
Bodylight.js 2.0 - Web components for FMU simulation,
visualisation and animation in standard web browser.

Tomáš Kulhánek1,2 Arnošt Mládek1,2 Filip Ježek2,3 Jiří Kofránek1,2

1Creative Connections s.r.o., Prague, Czechia
2Institute of Pathological Physiology, Charles University, Prague, Czechia {tomas.kulhanek, arnost.mladek,

jiri.kofranek}@lf1.cuni.cz
3University of Michigan, Ann Arbor, USA fjezek@umich.edu

Abstract
Simulators used in teaching and education comprise a
mathematical model and a user interface that allows the
user to control model inputs and intuitively visualize the
model states and results. This paper presents web compo-
nents - that can be used to build an in-browser web sim-
ulator. The models used for the web simulators must be
written in standard Modelica language and compiled as
standard FMU (Functional mockup unit). The toolchain
version Bodylight.js 2.0 contains tools to collect FMU into
WebAssembly language, able to be executed directly by a
web browser. Bodylight.js 2.0 web components can com-
bine models, interactive animations, and charts into a rich
web documents in HTML or Markdown syntax without
any other programming or scripting. Samples show its us-
age in education, 2D and 3D graphics, virtual reality, and
connected to the hardware.
Keywords: Modelica, JavaScript, WebAssembly, in-
browser simulator, client-side simulator, e-learning, web
components

1 Introduction
Web-based simulators can be distinguished by where the
simulation computation is performed. The server-side
simulators provide a user with an interface that controls
simulation performed on a remote server, and the creation
of such a simulator needs to employ client-server tech-
nologies. On the other hand, the client-side simulator’s
user interface and simulation computation are performed
on a client’s computer. This, however, comprises several
issues that need to be addressed. First, a user may have
different types of platforms; in the past, the central plat-
form was Microsoft Windows-based system and therefore,
many simulators were distributed as an installable appli-
cations on this platform. The locally installed application
may need to be manually or semi-automatically updated
or upgraded. Nevertheless, MS Windows-based systems
are no longer significant platforms for computer or mobile
devices.

One can address many different platforms, e.g. by
virtualization using technologies such as VirtualBox,
VMWare, or containerization such as Docker, etc. How-

ever, web standards developed into mature versions, and
the vendors of contemporary web browsers cover many
platforms, including mobile phones and tablets, giving
standard HTML and JavaScript capabilities.

Mathematical models in biomedical engineering can be
expressed in different languages or technologies. One is
the Modelica language, which covers broad industry do-
mains; therefore, commercial and open-source tools are
available. Modelica is very well suited for usage in the
physiology domain and biomedical teaching, as discussed
elsewhere (Kofránek, Ježek, and Mateják 2019), though, it
is not yet widely used in physiology modeling community.

Direct solving of Modelica models in a web browser
were demonstrated, e.g., by Franke (Franke 2014). How-
ever, accurate web-based client simulation or in-browser
simulation was prototyped by Short (Short 2014) and re-
alized in the "Modelica By Example" and "Modelica Uni-
versity" by Tiller and Winkler (M. M. Tiller 2014; Winkler
and M. Tiller 2017).

This inspired our team to create an in-browser simula-
tor. We already published a technology called Bodylight.js
(Šilar, Ježek, et al. 2019) and sample web simulators, e.g.,
kidney functioning model (Šilar, Polák, et al. 2019).

The present paper describes the next evolutionary
stage of this set of open-source tools, titled Bodylight.js-
Components version 2.0. These are distributed as
framework-agnostic web components (WebComponents
2021) - i.e., custom elements enhancing the syntax of
HTML or Markdown. Further sections describe a brief
methodology for creating a web simulator from a model
source. A demo is presented with a pulsatile heart web
simulator combining buttons, sliders, interactive graph-
ics, and charts. The main aim of the methodology is to
enable creative cooperation among domain experts such
as computer graphics designers, model developers, edu-
cators, and programmers (Figure 1). Their expert work
results can be integrated with the Bodylight toolchain.

