
Modeling and simulation of dynamically constrained objects for
limited structurally variable systems in Modelica

Robert Reiser1 Matthias J. Reiner1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{firstname.lastname}@dlr.de

Abstract
This work introduces a new solution for the modeling and
simulation of dynamically constrained objects for limited
structurally variable systems purely in Modelica. A com-
bination of a collision detection algorithm, the limitation
of collisions, and a method to constrain objects based on
forces leads to a constraint network in Modelica. It allows
a stable and accurate simulation of applications such as
robot tool changers in a flexible way without the need for
predefined connections in the model.
Keywords: collision detection, structural variability, con-
straint force, network, tool change, robotics, Modelica

1 Introduction
Structurally variable systems often occur in different fields
of technical problems. One prominent example is robot
tool changers. The production industry has an ever-
increasing demand for flexibility because manufacturing
is shifting from standardized products with high quantities
to individual goods. Tool changers are a common method
to increase the flexibility of an assembly cell.

Simulation is important for the development and testing
of robot cells for example in virtual commissioning (Wün-
sch 2008). There have been many works about the simu-
lation of robots (Paryanto et al. 2014; Bellmann, Seefried,
and Thiele 2020; Reiser et al. 2022) and manipulation
(Reiser 2021) in Modelica. Existing tools such as Ro-
boDK, CoppeliaSim, and ANSYS (Li et al. 2016) can be
used to simulate tool changers but they do not offer the
high degree of flexibility of the Modelica language.

In the Modelica environment (Modelica Association
2017) it is especially challenging to simulate applications
such as tool changers since structural variability is not pos-
sible, limited to special cases (Stüber 2017) or requires
additional effort (Tinnerholm, Pop, and Sjölund 2022). To
our knowledge, there has been no work in the area of sim-
ulating a tool changer based on Modelica models.

There are also examples in the field of aeronautics, such
as the structural changes during runtime in the area of
stage separation (Acquatella and Reiner 2014) or for in
orbit construction of orbital platforms (Reiner 2022).

This work builds on the previous work of (Acquatella
and Reiner 2014) and (Reiner 2022) to make it usable in
a wider range of applications, and shows how robot tool

changers can be modeled using the proposed technique.
We present a new solution for the modeling and simulation
of structurally variable systems in Modelica. It combines:

• A collision detection algorithm in Modelica

• A method to limit the number of possible collisions
(see Figure 1 and section 3.2 for details)

• The Constraint Force Equation method combined
with the Baumgarte stabilization technique

The next section introduces the state of the art. Sec-
tion 3 presents the new solution for the modeling of struc-
turally variable systems in Modelica. The following sec-
tion contains the implementation. In Section 5, a tool
change process and the transition of a spring-borne object
are simulated. In conclusion, the approach is discussed
and future developments are considered.

Figure 1. An example showing the limitation of possible colli-
sions. If all collisions are allowed, there are 21 possible collision
pairs (top). A restriction divides the objects into two groups and
only collisions between blue and grey objects are allowed. Now
there are only 10 possible collision pairs (bottom).

DOI
10.3384/ecp204151

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

151



2 State of the art
In this section, related existing work is analyzed. This
includes an overview of collision detection and the intro-
duction of the Constraint Force Equation (CFE) method
and the Baumgarte stabilization technique.

2.1 Collision detection
Collision detection is a complex task. There are special
libraries such as the libccd (Fiser 2018) to detect collisions
between convex shapes. The most common algorithms
are the Gilbert-Johnson-Keerthi distance algorithm (GJK)
(Gilbert, Johnson, and Keerthi 1988) and the Minkowski
Portal Refinement algorithm (MPR) (Snethen 2008).

There are several works about collision detection in
Modelica: (Otter, Elmqvist, and López 2005), (Hofmann
et al. 2014), and (Elmqvist et al. 2015).

To the knowledge of the authors, the approaches above
have in common that they combine Modelica with an ex-
ternal library for the collision detection task. The usage
of external function calls can result in delays (i.e. val-
ues might be one time step behind in the simulation), ad-
ditional model complexity, and possible incompatibility
when used on different computing platforms.

