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Abstract
This paper presents the recently added support for im-
port and export of functional mock-up units (FMUs) in
CasADi, an open-source software framework for numeri-
cal optimization. Of particular interest is the efficient cal-
culation of derivatives, especially in the context of sen-
sitivity analysis and dynamic optimization. We show
how the import interface allows for both first and second
derivatives can be efficiently and accurately calculated and
– importantly – validated for correctness. We also outline
the FMU export interface, which leverages CasADi ma-
ture and efficient support for forward and adjoint deriva-
tive calculation and C code generation. Finally, potential
future developments of the support are discussed.
Keywords: CasADi, FMI, FMU, Modelica, optimal con-
trol

1 Introduction
The work presented here is intended to be general-
purpose, but will typically include some sort of optimiza-
tion formulation with a high-fidelity simulation model ad-
hering to the FMI standard, cf. Section 1.2 below. Exam-
ples of such applications include:

• Parameter estimation applications, which may use
parametric sensitivty approaches to obtain estimates
of confidence intervals for estimated parameters

• A wide range of different optimal control formula-
tions, i.e. problems with free control trajectories to
be determined by the optimization algorithm

• Optimization-based control techniques such as (non-
linear) model predictive control (MPC), including
their deployment on embedded systems

• Steady-state optimization formulations, i.e. prob-
lems that lack time derivatives or have the time
derivatives fixed to some value (typically zero)

For more details on the implementation of such algo-
rithms and on possible applications, we refer to the vari-
ous textbooks on the topic, including (Biegler 2010) and
(Rawlings, Mayne, and Diehl 2020).

1.1 CasADi
CasADi (J. A. E. Andersson et al. 2019) is an open-source
software package for C++, Python, MATLAB and Octave.

CasADi offers a flexible approach to solve numerical opti-
mization problems in general and numerical optimal con-
trol in particular. At the lowest level, it offers all the build-
ing blocks needed to efficiency address all the problem
formulations listed above. At the core of the package is
a symbolic expression framework implementing algorith-
mic differentiation (AD) in forward and reverse (adjoint)
modes. CasADi’s symbolic expressions can contain em-
bedded function objects, which offer a standard interface
to generic, differentiable functions. These function ob-
jects can be defined in a number of ways, including by
other symbolic expressions, by systems of nonlinear equa-
tions, by initial-value problems in differential-algebraic
equations or by external function calls.

1.2 FMI
The functional mock-up interface (FMI) (Modelica Asso-
ciation 2020; Modelica Association 2023) is an open stan-
dard for exchanging information about dynamic system
models between tools. The format specifies the structure
of self-contained zip archives called functional mock-up
units (FMUs), The FMUs contain, in particular, an XML
file with static meta information and a C library for evalu-
ating model equations and their derivatives. The C library
is designed for either static linking or dynamic linking and
can be distributed either in source form or as a compiled
dynamically linked library (DLL), available in the FMU.

The FMI standard describes connections either at the
dynamic equation level, referred to as model exchange, or
on an input-output level at discrete communication time
points, referred to as co-simulation. In this work, we are
mainly concerned with the connections at the level of dy-
namic equations and references to “FMI” implicitly im-
plies FMI for model exchange.

Derivative information in FMUs

FMI 2.0 (Modelica Association 2020) specifies two types
of derivative information:

• Firstly, the FMI XML API contains information
about which output variables depend on what input
variables (dependencies attribute) and whether
this dependency is linear (dependenciesKind
attribute).

• Secondly, the FMI C API includes the routine
for calculating (forward) directional derivatives
i.e. Jacobian-times-vector products, for se-
lected subsets of the FMU inputs and outputs
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(fmi2GetDirectionalDerivative func-
tion).

Together, these two pieces of information can be used to
obtain sparse Jacobians, as outlined in Section 3.2.

In FMI 3.0 (Modelica Association 2023), where for-
ward directional derivatives are calculated using the rou-
tine fmi3GetDirectionalDerivative, the C API
is extended with the ability to calculate adjoint directional
derivatives, i.e. Jacobian-transposed times vector prod-
ucts, via the routine fmi3GetAdjointDerivative.
Furthermore, the variable dependency information in the
XML API can now be refined at runtime, with the addition
of fmi3GetVariableDependencies in the C API.

