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Abstract
When simulating a Modelica model, non-linear algebraic
loops may be present, which involves solving multiple
equations simultaneously. The classical Newton-Raphson
method is commonly employed for solving a non-linear
equation system (NLS). However, the computational bur-
den of using this method during simulation can be signif-
icant. To tackle this issue, utilizing artificial neural net-
works (ANNs) to approximate the solution of algebraic
loops is a promising approach. While ANN surrogates of-
fer fast performance, ensuring the correctness of the com-
puted solution or quantifying reliability can be challeng-
ing.

This publication presents a prototype, based on the
OpenModelica compiler (OMC) (Fritzson et al. 2020),
that automates the extraction of time-consuming algebraic
loops. It generates training data, trains ANNs using ma-
chine learning (ML) methods, and replaces the algebraic
loops with ANN surrogates in the simulation code. A hy-
brid approach, combining the trained surrogate with the
nonlinear Newton solver, is then used to compute the so-
lution with a desired level of accuracy.
Keywords: Machine Learning, Dynamic Systems, Surro-
gate Model, Non-Linear System, Error Control

1 Introduction
Modelling and simulation play a major role in many
fields of science, technology, engineering and mathemat-
ics. Modelica (Mattsson and Elmqvist 1997) is an estab-
lished object-oriented language for multi-domain model-
ing. It is easy to develop model-based components us-
ing simple textbook equations and combine them into de-
tailed and complex cyber-physical systems. With increas-
ing complexity even on modern Modelica compilers sim-
ulation performance can slow down.

One way to computational accelerate Modelica compo-
nents is using ML surrogates. Such a surrogate approx-
imates the equation-based Modelica model with a data-
driven approach. When sufficiently trained, a surrogate
can replace the corresponding Modelica equations and the
resulting speedup can be utilized e.g., in parameter opti-

mization.
Different data-driven ML methods are used in the con-

text of modelling and simulation. ANNs as methods
of artificial intelligence (AI) are often used, in partic-
ular physics informed neural networks (PINNs) (Lawal
et al. 2022), long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber 1997), continuous-
time echo state networks (CTESNs) (Anantharaman et al.
2020) could demonstrate impressive speedups of simula-
tion time for complex models. While these methods are
fast and precise no guarantees for correctness can be made
that the surrogate solutions stays within the desired error
tolerances.

So called hybrid physical-AI based models are a com-
promise between classical and ML models. A hybrid
model can consist of equations derived from first princi-
ple physics as well as data-driven ML models. They offer
better simulation performance with acceptable accuracy.
While (Hübel et al. 2022) could show improved perfor-
mance with a reduced order model the resulting hybrid
model cannot be used outside of the trained area or ensure
a given error tolerance.

In this publication the authors present a partially au-
tomated method to replace non-linear algebraic loops of
Modelica models with error-controlled ML surrogates to
generate hybrid physical-AI based models. The relation
between inputs and outputs of the loop are learned from
synthesized data and reference simulations. It could be
shown, that with the use of ANN the simulation time could
be sped up by a factor of 1.5 while keeping the surrogate
prediction within a given error tolerance.

This enables users to select the tradeoff between accu-
racy and speedup.

Paper Organization
Subsection 3.1 describes the use of profiling to identify
NLSs that are worthwhile to replace. Different methods
to generate artificial training data from the original model
are discussed in Section 3.2. The exemplary training of
feedforward neural networks (FNNs) is illustrated in Sec-
tion 3.3 while Section 3.4 shows an approach to reduce the
demand for generated training data. Section 3.5 presents
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the integration of the trained surrogate into the simulation
while the error control is discussed in Section 3.6. Results
are shown in Section 4.2.2 with models from the Scalable-
TranslationStatistics Modelica library. Finally section 5
discusses results and encountered problems and section 6
concludes the paper.

2 Problem Statement
Developing a detailed high fidelity Modelica model
named Mhf is an elaborated task and simulating such a
model can take a significant amount of time. For appli-
cations like parameter fitting simulation speed outweighs
fidelity, so another Modelica model named Msur is needed
to complete the given task in an acceptable amount of
time. The classic approach is to manually replace expen-
sive equations of the original Mhf model and reduce the
complexity of the modeled physics. Another approach is
to generate large sets of artificial data from the expensive
to solve Mhf model to then train a ML surrogate.

