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Abstract
This paper provides a detailed analysis of the reasons
behind the poor simulation performance observed when
mass flow rates become very small, commonly referred to
as zero mass flow issues. By using simple example mod-
els, we effectively demonstrate the underlying causes of
these simulation performance issues. We highlight vari-
ous contributing factors that play a significant role in ex-
acerbating the problem.

Furthermore, we propose and examine countermea-
sures to mitigate these challenges. These countermeasures
include modifications to the model itself, utilization of
available settings in simulation tools, and adjustments to
the solver. By implementing and evaluating these coun-
termeasures, we illustrate their impact on improving sim-
ulation performance in scenarios involving low mass flow
rates.
Keywords: zero mass flow issue, fluid dynamics, ODE in-
tegration, non-linear modeling

1 Introduction
Modelica is a great option to easily create models to sim-
ulate complex fluid systems. The created models can be
simulated in one of the available tools. Thanks to advance-
ments in algorithms and computational power, it is now
possible to model these intricate systems within a short pe-
riod of time.However, there is a challenge when it comes
to systems that contain branches with no flow during cer-
tain periods or when the model is used to simulate ramp-
up or shut-down sequences. In such cases, simulation time
can drastically increase, resulting in what is commonly
known as zero mass flow problems. From our experi-
ence in supporting several customers in creating and sim-
ulating models using different libraries, this issue causes
large problems. Nevertheless, there is limited literature
available on this subject. Dermont et al. (2016) presented
an analysis of measures to improve robustness of models
used to simulate air condition cycles. The demonstrated
the impact of different measures including regularization
of the mass flow pressure correlation at low mass flow
rates, heat transfer modeling and choice of solver. The
study (Li et al. 2020) highlighted the impact of an accurate
and fast calculation of the system Jacobian matrix as part
of the solution process. Qiao and Laughman (2022) ana-
lyzed the impact of different measures to improve perfor-

mance of air conditioning models at low mass flow rates.
They came up with a new regulation scheme for the pres-
sure drop mass flow correlation around zero mass flows
and an analysis of heat transfer handling methods.

In our opinion these article only scratch the surface of
the numerical reasons which cause the slow simulations
at zero mass flow rates. We strongly believe that gaining
a deeper understanding of this phenomenon is crucial for
developing effective strategies to improve simulation time
in scenarios involving low mass flow rates. Therefore, the
primary objective of this paper is to elucidate the underly-
ing causes behind the sluggish performance observed dur-
ing simulations with low mass flow rates.

To achieve this goal, we begin by examining and an-
alyzing the solution process of a highly simplified fluid
dynamic model. This analysis serves as a starting point
to unveil the root causes of zero mass flow issues. Fur-
thermore, we expand this model to incorporate additional
complexities, thereby showcasing the impact of increased
intricacy on simulation performance. By employing all
these models, we illustrate the application of various coun-
termeasures aimed at mitigating the challenges posed by
zero mass flow problems.

2 Analysis for simple model
For demonstration of the underlying phenomenon we use
a simple model of an isothermal ideal gas in a volume with
the variable pressure p connected over a flow resistance to
a boundary with fixed pressure pb

dm
dt

=
V

R ·T
dp
dt

= mflow . (1)

When including a quadratic flow model with the param-
eter c but neglecting the dynamics of the momentum flow
as often done for gas flows

mflow = c · sign(pb − p) ·
√
|pb − p| (2)

we can derive the single ordinary differential equation

V
R ·T

· dp
dt

= c · sign(pb − p) ·
√

|pb − p| (3)

dp
dt

=
1
τ
· sign(pb − p) ·

√
|pb − p|= 1

τ
·F(∆p) . (4)

In order simplify the equation we introduced ∆p = pb − p
and τ = V

R·T ·c . Equation (4) could be integrated using an
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implicit Euler scheme

pti − pti−1

∆t
=

1
τ
·F(∆pti) (5)

R(pti) = pti − pti−1 −
∆t
τ
·F(∆pti) = 0 (6)

in which pti denotes the solution at the current and pti−1
the solution at the previous time step. Equation (6) is a
nonlinear equation which has to be solved to determine
the pressure at the current step ti. We have brought the
equation to residual form. So we have to find the root of
the residual function R(p). For the solution solvers usually
apply a Newton method, in which the linearized equation
is repeatedly solved

p j
ti = p j−1

ti −
(

R′(p j−1
ti

))−1
·R(p j−1

ti ) . (7)

