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Abstract 
This paper introduces a new method for mechanical 
systems with its own interface that enables the object-
oriented formulation of very stiff contacts. It thereby 
suppresses high frequencies and yields stable replacement 
dynamics leading to an equivalent steady-state. Potential 
applications are the efficient modeling and simulation of 
robotic manipulation or the easier handling of what 
formerly have been variable-structure systems. 
Keywords: multi-body systems, Mechanical contacts and 
limitations, Robotics 

 

1 Motivation 
Libraries for classic multibody simulation have been 
among the first Modelica libraries ever published. The 
Modelica Standard Library supports the 3D solution of 
multibody systems (Otter 2003) with special support for 
kinematic loops. There are also 1D rotational and 
translational libraries and a planar mechanical library has 
been developed that proved its value for teaching purposes 
(Zimmer 2012) and advanced modeling of gearwheels 
(van der Linden 2016). 

Yet there are modeling tasks that have remained very 
difficult to master throughout all the years such as: 

 The modeling of limited joints 
 The modeling of breaking objects 
 The modeling of stiction and friction 
 The modeling of kinematic loops when reaching 

maximal extension 
 Real-time simulation of hard contacts 
 etc. 

Our impression is that at least for the Modelica 
community,  progress in these areas has been under-
whelming, especially given the high relevance of these 
issues. For instance, when modeling the manipulation of 
an object using a robot hand on a robot arm, a combination 
of any of the above problem may occur.  

Many attempts in solving this problem were focused on 
improving the tooling. Tasks like the modeling of limited 
joints were identified as variable structure problems or 
Multi-mode DAEs (Benveniste 2019) and tackled 
correspondingly by new tools (Mehlhase 2013) or even 
new languages (Zimmer 2010, Neumayr 2023). 

The underlying model equations were practically never 
questioned. After all, classic Newton mechanics is more 
than two centuries old (Szabo 1987), and seems hardly 
worth revisiting. 

 Au contraire, mon capitan! It is worth revisiting the 
way we idealize mechanical systems. After all, object-
oriented modeling and computers are much younger. We 
may be able to find a reformulation that enables a better 
expression of modeler’s intent than what was previously 
conceived. This is the exact aspiration of this paper. 
 

2 On the Idealization of Rigid Body 
Mechanics 

We easily forget that when we model the mechanics of 
rigid bodies, we model the mechanics of imaginary 
objects: rigid bodies.  

In our real, physical world, there exist no rigid bodies. 
Everything is elastic and deformable. It is just a matter of 
degree. If a bullet out of a gun will not convince you, 
certainly a small piece of space debris as in Figure 1 will: 

 

 

Figure 1: Impact of a 15g piece of plastic on a block of 
aluminum with a speed of 24140km/h in public display at 
NASA Johnson Space Center, Houston, TX, USA. 

Rigid bodies thus represent an entirely hypothetical idea, 
but also a very useful idea. Instead of modeling the 
pressure waves through an elastic material we can directly 
formulate non-holonomic constraints and assume an 
immediate transmission of impulse that upholds the 
conservation of energy and momentum, since none of 
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these terms can get dissipated in a truly rigid body. We 
thereby exchange a process that typically operates above 
10 kHz (micro-elastic motion within objects) with a 
process that may often be slower than 10 Hz (macro-
motion of objects). Evidently this enables a much more 
efficient simulation of the kinematic system using far 
fewer states and much slower eigen-dynamics. 

Rigid body mechanics is thus the preferred method to 
use when we deal with kinematic chains with a fixed 
number of degrees of freedom. Phenomena as limited 
joints or stiction can consequently be interpreted as 
varying the number of degrees of freedom. When 
regarding such problems as discrete configuration 
changes, this leads straight to the previously mentioned 
approaches (Zimmer 2010, Mehlhase 2013, Benveniste 
2019,  Neumayr 2023) for variable structure systems. Also 
discrete Dirac impulses then need to be considered as in 
(Zimmer 2006). 

However, even if a (potentially very complex) solution 
for discrete configuration changes is available, it is often 
inappropriate to apply since it forces us to simplify by 
discretization the very thing we actually want to focus on. 
Whether a gripping mechanism is actually holding an 
object or not and when and up to what degree is a question 
that is not easily answered by yes or no. When going into 
detail, one may detect many transient states. 