The ordinary differential equation (ODE) of Mhf can
have subsystems of equations that need to be evaluated si-
multaneously. These subsystems, also known as algebraic
loops, can consist of linear or non-linear equations. This
paper only discusses the treatment of non-linear loops,
since in general they are harder to solve than linear loops.

An algebraic loop can be described in its residual form

fres : It ×Rnp ×Rnin ×Rnout → Rnout ,

fres(t, p,zin,zout)
!
= 0

(1)

with simulation time It := [tstart , tstop] ⊂ R, parameters
p ∈ Rnp , used variables zin ∈ Rnin computed in preced-
ing model equations and unknowns zout ∈ Rnout . Define a
function

fNLS : It ×Rnp ×Rnin → Rnout , fNLS(t, p,zin) = zout (2)

that solves Equation 1 explicitly. For simplicity non-
unique solutions to Equation 2 are ignored for now. In
practice this function is approximated by iterative root
finding methods solving Equation 1, for example the
Newton-Raphson method.

Instead of replacing all equations of Mhf with ML surro-
gates the authors propose to replace only the slowest non-
linear equation systems fNLS with faster ML surrogates fS
to reduce the time each evaluation of the right-hand side
of the ODE takes.

Because the residual fres and its Jacobian J are avail-
able, it is possible to compute error approximations for
prediction z̃out = fS(t, p,zin). Therefore it is possible to
ensure, that the prediction z̃out stays within a given tol-
erance and the default non-linear solver can improve the
solution if necessary.

By using an error controlled surrogate overall simula-
tion time could be improved by a factor of 1.5 as shown in
Section 4.2.2.

3 Method
Dependency information of the equations as well as a
callable C function are necessary to replace fNLS with
a fast surrogate fS. Because of this the authors choose
the open-source OMC. It offers ways to interfere with
the compilation process in order to retrieve the aforemen-
tioned requirements.

The method to generate a FMU containing the fast sur-
rogates for slow non-linear equation systems consists of
four main steps:

1. Find NLSs worth replacing (Section 3.1).
2. Generate training data (Section 3.2).
3. Train surrogates (Section 3.3).
4. Integrate trained surrogates into original model (Sec-

tion 3.5).
Steps 1, 2 and 4 can be handled by the prototype imple-
mentation while the training process in step 3 still needs
human intervention.

3.1 Profiling Model
The first step consists of analyzing how much time is spent
for each NLS in relation to the total simulation time. Pro-
filing for each model equation is performed to find all
NLSs that need more of the total simulation time than a
defined threshold. Since NLSs from the initial systems
are solved only once at simulation time t = tstart they are
not considered for replacement.

Solving an NLS is time consuming, indepen-
dent of the chosen Modelica tool. The exam-
ple ScaledNLEquations.NLEquations_5 from Sec-
tion 4.2 was profiled in two popular tools: Dymola and
OpenModelica. Most of the simulation time is spent solv-
ing the 8 non-linear systems, as can be seen in Table 1.
Dymola spends around 53.05% and OpenModelica spends
around 51.50% of the total simulation time solving these
non-linear systems.

To find suitable equations for surrogate replacement the
OpenModelica profiler (Sjölund 2015) is used to iden-
tify the Modelica equations corresponding to the slowest
NLSs. The generated simulation results are used in Sec-
tion 3.2 to specify the relevant input space for generating
training data.

3.2 Data Generation
After identifying equations for replacement data driven
surrogates need training, validation, and test data.