In the works of (Oestersötebier, Wang, and Trächtler
2014) and (Bortoff 2020), the collision detection is native
in Modelica. However, predefined contacts are needed.

2.2 Constraint Force Equation method and
Baumgarte stabilization

The Constraint Force Equation (CFE) method was devel-
oped at NASA (Toniolo et al. 2008). The aim is to con-
strain two bodies by applying joint forces to each body.
(Acquatella and Reiner 2014) used this method for the
modeling and simulation of stage separation dynamics in
Modelica and (Reiner 2022) for robot based in orbit con-
struction of orbital platforms. Their solution is however
limited because the contact pairs are predefined or use spe-
cial cases and cannot be changed during runtime. There-
fore an application such as a tool changer cannot be mod-
eled easily. A tool is usually connected to more than one
robot and a tool holder and the connections change during
a process. A more general method is needed.

The Baumgarte stabilization (Baumgarte 1972) is used
to stabilize the constraint force equation. The basic for-
mula for the constrained force calculation with Baumgarte
damping can be seen in the following equation:

ξ̈ +2ηξ̇ +η
2
ξ = 0 (1)

ξ represents the (generalized) difference in position and
orientation between the two objects and η > 0 the damp-
ing factor, resulting in an asymptotically stable ODE. Note
that the constraint is defined as a kinematic condition.
Modelica can automatically calculate the resulting forces
and torques when the equation is correctly used together
with mechanical bodies with mass and/or inertia (see im-
plementation details in later sections).

Since the constraint ξ̈ = 0 is defined on the relative ac-
celeration between the to be constrained objects, small nu-
merical errors can lead to drift in the relative generalized
velocity ξ̇ and position ξ between the objects. Using the
additional damping terms in equation 1 for the relative ve-
locities and positions between the objects can reduce this
drift substantially. See section 4.6 for more details on the
implementation used here.

3 Modeling structurally variable sys-
tems in Modelica

The solution for modeling structurally variable systems in
Modelica is presented in the following. The section starts
with the general idea behind this approach. Furthermore,
the method for limiting the number of possible collisions
is introduced and a Modelica native collision detection al-
gorithm is presented.

3.1 Idea
The idea is to build a constraint network within Model-
ica. By forgoing external libraries, the approach is stable
and accurate. In general, the CFE method implemented
in (Acquatella and Reiner 2014) is combined with a col-
lision detection algorithm. Thus, predefined contact pairs
are no longer required. In addition, the number of possible
collisions is limited to achieve a higher performance.

3.2 Limitation of possible collisions
Building a general collision detection library in Modelica
is challenging. However, it is possible to restrict the scope.

In collision detection, the number of possible collision
pairs x depends on the number of objects in the scene n
and can be determined by:

x =
n!

k! · (n− k)!
=

n!
2 · (n−2)!

(2)

This is based on the equation to calculate the number of
combinations of k from n elements. An example is shown
in Figure 1 (top). Seven objects in a scene have 21 possi-
ble collision pairs. With an increasing number of objects,
the number of pairs increases significantly. To avoid this,
the number of possible collisions is limited by dividing
the objects in a scene into two groups and allowing only
collisions between objects of one group and another.

In the example, one group contains two and the other
group five objects. Therefore the number of pairs de-
creases to ten objects (see Figure 1 (bottom)).

Now the number of possible combinations is:

x = n1 ·n2 (3)

where n1 is the number of objects of the first and n2 the
number of objects of the second group.

The number of collision checks performed during sim-
ulation runtime is directly related to the number of possi-
ble collision pairs in a scene. In other words, limiting the
number of possible collision pairs allows a fast collision
detection algorithm in native Modelica code.

Modeling and simulation of dynamically constrained objects for limited structurally variable systems in
Modelica

152 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204151



3.3 Collision detection in Modelica
The reasons for building a native Modelica collision detec-
tion algorithm are a high stability and compatibility of the
resulting simulations and a high accuracy of the results.

Implementing a collision detection algorithm (e.g. GJK
or MPR) in Modelica in general is not feasible since op-
erations such as the handling of complex 3D models are
hardly manageable without external code. Furthermore,
such an algorithm would have a weak performance be-
cause it is not possible to use all the optimization tech-
niques usually applied in collision detection libraries.

