
A preCICE-FMI Runner to Couple FMUs to PDE-Based
Simulations

Leonard Willeke1 David Schneider1 Benjamin Uekermann1

1Institute for Parallel and Distributed Systems IPVS, University of Stuttgart, Germany,
benjamin.uekermann@ipvs.uni-stuttgart.de

Abstract
Partitioned simulation or co-simulation allows simulating
complex systems by breaking them up into smaller sub-
systems. The Functional Mock-Up Interface (FMI) en-
ables co-simulation for models based on ODEs and DAEs,
but typically not PDEs. However, only PDE-based models
are able to accurately simulate physical aspects requiring
spatial resolution, such as heat transfer or fluid-structure
interaction.

We present a preCICE-FMI runner software to inte-
grate FMUs with the open-source coupling library pre-
CICE. preCICE couples PDE-based simulation programs,
such as OpenFOAM or FEniCS, in a black-box fashion to
achieve partitioned multi-physics simulations. The runner
serves as an importer to execute any FMU and to steer the
simulation. Additionally, it calls preCICE to communicate
and coordinate with other programs. The software is writ-
ten in Python and relies on the Python package FMPy. We
showcase two example cases for the coupling of FMUs to
ODE- and PDE-based models.
Keywords: Functional Mock-Up Interface (FMI), multi-
physics, preCICE, coupling, co-simulation, FMPy, Open-
FOAM

1 Introduction
The simulation of complex, dynamic systems is an impor-
tant task in science and engineering. It includes multi-
physics simulations and the simulation of cyber-physical
systems. There are two paths to achieve such simulations,
the monolithic and the partitioned approach. In the mono-
lithic setup, one software includes all the necessary com-
putations to model the different phenomena. Contrary to
that, the partitioned approach relies on multiple indepen-
dent pieces of software. Each of these programs covers
a specific aspect of the simulation. The programs are
then coupled or co-simulated to achieve the correct out-
come. This approach allows splitting complicated systems
in smaller, simpler subsystems and re-using them in differ-
ent scenarios. Examples include climate modeling (Gross
et al. 2018), but also engineering applications such as the
modeling of wind turbines (Sprague, J. M. Jonkman, and
B. J. Jonkman 2015).

The Functional Mock-Up Interface FMI (Blochwitz et
al. 2011) follows a so-called framework approach for co-

myImporter Model2.fmuModel1.fmu

Figure 1. Co-simulation approach of the FMI standard (a frame-
work approach): The standardized FMU models are called and
coupled by an importer program. We denote the caller (exe-
cutable) with a female connector and the callee (library) with a
male connector.

simulation. The simulation models are implemented as
standardized Functional Mock-Up Units (FMUs). FMUs
are zip-archives with a pre-defined structure and content.
They contain the simulation model as library (*.dll, *.so)
and meta data about the model such as documentation
or reference results. The coupling is done by an addi-
tional program, a so-called importer (see Figure 1). The
importer loads and executes the FMUs and implements
a co-simulation algorithm to ensure communication and
data exchange between the models. This approach works
well for simple models composed of ODEs and DAEs,
but reaches its limits for more complex PDE models. The
computation of PDEs often requires legacy software pack-
ages and high-performance computing, which are in gen-
eral not compatible with the regulations for FMUs.

Model2

coupling
library

communication

Model1

adaptersolver

Figure 2. Co-simulation approach of preCICE (a library ap-
proach): The simulation programs call preCICE as a library to
perform the coupling.

preCICE (Chourdakis et al. 2022), on the other hand,
is an open-source coupling library for partitioned multi-
physics simulations. It couples PDE-based simulation
programs, such as OpenFOAM or FEniCS, in a black-
box fashion. preCICE follows a library approach for co-
simulation: The simulation programs call the coupling
(see Figure 2). The programs itself ideally remain un-
touched and connect to preCICE through an additional
software layer called adapter. Each simulation program
requires a specific adapter. Ready-to-use adapters for
many popular simulation programs exist. This setup en-
sures the re-usability of all components and a decent time-

DOI
10.3384/ecp204479

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

479



to-solution for new applications.
The main idea of this work is to combine both worlds:

to couple FMU models to other simulation programs via
preCICE. To this end, a new software component, the
preCICE-FMI runner is developed (see Figure 3). It acts
as an importer towards the FMU, loading and executing
the model. Additionally, the runner calls preCICE to cou-
ple the simulation to other programs and steer the simu-
lation. It allows coupling FMU models to any simulation
program in the preCICE ecosystem.

