
A Library to Simulate Processes in the Factory Hall

Julia Gundermann Torsten Blochwitz

ESI Germany GmbH, Dresden, Germany {julia.gundermann, torsten.blochwitz}@esi-group.com

Abstract

The Modelica language is well suited to model systems
with coupled discrete and continuous dynamics. This fea-
ture is crucial, if one wants to model the flow of items
through manufacturing steps such as preparation, mount-
ing, or transport in the shop floor. The library ProcessSim-
ulation can be used to model such processes. By default,
it omits the technical details of the process steps, and fo-
cuses on the flow of material items through the process
steps. In addition to that, a base model to calculate the en-
ergy consumption in the different manufacturing steps is
provided. It can be enriched with technical details of the
components. The library can be used for the calculation
of (net) energy consumption, but also for task planning.

Keywords: process simulation, energy consumption, Mod-
elica library

1 Introduction

There are dedicated and advanced commercial tools for
plant or manufacturing simulation and beyond, such as
Tecnomatix (2023) (Siemens), FlexSim (2023) (FlexSim
Software Products, Inc.) or Arena Simulation Software
(2023) (Rockwell Automation). They base on discrete
event simulation and cover a wide range of applications.
To support modelling activities, some of these programs
also integrate sophisticated 3D visualisation. There is
also a Modelica library which can model discrete event
simulation, since it adopts the Discrete EVents System
(DEVS) formalism (Sanz, Urquia, and Dormido 2009;
Sanz, Urquia, Cellier, et al. 2012; DESLib 2023). It of-
fers a rich but complex functionality. The purpose of the
library presented here is to evaluate the capabilities of sim-
ulating processes in the factory hall by means of the Mod-
elica language with a simpler approach. It is shown that
there are applications for which this way of modelling is
sufficient. The Modelica language can cover both dis-
crete and time-continuous processes. It is suited, if ma-
chines and transport means should not only be considered
as event sequences, but can also be enriched with models
of physical processes, i.e. mechanics and electrics which
for example contribute to the consumption of energy. This
publication introduces the library and its components and
outlines two applications.

2 The Library
2.1 General
This library contains models of distinct groups to describe
material flow through processes in the factory hall. These
are

• storages to store items,

• machines to process items,

• transport devices to transport items,

• a tasks supervisor to model tasks and their precondi-
tions on machines,

• an energy meter to observe energy consumption in
the system.

The material which flows through the manufacturing
line is identified by its amount as integer quantities. This
is in contrast to the continuous material amount, which is
used in the Business Simulation Library (2023). On the
other hand, material is also not a set of single-wise iden-
tifiable items, like in DEVSlib (DEVSlib is a subpackage
of DESLib 2.0 (2023)). The Modelica language is not able
to handle the generation and disappearance at simulation
time. For that reason, DEVSlib implements an External
Object in programming language C to handle a variable
number of messages and entities. In our approach we only
count the number of items. The item flow is handled by the
definition of pairs with active and passive partners using
specific connector types. There is always one active and
one passive partner in the connection. The passive part-
ner indicates its availability (freeCapa) and free/avail-
able capacity, the active partner triggers the handOver
and defines the handed quantity (handedCapa). The ac-
tive connector is defined as follows:

connector MaterialA
"Active Material Handover"
input Boolean freeCapa;
output Boolean handOver;
input Integer capacity;
output Integer handedCapa;

end MaterialA;

The passive connector MaterialP is defined in the same
way with input and outputs exchanged. Figure 1 shows
the connectors. With the Boolean parameter handOver
the events are triggered in which one or more items are
handed over from one component to another. In this way,

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

357



Figure 1. Connector pairings of the process simulation library.
There is always one active and one passive partner in the con-
nection.

the flow of material is as fast/efficient as locally (i.e. in
a sequence of two consecutive components) possible. It
should be mentioned that this modelling technique creates
a lot of events during simulation. The number of variables
which change as a consequence of these events is low, and
their values are calculated from simple equations. Hence,
the duration of a single event iteration is determined by
the solver’s performance and in general short, however
the high number of events in total might affect simulation
time.

