
The Common Requirement Modeling Language

Daniel Bouskela1 Lena Buffoni2 Audrey Jardin1 Vince Molnár3 Adrian Pop2 Ármin Zavada4

1Electricité de France, France, {daniel.bouskela,audrey.jardin}@edf.fr
2Linköping University, Sweden, {lena.buffoni,adrian.pop}@liu.se

3Budapest University of Technology and Economics, Hungary molnarv@mit.bme.hu
3IncQuery Labs cPlc., Hungary armin.zavada@incquerylabs.com

Abstract
CRML (the Common Requirement Modeling Language)
is a new language for the formal expression of require-
ments. The goal is to release the language as an open stan-
dard integrated into the open source modeling and simu-
lation tool OpenModelica and interoperable with the open
systems engineering standard SysMLv2. CRML allows
for the expression of requirements as multidisciplinary
spatiotemporal constraints that can be verified against sys-
tem design by co-simulating requirements models with
behavioral models. The requirements models must be eas-
ily legible and sharable between disciplines and stakehold-
ers and must capture realistic constraints on the system, in-
cluding time-dependent constraints with probabilistic cri-
teria, in recognition of the fact that no constraint can be
fulfilled at any time at any cost. The theoretical foun-
dation of the language lies on 4-valued Boolean algebra,
set theory and function theory. The coupling of the re-
quirements models to the behavioral models is obtained
through the specification of bindings, the automatic gen-
eration of Modelica code from the CRML model and
use of the FMI and SSP standards. CRML and the pro-
posed methodology is compatible with SysMLv2, form-
ing a comprehensive workflow and tool-chain encompass-
ing requirement analysis, system design and Validation
and Verification (V&V). The final objective is to facili-
tate the demonstration of correctness of system behavior
against assumptions and requirements by building a work-
flow around Model-Driven Engineering and Open Stan-
dards for automating the creation of verification simula-
tors.
Keywords: cyber-physical systems, systems engineering,
requirement modelling, systems verification, Modelica,
FMI, SSP, SysML

1 Motivations and Challenges
Large numbers of stakeholders are involved in the design
and operation of complex cyber-physical systems (CPS),
especially but not exclusively in the energy sector. When
working on a common system, stakeholders tend to ex-
press requirements from their own perspective, resulting
in a global set of constraints on the system that can be
conflicting, even contradictory. Also, to avoid questioning

the motivations of poorly-documented past design deci-
sions, new requirements are often added without question-
ing the soundness of existing ones. This results in over-
specifications, delays, and cost overruns. The search for
a common agreement between stakeholders that preserves
degrees of freedom for optimal design is always difficult
and lengthy (Azzouzi et al. 2022).

CRML (Common Requirement Modeling Language) is
a new language for the formal expression of requirements
collaboratively developed by different industrial and aca-
demic stakeholders. The goal is to release CRML as an
open standard to offer stakeholders from different do-
mains and disciplines a common language to express,
organize, negotiate, and simulate requirements in or-
der to find the best compromise that suits their needs
while complying with their mutual commitments.

This goal raises the question of expressing CPS require-
ments that are realistic, understandable, and verifiable by
and between stakeholders. More precisely, it means that
the underlying formal language and method associated
have to tackle the following challenges:

• The language should provide comprehensive de-
scriptions of all spatiotemporal assumptions and
constraints that bear on the system under study.
Constraints can be of all kinds and may vary depend-
ing on the system operating mode: physical, perfor-
mance (reliability, availability, economical. . .), and
regulatory (safety, security, environmental, reserve
capacity for grid balancing, grid access, and priority
dispatch. . .).

• The requirements models must be easily legible
and unambiguous. It is expected that a requirement
language common to all stakeholders regardless of
their expertise and business domain will improve the
productivity of studies. To that end, the syntax must
be close to natural language.

• CPSs exhibit strong physical aspects. Therefore,
particular attention must be paid to physical as-
pects: physical units, real-time, events, synchronism
and asynchronism, components and objects, failures,
and uncertainties. Time-dependent continuous and
discrete variables must be dealt with in a hybrid syn-
chronous and asynchronous framework. This goes

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

497

Verification model
Behavioral

model

Behavior

Behavioral
model

Behavior

Behavioral
model

Behavior

Observed by

C
om

plies
w

ith

Complies with

Requirement
model

Requirement
s

Behavioral
model

Behavior

Behavioral
model

Behavior

Architectural
model

Design

Observer
Observer
Observer

Observed by

O
bserved by

Binding

Figure 1. Architecture of the verification model

well beyond finite automata that are the reference in
model checking (Baier and Katoen 2008).

• Verification should be automated as much as
possible all along the system lifecycle by co-
simulating requirements models with solution
models of any kind and growing complexity rang-
ing from min and max limits (that represent autho-
rized operation domains), to finite state automata
(that represent logical system operation), and to mul-
tidomain physical 0D/1D/2D/3D models (that repre-
sent detailed system physical behavior).

