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Abstract
In this work, we address challenges associated with
multi parameter calibration of complex system mod-
els of high computational expense. We propose to re-
place the Modelica Model for screening of parameter
space by a computational effective Machine-Learning
Surrogate, followed by polishing with a gradient-
based optimizer coupled to the Modelica Model.
Our results show the advantage of this approach com-
pared to common-used optimization strategies. We
can resign on determining initial optimization val-
ues while using a small number of Modelica model
calls, paving the path towards efficient global opti-
mization. The Machine Learning Surrogate, namely
a Physics Enhanced Latent Space Variational Au-
toencoder (PELS-VAE), is able to capture the impact
of most influential parameters on small training sets
and delivers sufficiently good starting values to the
gradient-based optimizer.
In order to make this paper self-contained, we give a
sound overview to the necessary theory, namely Vari-
ational Autoencoders and Global Sensitivity Analysis
with Sobol Indices.
Keywords: Sensitivity Analysis, Sobol-Indices, Varia-
tional Autoencoders, VAE, Physics-Enhanced Latent
Space Variational Autoencoder, PELS-VAE, Model
Calibration, Global Optimization, Machine Learning
Surrogate

1 Introduction
To enable model based investigation of ”real world”
technical systems the underlying Modelica system
models can quickly grow in size and computational ex-
pense. When they are applied in extensive parameter
studies, in particular for model calibration or model
based optimization, computation becomes a resource
intensive task: if the objective function cannot be de-
composed into submodel dependencies but depends
on the model as a ’whole’, then also the whole model
needs to be simulated.

In practice optimization based on such models is
limited to a few varied parameters and to local, gra-
dient based optimization algorithms. If the mod-
eller has sufficient knowledge on the model, reason-

able choices of relevant parameters as well as start-
ing points for the local optimization algorithm can
be made from experience. But for complex models
this empirical approach may suffer from overlooking
parameters and the optimization algorithm running
into local minima of the objective function due to the
chosen starting points in parameter space.

In this paper we address these issues with a com-
bined approach: A Machine Learning Model, namely
a Physics Enhanced Latent Space Variational Au-
toencoder (PELS-VAE) (Martínez-Palomera, Bloom,
and Abrahams 2020; Zhang and Mikelsons 2022) is
trained on data generated by the Modelica model.
It captures the dependencies of model output to the
most influential parameters, determined by a preced-
ing sensitivity analysis (Sobol 1993), while requiring
a limited set of training data. This surrogate is com-
putationally cheap, and can be used to apply a global
optimization algorithm that relies on a large number
of model runs. After this global screening, a subse-
quent local optimization based on the original physi-
cal model (polishing) is performed.

Figure 1. Schematic of standard single office, taken from
(Freund and Schmitz 2021)

We choose to test our approach on a computational
inexpensive, thermal Modelica model of a single office
(Figure 1) with measurement data available for cali-
bration (Freund and Schmitz 2021). Like this, data
generation for the machine learning models is fast and
we are able to focus on the application of the PELS-
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VAE for parameter calibration, while being able to
cross check all obtained results against a brute force
global optimization based on the original model.

Various Optimization Tools suitable for Model-
ica models already exist, like the Dymola Opti-
mization Library, GenOpt (University of Califor-
nia 2023), ModestPy for Parameter Estimation with
FMUs (Arendt et al. 2018), AixCaliBuHA (Wüllhorst
et al. 2022) or ModelOpt (XRG Simulation GmbH
2023). All of these tools vary in detail, but build
on common-known global and local Optimization Al-
gorithms like Particle Swarm Optimization, Genetic
Algorithms, Sequential Least Squares or Nelder-Mead
Algorithm and do not generate surrogate models.
In contrast to this, surrogate based optimization aims
to represent computationally expensive models by the
use of a simpler surrogate to significantly save compu-
tational resources. Different kinds of surrogate mod-
els like linear regression, support vector regression,
radial basis functions or kriging (Gaussian process re-
gression) are commonly used (Bhosekar and Ierapetri-
tou 2018). Artificial Neural Network as a generaliza-
tion of regression models are also a possible surrogate
choice. A promising subclass is Bayesian Optimiza-
tion, which consists of a probabilistic surrogate model
and a sequential called loss function that enables op-
timal, active sampling of the objective function that
should be replaced (Shahriari et al. 2016). Bayesian
Optimization proved efficient in parameter calibra-
tion of a Modelica-modeld HVAC-system (Martinez-
Viol et al. 2022). In comparison to these techniques,
our approach replaces the actual physical model for a
fixed scenario, not the cost function of an optimiza-
tion objective.

This paper is organised as follows: section 2 in-
troduces the used Modelica model of an office room,
the PELS-VAE architecture and training, as well as
the applied optimization techniques. In section 3 we
present the results of applying our approach for cali-
bration of the Modelica model. Finally we summarize
our findings and give an outlook to present and fu-
ture work in section 4. In Appendix B, we sketch the
applied global sensitivity analysis.