Model2

coupling
library

Model1.fmu

preCICE-FMI

Figure 3. Concept of the preCICE-FMI runner: The new soft-
ware executes the FMU and calls preCICE to couple the simula-
tion to other programs.

In order to understand how preCICE and the FMI stan-
dard can be coupled, Chapter 2 introduces the two exist-
ing software components. The chapter continues to ex-
plain the concept of the newly developed software, the
preCICE-FMI runner, its configuration and functionali-
ties. To showcase the software, Chapter 3 then describes
two example cases. First, a partitioned mass-spring oscil-
lator system is used to test the runner against an analytical
solution and an alternative Python-based implementation.
Second, a FMU model is coupled to a fluid-structure in-
teraction scenario using OpenFOAM as fluid solver and
a simple Python script as solid solver. For this scenario,
we compare against results from the literature. The final
Chapter 4 summarizes the presented ideas and reflects on
the impact of the developed software. This paper summa-
rizes and extends the master’s thesis of Willeke (2023).

The idea of coupling FMUs to PDE-based programs has
already attracted further attention. A recent tool to execute
this task is FMU4FOAM1. It couples FMUs exclusively to
the CFD program OpenFOAM. The coupling is realized
with a function object, a library that is loaded by Open-
FOAM at runtime. The function object embeds a Python
interpreter to handle the FMU. FMU4FOAM is config-
urable on runtime and can be further adapted to specific
needs due to its object-oriented structure.

We see the main advantage of the preCICE-FMI runner
in its ability to leverage the advanced coupling functional-
ities of preCICE. The coupling of FMUs is not limited to
OpenFOAM, but can be performed with any program in
the preCICE ecosystem. Different coupling schemes and
topologies are possible. Furthermore, the coupling library
implements a toolbox of coupling algorithms to ensure ro-
bust and accurate simulations.

2 Software description
Before detailing the concept, functionalities, and limita-
tions of the new runner software, we start this section with

1https://dlr-ry.github.io/FMU4FOAM/

describing the existing software components: preCICE
and FMI.

2.1 Existing software components
preCICE (Chourdakis et al. 2022) is a widely-used and
open-source coupling library for multi-physics simula-
tions. In preCICE terminology, the coupled simulation
programs are called solvers or participants. preCICE im-
plements data mapping and communication between the
solvers. The user can choose between explicit and implicit
as well as serial and parallel coupling schemes (Gatzham-
mer 2014). The coupling is not limited to two solvers, but
can be easily extended to perform multi-coupling (Bun-
gartz et al. 2015). Acceleration algorithms, such as quasi-
Newton methods (Uekermann 2016) are available to sta-
bilize and speed up implicit coupling schemes. Finally,
time interpolation allows individual solvers to use differ-
ent time step sizes. The exact numerical implementation
is out of scope here, but can be found in the cited litera-
ture. All these coupling configurations are defined in the
precice-config.xml file, a global file accessed by all partic-
ipants.

Each solver is connected to preCICE with a specific
adapter. The adapter allows the solver to access the pre-
CICE API and call the coupling. It can take many forms,
depending on the solver itself. For example, the preCICE-
OpenFOAM adapter is an OpenFOAM function object,
an indepent library, while the preCICE-FEniCS adapter is
a Python module. Adapter development is facilitated by
the language bindings of preCICE, which are available for
C/C++, Python, Fortran, Julia, and Matlab. A more exten-
sive introduction to preCICE is given in Chourdakis et al.
(2022).

