
A Graph-Based Meta-Data Model for DevOps: Extensions to SSP
and SysML2 and a Review on the DCP Standard

Stefan H. Reiterer1 Clemens Schiffer1 Mario Schwaiger1

1Department E, Virtual Vehicle Research,
{stefan.reiterer,clemens.schiffer,mario.schwaiger}@v2c2.at

Abstract
Computer simulation has become a vital tool for modeling
complex systems. However, the development and deploy-
ment of simulation models often involve multiple stages,
tools, and teams, which can lead to significant challenges
in maintaining quality, reliability, and efficiency. DevOps,
a set of practices that combines software development and
IT operations, has emerged as a promising approach to
streamline the simulation development. Although most
system engineers are not DevOps specialists and there
are a lot of manual steps involved when writing build
pipelines and configurations of simulations. For this pur-
pose, an abstract graph-based meta-data model was pre-
sented in Stefan H. Reiterer, Balci, et al. (2020) to pro-
vide an automation framework for DevOps with simula-
tions (see also Stefan H Reiterer, Schiffer, and Benedikt
(2022)). In this work we want to continue our investi-
gations by expanding and harmonizing this approach to
better work with established standards like SSP, SysML2
and DCP and demonstrating its application on real-life use
cases.
Keywords: Continuous Integration, DevOps, MBSE,
NoSQL Graph databases, DCP, SysML, UML, SSP

1 Introduction
DevOps is a set of practices, cultural values, and tools
that aim to improve collaboration and automation between
software development and IT operations teams, with the
goal of delivering high-quality software products and ser-
vices more efficiently and reliably. This approach empha-
sizes the integration of development, testing, deployment,
and monitoring processes to enable faster and more fre-
quent software releases, while maintaining stability and
reliability.

Formally Bass, Weber, and Zhu (2015) introduced
DevOps as a set of practices intended to reduce the time
between committing a change to a system and the change
being placed into production while ensuring high quality.

DevOps involves a range of practices, such as con-
tinuous integration and continuous delivery (CI/CD), in-
frastructure as code (IaC), automated testing and moni-
toring, and often includes agile development methodolo-
gies. It also emphasizes the importance of communica-
tion, collaboration and shared responsibility between De-

velopment and Operations teams and the use of the con-
tinuous improvement processes to assess quality and out-
comes.

The benefits of DevOps include improved software
quality and reliability, faster time-to-market, increased ef-
ficiency and productivity, enhanced flexibility and scal-
ability, and better collaboration and communication be-
tween teams. It is increasingly being adopted by organi-
zations across a wide range of industries, from startups to
large enterprises, as a key enabler of digital transformation
and innovation.

With the need to accelerate development cycles in other
domains as well like Advanced Driver-Assistance Sys-
tems (ADAS) or mechatronics it is crucial to carry over
DevOps practices to computer simulations as well. How-
ever, there are several difficulties arising when transferring
these methods from pure software environments into the
world of computer aided engineering (CAE).

The first difficulty arising is that most people working
in engineering and scientific fields are not software engi-
neers. This means it is important to democratize DevOps
practices with several tools which allow to easily imple-
ment, abstract, and reuse the setup of build pipelines to en-
able better automatic testing. The next problem that arises
is the simulation of specific needs, especially when deal-
ing with simulation coupling from different domains. Fur-
thermore, testing and evaluating the simulation quality is
much more difficult than regular software applications due
to norms and safety requirements which often are physi-
cal in nature. Although, there are assessment processes
for dealing with those issues (see e.g. the UPSIM project
described in ahmann2022towards) it is still necessary to
seamlessly integrate proper tooling and methodology into
the DevOps cycle for simulations.

For that matter a graph-based meta-data model was de-
veloped in order to provide a data structure which eas-
ily can be stored into modern database systems and is
also able to represent dependencies, the topology of co-
simulations and is able to be easily mapped from and onto
pre-existing standards. In Stefan H Reiterer, Schiffer, and
Benedikt (2022) an overview of the topic is given. Ad-
ditionally, it must be abstract enough to describe a whole
range of use cases, but still concrete enough to generate
process descriptions out of it to make it accessible for au-
tomation.