2 Methods
2.1 Calibration Problem
The modelled thermal zone is a room of a large-scale
office-building (46500 m2) and high energy efficency
(primary energy demand < 70kWhm−2) (Freund and
Schmitz 2021). The buildings operation has been ex-
plored in previous research projects ((Niemann and
Schmitz 2020), (Duus and Schmitz 2021), (Freund
and Schmitz 2021)). For example, Model-Predictive-
Control (MPC) was used to enhance thermal user-
comfort and decrease energy demand (Freund 2023).
MPC requires accurate models which can be obtained

by calibrating Modelica-Models with measurement
data.
A scheme of an office is shown in Figure 1. Heat is
supplied by thermal activated ceilings (TAC), i.e. by
circulating warm water through pipes in the concrete
core of the slabs, and mechanical ventilation with pre-
heated supply air. The large area of the ceilings allows
the usage of heat-pumps for low temperature heating,
while the high thermal capacity of the concrete slabs
enables considerable time delay between heat supply
to the ceiling and heat supply to the room. For this
building, measurement data is recorded since 2014 at
more than 1100 sensors every minute. 32 office spaces
are equipped as reference zones with various sensors.
(Freund and Schmitz 2021)
For this project, we use the same data than in prior
studies (Freund 2023). The calibration target is to fit
the model output TAir to the recorded measurement
TAir,meas by adjusting the model parameters θ within
their bounds[θ−,θ+], employing an error metric such
as the Mean Squared Error (MSE):

min
θ

1
T

∑
(TAir(ti)−TAir,meas(ti))2 (1)

subject to θ− ≤ θ ≤ θ+

which is in general a constrained, nonlinear optimiza-
tion problem.
The recorded data consists of several timeseries that
serve as an input to the physical model of the thermal
zone. The model inputs are outside air temperature
TA, supply temperature of the corresponding TAC
heating circuit TSup,TAC, boolean signal of supply
ySup,TAC, supply temperature of mechanical ventila-
tion TSup,MV, boolean signal of supply ySup,MV, global
solar radiation and occupancy state. For the heat ex-
change at sun-exposed walls, an equivalent outdoor
air temperature TA,Eq is used. Internal heat gains by
persons, lighting or other equipment Q̇Int are calcu-
lated using the by constant heat gain factor multi-
plied with an heuristic based on measured occupancy
state and the buildings electric energy consumption
load profile. Internal and external heat gains are split
into convective parts acting on the air volume and
radiative parts acting on the internal masses. We
use data of the identification-timeframe 21.02.2018 -
14.03.2018 (Freund 2023).
2.1.1 Gray-Box Model
In this work, a Gray-Box Model introduced by (Fre-
und and Schmitz 2021) shall be calibrated. Gray-
Box Modeling referes to a modeling approach, where
a physical model is combined with data-driven ap-
proaches. Physical knowledge is used to derive a
model structure, while parameters are identified using
measurement data (Kathirgamanathan et al. 2021).
The gray-box model (Figure 2) consists of seven re-

sistances and four capacities (R7C4 model). The four
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Figure 2. RC network representation of gray-box zone-
model with 7 Resistances and 4 Capacitors (R7C4) (Freund
and Schmitz 2021).

state variables TW (external wall temperature), TAir
(indoor air temperature), TInt (temperature of inter-
nal masses) and TTAC (TAC core temperature) cor-
respond to the four thermal capacities CW,CAir,CInt
and CTAC.

Based on the EMPA model (Koschenz and Lehman
2000), a simplified model for the TAC is used consist-
ing of two resistances RTAC1 and RTAC2. By assum-
ing equal room temperatures below and above the
thermoactive ceiling, the two heat flow paths to re-
spectively the room above and below the ceiling can
be transformed into a single heat flow path, resulting
in a R2C1 TAC model (Sourbron 2012).

The external wall is modeled with two resistances
for the envelop (RW1 and RW2) and one resistance
for the glazing RG. Mechanical ventilation is repre-
sented with one resistance RMV. The resistance RInt
describes the heat exchange between the air volume
and the internal masses. Heat exchange between ad-
jacent zones is neglected, since the heating control is
for all zones of a building section the same.

Consequently, the simulation model has 11 param-
eters (see Table 1). Additionally, we introduce the
parameter fsol to tune the fraction of the window
projected global radiation flowing to the office and the
parameter Q̇Int as heat gain factor of the heuristic oc-
cupancy signal. The initial temperature TTAC(t = 0)
of the TAC as the mass with the highest capacity is
introduced as a parameter to the optimization prob-
lem. Estimated values for these parameters are ob-
tained by using the documentation of constructional
elements and values from literature. These estimates
are used to generate training data for the autoencoder
models, which is for most parameters performed in
the range of 1

5 to 5 times the estimated value. We
choose these broad ranges in order to account for sit-
uations, where little knowledge on the estimates is

available. In practice they should be narrowed as
much as possible by available information.

Table 1. Description of the 14 RC-Model Parameters and
Corresponding Parameters of the Modelica Model.

RC-Model Description Modelica
Model

CW Wall Capacity cExt1
CAir Air Capacity b
CInt Internal Masses cInt
CTAC Thermoactive Ceiling

(TAC) Capacity
cTABS

RTAC1 TAC Resistance Capaci-
ty/Room

rZone

RTAC2 TAC Resistance Pipe/-
Capacity

rPipe

RW1 Wall Resistance Out-
door/Capacity

rExt1

RW2 Wall Resistance Capaci-
ty/Room

rExt2

RG Window Resistance UWin
RMV Mechanical Ventilation VSup
RInt Internal Heat Exchange rInt
fsol Solar Gain Fraction fSol
Q̇Int Internal Heat Gains qIntOcc
TTAC(t= 0) Initial Value TTABSInit

The obtained model is exported by using the Func-
tional Mock-up Interface (FMI ) standard and used in
Python-Scripts with FMPy (FMPy 2023). We simu-
late with a time step of 1800 s.