2 Methods
Modelica model must be exported as FMU. We have pre-
pared scripts to compile such output into WebAssembly
using the EMScripten SDK tools. Then the resulting JS
with embedded WebAssembly can be controlled using

DOI
10.3384/ecp204443

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

443



Adobe
Animate

Artist

Educator

Modeler

Modelica
Language

Programmer

Creating interactive
animated graphics

Generation

Conceptual application design

BodyLight tools and application building

Modelica compiler

Graphics in: 
HTML and Javascript 

Model in:
Web-Assembly
and JavaScript

IN-BROWSER SIMULATOR in: 
HTML 5,
JavaScript, 
and WebAssembly

Model in:
C language
according to the 
FMI standard

BODYLIGHT
T O O L

BODYLIGHT
T O O L

Web component
of the graphics

Web component
of the model

B
O

D
YL

IG
H

T
T

O
O

L

Browser devices

Figure 1. The main aim of the methodology is to enable creative cooperation among different domain experts such as computer
graphics designers, model developers, educators, and programmers.

FMI API calls. We have prepared the web-component
BDL-FMI that simplifies controlling and integrating it
with other simulation related tasks like drawing charts,
changing model parameters, reseting the simulation and
visualising in 2D and 3D graphics. Next subsections de-
scribes the details of each particular step.

2.1 Model to WebAssembly

Modelica model must be exported as FMU v2.0 in co-
simulation mode, including C source codes. This can be
done either with an advanced CVODE solver in (Dymola
2023) (Dassault Systemes) or only with a more straight-
forward Euler solver in OpenModelica (Fritzson and et.al.
2019). Then the FMU with included source codes of
solver can be compiled to JavaScript with embedded We-
bAssembly using Bodylight.js-FMU-Compiler1. It con-
tains scripts and configuration to utilize the emscripten
(EMScripten 2021) library.

In further text, the sample simulator uses exported
model from Physiolibrary as seen in Figure 3.

1Bodylight.js-FMU-Compiler https://github.com/
creative-connections/Bodylight.js-FMU-Compiler

Figure 3. Model of pulsatile circulation (Fernandez de Canete
et al. 2013; Kulhánek et al. 2014) in Chemical library(Matejak
et al. 2015) and Physiolibrary(Mateják et al. 2014) v 3.0 using
Modelica Standard Library v 4.0(Library 2021). This model is
used in following sample export and web simulator.

A simple web form facilitates compilation as seen in
Figure 4.

Figure 4. Bodylight FMU Compiler - web form showing pro-
cess of compiling FMU to JS packed as ZIP archive

Bodylight.js 2.0 - Web components for FMU simulation, visualisation and animation in standard web browser

444 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204443



interactive animated 
graphics created in 
JavaScript + HTML5

BODYLIGHT.JS
T E C H NO LOG Y

generating the web 
component

Adobe
Animate

Modelica compiler

Modelica - standard equations based modeling language

Model source code 
in Modelica

C-FMU: C - Function Mock-up Unit
(source code in C language 
+ other �les according to the FMI standard )

Creating web
components with
interactive graphics

Creating a web 
component with the 
simulation model

connecting
the model
with graphics

transpiling into
JavaScript and
Web-Assembly

Figure 2. Presented web simulator creation technology is based on open web standards and available modeling standards. We
create interactive animated graphics in Adobe Animate published with CreateJS library as JavaScript controlling an HTML canvas.
Such an artifact is encapsulated as a web component. A model created in the Modelica language is exported into FMU with source
codes, following FMI 2.0 standards. Our technology then can compile the FMU with C source codes into JavaScript with embedded
WebAssembly. This artifact can then be encapsulated into another web component. Bodylight.js Components make it easier to link
the graphics web component to the model’s web component and create animated graphics like a model-controlled puppet.

2.2 Web components of Bodylight.js

Compiled FMU can be controlled using FMI API stan-
dard calls. However, Bodylight.js-Components2 contains
a set of components to simplify interactions among low-
level FMI API, some standard HTML elements, third-
party charting libraries, and 2D and 3D graphical anima-
tions.

The components are distributed as custom elements
using standard WebComponent API (WebComponents
2021). It was developed using mainly Aurelia (Aure-
liaJS 2023) framework, however, it can be used in any
contemporary web application development framework or
framework-agnostic way.

2.3 Changing user input, range web-
component

The following sample web component defines HTML
slider input and essential interaction (value change is sent
as a custom HTML Event). The attributes can determine
minimum, maximum, default value, and step by which the
slider can change its value when moved right or left (List-
ing 1, Figure 5).