For the NLS all reached values for zin are recorded. To
only generate data in the area of interest the reference so-
lution from the profiling step can be used to define a hy-
percube around the reference variables:

Hin := It × Iin (3)

Iin := {z ∈ Rnin | a j ≤ z j ≤ b j∀ j} (4)

where
a j := min

t∈It
zin(t) j, b j := max

t∈It
zin(t) j. (5)
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Table 1. Profiling non-linear equation systems of
ScalableTranslationStatistics.Examples.ScaledNLEquations.NLEquations_5

OpenModelica Dymola
Index Total [s] Fraction [%] Block Total [s] Fraction [%]

5.892 100.00 4.830 100.00
907 0.434 7.54 1100 0.334 6.91
928 0.433 7.51 1117 0.334 6.91
834 0.423 7.35 1187 0.333 6.91
813 0.396 6.88 1136 0.327 6.76
882 0.392 6.81 1204 0.323 6.68
951 0.392 6.80 1153 0.322 6.65
857 0.386 6.70 1170 0.319 6.60
987 0.111 1.92 1083 0.272 5.63

If the user has knowledge of the input variables it is viable
to refine Iin to limit the training area further. For exam-
ple physical constraints or boundary conditions can en-
force that the surrogate only has to be valid in a specific
region or that some combinations of different inputs are
not reachable.

For the training process the input space Iin must be sam-
pled sufficiently dense and corresponding solutions saved.
One straightforward approach is to initialize the model
at time tstart to set all constants and parameters. Subse-
quently pairs (zin,zout) are computed, where zin ∈ Iin ran-
dom and zout is computed by Equation 2.

Improvements of the data generation regarding the
ANN training effort are discussed in Section 3.2.4.

3.2.1 evaluateEquation C Interface

All equations fNLS can be evaluated with
evaluateEquation without evaluating any other
equations. The input variables zin must be set using the
appropriate set function before evaluating the equation.
Afterwards the solution zout can be inquired with the
corresponding get functions.� �
status evaluateEquation(model c,

const size_t eqNumber);� �
• Argument c is the pointer to the model specific data

structure of OMC.
• Argument eqNumber specifies the unique equation

index of the equation to be evaluated.
• If the equation was successfully evaluated success

is returned, otherwise discard is returned.

3.2.2 Implementation Details

The methods described in this paper are im-
plemented in the prototypical Julia package
NonLinearSystemNeuralNetworkFMU.jl1. For the

1NonLinearSystemNeuralNetworkFMU.jl v0.5.1:
github.com/AnHeuermann/NonLinearSystemNeuralNetworkFMU.jl

function evaluateEquation an OpenModelica
source-code ModelExchange 2.0.4 Functional Mock-
up Unit (FMU) is built from the original Model-
ica model M using the following compiler flags2:� �

--fmiFilter=internal
--fmuCMakeBuild=true
--fmuRuntimeDepends=modelica� �

Then the C source files for evaluateEquation are
included into the FMU. The binaries and M.fmu are re-
compiled using the provided CMakeLists.txt file. The
resulting extended FMU is called M.interface.fmu.

To compute input-output pairs (zin,zout) Julia pack-
age FMI.jl3 (Thummerer, Mikelsons, and Kircher 2021)
is used to instantiate the FMU, set zin and call
evaluateEquation to evaluate fNLS(t, p,zin) with the
Newton-Raphson method. The resulting input-output
pairs (zin,zout) are saved to a CSV file for each NLS.

The Functional Mock-up Interface (FMI) standard is
used because it provides a standardized way to instantiate,
initialize, and solve an ODE system. At the time of writ-
ing FMI.jl allows the illegal call of fmi2SetXXX, allow-
ing this workflow for a provisional but functioning proto-
type. This might change in a future version. In a matured
implementation these steps must be performed directly in
the Modelica compiler or its simulation runtime.

3.2.3 Preprocessing Data

It is possible for a NLS to have multiple solutions
zout1 ̸= zout2 , such that for the same input zin

fres(t, p,zin,zout1) = fres(t, p,zin,zout2) = 0. (6)

In this case Equation 2 is multi-valued and no unique func-
tional relation exists. In case the training data has two sets

2OpenModelica User’s Guide on compiler flags:
openmodelica.org/doc/OpenModelicaUsersGuide/1.20/omchelptext.html

3ThummeTo/FMI.jl v0.10.2: github.com/ThummeTo/FMI.jl
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of input data that are close together but the correspond-
ing outputs are far apart, the surrogate will not be able
to approximate it. The training data has to be processed
in a way that the relation from input to output is suffi-
ciently continuous, i.e. not jumping between different so-
lution branches.