2.2 Physics-Enhanced Latent Space
Variational Autoencoder

The general idea of Autoencoders is to encode data
of a dataset in a lower-dimensional compression that
is sufficient to represent the variation within that
dataset. For example, a collection of images of peo-
ple could be reduced to characteristics like gender,
hair color, skin color, pose etc. From this compres-
sion, data can be reconstructed with a decoder that
learned the influence on the compression of these at-
tribute variations to reconstruct an image from it. In
general, the lower-dimensional compression is said to
be in a "latent space", i.e. a space whose behavior is
hidden and cryptic to us. A Encoder-Decoder Neural
Network structure is an unsupervised learning tech-
nique. However, the representation of attributes in
latent space can be learned, i.e. by a neural network
(”Regressor”). By only using the Regressor and the
Decoder, new data can be generated, such that an
Generative Adversarial Network (GAN) is obtained.
A challenge is to chose an adequate dimension for
the latent space to prevent the network from just
memorizing the data (Jordan 2018a). Various tech-
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Figure 3. Physics-Enhanced Latent Space Variational Au-
toencoder (PELS-VAE). The time-series x is introduced
to the Encoder ψen, which transforms it to a latent-space
distribution with mean µ and variance σ, which can be
decoded by the Decoder ϕde by sampling z with the aux-
iliary Gaussian variable ϵ to reconstruct the time-series
as x̂ = 1

L

∑L
ϕde(z). The Regressor φre is trained simul-

tanously to predict the mean and variance of the latent
space distribution. As in (Martínez-Palomera, Bloom, and
Abrahams 2020), the physical parameters θ are introduced
to all models. (Zhang and Mikelsons 2022)

niques have been proposed for this regularization, and
a widely used approach is to learn probability dis-
tributions within the autoencoder structure, making
it an Variational Autoencoder (VAE). Hands-on ex-
planation for Autoencoders can be found in (Jordan
2018a), while for VAE in (Jordan 2018b).
Within this paper, we build on the implementation of
(Zhang and Mikelsons 2022) to predict time-series x
(i.e. our temperature trajectories), with its architec-
ture shown in Figure 3.

For the interested reader, a more detailed expla-
nation of the theory behind the Autoencoder and its
training loss function is provided in Appendix A.

2.3 Training Data Generation
To train the PELS-VAE model to mimic the be-
haviour of the physical model, i.e. learning the be-
haviour x(θ), the machine learning model needs to
be exposed to labeled training data (x|θ). Therefore,
we sample n times uniformly in parameter space:

θ ∼ U(θ−,θ+) (2)

and run the physical Modelica Model to get the pos-
terior x of θ. As the purpose of this paper is to de-
termine possible reduction in required simulations of
the physical model, we generate training sets with
different sizes in the range (32 to 4096). Validation

and test sets have a size of 320 samples. To make
results comparable, validation and test sets are the
same for all models. The validation set is used to
validate the model during the training process to se-
lect well-generalizing models and to early stop the
training if no further improvement is happening. The
test-set is used to determine the final performance of
the model, unbiased by the selection through the test
set.
The training data should cover well the parameter
space as well as the output space, which can be
checked by plotting the corresponding confusion plots
(combining every θi with each other) and plotting
all outputs of the physical model. Combining these
plots of the model outputs with available measure-
ment data, allows to make a first check if the de-
signed physical model is able to capture the observed
behaviour (see Figure 4).

2.4 Optimization-Based Parameter
Identification

This paper aims to calibrate a model by minimiz-
ing the Mean Squared Error (MSE) between the
model output and recorded measurements to deter-
mine a globally minimizing parameter combination.
An overview of the applied methods is provided in
Table 2 and discussed further below.

To demonstrate the superiority of our proposed
method over existing optimization techniques, we
combine a FMU of the Modelica model with se-
lected optimization methods from SciPy and com-
pare them with our introduced methods that use the
Physics-Enhanced Latent Space Variational Autoen-
coder (PELS-VAE).

The investigated methods that combine a SciPy op-
timizer with an FMU encompass scalar or vector-like
objectives, gradient-descent or non-gradient-descent
methods, and can be categorized as either local
or global optimization techniques. We anticipate
gradient-based optimizers to converge quickly and ex-
pect further improvements for the LS-TRF approach,
which utilizes residuals as the objective, as the opti-
mizer gains more knowledge about the optimization
step consequences compared to scalar objectives.
On the other hand, we consider Differential Evolu-
tion, a genetic algorithm (GA), a global optimization
technique, albeit with the drawback of requiring a
higher number of model evaluations.
All local techniques in this study necessitate ini-
tial values for the parameters, which may be chal-
lenging to derive in practical applications. To ad-
dress this, we combine each local technique with a
multistart approach, where the optimization is initi-
ated nstart times using starting values randomly dis-
tributed around the given initial parameter values.

Based on these evaluations, we propose to com-
bine a well-trained computationally cheap PELS-VAE
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Figure 4. Room temperature trajectories of measurement and training data with sample size n= 256, sampled uniformly
over parameter space θ ∼ U(θ−,θ+)

.

Table 2. Optimization methods used in this paper for calibration. If the objective is scalar, a MSE = µ(xsim −xmeas)2

is used as objective, if the objective is residual, the vector of squared residuals at the simulation time steps [(xsim(t0)−
xmeas(t0))2,(xsim(t0 + ∆t) −xmeas(t0 + ∆t))2, . . . ] is used as objective. For all techniques from SciPy, default settings
are used. Iterations are limited to reasonable values and tolerances are adapted to the FMU -settings.

