
Testing the verification and validation capability of a DCP based
interface for distributed real-time applications

Mikel Segura1 Alejandro J. Calderón1 Tomaso Poggi2 Rafael Barcena3

1Dependable Embedded Systems Team, IKERLAN, José María Arizmendiarrieta, 2, Arrasate 20500, Basque
Country, Spain, {msegura,ajcalderon}@ikerlan.es

2Mondragon Unibertsitatea, Loramendi Kalea, 4, Arrasate, 20500, Basque Country, Spain,
tpoggi@mondragon.edu

3Department of Electronic Technology, University of the Basque Country (UPV-EHU), Torres Quevedo Ingeniariaren
Enparantza, 1, Bilbao, 48013, Basque Country, Spain, rafa.barcena@ehu.es

Abstract
Cyber-physical systems are composed of a variety of el-
ements developed by different vendors that are often ge-
ographically distributed. Therefore, its development pro-
cess presents a double challenge: each element has to be
developed individually and, at the same time, a correct in-
teraction with the rest of the elements has to be ensured. In
a previous work, we proposed and developed an interface,
based on the non-proprietary Distributed Co-simulation
Protocol standard, to ease the interaction between these
elements. In this paper, we improve it to be applicable in
a variety of hardware platforms and we test its applicabil-
ity for the verification and validation process. To do so,
firstly, we prove that our interface is hardware agnostic,
demonstrating its easy implementation on different plat-
forms. Secondly, we test its applicability in different X-in-
the-Loop simulations. Finally, we also test its behaviour in
distributed real-time executions, a necessary requirement
for linking elements from different suppliers and helping
to preserve their Intellectual Property.
Keywords: Simulation interface, Real-time, Intellectual
Property protection, Distributed Co-Simulation Protocol,
Verification and Validation

1 Introduction
Model-based design (MBD) is a commonly used prac-
tice for the development of cyber-physical systems (CPS)
(Böhm et al. 2021). This process consists of developing
virtual models that reproduce certain behaviours of a real
system, thus avoiding the need to create costly physical
prototypes and facilitating the process of validation and
verification (Marwedel 2021). It is common that these
models are located in different modelling and simulation
(M&S) environments, either because they have been de-
veloped by different vendors and they want to preserve
confidentiality (Falcone and Garro 2019), or because it
is wanted to implement part of the model on a specific
hardware platform in order to verify its performance in
a specific environment (Alfalouji et al. 2023). Testing
the correct interaction between these elements at an early

stage of the development phase facilitates the process of
validation and verification of them. However, as stated
in (Attarzadeh-Niaki and Sander 2020), it is common to
solve the challenge of linking such elements using ad-hoc
methods. In (Segura, Poggi, and Barcena 2021) we ar-
gue the lack of a language and platform independent co-
simulation architecture to address this problem and in (Se-
gura, Poggi, and Barcena 2023) we propose a solution for
it, presenting an architecture based on the non-proprietary
Distributed Co-Simulation Protocol (DCP) standard. Nev-
ertheless, we did not dive into how it could be deployed on
different hardware platforms and thus, demonstrate how
the verification and validation process can be simplified. It
is worth mentioning that this implementation would save
time, resources and money, as it facilitates the coupling of
elements, saves displacements for integration testing and
helps to preserve Intellectual Property.

Accordingly, this article discusses three points. First,
we demonstrate the easy implementation of this interface
on a variety of hardware platforms, deploying it in generic
but different targeted hardware platforms such as, the Xil-
inx Zynq UltraScale+, Xilinx Zynq-7000 SoC ZC702,
NVIDIA Jetson Nano, and Raspberry-Pi. Second, taking
into account that the use of X-in-the-Loop (XIL) simu-
lations is widely extended in the development of CPSs,
we analyse the limitations of our interface in a real-time
communication between a development software such as
Simulink and the platforms mentioned above. Finally, in
order to show how our interface can solve the challenge
of communicating systems developed by geographically
distributed suppliers, we link the Xilinx Zynq-7000 SoC
ZC702 with the Raspberry-Pi in a real-time simulation us-
ing our interface via UDP communication.

The paper is structured as follows. Section 2 addresses
the need for a generic architecture for co-simulation. Sec-
tion 3 introduces the generic interface that enables per-
forming co-simulations between a variety of simulation
environments. Section 4 explains the tests that we ex-
ecuted to demonstrate the applicability of the interface.
Section 5 exposes the results of the conducted tests. Sec-
tion 6 analyses the results of the previous section. Finally,

DOI
10.3384/ecp204245

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

245



Section 7 presents the conclusions and future work.