Here the prime denotes the derivative and p j
ti is the up-

dated solution for pressure at time step ti in iteration j.
The iteration is performed starting with an initial guess
p0

ti for the solution. Solving the equation requires solving
the linear system R′(p j−1

ti

)
· (p j−1

ti − p j
ti) = R

(
p j−1

ti

)
. For

a single equation this can be done without much effort,
but for a system of differential equations, the derivative
of the residual equation system becomes a matrix (which
is closely related to the Jacobian matrix of the system
function F). Calculation of the derivative/Jacobian matrix
and calculation of a decomposed form for solution comes
at high computational effort. Additionally, in many sys-
tems the matrix does not change too much while advanc-
ing in time. Therefore, solvers usually never update the
derivative during the iterative solution process for a time
step and use (R′(p j

ti))
−1 = (R′(p0

ti))
−1 (known as Chord

method (Kelley 1995)). Additionally, solvers try to use
the same derivative (R′(p̃))−1 for solving multiple time
steps. With this assumption the following iteration scheme
is used with a constant R′(p̃))−1

p j
ti = Φ(p j−1

ti ) = p j−1
ti − (R′(p̃))−1 ·R(p j−1

ti )). (8)

Figure 1 visualizes an exemplary successful iteration for
the example problem from equation (4). The slope of the
linearized approximations (red lines) do not match the ac-
tual local slope of the residual function (blue curve). Nev-
ertheless, the iteration schemes converges, but it has lost
its quadratic convergence due to the constant derivative.
But as shown in Figure 2 the iteration might fail. The iter-
ations schemes drifts off from the actual root of the resid-
ual equation and finally circles around the solution. In the
following we will analyze this phenomenon in more de-
tail and demonstrate that the iteration with not-up-to-date
derivative becomes more difficult to solve when mass flow
rate becomes small. If the solution diverges, as shown in
Figure 2 or if due to the slower convergence no solution is
found within a given number of iterations the step will be
rejected. As reaction the solver will request an update of
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Figure 1. Example of a converging iterative solution for the
example problem.

the Jacobian matrix and repeat the solution process. If the
solution still fails, it might be necessary (as we will show
later on) to reduce the step size. Then a solution with the
outlined method can only be achieved for very small time
steps and if the Jacobian matrix is updated at every time
step. In this setting the time step is not chosen to ful-
fill the chosen tolerance anymore, but to make the system
solvable with the approximated Jacobian matrix from the
initial guess. This slows down the solution process and is
the cause of slow models performance what is named zero
mass flow issues.

Let us take a closer look on the iterative solution pro-
cess of Equation 4. The Banach fixed-point theorem states
that an iteration scheme Φ(p j

ti) will converge if it is con-
tractive. In that case a contraction factor λ < 1 exists and
the iterative schemes fulfills

∣∣∣Φ(p j
ti

)
−Φ

(
p j−1

ti

)∣∣∣≤ λ ·
∣∣p j

ti − p j−1
ti

∣∣ . (9)

For the Chord method we can calculate the contraction
factor with

λ =

∣∣∣Φ(p j
ti

)
−Φ

(
p j−1

ti

)∣∣∣∣∣p j
ti − p j−1

ti

∣∣ =

∣∣∣∣∣Φ(p j
ti)−Φ(p j−1

ti )

p j
ti − p j−1

ti

∣∣∣∣∣ . (10)

By applying the mean value theorem there exists a pξ ∈
(p j−1

ti , p j
ti) such that

λ = |Φ′(pξ )|= |1−R′(p̃))−1 ·R′(pξ )| . (11)
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Figure 2. Example of a failing iterative solution attempt for the
example problem.
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For the second step we included Equation 8. As conver-
gence requires λ < 1 we can obtain with Equation 11

0 < R′(p̃))−1 ·R′(pξ )< 2 . (12)

This criterion can be used for a more detailed analysis
of the cause of zero mass flow issues and how it can be
avoided, or its effects can be reduced.

But before applying this criterion to our demonstration
problem Equation 1, we want to take a general look on the
significance of Equation 12. For the reasons mentioned
above a solver will try to reuse the derivative R′(p̃)) for
multiple steps. But the actual derivative in the region of
the solution R′(pξ ) might differ from the used derivative
R′(p̃)) by a factor of two as demonstrated in Figure 2. In
that case the iterative solution of the nonlinear system will
fail. The solver will reject the step and repeat the solution
with a reduced step size and an updated value for R′(p̃)).
Unfortunately, the actual criterion for convergence is even
stricter than that from Equation 12. If the condition is ful-
filled, but with values close to two, the convergence is very
slow. The integrator demand convergence within a few it-
eration, e.g. Hindmarsh et al. (2023), otherwise the step
is rejected and the simulation performance decreases. But
as the ratio |R′(p̃))−1 ·R(p j

ti)| represent somehow the con-
vergence speed of the method, we can use it for an analy-
sis. Smaller values for |R′(p̃))−1 ·R(p j

ti)| will lead to con-
vergence within fewer steps. As convergence within few
steps is demanded, a good initial guess is of great impor-
tance. The closer this initial guess is to the actual solution,
the more likely is convergence of the method to the actual
solution within the demanded solution tolerance. This has
three consequences:

1. Methods which have a good approximation or fore-
cast used for the initial guess will not be affected as
much by the zero mass flow issue like method with
no good forecast.

2. Reducing the time step improves the approximation
of the initial guess. Therefore, reducing the step size
has two positive aspects: it improves the initial guess
and the ratio |R′(p0

ti))
−1 ·R(p j

ti)| will be closer to one.
But obviously this comes as the price of a slower
simulation.

