
Fast Charge Algorithm Development for Battery Packs under
Electrochemical and Thermal Constraints with JModelica.org

Alberto Romero1 Johannes Angerer1

1Kreisel Electric, Austria, {alberto.romero, johannes.angerer}@kreiselelectric.com

Abstract
Strict operating boundaries on commercial lithium ion
cells are defined to mitigate the effect of aging and avoid
safety hazards like, the appearance of lithium plating dur-
ing fast charge, which can lead to internal short circuit
and subsequent thermal runaway. Most studies so far have
focused on the single cell charging problem because the
temperature difference between cells within a battery pack
is often considered small, and therefore optimal charg-
ing profiles can be extrapolated from single cell investiga-
tions. In practice, temperature spread can reach up to 10
K from coldest to warmest points in the pack, and at least
5 K between same position of different cells. With this
in mind, a Nonlinear Model Predictive Control (NMPC)
scheme is proposed that considers both electrochemical
and thermal constraints at pack level, establishing, at least
on a theoretical basis, the practical limits of fast charge.
An electrochemical cell model and the pack thermohy-
draulic balance equations were modeled using Modelica.
The NMPC implementation is carried out using JModel-
ica.org to find the optimal control actions, and includes
the closed loop control problem on a high fidelity plant
model. We demonstrate how active thermal management,
i.e., controlling the fluid inlet temperature, is critical to
reducing charging times below 40 min (from 5% to 80%
state of charge), and discuss some challenges when using
online optimization-based control techniques.
Keywords: Li-ion battery pack, fast charge, constrained
control, temperature spread, FMI

1 Introduction
The performance and lifetime of lithium-ion battery packs
strongly depend on the operating conditions, typically de-
termined and/or limited by the user’s needs and the auxil-
iary systems, i.e., the thermal management system (TMS)
and the battery management system (BMS). Moreover,
operating limits and control strategies may change over
time to accommodate for changes in the battery state of
health (SOH). Therefore, an operating strategy that meets
the required performance and lifetime must be established
around the individual cells, the packs built upon them,
and the subsystems responsible for adjusting the bound-
ary conditions and applying the constraints under which
cells operate.

1.1 Compromises between performance and
lifetime

The battery operation strategy modifies or adjusts the per-
formance in the short term, for example, tightening the op-
erating power envelope, thus reducing peak temperatures,
in order to achieve a desired lifetime (Barreras, Raj, and
Howey 2018). Another example of adjusting thermal and
electrochemical limits is the so-called extreme fast charge
(XFC) (Yang, T. Liu, et al. 2019), where the cell operating
temperature is increased to enhance the electrochemical
dynamics to ensure safety requirements. The negative ef-
fect in lifetime of higher temperatures is compensated by
a significant shorter charging times, which is considered
a critical requirement in certain applications, like electric
vehicles (EV).

1.2 Temperature limits for commercial Li-ion
cells

Modern lithium-ion cells can nevertheless operate over a
wide range of temperatures, typically from -30◦C to 60◦C.
A common upper limit of commercial cells can be found
around 80◦C (Groß and Golubkov 2021), while the De-
partment of Energy of the United States (DOE) estab-
lished the maximum operating cell temperature at 52◦C
(Keyser et al. 2017). But already within these limits,
and especially beyond them, different degradation mech-
anisms lead to the progressive deterioration of the perfor-
mance, reducing the life time of the cells beyond practical
or economical criteria. According to information summa-
rized in (Keyser et al. 2017), cell lifetime doubles approx-
imately for each 13K temperature reduction: if 10 years of
lifetime is achieved operating at 20◦C, the same cell under
the same current load would last less than 5 years at 35◦C.

Early studies on lithium-ion batteries established the
ideal operating temperature range between 25◦C and 40◦C
for a "good balance between performance and life", as
well as a module to module temperature spread below 5K
(A. A. Pesaran 2002). More recently, temperature limita-
tions have been established using different guidelines to
improve safety and performance: maximum temperature
40◦C, minimum temperature -30◦C, maximum (internal
cell) temperature difference 10K, and mean temperature
between 25◦C and 30◦C (M. Sievers, U. Sievers, and Mao
2010).