2.2 Storages
There is a generic component named Storage which
models the storage of items, e.g. in a storage room, but
also on a wagon, or a dedicated place upfront a machine.
It can be parametrized with an initial capacity and a max-
imal capacity. The storage is passive regarding material
flow. This means it indicates its free capacity, but the pro-
cess of handing over material is triggered from the con-
nected transport device (see next section). There exists a
variant of the storage named MergeStorage. This can
be used, if a certain ratio of components of two different
types (e.g. four wheels and a chassis) has to be available
before processing the next step (e.g. transport to an as-
sembling machine). Figure 2 shows the icons.

2.3 Transport Devices
There are three types of transport devices. They share the
commonality that all of them actively trigger the loading
and unloading of items. Items are loaded if the preceding
storage has enough items to transport, and they are un-
loaded if the target has enough free capacity. Otherwise,
the transport stops.

Plain Transport
This transport device loads a parametrizable number

Figure 2. Storage and merge storage component. The number
on the icon displays the number of (merged) items which are
currently in the storage.

of items within a loadTime, transports them within
a transportTime and unloads them at a connected
target. The transport runs either up to a maximum
defined number, or indefinitely as long as there are
items to transport.

Conveyor
This transport device models a conveyor belt. It
needs processTime to transport one item from start
to target, and loads up to a parametrized maxCapa of
items (all separated by processTime/maxCapa).

Shared transport device (e.g. automated guided vehi-
cle AGV)
This device models the transport as defined in con-
nected TransportTasks. All the information about
the transport task is defined in the connected device.
This includes

• the number of items to carry

• the number the device can carry at once

• the time to load the device

• the time to transport the loaded items

• a condition when the transport task is prepared
to be run (e.g. to model that a transport task will
only be started if there is enough free capacity
in the target storage).

• a unique id

Each transport task is connected to a SharedRe-
source by a specific connector pair, in which the
shared resource receives each task’s id as well
as its status (prepared, finished), and sends the
currentTaskNr to all transport tasks.

The shared resource exists in two variants - one runs
the tasks "AS PLANNED", i.e. as defined by the
sequence of task IDs in the shared resource. The
other runs the tasks "ON DEMAND", i.e. whenever
a transport task becomes status "prepared", it will
be scheduled as the next transport task. If several
tasks become prepared at the same time, they will be
scheduled in order of increasing task id.

Figure 3 shows the icons of the transport devices. All
transport devices display the number of currently trans-
ported items. In addition to that, each transport task shows

Figure 3. Transport devices of the process simulation library.
From left to right: transport, conveyor, and shared resource with
transport task.

A Library to Simulate Processes in the Factory Hall

358 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204357



in its top left corner the unique task ID, which is high-
lighted in violet if the task is currently running. The bot-
tom right corner shows the total number of items to trans-
port. The icon of the shared resource shows the ID of the
currently active transport task.

2.4 Machines
The library contains a plain Machine, which processes
items. This refers to any type of process - mounting,
drilling, packing, sawing, ... The plain machine runs down
a setupTime to prepare the machine, and a cycleTime
to process one item. It processes nMax items, then it stops.
An item is taken and processed as soon as it is available in
the connected input storage, and handed to the output stor-
age if there is free capacity. Two output variables indicate
the progress of the machine setup, and the progress
of processing the current item, respectively. A machine
is always located between two storages, one from which
the items are taken, and a second one which is filled with
items. Figure 4 shows two storages connected by a ma-
chine which processes items. The numbers displayed in
the storages and machine vary over time and show the
number of stored or processed items, respectively.

2.4.1 Machines with Tasks

Whereas this plain Machine runs only one process to its
end, there are four more advanced machine types in the
library (cf. Figure 7). They all share the following base
structure: they all are vectorized versions of the plain
Machine connected with start and target storages (config-
uration as in Figure 4). This structure is used to define and
simulate a sequence of tasks. For each of these tasks mate-
rial is taken/delivered from/to its dedicated storage. Each
task has its own parameter values for number of items,
setup time and cycle time.

