
Modelica 3.6 - Changes,

Benefits and Implementation

Hans Olsson1

1 Dassault Systèmes, Sweden, hans.olsson@3ds.com

Abstract

The latest release of the Modelica Language Specification

version 3.6 brings several benefits to users, and this paper

will discuss the changes and the benefits for the clearer

parameter defaults, clearer start-value priority, selective

model extension, and multi-lingual support. The benefits

only occur when the features are implemented in

Modelica tools, and to facilitate that, the paper will discuss

the design choices when implementing the new standard

in Dymola 2023x Refresh 1 and 3DEXPERIENCE 2023x

FD03.

Keywords: Modelica, model variation, initialization

1 Introduction

The Modelica Language, (Olsson (editor), 2023) and

(MAP-Lang 2023), is developed by the Modelica

Association Project MAP-Lang on GitHub, using LaTeX

and HTML (Miller 2023).

Modelica 3.6 adds a number of new features,

corrections, and improvements. New major features are

organized as Modelica Change Proposals (MCPs),

specifically for this release:

 Undefined modification (MCP-0009).

 Selective Model Extension (MCP-0032).

 Multilingual support of Modelica (MCP-0035).

Their rationales can be found in the directory

RationaleMCP in (MAP-Lang 2023). In the specification

they can be found in sections 7.2.7, 7.4, and 13.6.

An MCP must be test-implemented in at least one tool

before being added to the specification, and the design

documents include that experience.

However, fully implementing, documenting, and

testing an MCP may reveal new issues (especially when

done in other tools than the tools used for the test

implementations) and may also find interesting use-cases;

and thus the experience in this paper will add additional

insights beyond the MCP-design.

This paper will focus on the new major features

(MCPs), and some of the minor features and corrections;

especially concerning parameters (that go together with

the MCP-0009 Undefined modification), start-value

priority, and connection restrictions.

Modelica 3.6 was completed on February 28th, the

document branch built March 9th, and accepted by

Modelica Association March 23rd, 2023.

2 Clear setting of parameters

2.1 Background

MCP-0009 (Undefined modification) goes together with

some minor improvements (and corrections) related to

parameter values and defaults. The MCP was proposed by

ESI (previously ITI) whereas the corrections and minor

improvements roughly correspond to what was already

implemented in Dymola.

Prior to Modelica 3.6 the specification had the

following issues:

 Once you had set a parameter value you could only

change it, but not remove the setting completely.

Removing setting is useful when:

o A model parameter has a badly chosen

default value and there is no obvious

generic correct value (e.g., capacitance).

o A model parameter has a value, but it is

desired to implicitly compute the

parameter from an initial equation instead.

(Note: in this case it is also necessary to set

fixed=false.)

 If you declared a parameter without modifying any

of its attributes (i.e., no start-value) it was unclear

what tools should do; whereas if you did set the

start-value it was clear that it could be used with a

warning.

 And if you declared a parameter (or variable) and

only set the min-attribute to e.g., 2 it was even less

clear what tools should do.

The reason for the latter two problems were that the

default value for the start-attribute of a Real/Integer was

0, and it was not clear whether that should be used as

default.

A model with all of these issues is given below:

model M

 parameter Integer k=1;

 parameter Integer l(start=1)

 parameter Integer m;

 parameter Integer n(min=2);

 Real x[:]=fill(0.0, n-1);

end M;

model M2

 extends M;

…

end M2;

DOI
10.3384/ecp204367

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

367

Prior to Modelica 3.6 we could not remove the default

for k when constructing M2 and it was unclear if m should

use a default start-value of 0 or not, and clearly using a

default start-value of 0 for n would be problematic: by

violating the min-restriction and generating a negative

sized array.

2.2 Changes

MCP-0009 (Undefined modification) solves the first

issue by allowing the modifier =break to remove the

parameter setting. The other issues were solved by clearly

specifying a priority for default values and erasing the

default values for the start-attributes in the specification

and instead introducing the fallback value.

The fallback value is the value closest to “zero” that is

consistent with any potential min and max-attribute (for a

Boolean it is false and for a String it is ""); adding this

restriction ensures internal consistency so that if a variable

has a min-attribute of 2 we do not attempt to use a value

of 0 (which solves the last issue).