Modelica tools usually follow one solution continu-
ously if the step size of the ODE solver is small enough
and the previous solution of the NLS is a good enough
start value for the root finding method. Algorithm 1 from
Section 3.2.4 tries to mimic this behavior, so on one tra-
jectory the solution should not jump between different
branches. However this only guarantees local uniqueness
as two different trajectories to an input zin can still lead to
two different outputs zout1 ̸= zout2 .

3.2.4 Improving Data Generation
Iterative non-linear solver methods need a decent start
value to converge to a solution. Whether the method con-
verges and if so at which rate highly depend on the cho-
sen start values. An intuitive method to generate training
data using small random perturbations is described in Al-
gorithm 1.

Algorithm 1 Random Walk

1: procedure RANDOMWALK(δ ,∆t)
2: zout ← 0
3: zin← random value from Iin
4: for t = tstart , tstart +∆t , . . . , tend do
5: zout ← fNLS(t, p,zin), using previous zout as

start value
6: Save (zin,zout)
7: zin← zin +δω , where ω ∈ [−1,1]nin random
8: Ensure zin ∈ Iin

With small enough δ > 0 and ∆t > 0 the number of iter-
ation steps needed to solve the NLS for a given tolerance
should be low (close or equal to 1), since the previously
computed solution zout is a good start value for the next
small random perturbation of input vector zin← zin +δω .
The data generation process consists of creating several of
these randomWalk trajectories to cover Iin densely.

3.3 Supervised Learning
Using the generated training data from Section 3.2 it is
possible to train a ML surrogate for each NLS. This paper
restricts itself to simple FNN models:

model1(t,zin)≈ fNLS(t, p,zin) = zout (7)

Due to implementation limitations parameters p are not
changeable now and constant during the training process.
That means each parameter configuration requires its own
surrogate. It is planned to address this in future work.

To solve the issue of ambiguous solutions a different
FNN

model2(t,zin, ẑout)≈ fNLS(t, p,zin) = zout (8)

is defined, where the solution from the previous time step
ẑout is given as an additional input. With the informa-
tion from the previous ODE integrator step the surrogate
should learn to predict a solution that is close to the previ-
ous solution and not jump to a different solution branch.

3.4 Active Learning
Data for the NLS can be generated at arbitrary inputs in-
side an appropriate region as discussed in Section 3.2.
However, a call to the root finding algorithm is expensive
in general. Therefore, a variation of active learning (AL)
(Settles 2009; Wu, Lin, and Huang 2018) can be used for
training the surrogate fS.

The general idea of AL is to let the surrogate decide
which samples to label, i.e. which inputs to generate the
corresponding outputs for. Between training steps the per-
formance of fS is tested on new inputs zin. Samples from
unfit inputs i.e., inputs for which fS performs poorly, are
added to the set T for the next training step. This is de-
scribed more precisely in Algorithm 2, where m is the
number of active learning steps, n is the number of total
samples to generate, and 1− p is the fraction of samples
that are generated randomly for the first training step, so
p = 0 is equivalent to not using AL.

Algorithm 2 Active Learning

1: procedure ACTIVELEARN(m,n, p)
2: T ← initial data set with |T |= (1− p)n
3: for i = 1, . . . ,m do
4: train fS on T
5: T ′← FINDUNFITSAMPLES( pn

m )
6: T ← T ∪T ′

7: return fS

8: procedure FINDUNFITSAMPLES(n)
9: T ← /0

10: for i = 1, . . . ,n do
11: choose zin ∈ Iin with large expected error
12: zout ← fNLS(t, p,zin)
13: T ← T ∪{(zin,zout)}
14: return T

If Equation 6 does not apply, the residual norm

τabs(zin, fS) := ∥ fres(t, p,zin, fS(zin))∥2 (9)

gives a comparatively cheap measure for identifying unfit
inputs, without the need for root finding. However, resid-
ual equations may still contain expensive computations, so
in either case evaluations need to be done economically.
Since there is some freedom in generating new data, find-
ing unfit inputs can be seen as a multimodal optimization
problem inside the classical ML optimization problem

min
fS

{
max

zin
τabs(zin, fS)

}
(10)

which can be solved by any cheap optimization heuristic
and points generated along the way can be added to the
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data set T . This corresponds to line 11 in Algorithm 2.
A simple variant of the bees algorithm (Pham et al. 2006)
was chosen which combines global and local search.