The storages before and after the machine are empty,
and have to be filled/emptied by other active processes
(i.e. transport, or predecessor machine). For example, in
Figure 5, transport devices have been connected. The
passive connectors to the input and output storages have
the size n1, n2. The values of these integer param-
eters are zero by default, and grow with the number
of connected components (due to the Dialog annotation
connectorsizing=true). The machine needs the same
number of connections on both sides, an assert is thrown,
if n1<>n2. The sequence of connecting the components is
important. The first connected transports "belong" to the

Figure 4. The Machine component, connected with an input
storage and a target storage.

Figure 5. The Machine with local tasks. The example contains
three tasks on the machine, hence three input and output pro-
cesses (all transport) have been connected. The numbers on the
machine icon indicate that it currently runs task 2, in which 10
items have been processed.

first set of task parameters, and so on.
There are two additional features to highlight:

• The model of the machine with tasks contains an
array-parameter taskIDsC, with which one can de-
fine positive integer IDs for all tasks (C stands for
connected). In addition to that, there is a second pa-
rameter taskIDsO which is a reorder of the task IDs
(O = ordered). This parameter allows to change the
order of the tasks. Since the start or finalization of
tasks can depend on transport processes, a reorder-
ing could improve total process time.

• The machine has an additional connector, to which
an Operator must be connected. The machine runs
only if the operator is available. With this additional
condition shift durations or breaks can be modelled.

The machine variant with all this functionality is named
MachineWithTasks. Further variants are extensions of
this type and are explained below.

2.4.2 Machines with global tasks

If one wants to model tasks on different machines, which
can depend on each other, there is a dedicated type named
the MachineWithGlobalTasks, which is an extension
of the MachineWithTasks. A task on this machine
type will only start when all preconditioned tasks (on
the same or other machines) have finished. Therefore,
this machine type contains an outer GlobalTaskList
tasks, which parametrizes each task’s preconditions and
controls their fulfilment. To do so, the global task
list contains the number n and IDs of all tasks. It
also contains a matrix parameter to define each task’s

Session 3-D: Thermodynamic and energy systems applications 2

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

359



preconditions[n,p], to denote up to p preceding tasks
per task. Figure 6 shows the icons of the machine and the
tasks component.

2.4.3 Machines with prefilled storages

There is a variant of the machine with tasks, which ex-
ists for both the machine with local tasks and global
tasks. At simulation start, this variant has all start-
storages in the machine filled with the capacity as de-
fined in the parameter vector nMax. The maximum ca-
pacities of the target storages are set to the same val-
ues, respectively. This machine model no longer con-
tains any (passive) material connectors. This model can
be used, if only planning the processes on the machines
is of interest. To reflect the auto-filled storages in the
types, the type names have an "SC"-suffix (for self-
contained), i.e. they are named MachineWithTasksSC
and MachineWithGlobalTasksSC, respectively.

The icons of these four variants, which are all possible
combinations of the features "local or global tasks" and
"with connectors or prefilled storages", are displayed in
Figure 7. Section 3.2 shows a small example of this func-
tionality.

2.5 Energy Meter
An additional feature of this library is the calculation of
total power and energy consumption. Most of the com-
ponents in the factory hall consume or provide power.
This is reflected in the library, all transport devices and
the machine model contain variables and equations to
calculate their power consumption. We define a global
EnergyMeter, to easily sum them up to determine the to-
tal power and energy consumption, and use the Modelica
inner/outer connection to collect all power terms from
all components. This avoids the manual connection of all
consumers or producers of power with the EnergyMeter,
which would reduce clarity on the diagram view of the
model. To facilitate the collection of power terms, the li-
brary defines an EnergyContributor, which is the base
type of the contributing components. Between all energy
contributors and the outer meter, a connection with a flow
variable is created. Each energy contributor adds its power
P to this connection automatically, the value of the energy
meter’s connector is the negative sum of all these contribu-
tions (since flow connections establish a sum-to-zero cou-
pling), hence the total power consumption is determined