Hence, for this work, the collision detection algorithm
is highly restricted. Only the following contact combina-
tions are allowed:

• Sphere and sphere

• Sphere and rectangle surface (with length and width)

This reduces the complexity significantly and leads to a
fast calculation of collision checks.

The collision detection between two spheres (located
at position pSphere1 and pSphere2) is straight forward: Each
object has a radius and the collision check between two
objects is based on the Euclidean distance. The Euclidean
distance dEuclidean is calculated by:

dEuclidean = ∥pSphere1 − pSphere2∥ (4)

Using the sum of the radius rSphere1 and rSphere2 of both
objects a collision occurs when the following inequality is
fulfilled:

dEuclidean < rSphere1 + rSphere2 (5)

The collision check between sphere and rectangle sur-
face can also easily be calculated. The sphere (located
at position pSphere) is defined by its radius rSphere and
the rectangle (located at position pRectangle) by its length
lRectangle and width wRectangle. The distance vector be-
tween the sphere origin and the rectangle origin dSP in the
orientation of the rectangle TRectangle can be calculated by:

dSP =

dSP1
dSP2
dSP3

= TRectangle · (pSphere − pRectangle) (6)

For the implementation, it is assumed that the rectangle
normal is the local z-axis of the object. Now a simple dis-
tance inequality can be checked to determine the collision.
If all of the following inequalities are fulfilled, a collision
occurs between the sphere and the rectangle surface:

dSP1 < lRectangle (7)
dSP2 < wRectangle (8)

dSP3 < rSphere (9)

Since these inequalities are easy to solve in Modelica
for a limited number of objects, a native implementation
is possible with good computational performance, while
still maintaining the flexibility and power of the Modelica
language.

4 Implementation
This section shows the implementation of the solution pre-
sented in section 3. Figure 2 shows an overview of the im-
plementation in the library browser. The structure consists
of three objects (see Figure 3 for details):

• CollisionCollector (outer object to store information
of the CollisionObjects and ConstrainedObjects)

• CollisionObject (lightweight object whose position
and orientation are stored in the CollisionCollector)

• ConstrainedObject (contains the collision detection
algorithm and calculates the constraint forces)

4.1 Objects
This section contains descriptions for the objects of the
implemented solution (CollisionCollector, CollisionOb-
ject, ConstrainedObject). An overview of all objects and
their interaction is illustrated in Figure 3.

4.1.1 CollisionCollector
The CollisionCollector is an outer object to store all in-
formation of the CollisionObjects. This includes the posi-
tion, velocity, acceleration, orientation, angular velocity,
and angular acceleration of each object. Further infor-
mation are the collision type (see section 4.5), the shape
type (sphere/rectangle) with the related radius, length and
width, and the closed indicator.

In addition, the CollisionCollector stores information of
the ConstrainedObject. This includes the force and torque
calculated in the ConstrainedObject and the ID of the Col-
lisionObject in contact with the ConstrainedObject.

Figure 2. Overview of the library structure.

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204151

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

153



CollisionCollectorCollisionObject
Data of each CollisionObject:
- Position/orientation (and derivatives)
- Collision type (Control/Passive)
- Shape type (sphere/rectangle)
- Geometry (radius, length, width)

Defined as "inner" object

Store data in
CollisionCollector

Check if collided and
retrieve force and torque

Data from each ConstrainedObject:
ID of collided CollisionObject and 
related constraint force and torque

iD collision type

shape type

input closed

outer CollisionCollector

geometry

ConstrainedObject

Collision check for each
CollisionObject

Store resulting force/torq.
for the CollisionObject

Calculate the constraint
force and torque

iD

transition parameters

outer CollisionCollector

Baumgarte parameters

geometry

Store data

Read resulting
force/torque

Read data

Store resulting
force/torque

Figure 3. Overview of the implemented objects with parameters (grey), inputs (red), methods (blue), and the inner/outer depen-
dency (green). The arrows show the interaction based on the data flow. The CollisionObject stores its data in the CollisionCollector.
The ConstrainedObject reads this data and performs a collision check for each CollisionObject. If a collision occurs, the Constraine-
dObject calculates the constraint force and torque. The resulting force and torque for the related CollisionObject are returned.