3. The stricter the tolerance demanded for the solution,
the harder it becomes to reach the tolerance within
the desired number of iteration. So decreasing the
tolerance might cause more problems at low mass
flow rates.

After that general analysis, we will take a closer look on
that criterion for our demonstration problem.

2.1 Analysis of Convergence for Demonstra-
tion Problem

If we apply Equation 12 to our simple problem in Equa-
tion 1, we get

1+ ∆t
2τ
√

pb−pξ

R′(p̃)
< 2 . (13)

First of all, one can see that as p −→ pb results in p −→ pξ

the method has only a chance to convergence for ∆t −→ 0.
Therefore, in almost all libraries the square-root in the
mass flow pressure relation is replaced by an approxima-
tion which has a finite derivative when crossing zero. For
the regulation named regRoot from the Modelica Standard
Library (Modelica Standard Library 4.0.0 2023) eq. 13
becomes

1+ ∆t
τ

0.5·(pb−pξ )
2+∆psmall

2

((pb−pξ )
2+∆psmall

2)1.25

R′(p̃)
< 2 . (14)

But still convergence for p −→ pb can become problem-
atic for small values of τ and if ∆psmall is not chosen
large enough.The solver will find a solution within the de-
manded number of iteration but only for small time steps.
Additionally, the simple demonstration model can be used
to explain some general phenomena which can be seen in
more complex models concerning if zero mass flow issues
occur or not. Therefore, the simple model has been imple-
mented as Modelica model and was solved with Dymola
2022x (Dassault Systemes AB 2023) with the regulated
form of the square root mentioned above. Two different
solvers from Dymola were used: Dassl and Radau. Dassl
as a general purpose solver with good performance and
Radau, as it was recommend by Dermont et al. (2016),
when encountering zero mass flow problems. Figure 3
shows the number of Jacobian matrix evaluation when
solving the problem while varying the pressure level of
the boundary pb. The pressure was initialized at the same
level as the boundary. After one second the pressure in
the boundary was increased or decreased by 10Pa and the
system was simulated for further 10s to settle. One can
see that after exceeding a certain threshold in pressure
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Figure 3. Number of Jacobian matrix evaluations for the exam-
ple problem for different settings.
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Figure 4. Demonstration of the approximate calculation of the
derivative as secant (red) to the residual function (blue). If
the two supporting points have different signs, the slope of the
derivative approximation is much low than the slope in the re-
gion around ṁ = 0.

level the number of Jacobian matrix evaluation dramati-
cally increases. This indicates presence of a zero mass
flow problem as the integration steps are rejected, and a
new Jacobian matrix must be calculated. This pressure
level threshold depends on the chosen solver. Radau gen-
erally performs better in this case. But in general, it is
surprising that the pressure level has an impact on the so-
lution of the problem. The pressure level of pb is only a
constant offset for the solution and therefore on first look
it should not have an impact. Additionally, if Dassl is cho-
sen as solver, the number of Jacobian matrix evaluations
depends on the sign of the pressure step. When Radau is
used, the same number of Jacobian matrix evaluation is
required independent of the sign of the pressure step.

Both phenomena can be explained if one focuses on
how the derivative R′(p̃) is calculated in the solution pro-
cess. If no special settings are applied the derivative is cal-
culated numerically presumably with a given relative vari-
ation ∆pε = ε · p̃ with a small number ε . Typical methods
are

R′(p̃)≈ R(p̃+∆pε)−R(p̃)
∆pε

(15)

or

R′(p̃)≈ R(p̃+∆pε)−R(p̃−∆pε)

2 ·∆pε

. (16)

Firstly, if the pressure level increases, the absolute vari-
ation for calculation of the derivative increases. But the
physical meaning of a changed pressure difference has
not changed. For a solution around the steady solution
p̃ ≈ pb the variation ∆pε used to approximate the deriva-
tive might flip the sign of p̃ − pb. In that case the ab-
solute value of approximation of R′(p̃) becomes smaller
than the absolute value of the actual derivative (see Fig-
ure 4). As Equation 13 shows this decreases the speed of
convergence. Secondly, the problem itself is symmetric to
an increasing or decreasing step of the pressure. But us-
ing the approximation Equation 15 to calculate the deriva-
tive introduces an asymmetry. As only the Dassl solver

is susceptible to the sign of the variation it suggests it-
self that Dassl uses a forward differencing scheme while
Radau uses a central difference scheme like Equation 16.
We created an external external function which is called
in the model to track the value of states during all mod-
els calls: by analyzing the state variation one can identify
the times at which the Jacobian matrix is updated. When
using Radau as solver the perturbation is applied in both
directions while for Dassl only a perturbation in one direc-
tion is applied - therefore we can verify the assumption.
The central scheme is is more accurate and symmetric,
and therefore the results to not show a dependence on the
sign of the pressure step.