The FMI standard (Blochwitz et al. 2011) defines dif-
ferent types of FMU models. They share a similar inter-
face, but implement different functionalities. Model Ex-
change FMUs hold the model equations and present them
to an external solver algorithm. Co-Simulation FMUs
hold the model equations and the solver algorithms. As
such, they can compute the next time step on their own.
Scheduled Execution FMUs were introduced with FMI v3
(Junghanns et al. 2021) and hold different model parti-
tions, which are accessed by an external scheduler. We
only consider the coupling of Co-Simulation FMUs in this
work.

The Python library FMPy2 can be used to load, exe-
cute and steer FMU models with Python. We choose to
use FMPy over other libraries such as PyFMI (Andersson,
Akesson, and Führer 2016) and fmipp due to its easy in-
stallation and usability. An overview of many further FMI
tools can be found on the FMI website3.

2.2 Concept of the preCICE-FMI runner
The preCICE-FMI runner is a new piece of software,
which connects FMI and preCICE. It uses FMPy to load

2https://fmpy.readthedocs.io/en/latest/
3https://fmi-standard.org/tools/

A preCICE-FMI Runner to Couple FMUs to PDE-Based Simulations

480 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204479



and execute any FMU and preCICE to couple the simu-
lation. The concept is explained in the simplified code
in Figure 4. First, the runner script imports and initial-
izes both FMPy and preCICE (lines 1-9). This includes
loading the FMU, setting initial simulation parameters and
preparing the communication to other participants. The
main loop (lines 11-29) executes the coupled simulation.
The program reads data from preCICE (line 16) and writes
it to the FMU model (line 18). The model can now com-
pute the next time step (line 20). Afterwards, the pro-
gram reads the new results (line 22) and writes them to
preCICE (line 24). Finally, preCICE advances the simu-
lation as a whole and communicates data with other par-
ticipant (line 26). Here, preCICE also needs to know how
much the FMU model advanced in time to synchronize all
participants. This is the main simulation mechanism used
for both explicit and implicit coupling. Implicit coupling,
however, requires one more feature: the option to repeat a
time step. The solver state can be stored (line 14) and re-
set (line 29) to iterate over a time step. preCICE indicates
whether this is necessary or not (lines 12, 27). Finally,
preCICE and FMPy are terminated (lines 31-32) to close
the communication channels and release the FMU. The
software is developed on GitHub4 and documented in the
preCICE user documentation5.

2.3 Functionalities and limitations of the
preCICE-FMI runner

The ideal coupling tool should support the full function-
ality of both preCICE and FMPy. It should work with
any co-simulation FMU and should be configurable at run-
time. The software has to be well-documented and include
tests to guardrail further development. This section gives
insight into the abilities, limitations, and configuration of
v0.1 of the preCICE-FMI runner.

The software is available for preCICE v2 and compat-
ible with FMI 1, 2, and 3. It supports explicit and im-
plict coupling schemes, including acceleration. It is con-
figurable at runtime via two .json files and can be adapted
to different FMU models. Time-dependent input signals
can be set, output signals are stored as timeseries. The
tool is easy to install and comes with a regression test.

A major difference in the coupling of two PDE solvers
compared to the coupling of a PDE solver to an FMU is the
role of the mesh. For PDE-PDE coupling, the exchanged
data is spatial for both solvers and mapped accordingly.
However, many FMUs can not deal with spatially resolved
data but are designed to receive signal data. To enable the
coupling of PDE solvers to such FMUs, we use the map-
ping capabilities of preCICE: spatial data from one mesh
is mapped to a single vertex on another mesh to create sig-
nal data and vice versa.

As a result, data exchange is limited to one vertex.
Moreover, the exchange of multiple data points and gra-

4https://github.com/precice/fmi-runner
5https://precice.org/tooling-fmi-runner.html

1 import fmpy
2 import precice
3 # FMU Setup
4 fmu = fmpy.fmi3.FMU3Slave(...)
5 fmu.instantiate()
6 # preCICE Setup
7 interface = precice.Interface(...)
8 ...
9 dt = interface.initialize()