Recent efforts in quantifying the actual thermal perfor-
mance of battery packs have been done. Wassiliadis et al.
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(2022) determined that sensors located at different cells
within a battery module of an electric vehicle (with bot-
tom plate liquid cooling) measured a temperature spread
below 2 K during a DC fast charging (maximum C-rate be-
low 1C). Given the large cell format of their test, the max-
imum difference between the coldest and warmest points
of the module (i.e., the absolute difference) could indeed
be closer to the difference between cell sensors and fluid
inlet temperature, which for their fast charge test is a dif-
ference of up to 20 K. On a similar but only simulated
case, J. Wang et al. (2020) report between 3.5 and 5 K ab-
solute difference during a 2C discharge depending on the
design of the cooling channels and the mass flow rate of
the fluid. In practice, absolute temperature spread in real
packs are likely to reach 10 K, although efforts to keep it
below 5 K is the general consensus, whether absolute or
cell to cell spread.

1.3 Solving the fast charge problem
Temperature limits during charge may differ significantly
from those while discharging due to the possibility of
lithium plating. This negative side-reaction usually takes
place at low temperatures, but it can also appear at room
temperature for moderate to high charging C-rates (Yang
and C.-Y. Wang 2018). As indicated by Yang, T. Liu, et al.
(2019), it is desirable to relax the upper temperature lim-
its while charging in order to improve performance at the
expense of a marginally higher aging to ensure safety.

The problem fast charge (i.e., how to tackle its com-
plexity and produce safe and fast charge profiles) has
been addressed in the literature with different methods,
and today vehicle manufacturers have developed practi-
cal approaches that consider not only the battery limits,
but also the TMS, BMS, on-board converters, power grid
(and charger), the local environmental conditions and the
user driving needs. The scientific literature has mainly
addressed the fast charge problem at cell level (for an ap-
plication in Modelica, see Romero, Goldar, and Garone
(2019)), but studies at pack level that address the effect
and limits of TMS are less abundant.

With exclusive focus on cell level fast charge, recent
efforts on cell modelling in various spatial and physic do-
mains have led to the conclusion that Li-ion cells can be
safely charged below 20 min (0-80% SOC). Frank et al.
(2022) established (simulation results only) a theoretical
minimum of 18 min for 18650 and 21700 cylindrical cells
with conventional tab design, and 13 min for the larger
4680 format with tabless technology; according to the au-
thors, cooling limitations bring the values closer to 20 min
and 16 min, respectively. However, the anode potential
constraints are set to 0 mV, which leaves no safety mar-
gin for the possibility of lithium plating. With the pur-
pose of avoiding lithium plating through a safety buffer
(e.g., 20 mV) Yin and Choe (2020) optimized a com-
bined fast charge profile with periodical discharge pulses
that favour lithium stripping, i.e., the recovery of already
plated lithium. Together with offline and online optimiza-

tion methods, which include the selection of the optimal
temperature boundary, the authors prove experimentally
that 18 min is possible (0-80%) with lifetime degrada-
tion similar to 1C CCCV (1C constant current, followed
by constant voltage) protocol (47 min, 0-80%). It is in
general acknowledged, nevertheless, that these fast charge
speeds are hardly attainable at pack level, where cell het-
erogeneities and challenges cooling technologies play a
critical role (Tomaszewska et al. 2019).

Modelica has seen a growing number of libraries and
studies dedicated to battery systems. The reader is re-
ferred to validated libraries reported in Dao and Schmitke
(2015), Uddin and Picarelli (2014), Gerl et al. (2014),
Bouvy et al. (2012), Brembeck and Wielgos (2011), Ein-
horn et al. (2011), and Janczyk et al. (2016), as well par-
ticular applications on fuel economy (Batteh and Tiller
2009; Spike et al. 2015), thermal management (Bouvy et
al. 2012), cell modelling and coolant analysis (Krüger, M.
Sievers, and Schmitz 2009),and battery aging (Gerl et al.
2014; Stüber 2017). More recently, (Groß and Golubkov
2021) developed a comprehensive Li-ion library that in-
cludes not only electrical cell models, but also thermal
runaway (TR) and propagation dynamics, i.e., equations
that capture the chemical reactions once an onset temper-
ature is reached.