The verification model (Fig. 1), which tells whether
requirements are satisfied or not, consists of the re-
quirement models, the solution models (behavioral
and architectural), the observers of the solution mod-
els, and the links between observers and require-
ments, which are called “bindings”. Requirements
models with observers act as virtual sensors to detect
possible requirement violations of the solution mod-
els. Behavioral models capture the dynamic behavior
of the system in various forms (state automata, alge-
braic or differential equations), whereas architectural
models carry static information about the system.

• Probabilistic criteria must be added to require-
ments because no realistic requirement can be sat-
isfied with absolute certainty: in general, it is not
enough to specify what should happen in nominal
mode, one should also define what should happen in
the event of specific hazards and with which proba-
bility the real system will not enter in one of these
cases (i.e. how reliable the system should be). These
stochastic requirements have to be verified against
stochastic solution models. Monte Carlo techniques
could hence be used to simulate the verification mod-
els.

2 State of the Art
The current state of the art regarding the above challenges
tends to consider them separately. Consequently, there is

no integrated tool able to deal with all of them in a consis-
tent way. The main gaps concern the links between logi-
cal design, physical design, and dependability analysis as
they currently involve completely different methods and
tools: logical design uses methods such as UML (OMG
2017) and SysML (OMG 2023) based on first-order logic
that originates from the software industry. Physical de-
sign uses tools such as Modelica tools, Matlab, Simcen-
ter Amesim, etc. that deal with physical laws in the form
of DAEs (Differential-Algebraic Equations) (or block dia-
grams) and dependability analysis uses probabilistic meth-
ods.

2.1 Limitations of Requirement Modeling
Tools for CPS

Regarding the modelling of requirements no convincing
solution exists to express CPS requirements independently
from design solutions in a formal way. Current state-of-
the-art tools hence focus on expressing requirements in
natural language such as in Rational DOORS, Polarion,
etc. This comes from the fact that the existing formal re-
quirements modelling methods such as LTL (Linear Tem-
poral Logic) and CTL (Computation Tree Logic) (Baier
and Katoen 2008), timed (Alur 1999) and hybrid (Hen-
zinger 2000) automata or UML/SysML state behavioral
diagrams (OMG 2019) tend to bear on abstractions of the
system in the form of state machines, which already ex-
press a solution and hence is not appropriate to correctly
deal with CPS physical aspects. For instance, with LTL,
one can prove that a system will always or eventually pass
through a given state. Timed automata can handle real-
time, but only when the states are known in advance. This
corresponds to an idealistic view of the system that is not
for instance subject to wear or external aggression. Hence
they do not consider situations where existing states are
subject to gradual drift due to wear, or new states appear
due to unexpected events. In other words, CPS contain
finite-state machines, but they cannot as a whole be con-
sidered as finite-state machines. Other limitations could
be quoted such as:

• Lack of object-orientation: temporal constraints
cannot be (easily) associated to the system architec-
ture (i.e. its decomposition into subsystems and com-
ponents).

• Difficult mathematical syntax: although mathe-
matical syntax (and semantics) is necessary to per-
form formal proofs (model checking) or even model
simulation, it is difficult to use on a day-to-day basis
for the whole system.

Various attempts have been made to alleviate these lim-
itations, for example by extending OCL (Object Con-
straint Language) with temporal constraints, but none of
them are used convincingly in practice (Kanso and Taha
2013). Therefore, formal requirements languages are usu-
ally only used for small (sub)systems with critical safety

The Common Requirement Modeling Language

498 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

concerns, and they cover only the very early phases of sys-
tem design when (only) the logic of the system is investi-
gated.

The relatively new SysPhS (SysML Extension for Phys-
ical Interaction and Signal Flow Simulation) profile for
SysML (OMG 2021) provides extensions to model phys-
ical interaction and flows independently of the simulation
platform. It includes a textual syntax for mathematical ex-
pressions as well as reusable simulation elements. It also
defines translations to Modelica and Simulink. Along with
the previous approaches, SysPhS also focuses on the pre-
cise modeling of specific designs and not the specification
of a design envelope.

The new SysMLv2 language (OMG 2023) will feature
a native expression language and better modeling of re-
quirements. It provides a mechanism to bind requirements
to design artifacts to formalize them in terms of the chosen
subject. Furthermore, analysis and verification cases pro-
vide a way to model evaluation and verification steps, and
the language supports modeling spatiotemporal aspects as
well. While this is much closer to our requirements, na-
tive constructs in SysMLv2 are not designed to fully cover
aspects like the modeling of time-dependent hybrid sys-
tems, probabilistic criteria, or automated verification. The
extensibility of the language, however, provides a way for
us to make the two languages interoperable.