For such cases, the modeler is now forced to re-
establish elastic bodies at least for the region of contact 
dynamics. Whereas he may succeed, to keep the set of 
state variables small, applying realistic constants for the 
elasticity will often yield high frequency behavior or other 
ill-suited eigen-dynamics that drastically lower the 
simulation efficiency. This is especially true when a stiff 
object is tightly gripped, and notably it is the very intent 
of gripping devices to grip things tightly in order to create 
a force-locked connection.  
 

 
 

Figure 2: A one-dimensional spring-damper system modeling 
an elastic contact with ground. 

For illustration, let us look at the simple 1D mechanics of 
a spring-damper system as in Figure 2. 
 

 
𝑣 =

𝑑𝑠

𝑑𝑡
 (1a) 

   
 𝑑𝑣

𝑑𝑡
=

𝑓

𝑚
+ 𝑔 

 

(1b) 

 𝑓 =  −𝑐𝑠 − 𝑑𝑣 
 

(1c) 

where 𝑠 is the position and 𝑣 is velocity. The force 𝑓 
results out of the spring damper dynamics with their 
respective coefficients 𝑐  and 𝑑 . 𝑔  is the gravity 
acceleration.  

For 𝑑 >  0 and 𝑚 > 0, this system reaches a steady-
state solution at: 
 

 𝑠 =
𝑚𝑔

𝑐
; 𝑣 = 0 

 
The eigenvalues of the system are well known: 

 

𝜆ଵ,ଶ =  −
𝑑

2𝑚
± ඨ

𝑑ଶ

4𝑚
−

𝑐

𝑚
 

 
Let us suppose, we as modelers are willing to sacrifice 

the precision of the transient dynamics for the sake of 
simulation efficiency. Since both 𝑚  and 𝑐  contribute to 
the steady-state solution, we may hence only modify the 
damping constant 𝑑.  

Below critical damping we may move the eigenvalues 
only alongside a circle in the plane of imaginary numbers. 
This helps at least avoiding high frequencies and is often 
feasible for implicit ODE solvers. Going beyond critical 
damping makes matters even worse, causing one 
eigenvalue to become highly negative whereas the other 
starts to interfere with potentially other slow dynamics 
that may exist in extension of this system. The direct 
manipulation of 𝑑  in a complex system is often 
cumbersome because a favorable choice depends on the 
values for spring constants and masses for the 
configuration.  

Despite its tight limitations, this method is often applied 
and for real-time simulation, many simulation 
practitioners are desperate enough to even manipulate 
constants for masses or springs (Neves 2019, Reiser 
2021), often leading to a virtual world of strangely 
wobbling objects. 
 

3 The Idea of Dialectic Mechanics 
When practitioners show such signs of desperation, it is 
mostly because their model does not match their original 
intent.   

Indeed, it is not very intuitive for us why the gripping 
of an object is such a tough task to simulate, our brain 
simulates it all the time and it seems to do a pretty good 
job at it despite being a low-frequency computational 
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device (albeit being massively parallel). We thereby 
intuitively decompose the macroscopic motion of our arm, 
hand, and object from the microscopic motion of the 
object in the tension-regime of the gripping hand. The first 
motion is dominated by the kinetic forces resulting from 
the acceleration of objects, the latter motion is dominated 
by the elastic forces resulting from the positional shift of 
the object. 

Realizing such a decomposition in form of equations is 
unfortunately not intuitive at all but it can be achieved:  

 We denote the velocity in the elastic regime: 𝑣௘௟ 
 We denote the velocity in the kinetic regime: 𝑣௞௜ 

 
In an ideal world 𝑣௘௟ = 𝑣௞௜ . However, to express the 
modeler’s intent of splitting into two regimes, we 
formulate: 

 𝑑𝑣௞௜

𝑑𝑡
 𝑇஽ = 𝑣௘௟ − 𝑣௞௜    (2a) 

 
with 𝑇஽ being denoted as dialectic time-constant.  This 

represents a first-order filter for the kinetic motion. High-
frequency motion in the elastic regime are therefore 
inhibited for their impact on the kinetic regime. Let us now 
restate the equations of our spring damper system: 