2Bodylight.js-Components https://github.com/
creative-connections/Bodylight.js-Components

Listing 1. Bodylight Range Component with optional attributes
(in blue), limiting user input between 40 and 180 with a step of
1 and default value 60

<bdl-range
id="id1" title="Heart Rate"
min="40" max="180" default="60" step="1">

</bdl-range>

Figure 5. Range component rendered in a web browser

2.4 Control of simulation computation, FMI
web-component

The following sample web component instantiates FMU
from compiled JavaScript and creates standard HTML
buttons to start/stop the simulation (Listing 2). When the
simulation begins, a custom HTML event is sent to all po-
tentially listening components. In every simulation step,
a list of variable values is distributed as an array. The list
of variables is set in valuereferences attribute. The
components listed in inputs are listened to obtain inter-
actively values the user changes during simulation.

The browser’s window.requestAnimationFrame()
method is used to call a simulation step. The browser
usually calls this method up to 60 times per second to

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204443

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

445



deliver a smooth user experience to match the refresh rate
of the window as well as the performance of the viewing
window. This call is usually paused in most browsers
when running in background tabs.

Listing 2. Declaration of Bodylight FMI Component. Instanti-
ates model of human pulsatile circulation dynamics from Phys-
iolibrary(Mateják et al. 2014). Setup output values to be only
pressure of pulmonary veins and arteries. Input is listened from
an element with id1 and changed values are set as input to
heartRate parameter which is multiplied by 1 and divided by
60 (converting ’per minute’ to ’per second’ unit expected by the
model).

<bdl-fmi id="idfmi" src="
Physiolibrary_Fluid_Examples_Fernandez

2013_PulsatileCirculation.js" fminame="
Physiolibrary_Fluid_Examples_Ferna

ndez2013_PulsatileCirculation" tolerance="
0.000001" starttime="0" fstepsize="0.01
" guid="{
a786b906-f58b-4014-8c9b-5df08bd77f4b}"
valuereferences="637534263,637534417"
valuelabels="
pulmonaryVeins.pressure,arteries.pressure
" inputs="id1,16777329,1,60"
inputlabels="heartRate.k">

</bdl-fmi>

Figure 6. FMI component rendered in a web browser.

2.5 Charting web-components
Charts can make basic visualization of the data obtained
from simulation. Bodylight.js library embeds open-source
ChartJS (ChartJS 2021) library to support basic line charts
using the component <bdl-chartjs-time>, see sam-
ple component listing in Listing 3. The component
<bdl-chartjs> supports doughnuts, pie charts, and
bar charts.
Listing 3. Bodylight Chart Component taking first one (indexed
from 0) value of output values and converts it using expression

x
133.322 − 760 thus converting from Pa to mmHg and deducting
ambient normal atmospheric pressure 760 mmHg

<bdl-chartjs-time
id="id10" width="300" height="200" fromid

="idfmi"
labels="Pressure in Aorta [mmHg]"

initialdata="" refindex="0" refvalues
="1"

convertors="x/133.322-760">
</bdl-chartjs-time>

Initially the chart is empty, however, it is connected
to the FMI component and listens to any data ob-
tained from it and draws it interactively as seen in
Figure 7. Bodylight.js-Components externally supports
time series charts made by Plotly(Plotly 2021) and Dy-
graphs(Dygraphs 2021) libraries too.

Figure 7. Chart component rendered in a web browser. This
chart contains data obtained from FMI component during simu-
lation from time 0 - 1.27s.

2.6 Interactive animation, adobe web-
components

Adobe Animate is a multimedia authoring and computer
animation program developed by Adobe Inc. Advanced
visualization can be exported following as "standardized"
open-source Javascript API (CreateJS 2023). By conven-
tion, an artist who creates interactive animation names all
animatable elements with the suffix ’_anim’ and anima-
tion states between some values e.g. between 0 to 99
which visualizes the animation state. See the following
listing (Listing 4).