Figure 6. The Machine with global tasks, and the global task
list. The machine has the same functionality as the machine
with local tasks, but it needs an outer global task list, in which
task’s preconditions can be parametrized.

local tasks global tasks

with
connec-
tors

Machine
WithTasks

MachineWith
GlobalTasks

prefilled
storages

Machine
WithTasksSC

MachineWith
GlobalTasksSC

Figure 7. Variants of machines with tasks

by the negative value of the connector. Listing 1 shows
part of the energy contributor’s and energy meter’s defini-
tion. Figure 8 shows the icon of the energy meter.

Listing 1. Modelica code snippet outlining the energy meter and
contributor

connector FlowCtr
"Flow Connector for Meters"

flow Real i "Flow Variable";
end FlowCtr;

model EnergyMeter "Energy Meter"
Real P "Power";
Real E "Energy";

protected
FlowCtr pc "Power Collector";

equation
P = - pc.i;
der(E) = P;

end Energy;

partial model EnergyContributor
"Energy Contributor"

outer EnergyMeter energyMeter;
Real P "Power

- eqn. defined by derived type";
protected
FlowCtr power;

equation
power.i=P;
connect(power, energyMeter.pc);

end EnergyContributor;

Figure 8. The Energy Meter component, displaying the total
energy consumption like an electricity meter.

It shall be mentioned that the defined connector

A Library to Simulate Processes in the Factory Hall

360 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204357



FlowCtr is not conform with the requirement as stated in
the Modelica specification, section 9.3.1. (Modelica As-
sociation 2023): The connector is unbalanced, i.e. the
numbers of flow variables is not equal to the number of
variables that are neither parameter, constant, input, out-
put, or stream. According to (Olsson et al. 2008) this
prevents any model using this connector from being lo-
cally balanced. However, this request was derived for sys-
tems with multiple components of the same type. When
using the ProcessSimulation.EnergyMeter and (ex-
tended) EnergyContributors, any allowed configura-
tion contains exactly one energy meter and zero or more
energy contributors. Any such combination has a bal-
anced number of unknowns and equations. Furthermore,
the FlowCtrs pc in the meter and power in the contrib-
utor are declared as protected, which at least produces
a warning in some Modelica compilers. Here it is used to
prevent any component which is neither meter nor contrib-
utor from being connected to the power balance. Defining
the connectors as public but omitting annotations for the
Placement could have the same effect, at least in the dia-
gram view of the model.

2.6 Comparison to existing libraries
As mentioned, there are Modelica libraries which cover
applications that are also adressed by the Process Simu-
lation library (PSL): the DESLib (2023) (or DESLib 2.0
(2023)) and the Business Simulation Library (2023). In
this section, the differences are outlined. This is not meant
to be a comprehensive summary of the other libraries’
functionality, merely only supposed to help figuring out
for which application the Process Simulation library is ad-
vantageous or sufficient, or when to rely on existing li-
braries.

The Business Simulation Library (BSL) contains - be-
side many others - classes which are comparable to those
in the PSL - e.g., Oven (as a variant of a machine),
Conveyor or MaterialStock. Different to the PSL,
it uses real-valued material flow rates instead of integer
numbers of material items. This avoids events due to
handovers between components. Besides, the details of
class parametrization differ. To name a few differences:
the BSL Oven prepares batches of parametrizable size,
there are also parameters for the setup and process of the
batch, and a loading time. This is different from the PSL
Machine, with has a "batch-wise"(nMax) setup time, but
element-wise process times. The BSL Conveyor uses the
Modelica delay operator which creates a time lapse be-
tween the inflow and outflow of material. This delay is
triggered within a when sample(..) statement with a
model-wide sampling frequency which is by default 16/s,
i.e. it creates 16 time events per seconds, independent of
the flow rate. This differs from the PSL Conveyor which
creates (2 maxCapa/processTime) state events per sec-
ond.