4.1.2 CollisionObject

The CollisionObject is lightweight and has mainly the
aim to store its position and orientation and their deriva-
tives to the CollisionCollector (used as outer object). Pa-
rameters are the ID, the collision type (see section 4.5),
and the shape type (sphere/rectangle) with the related ra-
dius, length, and width. The closed indicator is an input.

4.1.3 ConstrainedObject

The ConstrainedObject contains the collision detection
algorithm and equations to calculate the constraint forces
and torques. It also uses the CollisionCollector as outer
object. Parameters are the ID, the radius (the Constraine-
dObject is always a sphere), the damping factor for the
Baumgarte stabilization (η), the duration for the smooth
transition phase, and settings to enable the smooth transi-
tion phase and the offset.

4.2 Building the constraint network
The constraint network is built as follows:

• The CollisionObjects store their information in the
CollisionCollector. This includes the position and
orientation (with velocity and acceleration), radius
(or rectangle length and width), collision type, col-
lision shape, and closed indicator.

• Each ConstrainedObject runs a collision check to
all CollisionObjects by calculating the correspond-
ing equations from section 3 (it gets the relevant data
via the CollisionCollector).

• If a collision occurs, the constraint force and torque
are calculated (see section 4.6) to constrain the Con-
strainedObject to the related CollisionObject.

• The resulting force and torque for the related Colli-
sionObject is then returned (see section 4.6).

4.3 Boundary conditions
To achieve the procedure in section 4.2, some boundary
conditions are necessary:

Only collisions between CollisionObjects and Con-
strainedObjects are possible. Two CollisionObjects
can’t collide. The same applies for two ConstrainedOb-
jects. An example is Figure 1 (bottom), where the blue
objects as can be seen as ConstrainedObjects and the grey
ones as CollisionObjects.

The ConstrainedObject can only be constrained to
one CollisionObject (in other words it can only have
a collision with one CollisionObject). This reduces the
number of possible combinations significantly and im-
proves the performance, while still allowing to model
many relevant scenarios.

4.4 Manual definition of IDs
The Modelica Language Specification (Modelica Associa-
tion 2017) does not provide the capabilities for unique IDs
although it has been proposed in the past (Otter, Elmqvist,
and López 2005; Hellerer and Buse 2017). To achieve a
standard compliant solution, one necessity is the manual
definition of unique IDs for each CollisionObject (1 ... n)
and ConstrainedObject (1 ... m). In addition, the count
must be set for both objects in the CollisionCollector.

4.5 Opening and closing connections
The boundary conditions restrict the ConstrainedObject to
only one collision. This leads to the following question:
How can tool changers be simulated having contact with
both the robot and the holder? A tool changer is only con-
strained to one other object, the robot or the holder. But
there is a transition phase as well.

Therefore additional capabilities are needed. The Col-
lisionObjects have a mode, defined by a type. There are
two possible types: Control and Passive. In Passive mode,

Modeling and simulation of dynamically constrained objects for limited structurally variable systems in
Modelica

154 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204151



nothing changes for the CollisionObject. In Control mode,
the CollisionObject only collides if an additional input
closed is true.

In addition, the CollisionObjects are prioritized based
on their mode. If a ConstrainedObject collides with two
CollisionObjects, the one in Control mode is higher prior-
itized, i.e. the collision occurs with this object.

Now the simulation of tool changers is possible. The
tool is attached to a ConstrainedObject held by a Colli-
sionObject in Passive mode. A CollisionObject in Con-
trol mode is attached to the robot flange. When the robot
has approached the tool, the closed indicator of its Colli-
sionObject switches from false to true. This enforces the
ConstrainedObject of the tool to switch its constraint from
the holder to the robot. An application of this procedure is
demonstrated in section 5.1.

4.6 Calculation and return of the constraint
force and torque

Constraining accelerations in a complex inner/outer sce-
nario only leads to forces and torques in the Constraine-
dObject. There is a high relevance for the constraint forces
and torques in the CollisionObject, e.g. to determine the
load on the robot.