10 # main time loop
11 while interface.coupling_ongoing():
12 if interface.action_required(...):
13 # Save state (implicit coupling)
14 state_cp = fmu.getFMUstate()
15 # Get read data from preCICE
16 interface.read_vector_data(...)
17 # Set read_data in FMU
18 fmu.setFloat64(...)
19 # Compute next time step
20 fmu.doStep(t,dt)
21 # Get write_data from FMU
22 write_data = fmu.getFloat64(...)
23 # Send write_data to preCICE
24 interface.write_vector_data(...)
25 # Advance preCICE in time
26 dt = interface.advance(dt)
27 if interface.action_required(...):
28 # Load state (implicit coupling)
29 fmu.setFMUstate(state_cp)
30

31 interface.finalize()
32 fmu.terminate()

Figure 4. Concept of the FMI runner: The script utilizes the
library FMPy to execute the FMU and calls the preCICE API to
couple the simulation. For conciseness, API calls are simplified.

dient information is not yet supported. Also, no internal
errors of the FMU model are logged. Finally, the runner
software can currently only be executed in serial.

To explain the configuration of the runner, we as-
sume a FMU model Suspension.fmu, which con-
tains the model equations for a spring-damper system.
It should be coupled via preCICE to receive the vari-
able force from another participant, calculate the dis-
placement internally, and send the variable position
back. The configuration file fmi-settings.json, shown in
Figure 5, holds the settings for FMPy. The dictionary
simulation_params (lines 2-9) is used to choose the
FMU model and set the read and write variables. A
CSV file can be set to store results. The dictionaries
model_params and initial_conditions (lines
10-16) allow setting model parameters before the sim-
ulation start. Time-dependent input signals are set in
input_signals (line 17-23). In this case, the vari-
able damping_coeff is initialized with value 0.0 and

Session 5-A: New features of the Modelica language and of FMI 2

DOI
10.3384/ecp204479

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

481



increases to value 5.0 at t = 2.0.
To execute the coupling, the runner needs some infor-

mation on how to interact with preCICE. The file precice-
settings.json (Figure 6) points the runner to the global con-
figuration file of preCICE shared with all participants. The
following entries define which participant the runner is,
which mesh it owns, and which preCICE variables are ac-
cessed.

1 {
2 "simulation_params": {
3 "fmu_file": "../Suspension.fmu",
4 "fmu_read_data": ["force"],
5 "fmu_write_data":["position"],
6 "fmu_instance": "suspension_1",
7 "output_file": "./output.csv",
8 "output": ["position"]
9 },

10 "model_params": {
11 "apply_filter": true,
12 "spring_coeff": 65.0
13 },
14 "initial_conditions": {
15 ...
16 },
17 "input_signals": {
18 "names":["time", "damping_coef"],
19 "data": [
20 [0.0, 0.0],
21 [2.0, 5.0]
22 ]
23 }
24 }

Figure 5. Example for fmi-settings.json

1 {
2 "coupling_params": {
3 "config_file": "../config.xml",
4 "participant": "Suspension",
5 "mesh_name": "Suspension-Mesh",
6 "read_data": {"name": "Force"},
7 "write_data": {"name": "Position"}
8 }
9 }

Figure 6. Example for precice-settings.json

3 Example cases
Two example cases show the functionality of the
preCICE-FMI runner. First, the simulation of a partitioned
mass-spring oscillator system demonstrates the coupling
of two ODE systems. The obtained results are compared
to a numerical simulation in Python and an analytical so-

lution. Second, the fluid-structure interaction of a moving
cylinder is adapted to include a FMU model for control-
ling the movement and compared to reference results from
literature. The case files are available for reproduction.6

3.1 Partitioned mass-spring oscillator system
We assume an ideal mass-spring system (Schüller et al.
2022) as shown in Figure 8. Three springs k1, k12, and
k2 connect two masses m1 and m2 with each other and
two fixed walls. The variables u1 and u2 denote the posi-
tions of the masses. To create a partitioned system, spring
k12 is cut in the middle. The resulting subsystems ex-
change interface forces F1 and F2. The system is adapt-
able to perform different kinds of oscillations. We fol-
low Schüller et al. (2022) and set the spring stiffness to
k1 = k2 = 4π2N/m and k12 = 16π2N/m, while the two
masses are set to m1 = m2 = 1kg. Additionally, the initial
conditions are chosen as

u1(0) = 1 u̇1(0) = 0
u2(0) = 0 u̇2(0) = 0

This setup has the analytical solution depicted in Figure
7. The two masses oscillate with a period of TP = 1s.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

t

u(
t)

u1
u2

Figure 7. Analytical solution of the mass-spring system
(Schüller et al. 2022). The plot shows the displacements u1 and
u2 for the initial conditions u1(0) = 1, u̇1 = 0 and u2(0) = 0, u̇2 =
0.