We can compute the elastic force 𝑓௘௟: 
 

 𝑓௘௟ = −𝑐𝑠 + 𝑚𝑔 (2b) 
With 

 𝑑𝑠

𝑑𝑡
= 𝑣௘௟ (2c) 

 
We can compute the kinetic force 𝑓௞௜: 
 

 
𝑓௞௜ = −𝑚

𝑑𝑣௞௜

𝑑𝑡
− 𝑑 ∙ 𝑣௞௜ (2d) 

 
Evidently, the decomposition of velocity led us to 

decompose also the forces and we now treat elastics and 
kinetics as separate phenomena. In order to rejoin them to 
a consistent solution, we remember our equation (1) of the 
first-order filter and enforce the balance of forces: 
 

 𝑓௘௟ + 𝑓௞௜ = 0 (2e) 
 

This is why we call this approach: dialectic mechanics. 
If we personify the phenomena of elastics and kinetics 
then both persons would argue for their regime by 
expressing their respective force. In the end, they have to 
reach a common conclusion that neutralizes their 
respective counterarguments. 

In correspondence, this system of equations has two 
states: the position 𝑠 belonging to the elastic domain and 
𝑣௞௜ , belonging to the kinetic regime. We can plug in 
Equation (2b) and (2d) in Equation (2e) to eliminate the 
forces: 

 

 𝑑𝑣௞௜

𝑑𝑡
=  𝑔 −

𝑐

𝑚
𝑠 −

𝑑

𝑚
𝑣௞௜ (3a) 

 
and plugging in Equation (2a) in (2c) eliminates 𝑣௘௟: 

 
 𝑑𝑠

𝑑𝑡
=  𝑔𝑇஼ −

𝑐𝑇஽

𝑚
𝑠 + ൬1 −

𝑑𝑇஽

𝑚
൰ 𝑣௞௜ (3b) 

 
We see that for 𝑇஽ → 0 this system becomes equivalent to 
the original system of Equations (1a-1c). Small values for 
𝑇஽ shall thus result in a small deviation. We also see that 
𝑇஽  has no impact on the steady-state solution, which is 
still: 
 

𝑠 =
𝑚𝑔

𝐶
; 𝑣௞௜ = 0 

 
But the eigen-dynamics are now manipulated so that we 

have new eigenvalues: 
 

𝜆ଵ,ଶ = −
𝑑 + 𝑐𝑇஽

2𝑚
± ඨ

(𝑑 + 𝑐𝑇஽)ଶ

4𝑚ଶ
−

𝑐

𝑚
 (4) 

 
The term in the square root is now a quadratic function 

on 𝑐/𝑚 with a minimum at: 
 

ቀ
𝑐

𝑚
ቁ

௠௜௡
=

2

𝑇஽
ଶ −

𝑑

𝑚𝑇஽
 

 
and the minimum value of: 

 

−
1

𝑇஽
ଶ +

𝑑

𝑚𝑇஽
 

 
For an undamped system with 𝑑 = 0, this simplifies to: 

 

−
1

𝑇஽
ଶ 

 
which limits the imaginary part of the eigenvalues to 

not exceed  ±𝑖𝑇஼
ିଵ, corresponding to a maximum rotation 

of  
 

𝜔௠௔௫ = 𝑇஽
ିଵ 

 

or a frequency limitation of 
ଵ

ଶగ ವ்
. In the original 

undamped system, the angular velocity was simply:  
 

𝜔ௌ
ଶ =

𝑐

𝑚
 

 
The dialectic undamped system yields a different 

rotation: 

𝜔஽
ଶ =

𝑐

𝑚
− ൬

𝑐

𝑚

𝑇஽

2
൰

ଶ
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which (for 𝜔஽ > 0)  can be expressed in terms of 𝜔ௌ: 
 

𝜔஽
ଶ = 𝜔ௌ

ଶ ቆ1 − 𝜔ௌ
ଶ

𝑇஽
ଶ

4
ቇ   

 
We see that the deviation from the original system is small 
for low frequencies but keeps rising quadratically up to 
and beyond the frequency limitation. From equation (4) 
we can also see that there is an additional damping term 
added with the strength of 𝜔ௌ