2 Background and Related Work
Co-simulation is used to couple different simulation en-
vironments (e.g. a continuous and an event driven sim-
ulation environment) in order to use an appropriate sim-
ulation environment for each part of the system (Köh-
ler 2011). Co-simulation can also be used to link spa-
tially distributed models (Baumann et al. 2019). Addition-
ally, in the development and verification process of con-
trol systems, different co-simulation techniques referred
to as X-in-the-Loop (XIL) (Ivanov et al. 2019) are used,
encompassing the well-known Model-in-the-Loop (MIL),
Software-in-the-Loop (SIL), Processor-in-the-Loop (PIL),
or Hardware-in-the-Loop (HIL) techniques. Nevertheless,
despite being a widely used technique, coupling problems
often arise and there is no a generic methodology for link-
ing different simulation environments. This problem is
detected in several works, where different co-simulation
architectures are proposed to solve it. For instance, (Ha-
tledal et al. 2019) presents a language- and platform-
independent co-simulation framework based on the Func-
tional Mock-up Interface (FMI). Its major drawback is
that it has not considered the integration of real-time sys-
tems or hardware-in-the-loop simulations. In (Ivanov et
al. 2019) the authors propose an architecture applicable
in a variety of XIL approaches and it is intended to per-
form real-time and distributed co-simulations in different
geographical locations. However, they use a proprietary
architecture that is not enforced by any standard and there
is no mention of how it could be implemented in different
modelling and simulation environments, which suggests
that its integration is not straightforward. The architec-
ture proposed in (Attarzadeh-Niaki and Sander 2020) at-
tempts to avoid ad-hoc approaches and it is focused on
guaranteeing IP protection, however, no mention is made
on real-time applications.

Some standards also aim to manage distributed co-
simulations, such as Distributed Co-Simulation Protocol
(DCP) (Modelica Association 2023b). DCP is a non-
proprietary standard that aims to integrate real-time sys-
tems into co-simulation environments. It follows the
master-slave principle and it is independent of the com-
munication medium, as it works over common transport
protocols such as Bluetooth, UDP, or CAN. However, as
the DCP is a relatively new standard, it has a limited ap-
plicability in terms of simulation environments. Further-
more, its operation resides in encapsulating the systems
to be communicated, thus a particular DCP slave must be
created for each application.

In previous works, we propose (Segura, Poggi, and
Barcena 2021) and present (Segura, Poggi, and Barcena
2023), a co-simulation architecture, based on non-
proprietary standards, that facilitates coupling between
different M&S environments and hardware platforms. By
relying on a non-proprietary standard such as DCP, the ar-

chitecture is implementable without any intellectual prop-
erty restrictions and on top of that, it is compatible with
any other DCP slave. In comparison with the DCP, we
propose a generic co-simulation interface, i.e., the system
to be communicated is independent to the interface and
there is no need to develop a specific slave for each ap-
plication. In (Segura, Poggi, and Barcena 2023) we ex-
tended the scope of the DCP by creating a Simulink li-
brary, allowing Simulink to be easily integrated not only
into our architecture, but also into any DCP application.
Moreover, our architecture is agnostic to the simulation
platform and to the communication medium, which fa-
cilitates cross-platform migration, which is what we will
demonstrate in this article. Additionally, it enables real-
time co-simulation. This is boosted by the Simulink im-
plementation, that is, thanks to the automatic code gener-
ation capability of Simulink, we can convert our interface
into source code (e.g. C or C++) and execute it on a wide
variety of platforms, facilitating the validation of the sys-
tem to be developed. In this work we take advantage of
this capability by adapting the Simulink code developed
previously, so it can be directly implemented on different
platforms. Consequently, we provide a means to perform
real-time communication between the models executed on
such platforms.

As this paper deals with real-time (RT) simulations, it
is worth having a little background on the characteristics
of these systems. First, it is worth mentioning that, in
real-time systems, the instant in which the response oc-
curs is as important as the response itself (Kopetz 2011).
If the response does not arrive at a predefined time, called
deadline, the response may be unusable and may have ad-
verse consequences for the system. Another characteristic
of these systems is the so-called wall-clock. All compu-
tational elements involved in a real-time simulation must
have a common clock reference and be synchronised to it.
The higher the accuracy of this synchronisation, the bet-
ter the system will be able to carry out temporally more
constrained simulations. Determinism is another charac-
teristic of these systems, it indicates the reproducibility of
the system. That is, if we run several simulations of the
same system, where all its components start at the same
time and with the same starting conditions, the determin-
ism means ability of the system to replicate the results at
the same time instants.

On the other hand there are non real-time (NRT) simu-
lations. These are controlled simulations that usually re-
peat a read-compute-write sequence, where they first wait
for receiving data, then process it, and finally write the re-
sult at the output port. Once this cycle is finished, the next
cycle starts following the same sequence. Comparing with
real-time systems, they do not have to provide a tempo-
rally accurate response. It is to say, the message transport
latency can vary without affecting the behaviour of the
system. Simulink, for example, is a tool that by default
runs in NRT, however, it also has a tool called Simulink
Desktop Real-Time (MathWorks 2023), which allows us

Testing the verification and validation capability of a DCP based interface for distributed real-time
applications

246 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204245



to synchronise the simulation with the wall-clock. This
tool has two modes of use: I/O mode and kernel mode.
The first one synchronises the I/O drivers with the real-
time clock and allows us to perform real-time executions
up to 1 kHz (1 ms sampling time), this is the one that we
use in this work.