Thus Modelica 3.6 allows us to give a clear precedence

for different values for a parameter (unless they have

fixed=false) as follows:

1. Value (unless Undefined).

2. Value of the start-attribute (unless Undefined).

3. Fallback value during check.

The default for both the Value and the Value of the

start-attribute is now Undefined (which means that the

next item in the precedence list is used), and MCP-0009

enables a user to restore them to Undefined by a

modification of the form =break. A diagnostic is required

when the Value is Undefined in a simulation model.

Note that break is just for modifiers, and it is not

possible to use it to handle other variants of Undefined.

Thus it does not correspond to Not-A-Number in IEEE

floating point arithmetic, the Maybe-monad in functional

languages, or std::optional in C++ (ISO/IEC 2020).

For a non-parameter that is used in an initial non-linear

system of equations the starting point for the first iteration

is:

1. Value of the start-attribute.

2. Fallback value.

2.3 Implementation aspects

Undefined modification can be fairly trivially

implemented in the translator by treating break as a

normal modification with the special rule that if the

resulting modification after merging is break the setting

of the value is just skipped.

Supporting it in the Graphical User Interface was not

complicated, but required care to keep existing options as

before and clearly specify the new option. If there is a

modifier for a parameter p like p=2 the parameter dialog

shall support both removing the modifier giving no

modification at this level or setting p=break. Both could

be described in similar ways, which would not be helpful.

The solution was to call the first “Remove modifier” (as

earlier) and the second “Set to No Value”; where “No

Value” was preferred over the specification word

“Undefined” and the syntactic “break”. Obviously the user

can also write these as modifiers in the parameter dialog.

For backwards compatibility there is an issue, not with

Modelica 3.5 but going back to Modelica 2.0 where a

component could be named break and thus p=break

could mean that p is modified to have the value of the

parameter break. That was solved when supporting

Modelica 2.1 by handling existing components named

break with a warning (that was possible in Modelica 2.1

to 3.5 since break was then only used to break inside

loops), and prevent the creation of new components

named break. That compatibility feature was removed

after about 11 years (consistent with the mission plan of

MAP-Lang where models should run for at least 10 years),

and before Modelica 3.6 was released.

Using the fallback value when checking a model is

consistent with the intended use – zero, or close to zero,

and consistent with min- and max-attributes. In practice it

is almost always the min-attribute that introduces the

restriction, since if a variable cannot have both signs the

preference is to have only non-negative values (e.g.,

temperatures, array sizes) and even if further restricted the

min-attribute is the allowed value closest to zero.

3 Clearer precedence for start-values

3.1 Background

Modelica is equation based and in order to efficiently

handle the resulting systems of equations tools have to

make a number of choices for start-values in systems of

equations and during initialization – this indirectly also

influences which variables are torn out. For a general

introduction to tearing see (Elmqvist & Otter 1994).

Consider Modelica.Fluid.Examples.HeatingSystem:

Figure 1 HeatingSystem

tank

level =

1 m

pump

valve

sensor_m_flow

m_flow

T_ambient

T=20 °C

K

burner

Q_flow=1.6e3 W

system

g

defaults

heater heater

1

radiator radiator

1

T

sensor_T_forward

T

sensor_T_return

handle

startTime=2000 s

m_flow T_forward

T_return

tankLevel

Modelica 3.6 - Changes, Benefits and Implementation

368 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204367

There are 4 pressure states and 5 temperature states in

this model, and for each of them there are between 7 and

13 different variables that are equal to the state, but have

their own start-value. Setting all of them to the same value

is tedious and error-prone, but partially done in this model:

Pipes.DynamicPipe radiator(
 …
 p_a_start=110000,
 state_a(p(start=110000)),
 state_b(p(start=110000)))

These choices matter as different choices can lead to

different results or even no results, when reusing a

Modelica model in a different tool, different version of the

same tool, or even as a sub-model in a different model.

Using the average of the values does not work (e.g., for

this model the default temperature in the components was

15°C and the goal was to change the hot part to 80°C – not

to have an average of them), and having an explicit

priority system was deemed too complicated so instead the

idea is to prioritize the existing start-values in some logical

way.

The goal with that priority is both to make the choice

more predictable (so that the same model gives the same

choice) and controllable for users (to get the start-values

they want).

3.2 Start-value priority

Modelica 3.3 introduced a priority between start-values

with the clear goal that values set “later” (closer to the root

of the instance hierarchy) should have precedence. This

was based on existing heuristics in Dymola (Dassault

Systemes 2023 section 5.8.3; Casella 2011). The rationale

with preferring a “later” value is that if there is a problem

the user should introduce a new start-value when using the

component and that will naturally be seen as “later”.