Method Name Short Description Objective Gradient Scope
Methods from SciPy (Virtanen et al. 2020)

Powell Conjugate direction method, sequentially per-
forming one-dimensional optimization over an
iteratively updated set of direction vectors

Scalar No Local

Nelder-Mead Geometric operations (reflection, expansion,
contraction, compression) on a simplex of
points (Gao and Han 2012)

Scalar No Local

Sequential Least
Squares Program-
ming (SLSQP)

Iterative Method for nonlinear constrained
optimization that integrates constraints by
solving quadratic programming subproblems
(Kraft 1988)

Scalar Yes Local

Least Squares
Trust Region Re-
flective (LS-TRF)

Gradient-based algorithm, incorporating trust
region strategies and reflective boundaries to
improve convergence

Residuals Yes Local

Differential Evolu-
tion (Genetic Al-
gorithm)

Population-based algorithm evolving a popu-
lation of solution candidates with genetic op-
erations (e.g., mutation)

Scalar No Global

Methods introduced in this paper
Multistart first inital value θinit,0 = θinit,

following initial values j > 0 : θinit,j ∼ N (µ =
θinit,σ2 = 0.5(θ+ −θ−)), repeated until a com-
bination within the bounds (θ−,θ+) is found.

GA with PELS-
VAE

PELS-VAE coupled with a genetic algorithm Scalar No Global

GA with PELS-
VAE + Polish

Phase 1: PELS-VAE coupled with genetic al-
gorithm
Phase 2: Polishing Result by LS-TRF with
FMU of Modelica Model

Scalar Yes
(Phase 2)

Global
(Phase 1)
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neural-network (i.e. capable of evaluating 10000 pa-
rameter combinations in a few seconds on a GPU)
with a genetic algorithm to determine a parameter
set that achieves global optimization. Additionally,
we propose a 2-Phase approach in which the param-
eter combination determined by PELS-VAE coupled
with a genetic algorithm serves as starting point for a
polishing phase. The polishing phase employs the LS-
TRF algorithm coupled with the FMU of the physical
model to be calibrated. This approach is intended to
compensate for inaccuracies that may arise when re-
placing the physical model with a machine learning
surrogate model.

3 Results
3.1 Sensitivity Analysis
In order to evaluate the impact of different model pa-
rameters to the room temperature, we employ a sensi-
tivity analysis based on Sobol indices as described in
Appendix B. The result is shown in Figure 5, where
for each time step the Sobol indices are plotted. Obvi-
ously the impact of different parameters changes with
time: due to heating with TAC and air supply during
daytime the ”passive” building properties UWin and
rExt1 become less important.
This can be used in order to potentially limit the num-
ber of parameters in the overall analysis or in the
training of the Autoencoder, as parameter dependen-
cies with large impact are faster learned, that is less
training is required (see section 3.2). Often this will
be sufficient for the global phase 1 of the optimization
approach described in this paper (see section 3.3.3).

3.2 Autoencoder Training
The Autoencoder training was carried out using dif-
ferent numbers of samples n, a varied dimension of
the latent space (dim(zx)), and varied dimension of

the hidden layers. The analysis, shown in Figure 6,
was performed using the same test set (n = 320) for
all experiments.
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Figure 6. Hyperparameter variation (latent space dimen-
sion dimzx and dimension of hidden layers) over training
sets with different number of samples n, tested with same
uniformly sampled test set, all within [θ−,θ+]. The best-
performing model for each training dataset size is marked
by a star. (training performed for day 8-16 of identification
timeframe)

Firstly, the Mean Absolute Error (MAE) was ob-
served to decay with an increasing number of sam-
ples. Specifically, for 32 samples, the MAE was ap-
proximately 2, which decreased to around 0.07 for
4096 samples. Notably, with 1024 samples, the MAE
reached 0.1, and further quadrupling the sample size
only resulted in marginal improvements.

Secondly, models trained with different hyperpa-
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Figure 5. First order Sobol indices for model parameters, plotted ordered by mean value
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rameters show variation in MAE. Although at higher
numbers of samples the variations may be tolerable,
at n = 256 the influence of hyperparameter selection
lies in the range of 0.4 to 1.1 which might not be
appropriate.

Lastly, the dimension of the latent space (dim(zx))
was found to scale with the complexity of the time se-
ries. Although the model had 14 parameters, the best
latent space dimension are 64, 128, or 256. Reasons
for this assumption are that θ was also directly intro-
duced in the decoder and we found by inspection, the
worst performing models had low dim(zx).

Overall, we find that the influence of chosen hyper-
parameters changes the training outcome, although
its influence is limited, i.e. all hyperparameter sets
produced results in comparable ranges with no "fail-
ing" hyperparameter sets. We conclude from this,
that the Autoencoder training is quiet robust.

To further assess the performance of the Autoen-
coder, we have evaluated the prediction error using
test sets with varying variability. In the case of large
sample sizes n, the median lies at the midpoint of the
parameter space of each dimension, approximated as
θ̃i ≈ θi,++θi,−

2 with distance of ∆θi = θi,+−θi,−
2 to each

bound. To generate the test sets, we sample with dif-
ferent δ as follows:

θ ∼ U(θ̃ − δ∆θ, θ̃ + δ∆θ), δ ∈ 0,0.1, . . . ,1.0

We generate two kinds of test sets: A category in
that all parameters are varied and a category in
that only the six most important parameters (sub-
section 3.1, Figure 5) are varied. The Mean Abso-
lute Error (MAE) for these test sets, evaluated on
the models trained with the best-performing hyperpa-
rameters determined previously, is presented in Fig-
ure 7. For the following, we can exclude a discussion
about the numerical influence of the parameter value
magnitudes as all parameters are normalized by mean
and standard deviation before they are fed into the
Neural Networks.
First, we take a closer look on the variation of impor-
tant parameters ( 7a): We previously observed the
MAE in Figure 6 with a variability of δ= 100%. How-
ever, by reducing the variability and excluding the
border regions of the parameter space, the prediction
error of the Autoencoder decreases. For instance, in
the case of a training size of n = 32, the error is re-
duced from 0.8 Kelvin to approximately 0.6 Kelvin at
80% variability.