There are two options to improve model performance
for zero mass flow rate. If possible one could use an ana-
lytic calculation of the Jacobian matrix to get rid of the un-
derestimation of the derivative. Additionally, or solely the
problem could be reformulated to use ∆p= p− pb as state.
This measure improves the accuracy of the numeric ap-
proximation of the Jacobian matrix. Pressure differences
are driving the mass flow rates and therefore the changes
in pressure. If the pressure becomes large, the perturbation
applied ε ·∆p to calculated the derivative might be in the
range of the driving pressure differences and the approx-
imate Jacobian matrix is not accurately enough to solve
the system with large steps. Choosing the pressure differ-
ence as state, leads to a perturbation much smaller used to
calculate the derivative and the applied solution method is
much more robust. In both cases the model performs much
better as one can see in Figure 3. If one of the tweaks is
applied, no issues occur even if pressure level is increased.
Additionally, the number of evaluations is independent of
the step sign.

2.2 Non-linearity as root of the problem
Furthermore, we want to use the simple model to empha-
size the importance of the non-linearity of the problem.
Dermont et al. (2016) gave the time constant of the prob-
lem which increases when decreasing the mass flow rate
as reason for the poor model performance for small mass
flow rates. We want to demonstrate that the time con-
stant itself is not the root of the problem. For this test
we run the model with Radau as solver and the pressure
level of 1×106 Pa with a step of 10Pa. For the second
run the regRoot mass flow pressure relation was replaced
with a linear relation which has the same slope for van-
ishing mass flow rates (Figure 5). Due to the linearity
this slope remains the same for all mass flow rates. The
slope of the mass flow pressure relation determines the
time constant of the problem. The comparison is designed
in a way that the time constant of the non-linear problem
is at maximum the same as the time constant of the lin-
ear problem. Figure 6 shows the solver step when both
models are simulated with the same settings. Though the
linear problem should be tougher to solver from a simple
perspective of the time constant, it is actually the other
way round. A linear model cannot face zero mass flow

Understanding and Improving Model Performance at Small Mass Flow Rates in Fluid System Models

192 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204189



0

Linear
Nonlinear

Figure 5. Linearized and actual non-linear mass flow pressure
relation used in the example model to demonstrate the impact of
the non-linearity.
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Figure 6. Solver step size for example model with linear and
non-linear mass flow pressure relation as shown in Figure 5.

issues as the Jacobian matrix calculated at any position is
valid for the whole domain. As a result the linear prob-
lem can be solved with much higher time steps, though it
actually has the higher dynamics. Actually, the presented
findings could have been derived from Equation 12. But
the results are presented as they impressively show which
solver steps are possible coming from the pure dynamic
of the problem. The non-linearity of the problem which
results in a change of the time constant, causes the Chord
method to fail and as a result the possible time steps of the
integration method cannot be exploited.

3 Extended model with transported
scalar

Obviously, models are normally much more complex.
One additional level of complexity are additional equa-
tions to be solved e.g. balances for balance, mass, compo-
sition etc. The form of these equations has a crucial impact
on the resilience of the model against zero mass flow is-
sues. In order to demonstrate and analyze this impact we
extend our simple models with an additional equation

dψ

dt
=

{
mflow

m · (ψb −ψ), if mflow ≥ 0
0, otherwise

. (17)

Now we introduce the abbreviation ∆ψ = ψb − ψ and
observe that sign(mflow) = sign(∆p) in order to use the
Heaviside step function H(∆p). Moreover from Equa-

tion 4 and Equation 2 we can replace mflow = c ·F(∆p)
and m = V

R·T · p. Then

dψ

dt
= c2

τ · G(∆p)
p

·∆ψ (18)

where we have introduced G(∆p) = H(∆p) ·F(∆p)) and
again use τ = V

R·T ·c .
The residual equation becomes the form

R(ψt) = ψt −ψt−1 −∆t · c2
τ · G(∆p)

pt
·∆ψt (19)

The solution of equation R(ψt) = 0 depends on
G(∆p) = H(∆p) ·F(∆p) and hence on the flow direction
through H(∆p) and on the actual mass flow rate through
F(∆p). It is given by

ψt =
ψt−1 +∆t · c2τ · G(∆pt )

pt
ψb

1+∆t · c2τ · G(∆pt )
pt

(20)

Though in our model it would be possible to solve the
equation for pressure and the equation for the passive
scalar sequentially, in a Modelica tool these equations are
solved simultaneously. So Equation 17 is added to the
model from the previous section and solved again while
tracking the number of Jacobian matrix evaluations as it
was plotted in Figure 3. This time only Radau and a step
of 10Pa was used. The results are show in Figure 7. For
reference purposes the results for only the pressure equa-
tions are shown additionally. Adding the equation for the
transported scalar causes the zero mass flow issue to occur
at lower pressure levels and from that pressure level addi-
tional Jacobian matrix evaluations are caused compared
to the reference case. When integrating the solution of
Equation 17 depends on the actual mass flow rate. There-
fore, the iteration can only converge after the Equation 1
has converged reasonably close to the actual solution. If
Equation 1 alone converges only just within the desired
number of iteration, the system will not converge, causing
the zero mass flow issue occurring at lower pressure lev-
els. Figure 8 shows an exemplary course of the residuals
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Figure 7. Number of Jacobian matrix evaluations for example
model with (w/) and without (w/o) transported scalar and differ-
ent settings.
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Figure 8. Residuals of pressure and transported scalar during
iterative solution.
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Figure 9. Transported scalar flow rate for different modeling
approaches: all combinations of with (w/) and without (w/o) dif-
fusion and convection with (w/) and without (w/o) regulation.