The DEVSlib (sub-package of DESLib 2.0 (2023)) im-
plements the Parallel Discrete Event System Specification

(PDEVS) formalism (Zeigler, Prähofer, and Kim 2000),
which is powerful to describe (parallel) discrete event sys-
tems together with continuous state systems. To create
such a system, an Atomic DEVS is defined. The pack-
age provides an atomicDraft model, which implements
this Atomic DEVS, and a guide how to create own models
from a duplicate of this, to model a DEVS system. Due
to the underlying formalism the application range is big,
among the provided examples are controllers coupled to
physical systems, game of life, and a supermarket model.

In the process oriented DEVS formalism, "systems
are described from the point of view of the entities that
flow through them using the available resources" (Sanz,
Urquia, and Dormido 2009). For assembly line models
this means that it is possible to track and identify each
manufactured item during its flow through the line. This
differs from the approach in the Process Simulation li-
brary, where the manufactured items are counted as in-
teger numbers. There are applications where this is suf-
ficient, e.g. to determine the energy consumption in an
assembly line.

Furthermore, DESlib provides mechanisms to intro-
duce stochasticity into the models (by the package Ran-
domLib). As stated in (Sanz, Urquia, and Dormido 2009),
process-oriented models are usually stochastic, which is
why the generation of random numbers is necessary. Mod-
els created with the Process Simulation library are fully
deterministic, material in assembly lines or tasks on ma-
chines run as planned. In the existing library components,
random effects could modify the conveyor belt’s veloc-
ity, machine/task process times, or others, which cause de-
lays or accelerations in different manufacturing steps, and
would result in variations of total process times. Since
no systematic analysis of the random effects on the sys-
tem’s behaviour can be provided, and the result of single
simulations with random effects are hard to interpret, such
effects were not implemented in the current version. How-
ever, the result of the "deterministic" simulation provides
all information to determine mean process times or energy
consumption.

The currently available DESLib 2.0 (2023) library ver-
sion does not provide an example for an assembly line,
i.e. no class models such as machines, stocks, conveyors.
Hence a comparison of functionality or performance is not
immediately possible.

3 Examples/Use Cases
In this section, two examples which outline the different
facets of the Process Simulation library are presented.

3.1 Example 1: Energy analysis of the manu-
facturing of a three-wheeler

Figure 9 shows a screenshot of the (simplified) production
line of a three-wheeler. As several of the components are
EnergyContributors, the component inner Energy
energy is needed in the model. The contributions to the

Session 3-D: Thermodynamic and energy systems applications 2

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

361



Figure 9. Simplified production line of a three-wheeler to illustrate the usage of the energy consumption. It contains pre-processing
of wheels, handles and chassis, followed by two mounting machines. The transports to and from the machines are by either
conveyors or plain transport (e.g. carrying). All components with a yellow box in the top right corner contribute to the overall
power and energy consumption.

0 10 20 30 40
0

5

10

15

20

time [min]

p
ow

er
[k
W

]

0

2

4

6

8

en
er
gy

[k
W

h
]

machineChassis.P
machineWheels.P
transpC.P
energyMeter.power
energyMeter.energy

Figure 10. Power consumption of the different components of
the three-wheeler production line. Shown are only the consump-
tions of one machine, one transport and the conveyor. Besides
that the plot contains the total power and total energy consump-
tion.

power (and energy) consumptions are parametrized within
the different components. Figure 10 shows the power con-
sumption of selected components and the entire manufac-
turing line. One can see that the power consumption has
peaks of 17.8 kW, the main contribution stemming from
the machineChassis. The manufacturing of 14 three-
wheelers consumes an energy of 8.13 kWh in total.

One possibility to examine the power consumption in
more detail is to extend the elementary components with
more comprehensive models of the underlying processes.
In the example considered here, the main energy con-
tributor of Figure 9 is machineChassis. To enhance
the calculation of the power consumption for this compo-
nent, a Functional Mockup Unit (FMU) which models a
detailed manufacturing process with non-constant power

21 22 23 24 25 26

0

5

10

15

20

time [min]

p
ow

er
[k
W

]
machineChassis.P averaged
machineChassis.P detailed
energyMeter.power averaged
energyMeter.power detailed

Figure 11. Power consumption of the three-wheeler man-
ufacturing line with a detailed power modelling in the
machineChassis component in comparison to the averaged
original version. The figure shows two cycles of the machine
only.

consumption, was imported to an extended copy of the
Machine class. The original machineChassis compo-
nent is replaced by a component of the new class.