ଶ𝑇஽/2 .  
In terms of eigenvalue manipulation: what is subtracted 

on the imaginary axes is added on the left side of the real 
axis (for an undamped system). This means that our error 
is of stabilizing (or dissipative) nature. Indeed, we can see 
from Equation (4) that working with 𝑇஽ is equivalent to 
manipulating the damping constant. The time-constant 
however offers a systematic approach to perform this: 
eigenvalues near the center are only little influenced, 
eigenvalues close to the frequency limitations are 
drastically manipulated. Also, we still have the original 
damping coefficient 𝑑 available for further manipulation 
of the eigenvalues in case this is needed.   

If the slow dynamics of interest is well below the 
imposed frequency limitation, we can expect our error to 
be within an acceptable range for many practical 
applications, especially those applications where the 
model uncertainty is quite high like gripping little known 
objects. We shall also remember that the steady-state 
solution is not manipulated.  
 

4 Object-Oriented Formulation  
4.1 1D Translational Systems 

All what has been discussed in the previous section has 
just been the eigenvalue manipulation of a small system 
with two states. This would not deserve our attention, if 
the conclusion remains restricted to this problem class. 
Fortunately, the idea of dialectic mechanics is very well 
suited for an object-oriented formulation, which allows its 
application to larger and more complex kinetic constructs. 

To this end, let us review the core idea and devise a 1D 
library for translational mechanics. The first key idea was 
to split the mechanics into two regimes:  

 
 The elastic regime, taking care about position and 

storage of potential energy such as springs or 
gravity. 

 The kinetic regime, taking care about dissipation 
and storage of kinetic energy 

 
We can represent these two regimes, by two 
corresponding pairs of effort and flow: 
 

Listing 1. 1D-connector implementation 

connector Flange 
  SI.Position s; 
  flow SI.Force f_el; 
 
  SI.Velocity v; 
  flow SI.Force f_ki; 
end Flange; 
 

We also define that 𝑣௘௟: =
ௗ௦

ௗ௧
 and if not stated explicitly 

otherwise 𝑣௞௜ ≔ 𝑣 and the acceleration is 𝑎 = 𝑑𝑣௞௜/𝑑𝑡. 
When we implement the components, we simply do so in 
a dialectic manner. We set up the equations for each of the 
regimes independently. 

The fixation is boring as usual: 
 

Listing 2. Component for a fixed position 

model Fixed 
  Interfaces.Flange_b flange_b; 
  parameter SI.Position s; 
 
equation  
  flange_b.s = s; 
  flange_b.v = 0; 
end Fixed; 
 
The element for translation now has to contain the 
derivative of the non-holonomic constraint in the kinetic 
domain. Kinetic and elastic forces are independently 
transferred. 

Here is the implementation of a body component: 
 

Listing 3. Component representing a 1D mass 

model Body 
  Interfaces.Flange_a flange_a; 
 
  parameter SI.Mass m; 
  parameter SI.Acceleration g = -9.81;  
 
  SI.Acceleration a; 
  SI.Velocity v(stateSelect= ...avoid); 
  SI.Position s(stateSelect= ...avoid); 
 
equation  
  a = der(v); 
  s = flange_a.s; 
  v = flange_a.v; 
 
  flange_a.f_ki = m*a; 
  flange_a.f_el  = -m*g; 
end Body; 
 
Please note that the gravity is attributed to the elastic 
domain since it represents a potential force depending on 
position (albeit not in this particular example). Also, the 
body component does not state that the velocity is 
derivative of the position. Other than a typical body 
component, it does not define states.  

Introducing Dialectic Mechanics

170 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204167



To finally join the two regimes and reach a common 
conclusion, we have to apply the filter equation that 
relates 𝑣௘௟ and 𝑣௞௜ and also enforce the balance of forces: 
𝑓௘௟ + 𝑓௞௜ = 0. This has to happen where we define our 
degrees of freedom for the motion of the system. These 
are the joint elements. In 1D mechanics there is only 1 
degree of freedom and hence only one type of joint: the 
prismatic joint. 
 