Hence the force and torque in the ConstrainedObject
must be transferred back to the CollisionObject. This
is achieved by using the CollisionCollector. Each Con-
strainedObject adds the resulting force and torque for the
related CollisionObject and the ID of the related Colli-
sionObject to the CollisionCollector (if a collision occurs).
The CollisionObject is then able to check for its own ID
in the CollisionCollector and if it occurs it retrieves the
stored force and torque and applies it to its frame.

In the case of a tool changer, it makes sense to constrain
the tool exactly at the position of the robot tool center
point (TCP). In reality, there would be some kind of me-
chanical flange to fixate the tool exactly there. For other
scenarios, it is necessary to constrain one object to another
at the contact point. An example is the robot based in orbit
construction of orbital platforms (see (Reiner 2022)). For
such applications, the position and orientation of the Con-
strainedObject should be kept and reaction forces com-
puted accordingly. To achieve this within the same Mod-
elica framework, position and orientation offsets have to
be computed at the time t0 when the collision occurs.

The calculation of the resulting constrained force is de-
scribed in the following (the calculation of the torque is
omitted for brevity).

When a collision is detected as described in section 3.3,
the position offset po f f set is computed as the difference
between the position pc of the counterpart and the Con-
strainedObject itself ps. The start time t0 is also saved.

po f f set =

{
0 if no collision
pc − ps if collsion deteced

(10)

Since collisions can occur at high speed between objects

this can lead to numerical problems when using fixed-step
solvers for quick simulations, especially when elastic sys-
tems with weak damping are involved. To elevate this
problem a slack or transition function str(t) can be enabled
(optional) to scale up the constraint forces and torques. If
not enabled, str(t) is simply set to 1 at all times.

It can be parameterized by its duration td (should be
chosen as small as possible to achieve a stable simulation).
The transition function is a smooth function between zero
and one and can be differentiated by Modelica automati-
cally (see equation 11).

str(t) =

1 if t − t0 >= td(
sin

(
(t−t0)·π

2·td

))2
if t − t0 < td

(11)

Equation 12 shows the constrained equation, which
leads to the calculation of the constraint force fcon,s act-
ing on the ConstrainedObject itself when connected to a
mechanical body.

str(t) · ((p̈c − p̈s)+2 ·η · (ṗc − ṗs)

+η
2 · (pc − ps − po f f set)) = 0 (12)

Equation 13 can then be used to calculate the correspond-
ing reaction force fcon,c acting on the CollisionObject us-
ing the rotation matrices of both objects (Tc and Ts).

fcon,c =−(Tc ·T T
s ) · fcon,s (13)

When no constraint is active fcon,s is set to zero.

5 Applications
In this section, two examples of dynamically constrained
objects are shown, namely the simulation of a tool change
process and the simulation of the transition of a spring-
borne object with offset. We used Dymola 2023x (64-bit)
on Windows 10 with a Rkfix4 solver (0.001 s step size) on
an Intel® Core™ i7-11700K workstation.

5.1 Simulation of a tool change process
This example demonstrates the capabilities of the devel-
oped solution by simulating a tool change process. It con-
sists of two robots, two tools, and four tool holders. The
Modelica model is shown in Figure 5. Both tools are at-
tached to ConstrainedObjects. The robot flanges are con-
nected to CollisionObjects in Control mode and the tool
holders to CollisionObjects in Passive mode.

The flange of Robot1 is moved to the holder of Tool1
(green sphere). Then for the CollisionObject attached to
the robot the closed input switches from false to true. This
causes the ConstrainedObject to switch its constraint from
the holder to the robot (see section 4.5 for details). Now
equipped with Tool1, Robot1 moves to a different holder
(red sphere) and releases Tool1 there. Robot2 does the
same simultaneously for Tool2 (equipping at the yellow
sphere and releasing at the pink sphere). Subsequently,

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204151

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

155



t = 0s

t = 11s

t = 25s

Figure 4. Visualization of the simulation of a tool change
process in the DLR Visualization 2 Library. The gray tool is
equipped by the left robot and moved to the next holder. The
same applies to the right robot and the orange tool (t = 11s). In
addition, the right robot is equipped with the gray tool (t = 25s).