DOI
10.3384/ecp204159

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

159



In this work we will further investigate how to properly
leverage the graph-based approach to harmonize it with
established standards and will demonstrate its viability on
a real-life use case. Furthermore, we will analyze potential
shortcomings of the current state of affairs and will discuss
potential extensions of the DCP standard to come by with
these limitations.

For that matter we first start with a description of the
goal we want to achieve with a specific ADAS use case
as motivation, following a description of the established
standards. We will then continue with a short summary
of our graph-based approach and how to create mappings
from high level system descriptions (e.g. SysML 2) to
more concrete simulation descriptions (e.g. SSP) and how
those are rolled out and integrated. In the end we will
have a closer look at the DCP standard and what tools and
extensions could be helpful in the future to support the
proposed workflow.

2 Motivation and ADAS Use Case
In the development of complex systems there is a huge gap
between the systems engineering point of view, the practi-
cal implementation of software, setup of simulations (De-
velopers) and setting up the of the infrastructure (DevOps)
as those require very different sets of skills. Especially,
DevOps as the third pillar becomes much harder to per-
form with raising complexity as the automation pipelines
need constant maintenance by experts. Expert knowledge
of networking and understanding of containerization and
virtualization technologies like Docker or Podman and
services like Kubernetes. For that reason, it is important
to provide abstraction between those layers to be able to
seamlessly transfer the information from one end to the
other without being confronted with to much detail. In or-
der to lay out our approach we will describe in this section
an example and how its automation will be handled.

2.1 ADAS Use Case Description
In this simple scenario we have 3 roles. The first role is
a systems engineer which provides us with a system de-
scription and requirements provided in SysML 2.0 (see
Figure 2). As the systems engineer does not know all as-
pects of the simulation the simulation engineer has to set
up the simulation from the description and has to come
up with a script to compute the desired Key Performance
Indicator (KPI). Finally in order to improve on the work-
flow and raise re-usability the DevOps engineer has to au-
tomate the necessary steps to run (and potentially re-run)
the simulation under different parameters and provide a
pipeline which starts the simulation.

The ADAS use case consists of the following models:
A simple vehicle dynamics written in C, a scenario player
(EsMini) an FMU with an sensor perception, a simple
ADAS function (in this case an FMU with an ACC imple-
mented in C) a transform block for signal mappings. See
Figure 1. Furthermore, a post processing script written in
Python was used to analyse the driving comfort where we

used the methodology described in de Winkel et al. (2023)
to compute a suitable key performance indicator.

Figure 1. ADAS simulation architecture

2.2 Challenges
However, considering the complexity which arises with
variations of the models when changing parameters or
adding or removing models of the (co-)simulation this
adds a layer of additional complexity to the problem which
should not be underestimated. Even small changes to the
model can be tedious to apply if they occur often. Hence,
it is of utmost importance that these procedures are au-
tomated and made traceable as one could easily lose the
oversight of the many steps that were taken.

In order to ease the load of the developer it is beneficial
that the changes on parameters and architecture could be
automatically mapped onto the different models so that the
simulation engineers and DevOps engineers can focus on
their main tasks. In the next sections we will discuss the
standards and concepts which will be used to achieve that
goal and how a potential implementation looks like.

3 Established Standards
We use this section to shortly introduce some of the more
common standards we want to look at to tackle the arising
challenges described in the previous section. We chose
these standards due to their open nature and availability,
which enables a broad spectrum of use cases. We also
will have a short look at the not yet released SysML2.0
standard for system modeling, which is a successor to the
widely accepted SysML standard.