An analysis of the effectiveness of AL is given in Sec-
tion 4.3.

3.5 Integrate Surrogate into Simulation
The trained Flux model from Section 3.3 is exported
in the Open Neural Network Exchange (ONNX) for-
mat (Bai, Lu, Zhang, et al. 2017) using ONNXNaive-
NASflux.jl4. For each fNLS that is replaced by a sur-
rogate the corresponding ONNX file is copied into the
M.interface.fmu resources directory. The ONNX
Runtime (ORT) (ONNX Runtime developers 2021) is
used to interact with the ONNX object. During
fmi2Instantiate all ORT data is initialized and the
ONNX files are loaded. In the C code responsible for
evaluating the NLS it is possible to switch between the
iterative solver method and the evaluation of the surro-
gate FNN. The FMU is then compiled and packed into
M.onnx.fmu.

3.6 Surrogate Error Control
Using Equation 1 it is possible to define an error control
algorithm. Computing the residual error from Equation 9
is cheap, but for many examples it is important to use the
scaled residual norm instead:

τs(J) := ∥s(J)◦ fres(t, p,zin, z̃out)∥2 (11)

Here ◦ is element-wise multiplication, s a scaling vector

si(J) :=
1

∥Ji,∗∥∞

, i = 1, . . . ,nout , (12)

with Ji,∗ being the i-th row of the Jacobian J of fNLS and
∥ · ∥∞ the maximum norm. To utilize the scaled residual
norm for the error control it is necessary to evaluate the
Jacobian J at each time step. Especially for numeric Jaco-
bians this can be costly to evaluate, but it is still cheaper
than a Newton-Raphson step, where the Jacobian needs to
be inverted in addition.

Hoping that the Jacobian does not change too much dur-
ing simulation, Algorithm 3 reuses J from the initializa-
tion and updates it whenever the default iterative method
needs to evaluate the Jacobian anyway.

If fS is not performing well on zin or zin /∈ Iin, Equa-
tion 2 can be solved by the iterative solver method with a
start value from the surrogate or extrapolated from previ-
ous solutions ẑout .

3.7 (Re-)Initialization and Events
The Modelica language is able to express models that
can have discontinuities in the right-hand side of their
ODE system. For model1 from Equation 7 events and re-
initialization are no issue, if the event is not changing the
system structure of the NLS.

4GitHub Repository: DrChainsaw/ONNXNaiveNASflux.jl

Algorithm 3 Error Control

1: procedure ERRORCONTROL(τ , J)
2: if zin ∈ Iin then
3: zout ← fS(t, p,zin)
4: if τs(J)> τ then
5: zout ,J← fNLS(t, p,zin) with start value zout

6: else
7: zout ← extrapolate(ẑout)

▷ extrapolate zout from previous time step(s)
8: zout ,J← fNLS(t, p,zin) with start value zout

In contrast model2 from Equation 8 uses the solution
ẑout from the previous time step. If the NLS is solved for
the first time or if the previous solution is invalid because
an event occurred the previous solution is not available
and the original equation fNLS is evaluated first.

The delay and spatialDistribution operators of
the Modelica language specification are not considered but
they don’t seem to be an issue as long as they are not used
inside fres.

4 Experiments
The method described in section 3 is tested on a mechan-
ical mass-spring system with scalable non-linear equation
systems. The library is presented in Section 4.2 and the
generation of surrogates is described in Section 4.2.1. In
Section 4.2.2 the simulation results are compared to the
Newton-Raphson method used by OpenModelica. Sec-
tion 4.3 demonstrates reduced data consumption on a
Modelica toy model.