Listing 4. Bodylight Animate component and components to
bind animation element with model variable

< b d l −an ima te− adob e s r c =" C a r d i a c c y c l e S t a g e . j s " name=" F a z e _ s r d c e "
f r om id =" i d f m i ">

</ bd l−an imate−adobe >
< b d l − b i n d 2 a f i n d e x =" 1 " aname=" ValveMV_anim " amin=" 99 " amax=" 0 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 2 " aname=" ValveAOV_anim " amin=" 0 " amax=" 99 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 3 " aname=" ValveTV_anim " amin=" 99 " amax=" 0 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 4 " aname=" ValvePV_anim " amin=" 0 " amax=" 99 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 5 " aname="

v e n t r i c l e s . v e n t r i c l e s T o t a l . V e n t r i c l e L e f t _ a n i m " amin=" 100 "
amax=" 0 " fmin=" 0 .00015 " fmax=" 0 .00021 " > </ bd l−b ind2a >

< b d l − b i n d 2 a f i n d e x =" 6 " aname="
v e n t r i c l e s . v e n t r i c l e s T o t a l . c h i l d r e n . 0 . V e n t r i c l e R i g h t _ a n i m "
amin=" 100 " amax=" 0 " fmin=" 0 .00012 " fmax=" 0 .00018 " > </
bd l−b ind2a >

Bodylight.js 2.0 - Web components for FMU simulation, visualisation and animation in standard web browser

446 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204443



Figure 8. Animated component rendered in a web browser

2.7 Sample demo web simulator
All the previously defined component instances can be put
into a single HTML page as seen in the following listing:

Listing 5. index.html containing declaration and use of web
components. The aurelia.js framework was used to leverage
building the web components thus the attribute ’aurelia-app’
points out the DOM where web components can be located and
corresponding implementation is injected there

<!DOCTYPE html >
<html >

<head >
< s c r i p t s r c =" b o d y l i g h t . b u n d l e . j s " > </ s c r i p t >

</ head >
<body a u r e l i a − a p p =" webcomponents ">

< b d l − r a n g e i d =" i d 1 " . . . > < / bd l− range >
< bd l− fmi d=" i d f m i " . . . > < / bdl−fmi >
< b d l − c h a r t j s − t i m e i d =" id1 0 " . . . > < / b d l − c h a r t j s − t i m e >
< bd l−an ima te−adobe . . . > < / bd l−an imate−adobe >
< b d l − b i n d 2 a f i n d e x =" 1 " . . . > < / bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 2 " . . . > < / bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 3 " . . . > < / bd l−b ind2a >
. . .

</ body >
</ html >

The "index.html" must be published
along the JavaScript file containing com-
piled FMU from the Modelica model:
Physiolibrary_Fluid_Examples_Fernandez
2013_PulsatileCirculation.js, JavaScript file
containing published animation from Adobe Animate:
CardiaccycleStage.js and "bodylight.js" library
bodylight.bundle.js. However the Bodylight.js
is published as NPM package and therefore can be taken
from some content delivery network (CDN) caching NPM

packages.
The resulting application is rendered in a web browser

as seen in Figure 9.

Figure 9. Web Simulator with rendered web components. The
simulator can be started/restarted with buttons and the "heart
rate" parameter can be changed by user interactivelly while com-
putation of simulation is performed. Chart data is updated ac-
cordingly and animation is driven by the model variables.

2.8 Bodylight Editor

Optional tool Bodylight-Editor3 is distributed as a static
web page and allows a live preview of Markdown syntax
as well as Bodylight.js-Components. Additional dialogs

3Bodylight-Editor https://github.com/
creative-connections/Bodylight-Editor

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204443

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

447



facilitate filling the component attribute values, e.g., se-
lecting input/output variables from the model and bind-
ing them into the appropriate component. The file man-
agement panel simplifies managing multipage documents
sharing models, images, and animation, and generates
multipage web simulators with shared navigation (Figure
10).

Figure 10. Bodylight Editor with the sample components above
and rendered preview.

2.9 Bodylight Virtual Machine
Bodylight.js toolchain comprises several independent
tools, some of which need non-trivial configuration.
Therefore, we have created an exemplar virtual machine
configuration for the Vagrant tool and virtualBox, to pro-
vision a standard minimal image of CENTOS Stream 9;
scripts are published as Bodylight-VirtualMachine4.