Completing the single cell level optimal charging anal-
ysis presented in (Romero, Goldar, and Garone 2019),
this work addresses the limits of fast charge at pack level
on an immersion cooled battery with dielectric fluid un-
der electrochemical and thermal constraints. Such cool-
ing approach puts the fluid in direct contact with the cells,
which results in higher heat transfer compared to indi-
rect cooling. We make use of Model Predictive Control
(MPC) (Camacho and Alba 2013), implemented using the
tool JModelica.org (Andersson et al. 2011; Magnusson
and Åkesson 2015). A validated functional mock-up unit
(FMU) (Blochwitz et al. 2011) is used as a plant model,
while a simplified, yet nonlinear model of the pack writ-
ten in the Modelica language with the same inputs (cur-
rent, fluid flowrate and inlet temperature) is considered.

The reminder of the paper is organized as follows. Sec-
tion 2 describes the electrochemical cell model used to
model the internal states associated to lithium plating.
Section 3 introduces the proposed MPC scheme, describ-
ing the cost function, the prediction model, and the plant
model. The first part of section 4 explores the optimal pro-
files under a different set of constraints solved as an offline
optimization problem, and then presents the NMPC results
accompanied with a discussion related to constraints sat-
uration. This paper is closed with the conclusion section
completed with future paths to be investigated.

2 Electrochemical cell model
To support its development activities around battery pack
design and simulation, Kreisel Electric (2023) has been
working with different Li-ion cell model paradigms, in-
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cluding Equivalent Circuit Models (ECM), Equivalent
Hydraulic Model (EHM), Single Particle Model (SPM),
and higher level detail models like the P2D Neuman-
Fuller-Doyle model. For most of the electrothermal sim-
ulations, we rely on ECM-based battery packs, and resort
to the light weight EHM when some electrochemical state
information is needed, for example in fast charge analyses,
the focus of the present paper.

The EHM is based on the original work of (Manwell
and McGowan 1993), where the hydraulic analogy is used
to describe the dynamics of charge moving between vol-
umes of active material. One recent use of this analogy on
Li-ion batteries was proposed by Couto et al. (2016), al-
though derivations of similar models can be found in dif-
ferent sources (Y. Li et al. 2019). The EHM is equivalent
to the second order Padé approximation and valid for cur-
rent pulses with frequencies below 0.5mHz (0.002rad/s)
(Forman et al. 2011). Knowing that the 1C/1C cycle re-
sults in a frequency of 0.14mHz (charge and discharge
included, 1h long each), aging protocols including high
charging, steady currents of up to 3.6C fall well under the
validity range of the EHM to accurately predict lithium
plating.

Consequently with the model choice, the following as-
sumptions must be considered:

1. 0D electrochemical and thermal dynamics

2. Homogeneous behaviour in electrode and separator

3. Fast positive electrode dynamics

4. Constant lithium concentration in electrolyte

5. Temperature dependent exchange current density

6. Heat transfer dominated by side liquid cooling

The EHM considers two electrochemical states, the
bulk concentration and the surface concentration, in repre-
sentative solid particles of the positive and negative elec-
trodes. They are normalized with the maximum concen-
tration (cs,max) and denoted by SOC and CSC respectively.
The model considers as input the normalized current (I)
using the electrode area (Acell), to provide a form factor
independent calculation.

d SOCn

dt
=−γ I (1)

d CSCn

dt
=

g
β (1−β )

(SOCn −CSCn)−
γ

1−β
I (2)

SOCp = ρ SOCn +σ (3)
CSCp = SOCp (4)

V =Up −Un +ηp −ηn − (Rf +Rcc Acell) I (5)
Vn =Un +ηn (6)

ηp,n =
RT
α F

sinh−1

(
θp,n I√

CSCp,n (1−CSCp,n)

)
. (7)

Table 1 summarizes the most relevant model parameters
and exact or reference values for energy cells (C.-H. Chen
et al. 2020). The actual values of such parameters used
in this work are not disclosed. Moreover, since the dif-
fusion dynamic of the cathode is assumed to be orders of
magnitude faster, only the negative electrode is modelled.