4.1 Test Setup
All examples were run on a test server with an Intel Xeon
Gold 6248R CPU @ 3.00GHz, 192 GB DDR4 RAM @
2933 MT/s, NVIDIA Quadro RTX 6000 GPU with 24 GB
SDRAM on Ubuntu 22.04.2 LTS. Julia v1.9.0 with pack-
ages FMI.jl v0.12.2, Flux.jl v0.13.16, ONNXNaiveNAS-
flux.jl v0.2.7, OMJulia.jl v0.2.1 together with OpenMod-
elica v1.22.0-dev-156 was used.

4.2 ScalableTranslationStatistics Library
In this section the Modelica library ScalableTranslation-
Statistics5 is presented, which will be used as an example
for the algebraic loop replacement in Section 4.2.1. The
ScalableTranslationStatistics library offers many possibil-
ities to create models of specified numerical complexity.
It can be used to create generic examples for specific nu-
meric problem classes and thus avoids the need of sharing
confidential models.

Model properties like number of algebraic loops, con-
tinuous time states or use of numeric Jacobians can be
specified a priori via structural parameters in the model.
These are the structural properties the model will have af-
ter the translation. Due to different algorithms used during

5ltx.de/download/ModelicaLibraries/ScalableTranslationStatistics
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Figure 1. Scalable mass-spring system with parametriza-
tion num_masses=4, Lin_equations = {2,3,2} and
NL_equations = {2,1,5,1,2,2}.

the translation in different Modelica tools, the final struc-
tural properties might slightly differ from the given param-
eters, but the principal functionality is not tool-dependent.

The principal idea of this library - to scale models - is
based on the ScalableTestSuite6. But since this library
doesn’t offer the possibility to scale structural properties
like the size of algebraic loops, the ScalableTranslation-
Statistics library was developed. Figure 1 shows the phys-
ical representation for an exemplary parametrization of the
model.

A specified number of continuous time states is reached
by introducing masses, each having two state variables
(position and velocity). In the most simple case the
masses are only connected with simple linear springs (blue
springs in Figure 1), to avoid in any case singular sys-
tems due to free, unconnected masses. To obtain linear or
nonlinear equation systems, springs are directly connected
with each other. Thus, an algebraic loop of size M− 1 is
created, where M is the number of springs. Depending on
the spring characteristics the algebraic loop has a linear or
nonlinear behavior.

A simple way to enforce numeric block Jacobian is to
introduce an assert-statement in the spring-characteristic
to limit the force to a given maximum value, or reading the
characteristics from a file. In both cases the characteristic
cannot be differentiated analytically but needs to be solved
numerically. In the latter case an arbitrary characteristic
can be defined.

Furthermore, following additional features are imple-
mented:

• External forces (Fi) can act as inputs to the system,
position measurement sensors (Si) as outputs. By an
appropriate definition of the input-forces (e.g. via
a TimeTable) a desired number of time- or state-
events can be reached.

• Additional parameters, time varying variables and
alias variables can be added to the model. They have

6github.com/casella/ScalableTestSuite

no influence on the physical behavior, but increase
the size of the model.

• The model contains an independent mass-spring sys-
tem with a different stiffness of the spring (m4 in Fig-
ure 1). Thus, the stiffness can be adjusted to increase
the effort for an integrator to solve the model.

• Two-dimensional springs can be added to the model.
The directional stiffness of these springs depends on
the deflection in both directions. In this way partial
derivatives are introduced.

Besides the principal model, the library offers numer-
ous examples of different scaling and for the above-
mentioned features.

4.2.1 Generating Surrogates

To test the method presented in section 3 the model
ScalableTranslationStatistics.Examples.
ScaledNLEquations.NLEquations_N is used with
N ∈ {5,10,20,40} where N scales the number of iteration
variables. The model has eight NLSs with 2N unknowns.
Because of tearing (Täuber et al. 2014) there are N
iteration variables and N inner variables. The first
seven systems cannot be differentiated symbolically,
therefore numeric Jacobians are used. The fastest system
is differentiated symbolically. ODE integrator DASSL
(Petzold 1982) is used with tolerance 10−6 to simulate
in It = [0,10]. For small systems (N ∈ {5,10,20}) the
dense Newton-Raphson method is used. For the larger
systems (N ≥ 40) the sparsity of J is 7 %, so the sparse
solver KINSOL (Alan C Hindmarsh et al. 2005; Alan C.
Hindmarsh et al. 2023) is used instead of the dense one.
After profiling Figure 2 shows a significant amount of
the simulation time is spent to solve seven of the NLSs,
which is an upper bound for the amount of time that could
be saved by a faster surrogate.