3 RESULTS
We compared the performance of model simulation trans-
lated to FMU executed natively with the implementation
of the same model translated to FMU and WebAssembly
and performed in a web browser on the same machine. We
used Chrome browser version 97.0.4692.71 with simula-
tion times of native code on the same platform (win-64)
and performed a simulation that took 6000 steps. Natively
it took an average of 9.3 s, while the simulation in the web
browser took 34.5 s (1, column ’WASM 1 step’).

simulation win64 bin WASM (1 step) WASM (3 steps)
time [s] 9.3s 34.5s 10.4s

relative [1] 1x 3.71x 1.12x

Table 1. Sample model simulation performance comparison be-
tween binary execution of FMU in win-64 and FMU translated
to WASM and performed 1 or 3 FMU step() during web browser
frame.

This difference might be explained by overhead due to
the browser screen refresh framerate. Therefore we mod-
ified the WASM code to perform 2, 3, and 4 FMU step()
calls during a frame given by the browser via requestAni-
mationFrame(). The browser allows max 60 frames per

4Bodylight-VirtualMachine https://github.com/
creative-connections/Bodylight-VirtualMachine

second when used and usually maintains a maximum—of
thirty frames to support the smooth running of other apps
and the operating system itself. Making more than three
steps within one frame gave no better value (result not
shown). Therefore in the following table, we offer times
in column ’WASM 3 steps’. Thus, it can be concluded
that the simulator’s performance in WebAssembly (when
doing multiple simulation steps during one frame) is com-
parable with native code (i.e., 1.12x or 12% slower than
native code). This result also agrees with the more com-
prehensive benchmarks of WebAssembly vs. native code
given by (Jangda et al. 2019).

We also measured the performance of the simulation
with visualisation of charts and animation. It may signif-
icantly affect performance as the visualisation can update
on each simulation step. Therefore we included config-
urable "throttle" property in order to do visual update only
by default every 100 ms.

As all computation and rendering is done in the web
browser, no interaction with a server is needed. The
web simulator can be distributed as a static or server-less
web page, e.g., using popular GitHub pages(GithubPages
2021). It can be utilized to distribute, e.g., digi-
tal appendices of scientific papers. It was already
used by (Mazumder et al. 2023) using web simulator
deployed at https://filip-jezek.github.io/
Ascites/ This way we published also first version of
e-book "The Physiology of Iron metabolism" as seen in
11.

Figure 11. Sample educational simulator of iron metabolism
simulating gene knockout of hepcidin hormone resulting in iron
overload in internal organs. It allows to enable/disable gene
knockout, set a diet to affect illness and its treatment.

The same simulator can be converted also as a native
mobile application e.g. by Apache Cordova (Apache Cor-
dova 2023) tool. A sample in Figure 12 shows the digital
textbook compiled as an Android application.

Bodylight.js 2.0 - Web components for FMU simulation, visualisation and animation in standard web browser

448 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204443



Figure 12. Educational simulator as native Android application.

A sample in Figure 13 shows a web simulator of blood
gas exchange connected to the robotized virtual patient
mannequin and controls his breathing. The following
placed mockup of a medical device controls the extracor-
poreal membrane oxygenation (ECMO) process parame-
ters. Such parameters are inputs to the model simulator
connected via REST API, and the simulation shows direct
feedback on user input and healthcare staff intervention to
the patient state in graphs.

A sample in Figure 14 shows interactive 3D visualiza-
tion of simplified human anatomy with charts of simulated
hemodynamics. It leverages WebGL standard to visualize
3D objects and view the 3D scene. If this simulator is exe-
cuted in a browser of a virtual reality device, then WebXR
API is detected, and the simulator can be switched to an
immersive view. This was tested on Oculus Quest 2 and
MS Hololens 2.

Figure 14. Sample educational simulator in 3D using WebGL
and in immersive view for virtual reality using WebXR API. Vir-
tual patient with simplified anatomy and physiology of cardiac
hemodynamics and charts and controls are allowed to show the
effect of drug treatment interactively.

Bodylight.js-Components is delivered using an open-
source MIT License still and is still in the development
stage depending on other open-source code 5and the re-
leases can be cited via Zenodo as (Kulhanek et al. 2023).
The complete toolchain documentation and links are avail-
able https://bodylight.physiome.cz.

4 Discussion
Client-side simulation is appropriate for use cases where
one or a few simulations must be performed. This is ap-
propriate for interactive documents like educational mate-
rials, technical reports and digital appendices.

Client-side web-based simulation might not be appro-
priate for system analysis tasks like Monte-Carlo simula-
tion.