2 Other integration efforts of CasADi
and Modelica

This work does not represent the first time Modelica mod-
els has been integrated into CasADi. Indeed, it was a Mod-
elica application that motivated the start of the CasADi
project in 2009 (Ahlbrink et al. 2009). The first integration
effort, between JModelica.org and CasADi, was described
in (J. Andersson et al. 2011). That approach was based on
the FMI version 1.0, where the XML model description
had been extended with a symbolic representation of the
model equations. Later, support for export of the same
format was also added to OpenModelica (Shitahun et al.
2013).

Eventually, JModelica.org replaced the XML-based
format with a tighter integration based on a Java inter-
face generated using SWIG (Beazley 2003), an approach
which is also used in OCT, JModelica.org’s closed-source
successor code from AB Modelon. As of this writing,
the CasADi-backend of OCT represents the most mature
symbolic coupling between generic Modelica models and
CasADi.

Two additional interfaces between Modelica and
CasADi are available via the open-source Pymoca1 and
Cymoca2 packages on Github. Both these packages in-
clude native CasADi-based backends, using CasADi’s
Python and C++ APIs, respectively.

3 Importing FMUs into CasADi
CasADi 3.6 introduces the ability to import standard
FMUs, adhering to FMI version 2.0, which can be gener-
ated from Modelica or non-Modelica models. Unlike the
other efforts described in Section 2, this approach uses the
standard C API, as defined by the FMI standard, for eval-
uating model equations and any derivative information.

3.1 Postponing the creation of CasADi func-
tion objects

A fundamental difficulty with all the integration efforts de-
scribed in Section 2 is that not all Modelica expressions

1https://github.com/pymoca/pymoca
2https://github.com/jgoppert/cymoca

can be efficiently represented as CasADi expressions. In
particular, CasADi does not support arithmetics involving
string-valued expressions and expressions where the di-
mensions or sparsity patterns are unknown. There are also
fundamental differences in how flow control can be imple-
mented, e.g. if-then-else statements and for/while loops.

In the new FMI support of CasADi, we are able to
overcome these limitations by postponing the creation of
CasADi functions objects. Rather than creating a CasADi
function directly from the FMU – which is how CasADi’s
other foreign function interfaces work – the FMU is im-
ported in the form of a mutable representation of the
physical model. This mutable representation, in the form
of instances of the DaeBuilder class in CasADi, al-
lows the user to change properties, set values and per-
form certain manipulations before an immutable (state-
less) CasADi function object is finally created. The cor-
responding function objects are instances of the newly
added FmuFunction class, and upon creation saves a
snapshot of the current DaeBuilder state. Each FMU
function object can have multiple vector-valued inputs and
multiple vector-valued outputs, where the user defines the
composition of each input or output. We typically only
include the real-valued, differentable model variables that
are manipulated by the various simulation and optimiza-
tion algorithms available in CasADi. Inputs that are non-
differentiable – including string-valued and integer-valued
variables – or known to be fixed are assumed to be set
prior to the creation of FmuFunction instance. Cal-
culated quantitites of interest that are non-differentiable,
and hence cannot be used in simulation or optimization
algorithms in CasADi, can be obtained via the statistics-
functionality of the FMU function objects.

3.2 Derivative calculation
The typical use cases for FMI and/or Modelica models
within CasADi involve calculation of derivatives. This in-
cludes optimial control formulations solved with gradient-
based optimization algorithms as well as dynamic simula-
tion with sensitivity analysis.

To acommodate such use cases, the interface has been
designed to:

• Be as efficient as possible, by leveraging paralleliza-
tion and all available analytic derivative and sparsity
information

• Support for both first and second order derivatives
(even through the FMI standard only includes first
order derivatives)

• Ensure that any calculated derivative quantities can
be validated for correctness

• Ensure that the derivative calculation is predictable
and customizable from a user standpoint

In the following sections, we briefly summarize the
kinds of supported derivative information and how they
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are calculated by the interface. We will not discuss user
syntax for calculation of derivative information as it is the
same as for any other function object in CasADi. For
illustration, we will consider a set of FMU model equa-
tions that can be represented as a differentiable function
y = f (x), where x ∈ Rnx is a set of inputs or state vector
components and y ∈ Rny is a set of calculated outputs or
state derivatives.