of the two equations over the iterations. One can clearly
see that the residual of the scalar (Equation 17) even in-
creases before it starts to converge. But convergence rate
is slow, while the mass flow rates oscillates around its fi-
nal value. Figure 7 contains measure which are intended
to improve convergence around zero mass flow rate. One
idea is to introduce diffusion into Equation 17 by adding a
transport term which is independent of the mass flow rate

dψ

dt
=

(
c2

τ · G(∆p)
p

+µ

)
·∆ψ (21)

We use a artificial diffusion constant µ .
The second idea is to introduce a (nonphysical) regu-

lation of the convective transport as depicted in Figure 9.
The convective transport with is set to be zero if the mass
flow is regulated. After the mass flow has left the regula-
tion the convective flow is ramp up to its actual value.

From Figure 7 we can see that the pure diffusion does
not improve the system convergence around zero. No im-
provement was observed for reasonable big values of the
artificial diffusion constant µ . The problem is that the so-
lution for ψ still depends on the mass flow rate, though
it is shifted. Nevertheless, the scalar converges only after
the mass flow has converged. For an improvement the so-
lution should be independent of the mass flow rate for very
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Figure 10. Number of Jacobian matrix evaluations for a multi-
volume model with and without adjusted linearization interval.

small mass flow rates. That is the aim of the second mea-
sure, with the additional regulation of the convective flow.
This method has to be implemented carefully to avoid a
violation of conservation. When this measure is applied
the system is more robust against zero mass flow issues,
but it still performs worse than the model with only mass
conservation.

4 Extended model with multiple vol-
umes

In this step we want to extend the model from section 2 to
a model with multiple connected control volumes.

4.1 Pressures
For the pressures we obtain

dp[k]
dt

=
1

τ[k]
·
(

F(∆p[k])−F(∆p[k+1])
)

(22)

where we have extended the notation from Equation 4 to
the control volume label k = 1...N with ∆p[1] = pb− p[1],
∆p[k] = p[k−1]− p[k], ∆p[N+1] = 0 and control volume
dependent time constant τ[k] = V [k]

R·T ·c .
Following the procedure in Equation 14, we now ap-

proximate

F(∆p[k]) = sign(∆p[k]) ·
√
|∆p[k]| (23)

≈ regRoot(∆p[k], ∆psmall[k])

In a numerical experiment with n = 9 the control volume
V [k] was chosen uniformly V [k] = V except for volume
five, in which it was chosen to be a tenth of the other val-
ues V [5] = 0.1 ·V , such that τ[5] = τ/10. The other pa-
rameter varied is ∆psmall[k]. Two strategies are applied:
in the first strategy all regularization intervals have the
same size and in the second strategy all have the same
size except for that of k = 5. The value is chosen to be
∆psmall[5] = 10 · ∆psmall. The results are given in Fig-
ure 10. It is important to mention that the given level of
∆psmall corresponds to the value applied for most of the
equations. The first important thing which one can see is
that increasing the regularization interval will improve the
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performance until a certain threshold. After that one could
say that the zero mass flow problem is not present any-
more. But the increase in ∆psmall comes at a certain price,
the pressure drop at low mass flow rates will be computed
incorrectly. If this is an issue, the second strategy might
be an interesting option. It is only required to apply a
larger linearization for flow models which are connected
to pressure state with the large values of τ . So the overall
accuracy of the model will be better.

4.2 Passive Scalars
Using the same notation as in the previous section we can
extend Equation 18 for the passive scalar to obtain

dψ[k]
dt

=

(
c2

τ[k] · G(∆p[k])
p[k]

+µ

)
·∆ψ[k]

−

(
c2

τ[k] · G̃(∆p[k+1])
p[k]

+µ

)
·∆ψ[k+1]

(24)

with ∆ψ[1] = ψb −ψ[1] and ∆ψ[k] = ψ[k−1]−ψ[k] and
G̃(∆p) =G(−∆p) =

(
H(∆p)−1

)
·F(∆p), where we have

used the symmetry properties of the Heaviside step func-
tion H and the function F due to Equation 4. Finally we
approximate

H(∆p)≈ SM(∆p, func,nofunc) (25)

with the stepsmoother function SM(.) from
Modelica.Fluid.Dissipation.Utilities...
as regularization for the Heaviside step function. Here
the difference |func − nofunc| denotes the width of the
rgulated step.