Table 1. Cell model parameters

Parameter Units Value

Particle radius, Rs [µm] 5
Electrode thickness, l [µm] 80
Diffusion coefficient, D [m2/s] 1e-15
Active material vol. fraction, ε % 75
Specific interfacial area, a [m2/m3] 45e3
Effective reaction rate, reff [ A

m2 (
m3

mol )
1.5] 7e-6

Maximum concentration cs,max [mol/m3] 30e3
Electrolyte concentration, ce0 [mol/m3] 1200

The relationships of these parameters with the proper
parameters of the EHM system are the following

γ =
3

Rs aF l cs,max
g =

147
20

τ β =
7
10

τ =
R2

s

D
a = 3

ε

Rs
θ =

1

2al reff c1/2
e0 cs,max

.

For more information regarding the cell electrochemi-
cal models and the equations used in this paper the reader
is referred to Romero, Goldar, and Garone (2019), Dao
and Schmitke (2015), Chaturvedi et al. (2010), and M.
Sievers, U. Sievers, and Mao (2010).

The thermal model assumes lumped properties collaps-
ing on the cell centre, i.e., the warmest area. The ther-
mal resistance consists of a serial sum of convection and
conduction terms (external and internal heat flow respec-
tively)

mcellCp,cell
d T
dt

= i(V − (Up −Un)

+T (
∂Up

∂T
− ∂Un

∂T
)) − 1

Rth
(T −Tamb)

(8)

A = π DHc Rth = (
1

4π Hc k
+

ln(Dcan/D))

2π Hc kcan
+

1
hA

)

(9)
where Rth is the thermal resistance of the lumped ther-

mal model of the cell, h is the heat transfer coefficient
w.r.t. the liquid cooled section, and

∂Up(n)
∂T define the so

called entropic heat of the positive (negative) electrode
(Dao and Schmitke 2015). We note here that this model
approximates the behaviour of an infinite cylinder with ho-
mogeneous heat generation. In reality, the active cooled
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length is limited to a portion of the total height of the cell,
while the rest is cooled passively by natural convection
with the surrounding air. The can conductivity is high
enough, and its thickness is so small, as to neglect its con-
tribution in the total resistance. The entropic heat, as well
as the heat transfer to the air, are also considered negligi-
ble. Thus, the simplified model can be reduced to

mcellCp,cell
d T
dt

= i(V − (Up −Un))−U A(T −Tamb),

(10)

where U is the so called overall heat transfer coefficient.

Figure 1. Single Cell thermal model.

3 Model Predictive Control scheme

MPC has been selected as a control paradigm to adjust
the inputs, denoted as u(t), which in the general case of
a battery pack operation with liquid cooling consists of
current, fluid flowrate and fluid inlet temperature. Addi-
tional, non-manipulated inputs or disturbances, can be the
ambient temperature or the parasitic loads connected to
the battery pack. For simplicity, we neglect the effect of
the latter, and limit the control inputs to the battery cur-
rent and the fluid inlet temperature. Moreover, we con-
sider that internal states are observable in practice, but in a
real implementation a well tuned estimation method (e.g.,
Kalman-Filter) must be used.

The nature of the system is non-linear, not only from
the coupling between electrochemical and thermal model
(the heat source is proportional to i2, i being the current of
the cell or pack), but also because the product of flowrate
(considered however constant in the present work) and
temperature difference in the heat exchanged. The lat-
ter can be simplified for the single cell case, and decou-
pling and linearisation of the state space system could be
solved in a decentralized fashion as reported in Romero,
Goldar, Couto, et al. (2019). Therefore, in general, non-
linear solvers are needed in the optimization problem, spe-
cially when pack-level control is considered.