2.2 Why Modelica is Natively Suited for CPS
Modeling but Not for Requirements?

Modelica (Mattsson, Elmqvist, and Otter 1998) is a lan-
guage that comes with a convenient graphical interface fit
for the description of the physical real-time behavior of
CPS. However, Modelica does not allow one to express
constraints on a system when its architecture is partially
unknown (for example express a constraint on a valve,
when it is unknown how many valves will be in the final
design), and expresses the behavior of the system in the
form of DAEs (Differential-Algebraic equations) rather
than the constraints on the behavior of the system. As a
consequence Modelica is insufficient to express all that is
needed at the early design phases, especially when one
wants to specify only the acceptable envelopes without
going into realization details, so that the solution space
is refined progressively, rather than committing to a single
design decision that fits the criteria.

Graph-based design languages with their capability to
explicitly modify product topology and parametrics are
on the one hand partially able to fill this gap, but need
to be extended on the other hand by more powerful formal
methods for requirements processing, tracing and consis-
tency checking (as illustrated in Section 2.1 with SysML).

Therefore, connecting formal requirement modeling
languages such as the ones mentioned above directly to
Modelica does not solve the general problem of having a
model-based methodology that covers the whole engineer-
ing lifecycle for CPS, as such kind of solution is only valid
if the system is considered as a state-machine and for the

engineering phases past the detailed design phase (which
is somewhat contradictory).

2.3 CRML Origin and History
As previously mentioned, a Modelica model expresses the
behavior of the system but does not say for what purpose
the model is made. For instance, the model of a cooling
system features heat exchangers, but does not say anything
about the properties of the system that we want to verify,
e.g. whether the flow velocity inside the heat exchanger
stays below a given threshold. To alleviate the problem,
one of the ITEA EUROSYSLIB project (2007 – 2010)
objectives was to investigate the possibility of associat-
ing constraints that represent requirements to a Modelica
model. For the above example, that meant associating the
constraint that the flow velocity must not exceed a given
threshold to the model of a heat exchanger. The first idea
was to express this kind of constraint directly in the Mod-
elica model, for instance in a dedicated ‘constraint’ Mod-
elica section (similarly to the existing ‘equation’ and ‘al-
gorithm’ sections). However, this solution had the draw-
back to modify model components in order to handle spe-
cific constraints, which is not consistent with the generic
nature of model components. Besides, with this solution
there was no way to express something like ‘No pump in
the system must cavitate’ or ‘At least one pump in the sys-
tem must be started’, for two reasons: (1) The notion of
quantifier does not exist in Modelica, so the constraint
must be written taking into account the current topology
of the circuit (i.e. the number of pumps in the system), and
modified when the model topology is changed (i.e. when
the number of pumps changes), even if the meaning stays
the same. (2) The notion of a pump being started or not is
usually not present in the Modelica model, because it ex-
presses the physical state of the pump, not its operational
state. It becomes clear then that the requirement model
must be separated from the behavioral model. The rest
of the EUROSYSLIB project was then mainly devoted to
look at different languages for expressing the properties of
systems.

As no interesting requirement modelling language
emerged, the idea to create a new language came within
the ITEA MODRIO project (2012 – 2016) with the fol-
lowing aspects in mind: (1) the syntax must be close to
natural language, (2) the language must handle time peri-
ods and probabilistic aspects, (3) the language must han-
dle quantifiers (i.e., sets) and be object-oriented, and (4)
it should be possible to automatically generate test se-
quences from the constraints that represent assumptions
on the system. It resulted in the specification of a new lan-
guage called FORM-L (for Formal Requirement Model-
ing Language), written by EDF (Nguyen 2014). In parallel
other works emerged around the same period with rather
close similarities: TOCL (a temporal extension of OCL)
and Stimulus (Dassault Systèmes). Regarding TOCL,
there is no known implementation and it seems that there
is no ongoing effort. For Stimulus, it appears that the tool

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

499

is more focused on debugging requirements for a partic-
ular design and express them as temporal stochastic state
machines, which is less general than FORM-L which aims
at expressing requirements that are generic and that could
be refined throughout the whole engineering cycle to eval-
uate multiple design solutions.