Figure 7 also includes the 90th percentile of the pre-
diction error. It is evident that certain predictions ex-
hibit considerably higher error than the mean predic-
tion error, which can pose challenges in the optimiza-
tion process, particularly with Autoencoder models
trained on smaller datasets. However, by reducing
the variability in the parameter space, the 90th per-
centile error also decreases.
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(a) Only important parameters sampled with δ, for non-
important parameters δ = 1.
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Figure 7. Mean Absolute Error on randomly sampled
test sets with different maximum deviations of parameter
combinations from the median value of the training data
(θi ∼ U(θ̃i − δ∆θi, θ̃i + δ∆θi)). The mean absolute error
over all time-series of a test set as well as the 90% quantile is
given for the best performing models trained with different
numbers of time series. (training performed for day 0-10 of
identification timeframe)

Secondly, an analysis is conducted to examine the
variation of all parameters, as shown in Figure 7b. In-
terestingly, it is observed that for small sampling sizes
(n = 32 to 128), reducing the variability δ leads to
an increase in the mean absolute error (MAE), while
this trend does not persist for larger sampling sizes.
This finding may initially seem counterintuitive, as
one might expect that when varying all parameters,
the MAE would decrease with overall less variabil-
ity, compared to varying only the important ones and
leaving the others unlimited. However, parameters
that are considered less important contribute less to
the observed variation in the output of the physical
model. Consequently, when training sets are small,
the Autoencoder faces challenges in capturing the in-
fluence of these less important parameters on the ob-
served trajectories. By limiting the variation of all
parameters to, for example, δ = 0.2, a larger propor-
tion of parameters resides in the inner part of parame-
ter space, which can be more difficult for the Autoen-
coder to learn with small training sets as the majority
of variance is produced by the influential parameters.
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Consequently, this results in an increase in the mean
absolute error.

From this analysis, we conclude that the Autoen-
coder performs better when predicting parameter
combinations θ that are more centered within the
training parameter space. When selecting the bounds
[θ−,θ+], it should be ensured that they are larger
than the parameter region where we anticipate the
calibrated parameter results to lie. Furthermore, for
small number of samples in the training set, the Au-
toencoder faces difficulties learning properly the in-
fluence of less influential parameters on the model
output, while learning the impact of the more influ-
ential. However, to integrate the influence of the less
influential parameters on the model output variation,
they should still be sampled during training data gen-
eration. This property of the Autoencoder enables to
resign on a Sensitivity Analysis before training it.

3.3 Model Calibration
In the following section, we present our findings
regarding the curve-fitting methods minimizing MSE
between model output and measurement outlined in
Table 2. This section is organized as follows: firstly,
we present the results obtained from the Optimizers
directly coupled to the Modelica Model’s FMU, along
with the corresponding multistart approach (refer
to Table 3), and gain insights to the uniqueness of
a solution. Secondly, we showcase the optimization
results achieved using the surrogate PELS-VAE
Model (see Table 4) and highlight the advantages of
our proposed method.

3.3.1 Direct Optimizer Coupling

First of all, one should keep in mind that the mea-
surement signal is prone to error which results from
measurement uncertainty of the temperature sensor
(≤ 0.5K (Freund 2023)), the data processing and the
position of the sensor in the room.
The calibration results obtained from the directly
coupled optimizer are presented in Table 3. The ma-
jority of methods achieve a final Mean Squared Error
(MSE) of approximately 0.01, although they vary sig-
nificantly in terms of required model calls. Among the
local optimizers, LS-TRF achieves the lowest number
of iterations, with 261 model calls using the given
initial value. SLSQP follows with 3-6 times higher it-
erations. The none-gradient optimizers Nelder-Mead
and Powell perform less efficiently, requiring 5000
model calls (limited by the predefined iteration limit)
with the given initial value. The notable difference
between SLSQP with a scalar objective and LS-TRF
with a vector-like/residual objective can be attributed
to the fact that the residual objective allows after cal-
culating the gradient for a more detailed considera-
tion of the consequences of optimizer steps.

When initial values are poorly known, global opti-

Table 3. Calibration Results of Methods which were
directly coupled with the Modelica Model’s FMU with
achieved MSEf (θopt).

Method model
calls

MSE

LS-TRF with initial guess 261 0.0117
SLSQP with initial guess 650 0.0149
LS-TRF with 16 starts 3486 0.0114
Nelder-Mead with initial guess 5000 0.0126
Powell with initial guess 5000 0.0881
LS-TRF with 32 starts 6311 0.0114
LS-TRF with 64 starts 12612 0.0113
SLSQP with 16 starts 18245 0.0117
Nelder-Mead with 16 starts 76483 0.0117
Powell with 16 starts 79120 0.0134
SLSQP with 64 starts 86322 0.0114
Nelder-Mead with 64 starts 286728 0.0110
Powell with 64 starts 319322 0.0125
Diff. Evolution with FMU 748020 0.0104
Nelder-Mead with 256 starts 1188496 0.0111

mization strategies help to find the global minimum
of a function. The Differential Evolution (Genetic)
Algorithm uses unsurprisingly a high number model
calls, namely 0.7 million. The introduced multistart-
approach also quickly scale the number of required
model calls, i.e. for the best performing algorithm
LS-TRF 6311 calls with 32 different initial values.