However, it was found wanting in some cases – in

particular start-values are often bound to parameters that

are then propagated, e.g., in the model above the start-

value for the temperature of the heater is the parameter

T_start. The priority for such cases was based on where

the parameter was introduced (and propagated to the start-

value) – ignoring whether the parameter was modified

later on. In practice that often meant that multiple values

had the same priority.

Modelica 3.6 extended the priority to consider where

the parameter is set (in this case T_start) to break ties in

such cases. By only using it as a tie-breaker it adds more

detailed priorities without modifying the priority of

existing unambiguous cases, reducing the risk of breaking

backwards compatibility.

3.3 Implementation aspects

Implementing a more detailed priority for guess-values

was fairly straightforward (there were some existing

special cases that had to be removed as well). And even if

designed with backwards compatibility in mind it is also

possible to disable the new feature in Dymola. (Having a

standardized way of disabling the new feature was not

considered. It would add unnecessary complexity as it is

always possible to resolve issues in specific models by

adding new start-values with higher priority.)

However, even if the priority is predictable and

controllable for users an additional requirement is that the

choice is explainable. Thus the logging of start value

priority was improved to provide those priorities and all

considered start-values. In this model enabling logging

gives:

The iteration variable heater.mediums[1].T has been

selected to have the guess value 353.15.

 353.15, the start value of heater.mediums[1].T

given as heater.T_start. At level 1. Original start-

value at level 2.

 288.15, the start value of

heater.flowModel.states[2].T given as 288.15.

 …

The place where T_start was modified gives the level,

whereas the original start-value level is where

heater.mediums[1].T.start was modified. Levels are

counted up from the current model and thus a lower level

has precedence.

4 Selective Model Extension

MCP-0032 introduces selective model extension as a way

of selectively deciding what to inherit from another

model, and uses the same keyword break as MCP-0009

with similar considerations.

4.1 Goal of Selective Model Extension

The goal of selective model extension was originally to

enable unforeseen structural variation by giving the

possibility to exclude components and connections when

inheriting, and doing it in a traceable and well-defined

way, (Bürger 2019).

It has also been found useful when the structural

variations could be foreseen, but supporting all possible

foreseen structural variations would create a too

complicated model.

Automatically generated models e.g., for Mechanical

systems (Elmqvist et al 2009) and Fluid, is thus an

additional use-case where a model can be reproducibly

generated (so that the physical models always have the

correct parameters), and then some connections

selectively deselected and control components added. As

an example if the previously shown HeatingSystem had

been automatically generated from a physical model all of

the sensors and actuator had likely been missing. Adding

the flow-sensor would be a typical case where it is

necessary to deselect a connection to insert a new

component (and two new connections).

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204367

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

369

4.2 Implementation aspects

4.2.1 Deselecting connections

The original test-implementation of MCP-0032 handled

deselections in the translator and when showing classes in

the Graphical User Interface, but the deselections were

written textually (despite the idea naturally being

described in terms of changes of the diagram).

What was missing was the User Experience of actually

deselecting graphically. This was done by adding

“Deselect” option to the context menu of inherited

elements (currently with a warning), similarly as the

“Delete” option.

That revealed an unforeseen case – a user might first

deselect a connection and then later deselect one of its

endpoint components (or attempt to deselect both the

connection and the component at the same time). That is

an error according to the specification (since it does not

make sense to write that textually), and can be avoided by

adding an extra step removing redundant deselections of

connections after any change of the deselections.

4.2.2 Automatic connector sizing

Applying deselections to Fluid models revealed that it

interacted with connector sizing in unforeseen ways.

Fluid models have arrays of connectors with automatic

sizing (introduced in Modelica 3.1) which ensures that

different connections to the array are treated as multiple

independent connectors, and the array is adapted in size.

Treating them as independent connectors allows correct

mixing for stream-connectors (Franke et al 2009); and is

normally not necessary in other domains.

Note it is possible to use automatic sizing for other

domains – one well-known use is multi-input logical

And/Or-blocks; another use is to add parameter-attributes

to each array element for a physical array of connectors;

similar considerations apply in those cases.

Before Modelica 3.6 automatic sizing always created a

dense array of connectors, and if you removed the

connection to an element in the middle of the array the

array was shrunk and elements re-numbered. Note that the

component with automatic sizing connector can be

inherited and local connections added – but the inherited

connections always precede them.