3.1 SSP Standard
The Modelica SSP (System Structure and Parameteriza-
tion) standard described in Hällqvist et al. (2021) is a com-
prehensive framework for developing cyber-physical sys-

A Graph-Based Meta-Data Model for DevOps: Extensions to SSP and SysML2 and a Review on the DCP
standard

160 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204159



Figure 2. SysML2 model description with requirement

tems that enables the modeling and simulation of com-
plex systems across various domains, including automo-
tive, aerospace, and energy systems. It was designed to be
compatible with major Modelica standards like Functional
Mock-up Interface (FMI) and is based on the XML stan-
dard. The SSP standard provides a systematic approach
to structuring and parameterizing system models, which
facilitates model exchange and reuse, enhances interoper-
ability, and enables the development of more accurate and
efficient simulations.

The SSP standard includes a set of guidelines and con-
ventions for modeling the structural and physical aspects
of systems, such as components, connections, and param-
eterization. The standard also provides a well-defined syn-
tax and semantics for describing the behavior and interac-
tions of system components, which allows for the devel-
opment of executable models that can be simulated using a
range of simulation tools. In addition, it supports the inte-
gration of models with other software tools and platforms,
such as control systems and optimization tools.

3.2 The SysML Standard 2.0
The widely used System Modeling Language (SysML)
is a general-purpose modeling language for developing
complex systems and SysML 2.0 is the latest version
(which is under current development see OMG (2023)).
It is designed to support model-based systems engineer-
ing (MBSE) and provides an integrated set of modeling
concepts, notation, and semantics that are optimized for
the specification, analysis, design, verification, and vali-

dation of complex systems. While its predecessor SysML
is an extension of the Unified Modeling Language (UML),
SysML 2.0 is based on the KerML metamodel.

The main objective of SysML 2.0 is to provide a
comprehensive language for MBSE, which can be used
throughout the entire system development life cycle. The
language provides a standardized way of representing dif-
ferent aspects of the system, including its structure, be-
havior, requirements, constraints, and interfaces. Further-
more, support for the integration of different domains and
perspectives, such as mechanical, electrical, and software,
in a single model is provided.

The standard is open and is developed and maintained
by the Object Management Group (OMG) with input from
a wide range of stakeholders, including industry experts,
academics, and users. The language is supported by a
growing ecosystem of tools and frameworks, which en-
able users to create, analyze, and manage SysML models
efficiently, e.g. plugins for Eclipse.

The standard can be used by a system engineer to rep-
resent the system in concise manner which can be used
to generate graphical representations of the system (see
Figure 2 for an example). Furthermore, this can be used
to describe dependencies between different components of
the system and the respective requirements which in return
can be leveraged to extract the system architecture and its
signal flows like we demonstrate in Section 5.1.

4 The Co-Simulation Process Graph
The Co-Simulation Process Graph concept was originally
introduced in Stefan H. Reiterer, Balci, et al. (2020) and is
an extension of the classical Process Graph Concept Tick
(2007) which allows to not only map process steps (for
e.g. a build and deploy pipeline) but also to map the struc-
ture of a co-simulation with inputs and outputs and neces-
sary information of the setup steps. In this section we will
give a brief introduction of the concept for reader which
are unfamiliar with it and also will discuss methodologies
to version changes of the Co-Simulation Process Graph
which is important for many applications in engineering
as traceability is a hard requirement in that sector.

4.1 Definition and an Example
The main problem when trying to map simulation config-
urations within a process graph is that the moment closed
loop simulations are included this introduces cycles within
the graph structure. However, this violates the main con-
dition to compute execution orders namely that a process
graph is cycle free. In order to solve the problem of cycles
introduced by closed loop simulations and models with-
out the need of separating the workflow sequence and the
topology of the simulations the Co-Simulation Process is
defined with the following properties:

• The set of nodes consists of data nodes, transforma-
tion nodes, master nodes, signal nodes and commu-
nication (or gateway) nodes.

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204159

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

161



• To represent the instantiation of a process or the us-
age of a signal inside a simulation, copies of the
nodes which represent these instances are made. In-
stances must be directly connected to their originals.