Listing 4. The prismatic joint in 1D 

model Joint 
  Interfaces.Flange_a flange_a; 
  Interfaces.Flange_b flange_b; 
  RealInput f_ext; 
  parameter SI.Time TD; 
  SI.Position s(stateSelect = …prefer); 
  SI.Velocity v(stateSelect = …prefer); 
  SI.Velocity v_el(start = 0); 
 
equation  
  flange_a.s + s = flange_b.s; 
  flange_a.f_el + flange_b.f_el = 0; 
  flange_a.v + v = flange_b.v; 
  flange_a.f_kin + flange_b.f_kin = 0; 
  flange_a.f_el + flange_a.f_kin =f_ext; 
  v_el = der(s); 
  der(v)*TD = (v_el - v); 
end Joint; 
 
In dialectic mechanics, typically 𝑠  and 𝑣௞௜ are chosen as 
states of the system. A linear system has then to be solved, 
in order to solve for 𝑣௘௟ with the balance of forces 𝑓௘௟ +
𝑓௞௜ forming the corresponding residual. In this particular 
component model, this sum adds up not to zero but to an 
external force 𝑓௘௫௧ that can be used to actuate the joint.  

Following the same spirit, we can model an asymmetric 
spring-damper to model a mechanical stop element.  
 

Listing 5. ElastoGap model 

model ElastoGap 
  Interfaces.Flange_a flange_a; 
  Interfaces.Flange_b flange_b; 
  parameter SI.Position l; 
  parameter SI…SpringConst. c; 
  parameter SI…DampingConstant d; 
  SI.Position ds( start = 0); 
  SI.Velocity dv( start = 0); 
 
equation  
  flange_a.s + l + ds = flange_b.s; 
  flange_a.f_el + flange_b.f_el = 0; 
  flange_b.f_el = if ds < 0 then ds*c 
                  else 0; 
  flange_a.v + dv = flange_b.v; 
  flange_a.f_kin + flange_b.f_kin = 0; 
  flange_b.f_kin = if ds < 0 then dv*d 
                   else 0; 
end ElastoGap; 

The following model uses two of such elasto-gaps to 
model a 500g ball clamped into two pieces of hard wood 
with an indentation of 0.1mm resulting in a spring 
constant of roughly 2MN/m. The system is modelled 
without any damping (which is totally unrealistic). The 
whole construction is then moved by two subsequent and 
counteracting force impulses.  The corresponding setup of 
Figure 3 can be regarded as a very simplistic model of a 
robotic grip holding and moving an object.  

 
Figure 3: Modelica Diagram of a clamp on a fixed actuator. The 
upper body is squeezed between to elasto-gap models. The 
lower body represents the cartridge that is being moved by two 
force impulses. 

The simulation plot in Figure 1Figure 4 below shows the 
result of the corresponding simulation using two different 
time constants 1 microsecond and 1 millisecond. The 
system has been simulated in both cases with Runge-Kutta 
of 3rd order, using the corresponding step-width.  
 

 
Figure 4: Penetration depth [mm] into the left clamp component 
represented by an elasto-gap, for the choice of two different time 
constants (TC = 𝑇஽). Both agree on the time-averaged solution.  
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Using a microsecond as time constant, we can see the 
resulting high-frequency solution in the contact region of 
the idealized hard-wood. Ideally, the oscillation should 
last forever (since no damping is assumed) but the small 
added damping lets the oscillation decay roughly within a 
second.  

Using a millisecond as time constant, the system is 
almost perfectly damped artificially but exhibits the same 
shift in its quasi-equilibrium. The minute changes in 
penetration depth due the acceleration of the body are 
correctly assessed (on time-average basis).  
 
4.2 1D Rotational Systems 

Using strict analogy, a 1D-rotational library can be 
created. Here we use two angular velocities: 𝜔௘௟ and 𝜔௞௜ 
to establish the dialectic regimes where again a balance of 
torque 𝜏௘௟ + 𝜏௞௜ forms the root of the equation system. 
 