Forward derivatives

Forward derivatives, i.e. Jacobian-times-vector prod-
ucts ∂ f (x)

∂x v for some x and v, can be calculated using
fmi2GetDirectionalDerivative in the FMI C
API (Modelica Association 2020). Alternatively, we can
estimate the same information using one of three finite dif-
ference schemes:

• Forward differences, i.e. ( f (x + hv)− f (x))/h for
some small h, with approximation error O(h)

• Central differences, i.e. ( f (x + hv) − f (x −
hv))/(2h) for some small h, with approximation er-
ror O(h2)

• A generalized, smoothness seeking, scheme using
5-point stencils, f (x − 2hv), f (x − hv), f (x), f (x +
hhv), f (x+2hv), with approximation error O(h4)

The above schemes represent different tradeoffs be-
tween accuracy and computational overhead, requiring 1,
2 and 4 additional function evaluations, respectively. For
all of the schemes, we will select a fixed, and predictable,
perturbation size h, by default 10−6. This necessitates that
the directional derivative seed v is properly scaled.

The intended purpose of the finite difference implemen-
tation is not to serve as an alternative to analytic deriva-
tives, but to validate that the provided analytic derivatives
are correct. This is achieved by, optionally, allowing a se-
lected finite difference implementation to run in a “shadow
mode”, ensuring that the two derivative estimates agree up
to some absolute and relative tolerance. This validation
also helps ensuring that the finite difference perturbation
is correctly chosen, which is important for the calculation
of second order derivatives.

Jacobians

We use CasADi’s greedy, distance-2, unidirectional algo-
rithm (Gebremedhin, Manne, and Pothen 2005) to calcu-
late large-and-sparse Jacobians, i.e. ∂ f (x)

∂x for the above
example. This approach exploits a priori knowledge of
the Jacobian sparsity pattern, which can be derived from
the variable dependency information provided in the FMI
standard. In most use cases, this technique reduces the
problem of calculating the sparse Jacobian to one of calcu-
lating a reasonably small set of forward directional deriva-
tives.

We allow this directional derivative calculation to be
performed in parallel, using either std::thread in the

C++ standard or OpenMP. We also scale derivative seeds
with nominal values of the FMU and adjust the sign of
the perturbation to respect variable bounds, when neces-
sary. By using a fixed step size scaled by the nominal
value for the derivative seeds, we ensure that the calcula-
tion becomes predictable and customizable as the user can
adjust the individual nominal values.

Adjoint derivatives
Support for adjoint derivatives, i.e. Jacobian-transpose-

times-vector products
[

∂ f (x)
∂x

]T
w for some x and w, was

added in FMI 3. As the import code, as of this writing, was
limited to FMI 2, we instead use the above Jacobian cal-
culation to calculate adjoint derivatives, i.e. we multiply
the transpose of the Jacobian, which may not be formed
explicitly, with the vector w from the right.

Note that such an approach may be significantly less ef-
ficient than using fmi3GetAdjointDerivative, as-
suming a reverse mode algorithmic differentiation is used
for the calculation. As the CasADi FMI import transitions
to FMI 3, the intention is for the existing implementation
to be used as an optional validation of the adjoint direc-
tional derivatives, provided by the FMI C API. We predict
that such validation will prove important when using the
interface for complex physical systems.

Forward-over-adjoint derivatives
The FMI standard, whether FMI 2 or FMI 3, does not
include an API for second order derivatives, i.e Hessian-
times-vector products ∂ 2[wT f (x)]

∂x2 v, for some v and w. Nev-
ertheless, we can calculate this information with accept-
able efficiency and accuracy using finite difference per-
turbations of the (analytical) adjoint derivatives. For ex-
ample, can we approximate the second derivative using
central differences:

1
2h

([
∂ f
∂x

(x+hv)
]T

w−
[

∂ f
∂x

(x−hv)
]T

w

)
, (1)

where we calculate the adjoint derivatives as described
above.

Hessians
Our main intrest for calculating forward-over-adjoint
derivatives is to obtain a large-and-sparse Hessian, i.e.
∂ 2[wT f (x)]

∂x2 for the above example. In large-scale gradient-
based optimization, knowledge of the exact Hessian can
be used to get faster and more robust convergence.