We use this testcase to compare an FMU-based imple-
mentation executed with the preCICE-FMI runner and an
existing implementation in Python (Schüller et al. 2022).
Both implementations can be coupled to themselves or
to one another. We end up with four possible combina-
tions: runner-runner, Python-Python, runner-Python, and
Python-runner. Moreover, we compare against the analyt-
ical solution.

6https://doi.org/10.18419/darus-3549

A preCICE-FMI Runner to Couple FMUs to PDE-Based Simulations

482 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204479



k1

m1

k12

u1 u2

F1 F2 k12

m2

k2

Figure 8. Mass-spring system: The springs k1, k12 and k2 connect the two masses m1 and m2 which have the positions u1 and u2.
The middle spring k12 is cut in half to create a partitioned setup with two subsystems that exchange interface forces F1 and F2.

Both implementations use the Newmark-β method
(Newmark 1959) with β = 1

4 and γ = 1
2 for time integra-

tion. A serial-implicit coupling with Aitken acceleration
is used. The simulation time is set to T = 5s with a time
step of ∆t = 0.005s. A more extended description is given
in Willeke (2023).

The results in Figure 9 show the trajectory of m1. No
differences are visible between all four possible combi-
nations. Furthermore, all combinations match the analyt-
ical solution well. For a more accurate comparison, the
maximum norm ‖e‖

∞
between analytical solution and nu-

meric result for u1 is calculated over all time steps. The
maximum serves as a worst-case approximation. The cal-
culated error ‖e(u1)‖∞

≈ 3.48× 10−2 is identical for the
FMU and the Python implementation up to a precision of
10−5.

−1 −0.5 0 0.5 1

−10

−5

0

5

10

u1

u̇ 1

Trajectory (u1, u̇1), δ t = 0.005s, T = 5s

analytic
runner-runner
Python-Python

Figure 9. Comparison of different implementations for the
mass-spring oscillator system. Velocity u̇1 is plotted over posi-
tion u1 to show the trajectory of m1. The results from a coupling
of both the runner and the Python solver to itself have no visible
differences and track the analytical solution well. The results for
the cross-combinations runner-Python and Python-runner show
no visual difference and are omitted for simplicity.

3.2 Flow around a moving cylinder
As a second example, consider the flow in a channel
around a cylinder as shown in Figure 11. The cylinder
with diameter D and mass m is not fixed in its position
y. Instead, the cylinder is mounted upon a spring-damper
system with spring stiffness k and damper coefficient d.
The flow with velocity v0 induces vortex shedding be-
hind the cylinder. This leads to varying lift forces and
results in an oscillation of the cylinder position y. This
setup has been used as a test case for numerical simula-
tions (Placzek, Sigrist, and Hamdouni 2009) and is es-
pecially interesting because experimental reference data
is available (Anagnostopoulus and Bearman 1992). The
experimentalists report lock-in effects for the cylinder os-
cillation for Reynolds numbers between 104 < Re < 126
with the highest excitation at the lower end. For our simu-
lation, we chose a Reynolds number of Re = 108.83. The
remaining system parameters are set to m = 0.03575kg,
d = 0.0043N/s and k = 69.48N/m. All are in accordance
with the referenced literature. We further adapt the case to
be able to move the root point of the spring u (Sicklinger
2014). Now, the spring force acting on the cylinder can be
actively controlled by adjusting u.

Figure 10. Coupling topology for the flow around a moving
cylinder example: Three participants are coupled in two bi-
coupling schemes. The fluid participant and the spring-damper
participant exchange lift force F and cylinder displacement y.
The spring-damper participant and the controller exchange dis-
placement y and spring root displacement u.