3 Proposed interface
The interface we propose is based on the non-proprietary
DCP standard, thus it must be configured as a DCP slave.
Nevertheless, as depicted in Figure 1, its behaviour is not
that of a conventional DCP slave. Our implementation
focuses on transmitting information from one environ-
ment to another and it is completely model-independent.
Whereas in conventional usage, the slave wraps the model
(Krammer et al. 2020), having to link them internally by
hand. From a practical point of view, there is a big differ-
ence, since in the original paradigm a specific DCP slave
has to be developed for each application, whereas our pro-
posal is designed to indicate only the number of input/out-
puts plus an easy configuration of them. To achieve this in-
dependence between the model and the DCP slave, apart
from implementing a specific DCP slave, we also devel-
oped a series of peripheral modules, which are explained
in (Segura, Poggi, and Barcena 2023). Thus, our inter-
face is composed of these modules and a DCP slave. Our
goal in developing this interface as a Simulink library, was
to take advantage of its tools so that we could generate
C/C++ code for our interface and implement it on a variety
of hardware platforms without additional modifications.

3.1 Configuration of the interface
We have advanced that the configuration of the interface
is based on the DCP standard, therefore, we will use the
DCP standard specification document (Modelica Associa-
tion 2023a) for the explanations of this section. The refer-
ences to specific clauses of the standard will be in italics
to better guide the reader. In this section we will only fo-
cus on the essential parameters (in monospace font) to de-
fine our interface, however, there are also other optionally

modifiable parameters whose explanation can be found
in the standard specification document. Figure 2 will be
helpful to understand certain concepts.

Some parameters are set in each slave, while others are
set in the master. The slaves are limited to set their inter-
nal parameters (see 5.4 Definition of dcpSlaveDescription
Element, pp. 80-82), of which, the essential parameters
for configuring the interface are defined by the following
elements:

• Time resolution (5.9 Definition of TimeRes Element,
pp. 87-88). It defines one atomic step of the
slave and it is represented by an element that con-
tains a list of permissible single time resolutions or
a list of resolution ranges. To set a single reso-
lution, that is what we are going to do next, we
have to set two sub-parameters: numerator and
denominator. Where the numerator divided
by the denominator represents the time resolu-
tion of the slave.

• Transport protocol (5.11 Definition of TransportPro-
tocols Element, p. 88). The DCP supports multiple
transport protocols and this element is used to store
their specific settings. For instance, if UDP transport
protocol is used, this element must indicate it and
contain the host and port data of the slave.

• Variables (5.13 Definition of Variables Element,
pp. 92-98). This element contains the in-
formation about the variables of the slave, they
can be either an Input, an Output, a Parame-
ter, or a Structural Parameter. Among its sub-
parameters, the indispensable ones to configure our
interface are: valueReference, dataType, and
declaredType. valueReference is the iden-
tifier of each variable and its value must be unique,
in Figure 2 it can be seen how each I/O of each slave
has different valueReference (vr) values. With
dataType we declare the data type of the variable,

Model

DCP Slave I/O

(a) Original DCP Slave design representation. Internally
linked DCP Slave and Model. One specific DCP Slave for
each Model.

Model

DCP Slave I/OI/O

(b) Proposed interface. New DCP Slave design. Externally
linked DCP Slave and Model. The same slave with easily
configurable Input/Outputs.

Figure 1. Comparison between original DCP Slave design and our interface.

Session 2-D: Real-time and hardware-in-the-loop simulation 1

DOI
10.3384/ecp204245

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

247



see Table 174: Data type elements to know the ac-
cepted data types by the DCP standard. Finally, with
declaredType we indicate whether the variable
is used as an input/output that connects to another
slave or as an input/output that connects to an exter-
nal model. For this purpose, we have two predefined
options: default, for communication between slaves,
and interface for communication with the models.

As the task of the interface is to communicate differ-
ent co-simulation environments, inputs and outputs will
always have to be declared in pairs. Each pair will be
internally linked in an automatic way as long as their
valueReferences are consecutive. In other words,
the valueReference parameters of an input-output
pair must be consecutive. These values shall consist of
the pairs 1-2, 3-4, ..., regardless of which of the two is
the value of the input and which of the output. Addi-
tionally, if an output of one interface communicates with
an input of another interface, both must have the same
valueReference. This is shown in Figure 2. In this
way we determine the link between interfaces and certify
a correct communication.

The master, on the other hand, configures how the in-
puts and outputs of the slaves should communicate with
each other. That is to say, it indicates to each slave where
the inputs corresponding to its outputs are and vice versa;
in addition, it establishes the sending frequency of each
output. To do this, the following parameters must be con-
figured:

• Step Size. The master defines the step size of each
output of all slaves. The step size is a multiple of
the time resolution parameter mentioned in the slave
configuration. That is, the step size of each output is
defined by the time resolution of its slave multiplied
by the step parameter.