• Instead of using the bi-partite structure to represent
data transformations, only instances of processes can
connect to data nodes to perform operations. In this
way, the nodes which perform operations and their
instantiation can be determined with a suitable al-
gorithm, which determines a different partition of
the graph with help of the defined structure, to pro-
vide the correct order of executions. This is neces-
sary since it is allowed that transformation nodes are
neighboring, e.g., a Docker container which is built
and then used for executing a program.

• An information node can never be the successor or
predecessor of another information node. A process
must be placed in between. However, neighboring
process nodes are allowed. This may happen if a
program-performing transformation at a later stage
is modified beforehand by another process (e.g., pa-
rameterization of tools).

• A simulation is a sub-graph with the following prop-
erties: a) It contains the instance of a master node. b)
The instance of the master node is connected to all
instances of signal nodes that belong to the simula-
tion. c) All the other nodes inside the simulation (i.e.,
the simulation participants and communication gate-
ways) neighbor a signal instance. d) Each instance
of a signal is only allowed to appear once inside a
simulation.

• Cycles are only allowed inside a simulation sub-
graph.

A more detailed description of the data structure and anal-
ysis of the used algorithms can be found in Stefan H. Re-
iterer and Kalab (2021), which was recently accepted in
the International Journal of Simulation and Process Mod-
elling. An example is shown in Figure 3. In this exam-
ple the nodes (of type Node) c1 and c2 represent software
sources (e.g., source code of a model) b represents a build
tool like CMAKE and b1 and b2 (of type Bridge) rep-
resent two processes of this build tool which are started,
which leads to the simulation units P1 and P2 (nodes of
type Bridge) while the node M represents a simulation
master (a node of type Master/Bridge). After the build in
stage 1) the simulation is executed and the master is con-
figured by the information contained in the node M and
gets additional parameters from node I, while the node O
represents the output of the simulation. The Signal nodes
i j and o j represent in- and outgoing signals like velocity or
acceleration, while Gateway node g j represents the com-
munication protocols (e.g., a network protocol like IP) for
j = 1,2.

b1

b

b2

M

c1 c2

P1 P2

P1 P2

g1

g2

M

I

O

o1

i1

i2

o2

1) Build Stage

2) Simulation Stage
Figure 3. Simple example of a co-simulation process graph

4.2 Versioning Aspects
Graph Databases are to some degree able to use ver-
sioning, however this feature is in general not imple-
mented (ArangoDB 2023). In stark contrast to relational
databases, where several add-ons exist. Oracle Flashback
or Postgres Time Travel are two notable examples. As
the structure of a graph differs from the relational model
a different approach has to be used. It is also required to
take into consideration that not every backup-and-storage
technology might be fitting to solve the challenge of ver-
sioning. The database used in this work is ArangoDB as it
allows handling data more flexibly than its competitors.

When backup is discussed, there are mainly three strate-
gies: Full vs. Incremental vs. Differential. The use case
that we consider should cover the following aspects when
handling the versioning of graphs which undergo many
incremental changes:

• The current/latest graph has to be loaded the fastest
as it is used in production.

• Fast loading of the previous versions which were re-
cently added.

• Storage-benefits over full-backup as a lot of redun-
dant data is created.

This is motivated by the fact that a model will undergo a
lot of small incremental changes during the development
process and hence will create a lot of redundant data. With
regards to the solution is an inverse differential storage
which has the latest version of the graph saved in an un-
modified state. The previous versions only save the data
changed over each iteration. For the sake of simplicity,
currently this is done by using a signal-character which
marks the unchanged data. One of the benefits of this
model is the hybrid approach that still allows to imple-
ment a partial-full model to jump back to any given fully
backed up version.

Almost any given record can be persisted in a collec-
tion of the database. After adding another collection of
a different version of the data the versioning starts. All
the fields are checked whether or not they are equal to the

A Graph-Based Meta-Data Model for DevOps: Extensions to SSP and SysML2 and a Review on the DCP
standard

162 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204159



previous version. In case of unchanged data, the previous
records will be overwritten by the signal character. The
differing fields remain unchanged. By doing this version
1 and version 2 are obtained. On any other given data set
the same algorithm is applied to create the next iteration.