3.3.2 Uniqueness of Solution
To gain more insights into the uniqueness of the
solution to our optimization problem, a more detailed
analyis of the best-performing algorithm LS-TRF
was performed. To perform this a benchmark, a high
number of starts (256) was chosen. The identified
parameter combinations results were clustered with
K-Means Clustering around common centroids
(Pedregosa et al. 2011) with the 3 largest groups
depicted in 8a, while the 5% best solutions are shown
in 8b. From these results, we can infer two insights:
First, the optimization problem is ambiguous: one
parameter can compensate for the effect for another,
e.g. in 8b, a high capacity cExt1 of the external wall
can compensate for low heat resistance rExt2 and
vice-versa. Furthermore, the optimization problem
is clearly non-convex, i.e. it hast multiple local
minima and the identified parameter combination
is depending of the initial value when using local
optimizer, which can be seen by the difference
between the MSE of the best 5% results with 0.0114
and the average value of 0.0364. If the the problem
would be convex, every initial value should lead to
the same solution. Therefore, multiple parameter
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combinations might lead to equally well performing
calibrated models.

3.3.3 Calibration with Surrogate PELS-VAE
Model

The results of the model calibration performed with
the surrogate PELS-VAE Model are shown in Ta-
ble 4 and Figure 9. For the MSE calculated based
on the Autoencoder prediction (MSEϕde,φre(θ̂opt)),
MSE-values comparable to the direct coupling of Op-
timizer and Modelica-Model (≈ 0.01) are achieved.
However, as shown in subsection 3.2, the Autoen-
coder is prone to prediction errors, i.e. for some
parameter combinations, the predicted room temper-
ature trajectories are more faulty than others. Be-
cause of this, the MSE of the parameter combina-
tion determined by the GA and the Autoencoder, de-
noted as θ̂opt, calculated with the Modelica-Model
f , MSEf (θ̂opt), can be considerably larger than the
predicted MSEϕde,φre(θ̂opt). This effect occurs at
low numbers of training samples and decreases with
higher sampling ntrain, i.e. a MSE-gap of 1.05 to 3.44
at ntrain = 32 to 128 is reduced to a gap of 0.02 to 0.22
at ntrain = 512 to 4096. Although this increase might
be negligible at low magnitude, for the results ob-
tained with low number of training samples it might

Table 4. Calibration Results of PELS-VA coupled with
Differential Evolution Genetic Algorithm (GA) for dif-
ferent number of training samples ntrain, MSE calcu-
lated by PELS-VAE (MSEϕde,φre(θ̂opt)) and with FMU
(MSEf (θ̂opt)) to determine prediction error introduced by
the Autoencoder, number of steps nopt of polishing with
LS-TRF and achieved MSEf (θopt).

ntrain

MSE
PELS-VAE

+ GA

MSE
with
FMU

nopt

MSE
after
polish

ntotal

32 0.0121 1.0623 228 0.0121 260
64 0.0128 1.6390 124 0.0128 188

128 0.0122 3.4509 171 0.0122 299
256 0.0117 0.7498 306 0.0117 562
512 0.0124 0.2486 139 0.0124 651

1024 0.0133 0.0816 65 0.0133 1089
1536 0.0128 0.0298 80 0.0128 1616
2048 0.0135 0.2080 65 0.0135 2113
4096 0.0118 0.0326 201 0.0118 4297

not be appropriate.
To compensate for that, polishing of the achieved re-
sults with the LS-TRF Algorithm, (local, gradient-
based, vector-like objective), is performed. This pro-
cess is illustrated in Figure 9. For all sampling sizes,

TTABSInit rInt cInt b
rExt1

rExt2
cExt1

UWin
cTABS

rPipe
rZone

VSup fSol
qIntOcc

−1.0

−0.5

0.0

0.5

1.0

θ i
−
θ̃ i

∆
θ i

MSEall: 0.0364 95% quantile: 0.0508

(a) 3 largest clusters of solutions, covering 110/256 results, clustered with sklearn.cluster.KMeans (Pedregosa et al. 2011)
K-Means clustering around 10 centroids.
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Figure 8. Identified normalized parameters for Least-Squares Trust Region Reflective Algorithm with 256 starts.
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Figure 9. Calibration Results of PELS-VA coupled with Genetic Algorithm (GA), including the prediction gap and
the MSE-trajectory during the LS-TRF Optimization.

the MSE is reduced considerable to a magnitude of
MSEf (θopt) ≈ 0.012. More important, comparing the
results for ntrain = 32,64,128, a MSE comparable to
that of the LS-TRF directly coupled with the Model-
ica model with an initial guess is achieved (Table 3),
while requiring less or comparable model calls. This
effect could be explained as following: As the Au-
toencoder learns the model reaction on different pa-
rameter combinations, especially for the most influ-
ential parameters (see subsection 3.2), it allows for a
"screening" of parameter space to find a good starting
point for the following gradient-based optimization
with the exact Modelica-Model. At higher sampling
sizes, the prediction gap decreases, which results in
the number of model calls reduced as well.
Depending on the number of training samples, one
might argue at which point we achieve a screening
which is sufficient to call this approach a "global
method".
To stress the advantage of this proposed novel method
of model calibration: Using the Autoencoder allows a
screening of parameter space, which relieves us of the
burden of finding an initial value for the optimization,
that could potentially even lead us into the "trap" of
a local minimum.