• Data Identifier (data_id). When exchanging infor-
mation between slaves, Outputs are communicated to
Inputs via DAT_input_output PDUs. Thanks to the
data_id parameter, the values of several outputs of
a slave can be grouped in a single DAT_input_output
PDU. Only outputs that have the same configuration,
i.e. sender, receiver and step size, can be grouped
together.

4 Methodology
In this section we explain the experiments that we per-
formed to show how the architecture presented in (Se-
gura, Poggi, and Barcena 2021) is applicable on several
hardware platforms, and how it is applicable on a dis-
tributed real-time co-simulation application. To do so, we
apply it on four different platforms, which are introduced
in subsection 4.1. As proof-of-concept use case, we use a
closed-loop control model explained in subsection 4.2. In
subsection 4.3 we present the co-simulation scenarios we

use to demonstrate the applicability of the interface. Fi-
nally, in subsection 4.4, we explain how to configure our
generic co-simulation interface for this particular use case.

4.1 Hardware platforms
In order to test the applicability of our architecture, and
thus of our interface, it has been decided to work with
hardware platforms designed for different purposes, con-
cretely we used:

• Hardware platforms with integrated FPGA, such as
the Xilinx Zynq UltraScale+ and the Xilinx Zynq-
7000 SoC ZC702.

• Hardware platforms with integrated GPU, such as the
NVIDIA Jetson Nano.

• Generic hardware platforms such as the Raspberry Pi
3B, which is very accessible and widely used.

By working with platforms that integrate FPGAs or
GPUs, we are able to introduce these technologies into
co-simulations, expanding our design to new applications,
such as simulation accelerators, artificial intelligence, or
image processing.

However, for now our interface has two limitations.
Firstly, it is only implemented to run on soft real-time
(SRT) and hard real-time (HRT) operation modes, the
non-real-time (NRT) operation mode has not yet been im-
plemented. Therefore, as both implemented modes re-
quire a common clock reference shared by all computing
elements, the interface must be implemented in an envi-
ronment that can provide it. Secondly, for the moment,
we have only implemented UDP communication, so the
boards must have an Ethernet port.

4.2 Use case: control of a closed-loop system
As was done in (Segura, Poggi, and Barcena 2023), as
a proof of concept we use a closed-loop control system.
This system consists of two parts: a plant, which is mod-
eled as a discrete time first-order system, represented by
Equation 1; and a PI control algorithm, represented by
Equation 2. The simulation analysis is done by observing
the time evolution of the closed-loop system response to a
step input, comparing both the transient and steady-state
parts. It is worth pointing out that this work is focused
on testing the capability of the interface to communicate
distributed systems in real-time. Therefore, in order to
facilitate the demonstration process, we have chosen this
simple use case.

y(k) = a · y(k−1)+b ·u(k) (1)

Where:

• u is the control signal.

• y is the plant output or feedback signal.

Testing the verification and validation capability of a DCP based interface for distributed real-time
applications

248 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204245



• a is a constant parameter, and it was permanently set
to a = 0.99.

• b is a constant parameter, and it was permanently set
to b = 0.01.

u(k) =
[

Kp +KiTs
1

z−1

]
e(k) (2)

Where:

• u is the control signal.

• Kp is the proportional gain coefficient.

• Ki is the integral gain coefficient.

• Ts is the sampling period.

• e(k) = r(k)− y(k) is the error signal.

• r(k) is the target reference signal.

• z is the unit delay operator.

4.3 Co-simulation scenarios
In (Segura, Poggi, and Barcena 2023) we presented dif-
ferent scenarios to explain the development process of the
interface. We started with a scenario composed only of
Simulink and ended up with a scenario where the control
algorithm was running in an UltraScale+ and the plant in
Simulink. However, in order to implement the control sub-
system on the UltraScale+ board, we manually created a
DCP slave using C++ code that was specifically adapted
to work on this board and be compatible with the control
algorithm. Now we want to progress in the development

of the interface and test its applicability. To do so, follow-
ing the MBD methodology, we have automatically gen-
erated the interface code from the Simulink model, using
the Embedded Coder tool. In order to be able to generate
code correctly, we adapted the Simulink model by adding
blocks and creating functions compatible with this gener-
ation. After that, we were able to generate directly imple-
mentable code, without the need for any changes, in any
of the platforms presented in subsection 4.1.

Figure 2 represents the co-simulation scenario. In it, we
can see the two models that compose the use case, defined
in the subsection 4.2, located in different simulation envi-
ronments and communicated by two entities/slaves of our
interface. On the left we can see the Model 1, where the
control algorithm is located. On the right, we can see the
Model 2, which is composed of the plant and a synchro-
nisation mechanism. The latter has the function of ensur-
ing a controlled start of closed-loop control applications.
Guaranteeing identical starts in all executions help us ana-
lyze the interface behaviour. For a detailed description of
its operation refer to (Segura, Poggi, and Barcena 2023).
The communication medium used to link both systems is
UDP.