In order to return back to a previous version either a
full-backup-milestone or the most recent version are used
to start from. All the signal-characters are reverted to the
latest state. A prototype is currently under development
in the scope of a bachelor thesis at Virtual Vehicle Re-
search. First tests with a simple co-simulation process
graph which underwent some changes over time already
showed roughly a memory saving between 20-30% in con-
trast to full back ups of the different versions. See Table 1
for an overview of different cases and the saves for the file
sizes. However, there is a lot of potential for optimization

Table 1. Difference in file sizes (FS) given in bytes

Records FS Orig. FS Compressed Saving [%]

10 7094 5348 24.6
50 35156 24942 29.1

100 73455 49377 32.8
123 52964 43360 18.1
125 53822 44010 18.2
250 108036 88184 18.4
500 215884 176470 18.3
750 397946 315564 20.7

1000 668678 425724 36.3
2500 1394335 981182 29.6
5000 4168767 2938219 29.5

10000 15442067 12299693 20.4

which will be explored further in the future.

5 Mappings between the Graph and
the Standards

In this section we will discuss shortly the mappings be-
tween the Co-Simulation Process Graph and the SysML
2.0 and SSP standard and their connection to the graph
database.

5.1 Mappings between the Graph Database
and the SysML 2.0 Standard

Since the SysML 2.0 standard is not finalized yet tools are
not completely available yet. Since the new standard is
based on the KernML meta language and not XML like
its predecessor it was necessary to write a simple Python
parser which parses the SysML file. We used the freely
available Pyparsing module for this task. As example
we use the simple SysML 2.0 model described in List-
ing 1 which refers to the model depicted in Figure 2 and
is linked to the use case we described in Section 2.1. To
modularize the SysML 2.0 document it is hierarchically
stored into the graph database (where the hierarchy is with

respect to nesting of the KernML blocks) with dependen-
cies within the hierarchy stored as edges. See Figure 4 for
the structure in the database.

Listing 1. "SysML 2.0. model"

package adas
{

part Vehicle {
attribute ’param:initial.Ego.speed’

=13.888889;
attribute ’kpi:comfort’;
attribute ’j_max’=2.94;
attribute ’a_max’=1.23;

}
part esmini {
}
part IdealSensorPerception{
}
part ’ACC ViF’ {

attribute ’param:Parameters.
Constant1_Value’=2.0;

attribute ’param:v_soll’=20;
}
part Pedals {

attribute ’param:korrekturfaktor’=0.04;
}
connect Vehicle to esmini;
connect Pedals to Vehicle;
connect esmini to IdealSensorPerception;
connect IdealSensorPerception to ’ACC ViF

’;
connect ’ACC ViF’ to Pedals;

}

Figure 4. SysML2.0 model stored within the graph database

With help of this representation, we are able to extract
building blocks and modules. We are also able to easily
search and extract information by recursive search meth-
ods. We can use this to inject or update information of
the co-simulation process graph which is used for setting

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204159

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

163



up, configuration and start of the test simulation. The co-
simulation process graph for this model can be seen in Fig-
ure 5. It should be noted that in the graph the simulation
with all its sub-nodes (participants, signals, and commu-
nication) is contracted within the "Simulation" node for
the sake of simplicity. With help of the Arango Query

Figure 5. Co-Simulation process graph of the simulation model

Language (AQL) it is then possible to locate possible pa-
rameter changes within the SysML 2.0 model and map it
onto the graph. After the computation is finished and the
post-processing tools evaluated KPIs and performed qual-
ity checks the information can then stored back into the
graph database. With an inverse mapping it can even be
written onto the abstract SysML 2.0 model as information
for the system developer. While the transfer of parame-
ter changes in this example is rather trivial, we already
demonstrated in Stefan H Reiterer, Schiffer, and Benedikt
(2022) that also changes of participants, simulation set-
tings or even the topology of the co-simulation is easily
possible. We will also discuss in the next section how this
can directly applied to SSP files.