3.1 Optimization problem

The on-line nonlinear optimization problem subject to
constraints that can be written as

min
u(t)

∫ tf

t0
[(SOC(t)−SOCref)

2 + kT(T(t)−Tinit)
2]dt

s.t. model dynamicsconstraints
electrochemical constraints
thermal constraints.

(11)
The first row in Equation 11 is the integral cost over

the horizon determined between t0 and tf. Its first term
penalizes the difference between the SOC at time t and
the desired reference SOCref. An additional cost term is
added to bring the cell/pack temperature to a desired value
for storage or before discharge begins. In addition to the
model dynamics itself, two type of constraints are consid-
ered: electrochemical constraints on the anode potential
(Vn) to avoid lithium plating, and thermal constraints in-
cluding maximum and minimum cell temperature (Tmax,
Tmin), as well as maximum temperature spread within the
pack (Tspread).

Figure 2. Model Predictive Control Scheme

3.2 Prediction Model
The optimization class extends the pack model
PackEHMT, i.e., the prediction model, which includes all
state and output dependencies with the input variables.
The following listing is part of the optimization class
EHMTVpack_OptMPC, which includes a constraint section
that defines the limits of operation for the cell and pack.

Listing 1. Optimization class EHMTVpack_OptMPC

optimization EHMTVpack_OptMPC (
objectiveIntegrand =

(SOC - SOC_ref)^2 + 1e-8*(T-T_init)^2,
startTime = 0, finalTime = 1000)

extends PackEHMT(
CSC(fixed=true), CSCn_0=0.05,
SOC(fixed=true), SOCn_0=0.05,
T(fixed=true), Tm(fixed=true),
Tf(fixed=true), T_init = 298.15);

// . . .

// Example o f l i m i t v a l u e s :
parameter Real SOC_ref = 0.80;
parameter Real SOC_max = 0.65;
parameter Voltage V_max = 4.2;
parameter Temperature T_max = 450;
parameter Temperature Tf_max = 450;
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parameter Temperature Tspread_max = 10;
parameter Temperature DTf_low = 10;
parameter Temperature DTf_high = 25;
parameter Current i_max = 20;
parameter Voltage Van_min = 0.1;

equation
U_n = ...;
U_p = ...;
Van = R * T / alpha / F * Modelica.Math.

log(theta_n * (I) / sqrt(CSC * (1 -
CSC)) + sqrt(1 + (theta_n * I / sqrt(
CSC * (1 - CSC))) ^ 2)) + U_n;

constraint
SOC <= SOC_max;
CSC <= SOC_max;
SOC >= 0.0001;
CSC >= 0.0001;
Van >= Van_min;
Tfin >= T_amb - DTf_low;
Tfin <= T_amb + DTf_high;
(Tf - T) <= Tspread_max;
-(Tf - T) <= Tspread_max;
i <= i_max;
T <= T_max;
Tf <= Tf_max;
V <= V_max;

end EHMTVpack_OptMPC;

The core model of the battery pack is the cell model
CellEHMT_base, where the main electrical and electro-
chemical parameters and equations are defined. The only
exception is lack of a cell temperature model. This and
the temperature balances of the full pack form the model
class PackEHMT as shown in Listing 2. Figure 3 shows the
approach to simplify the pack equations, where the cells
between the first and last are lumped into a single thermal
node. Despite its simplicity, this approximation allows us
to obtain an inlet fluid temperature for the last cell, and
yields a level of fidelity for the pack model sufficiently
accurate for an MPC scheme.