Robot2 is equipped with Tool1 and moved upwards to
demonstrate the flexibility of our solution.

The visualization of the final state based on the DLR
Visualization 2 Library (Kümper, Hellerer, and Bellmann
2021) is illustrated in Figure 4. Figure 6 shows the results
for the constraint forces applied to the ConstrainedObject
and to the CollisionObject. The latter represents the re-
sulting forces for the robot when the tool is attached. Sim-
ulating the model with 25 s simulation time took 4.5 s.

5.2 Simulation of the transition of a spring-
borne object with offset

The second example of dynamically constrained objects is
the simulation of a spring-borne object. In the simple sce-
nario, two rigid bodies are connected with a revolute joint.
The joint is connected to a spring damper pair. One of
the rigid bodies is connected to a ConstrainedObject with
enabled transition function (transition duration 0.5s) and
offset calculation. The model also contains three differ-
ent CollisionObjects (all in Control mode, i.e. they can be
enabled or disabled by the input closed).

Figure 7 shows an overview of the scenario. At the

Figure 5. Model for the tool change example. There are two
robots equipped with CollisionObjects, two tools attached to
ConstrainedObjects, and four tool holders with CollisionOb-
jects. No pre-defined connections are necessary, all components
can be added to the model by drag-and-drop.

4 6 8 10 12 14

-12

-8

-4

0

4

8

[N
]

constrObject.frame_a.f[1] constrObject.frame_a.f[2] constrObject.frame_a.f[3]

4 6 8 10 12 14
-8

-4

0

4

8

12

[N
]

collObject.frame_a.f[1] collObject.frame_a.f[2] collObject.frame_a.f[3]

Figure 6. Simulation results for the tool change process. The top
shows the forces applied to the ConstrainedObject (connected to
the tool) and the bottom shows the forces applied to the Colli-
sionObject (connected to the robot).

Modeling and simulation of dynamically constrained objects for limited structurally variable systems in
Modelica

156 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204151



g

t = 0s t = 1.5s t = 2.4s

Figure 7. Visualization of the transition of a spring-borne object in the DLR Visualization 2 Library. At first (t = 0s), the object is
connected to the green sphere. Then it falls and is attached to the pink sphere (t = 1.5s). It continues falling and is constrained to
the yellow rectangle surface (t = 2.4s). The connecting line (black) shows the offset between the origin of both objects.

beginning of the scenario, the ConstrainedObject (blue)
is connected to CollisionObject1 (green color). At the
time t = 1s the closed input of CollisionObject1 is set to
false, and the assembly falls down (due to the world grav-
ity in the model) and collides with CollisionObject2 (pink
color). At t = 2.0s the input closed for this CollisionOb-
ject is also set to false, so that the object falls further down

1.4 1.6 1.8 2.0 2.2 2.4 2.6
-4E4

-3E4

-2E4

-1E4

0E0

1E4

[N
]

eta50.constrainedObject.frame_a.f[3] eta25.constrainedObject.frame_a.f[3]

Figure 8. Simulation results for the transition of a spring-borne
object with offset. The blue curve shows the constraint force in
the z-direction for η = 50 (damping factor for the Baumgarte
stabilization). The red curve shows the result for η = 25.

until it hits CollisionObject3 (yellow rectangle).
The offset from ConstrainedObject (blue sphere) to

CollisionObject2 (pink sphere) and to CollisionObject3
(yellow rectangle) is illustrated in Figure 7. Since the use
of offsets is enabled in the ConstrainedObject, the sphere
is constrained exactly at the contact point. Otherwise, the
sphere would be forced to the center of the rectangle (also
with the same orientation as the rectangle). At t = 2.5s the
input closed for CollisionObject3 is also set to false.