To demonstrate the easy implementation capability of
the interface on different hardware platforms and, at the
same time, to analyse its scope for performing real-time
XIL simulations, we have considered the following sce-
narios:

• Scenario 1.A: Control algorithm and interface in the
ARM-based processor of the ZC702 and Plant in
Simulink.

• Scenario 1.B: Control algorithm and interface in the
ARM-based processor of the UltraScale+ and Plant
in Simulink.

Interface Master (ID 0)
Host: 192.168.0.20

Port: 8080

Ubuntu 18.04

dataId_cntrl = 1

single

dataId_enable = 3

boolean

dataId_fdb = 2

single

Co-simulation platform 2

Model 2:
Plant & Sync. 

algorithm

dataId_interface = 0

Interface Slave 2 (ID 2)
Host: 192.168.0.10
Port: 8082

in_cntrl
(vr = 2)

out_enable
(vr = 6)

in_enable
(vr = 5)

out_cntrl
(vr = 1)

out_fdb
(vr = 3)

in_fdb
(vr = 4)

Co-simulation platform 1

Model 1:
Control 

Algorithm

dataId_interface = 0

Interface Slave 1 (ID 1)
Host: 192.168.0.30
Port: 8081

in_cntrl
(vr = 1)

out_enable
(vr = 5)

in_enable
(vr = 6)

out_cntrl
(vr = 2)

out_fdb
(vr = 4)

in_fdb
(vr = 3)

Figure 2. Interface configuration of the employed use case.

Session 2-D: Real-time and hardware-in-the-loop simulation 1

DOI
10.3384/ecp204245

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

249



• Scenario 2: Control algorithm and interface in the
ARM-based processor of the Jetson Nano and Plant
in Simulink.

• Scenario 3: Control algorithm and interface in the
CPU of the Raspberry-Pi and Plant in Simulink.

• Scenario 4.A: Control algorithm in the FPGA of the
ZC702, interface in the ARM-based processor of the
ZC702, and Plant in Simulink.

• Scenario 4.B: Control algorithm in the FPGA of the
UltraScale+, interface in the ARM-based processor
of the UltraScale+, and Plant in Simulink.

Additionally, to demonstrate its applicability in dis-
tributed real-time executions, we have proposed the fol-
lowing scenario:

• Scenario 5: Control algorithm in the FPGA of the
ZC702, interface in the ARM-based processor of the
ZC702, and Plant in the CPU of the Raspberry-Pi,
see Figure 3.

Figure 3. Scenario 5.

It is worth to mention that in all scenarios we have kept
the same interface configuration (see subsection 4.4), thus
facilitating the interoperability between simulation tools.

As we mentioned in subsection 4.1, our interface is lim-
ited to work in real-time operation mode, therefore all the
scenarios have to be executed in real-time. The DCP stan-
dard defines that in its real-time mode, all components
within the simulation must be synchronised with POSIX
time. That is to say, they have to synchronise their clock
by reference to 1 January 1970, 00:00:00 UTC. Conse-
quently, we have to make all the components run in an
environment that supports it and make them synchronised
with each other. To do this possible on the platforms, we
have installed an Ubuntu operating system on the CPUs
of all of them, whose clock will be synchronised with
the POSIX time. Therefore, the interface and the system
(plant or controller) will run on it. Regarding Simulink,

as explained above, by default it works in non-real-time
mode. However, we will use its Simulink Desktop Real-
Time tool in I/O mode, which allows us to synchronise the
UDP ports with the wall-clock. This way, it will be also be
synchronised to the POSIX time. It should be noted that
we will run Simulink on a conventional PC that contains a
6 core Intel Core i7 CPU processor and using a Windows
10 operating system.

The use of the interface must not alter the behaviour
of the closed-loop system in any of the scenarios. There-
fore, we need a reference in order to be compared with
the scenarios. To this end, using the Embedded Coder
and HDL Coder tools provided by Simulink, we con-
ducted Processor-in-the-Loop (PIL) and FPGA-in-the-
Loop (FIL) simulations equivalent to the scenarios. In this
way, we obtained a reference response for each of the sce-
narios. In other words, for scenarios 1.A, 1.B, 2, and 3 we
performed PIL simulations, one with each hardware plat-
form. While for scenarios 4.A and 4.B we performed FIL
simulations. Each of these simulations are used as a ref-
erence for their respective scenario. Regarding scenario 5,
we compare its responses to those of the system running
entirely in Simulink.

4.4 Interface and simulations configuration
Two types of configurations were applied to conduct the
experiment: the configuration of the models to be simu-
lated and the configuration of the interface.