4.3 Generalized convergence criterium
In this section we would like to extend the computation of
λ in Equation 11 and the resulting convergence criterium
in Equation 12 to general state space systems with N states
(x[1], · · · ,x[N]) =: x⃗. For a given time step ti we have

d
dt

x⃗ti = f⃗ (x⃗ti) (26)

and for an implicit integration algorithm it holds that

x⃗ti = x⃗ti−1 +∆t · f⃗ (x⃗ti) (27)

with the non linear residuum equation

R⃗(x⃗ti)
!
= 0⃗ = x⃗ti − x⃗ti−1 −∆t · f⃗ (x⃗ti) (28)

which can be solved iteratively by a Newton-Raphson
scheme

x⃗ j+1
ti = Φ⃗(⃗x j

ti) = x⃗ j
ti −
[
JR⃗(⃗x

j
ti)
]−1R⃗(⃗x j

ti) . (29)

Here JR⃗ denotes the Jacobian of the residuum vector
R⃗(⃗x j

ti). In analogy to Equation 8 the Chord method at-
tempts to solve Equation 29 with the inverse Jacobian
fixed at some state ˜⃗x:

x⃗ j+1
ti = Φ⃗(⃗x j

ti) = x⃗ j
ti −
[
JR⃗(
˜⃗x)]−1R⃗(⃗x j

ti) . (30)

Now in analogy to Equation 9 this iteration converges if it
is contractive, that is for some λ < 1 it holds that∥∥∥Φ⃗(⃗x j

ti)− Φ⃗(⃗x j−1
ti )

∥∥∥≤ λ ·
∥∥∥⃗x j

ti − x⃗ j−1
ti

∥∥∥ (31)

In order to further develop this expression, notice that we
re-write the difference on the left as the result of an inte-
gration along a straight line x⃗(s) = x⃗ j−1

ti + s · (⃗x j
ti − x⃗ j−1

ti ) in
state space with curve parameter s ∈ [0,1]:

Φ⃗(⃗x j
ti)− Φ⃗(⃗x j−1

ti ) =

1∫
0

ds
{

J
Φ⃗

(⃗
x(s)

)
· d⃗x(s)

ds

}
, (32)

where J
Φ⃗

(⃗
x(s)

)
denotes the Jacobian of Φ⃗ at position x⃗(s).

Now clearly the tangent vector d⃗x(s)/ds is constant along
the line and given by

d⃗x(s)
ds

= x⃗ j
ti − x⃗ j−1

ti . (33)

Moreover from Equation 30 it follows that

J
Φ⃗

(⃗
x(s)

)
= 1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)
(34)

with 1 denoting the N-dimensional identity matrix. So we
can formally re-write Equation 32 as

Φ⃗(⃗x j
ti)− Φ⃗(⃗x j−1

ti ) = A ·
(⃗

x j
ti − x⃗ j−1

ti

)
(35)

with the matrix A given by

A =

1∫
0

ds
{
1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)}
(36)

With these ingredients we can replace Equation 31 simi-
larly to Equation 11 by

∥A∥ ≤ λ < 1 (37)

Here ∥A∥= ∥A∥2 denotes the spectral norm of the matrix
A as induced from the L2 vector norm ∥⃗x∥. The spectral
norm is defined as the square root of the largest eigenvalue
of AT A, with AT the conjugate transpose of A. We can
further estimate ∥A∥ as follows

∥A∥ =

∥∥∥∥∫ 1

0
ds
{
1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)}∥∥∥∥
≤ max

s∈[0,1]

∥∥∥1− [JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)∥∥∥
≤

∥∥∥[JR⃗(
˜⃗x)]−1

∥∥∥ · max
s∈[0,1]

∥∥∥JR⃗(
˜⃗x)− JR⃗

(⃗
x(s)

)∥∥∥
!
< 1 (38)

Although Equation 38 holds for any matrix norm, for prac-
tical application in the context of Equation 31 one has to
use the spectral norm ∥J∥2.
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4.4 Explicit application
The bound obtained in Equation 38 can be used in order
to give conditions for convergence and also recommenda-
tions for the regularization parameters of the regRoot and
SM functions contained in F(∆p) and G(∆p).

4.4.1 General case
The matrix elements JR⃗(⃗x)[I,J]of the Jacobian JR⃗(⃗x) can
be computed from Equation 28 as follows:

JR⃗(⃗x)[I,J] =
∂R[I](⃗x)

∂x[J]
= δ [I,J]−∆t · ∂ f [I](⃗x)

∂x[J]
(39)

Here δ [I,J] denotes the Kronecker delta. For the
coupled pressure scalar system we have the time
derivatives f [I] given from Equation 22 and Equa-
tion 24. Let (x[1], . . . ,x[N]) = (p[1], . . . , p[N]) and
(x[N +1], . . . ,x[2N]) = (ψ[1], . . . ,ψ[N]). Then

1 ≤ I ≤ N f [I] = f
(
x[I−1],x[I],x[I+1]

)
N < K ≤ 2N f [K] = f

(
x[K−1],x[K],x[K+1],

x[K−N−1],x[K−N],x[K−N+1]
)