5 Complex Kinematics 
To demonstrate the suitability of dialectic mechanics for 
complex kinematics, we have developed a planar 
mechanical library, similar to (Zimmer 2012).  

As connector we use 2x3 pairs of potential and flow 
variables. 
 

Listing 6. Planar mechanical connector 

connector Frame  
  //elastic regime 
  SI.Position x; 
  SI.Position y; 
  SI.Angle phi; 
  flow SI.Force fx_el; 
  flow SI.Force fy_el; 
  flow SI.Torque t_el; 
 
  //kinetic regime 
  SI.Velocity vx; 
  SI.Velocity vy; 
  SI.AngularVelocity w; 
  flow SI.Force fx_ki; 
  flow SI.Force fy_ki; 
  flow SI.Torque t_ki; 
end Frame; 
 
The implementation is in strong correspondence, with the 
1D translational library. For the sake of brevity, the code 
of the prismatic joint, is to be regarded as exemplary and 
provides sufficient insight into the general dialectic 
modeling style: 

 

Listing 7. A prismatic joint in a planar world 

model Prismatic "A prismatic joint" 
  extends DialecticPlanarMechanics.Inter
faces.PartialTwoFrames; 
 
  parameter Boolean useFlange=false; 

  parameter SI.Time TD; 
  parameter SI.Position r[2]  
  final parameter SI.Length l=sqrt(r*r);
  final parameter SI.Distance e[2]= r/l 
 
  Translational1D…Flange_a flange_a( 
    s=s,v=v, 
    f_el=f_el,f_kin=f_kin) if useFlange; 
 
  SI.Position s(stateSelect = …prefer); 
  SI.Velocity v(stateSelect = …prefer); 
  SI.Velocity v_el; 
  SI.Force f_el; 
  SI.Force f_kin ; 
  Real e0[2] ; 
  SI.Position r0[2]; 
  Real R[2,2]; 
 
equation  
  R={{cos(frame_a.phi),-sin(frame_a.phi)}, 
      {sin(frame_a.phi),cos(frame_a.phi)}}; 
  e0 = R*e; 
  r0 = e0*s; 
 

  //elastic regime 
  frame_a.x + r0[1] = frame_b.x; 
  frame_a.y + r0[2] = frame_b.y; 
  frame_a.phi = frame_b.phi; 
  frame_a.fx_el + frame_b.fx_el = 0; 
  frame_a.fy_el + frame_b.fy_el = 0; 
  frame_a.t_el  + frame_b.t_el  
  + r0*{frame_b.fy_el,-frame_b.fx_el} 
  = 0; 
 

  //kinetic regime 
  frame_a.vx - r0[2]*frame_a.w + v*e0[1]
  = frame_b.vx; 
  frame_a.vy + r0[1]*frame_a.w + v*e0[2]
  = frame_b.vy; 
  frame_a.w = frame_b.w; 
  frame_a.fx_kin + frame_b.fx_kin = 0; 
  frame_a.fy_kin + frame_b.fy_kin = 0; 
  frame_a.t_kin  + frame_b.t_kin  
  + r0*{frame_b.fy_kin,-frame_b.fx_kin} 
  = 0; 
 
  //synergy 
  v_el= der(s); 
  der(v)*TD = (v_el- v); 
  {frame_b.fx_el,frame_b.fy_el}*e0 
   + {frame_b.fx_kin,frame_b.fy_kin}*e0 
   + f_el + f_kin = 0; 
 
 
  //actuation force 
  if not useFlange then 
    f_el = 0; 
    f_kin = 0; 
  end if; 
  
end Prismatic; 
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Please note also, that the prismatic joint contains 1D-
flange for actuation. Combing this joint with the 1D-elasto 
gap model provides for instance the opportunity to model 
limited joints in a natural way, without needing any extra 
components.  

Indeed, when we combine this prismatic joint with a 
1D-Elasto Gap model, we get a limited prismatic joint. We 
can then use then this joint to create the simple model of a 
thread pendulum as presented in Figure 5.  

 
Figure 5: Model of thread pendulum. An elasto-gap is used to 
model the maximum extension of the thread.  