Figure 11 shows the variation of power consumption of
the modified machine in contrast to the previously con-
stant value. This affects the peak power consumption, it
reduces to 17.1 kW, but has no influence on the total en-
ergy consumption of the production line.

3.2 Example 2: Planning of tasks on machines
and shared transport devices

This second example is created sequentially to illustrate
the different machine variants, used together with other
library types.

A Library to Simulate Processes in the Factory Hall

362 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204357



a) We start with the simple scenario of a single machine,
on which three tasks have to be run in sequence. We do not
care for the transport to and from the machine, we simply
assume the material is there. We want to know how long
it takes to run these tasks. The component to model this
is the MachineWithTasksSC. Table 1 shows the details
of the tasks. Figure 12 shows the diagram view of this

Task
ID

nr. of
items

cycle
time*

setup
time*

ma-
chine

precon-
ditions

1 5 45 20 1 -
2 3 15 20 1 -
3 10 12 20 1 1

4 50 2 10 2 2
5 35 3 10 2 -

(*in minutes)

Table 1. Details of the tasks in Example 2.

0 2 4 6 8
0

2

4

6

8

time [h]

n
r.

of
it
em

s

Figure 12. Example 2a: One machine with a sequence of three
tasks, and a result window showing the processed items per task.

example, and a result plot with the number of processed
items. It should be mentioned that as soon as the last cycle
of a task is completed the machine switches to the next
task, hence the variable displaying the processed items per
task peaks at (nMax-1) items in each task (in the example
4, 2, 9). From the graph one can read that the three tasks
are finished after 7.5 hours.

b) Now assume there are more tasks on a second ma-
chine, and there are some preconditions. Task 3 can only
be run after task 1, task 4 only after task 2. Again, refer to
Table 1 for the task details. To model this, we have to use
the type MachineWithGlobalTasksSC, and the inner
GlobalTaskList tasks, the latter parametrizes and
controls the preconditions to the tasks. Figure 13 shows
the model.

In this example the orders of the tasks on the machines
influence the total process time. With this configuration
one could test various task orders to figure out which one
is the fastest. Technically this is done by modifying the
value of the parameter taskIDsO on each machine to de-
fine the order of the tasks. With this small number of tasks
and precondition one can find optimal solutions by choos-
ing sensitive orderings. It makes sense to run task 5 on

Figure 13. Example 2b: Two machines with five tasks in total.

machine 2 first, since task 4 has to wait for the finalization
of task 2. Furthermore, task 3 should be executed as last
one on machine 1, since tasks 1 and 2 are preconditions
to other tasks. With a small number of simulations, one
finds that the following task orders result in the same and
fastest total simulation time, which is 7.5 hours.

Machine 1 Machine 2 Total time

Variant 1 {1, 2, 3} {5, 4} 7 h 30 min
Variant 2 {2, 1, 3} {5, 4} 7 h 30 min

c) As a third step we want to consider not only
the processes on the machines, but also transport pro-
cesses to and from them. Figure 14 shows the
model. The machine types have been changed to
MachineWithGlobalTasks, and have passive material
connectors. The transports to the machines are all pro-
vided by an AGV, five transport tasks have been created.
The IDs of the transport tasks (displayed in the top left
corner of the transportTask components) are equal to
the machine tasks which follow - this is merely an (in-
tended) coincidence. Transport task 1 takes 11 minutes per
component, whereas the others are all faster (3.5 minutes).
It should be determined which transport task sequence
and machine task sequence leads to the fastest finalization
of all machine tasks. To answer this question, we anal-
yse reasonable transport task orders together with the two
fastest machine task variants. The following considera-
tions help excluding some of the 120 variants: Firstly, the
preconditions of machine tasks should be the same for the
transport tasks (this transfer of numbers works here since
we chose the same numbering, and only have transport
tasks to machines). Secondly, the order of machine tasks
should be kept in the order of transport tasks (i.e., trans-
port task 1 before 2 before 3, and 5 before 4, if to test with
machine tasks variant 1). Taking these restrictions into ac-
count there are 7 transport task orders to test for variant 1,
and 9 for variant two.