Regarding the configuration of the models, in (Segura,
Poggi, and Barcena 2023) we saw that the behaviour of the
interface varied depending on the execution time, there-
fore we performed the tests using six different configura-
tions. In the current article, instead, we are going to focus
on working only with the most limiting configuration that
we encountered, which is shown at Table 1.

Configuration I Ts = 10 ms Kp = 10
Ki = 10

Table 1. Configuration for the simulation

Regarding the configuration of the co-simulation inter-
face. In subsection 3.1 we explain the indispensable pa-
rameters to be configured. Now, we specify which values
we chose for our particular use case:

• Time resolution. With this parameter we indicate
under which step-size the state machine of the in-
terface is executed. We set it to the lowest resolu-
tion that Simulink Desktop Real-Time allows when
working in I/O mode. Therefore, we set it to 1ms:
numerator = 1 and denominator = 1000. It is also
worth mentioning that the step-size of the interface
must be lower than that of the model (Segura, Poggi,
and Barcena 2023).

• Transport protocol. As mentioned, we use UDP. In

Testing the verification and validation capability of a DCP based interface for distributed real-time
applications

250 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204245



the Figure 2 we can see the chosen host and port val-
ues.

• Variables. We declared 3 inputs and 3 outputs to each
interface. In the Figure 2 we can see the data types
and the value reference of each one.

• Data identifier. In the Figure 2 we can see that each
slave has been assigned four data_id. This means
that each variable that is transmitted between slaves
has grouped independently, while the outputs that go
from the interfaces to each of the models have been
grouped together.

• Step size. We assigned a step value of 3 to the three
data_ids that are transmitted between slaves (i.e.
dataId_cntrl, dataId_fdb, and dataId_enable) and a
step value of 10 to dataId_interface. With this config-
uration we could have assigned the same data_id to
the three signals that are transmitted between slaves,
but this makes it easier in case of future modifica-
tions.

5 Results
In this section, we present the simulation results of the sce-
narios explained in subsection 4.3. They will be discussed
in section 6. In order to prove that the system behaves
identically every execution, as done in (Segura, Poggi, and
Barcena 2023), we perform 25 executions of each sce-
nario. Between each run, the system is reset in order to
ensure identical starting conditions in each of them. Sub-
sequently, we compare the time response of the y(k) out-
put of each scenario with the respective reference. From
this comparison we obtain the error, which is calculated
by means of Equation 3.

err =

√
1
N

N

∑
k=1

[y(k)− yre f (k)]2 (3)

where N represent the steps executed in a simulation,
y(k) is the response of the closed-loop system at step k
under a specific scenario, and yre f (k) is the response of
the closed-loop system under the corresponding reference.
Table 2 reports the maximum, the minimum, the mean and
the standard deviation of the error over the 25 repetitions.

Figure 4 helps us understand the results of the table. It
comprises two graphs, each comparing the response y(k)
of a scenario (red line) with its corresponding reference
(green line). There are 25 red lines in each graph, corre-
sponding to the 25 repetitions that were executed for each
configuration. We have decided to show only these two
scenarios because they are sufficient to explain the behav-
ior of the rest.

6 Results Analysis
There are three topics we have discussed in this article, so
this analysis will also be divided into three parts.

Scenario 1.A - PIL in ZC702
max = 0.23479
mean = 0.12957

min = 0.042779
sd = 0.05131

Scenario 1.B - PIL in UltraScale+
max = 0.21266
mean = 0.13098

min = 0.024876
sd = 0.048035

Scenario 2 - PIL in Jetson Nano
max = 0.20944
mean = 0.11274

min = 0.030067
sd = 0.043965

Scenario 3 - PIL in RaspberryPi
max = 0.20592
mean = 0.13517

min = 0.050682
sd = 0.04197

Scenario 4.A - FIL in ZC702
max = 0.14277
mean = 0.04963

min = 0
sd = 0.0404

Scenario 4.B - FIL in UltraScale+
max = 0.12031
mean = 0.051518

min = 0
sd = 0.036303

Scenario 5 - Distributed co-simulation
max = 0
mean = 0

min = 0
sd = 0

Table 2. Comparison between MathWorks PIL/FIL
solution and our Interface.

The first point focuses on evaluate the viability and ease
of implementation of the interface in a variety of hardware
platforms. Since we developed it in Simulink and adapted
all its functions to be compatible with the generation of
generic C/C++ code, we were able to implement it easily
on all the platforms mentioned in subsection 4.1. This way
we demonstrate that the interface can be migrated between
platforms without any extra effort.