The simulation is matched per
Window.requestAnimationFrame() to the
browser performance and is paused when the browser
tab is in the background. The optimal inner FMU steps
to refresh the framerate ratio have been established for a
sample model; the optimal balance would vary though,
depending on system performance bottlenecks and model
complexity. Automatic adjustment based on the client’s
performance might be possible, but is currently not
included in the development roadmap. The Web Workers
(WebWorkers 2021) method might be more appropriate
for another type of simulation (esp. for long-term models
with higher memory demand etc.).

In the past, web-based simulators depended on non-
standard, proprietary, but widely used plugins such as
Adobe Flash player or Microsoft Silverlight. However,
as technologies become obsolete (or even blocked), many
older yet still scientifically relevant simulators cannot be
executed on most modern computers or devices without
excessive effort on virtualizing or emulating old operating
systems and environments. We hope that using standard

5Bodylight.js-Components https://github.com/
creative-connections/Bodylight.js-Components

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204443

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

449



Figure 13. Web simulator connected to hardware mannequin of virtual patient and mockup of the medical device. It communicates
via REST API to show breathing and mockup of medical device (extracorporeal membrane oxygenator - ECMO) controls several
model parameters. User input on this hardware-in-the-loop gives direct feedback in the connected simulator and visualization of
breathing.

languages like Modelica, traditional execution models like
FMI, and standard web API to build components may sur-
vive over a decade. Web simulators built from now on can
be run in the future seamlessly.

Additionally, thanks to the widely accepted standards,
the simulators can now be executed on various devices
such as mobile phones, tablets, and virtual and augmented
reality devices with no or very low code intervention.
Bodylight.js library brings the missing piece and tools
to integrate already existing standards and technologies
between web publishing and mathematical modeling in
Modelica.

Acknowledgements
Commercial potential is under further investigation, how-
ever, the main tools and libraries are free and open-
source thanks to previous grants, funding and support
by Creative Connections company, the MPO FV20628
and MPO FV30195 grants provided by Czech Ministry
of Industry and Trade, and the Prague Smart Accelera-
tor CZ.02.2.69/0.0/0.0/18_055/0016956 pro-
vided by the City of Prague and partly financed from EU
structural funds. We would like to thank to E. Benjamin
Randall, Ph.D. for proofreading and grammar correction.

References
Apache Cordova (2023). Open-source mobile development

frameworkto use standard web technologies - HTML5, CSS3,
and JavaScript for cross-platform development. URL: https:
//cordova.apache.org (visited on 2023-01-06).

AureliaJS (2023). Aurelia - Aurelia is a JavaScript client frame-
work for web, mobile and desktop. URL: https : / / aurelia . io
(visited on 2023-11-08).

ChartJS (2021). Simple yet flexible JavaScript charting for de-
signers and developers. URL: https://www.chartjs.org (visited
on 2021-05-08).

CreateJS (2023). CreateJS - A suite of modular libraries and
tools which work together or independently to enable rich in-

teractive content on open web technologies via HTML5. URL:
https://createjs.com/ (visited on 2023-11-08).

Dygraphs (2021). Fast, flexible open source JavaScript charting
library. URL: https://dygraphs.com/ (visited on 2021-05-08).

Dymola (2023). Multi-Engineering Modeling and Simulation
based on Modelica and FMI. URL: https: / /www.3ds.com/
products- services/catia/products/dymola/ (visited on 2023-
01-01).

EMScripten (2021). EMScripten - complete compiler toolchain
to WebAssembly. URL: https : / / emscripten . org (visited on
2021-05-08).

Fernandez de Canete, Javier et al. (2013-05). “Object-oriented
Modeling and Simulation of the Closed Loop Cardiovascular
System by Using SIMSCAPE.” In: Computers in Biology and
Medicine 43.4, pp. 323–33. ISSN: 1879-0534. DOI: 10.1016/
j.compbiomed.2013.01.007.

Franke, Rudiger (2014). “Client-side Modelica powered by
Python or JavaScript”. In: the 10th International Modelica
Conference, March 10-12, 2014, Lund, Sweden. DOI: 10 .
3384/ecp140961105.

Fritzson, Peter and et.al. (2019). “The OpenModelica Integrated
Modeling, Simulation, and Optimization Environment”. In:
Proceedings of The American Modelica Conference 2018,
October 9-10, Somberg Conference Center, Cambridge MA,
USA. DOI: 10.3384/ecp18154206.