In 2013, FORM-L was proposed to the Modelica com-
munity (most of the Modelica community was partici-
pating in the MODRIO project, except OpenModelica),
which offered to extend Modelica with the notion of
‘blocks as functions’ and develop a new Modelica library
for the modelling of requirements (called Modelica Re-
quirements) (Otter et al. 2015). This library proved to be
unsatisfactory because the time period and the condition
to be verified were mixed within the same block. There-
fore, it was impossible to have a stable library because
of the combinatorial explosion of possibilities of associ-
ating conditions with time periods (a new block would
have to be developed each time a new case occurs, which
would be almost as frequent as when a new requirement
is written). Therefore, EDF decided to develop a new re-
quirement Modelica library called ReqSysPro that would
clearly separate time periods from conditions, so that a re-
quirement would be obtained by associating a block rep-
resenting a time period to a block representing a condi-
tion (and not having the two aspects in the same block).
The first idea was to use state machines to evaluate re-
quirements: a requirement would pass through different
states, starting from ‘Untested’ until it becomes either
‘Satisfied’ or ‘Violated’. The problem with this solution
is (1) that it was not possible to find a single state ma-
chine that would handle all possible requirements, (2) that
it was not possible to combine requirements together to
form more complex requirements such as ‘Requirement1
and Requirement2’. Then the idea came to use Boolean
logic instead and, more precisely, a 4-value Boolean logic
called ETL (Extended Temporal Language) (Bouskela and
Jardin 2018). A new version of ReqSysPro was devel-
oped successfully (the only difficulty was the handling of
time periods that needs dynamic allocation of memory)
that was able to handle the temporal and condition aspects
of FORM-L and to evaluate requirements to one of the
four values {undefined, undecided, false, true}. To handle
the other aspects (except the probabilistic aspects), it be-
came necessary to have a FORM-L compiler. A prototype
of a FORM-L compiler was developed by Inria and Sci-
works on an EDF contract with a first operational version
released in 2021. It demonstrated the feasibility of having
a FORM-L to Modelica compiler. However, the compiler
suffers from the drawback that it must be modified each
time a new function is added to FORM-L. To alleviate this
problem, the specification of a new language CRML was
released at the end of 2021 within the ITEA project EM-
BRACE (2019 – 2022). The idea was to add the notion of
functions (called operators in CRML) to be able to build
complex functions from a limited number of elementary
native functions as described in the following sections.

CRML

Operators
Types

Classes
Objects

Sets
Booleans

Events
Clocks

Time
periods

Requirements

CRML function libraries

ETL FORM-L

Evaluation of requirements Functions to express requirements

Reals
Integers
Strings

Figure 2. Architecture of the CRML language

3 The CRML Language
The language uses the concept of requirement made
of four parts as introduced in the FORM-L lan-
guage (Bouskela, Nguyen, and Jardin 2017; Nguyen
2019):

Spatial locator (WHERE): it defines the objects that are
subject to the requirement. “Spatial” means that the ob-
jects are selected by some criteria on their properties that
can be time-dependent.

Time locator (WHEN): it defines the time intervals
when the requirements should be satisfied. A time inter-
val is initiated when an event, called the opening event,
occurs, and terminated when an event, called the closing
event, occurs. An event occurs when a condition becomes
true. A time locator can be composed of multiple time
intervals that can overlap if several opening events occur
before the closing event. In the following, the term ‘time
period’ will be used as a synonym for ‘time locator’.

Condition to be fulfilled (WHAT): it is the condition to
be verified by the objects selected with the spatial locator
within the bounds of the time periods selected by the time
locator.

Probabilistic constraint (HOW_WELL): it defines a
probabilistic constraint on the condition to be fulfilled.

The general architecture of the language is given in
Fig. 2. Time periods and probabilistic constraints consti-
tute the novelty of the approach. They are required to han-
dle realistic requirements, because realistic requirements
cannot be satisfied anytime at any cost. Time periods de-
fine when requirements are in effect and the time delay
to satisfy them. Probabilistic constraints define some tol-
erance for the system to fail complying with the require-
ments. These two aspects have profound technical and
economic impact on the design and operation of the sys-
tem.

Classes, objects, sets and operators allow one to define
the system structure and the objects properties, and enable
to express generic requirements on sets of objects selected
by their properties that can depend on time. All definitions
can be stored in libraries for further reuse. There are two
operator libraries provided with the language: the FORM-
L library that implements the aspects of the FORM-L lan-
guage that are related to requirement modelling (Nguyen
2019), and the ETL library that implements the low-level

The Common Requirement Modeling Language

500 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

functions for requirement evaluation (Bouskela and Jardin
2018).

In the following, we present the salient aspects of
CRML through the following example of a requirement:
“During operation, the system should always stay within
its operating domain. However, if the system fails to
stay within its operating domain, then it should not stay
outside of its operating domain for more than ten min-
utes more than three times per year, with a probability
of success of 99.99%.” First, we use a mathematical no-
tation to explain the semantics of requirements. Then,
starting from Section 3.3, we introduce the CRML syn-
tax. The full CRML specification can be found at http:
//crml-standard.org.