4 Conclusion
In this paper, we address the challenges associated
with physics based Modelica models increasing in
complexity and computational expense regarding
optimization-based multi parameter calibration. To
overcome these issues, we present a novel approach
that enables computationally efficient parameter
calibration by using a Machine-Learning Surrogate.
To showcase our developed method, we use a simple
thermal zone model implemented in Modelica, which
allows to focus on the analysis of the proposes
method.
The used Machine-Learning Surrogate is a Physics-
Enhanced Latent Space Variational Autoencoder

(PELS-VAE). It provides efficient model regulariza-
tion and robust training. We propose to combine
a PELS-VAE trained on a small dataset with a
Genetic Algorithm (as PELS-VAE inference is
computational cheap) to screen parameter space
for well-performing parameter regions. To achieve
best-performing results, we furthermore propose
to polish the achieved result with a gradient-based
residual-objective optimizer (LS-TRF).
To compare our approach to existing alternatives,
we have tested a variety of optimizers and found
significant variation in number of required model
calls and strong dependence on initial values. When
moving towards global optimization, the usage of
multi-start approaches or global optimizer quickly
scales significantly the number of model calls,
making this potentially infeasible for computational
demanding system models.
We were additionally able to show that the chosen
optimization problem is non-convex and has ambigu-
ous solutions.

We also perform a detailed analysis of the PELS-
VAE application. By analyzing the training process,
we find that hyperparameter variation has limited
impact on the training process, i.e. we have a robust
training, while predicting time-series that are more
centered within the training parameter space exhibit
considerably lower prediction error.

Our results provide evidence that even PELS-VAE
trained with small datasets (32-128 samples) and
resulting high prediction errors proved effective to
screen parameter space for initial values which are
then used in a gradient based optimizer. We provide
indications that the PELS-VAE is able to capture
the impact of most-influential parameters on small
training sets. Comparing to the best-performing
optimizer with the need for an initial value, we
were able to show that our initial value free method
achieved comparable MSE with comparable number

Efficient Global Multi Parameter Calibration for Complex System Models Using Machine-Learning Surrogates

116 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204107



Figure 10. Physics based model of the office with XRG-
simulation’s HumanComfort Library

of model calls.
In summary, our proposed method offers an effective
solution for calibrating complex models. Using
the PELS-VAE models allows for a screening of
parameter space with a low number of model calls,
and relieves us from the burden of fining suitable
initial values for local optimizers.
For future work, our method will be applied to other
examples like a White-Box Model of the office (see
Figure 10) to prove its suitability for various kind of
optimization problems. Furthermore, the training
process could be improved by adaptive online data
generation, narrower parameter ranges, other layers
in the network and embedding of multiple Modelica
model outputs.
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A Physics Enhanced Latent
Space Variational Autoen-
coder (PELS-VAE)

This is a explanation with more detail but simplifica-
tions intended for the Modelica Community to gain
understanding. For theory without simplifications,
please refer to (Kingma and Welling 2022), (Murphy
2022) and (Murphy 2023).
Machine Learning can be done with a probabilistic
perspective, such that the quantities of interests are
modeled as random variables (Murphy 2022). In
stochastic variational inference, it is assumed that
the data x to be learned has initially emerged from
a latent variable distribution p(z) with a condi-
tional probability density function p(x|z) (Kingma
and Welling 2022).

To model this process within means of unsuper-
vised learning, we have to infer the stochastic latent
variable z by a recognition model p∗(z|x) from a data
sample x and then reconstruct the data with a gen-
eration model p∗(x|z). As both the true recognition
and generation model are inaccessible to us, we model
them by using Neural Networks; qψen(z|x) for the
recognition model and pϕde(x|z) for the generation
model.

For training probabilistic models, one commonly
tries to maximize the marginal likelihood of the data,∑N
i=0 logp(xi). This is the likelihood the network

structure assigns to the probability density function
at xi, if xi was inserted. One can think of this as fol-
lowing: If the probability of a data sample xi is high,
the information content it carries is low, i.e. the char-
acteristics are learned by the probability distributions
which are modeled by the Neural Networks ψen and
ϕde. (Odaibo 2019).
One can show (Odaibo 2019) that the right hand side
of

logp(xi) ≥ −KL(qψen(z|xi)∥p(z))
+Ez∼qψen(z|xi)

(logpϕde(xi|z)) = G (3)

is a lower bound (namely the evidence lower bound G,
ELBO) to the likelihood of a data sample logp(xi),
which we seek to maximize. In general, the used net-
work structure is a deterministic one, i.e. y = f(x).
To use the network for the approximation of probab-
listic distributions, two tricks are applied. First, the
encoder model ψen is used to predict the mean µ and
variance σ for a data sample xi of the distribution
p(z), which is prescribed to be a multivariate gaussian
(i.e. normal) distribution, i.e. z ∼ N (µ,σ). Assum-
ing this, an analytical expression for the Kullback-
Leibler-Divergence-Term (KL) in Equation 3 can be
found (Odaibo 2019). Then, sampling of a random,
normal distributed auxiliary variable ϵ ∼ N (0,I) is
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required to obtain samples z = µ + σ ⊙ ϵ, where ⊙
represent element-wise multiplication. Using this,
an estimate for the second term in Equation 3, the
reconstruction likelihood, can be found. The re-
construction term can be determined from the net-
work structure (Kingma and Welling 2022), however,
in our model, we follow the approach of (Martínez-
Palomera, Bloom, and Abrahams 2020) and use the
negative mean squared error between prediction and
ground truth, MSE(x̂,x) as representation of the re-
construction likelihood. Taking this together, the ev-
idence lower bound for our network becomes for a
training sample xi with L samples in latent space

G ≈
dim(z)∑
j=1

1
2

[
1+ log(σ2

j )−σ2
j −µ2

j

]