GithubPages (2021). Websites for person and projects. Hosted
directly from GitHub repository. URL: https://pages.github.
com/ (visited on 2021-05-08).

Jangda, Abhinav et al. (2019-07). “Not So Fast: Analyzing the
Performance of WebAssembly vs. Native Code”. In: 2019
USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, pp. 107–120. ISBN: 978-
1-939133-03-8. URL: https : / /www.usenix .org/conference/
atc19/presentation/jangda.

Kofránek, Jirı, Filip Ježek, and Marek Mateják (2019-02).
“Modelica language - a promising tool for publishing and
sharing biomedical models”. In: Proceedings of The Amer-
ican Modelica Conference 2018, October 9-10, Somberg
Conference Center, Cambridge MA, USA. Linköping Uni-
versity Electronic Press. ISBN: 9789176851487. DOI: 10 .
3384 / ecp18154196. URL: http : / / dx . doi . org / 10 . 3384 /
ECP18154196.

Bodylight.js 2.0 - Web components for FMU simulation, visualisation and animation in standard web browser

450 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204443



Kulhanek, Tomas et al. (2023). creative-
connections/Bodylight.js-Components: version v2. DOI:
10.5281/zenodo.4575354.

Kulhánek, Tomáš et al. (2014). “Simple Models of the Cardio-
vascular System for Educational and Research Purposes”. In:
MEFANET Journal 2.2, pp. 56–63. URL: http://mj.mefanet.
cz/mj-04140914.

Library, Modelica Standard (2021). Free (standard conform-
ing) library from the Modelica Association to model me-
chanical (1D/3D), electrical (analog, digital, machines),
magnetic, thermal, fluid, control systems and hierarchical
state machines. URL: https : / / github . com / modelica /
ModelicaStandardLibrary / releases / tag / v4 . 0 . 0 (visited on
2021-05-08).

Matejak, Marek et al. (2015). “Free Modelica Library for Chem-
ical and Electrochemical Processes”. In: Proceedings of the
11th International Modelica Conference, Versailles, France,
September 21-23, 2015. 118. Linköping University Elec-
tronic Press, pp. 359–366.

Mateják, Marek et al. (2014). Physiolibrary - Modelica li-
brary for Physiology. Lund, Sweden. URL: https : / / www.
physiolibrary.org.

Mazumder, Nikhilesh R et al. (2023). “Portal Venous Remodel-
ing Determines the Pattern of Cirrhosis Decompensation: A
Systems Analysis.” In: Clinical and Translational Gastroen-
terology. DOI: 10.14309/ctg.0000000000000590.

Plotly (2021). Plotly JavaScript Open Source Graphing Library.
URL: https://plotly.com/javascript/ (visited on 2021-05-08).

Short, Tom (2014). OpenModelica models in Javascript. URL:
https:/ /github.com/tshort/openmodelica- javascript (visited
on 2021-05-08).

Šilar, Jan, Filip Ježek, et al. (2019). “Model visualization for
e-learning, Kidney simulator for medical students”. In: Pro-
ceedings of the 13th International Modelica Conference, Re-
gensburg, Germany, March 4–6, 2019. 157. Linköping Uni-
versity Electronic Press.

Šilar, Jan, David Polák, et al. (2019). “Development of In-
Browser Simulators for Medical Education: Introduction of
a Novel Software Toolchain”. In: J Med Internet Res 21.7,
e14160. ISSN: 1438-8871. DOI: 10.2196/14160.

Tiller, Michael M. (2014). Modelica By Example. URL: https :
//mbe.modelica.university/.

WebComponents (2021). Web components are a set of web plat-
form APIs that allow to create new custom, reusable, encap-
sulated HTML tags to use in web pages and web apps. URL:
https://www.webcomponents.org/ (visited on 2021-05-08).

WebWorkers (2021). Web Workers are a simple means for web
content to run scripts in background threads. URL: https : / /
developer.mozilla.org/en-US/docs/Web/API/Web_Workers_
API/Using_web_workers (visited on 2021-05-08).

Winkler, Dietmar and Michael Tiller (2017). “modelica. univer-
sity: A platform for interactive modelica content”. In: DOI:
10.3384/ecp17132725. URL: https://ep.liu.se/ecp/132/079/
ecp17132725.pdf.

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204443

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

451