3.1 Clocks and Time Periods
To express formally the example, we first define two
Boolean variables. The first one called b1 is true when
the system is in operation and false otherwise. The sec-
ond called b2 is true when the system operates within its
authorized operational domain and false otherwise. They
are both external variables, which means that their values
are given by an external behavioral model.
external Boolean b1;
external Boolean b2;

We then define the time period while the system is in
operation. The time period consists of possibly multiple
time intervals that start when b1 becomes true and end
when b1 becomes false. The event b1 becoming true is
denoted by b1 ↑. The event of b1 becoming false is de-
noted by b1 ↓. Thus b1 ↓= (¬b1) ↑. There are actually
two time periods of interest to express when the system is
in operation:

P1 = [b1 ↑,b1 ↓]
P2 = [b1 ↑,b1 ↓ [
P1 includes the opening and closing events, whereas

P2 includes the opening event, but excludes the closing
event. Note that there are in general several occurrences
of b1 ↑ so that P1 and P2 are composed of multiple time
intervals. The set of occurrences of an event is called a
clock. Therefore, b1 ↑ and b1 ↓ are clocks.

In general, time periods P are sets of time intervals ∆i
that can overlap. This is denoted by P = {∆i}1≤i≤n. In the
sequel, the opening and closing events of a time interval ∆i
are resp. denoted ∆i ↑ and ∆i ↓, and the clocks of opening
and closing events of a time period P are resp. denoted P ↑
and P ↓.

3.2 Requirements and 4-valued Boolean Logic
The following expression combines condition b2 with
time period P1 to form requirement R1 which states that
b2 should be true at any time instant along P1.

R1 = ensure(b2⊗P1)
R1 is a Boolean that is true when R1 is satisfied and

false when it is not satisfied. The sign ⊗ denotes that con-
dition b2 is combined with time period P1. The precise
meaning of ⊗ and ensure will be given in the sequel.

R2 ensures that the number of failures of R1 should not
exceed 3 over a sliding time period P3 of one year, that
continuously shifts over the time period while the sys-
tem is in operation. The failures of R1 corresponds to the
events R1 ↓. P3 is modelled as a time period composed
of time intervals of one year that start at each occurrence
of R1 ↓. Note that R1 ↓ cannot occur when the system is
not in operation. The formal expression of R2 states that
if a failure occurs at time t, there should not be more than
two additional failures before t +1 year, and that this con-
dition should be ensured at any time instant t while the
system is in operation. Thus, time intervals are not con-
tinuously created, but only when they are needed to verify
the requirement (i.e., when R1 fails).

P3 = [R1 ↓,R1 ↓+1year[
R2 = ensure(((count(R1 ↓,P3)<= 3)⊗P3)⊗P2)
R3 states that if R1 is not satisfied at time instant t, then

R1 should be satisfied at t + 10 mn, unless the end of P1
occurs before t +10 mn.

R3 = ensure(((¬R1 ∧ b1) =⇒ R1 ⊗ [R1 ↓,R1 ↓
+10mn])⊗P1)

Expressions are evaluated at each time instant t. R3 is
active within P1. A new time interval is created at each
occurrence of R1 ↓ while R3 is active. The purpose of
adding ∧b1 to the precondition ¬R1∧ b1 is to avoid R3
being undecided if P1 ends before 10 mn after a failure of
R1 (the meaning of undecided is given in the sequel).

R4 is the non-probabilistic version of the final require-
ment.

R4 = R1∧R2∧R3
R5 is the final requirement that corresponds to the prob-

ability of success of R4. The probability is evaluated at
b1 ↓ (when the system is stopped). The checkAtEnd func-
tion evaluates the probabilistic condition at the end of P1
(thus at b1 ↓).

R5 = checkAtEnd((prob(R4,b1 ↓)> 99.99%)⊗P1)
The reason why the satisfaction of R5 is evaluated at

b1 ↓, and not before, is because the probability of success
of R4 is not defined before b1 ↓.

We have so far only used logical functions with some el-
ementary arithmetic to formally express the requirement.
The question now is the mathematical type of a require-
ment and the meaning of ⊗. To clarify this, let us tem-
porarily take a simpler example of a requirement R: “The
project report must be completed before the end of the
project”. Before the start of the project, the requirement
is undefined, which means that the requirement is not ap-
plicable. After the start of the project and before the end
of the project, the requirement is undecided which means
that the requirement is applicable, but its outcome is un-
certain until either the report is completed before or at the
end of the time period (thus before the deadline or just
in time), in such case the requirement is satisfied, or not
completed until the end of the time period, in such case
the requirement is not satisfied (the report is late or can-
celed). Therefore, the requirement can take any value in
the set B= {true, f alse,undecided,unde f ined}.

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

501

The question now is whether variables of B comply
with the usual Boolean algebra. If the answer to this ques-
tion is positive, then requirements can be combined us-
ing the usual Boolean operators. It is very natural to as-
sign true to the satisfaction of a requirement, and there-
fore false to the non-satisfaction of a requirement. To find
the mathematical meaning of undecided and undefined, let
us assume that R is a logical combination of two require-
ments R1 and R2: R = R1opR2, where op is a binary
logical operation. R1 is undefined means that it is not ap-
plicable, and that its value should not affect the outcome
of the logical operation. Therefore, undefined is a neutral
element for any logical operation: R = R1opR2 = R2 for
any R2 if R1 is undefined.