Hence the resulting incidence matrix is tri-diagonal for
the pressures and tri-diagonal for the scalars with an addi-
tional tri-band between pressures and scalars. This prop-
erty may be used in order to arrive at an estimate to the
spectral norms of Equation 38. An explicit computation
of the eigenvalues can in principle be avoided by approxi-
mating the spectral norm by the general property:

∥A∥2 ≤
√

∥A∥1 · ∥A∥∞ (40)

where ∥A∥1 = max j ∑
N
i=1 |ai j| is the maximum absolute

column sum norm of A and ∥A∥∞ = maxi ∑
N
j=1 |ai j| is the

the maximum absolute row sum norm of A. This also
avoids computation of AT A. An explicit symbolic anal-
ysis for the pressure system in the fashion of section 7 in
J. Brunnemann (2008) will be subject to future work.

4.4.2 Single pressure
For the case of a single pressure p[1] and boundary pres-
sure pb the Jacobian JR⃗(⃗x) has only one single element:

JR⃗(⃗x)[1,1] =
∂R[1](⃗x)

∂x[1]
=: R′(p) (41)

For simplicity of notation we have dropped the discretiza-
tion index on the right hand side. Plugging this into Equa-
tion 38 we obtain

max
s∈[0,1]

∥∥1− [R′(p̃)]−1 ·R′(p(s))
∥∥< 1c (42)

In order to fulfill this inequality it must hold that

0 ≤
R′(p(s)

)
R′(p̃)

≤ 2 ∀s ∈ [0,1] (43)

This re-produces the result of Equation 12.

4.4.3 Single pressure and passive scalar
For the case of a single pressure p[1] with boundary pres-
sure pb acoupled to a single passive scalar ψ[1] with
boundary ψb the Jacobian JR⃗(⃗x) is a 2x2 matrix with three
non-zero elements:

JR⃗(⃗x)[1,1] =
∂R[1](⃗x)

∂x[1]
=

∂R[1](p)
∂ p

=: a

JR⃗(⃗x)[2,1] =
∂R[2](⃗x)

∂x[1]
=

∂R[2](p,ψ)

∂ p
=: c

JR⃗(⃗x)[2,2] =
∂R[2](⃗x)

∂x[2]
=

∂R[2](p,ψ)

∂ψ
=: d

Here we have left out the discretization indices for p,ψ on
the left hand side for simplicity of notation.

JR⃗

(
p(s),ψ(s)

)
=

(
a 0
c d

)
and JR⃗

(
p̃, ψ̃

)
=

(
a0 0
c0 d0

)
In the sequel we will suppress the (s)-dependence of
(a,c,d) for simplicity of notation. The above setting im-
plies

M := 1−
[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)
=

(
m11 0
m21 m22

)
=

(
− a

a0
+1 0

− c
d0
+ ac0

a0d0
− d

d0
+1

)
And finally

MT M =

(
m11

2 m11m21
m11m21 m21

2 +m22
2

)
(44)

From the symmetry of MT M it follows that the two eigen-
values λ1,λ2 are real. For the 2D case we can explic-
itly compute them. However one may also apply Gersh-
gorins circle theorem (Gershgorin (1931) ) |λ1 −m11

2| ≤
|m11m21| and |λ2 −m21

2 −m22
2| ≤ |m11m21| for an upper

bound of the eigenvalues:

∥A∥2 ≤
√

max
s∈[0,1]

(
|λ1(s)|, |λ2(s)|

) !
< 1 (45)

This is of particular use for higher dimensional cases of
Equation 38.

5 Solver Modification
The adaptions shown which should lead to an improved
simulation of the model where all on the model side.
These modification can be applied by the simulation en-
gineer or library developer and they work independently
of the used tool. But these modifications cause devia-
tions between model results and the physical correct or
the expected results. These deviations might be tolerable
in many cases, but in some cases they are not. Therefore,
it would be interesting to have a solution process which
completely avoids zero mass flow issues or reduces the
impact.
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Table 1. Performance key figures for the solution process for the presented models with and without damping strategy.

Jacobian Evaluations Function Calls Integrator Steps
Damped Normal Damped Normal Damped Normal

Simple Mass Flow (section 2) 7.1×101 2.0×104 7.0×103 1.4×105 2.1×103 3.4×104

Mass Flow + Scalar (section 3) 5.3×102 6.7×103 3.0×104 7.7×105 1.0×104 3.0×104

Multi volume (section 4) 2.2×101 1.1×104 2.7×103 1.3×105 1.1×103 4.6×104

BranchingDynamicPipes 7.3×101 7.1×101 4.3×103 4.3×103 3.4×103 3.4×103

PID 1.9×101 1.9×101 9.5×102 9.5×102 8.4×102 8.4×102

BatchPlant_StandardWater 1.7×102 1.9×102 6.8×103 6.7×103 5.1×103 5.2×103

Overshooting during the iteration process is a known
problem even for normal Newton methods, if the starting
point is far off from the actual solution and/or if the equa-
tion to solve is highly nonlinear. In that case damping
of the solution can reduce the required number of itera-
tion or even avoid divergence of the method. As shown
above overshooting is as well the problem which causes
the zero mass flow issue. Therefore, we tried to apply a
damping strategy to the solution process. For this test we
used OpenModelica and the Cvode solver as for both the
full code is available and can easily be modified. The al-
gorithm is taken from Dahmen and Reusken (2008) and
modified to be usable for the Chord method. For a general
residual equation