5.2 Mappings between the Graph Database
and the SSP 2.0 Standard

Since the SSP standard is designed to represent a co-
simulation graph its mapping into the co-simulation pro-
cess graph and the graph database is rather straight for-
ward. We use the following transformation:

• The System itself and its parameters can be repre-
sented by the Master node of the co-simulation pro-
cess graph, i.e., the SystemStructureDescription
and its meta-data can be directly written into the
(JSON-)dictionary representing the master node. In-
formation like ssd:DefaultExperiment with
start and stopping time directly go there.

• Components and their meta-data are directly
mapped onto Bridges representing the simulation
participants.

• The Connectors of the Components and their re-
spective meta-data are mapped onto Signal nodes.
The kind parameter which denotes if it is an input or
output connector is indirectly mapped by the direc-
tion of the edge of between the participant and the
signal node.

• Moreover, the metadata of Connections is di-
rectly mapped onto (communication) Gateway
nodes, while the direction of the connection
(startConnector to endConnector) is represented
by the edges between the signals and the gate-
way connections. It should be noted that the keys
startElement and endElement of the Connections
is implicitly provided by the connectivity of the com-
ponent, signal and gateway nodes and thus has not to
be explicitly stored.

• Last but not least, necessary edges can be added af-
terwards as well,

With these mapping rules the inverse mapping is also
rather clear. It may be necessary to use a tool for the ge-
ometry information if the graph comes from a different
source than an SSP file, but such tools are vastly available.
The mappings could be done either directly in XST or any
programming language like Python. In Figure 6 we see
the graph database view of the transformed SSP file repre-
senting the simulation architecture in Figure 1. Note that a
lot of signals were filtered out in the view for better clarity
in the representation as the simulation has a lot of signals
which were not actively used during the simulation. Fur-
thermore, it should be noted that the process graph is the
master model in this scenario which collects the key infor-
mation that is necessary to let the simulation run. It only
has to deal with a portion of the SysML 2.0 description
as the SysML 2.0 model may contain information which
are not relevant for the simulation run or the DevOps pro-
cesses (e.g. business relevant information), although, the
graph based model is flexible enough to store information
outside the scope of automation as well. On the other hand
the graph model stores information about the setup of the
simulation, hence, it contains more information than a reg-
ular SSP file. This means it may be necessary to enrich an
extracted graph from an SSP file with additional informa-
tion, except the simulation only consists of FMUs and the
FMU master is predefined.

6 The Role of the DCP Standard in
the Workflow and How to Enable
Broader Adoption

The Distributed Co-simulation Protocol (DCP) is a Mod-
elica standard (Modelica Association Project DCP 2019)

A Graph-Based Meta-Data Model for DevOps: Extensions to SSP and SysML2 and a Review on the DCP
standard

164 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204159



Figure 6. Graph database view

for real-time and non-real time system integration and
simulation. It aims to augment the Modelica eco-system
of FMI and SSP by adding distributed inter-operable
simulation units, thus enabling the simulation of cyber-
physical systems (CPS). This standardization is achieved
by defining a common state machine and configuration to-
gether with the use of a transport protocol, either UDP,
TCP are implemented in the reference implementation,
while Bluetooth and CAN are specified but not yet im-
plemented. The capabilities of a simulation unit (a DCP
slave) are described in an XML-document known as a
slave-description, which is intended to be shared with a
DCP master before the simulation. The DCP master can
then integrate a simulation scenario by configuring the
simulation units according to their capabilities. The ex-
change of simulation data itself is achieved by protocol
data units (PDUs) that are sent in a defined manner ac-
cording to the transport protocol used. It aims to close
the gap between software in the loop (SIL) and hardware
in the loop (HIL) as DCP allows for a drop-in replacement
of each component. The industry need for distributed sim-
ulation and standardized interfaces is in part covered by
OPC UA (Schwarz and Börcsök 2013), ROS2 (Macenski
et al. 2022) and similar technologies, however, only DCP
specifically focuses on co-simulation. Recent use cases
of DCP include (Rautenberg et al. 2023) which provides
valuable input for possible extensions and use of DCP on
coupled hardware test benches, while Segura, Poggi, and
Barcena (2023) describe a generic interface using DCP in
Simulink. Generally, in many applications where a dis-
tributed simulation is needed, it is implemented by either
using proprietary technology or established standards with
a different focus. Having a simplified – yet standard com-
pliant – version of DCP available, such that developers
only need to implement a minimal set of features, e.g.,
sending data via a TCP/IP port, would help in establishing
DCP as a widely adopted protocol.