However, when deselecting it is possible to remove an

inherited connection to an element in the middle of an

array of connections – and it is not straightforward to re-

number the remaining inherited connections. More

importantly it is usually not desirable to re-number them,

as the intended use of Selective Model Extension is

usually to re-introduce another connection to the same

connector element (after adding/removing some

component in the path of the fluid).

As an example look at the reusable HeatingSystem

model, and consider deselecting the connection between

radiator and tank to add an additional radiator.

The new model uses deselections:

model HeatingSystem2
 extends HeatingSystem(break

 connect(radiator.port_b,
 tank.ports[1]));
 Modelica.Fluid.Pipes.DynamicPipe
 radiator1(…);
 …
equation
connect(radiator1.port_b, tank.ports[1]);

…
end HeatingSystem2;

In the diagram we can see an additional radiator (with

sensor and wall-components), and that the new connection

to the tank replaces the existing one.

Figure 2 HeatingSystem with extra radiator.

Instead of renumbering the connections this is

accomplished by modifying the User Experience of

graphically connecting to a connector with automatic

sizing to check if there are any holes due to deselected

connections (or components) and suggest connecting to

the missing element(s) instead of automatically adding it

to the end and resizing the connector.

4.2.3 Possible extensions

The current selective model extension works for graphical

objects: connections and components.

Deselecting non-connect equations is not possible as

equations are not named (a potential extension) and

deselecting a component used in such equations does not

work either. This is not entirely trivial as one problem with

even deselecting connect-equations is that the deselection

are by design sensitive to the exact syntax used in the

equations; and for non-connect equations this problem

gets worse. However, when models are structured with

large textual equations it may be useful. Automatically de-

selecting equations would also be useful for removing e.g.,

tank

level =

1

pump

valve

sensor_m_flow

m_flow

T_ambient

T=sy stem.T_ambient

K

burner

Q_flow=1.6e3 W

system

g

defaults

heater heater

1

radiator radiator

1

T

sensor_T_forward

T

sensor_T_return

handle

startTime=2000 s

wall1

G=1.6e3/20

T

sensor_T_return1

m_flow T_forward

T_return

tankLevel

Modelica 3.6 - Changes, Benefits and Implementation

370 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204367

initial equations for de-selected components – but it may

be possible to find another solution for that.

Additionally even for graphical objects there are some

possible extensions. When filtering a signal it is currently

necessary to de-select the connection, add the filter, and

then reconnect it on both sides. Similarly when using

selective model extension to replace a non-replace

component it is necessary to first deselect the component

and then add a new component and connect it. Simplifying

that would be possible (a tool might possibly add this

without modifying the language). On the other hand

making such operations too easy might risk errors – and

could lead to under-use of replaceable component, and

relying on replacing them in this way.

4.2.4 Implementation variants

The flattening in Modelica is a hierarchical tree traversal

where modifications are propagated downwards, and the

resulting tree is then transformed into a hybrid DAE that

is simulated.

The deselection is in the MCP seen as deselecting (or

pruning) sub-trees after they have been built. That ensures

that the deselection actually deselects something and that

the pre-deselection elements are correct; and can also be

implemented in a straightforward way in the translator.

Propagating deselections downwards similarly as

modifications and preventing them from being built does

not easily allow similar checks, but was implemented for

the Graphical User Interface.

The benefit is that it allows the components to

efficiently directly draw their graphics, instead of

generating an intermediate graphical representation that is

later pruned, and it also allows treating deselected

components uniformly with normal components. A

uniform treatment of all components in the component

browser allows a toggle for deselecting components – to

both show the current status and revert deselections.

Something similar may be implemented for connections

in the future.

5 Connection Restrictions

Causal connectors (with input and/or output) have

restrictions to ensure that any input must be given a value

- they normally imply that if there is an input component

in the connector it must be connected exactly once from

the outside (Olsson et al 2008); before Modelica 3.0 this

rule only applied to entire connectors declared as input.

Modelica 3.3 added the restriction that conditional

physical connectors (i.e., connectors with at least one flow

variable) must be connected if enabled. The idea was that

if you set a Boolean parameter to enable that connector it

would not make sense to leave it unconnected, and the

default semantics for unconnected connectors (zero flow)

do not always make sense.