We use CasADi’s greedy, distance-2, star-coloring al-
gorithm (Gebremedhin, Manne, and Pothen 2005) to cal-
culate sparse Hessians. For this calculation, we use the
(incomplete) knowledge of the Hessian sparsity pattern
that can be extracted from the FMI XML API. In par-
ticular, we know that variables that enter linearly will be
absent from the Hessian sparsity pattern, which occurs
whenever the dependenciesKind field is set to some-
thing other than dependent.
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As for the Jacobian calculation, we allow the different
directional derivatives to be calculated in parallel, using
std::thread in the C++ standard or OpenMP.

Since the Hessian calculation relies on approximations,
it is especially important to validate the results. We do
this validation by comparing each Hessian entry with a
reference value:

• For diagonal entries of the Hessian, we compare the
result against the corresponding second order finite
difference formula, i.e. ( f (x+ hv)− 2 f (x)+ f (x−
hv))/h2.

• For off-diagonal entries of the Hessian, we compare
the result against the mirror element, which will be
calculated by a finite difference perturbation of a dif-
ferent variable.

In both cases, the validation can be done with little addi-
tional overhead and can thus be used as an on-the-fly diag-
nostics check. The main additional overhead comes from
having to disable the star-coloring algorithm to get every
Hessian element validated – avoiding to calculate mirror
elements in Hessians is a fundamental property of star-
coloring, cf. (Gebremedhin, Manne, and Pothen 2005).
Whenever the calculated value deviates significantly from
the reference value, a warning is issued, helping the user to
either resolve non-smoothness issues in the model, detect
toolchain bugs or adjust the nominal values.

4 Generalized support for ODE/DAE
integration and sensitivity analysis
in CasADi

The FMU import described in Section 3 has multiple po-
tential use cases, including simply being used for validated
Jacobians and Hessians of the model equations. Another
use case is for dynamic simulation with forward and/or
adjoint sensitivity analysis. Such an analysis is particu-
larly important if we use shooting method to reformulate
a dynamic optimization problem into a nonlinear program
(NLP). How this type of reformulations can be imple-
mented using CasADi was detailed in (J. A. E. Andersson
et al. 2019).

A key ability of CasADi is to embed solvers of initial-
value problems (IVPs) in ordinary differential equations
(ODE) or differential-algebraic equations (DAE) – which
we will refer to as integrators - into symbolic expressions
and have the framework calculate forward and adjoint sen-
sitivity analysis, including higher order, automatically and
efficiently. This support is relatively mature and has been
used in numerous applications. However, in order to use
this feature with models defined by FMUs, a number of
challenges had to be overcome:

• There was previously no support for controls in
CasADi, i.e. external inputs that change at certain
time points. While such problems could still be

solved by constructing multiple calls to integrator in-
stances with parametric inputs, this solution is par-
ticularly inefficient for FMUs as it would cause the
FMUs to be reinitialized at every control point.

• While there was already support for outputting a so-
lution at multiple time points (as opposed to just the
end time), this feature was never made to work to-
gether with the automatic sensitivity analysis. So as
in the case for controls, the solver would need to be
called repeatedly, for each segment, again causing
excessive reinitilizations.

• The implementation of the automatic forward and
adjoint sensitivity analysis only worked well for
models given as symbolic expressions. When the
model equation was a function object as is the case
here, a more limited range of derivative information
is efficiently available.

• The ODE/DAE integrators in CasADi did not scale
very well to large dimension. In particular, the struc-
ture of the forward and adjoint sensitivity equations
were insufficiently exploited.

All the above points were addressed in the major refac-
toring of the ODE/DAE integrator in CasADi 3.6. In
particular, the integrators now explicitly exploits forward
sensitivity equation structure, adjoint sensitivity equation
structure and forward-over-over adjoint sensitivity equa-
tion structure. While there may certainly be bottlenecks
left in the code, there is – to the best knowledge of the
author – no longer any fundamental limitation in CasADi
for large-scale ODE/DAE sensitivity analysis, including
for FMU models.