R1 is undecided means it is not known whether it is true
or false. Therefore, if R1 is undecided then R = R1∧R2
is false if R2 is false and undecided if R2 is true or unde-
cided, and R = R1∨R2 is true if R2 is true and undecided
if R2 is false or undecided. The same argument applies to
find the value of ¬R: if R is undefined or undecided, then
R = ¬R. Of course, the standard Boolean algebra applies
if R1 and R2 are true or false.

It is then easy to verify that this algebra verifies the
De Morgan’s laws (such as ¬R1 ∧ ¬R2 = ¬(R1 ∨ R2))
and all other Boolean laws (including ¬(¬R) = R), ex-
cept the complements law (because R∧¬R = f alse is not
verified if R is undecided or undefined). Therefore, this
4-valued algebra can be considered as a Boolean algebra
that accommodates all standard logical operators with the
usual meaning (with some precaution regarding the com-
plements law). Then the logical implication operator is
defined as R1 =⇒ R2 ≡ ¬R1∨R2.

The main difference between the 4-valued and 2-valued
Boolean algebras is that time is taken into account with the
former: the requirement is undefined as long as the time
period it is associated with has not begun, and undecided
while inside the time period and before the decision can
be made whether it is satisfied or not. This event is called
the decision event. After the decision event, the require-
ment is true (satisfied) or false (not satisfied). Let us now
assume that the completion of the project report is mod-
eled by a Boolean C that tells whether the report has been
signed or not. Then C is a 2-valued Boolean that takes
the values true (the report is signed) or false (the report
is not signed). Obviously, at a given time instant t, the
value of the requirement R can be different from C, as R
can take the additional values undefined and undecided.
As explained before, the value of R results from a com-
bination of C with the time period P that corresponds to
the delay granted for the satisfaction of C. This is de-
noted R = C⊗P. Therefore, mathematically speaking, a
requirement is a function that associates a couple (C,P) to
R, where C is the condition of the requirement, P is the
time period of the requirement, and R is the value of the
requirement. The definition domain of this function can be
extended to conditions C that are 4-valued Booleans with-
out any difficulty. It is then possible to formally express

Events

Requirement

Boolean C

Events
P↑	and	P¯

R Boolean
C Ä PPeriodsPeriod P

Boolean

Boolean2 (true, false)

Boolean4 (true, false,
undecided, undefined)

Classical Boolean

Result of requirement
evaluation

Behavioral
model

Figure 3. The requirement factory

requirements on requirements, such as if requirement R1
fails, then requirement R2 should be satisfied within a
given time delay P : R = R1∧ (¬R1 =⇒ R2⊗P). Fig.
3 summarizes how requirements are built.

We are now interested in giving a formal definition for
the value of C ⊗ P. Let us consider first a time period
P = {∆1} composed of a single time interval ∆1. The
meaning of R = C ⊗P is that the decision whether C is
satisfied or not is made as soon as possible within ∆1, i.e.,
at the decision event. The decision event for C⊗P is de-
noted δ (C,∆1). From the decision event, if C is true or
false, then C ⊗P is true or false (it cannot be undefined
or undecided) and keeps its value until the next decision
event if any. For instance, if the condition C is that the
number p of events e ↑ within ∆1 should be less than a
fixed integer n, i.e. if C ≡ (p = count(e ↑,∆1) ≤ n), then
δ (C,∆1) = (p > n) ↑ ∨∆1 ↓ where a ↑ ∨b ↑ denotes the
clock containing the occurrences of events a ↑ and b ↑:
C⊗P is false as soon as p is larger than n within ∆1, oth-
erwise C ⊗P is true at the end of ∆1. For the condition
C ≡ (p > n), the same decision event applies but the out-
come is different: C⊗P is true as soon as p is larger than
n within ∆1, otherwise C⊗P is false at the end of ∆1. Note
that because the counter starts from p = 0, while p ≤ n, C
is false but C⊗P is undecided, thus in general C⊗P ̸=C.
Note that when writing (C,∆1)= a ↑∨b ↑, there are in fact
two decision events, a ↑ and b ↑. Unless it is something de-
sirable, one must be careful that if b ↑ occurs after a ↑, the
decision over C⊗P made at a ↑ is not reversed when b ↑
occurs. If the decision over C can be made at any time in-
stant within ∆1, then δ (C,∆1) = (C∨¬C) ↑ ∨∆1 ↓ . This
is the case if C is the satisfaction of another requirement R′

(i.e., if C ≡R′): C⊗P is true or false as soon as C becomes
true or false (if the decision over the satisfaction of a re-
quirement is not reversed). If the decision over C cannot
be made before the end of ∆1, then δ (C,∆1) = ∆1 ↓.