Listing 2. Pack model class PackEHMT

model PackEHMT

extends CellEHMT_base; // i n c l u d e s s t a t e
v a r i a b l e T

// . . .
parameter Integer nmid = 400 "Cells in

the middle";
Power Q(start = 0);
Power Qm(start = 0);
Power Qf(start = 0);
Temperature Tf2(start = T_init);
Temperature Tf3(start = T_init);
Temperature Tf4(start = T_init);
Temperature Tm(start = Tm0) "Temperature

cells in the middle";
Temperature Tf(start = Tf0) "Temperature

last module cell";
parameter MassFlowRate mfr = 0.001 "Mass

flow rate";

inputTemperature Tfin "Inlet fluid
temperature";

equation
// . . .
V = U_p - U_n + ...;
Q = 1/(1/(h * A) + 1/G_rad)*(T-(Tfin+Tf2)

/2);
Q = mfr*Cpf*(Tf2-Tfin);
Qm = nmid*1/(1/(h * A) + 1/G_rad)*(Tm-(

Tf3+Tf2)/2);
Qm = mfr*Cpf*(Tf3-Tf2);
Qf = 1/(1/(h * A) + 1/G_rad)*(Tf-(Tf4+Tf3

)/2);
Qf = mfr*Cpf*(Tf4-Tf3);
P_loss = i * (V - U_p + U_n);
der(T) = (P_loss - Q)/(M*Cp);
der(Tm) = (nmid*P_loss - Qm)/(M*Cp*nmid);
der(Tf) = (P_loss - Qf)/(M*Cp);

end PackEHMT;

Figure 3. Simplified pack model with lumped dynamics within
the rectangle.

3.3 Plant Model
For the plant model, a high definition, 1D battery pack
nonlinear model is used. The pack consists of several
stacks connected hydraulically in parallel and electrically
in series. Each stack consist of several modules, made of
staggered groupings of 36 cells secured within a cooling
enclosure, which allows for a dielectric fluid to circulate
in contact with the surface of the cells using immersion
cooling technology (Kastler and Menzl 2021). More in-
formation about a similar stack can be found in the work
of Kasper et al. (2023).

Figure 4. Stack formed by a variable number of modules

The maximum voltage of the pack’s energy content is
60 kWh. A detailed view of an arbitrarily long stack is
shown in Figure 4. This pack model, of which an FMU
was created and integrated in the main simulation loop,
uses a validated ECM cell model without aging dynamics,
with a discretized model consisting in 9 sub-volumes (3
divisions in radial direction and 3 in axial).
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Figure 5. Pack model tested with a CCCV charge using a lim-
ited PI

Figure 6. Pack model interface detail

4 Case studies
To illustrate what an optimal operation strategy looks like
and how it is calculated, a series of optimization problems
are solved, first solving the off-line, fast charge problem,
and then a closed-loop NMPC with state feedback on a re-
alistic plant model. We are concerned in this work with the
optimal charge, i.e., the overall control strategy including
the discharge phase of the cycle is part of ongoing investi-
gations. The main control parameters needed in JModel-
ica.org are shown in Table 2.

First, the optimal constrained fast charge profile of a 5
Ah, 21700 format cylindrical single cell with immersion

Table 2. NMPC controller setup

Variable Value Units

tf 1000 [s]
SOCref 0.665 [-]
ne 100 [-]
ncp 1 [-]
H 1000 [s]
∆tMPC 10 [s]
∆tsim 1 [s]
solver IPOPT

cooling is computed and compared with standard charg-
ing protocols with passively cooled cell. The optimization
is carried out under several constraints involving voltage,
temperature, and electrochemical limits, that prevent pre-
mature aging and lithium plating. Subsequently, the opti-
mal profile for the battery pack, based on the same cell, is
calculated without and with additional temperature spread
limit. In all cases the same EHMTVpack_OptMPC class,
where only the constraints (upper and lower values) are
adjusted for each of the cases described.

Finally, the NMPC scheme proposed in the previous
section is used to determine the impact of imperfect state
feedback and control horizon on the constraint satisfaction
and the controller performance.

4.1 Single cell optimal charge

We begin by comparing the conventional charge protocol
in three basic situations: passive cooling with 1C charge
CCCV, and immersion cooling at different C-rates: 1C/2C
CCCV. Passive cooling is defined by a boundary condition
defined by the overall heat transfer coefficient (U) equal
to 1 W/m2K over the whole surface of the cell, which
is the case of a slightly insulated cell subject to natural
convection heat transfer. For immersion cooling, a value
of U = 200 W/m2K has been chosen.