We identified DCP as a core technology for the pro-
posed workflow as DCP provides us with a proper co-
simulation standard for which configurations can be auto
generated. While FMI has become the de-facto standard
for the integration of co-simulation units and SSP for the
description of systems of FMUs, there remain some is-
sues: Either code for FMUs is generated resulting in a
static artifact or the FMU has dependencies – such as in-
stalled programs, libraries or licenses. In the future we ex-
pect the development of the concept of on-line simulation
platforms that enables the direct coupling of models using
DCP without sharing the underlying model, as is partly
discussed in Ahmann et al. (2022). The model needs to be
available for a standardized distributed system simulation
with a description available beforehand and the ability to
be started remotely, which is essential for easy deployment
on a big pool of workers either in the cloud or on premise.

However, during our work the high complexity of the
DCP standard became more visible. While it is desirable
that the standard covers a lot of use cases the vast range
of options can become a hindrance when we want to pro-
vide basic tooling. Thus, we propose the idea of a reduced
DCP core standard, which is able to cover most use cases,
but enables the creation of easy-to-use tooling based on
this minimal viable set of rules to accelerate the distribu-
tion of DCP. While we already proposed the use of an FMI
to DCP wrapper to leverage the broad availability of FMI
in our last work, we observed several times that packing
FMUs can confront developers with several challenges to
pack third party tools like open-source driving simulations
such as esMini or Carla. A minimal standard could help in
developing simple deployable DCP nodes but also a sim-
plified master which covers a lot of use cases.

Ideally, the build and dependency of the model should
be made explicit to allow for traceability as well as the
ability to trigger a build to use the most recent version.
This also would benefit the proposed workflow. The sys-
tem description needs to be formulated in a standardized
way, that allows for the description of the system architec-
ture as well as the integration of the co-simulation system.

7 Summary
We have extended the methodology outlined in Stefan
H Reiterer, Schiffer, and Benedikt (2022) how to make
use of graph-based automation using dynamically gen-
erated build pipelines for co-Simulations by making use
of mappings between standards for system description
(SysML2.0) and system structure description (SSP) which
can be used to configure a co-simulation master with a
more practical example. Additionally, we demonstrated
how to decompose SysML2.0 and SSP descriptions to
properly store them into graph databases and how to map
them properly into co-simulation process graphs to en-
able a more seamless workflow and proposed a method
for graph versioning tailored for development workflows.
Furthermore, we identified some shortcomings of the cur-

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204159

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

165



rent state DCP standard and proposed a potential solution
in the form of a DCP core standard to address these issues.

8 Outlook
While the proposed graph-based methodology already ad-
dresses several issues like making standardized formats
available on graph databases and some methods for ver-
sioning them were discussed, there is still a lot of poten-
tial to improve on the existing algorithms and how to bet-
ter organize the pool of data which is created. Further,
we have to explore the potential of data driven testing and
validating the running simulations with help of the gener-
ated data over time to foster a more automated continuous
improvement process over longer development periods.

Furthermore, the proposal of a core DCP standard for
easier tooling has to be explored and properly formulated
and activities regarding discussions with partners from
academia and industry have to be initiated.