The function checkAtEnd(C⊗P) used in the example
means that δ (C,∆1) = ∆1 ↓. ensure(C ⊗ P) means that
C must be true all along ∆1, thus that it should never be
false within ∆1. This can be expressed as ensure(C⊗P) =
(count(C ↓,∆1)<= 0)⊗P∧C⊗ [∆1 ↑,∆1 ↑]. Within P, the
value of the requirement is undecided until the condition
is not verified, in such case it turns to false and stays false,

The Common Requirement Modeling Language

502 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

or until the end of P if the condition is always satisfied, in
such case it turns to true.

To evaluate C ⊗ P at time instant t, we consider two
temporal Boolean operators:

• A filter × with the following properties: a×b = b if
a is true, a×b = undecided otherwise.

• An accumulator + with the following properties:
a + b = b + a; a + a = a; unde f ined + a = a;
undecided+a= a if a is true or false; true+ f alse=
f alse;

The filter filters out all events that are not decision
events. The accumulator computes the value of C⊗P at
instant t taking into account the history of C⊗P. It ensures
that if C is false after the decision event, C⊗P will stay
false whatever the future values of C. For a fixed integer i
and P = ∆i, the value of C⊗P at t is

C ⊗ {∆i}(t) = unde f ined +
min{∆i↓,t}∫

τ=∆i↑
δ (C,∆i)(τ)×C(τ)dτ

The integral operator accumulates all values of the
Boolean integrand for all time steps dτ within ∆i until
t. For t occurring before ∆i ↑, the value of C ⊗ {∆i}
is undefined. For t occurring after ∆i ↑, the value of
C⊗{∆i} is undecided until the integrand is true or false.
This equation is generalized to a multiple time period
P = {∆i}1≤i≤n by taking the logical conjunction of all
C⊗{∆i}:

C⊗P(t) =
∧n

i=1C⊗{∆i}(t)
This equation states that the condition must be satisfied for
all time intervals of the time period. Then, provided that
for any condition C and time period P, we know how to
express δ (C,∆i), we can evaluate C⊗P, and consequently
we can evaluate any temporal CRML expression. The op-
erator ⊗ is expressed using elementary CRML temporal
operators on 4-valued Booleans that are implemented in
the ETL library using truth tables. This is why there is no
built-in operator in CRML for ⊗, and also no built-in type
for requirements. The operator ⊗ is used in high-level op-
erators such as ’while’ ’check count’, ’while’ ’ensure’ or
’while’ ’check at end’ that express different kinds of de-
cision events and constitute the FORM-L library. Such
high-level operators are used in Section 3.5. It is possible
to have user-defined types for requirements derived from
the built-in type Boolean. Types are introduced in Sec-
tion 3.3, and operators are introduced in Section 3.4. The
following sections detail these constructs with the CRML
syntax.

3.3 Types
User-defined types can be created from built-in types. For
instance, the types Requirement and Assumption can be
created from the type Boolean.

type Requirement is Boolean;
type Assumption is Boolean;

User-defined types can be used to define physical or mon-
etary units, the syntax of which is not detailed here. They
enable users to write expressions involving units such as

Pressure P is 1 bar + 1 mbar;

The value of P is computed in the unit system defined by
the type Pressure. An error is raised if the unit is wrong or
omitted.

3.4 Operators and Sets
Anything in CRML is a set or an element of a set. An el-
ement of a set has a fixed value, or a value returned by an
operator. Therefore, the CRML syntax is entirely based
on the notions of sets and functions. A CRML operator is
a standard mathematical function. Two syntaxes are pos-
sible: the traditional mathematical syntax and the natu-
ral language syntax. In the natural language syntax, the
names of user-defined operators are divided into snippets
enclosed between singe quotes, and the input arguments
are placed in front or after each snippet. Names of built-
in operators or user-defined operators in the mathematical
syntax are not enclosed within quotes. As an example,
we define two operators using the natural language syn-
tax: one that generates the set of occurrences of a Boolean
becoming true (this set is a clock), and one that defines the
logical implication operator (the keyword Template can be
used when all input and output arguments are Booleans).

Operator [Clock] Boolean b ’becomes true’
= Clock b;

Template b1 ’implies’ b2 = not b1 or b2;

The above operators are invoked as follows:

Clock c is b ’becomes true’;
Boolean b3 is b1 ’implies’ b2;

A CRML set is a standard mathematical set. It is pos-
sible to apply unary operators to a set. This amounts to
applying these operators to all elements of the set as fol-
lows:

Boolean {} b is { n1, n2, n3, n4 } < p;

is equivalent to

Boolean b {} is { n1 < p, n2 < p, n3 < p,
n4 < p };

In this example, the unary operator is x 7→ x < p. It is
also possible to apply a binary operator to a set:

Boolean b is and { n1 < p, n2 < p, n3 < p,
n4 < p };

is equivalent to

Boolean b is n1 < p and n2 < p and n3 < p
and n4 < p;

It is possible to construct subsets by filtering set ele-
ments depending on their properties, as defined for in-
stance in classes of objects.