The goal of this setup is to couple a controller FMU to
a PDE-based simulation. The FMU holds the equations
of a Proportional-Integrative-Derivative (PID) controller
(Ang, Chong, and Li 2005). It reads the displacement of
the cylinder y and tries to minimize it by setting the root
point of the spring u.

Session 5-A: New features of the Modelica language and of FMI 2

DOI
10.3384/ecp204479

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

483



16.5D 50D

16.5D

16.5D

u
kd

m
y

D

v0

Figure 11. Case setup for flow around a moving cylinder: The object is mounted upon a spring-damper system, which allows it to
move in y-direction. The root point of the spring u can be moved to vary the force acting on the cylinder.

The spring-damper system itself is calculated in a sep-
arate Python program, while the fluid flow is computed
with the CFD program OpenFOAM. The resulting cou-
pling topology is shown in Figure 10. Two explicit bi-
coupling schemes are combined. A fitting mapping con-
figuration ensures the transition from the spatial domain
in OpenFOAM to the signal domain in the FMU.

39.5 40 40.5 41

−4

−2

0

2

4

·10−4

time [s]

di
sp

la
ce

m
en

t[
m

]

y: cylinder
u: spring

Figure 12. Cylinder displacement with activation of the PID
controller: The cylinder oscillates in a stable state until the con-
troller is activated at T = 40s. This reduces the displacement y
by orders of magnitude.

Figure 12 shows the simulation results obtained with a
time step of ∆t = 0.0001s. First, the controller is deacti-
vated until the cylinder has reached a state of stable oscil-
lation. The displacement has an amplitude of ŷ= 0.48mm,
which is close to the reference amplitude of ŷre f = 0.6mm.

The differences may be attributed to the explicit solver
in the spring-damper system and the explicit coupling
scheme, both of which are implicit in the reference simula-
tion. The PID controller is activated at T = 40s. The con-
trol gains are set to KP = 0.02, KI = 0.02 and KD = 0.01 to
ensure a robust transient behaviour (Sicklinger 2014). The
cylinder displacement is reduced by orders of magnitude
with a fast transition phase.

4 Conclusions
We presented the preCICE-FMI runner, a new software to
couple FMU models to PDEs. The software loads and ex-
ecutes FMU models and calls preCICE to execute the cou-
pling. It is written in Python to leverage the Python pack-
age FMPy and the preCICE Python bindings. The run-
ner software is configured with two settings files, enabling
different simulation scenarios. An easy, standard installa-
tion process lowers the entry barrier for new users. The
preCICE-FMI runner is compatible with co-simulation
FMUs of FMI versions 1, 2, and 3 and preCICE version 2.
It supports explicit and implicit coupling via preCICE, as
well as the use of acceleration methods. Time-dependent
input signals can be set for the FMU model during simu-
lation. Output signals from the FMU are stored for post-
processing.

Two example cases introduced the functionalities of the
runner software. The partitioned simulation of a mass-
spring oscillator system showed good agreement with an-
other numerical solver and an analytical solution. The
simulation of the flow around a moving cylinder was cou-
pled to a FMU-based control algorithm and showed qual-
itatively meaningful results.

The new software is focused on providing a general
coupling of co-simulation FMUs to PDE-based solvers. It
enables plug-and-play coupling to many popular solvers

A preCICE-FMI Runner to Couple FMUs to PDE-Based Simulations

484 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204479



thanks to the preCICE library approach. The software is
documented on precice.org and the presented test cases
are available for reproduction. Some limitations, such as
the lack of error logging or full mesh exchange remain.

FMI is a widely used industry standard for the co-
simulation of cyber-physical systems. preCICE, on the
other hand, has a growing user base in academia and in-
dustry focused on high-fidelity multi-physics applications.
The preCICE-FMI runner connects these two communi-
ties. With our work, we hope to spark a discussion about
the specific needs of both communities to guide further
developments.

Acknowledgements
Many thanks to Mosayeb Shams from Heriot-Watt Uni-
versity, UK, who shared his expertise on OpenFOAM with
us. Great thanks to Ishaan Deshai, University of Stuttgart,
for his manifold support throughout the project.
Funded by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence
Strategy – EXC 2075 – 390740016. We acknowledge
the support by the Stuttgart Center for Simulation Science
(SimTech).