4.1.1 Cooling system comparison

Figure 7 illustrates a typical 1C-CCCV charge profile of a
commercial Li-ion cell. Starting at 7.5% SOC, it reaches
80% in 45 min. From top to bottom, the subplots con-
tain state of charge and critical surface concentration (ex-
pressed as percentage at target SOC stoichiometric), cur-
rent and voltage, anode potential, and cell temperature.
Passively cooled cells experience high peak temperatures
during charge. Figure 7 shows that, for slightly insulated
cells, temperature reaches 25 K above the ambient tem-
perature (fluid at 20◦C) at the end of the CC phase. On the
positive side, the anode potential remains above 42 mV
thanks to improved dynamics at higher temperature.

Immersion cooling, as shown in Figure 8, improves
thermal management, i.e., the ability to bring the tempera-
ture of cells to a desired reference. There is no decrease in
charging time compared with passive cooling when charg-
ing at 1C because temperature or electrochemical limits
are not achieved in both passive or immersion. Special
care should be taken not to cross the anode potential lim-
its at lower temperatures and higher currents. This is illus-
trated in Figure 8, showing an anode potential margin of
18 mV. Depending on the expected fidelity of the electro-
chemical model, this may not be sufficient to ensure total
lithium plating avoidance. In this case 4 K of peak cell
temperature above ambient is achieved. Although a higher
fluid flowrate is possible, the temperature reduction due to
improved heat transfer will lead to a further drop in anode
potential, and therefore higher risk of plating.
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Figure 7. 1C-CCCV, single cell, passive cooling (Tfluid refers
here to the environmental temperature)

Figure 8. 1C-CCCV, single cell, immersion cooling

4.1.2 C-rate comparison

An increase in C-rate improves charging time signifi-
cantly, from 45 min at 1C to 26 min at 2C (from 7.5% to
80% SOC). Only 5 mV of margin w.r.t. plating, and 33◦C
peak temperature set a limit in performance for safety
and lifetime, but again model inaccuracies and cell-to-cell
variations at BOL would encourage additional improve-
ments to this profile, specially when considering charge at
pack level.

4.1.3 Optimal constrained profile, 2C maximum C-
rate

When constraints are present (40 mV for the anode poten-
tial, 45◦C), the only way to reduce the charging time is to
increase the fluid temperature so that the cell properties are
enhanced. Figure 10 shows the calculated optimal current
and temperature profile, which brings the charging time to
28 min, only 8% higher than the 2C-CCCV profile. The
fluid temperature can vary +25/-10 K around the nominal
value 20◦C. It is worth noting the optimal trajectory of the

Figure 9. 2C-CCCV, single cell, immersion cooling

fluid temperature, which brings the temperature of the cell
to the maximum level after a series of swings, and finally
brings the cell to the nominal value even before the charge
is completed. This of course depends on the controller
setup, i.e., the weightings of the cost function. It must
be noted that the time derivatives of the fluid temperature
are limited in practice, for example, by the heating/cool-
ing devices mounted on the vehicle. The consideration of
such limits are beyond the scope of this work. If the fluid
temperature is kept at 20◦C at all times, the charging time
increases to 44 min, just above the 1C-CCCV protocol.

Figure 10. 2C Optimal profile, immersion cooling with temper-
ature control

4.2 Pack level offline charge optimization
The obtained profiles are valid only for a pack where all
the cells face the same boundary conditions, which in
practice is generally not possible. The optimization al-
gorithm can control the temperatures of all the cells (pro-
vided the first and last cell hold the extreme temperature
values), as well as the temperature spread in the pack. For
simplicity, we control the first and last cell’s temperature,
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as well as the absolute value of their temperature differ-
ence (Tspread).

4.2.1 No inlet fluid temperature control, no tempera-
ture spread control

We present first the case in which a pack is charged and
only the current is manipulated. The only constraint that
is not considered is the temperature spread. The maximum
temperature is nevertheless not active, while the anode po-
tential constraint is active for most of the charge, before
the CV phase begins at about 53 min. The charging time
(7.5%-80% SOC) is 44 min.