Figure 2. Profiling relative simulation times for
ScalableTranslationStatistics.Examples.
ScaledNLEquations.NLEquations_N with
N ∈ {5,10,20,40} and the eight NLS eq 1, . . . ,eq 8 as
well as all remaining equations rest.
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During data generation Algorithm 1 is used to gen-
erate 5,000 data points in 100 batches of 50 calls to
randomWalk with δ = 0.01 for each N.

80 % of the available data points are used for the train-
ing set, the remaining 20 % for the validation set. The
model is simulated over It = [0,10] to test the ANN.

For FNN Equation 7 is fitted to the normalized training
data Ĩin using Julia package Flux.jl (Michael Innes et al.
2018; Mike Innes 2018). A model with one input, one
hidden and one output layer is created:� �

model1 = Flux.Chain(
Flux.Dense(nIn, nIn*10, σ),
Flux.Dense(nIn*10, nOut*10, tanh),
Flux.Dense(nOut*10, nOut)

)� �
with nIn = 1+nin and nOut = nout , activation functions
sigmoid σ and hyperbolic tangent tanh. The mean square
error is used as loss function and Adaptive Moment Esti-
mation (Adam) optimization is used to train the model.

model1 is trained over 1000 epochs or until the loss of
the training set is below 10−6.

4.2.2 Simulation Results
With the generated FMU containing surrogates for all
eight NLSs the simulation times are measured and com-
pared to the Newton-Raphson method as reference. The
models are simulated with an explicit Euler method with
fixed step size of 0.001 in time interval [0,10]. In Figure 3
the simulation times and speedup factors are plotted for
different values of N. While the evaluation of model1 is
slower for small NLS, with growing N the surrogates are
significantly faster to evaluate (up to 9 times). With more
sophisticated ANN structures even better performance is
expected. Unfortunately, the overall savings for the total
simulations are not as large as expected. For N = 40 the
surrogate is only 1.55 times faster than the original high
fidelity model.

In Figure 4 the simulation results of iteration vari-
ables scalableModelicaModel.springChain[1].
spring[m].s_rel for m ∈ {1,3,4,5} from NLS equa-
tion 808 are displayed. It can be observed, that while the
results of the iteration variables of the surrogate compared
to the reference solution have a low absolute error

|zouti − z̃outi |, i ∈ {1, . . . ,4} (13)

the error τs(J), displayed in Figure 5, of the residual is
relatively large. If τs(J)> 1 the original Newton-Raphson
method was used to solve the NLS.

The relevant output variables are the positions of eight
masses output[m] for m ∈ {1, . . . ,8}. The results of the
surrogate simulation are compared to the reference solu-
tion in Figure 6.

4.3 Controlled Data Generation
The training improvements of AL from Section 3.4 are
studied using the simple Modelica model SimpleLoop

Figure 3. The simulation time of the surrogates are plotted
against the reference Newton-Raphson method as well as the
respective speedup in total simulation time.

which has a single NLS of size 2. It describes the inter-
section of a circle with a line, both changing over time:� �
model SimpleLoop

Real r = 1+time;
Real s = sqrt((2-time)*0.9);
Real x(start=1.0), y(start=-0.1);

equation
rˆ2 = xˆ2 + yˆ2;
r*s = x + y;
annotation(experiment(StopTime=2));

end SimpleLoop;� �
This model has two distinct solutions since the equations
are symmetric in x and y. The NLS is torn to a single
iteration variable and has two inputs, r and s.