From simulation results one can read that the transport
task order {1,5,2,3,4} together with machine task variant
2 leads to the same total time to finalize all machine tasks,
which is 7.5 hours. See Figure 15. The first task (task 1)
on machine 1 is not delayed by transport task 1, since the
transport of the first item has finished before the machine
setup. Machine task 5 is delayed but is not precondition

Session 3-D: Thermodynamic and energy systems applications 2

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

363



Figure 14. Example 2c: Two machines with five tasks, and
transport processes to and from the machine. The transport to
the machine is provided by an AGV.

0 2 4 6 8
0

20

40

time [h]

n
r.

of
it
em

s

machine1.items w/o AGV
machine1.items w AGV

machine2.items w/o AGV
machine2.items w AGV

Figure 15. Example 2 b/c: Processed items on machines 1 and 2
in the variants of the model without transport and with transport
(AGV) included.

to any other task. By the time machine task 5 has finished
on machine 2, the necessary machine task 2 on machine 1
has finished such that machine task 4 can start right away.
In total, the AGV transport does not affect the machine
task finalization for this combination, and all tasks can be
finished within an eight hour shift.

With this example the different variants of the machines
were illustrated, in combination with the usage of the
shared resource as a transport device. A combination with
other transport means, like in subsection 3.1 is also pos-
sible. Of course, for more complex scenarios finding the
optimal sequence of machine and/or transport tasks be-
comes challenging. In such cases, a dedicated optimizer
should be used, it is beyond the scope of this library.
The simulations are very fast, and a reordering is only a
reparametrization of the model. Model creation, modifi-

cation, simulation, and request of results is all possible via
a scriptable interface, which eases the connection to other
tools like optimizers.

One realization of such a task plan simulation in the
configuration as described in example 2b was developed
in the DIMOFAC project1, where the challenge was to op-
timize tasks on several machines. The information about
tasks and machines is provided in asset administration
shells (AASs). A dedicated optimization tool for task
planning (Kousi et al. 2019; Evangelou et al. 2021) reads
this information, determines candidates of task orders and
generates simulation requests for all of them. Based on
these requests, a Modelica model is created (in Simula-
tionX (2023)), which reads the task and machine specific
information from their AASs. After the simulation, met-
rics like net machine utilization or process time are re-
turned to the optimization tool, which evaluates this infor-
mation to create new simulation requests and finally iden-
tify the optimal task schedule.

4 Summary and Outlook
In this publication the ProcessSimulation library was pre-
sented. It can be used as a low-level entry point to model
material flow through a production line, to evaluate the
performance of a manufacturing system in terms of en-
ergy and machine or transport task order. The library can
be extended if needed, e.g. by multiple-merge storages,
or machines with multiple material outputs. Besides, the
consideration of random effects on the process times re-
mains an open issue. Regarding the machine types the li-
brary can flexibly be extended such that the calculation of
the energy consumption becomes more fine-grained. One
could use this to identify/reduce maximum demand loads
to the power station which provides the energy in a man-
ufacturing line, which helps to save costs. The concept
of an energy meter which monitors the consumption (or
production) of energy can be transferred to other electric-
ity net types (230V, 400V, high voltage), heat, water, or
compressed air consumption.

In 3.2, a scenario to optimize production plans was il-
lustrated. A separate optimization tool was used to deter-
mine the optimal schedule of tasks. For a closer integra-
tion to the simulation environment (SimulationX), it re-
mains future work to develop python scripts (e.g., using
dedicated libraries, such as Python MIP (Mixed-Integer
Linear Programming) Tools (2023)) for the optimization
of tasks on machines and transport devices. The neces-
sary python interface exists in SimulationX.