Under the chosen initial conditions, the pendulum first 
swings through the lower hemicircle before it reaches its 
apogee and entering free fall conditions as in Figure 6. 
From then on, it sharply drops into its own thread, 
continually bouncing off the confining circle of the 
pendulum. This is because the thread is quite stiff with a 
spring constant of 1MN/m but only lightly damped with a 
damping constant of 1kNs/m 
 

 
 
Figure 6: Trajectory of the thread pendulum for the first 2.6 
seconds. 

The simulation thus exhibits both slow mode and fast 
mode behavior. The first second with its swing through 
the hemicircle represents a slow mode behavior. 
Independent of the time constant for 𝑇஽  all simulations 
agree on the elongation length of the thread due to the 

centrifugal and gravitational forces acting on the mass. 
There is only a slight phase shift depending on 𝑇஼ visible 
in Figure 7.  
 

 
Figure 7: Extension of thread in meter through the first 
hemicycle due to gravity and centrifugal forces. In the slow-
mode, the agreement of models with different time constants 
(TC = 𝑇஽) is high. 

The bounce off its own thread represents a fast mode 
behavior. Here significant differences become visible in 
Figure 8 with respect to the choice of 𝑇஽. Low values for 
𝑇஽ lead to an artificially dampened system that dissipates 
its energy much quicker. This is exactly what is expected 
from the previous eigenvalue analysis. 
 

 
Figure 8: Center distance of pendulum body in meter during the 
overall trajectory. The artificial dampening with increased time 
constants (TC = 𝑇஽) impacts the elasticity of the bounce.  
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5.1 Kinematic Loops 

When using dialectic mechanics, all joints always express 
state variables. Kinematic loops are closed using an elastic 
element (which however can be very stiff). The system 
therefore has more states than the classic set-up of 
kinematic loops, but avoids the formulation of a non-
linear equation system. To solve for the balance of forces, 
still only a linear system of equations needs to be solved. 
Figure 9 presents is a simple 2D-kinematic loop for the 
extension of a landing gear.  
 

 
Figure 9: Model diagram of a simple unfolding kinematic of a 
landing gear. The loop is closed by the green component 
representing a spring-damper element (translational and 
rotational) with high stiffness.  

This example has 8 state variables (the angles and the 
kinetic angular velocities of the revolute joints) and there 
is one linear implicit equation system of size that can be 
torn by 4 iteration variables: the 4 elastic angular 
velocities 

One advantage of using an elastic element for closing 
loops is that typical singular points of maximal extension 
can now be properly handled. A fully rigid formulation 
exhibits a singular point at its point of maximum extension 
as depicted in Figure 10 because the kinetic energy at this 
point has nowhere to go. Using the elastic element for loop 
closure avoids this problem and the elastic elements can 
take the impulse from the kinematic reaching its limits. 

As this example shows, even impulses on kinematic 
loops can be handled by dialectic mechanics.  Because of 
the suppression of high frequencies, stiff springs can be 
used for closing kinematic loops without creating high 
frequencies. As with the example of the thread pendulum, 
the applied time-constant matters for the fast-mode 
behavior of the impulse but not for the slow unfolding 
dynamics. 
 

 

 
 

Figure 10: Visualization of the kinematic loop in two different 
states: unfolded on the right and partially folded on the left.  

 

6 Conclusions 
Let us now recapitulate on what we have actually 
implemented. Usually for a mechanical library, one of the 
first equations to write down would be: 
 

𝑎 =
𝑑ଶ𝑠

𝑑𝑡ଶ
 

 
The acceleration is the second time-derivative of the 

position. What else should it be? Remarkably, this 
equation is not fulfilled in dialectic mechanics. Here we 
only make an approximation for lower frequencies. 
 

𝑎 ≈
𝑑ଶ𝑠

𝑑𝑡ଶ
 

 
Effective modeling always represents an effective (and 

thereby lossy) compression of reality. It is hence all about 
doing an error on purpose where it is the most helpful. 
First of all, the rigid body assumption only holds up for 
low frequencies. At high frequency excitation, all bodies 
increasingly appear to be elastic. Limiting the frequency 
bandwidth is hence simply a consequential alignment to 
the rigid body assumption. 