−β MSE( 1
L

L∑
l=0

x̂i,l,xi) (4)

which should be maximized. When minimizing in a
Optimizer, we should do this with L = −G. Further-
more, the hyperparameter β is added to help disen-
tangling the latent space distribution z (Burgess et
al. 2018). Finally (Martínez-Palomera, Bloom, and
Abrahams 2020) introduce the physical parameters θ
as inputs for all sub-models.
To use the Variational Autoencoder as a generative
model, the representation of the Modelica model pa-
rameters θ within the latent space must be traceable,
which is why (Zhang and Mikelsons 2022) added a
regression model in a Teacher-Student Architecture.
The regression model tracks θ in latent space, i.e.
µre,σre =φre(θ). MSE-losses of this model are added
to the loss-function to train all models simultaneously.
Further details of the implementation can be found
in (Zhang and Mikelsons 2022). The overall objective
function becomes with this for a batch size N

(ψen,ϕde,φre) = argmin
N∑

L + MSE(µ,µre)
+ MSE(σ,σre) (5)

Finally, a well-trained PELS-VAE can replace the
physical model by determining the latent space repre-
sentation of the physical parameters with the regres-
sor model (6): the time-series x is reconstructed after
sampling multiple times z = µ+σ ⊙ϵ by the decoder
as the mean of the outputs (7).

{µre,σre} = φre(θ) (6)

x̂ = 1
L

L∑
ϕde(z) (7)

B Global Sensitivity Analysis
In the following we sketch the idea of Sobol indices.
For a more elaborate and mathematical sound intro-

duction we refer to Hart (2018) or the book by Saltelli
et al. (2008). A comprehensive implementation of the
required functions is available in SALib (2023).

Consider X to be a real continuos random variable
with probability density function pX(x), such that∫ ∞

−∞ pX(x)dx = 1. X can be thought of as a specific
measurement setup, giving a measured value x each
time the experiment is carried out. If a large number
of experiments is conducted and the obtained results
x are collected into a histogram, then this histogram
resembles the probability density distribution pX(x),
that characterizes the experiment X. The probabil-
ity P of measuring x inside the interval [T1,T2] is
P (x ∈ [T1,T2]) =

∫ T2
T1
pX(x)dx. We define the

mean µX of x as µX = EpX [X] =
∫ ∞

−∞x ·pX(x)dx.
The variance of x is defined as
Var(X) = EpX [(X−E(X))2] =

∫ ∞
−∞(x−µX)2 ·pX(x)dx.

For a function f(X) of the random variable
X one can equivalently define its mean value
µF = EpX [f(X)] =

∫ ∞
−∞ f(x) ·pX(x)dx and its vari-

ance VarpX (F ) =
∫ ∞

−∞(f(x)−µF )2 ·pX(x)dx.

Now assume that a system model is evaluated on a
fixed scenario (=fixed time series of boundary condi-
tions) for different variations of its model parameters
θ = (θ1, . . . ,θr). If we look at a specific output yt of the
model at a specific timestep t then we can interpret
our model as a map f : θ → yt(θ). Now assume for a
moment that the parameters θ are an r-dimensional
random variable Θ with known probability density
function pΘ and f to be square integrable. Then it
can be shown (Sobol 1993) that

f(θ) = f0 +
r∑
i=1

fi(θi)+
∑

1≤i<j≤r
fi,j(θi,θj)

+ . . .+f1,2,...,r(θ1,θ2, . . . ,θr)

= f0 +
r∑

k=1

∑
|u|=k

fu(θu) (8)

where in the last line we summarize the previous line
by the sum over the multi label u representing all pos-
sible subsets u ⊆ {θ1, . . . ,θr} having |u| = k elements.
Moreover we have the special expectation value func-
tions

f0 = EpΘ [f(θ)]
fi(θi) = EpΘ [f(θ)|θi]−f0

fi,j(θi,θj) = EpΘ [f(θ)|θi,θj ]−fi(θi)−fj(θj)−f0
...

fu(θu) = EpΘ [f(θ)|u]−
|u|−1∑
k=1

∑
v⊂u

|v|=k

fv(θv)−f0

with the conditional expectation values
EpΘ [f(θ)|u] =

∫ ∞
−∞ f(θ)pΘ(θ)dθθ\u, where θ \ u
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is the complement of u ⊆ {θ1, . . . ,θr}. Now if all
elements {θ1, . . . ,θr} are statistically independent
then it can be shown (Sobol (1993)) that

Var(f(θ)) =
r∑

k=1

∑
|u|=k

Var(fu(θu)) (9)

that is the overall variance Var(f(θ)) =
EpΘ

[
(f(θ)−f0)2

]
is the sum of all variances of

the subset functions fu. Then the Sobol index Su

of the subset u ⊆ {θ1, . . . ,θr} measures the relative
contribution of θu to the total variance of f(θ):

Su = Var(fu(θu))
Var(f(θ)) (10)

Moreover the total Sobol index Tu measures the rel-
ative contribution of all members of u to the total
variance of f(θ):

Tu =
∑

v∩u̸=∅
Sv (11)

Finally the first order Sobol indices are those Su,Tu

which are defined on single element subsets |u| = 1,
that is u = {θ1,{θ2}, . . . ,{θr}} = {θk}. Then the Sobol
indices Sk,Tk measure the importance or sensitivity
of Var(f(θ)) to {θk}:

• the first order Sobol index Sk measures the con-
tribution of θk

• the total Sobol index Tk measures the contribu-
tion of all interactions involving θk

The previous discussion is valid for a specific model
output yt at a single time step t so far. The extension
to time series {t1, t2, . . . , tn} is straight forward: one
simply computes the Sobol indices for all parameters
at each time step. In this way one can observe the
impact of different model parameters to the chosen
output y at several times. This is especially important
for transient scenarios, as the sensitivity of the model
output to the values of a specific model parameter
may vary over time, as can be seen in Figure 5.
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