The modelling of the material transport between com-
ponents was realized by connectors which trigger the han-
dover immediately when material and capacity is avail-
able, and all components work with pre-planned velocity.
A remaining task is to extend this concept with signal in-
terfaces to externally control the processes - handover, sta-
tus of machines, transport/manufacturing velocities. This

1https://dimofac.eu/ (accessed on June 1, 2023)

A Library to Simulate Processes in the Factory Hall

364 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204357



could be used for virtual commissioning of a manufactur-
ing line, to evaluate the reliability and robustness of con-
trol signals for the line on a simulation model of it.

Acknowledgements
This research has been supported by the European Union’s
Horizon 2020 research and innovation programme under
the grant agreement No 870092, the project DIMOFAC
(Digital and Intelligent MOdular FACtories).

References
Arena Simulation Software (2023). URL: https : / / www .

rockwellautomation . com / en - us / products / software / arena -
simulation.html (visited on 2023-05-23).

Business Simulation Library (2023). URL: https://github.com/
modelica-3rdparty/BusinessSimulation (visited on 2023-05-
23).

DESLib (2023). URL: http://www.euclides.dia.uned.es/DESLib/
(visited on 2023-08-15).

DESLib 2.0 (2023). URL: http : / / www. euclides . dia . uned . es /
vsanz/files/DESLib-2.0web.zip (visited on 2023-08-15).

Evangelou, George et al. (2021). “An approach for task and ac-
tion planning in Human–Robot Collaborative cells using AI”.
In: Procedia CIRP 97. 8th CIRP Conference of Assembly
Technology and Systems, pp. 476–481. DOI: https://doi.org/
10.1016/j.procir.2020.08.006.

FlexSim (2023). URL: https://www.flexsim.com/manufacturing-
simulation/ (visited on 2023-05-23).

Kousi, Niki et al. (2019). “AI based combined scheduling and
motion planning in flexible robotic assembly lines”. In: Pro-
cedia CIRP 86. 7th CIRP Global Web Conference – Towards
shifted production value stream patterns through inference of
data, models, and technology (CIRPe 2019), pp. 74–79. DOI:
https://doi.org/10.1016/j.procir.2020.01.041.

Modelica Association (2023). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Speci-
fication Version 3.6. Tech. rep. Linköping: Modelica Associ-
ation. URL: http://www.modelica.org.

Olsson, Hans et al. (2008). “Balanced Models in Modelica
3.0 for Increased Model Quality”. In: Proceeedings of the
6th International Modelica Conference. Linköping Univer-
sity Electronic Press. LiU Electronic Press, pp. 21–33. URL:
https://elib.dlr.de/55892/.

Python MIP (Mixed-Integer Linear Programming) Tools (2023).
URL: https://pypi.org/project/mip/ (visited on 2023-06-05).

Sanz, Victorino, Alfonso Urquia, François E. Cellier, et al.
(2012). “Modeling of hybrid control systems using the DE-
VSLib Modelica library”. In: Control Engineering Practice
20, pp. 24–34.

Sanz, Victorino, Alfonso Urquia, and S. Dormido (2009-10).
“Parallel DEVS and Process-Oriented Modeling in Model-
ica”. In: Proceedings of the 7th International Modelica Con-
ference. Linköping University Electronic Press. LiU Elec-
tronic Press. DOI: 10.3384/ecp09430104.

SimulationX (2023). URL: www.SimulationX.com (visited on
2023-06-07).

Tecnomatix (2023). URL: https : / / plm . sw. siemens . com / en -
US/tecnomatix/products/plant-simulation-software/ (visited
on 2023-05-23).

Zeigler, Bernard, Herbert Prähofer, and Tag Gon Kim (2000-01).
Theory of Modeling and Simulation 2nd Edition. San Diego,
CA: Academic Press.

Session 3-D: Thermodynamic and energy systems applications 2

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

365