References
Anagnostopoulus, P. and P.W. Bearman (1992). “Response

Characteristics of a vortex-excited cylinder at low Reynolds
numbers”. In: Journal of Fluids and Structures 6.1, pp. 39–
50. DOI: 10.1016/0889-9746(92)90054-7.

Andersson, Christian, Johan Akesson, and Claus Führer (2016).
“PyFMI: A Python Package for Simulation of Coupled Dy-
namic Models with the Functional Mock-up Interface”. In:
Technical Report in Mathematical Sciences LUTFNA-5008-
2016.2.

Ang, Kiam Heong, G. Chong, and Yun Li (2005). “PID control
system analysis, design, and technology”. In: IEEE Transac-
tions on Control Systems Technology 13.4, pp. 559–563. DOI:
10.1109/TCST.2005.847331.

Blochwitz, T. et al. (2011). “The functional mockup interface for
tool independent exchange of simulation models”. In: Tech-
nical University; Dresden; Germany.

Bungartz, Hans-Joachim et al. (2015). “A plug-and-play cou-
pling approach for parallel multi-field simulations”. In: Com-
putational Mechanics 55, pp. 1119–1129. DOI: 10 . 1007 /
s00466-014-1113-2.

Chourdakis, G et al. (2022). “preCICE v2: A sustainable and
user-friendly coupling library [version 2; peer review: 2 ap-
proved]”. In: Open Research Europe 2.51. DOI: 10 .12688 /
openreseurope.14445.2.

Gatzhammer, B. (2014). “Efficient and Flexible Partitioned Sim-
ulation of Fluid-Structure Interactions”. PhD thesis. Techni-
cal University of Munich, pp. 1–183.

Gross, Markus et al. (2018). “Physics-dynamics coupling in
weather, climate, and Earth system models: Challenges and
recent progress”. English (US). In: Monthly Weather Review
146.11, pp. 3505–3544. DOI: 10.1175/MWR-D-17-0345.1.

Junghanns, A. et al. (2021). “The Functional Mock-up Interface
3.0 - New Features Enabling New Applications”. In: DOI: 10.
3384/ecp2118117.

Newmark, N. M. (1959). “A method of computation for struc-
tural dynamics”. In: J. Eng. Mech. Div.-ASCE 85.3, pp. 67–
94. DOI: 10.1061/JMCEA3.0000098.

Placzek, A., J.F. Sigrist, and A. Hamdouni (2009). “Numerical
Simulation of an oscillating cylinder in a cross-flow at low
Reynolds number: Forced and free oscillations”. In: Comput-
ers and Fluids 38.1, pp. 80–100. DOI: 10.1016/j.compfluid.
2008.01.007.

Schüller, Valentina et al. (2022-07). “A Simple Test Case for
Convergence Order in Time and Energy Conservation of
Black-Box Coupling Schemes”. In: DOI: 10 .23967/wccm-
apcom.2022.038.

Sicklinger, S.A. (2014). “Stabilized Co-Simulation of Coupled
Problems including Fields and Signals”. PhD thesis. Techni-
cal University of Munich, pp. 126–135. DOI: 10.13140/2.1.
1103.7762.

Sprague, M. A., J. M. Jonkman, and B. J. Jonkman (2015).
“FAST Modular Framework for Wind Turbine Simulation:
New Algorithms and Numerical Examples”. In: SciTech
2015: 33rd Wind Energy Symposium.

Uekermann, B. (2016). “Partitioned Fluid-Structure Interac-
tion on Massively Parallel Systems”. PhD thesis. Techni-
cal University of Munich, pp. 62–70. DOI: 10 . 14459 /
2016md1320661.

Willeke, Leonard (2023). A preCICE-FMI Runner to Couple
Controller Models to PDEs. Master thesis. DOI: 10.18419/
opus-13130.

Session 5-A: New features of the Modelica language and of FMI 2

DOI
10.3384/ecp204479

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

485