5 Exporting FMUs from CasADi
Another addition to CasADi 3.6 is support for exporting
FMUs from CasADi. The FMU export is done from in-
stances of DaeBuilder, a class which originates from
the original (symbolic) coupling between CasADi and
JModelica.org as described in Section 2. The FMU export
thus reuses the data structures used for the FMU import
descibed in Section 3.

As of this writing, a proof-of-concept implementation
of FMUs adhering to FMI 3.0 exists in the framework.
The implementation is based on the comprehensive sup-
port export of self-contained C code from symbolic ex-
pressions CasADi that exists in in CasADi. The gener-
ated FMUs contain support for both forward and adjoint
derivative calculation.

6 Examples and Tutorial
While parts of the FMI support in CasADi are still rudi-
mentary, the framework has been used successfully for
real-world applications, including for parameter estima-
tion with Modelica building models (Cañas et al. 2023).
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In the CasADi Github repository, a step-by-step Jupyter
Notebook tutorial (fmu_demo.ipynb) can be found
that demonstrates the main capabilities of the FMU im-
port described in Section 3, including:

• Compilation of FMUs from Modelica

• Loading FMUs into CasADi and creating function
objects

• Calculation of Jacobians and Hessians

• Integration and forward/adjoint sensitivity analysis

• Dynamic optimization using a direct collocation ap-
proach

For up-to-date information about this and other exam-
ples, we refer to the CasADi user guide and website.

7 Conclusions and Outlook
The intention of the FMI support in CasADi is to provide
numerically efficient and mature interfaces to FMUs, both
for import and for export. In particular, such interfaces
can enable the implementation of efficient simulation and
optimization formulations, for existing physical models
available as FMUs. These formulations can include for-
ward, adjoint and forward-over-adjoint sensitivity analysis
for the simulation problems and as well as sensitivity cal-
culation for the optimization formulations. To enable such
applications, special care has been taken to provide vali-
dation and diagnostics of provided derivative information
as well as the efficient calculation of second derivatives.

The FMU interfaces are intended to be general-purpose
and can be used for both static (steady-state) and dynamic
problem formulations. In the dynamic case, both open-
loop and closed-loop formulations are of interest.

As of this writing, the interface was still in active devel-
opment and future additions to the support will be driven
mainly by industrial and academic interest.

In the following, we list some of the main future devel-
opments the framework.

7.1 Support for FMI 3 import
FMI 3.0 is a natural fit with CasADi as it adds features
that are important to many use cases of CasADi. These
features especially include the added support for adjoint
derivatives and better Jacobian sparsity information, as
discussed in Section 1.2. The addded the support for
vector-valued variables is also important as all expressions
in CasADi are all matrix-valued.

At the time of this writing, only FMU 2 was supported
for the FMI import.

7.2 C code generation for imported FMUs
A common use case of CasADi – especially for industrial
applications – is to use the code generation support to gen-
erate self-contained C code, which can then be run on an

embedded system. This code can represent just the evalu-
ation of a function and its derivatives or a higher-level op-
eration, including the solution of an optimal control prob-
lem.

A useful extension of the FMI import would be to allow
for C code export of imported FMUs. It would for exam-
ple allow CasADi symbolic expressions to be exported to
an embedded system with static or dynamic linking to the
FMU shared libary.

It would be possible to use the C code generation of
imported FMU together with the FMU export described
in Section 5. For example, we could use the CasADi
framework to import multiple FMUs, connect them to-
gether into an aggregated system model and then export
the aggregated model as a new FMU.

7.3 Support for hybrid systems
FMI – and the Modelica modeling language – provides a
flexible modeling and execution paradigm for hybrid sys-
tems, i.e. systems with event dynamics. To allow such
models to be used within CasADi, an extension of the
framework would be needed. In particular, we may want
extend the simulation and sensitivity analysis support de-
scribed in Section 4 to also handle hybrid systems. While
handling hybrid systems in the context of dynamic opti-
mization – and in CasADi – is often not possible with the
same generality as in the context of system simulation,
several interesting problems could be addressed this way.

No explicit support for hybrid systems exists in CasADi
as of this writing, although many hybrid systems can be
reformulated and solved as multi-stage formulations. In
addition, integer valued decision variables can be handled
by using one of the interfaced solvers for mixed-integer
quadratic programs (MIQP) or mixed-integer nonlinear
programs (MINLP).
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