Acknowledgements
This publication was written at Virtual Vehicle Research
GmbH in Graz, Austria. The authors would like to ac-
knowledge the financial support within the COMET K2
Competence Centers for Excellent Technologies from the
Austrian Federal Ministry for Climate Action (BMK),
the Austrian Federal Ministry for Labour and Economy
(BMAW), the Province of Styria (Dept. 12) and the Styr-
ian Business Promotion Agency (SFG). The Austrian Re-
search Promotion Agency (FFG) has been authorized for
the program management. They would furthermore like
to express their thanks to Prof. Eugen Brenner and Georg
Macher from the Institute of Industrial Informatics at TU
Graz for their support.

References
Ahmann, Maurizio et al. (2022-11). “Towards Continuous Sim-

ulation Credibility Assessment”. In: Modelica Conferences,
pp. 171–182. DOI: 10.3384/ecp193171.

ArangoDB (2023). Data Modeling and Operational Factors.
URL: https://www.arangodb.com/docs/stable/data-modeling-
operational-factors.html (visited on 2023-05-11).

Bass, Len, Ingo Weber, and Liming Zhu (2015). DevOps: A soft-
ware architect’s perspective. Addison-Wesley Professional.

de Winkel, Ksander N. et al. (2023). “Standards for passenger
comfort in automated vehicles: Acceleration and jerk”. In:
Applied Ergonomics 106. DOI: 10 . 1016 / j . apergo . 2022 .
103881.

Hällqvist, Robert et al. (2021). “Engineering domain interoper-
ability using the system structure and parameterization (SSP)
standard”. In: Modelica Conferences, pp. 37–48. DOI: 10 .
3384/ecp2118137.

Macenski, Steven et al. (2022). “Robot Operating System 2: De-
sign, architecture, and uses in the wild”. In: Science Robotics
7.66. DOI: 10.1126/scirobotics.abm6074.

Modelica Association Project DCP (2019). DCP Specification
Document, Version 1.0. Linköping, Sweden: Modelica Asso-
ciation. URL: http://www.dcp-standard.org.

OMG (2023). OMG Systems Modeling Language™ (SysML®)
v2 Release. https://github.com/Systems-Modeling/SysML-
v2-Release. Accessed: 2023-05-13.

Rautenberg, Philip et al. (2023). “Electrified Powertrain Devel-
opment: Distributed Co-Simulation Protocol Extension for
Coupled Test Bench Operations”. In: Applied Sciences 13.4.
ISSN: 2076-3417. DOI: 10.3390/app13042657.

Reiterer, Stefan H, Clemens Schiffer, and Martin Benedikt
(2022). “A Graph-Based Metadata Model for DevOps in
Simulation-Driven Development and Generation of DCP
Configurations”. In: Electronics 11.20. DOI: 10 . 3390 /
electronics11203325.

Reiterer, Stefan H., Sinan Balci, et al. (2020). “Continuous In-
tegration for Vehicle Simulations”. In: 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA). Vol. 1. IEEE, pp. 1023–1026.

Reiterer, Stefan H. and Michael Kalab (2021). “Modelling
deployment pipelines for co-simulations with graph-based
metadata”. In: International Journal of Simulation and Pro-
cess Modelling 16.4, pp. 333–342. DOI: 10 . 1504 / IJSPM .
2021.118852.

Schwarz, M. H. and J. Börcsök (2013-10). “A survey on OPC
and OPC-UA: About the standard, developments and in-
vestigations”. In: 2013 XXIV International Conference on
Information, Communication and Automation Technologies
(ICAT), pp. 1–6. DOI: 10.1109/ICAT.2013.6684065.

Segura, Mikel, Tomaso Poggi, and Rafael Barcena (2023). “A
Generic Interface for x-in-the-Loop Simulations Based on
Distributed Co-Simulation Protocol”. In: IEEE Access 11,
pp. 5578–5595. DOI: 10.1109/ACCESS.2023.3237075.

Tick, József (2007). “P-graph-based workflow modelling”. In:
Acta Polytechnica Hungarica 4.1, pp. 75–88.

A Graph-Based Meta-Data Model for DevOps: Extensions to SSP and SysML2 and a Review on the DCP
standard

166 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204159