The intended case was the optional support connectors

in the rotational library where many components have an

optional support connector. The default (top part of

diagram) is that it is disabled and instead there is an

implicit connection to ground (giving zero position

instead of zero flow) – but if enabled (bottom part) there

is a new connector for the support of the component. The

connector is marked with a red circle and the connections

are red and dashed.

Figure 3 Driveline with implicit grounding (top) and with explicit
grounding (bottom).

If the dashed connection to the ideal-gear is missing the

model would simulate, but generate incorrect results (if

the torque-generator connection to ground is missing the

model is singular). The intent of the restriction was to

catch such cases early and generate good diagnostics.

However, when checking the Modelica Standard

Library according to those semantics it was revealed that

the situation was more complicated – in particular several

Electrical Machine models had one Boolean parameter

controlling multiple components including a connector,

and in those cases leaving the connector unconnected was

used and normal.

Figure 4 Machine model with unconnected conditional connector.

The red circle marks the single phase (“star”) connector

of the terminalBox, it is only available in the Delta-

configuration, but as shown here it is not always

connected. On the other hand it was known that several

models with unconditional connectors had assertions to

ensure that they were connected (from the outside). Note,

there are also some causal connectors with redundant

fixed

tau

torque inertia1

J=Jmotor

idealGear

ratio=ratio

inertia2

J=2 kg m²

spring

c=1.e4 N m/rad

inertia3

J=Jload

sine

f=f

fixed1

tau

torque1 inertia4

J=Jmotor

idealGear1

ratio=ratio

inertia5

J=2 kg m²

spring1

c=1.e4 N m/rad

inertia6

J=Jload

sine1

f=f

aimc

ramp

duration=tRamp

vfController

ground

loadInertia

J=JLoad

loadTorqueStep

time

Y

aimcData

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204367

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

371

assertions to check that the connectors are connected,

those assertions can just be removed – and predate the

improvements in Modelica 3.0.

Thus MAP-Lang in Modelica 3.6 decided to replace the

connection restriction based on whether the connection

was conditional or not by an annotation indicating whether

it must be connected, mustBeConnected, (and

additionally one saying that it may only be connected

once, mayOnlyConnectOnce). Both of them are given as

a string indicating the reason – and for a conditional

connector the restrictions are only active when it is

conditionally active.

In this case the optional support flange could have:

Support support(

 phi=phi_support,

 tau=-flange.tau) if useSupport
 "Support/housing of component"
annotation (

 mustBeConnected="If the optional support

flange is enabled it must be connected",
Placement(transformation(extent=

 {{-10,-110},{10,-90}})));

This ensures that the previous correct examples work,

and if the connect was missing a specific error message is

given, e.g. in Dymola

The connector torque1.support was not connected from

the outside, and it must be connected since:

"If the optional support flange is enabled it must be

connected"

The mayOnlyConnectOnce can be used in

combination with automatic sizing to ensure that there is

only one connection to each array element.

5.1 Implementation details

The connection restriction in Modelica 3.3 was not

originally implemented in Dymola, and shows that even

seemingly obvious improvements should be fully test-

implemented before being added to the specification.

Note that one could think of multiple possible

interpretations of “connected”: an active connect-

statement involving that connector (used for

mustBeConnected), or that its elements are part of a

connection-set with additional elements (used for

mayOnlyConnectOnce with specific restrictions for

streams-connectors). The latter ensures that redundant

connections are ignored, and the special rules for streams-

connectors imply that sensor components are ignored, and

thus one can, e.g., add a temperature-sensor without

violating the restriction.

6 Multilingual support of Modelica

The documentation of the Modelica Standard Library is

only written in English, whereas many tools support

translation of their User Experience to different natural

languages – in order to ease the use for non-English users.

Modelica 3.6 allows Modelica libraries (including the

Modelica Standard Library) to provide translations

without modifying the actual Modelica source code of the

library; this was proposed and (test-)implemented by ESI.

However, actually providing a localized User Experience

requires both that the tool support using the translation and

that the translation exists for the specific library – thus

getting the benefit of this addition may take longer.

Figure 5 Dymola parameter dialog for Sine-block. Multilingual
support means translating the texts in blue ovals. Texts in red ovals
are already translated as part of tool settings (currently only for
Japanese).

6.1 Implementation feedback

The multilingual support in Dymola 2023x Refresh 1 is

only partial, but it revealed two important issues to

consider.

The first is that a library maintainer for e.g., the

Modelica Standard Library should update the English

texts even if they normally work in another natural

language. The simplest way to handle that is make it easy

to disable the translations to keep the possibility of directly

modifying the description and documentation in the

library.