As for our second point, we evaluated the viability
of the interface to perform real-time executions between
Simulink and the platforms described in subsection 4.1.
In Table 2, from Scenario 1A to Scenario 4.B, we find the
results of the tests carried out for this point. Addition-
ally, Figure 4a displays graphically the results obtained in
Scenario 1A. As the graphs obtained in Scenarios 1A to
4B are very similar, we decided to omit the rest and dis-
play only this one to assist in the interpretation of Table 2.
Analysing this table, we observe that there is an error in
every scenario. Simplifying the results, we can say that the
mean error of PIL simulations (from Scenarios 1A to 3) is
in the order of 0.215 units (±0.02), whereas the mean er-
ror of FIL simulations (Scenarios 4A and 4B) is about 0.13
units (±0.01). This error occurs because the PIL and FIL
simulations made with MathWorks tools exhibit identical
behaviour in each run, while our simulations vary in each
of the 25 runs. This can be seen in Figure 4a, where there
is single green line (corresponding to the MathWorks re-

Session 2-D: Real-time and hardware-in-the-loop simulation 1

DOI
10.3384/ecp204245

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

251



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0.12 0.14 0.16 0.18
7.5

8

8.5

9

9.5

(a) Scenario 1A.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0.12 0.14 0.16 0.18
7.5

8

8.5

9

(b) Scenario 5. The responses overlap.

Figure 4. Comparison of the responses of Scenarios 1A and 5 with their respective References.

sponse) and multiple red lines (each corresponding to one
of the 25 tests). Nevertheless, it can also be seen that this
error is focused in the transient state, while in the steady
state it is minimum. In fact, in the steady state, from sec-
ond 0.4 onwards, the mean error is of the order of 0.019
units (±0.008), with a standard deviation of another 0.019
units (±0.007).

The appearance of this error means that our solution
is not deterministic, which is an indispensable quality in
the real-time executions for the verification and validation
processes of the CPS. Therefore, we can say that our in-
terface is not suitable for linking Simulink and hardware
platforms in real-time. However, we did not test how our
interface would behave with these scenarios working in
non real-time mode, that is, following the controlled read-
compute-write sequence explained previously. In fact, this
is the way that MathWorks perform PIL and FIL simula-
tions. Nevertheless, as explained before, this is an opera-
tion mode that we have yet to implement.

Analysing the cause of this non-deterministic response,
we have not been able to link Simulink simulation time
with POSIX time. In other words, POSIX time is con-
stantly moving forward, and in a period of time, the simu-
lation time get blocked and it does not advance. Figure 5
demonstrates this behaviour, where the graph instead of
showing a perfect diagonal line shows "jumps", which are
sometimes more pronounced. As we discussed previously,
real-time systems must guarantee a response every prede-
fined period and this breaks do not allow it. This can be
caused, for instance, due to an interruption in the comput-
ing platform. This is the reason why we have not been
able to benefit from all the power that the Simulink Desk-
top Real-Time tool provides.

The effect of this desynchronization in our scenarios is
that the plant, which is executing in Simulink, stops run-
ning for an indefinite period; while the control algorithm

0 200 400 600 800 1000
0

200

400

600

800

1000

600 650 700

600

650

700

Figure 5. Desynchronisation between POSIX and
Simulation time

on the hardware platform continues to run. During this
period, the control will not receive updated input values
from the plant, however they will be processed, provoking
incorrect output control signals. When the plant resumes
running, it reads the last of this unwanted values, resulting
in an incorrect feedback value being sent to the controller.
This way, a single desynchronization in the execution can
significantly impact the system’s behavior, leading to non-
deterministic behavior. It is worth mentioning that the
faster the system runs, the smaller its execution steps will
be. As a result, a pause in the simulation time will involve
more simulation steps, creating a more adverse effect on
the system’s response.

Finally, it remains to analyse the response of our im-
plementation in real-time distributed applications, i.e., the
Figure 4b. Contrary to what happens in the previous tests,

Testing the verification and validation capability of a DCP based interface for distributed real-time
applications

252 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204245



we can see how the 25 red lines are overlapped. On top of
that, they have the same behaviour as the reference (green
line). The fact that we obtained identical results in all ex-
ecutions means a deterministic simulation. Therefore, we
can be assured that our interface is suitable for real-time
distributed simulations. At the same time, these results
demonstrate that the problem we had in linking Simulink
with hardware platforms lies in the fact we were not able
to link Simulink with the wall-clock correctly.

7 Conclusions and future work
In this paper we present an empirical demonstration of
the applicability of the previously developed generic co-
simulation interface. Specifically, we demonstrated i) its
easy implementation on a variety of hardware platforms,
and ii) how it can be used in real-time distributed sim-
ulations. Both capabilities are very useful in the pro-
cess of verification and validation of cyber-physical sys-
tems, especially in those whose components are devel-
oped by different suppliers; in those where the system
is split into smaller modules to spread the computational
load across different processors; or in those where the in-
tegration of different simulators into a single system is re-
quired. Therefore our interface could save time, resources
and money, as it facilitates coupling of elements, saves
displacements for integration testing and helps to preserve
Intellectual Property.

To test the interface we deployed it in different hard-
ware boards and performed a closed-loop simulation be-
tween them, obtaining reliable responses. Consistent
with the MBD methodology, as we have developed it in
Simulink and take advantage of its code generation capa-
bilities, our interface is easily implementable in a wide
variety of simulation environments. Additionally, as our
interface is based on the non-proprietary DCP standard, it
is fully compatible with any other DCP slave.