The resulting constraint force in the local z-direction
can be seen in Figure 8 for two different values of η

(see equation 1). The selection of η is unfortunately not
straightforward. In principle, it should be set as low as
possible and as high as necessary. A high value of η can
lead to a numerically stiff system. This can cause prob-
lems with numeric integration, especially when fixed-step
solvers are used. However, a too-small value for η can re-
sult in large deviations between the objects. As shown in
Figure 8, the resulting constrained forces can change sig-
nificantly for different values of η , especially when flexi-
ble elements are involved. This can also lead to different
behavior in the overall model. The difference for the be-
ginning of the second force spike (for t > 2.25s) in the
plot results from the higher constrained force (and torque)
which affects the flexible element in the system. As such
the parameter η is an engineering (control) parameter and
has to be chosen problem specific and very carefully. Sim-
ulating the model with 3 s simulation time took 0.08 s. It
takes 0.44 s to simulate a model with five spring-borne
objects and 1.2 s for one with ten objects.

6 Conclusion
In this paper, a new solution for the modeling and sim-
ulation of structurally variable systems in Modelica was
presented. It combines a collision detection algorithm in

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204151

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

157



native Modelica code, a method to limit the number of
possible collisions, the Constraint Force Equation method,
and the Baumgarte stabilization. The result is a constraint
network within Modelica. It allows the stable and accu-
rate simulation of structurally variable systems in a flexi-
ble way (no pre-defined connections are necessary). The
ability of the new solution was demonstrated in two ex-
amples: the simulation of a tool change process and the
simulation of the transition of a spring-borne object with
offset. However, the presented approach has some restric-
tions and limitations: The user has to manually set unique
IDs for the objects since it is not (yet) possible within the
Modelica language standard and the scalability of the con-
cept is limited. Possible future developments are the sup-
port of more geometries for the collision check and exter-
nal objects to automatically generate unique IDs.

References
Acquatella, Paul and Matthias J. Reiner (2014). “Modelica Stage

Separation Dynamics Modeling for End-to-End Launch Ve-
hicle Trajectory Simulations”. In: Proceedings of the 10th In-
ternational Modelica Conference, March 10-12, 2014, Lund,
Sweden, pp. 589–598. DOI: 10.3384/ecp14096589.

Baumgarte, J. (1972). “Stabilization of constraints and integrals
of motion in dynamical systems”. In: Computer Methods in
Applied Mechanics and Engineering 1.1, pp. 1–16. ISSN:
0045-7825. DOI: 10.1016/0045-7825(72)90018-7.

Bellmann, Tobias, Andreas Seefried, and Bernhard Thiele
(2020). “The DLR Robots library - Using replaceable pack-
ages to simulate various serial robots”. In: Proceedings of
Asian Modelica Conference 2020, Tokyo, Japan, October 08-
09, 2020. Ed. by Rui Gao and Yutaka Hirano. Linköping,
pp. 153–161. DOI: 10.3384/ecp2020174153.

Bortoff, Scott A. (2020). “Modeling Contact and Collisions for
Robotic Assembly Control”. In: Proceedings of the American
Modelica Conference 2020, Boulder, Colorado, USA, March
23-25, 2020, pp. 54–63. DOI: 10.3384/ecp2016954.

Elmqvist, Hilding et al. (2015). “Generic Modelica Framework
for MultiBody Contacts and Discrete Element Method”. In:
Proceedings of the 11th International Modelica Conference,
Versailles, France, September 21-23, 2015, pp. 427–440.
DOI: 10.3384/ecp15118427.

Fiser, Daniel (2018). libccd: Library for collision detection be-
tween two convex shapes. URL: https : / /github.com/danfis/
libccd (visited on 2023-07-05).

Gilbert, E. G., D. W. Johnson, and S. S. Keerthi (1988). “A
fast procedure for computing the distance between complex
objects in three-dimensional space”. In: IEEE Journal on
Robotics and Automation 4.2, pp. 193–203. ISSN: 08824967.
DOI: 10.1109/56.2083.

Hellerer, Matthias and Fabian Buse (2017). “Compile-time dy-
namic and recursive data structures in Modelica”. In: Pro-
ceedings of the 8th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools -
EOOLT ’17. Ed. by Dirk Zimmer and Bernhard Bachmann.
New York, New York, USA, pp. 81–86. DOI: 10 . 1145 /
3158191.3158205.

Hofmann, Andreas et al. (2014). “Simulating Collisions within
the Modelica MultiBody library”. In: Proceedings of the
10th International Modelica Conference, March 10-12, 2014,
Lund, Sweden, pp. 949–957. DOI: 10.3384/ECP14096949.