For this model a surrogate with a total of 441 param-
eters was trained. Figure 7 shows the peaks in τabs from
Equation 9 for different training scenarios. For p = 0 sur-
rogates improve slightly with increasing data size n. Using
AL on p = 1

4 of the generated data improves the surrogate
significantly, even for small n. Generating p = 1

2 to 3
4 with

AL seems to be optimal with slight improvements over
p = 1

4 . However, surrogates with no pre-training what-
soever perform no better or even worse than with p = 1

2
pre-training. In particular, for the scenario n = 800, p = 1,
two out of ten simulations showed bad results and so did
one simulation for n= 1000, p= 0.5. Still, p= 0 produces
worse results regardless of the value of n.

5 Results
When increasing the size of the non-linear systems the
advantage of surrogates becomes more and more evident.
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Figure 4. For N = 5 the iteration variables of the surrogate and
the reference solution are compared in the upper graph. The
solid lines are the reference and the dotted lines the surrogate
solution. They are so close, that the dotted lines are not visible.
The variables are describing a relative position of springs in a
chain of springs. The lower graph shows the absolute difference
between the reference and surrogate solution.

However, the examined Modelica model is simple. When
more complex and application-oriented examples where
investigated several problems were encountered, that are
not yet solved and discussed in the following subsection.

The AL approach was tested on a small toy example
and proved to outperform the method of random data gen-
eration both in precision and in data efficiency. However
further experiments need to be done to see to what ex-
tent AL can impact the surrogate training process for more
complex Modelica models.

5.1 Encountered Problems
For larger and highly non-linear NLS it is more compli-
cated to train accurate enough FNN. Simple NLS that
have only a few iteration variables can use a lot of previ-
ously computed variables. The surrogate tries to approxi-
mate a function from the used variables to the solution of
the iteration variables. In this case an easy to solve NLS
becomes difficult to train for an ANN.

An especially difficult problem are iteration variables
that influence the ODE states. There are two different is-
sues with this. When trying to solve the simulation exe-
cutable with the surrogates the error control cannot man-

Figure 5. For N = 5 equation 808 the residual vector and its
norm over the simulation time are displayed. If the value of
τs(J) is larger than 1 Algorithm 3 switches to the original non-
linear solver method to refine the prediction from the surrogate.

age the imprecise solution of the surrogate. While the ap-
proximation would be good enough for the use case the
error control of the ODE method will reduce the step size
until the lower limit is reached. And when the error con-
trol of ODE integrator is deactivated coupled states are a
problem.

For analytic stable ODE a well-suited integration
method transports this stability to the numeric approxima-
tion of the solution. This means numeric errors will vanish
over time and the numeric solution converges to the ana-
lytic solution. In contrast it seems that small errors from
the surrogate will escalate over time and the numeric so-
lution gets worse over time. This needs to be investigated
more. Iteration variables that have a high sensitivity to-
wards states can be a significant issue.

6 Summary and Outlook
The presented prototype NonLinearSystemNeuralNet-
workFMU.jl aims to lower the bar for Modelica users to
utilize hybrid modeling approaches in their models. Even
though the scripts are in an early development stage they
could pave the way for tool supported integration of ML
into Modelica models.

The example from section 4 shows that there is some
potential in replacing sufficient large NLS with machine
learning surrogates. The focus of this paper is to automate
the workflow for data generation and integration of trained
surrogates into the simulation executable. So further re-
finements of the ANN could result in faster and more pre-
cise evaluations of the surrogates. The ability to use hy-
brid ML methods for problems with discrete events and
inputs distinguishes the presented method from methods
replacing all of the right-hand side of the ODE and en-
sures correctness of the surrogates.

The workflow can be extended to profile linear equa-
tion systems as well as external Modelica functions and
automate data generation for these systems or functions.
Especially functions computing media properties, e.g. for
thermal fluid systems, can be expensive and library de-
velopers and users are searching for ways to decrease the
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Figure 6. Simulation results in the upper graph and absolute
errors in the bottom graph for N = 5 equation 808. In the upper
graph the solid lines are the reference and the dotted lines the
surrogate solution. They are so close, that the dotted lines are
not visible.

time spent evaluating these functions.
Instead of using ANN we plan to use symbolic re-

gression to obtain equations that represent the underlying
physics while being less of a black box.
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