plant (or a highly detailed model) will use the 
optimal setpoints to operate the plant exposed to real 
disturbances. This part is not described in this paper. 

4.3 First optimization results 
In this section is presented the first optimization results 

using the developed Modelica library. The plant 
optimized is the one presented in section 3.2. Each figure 
below compares the standard control strategy used in 
section 3.2 (named sim) and optimized control (named 
optim). 

The optimization variables are the outlet temperature of 
the solar field, evaporator temperature, and the activation 
of the heat pump. 

One important thing to remind is that the efficiency of 
the heat pump (COP) is increasing with evaporator 
temperature (Figure 14). 

 
Figure 22. Mass flows of each hydraulic loop. The time scale 
reads as follow (likewise for all following graphs): 0.5 day = 

12PM, 1.0 day = 12AM. 

Figure 22 shows the mass flow supplied to the process 
(coming from the heat pump) shifting from the first day 
(around 0.5 day) to the first night (around 1.0 day), 
knowing that heat demand of the process is considered 
constant. This suggests that the heat pump does not turn 
on as soon as the tank is filled with enough hot water but 
rather is led to wait for the night. It allows the tank to rise 
in temperature during the first day (Figure 23). 

 
Figure 23. Storage Temperature 

Figure 24 shows that the first hours of the night the heat 
pump is turning on with a higher evaporator temperature 

(around 42°C) than the rest of the night (around 34°C), 
which allows to have a better COP the first hours of the 
night. 

 
Figure 24. Heat pump evaporator temperature. Tin evap sim 

and T from tank overlap across the whole time range. 

Figure 25 shows that the solar field outlet temperature 
is different for the two days. The first day, it is lower than 
the simulation, it leads to less heat losses in the solar field. 
But the second day this temperature is much higher. This 
could be explained by the fact that at the end of the second 
day the tank is full enough to provide heat continuously to 
the heat pump in both cases: simulation and optimization 
(Figure 23). Then, the higher is the solar field temperature, 
the higher the temperature could be at the evaporator, and 
thus the COP. It also means that, the optimizer does not 
care about what could happen after the optimization time 
horizon: we could imagine a third cloudy day which 
would need to have a tank more filled (with lower 
temperature) at the end of the second day than the 
optimization result. This example shows that the result of 
the optimization may depend on the considered time 
horizon. Further, to prevent the optimizer to empty the 
tank at the end of optimization and closer emulate the 
behavior of a real system, tank state could be constrained 
to approach the final value obtained through the initial 
simulation. 

 
Figure 25. Solar Field Temperature 

Finally, Figure 26 shows the instant profit of the plant, 
depending on the heat supplied and electricity 
consumption. We can also see the shift of the heat 
production time from the first day to the first night.  
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Figure 26. Instant value of the plant 

Table 1 gives the improvement provided by the optimizer. 
The gain seams huge (+21.4% of profit), but it is still not 
considering what is happening after the two days. 

Table 1. Plant economic results for 2 simulated days 

 Electric consumption 
(k€) 

Heat 
supplied 
(k€) 

Profit 
(k€) 

Simulated 15.2 20.6 5.41 

Optimized 18.8 25.4 6.56 

Gain + 23.8% +23.2% +21.4% 

5 Conclusion and outlook 
To conclude, we developed and validated a library 

which is compatible with Optimica and models a 
renewable thermal plant. Then we obtained interesting 
dynamic optimization results of the overall system. 

However, the dynamic optimization result is not yet 
satisfactory since it does not consider the necessity to be 
able to provide heat after the optimization end time. It 
could lead to non-optimal results in the real plant, even if 
only the first hours of the optimization result would be 
sent to the real plant controller as the optimization will be 
updated every hour. It also points out the need to perform 
an offline dynamic optimization based on forecasts on a 
long enough time horizon before starting DRTO which 
will correct the control variables trajectories taking into 
account real disturbances. The final state of the tank could 
be considered in the optimization objective to get a better 
result. 

We could also consider stratification indicators into the 
optimization objective, because stratification inside the 
tank is affecting a lot the efficiency of the storages. Some 
research works developed indicators to quantify the 
quality of stratification in thermal storages. 

Equipment modeling could also be improved. 
Efficiency of the PHEX is considered constant. An 
operating point tabular efficiency could make PHEX 
model more accurate, with minimal added complexity. A 
slightly more complex model of COP could decrease error 
of the COP observed of the heat pump. The current storage 
model loses accuracy due to low discretization. Other 

storage models could be considered to either reduce the 
number of state variables or improve accuracy.  

Once the offline optimization will be robust enough, 
this work will be extended to real-time optimization of the 
thermal plant. A highly detailed model describing the 
plant will be needed, so that the optimizer can be run and 
finetune the plant setpoints in real-time. 
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