Looking to extend our work to the future, in order to
improve the linking capability to Simulink, we want to
develop the non-real-time simulation mode. Additionally
we have planned to test the applicability of this interface in
a more complex use case involving hardware-in-the-loop
simulations.

Acknowledgements
This work was supported by Basque Government through
the ELKARTEK programme under the AUTOEV@L
project (KK-2021/00123).

References
Alfalouji, Qamar et al. (2023). “Co-simulation for buildings and

smart energy systems — A taxonomic review”. In: Simulation
Modelling Practice and Theory 126, p. 102770. ISSN: 1569-
190X. DOI: https://doi.org/10.1016/j.simpat.2023.102770.

Attarzadeh-Niaki, Seyed Hosein and Ingo Sander (2020). “Het-
erogeneous co-simulation for embedded and cyber-physical
systems design”. In: Simulation: Transactions of the Society
for Modeling and Simulation International 96, pp. 753–765.
DOI: 10.1177/0037549720921945.

Baumann, Peter et al. (2019). “Using the Distributed Co-
Simulation Protocol for a Mixed Real-Virtual Prototype”.
In: Proceedings - 2019 IEEE International Conference
on Mechatronics, ICM 2019. IEEE, pp. 440–445. ISBN:
9781538669594. DOI: 10.1109/ICMECH.2019.8722844.

Böhm, Wolfgang et al. (2021). Model-Based Engineering of
Collaborative Embedded Systems. 1st ed. Springer. Chap. 12
& 13. ISBN: 978-3-030-62135-3. DOI: https : / / doi . org / 10 .
1007/978-3-030-62136-0.

Falcone, Alberto and Alfredo Garro (2019). “Distributed Co-
Simulation of Complex Engineered Systems by Combining
the High Level Architecture and Functional Mock-up In-
terface”. In: Simulation Modelling Practice and Theory 97.
ISSN: 1569-190X. DOI: https : / /doi .org /10.1016/ j . simpat .
2019.101967.

Hatledal, Lars Ivar et al. (2019). “A Language and Platform
Independent Co-Simulation Framework Based on the Func-
tional Mock-Up Interface”. In: IEEE Access 7, pp. 109328–
109339. DOI: 10.1109/ACCESS.2019.2933275.

Ivanov, Valentin et al. (2019). “Connected and shared x-in-
the-loop technologies for electric vehicle design”. In: World
Electric Vehicle Journal 10, pp. 1–13. DOI: 10 . 3390 /
wevj10040083.

Köhler, Christian (2011). Enhancing Embedded Systems Simu-
lation. 1st ed. Vieweg+Teubner. Chap. 2. ISBN: 978-3-8348-
1475-3. DOI: https://doi-org.ehu.idm.oclc.org/10.1007/978-
3-8348-9916-3.

Kopetz, Hermann (2011). Real-Time Systems. 2nd ed. Real-
Time Systems Series. New York: Springer, pp. XVIII, 378.
DOI: https://doi.org/10.1007/978-1-4419-8237-7.

Krammer, Martin et al. (2020). “A Protocol-Based Verification
Approach for Standard-Compliant Distributed A Protocol-
Based Verification Approach for Standard-Compliant Dis-
tributed Co-Simulation”. In: Asian Modelica Conference
2020. DOI: 10.3384/ecp20174133.

Marwedel, Peter (2021). Embedded System Design - Embedded
Systems Foundations of Cyber-Physical Systems, and the In-
ternet of Things. 4th ed. Springer. Chap. 1. ISBN: 978-3-030-
60909-2. DOI: https://doi.org/10.1007/978-3-030-60910-8.

MathWorks (2023). Simulink Desktop Real-Time. https : / / es .
mathworks.com/help/sldrt/low-sample-rate-simulation.html.

Modelica Association (2023a). DCP standard specification.
https://github.com/modelica/dcp-standard.

Modelica Association (2023b). Distributed Co-Simulation Pro-
tocol (DCP) website. https://dcp-standard.org/.

Segura, Mikel, Tomaso Poggi, and Rafael Barcena (2021). “To-
wards the implementation of a real-time co-simulation ar-
chitecture based on distributed co-simulation protocol”. In:
35th Annual European Simulation and Modelling Conference
2021, ESM 2021. EUROSIS-ETI, pp. 155–162. ISBN: 978-9-
492-85918-1.

Segura, Mikel, Tomaso Poggi, and Rafael Barcena (2023). “A
Generic Interface for x-in-the-Loop Simulations Based on
Distributed Co-Simulation Protocol”. In: IEEE Access 11,
pp. 5578–5595. ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2023.3237075.

Session 2-D: Real-time and hardware-in-the-loop simulation 1

DOI
10.3384/ecp204245

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

253