Kümper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021). “DLR Visualization 2 Library - Real-Time Graphi-
cal Environments for Virtual Commissioning”. In: Proceed-
ings of 14th Modelica Conference 2021, Linköping, Sweden,
September 20-24, 2021. Ed. by Martin Sjölund et al., pp. 197–
204. DOI: 10.3384/ecp21181197.

Li, Na et al. (2016). “The Dynamic Simulation of Robotic Tool
Changer Based on ADAMS and ANSYS”. In: 2016 Inter-
national Conference on Cybernetics, Robotics and Control -
CRC 2016. Ed. by Sun Dong, Wei-Hsin Liao, and Sergei Gor-
latch, pp. 13–17. DOI: 10.1109/CRC.2016.013.

Modelica Association (2017). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Spec-
ification Version 3.4: Tech. Rep. Linköping. URL: https : / /
modelica.org/documents/ModelicaSpec34.pdf.

Oestersötebier, Felix, Peng Wang, and Ansgar Trächtler (2014).
“A Modelica Contact Library for Idealized Simulation of
Independently Defined Contact Surfaces”. In: Proceedings
of the 10th International Modelica Conference, March 10-
12, 2014, Lund, Sweden, pp. 929–937. DOI: 10 . 3384 /
ecp14096929.

Otter, Martin, Hilding Elmqvist, and José Díaz López (2005).
“Collision handling for the Modelica multibody library”. In:
Proceedings of the 4th International Modelica Conference.

Paryanto et al. (2014). “Energy Consumption and Dynamic Be-
havior Analysis of a Six-axis Industrial Robot in an As-
sembly System”. In: Procedia CIRP 23, pp. 131–136. ISSN:
22128271. DOI: 10.1016/j.procir.2014.10.091.

Reiner, Matthias J. (2022). “Simulation of the on-orbit con-
struction of structural variable modular spacecraft by robots”.
In: Proceedings of the American Modelica Conference 2022,
pp. 38–46. DOI: 10.3384/ECP2118638.

Reiser, Robert (2021). “Object Manipulation and Assembly
in Modelica”. In: Proceedings of 14th Modelica Confer-
ence 2021, Linköping, Sweden, September 20-24, 2021. Ed.
by Martin Sjölund et al., pp. 433–441. DOI: 10 . 3384 /
ecp21181433.

Reiser, Robert et al. (2022). “Real-time simulation and virtual
commissioning of a modular robot system with OPC UA”. In:
ISR Europe 2022. Munich: VDE Verlag. ISBN: 978-3-8007-
5891-3.

Snethen, Gary (2008). “Xenocollide: Complex collision made
simple.” In: Game programming gems 7. Ed. by Scott Jacobs.
Boston, MA: Charles River Media/Course Technology. ISBN:
9781584505273.

Stüber, Moritz (2017). “Simulating a Variable-structure Model
of an Electric Vehicle for Battery Life Estimation Using Mod-
elica/Dymola and Python”. In: Proceedings of the 12th Inter-
national Modelica Conference, Prague, Czech Republic, May
15-17, 2017, pp. 291–298. DOI: 10.3384/ecp17132291.

Tinnerholm, John, Adrian Pop, and Martin Sjölund (2022).
“A Modular, Extensible, and Modelica-Standard-Compliant
OpenModelica Compiler Framework in Julia Supporting
Structural Variability”. In: Electronics 11.11, p. 1772. DOI:
10.3390/electronics11111772.

Toniolo, Matthew et al. (2008). “Constraint Force Equation
Methodology for Modeling Multi-Body Stage Separation Dy-
namics”. In: Aerospace Sciences Meetings. DOI: 10.2514/6.
2008-219.

Wünsch, Georg (2008). Methoden für die virtuelle Inbe-
triebnahme automatisierter Produktionssysteme. Vol. 215.
Forschungsberichte IWB. München: Utz. ISBN: 978-3-8316-
0795-2.

Modeling and simulation of dynamically constrained objects for limited structurally variable systems in
Modelica

158 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204151