The second is that the descriptions often directly and

indirectly reference the name of components, which

makes translation more complicated. Note that the names

of parameters and classes are deliberately not translated

(and the Modelica language itself also uses English

keywords).

Consider a parameter named “startTime”, with a

description “Output y = offset for time < startTime”. This

indicates two problems – first “offset” and “y” are other

component names and should likely not be translated, and

second that the description does not say that it is a “start

time” (or “Time Sine Wave Starts”) since it is implied by

its name. It is obviously possible to handle during the

translation – but it means that it is not just a matter of

merely directly translating the existing descriptions.

Modelica 3.6 - Changes, Benefits and Implementation

372 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204367

Additionally the existing documentation often also uses

images for showing how the model works, including the

names of parameters. Thus the user should at least be able

to recognize the English parameter names.

The partial support in Dymola is intended to give

library authors the possibility to start providing the

translation, and thus it is possible to generate the entire

translation template – and use the translation of a few key

impacting items like class and component descriptions.

7 Conclusions

This paper demonstrates that Modelica 3.6 has new

powerful improvements. Dymola 2023x Refresh 1 and

3DEXPERIENCE 2023x FD03 supports these features

(clearer parameter defaults, clearer start-value priority,

connection restrictions, selective model extension, and

multi-lingual support), and other tools have also released

or are working on support for these features – and the goal

of this paper is to improve portability by helping other

implementers support these features. In particular, the

selective model extensions considerations for deselecting

connections and automatic connector sizing; and user

experience for undefined modification and start-value

precedence.

Acknowledgements
The work on Modelica 3.6 has been carried out by MAP-

Lang. The author (who is also the chair of the group)

acknowledges the hard work of the members of the group

and the interesting discussions.

References

Bürger, Christoff (2019): Modelica language extensions for

practical non-monotonic modelling: on the need for selective

model extension. In: Proceedings of 13th International

Modelica Conference 277-288

http://dx.doi.org/10.3384/ecp1915727

Casella, Francesco (2011): Selection of missing initial

equations and of start attributes for alias variables

URL: https://github.com/modelica/ModelicaSpecification

/issues/561

Dassault Systèmes. (2023) Dymola 2023x Refresh 1: Dymola,

Dynamic Modeling Laboratory, User Manual.

Dassault Systèmes AB, Lund, Sweden.

Elmqvist, Hilding, and Martin Otter. 1994. Methods for

Tearing Systems of Equations in Object-Oriented Modeling.

Proceedings ESM'94, European Simulation Multiconference,

Barcelona, Spain, June 1-3, pp.326--332.

Elmqvist, Hilding, Sven Erik Mattsson, and Christophe

Chapuis (2009): Redundancies in Multibody Systems and

Automatic Coupling of CATIA and Modelica. In:

Proceedings of 7th International Modelica Conference 551-

560 http://dx.doi.org/10.3384/ecp09430113

Franke, Rüdiger, Francesco Casella, Martin Otter, Michael

Sielemann, Hilding Elmqvist, Sven Erik Mattsson, and Hans

Olsson (2009): Stream Connectors – “An Extension of

Modelica for Device-Oriented Modeling of Convective

Transport Phenomena”. In: Proceedings of 7th International

Modelica Conference 108-121

http://dx.doi.org/10.3384/ecp09430078

ISO/IEC. (2020). ISO International Standard ISO/IEC

14882:2020(E) – Programming Language C++. Geneva,

Switzerland: International Organization for Standardization

(ISO). URL: https://isocpp.org/std/the-standard

MAP-Lang (2023): Modelica Language Specification.

URL: https://github.com/modelica/ModelicaSpecification/

Miller, Bruce (2023): A LATEX to XML/HTML/MathML

Converter URL: https://math.nist.gov/~BMiller/LaTeXML/

Olsson Hans, Martin Otter, Sven Erik Mattsson, and Hilding

Elmqvist (2008): Balanced Models in Modelica 3.0 for

Increased Model Quality. In: Proceedings of 6th

International Modelica Conference 21-33

https://modelica.org/events/modelica2008/Proceedings/sessi

ons/session1a3.pdf

Olsson, Hans (editor) (2023): Modelica - A Unified Object-

Oriented Language for Systems Modeling Language

Specification Version 3.6.

URL: https://specification.modelica.org/maint/3.6/MLS.pdf

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204367

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

373