Figure 11. 2C Optimal profile, immersion cooling at pack level
without fluid temperature control

4.2.2 Fluid temperature control, temperature spread
control option

When the fluid temperature is amenable to manipulation,
results become more interesting. Charging time is reduced
to 34 min (Figure 12) when temperature spread is not in-
cluded, and 36 min otherwise (Figure 13), which indicates
that controlling temperature spread is marginally difficult
if the inlet temperature can be controlled. These values are
21% and 29% higher than the single cell case. Inciden-
tally, the maximum cell temperature constraint becomes
active at some point due to increased inlet fluid temper-
ature. Further limitation of the pack temperature spread
down to 5 K leads to a charging time of 43 min, a 20%
increase.

4.3 Pack level NMPC scheme
The results concerning the online fast charge optimization
using NMPC are presented in this section. Some imple-
mentation details to be taking into account when utilizing
this scheme on a real battery pack are also discussed. Fig-
ure 14 represents the same offline problem described in
the last example (pack level constrained optimization with
manipulated fluid temperature), now from a more realis-
tic perspective. It should be noted, notwithstanding, that
further limitations in pressure drop and fluid temperature

Figure 12. 2C Optimal profile, immersion cooling at pack level
with fluid temperature

Figure 13. 2C Optimal profile, immersion cooling at pack level
with fluid temperature and temperature spread control

ramps may slow down the overall charging operation.
The control horizon chosen in this work is 1000s, i.e.,

100 steps of 10s each. The total computational time per
step remained over the complete integration loop below
2 s for the device used (Windows system, processor Intel
i7, 32 GB RAM, overall usage less than 20%). The total
charging time (7.5%-80% SOC) is slightly increased up
to 37 min. If the control horizon decreases to 100s, the
computational time is reduced ten-fold, but the myopia of
the controller leads to a charging time of 63 min, not be-
ing able to avoid temperature constraint saturation. This
highlights the need for sufficient computing power.

Another limitation arises from model inaccuracies in
the cool-down part after the charge (beyond 60 min),
which leads to an increased temperature spread that would
violate the controller’s constraints. This helps us introduc-
ing how the scheme leads to constraint saturation when
feeding back the plant’s actual temperatures. Without ex-
plicit handling of such saturation, state values of the plant
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Figure 14. 2C NMPC profile, immersion cooling at pack level
with temperature spread and temperature spread control

may initialize the optimization problem from an infea-
sible point. Correcting the state slightly to always stay
within the limits of the saturation is proposed for the max-
imum temperature, which leads in this problem to satisfac-
tory results, as seen in Figure 14, since plant and predic-
tion models similar dynamics. However, it is clear from
this figure that the temperature spread is violated during
the cool-down phase. Saturation is resolved by fixing ei-
ther the minimum or maximum temperature, and after-
wards the remaining one considering the limited spread.
Not dealing with spread saturation leads to slightly higher
charging time (38 min), and future work will be devoted
to examine better options to include a robust approach that
ensures feasibility.

5 Conclusions
Fast charging of battery packs present a rich set of de-
sign and operational challenges. In this paper, it has
been shown that active thermal management is critical to
achieve competitive charging speeds in combination with
optimization-based control algorithms. Unlike previous
works tackling only single cell level operation, this work
has demonstrated that the objective of less than 20 min
pack-level fast charge (0-80%) is not yet attainable. In
fact, we proved that even with high-effective immersion
cooling and optimization-based algorithms, the charging
time from cell to pack is expected to increase by more
than 40%. In summary, further improvements from the
current state-of-the-art on cell design, cell-to-pack inte-
gration, and thermal management are needed. Ongoing
extensions for the current formulation include the addition
of a flow-pressure model and a more realistic approach of
the available heating/cooling power for thermal manage-
ment, so that constraints in pack pressure drop, volumetric
flowrate, and fluid inlet temperature ramps can be applied.
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