R(xti) = 0 (46)

a Chord step is done to calculate an update the solution for
all states

∆x j
ti =−(R′(x̃))−1 ·R(x j−1

ti ) . (47)

The update is not applied directly. Instead the condition

||(R′(x̃))−1 ·R
(

x j−1
ti +λ ·∆x j

ti

)
||

≤Cλ · ||(R′(x̃))−1 ·R(x j−1
ti )|| ,

(48)

is checked until it is fulfilled with the series λ =
1, 0.5, 0.25, ... using Cλ = 1 − λ

4 . When the condition
is fulfilled the step is applied and the same procedure is
repeated for the next step ∆x j+1

ti . The right hand side of
Equation 48 is (a fraction) of the norm of the full step cal-
culated from Equation 47. The left hand side is the next
full step which is calculated if the current damped step is
applied. Therefore, by using this method we damp the cal-
culated step until the norm of the next step is smaller than
the current. As the size of the step depends of the resid-
ual R(x j

ti)), we enforce the residual to reduce. Checking
the condition comes with no relevant extra computational
effort. The price of a recalculation after a rejected Chord
update costs the same as a normal step. So if the rejected
steps are included in the total number of Chord updates,
one could design a method which comes at almost no ex-
tra costs.

The method was applied to the example problems de-
scribed above in configuration in which the zero mass flow
issue occurs. The performance of the damped strategy is
compared to the normal algorithm. The results are sum-
marized in Table 1. Damping the steps causes a signif-
icant reduction in Jacobian matrix evaluations and func-
tions calls. The number of integrator time steps is reduced
as well, though in case of the problem from section 3 the
reduction of integrator steps is not a high as in the other.
But function calls and the decomposition of the Jacobian
matrix are the main expenses during integration. There-
fore, using the damped solving approach significantly re-
duces the solution time in all the cases. Beside the some
models from the Modelica Standard Library were simu-
lated with both methods, though zero mass flow rate was
not a particular issues for these models. The performance
indicator numbers are very similar. The slight difference
can result from differences in the solution and the fact that
with the used settings damping steps were not counted in
the total step count for an iteration. Therefore, the number
of function with damping exceed the number of calls with-
out damping though less steps were taken and less Jaco-
bian updates were required. These minor deviation could
be tolerated. All in all the method looks promising to re-
duce the impact of zero mass flow issues.

6 Summary and Outlook
In this paper we demonstrated the reason for the slow in-
tegration process of fluid system close to vanishing mass
flow rates: Due to the high non-linearity of the problem
the solution of the non-linear system for calculating an
integration step fails, as the simplified chord method is
used. The system can only be solved for steps smaller than
the steps required from the dynamics of the system itself.
And additionally the Jacobian has to be updated almost
every step. Therefore, more step which are itself even
more computational expensive are required. The problem
can be aggravated due to inaccuracies in the calculation of
the Jacobian matrix depending on the choice of the states.
Though we focused on models of fluid systems, this phe-
nomenon is not restricted to this kind of problem. It oc-
curs for any model with high non-linearity in state where
a system should come to rest.

Some approaches which help to avoid the issues were
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given: If possible the non linearity of the model should be
reduced e.g. by linearization close to the zero mass flow
rate. The linearization interval can be adapted to the local
model behavior. Additionally, it is helpful to make other
variables independent of the solution of the mass flow rate
if the mass flow rate becomes small. Furthermore, it is
advisable to improve the accuracy of the Jacobian matrix
calculation e.g. by modified state choice or by a analytic
calculation of the Jacobian matrix. With the knowledge
of the exact cause of the problem it might be possible to
develop additional improvements or enhance the existing
once. For example it might be possible to develop an au-
tomatic calculation of the linearization interval for the re-
lation of mass flow rate and pressure drop.

As the zero mass flow issue comes from the non-linear
solution process, a modification of that process was sug-
gested as well. By including a damping procedure in the
solution process, the solution process for small mass flow
rates can be improved. Unfortunately, this method only
improves solution process if the iterative solution "over-
shoots" the actual solution. Non-linearity might also lead
to a slow iteration progress without overshooting: for ex-
ample when calculating the root of ṁ2 = 0. If a dynamic
momentum balance is used, the problem to solve is in that
nature and a damping of the steps is not helpful anymore.
This problem should be analyzed as well as it is done here
for models without mass flow rate state. It might be pos-
sible to improve the solution process as well, e.g. by in-
cluding factors or solution processes which do an approxi-
mated update of the (inverted) Jacobian matrix during iter-
ation (e.g. Broyden method). The usage of these methods
might be useful in the presented cases as well.
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