By making the acceleration only an approximation of 
the second derivative of position, we enable a 
disassociation of the regime for kinetic energy from the 
regime of potential energy. This disassociation enables the 
direct transfer of energy within these domains, especially 
within elastic elements.  

Figure 11 illustrates a light-weighted, weakly damped 
body in the center of two very stiff springs and dampers.  
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Figure 11: Classic representation of a body clamped in by two 
spring-damper elements. Any change of the potential energy 
stored in the springs has to go through the kinetic energy.   

In the classic formulation any transfer of potential energy 
between the two springs has to go through the kinetic 
energy of the body component. This enforces very high 
frequencies. 

In dialectic mechanics, we split the two regimes and 
couple them by a low-pass filter. This is illustrated in 
Figure 12. 
 

 
Figure 12: Dialectic view of the same system. On the elastic 
side, the body is now represented by a massless-point where 
only its low-frequency motion passes through the mass-holding 
body on the kinetic side. This enables an independent energy 
exchange of the potential energy stored in the springs. In this 
way, the elasto-static equilibrium can be found without 
transferring all energy through the body, instead it is (to a 
various degree) dissipated in the filter.  

The dot connecting the two springs is now massless and 
only connected to the original mass by the first-order low-
pass filter. In this way, a direct (dissipative) energy 
transfer between the springs is enabled and also the filter 
equation furthermore ensures that the springs are always 
undergoing a continues motion. Hence, the steady-state 
solution can be reliably and consistently found while 
avoiding higher frequencies.  

This is useful because a lot of mechanical phenomena 
can be quite conveniently modelled using very stiff 
springs: 

 Limited joints 
 Contact dynamics 
 Stiction 
 etc… 

The reason modelers learn to avoid very stiff springs is 
that they typically yield highly unfavorable 
eigendynamics. Using dialectic mechanics, the modeler 
can now use realistic spring constants without a bad 
conscience for many applications since the manipulation 
of eigenvalues for high frequencies keeps the dynamics in 
check without modifying the steady-state solution and 
only causing small errors for the dynamics of the slow 
modes. This greatly eases modeling of all of the above 
phenomena. 

Regarding impulses: dialectic mechanics works fine for 
inelastic contacts. Fortunately, many gripping 
mechanisms are designed to provoke inelastic contacts 
having multiple layers of material with high damping 
constants (like human hands). For purely elastic contacts, 
there is a substantial error and the conservation of energy 
and momentum is disregarded. The error gets worse, the 
harder the material. With being too dissipative, the error is 
at least benevolent, meaning that it does not destabilize the 
system and enables a robust solution nonetheless.  

The robustness and the avoidance of non-linear 
equation system in implicit form makes dialectic 
mechanics especially suited for the hard real-time 
simulation using explicit solvers. To this end, the 
presented manipulation of eigenvalues is however not 
sufficient and a further manipulation needs to be applied. 
Together with an extensive error analysis these are 
presented in the corresponding follow-up paper 
(Oldemeyer 2023). Interestingly also other approaches for 
explicit solvers split the time-domain and use a two-fold 
model approach such as (Peiret 2020). 

Two remarks regarding the interface of dialectic 
mechanics. First remark: it is of course possible to model 
the ideal case where 𝑣௘௟ = 𝑣௞௜ using this interface as well. 
The interface would then be partly redundant which in 
consequence simply yields a slightly bloated formulation 
of classic multibody mechanics. In principal, mixing of 
approaches is hence possible. For the example of on-orbit 
servicing of satellites, the satellite trajectories could be 
modeled with ideal equations ensuring the conservation of 
momentum in space. The robotic interaction between 
satellites could then be modeled using a dialectic 
approach. 

Second remark: Dialectic Mechanics is part of a larger 
modeling class denoted as Linear Implicit Equilibrium 
Dynamics (Zimmer, 2023). This class of models has 
originally been conceived to enable robust modeling of 
thermofluid systems but it revealed application potential 
outside this domain as well. Linear Implicit Equilibrium 
Dynamics is also a class of models whose compilation 
scheme is comparable simple and enables a generation of 
simulation code per component. This could be useful for 
mechanical libraries in a more dynamics run-time setting. 
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