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

503

3.5 Classes and Objects
CRML is equipped with the notion of class in order
to express requirements on complex objects, which can
be physical subsystems like cooling or heating systems,
physical components like vessels, pumps or heat exchang-
ers, or abstract objects that capture generic notions. For
the sake of the example, we define the abstract class
Equipment that carries requirement R5, which is rewrit-
ten using the CRML syntax.

partial class Equipment is {
external Boolean b1;
external Boolean b2;
Integer n is 3; // De fau l t

va l ue
Time dt is 10 mn; // De fau l t va l ue
Periods P1 is [b1 ’becomes true’, b1 ’

becomes false’];
Periods P2 is [b1 ’becomes true’, b1 ’

becomes false’[;
Periods P3 is [b1 ’becomes true’ or R1 ’

becomes false’, 1 year[;
Boolean R1 is ’while’ P1 ’ensure’ b2;
Boolean R2 is ’while’ P2 ’ensure’
(’while’ P3 ’check count’ (R1 ’becomes

false’) ’<=’ n);
Boolean R3 is ’while’ P1 ’ensure’
((not R1 and b1) ’implies’ (’while’ [R1

’becomes false’,
R1 ’becomes false’ + dt] ’check’ R1));

Boolean R4 is R1 and R2 and R3;
Requirement R5 is ’while’ P1 ’check at

end’
((’probability’ (R4) ’at’ b1 ’becomes

false’) > 99.99%);
};

A partial class cannot be instantiated because it car-
ries partial information that is not sufficient to instanti-
ate objects. Class Equipment is partial because it is not
possible to provide values for b1 and b2 without having
some knowledge about the type of the equipment. How-
ever, requirement R5 will be automatically applied to all
instances of the classes derived from Equipment that are
not partial. Let us now create a new class Pump that de-
rives from class Equipment. Class Pump will inherit all
attributes of Equipment. It is however possible to redefine
(or redeclare) within class Pump the attributes of Equip-
ment that are not suitable to pumps. The operational do-
main for a pump corresponds to the non-cavitation of the
pump: pumps should never cavitate while they are in op-
eration. This can be enforced by redeclaring attribute n
to be a constant integer equal to zero in the class Pump
definition.

class Pump is {
redeclare n constant Integer n is 0;
redeclare R5 Requirement no_cavitation;

} extends Equipment;

In the above statement, requirement R5 is renamed to
no_cavitation for better legibility. Then pumps can be in-
stantiated with the statement

Pump pump is Pump ();

The following statement expresses that all pumps in the
system should never cavitate, no matter the number or
types of the pumps. The fact that class System extends
Equipment means that requirement R5 is applicable to the
system as a whole (provided that the values of b1 and b2
for the whole system can be obtained from a behavioral
model).

class System is {
Pump {} pumps;
Requirement no_cavitation is and pumps.

no_cavitation;
} extends Equipment;

In the above statement, the global no-cavitation require-
ment for all pumps in the system is obtained by taking the
logical conjunction of the no-cavitation requirement for
all individual pumps, that can be of different nature, and
do not need to be known when this statement is written.
Class extension and attribute redefinition can be used in
combination to add and refine requirements in the course
of system design. For instance, if during detailed design
the chosen type for pumps is centrifugal, and if centrifu-
gal pumps come with their own set of requirements, then
a new class DetailedSystem can be derived from the class
System that redefines the set of objects from class Pump
to be a set of objects from a new class CentrifugalPump
that extends class Pump and that carries the additional re-
quirements for centrifugal pumps.

4 Implementation of the CRML tool-
chain

Behavioural models
(Modelica, SysML,

FMI)

Requirements
(CRML)

Executable verification model (Modelica, FMI, C, …)

Bindings Test scenarios

Informal
Requirements

Analysis

Simulation results

Architectural model

Binding
specification

Uses
Refers to

Figure 4. Architecture of the verification model

As illustrated in Fig. 4, the requirements are connected
to the architectural and behavioural models through bind-
ings. The compiler developed in the project translates
CRML to Modelica. This also enables the use of Func-
tional Mockup Itnerfaces (FMI) - a standard for exporting
models for co-simulation supported by many tools. This
means that any behavioural model that can be exported as

The Common Requirement Modeling Language

504 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

a Functional Mockup Unit (FMU) can be connected to the
requirements model.

4.1 CRML to Modelica Compiler
The compiler consists of two parts, first a grammar is spec-
ified using ANTLR and this is used to generate a parser
for the compiler in Java. This grammar can also be used
to generate parsers for compilers in other languages and
can serve as a more formal specification of the language
syntax.

CRML model

Compile to Modelica

Mapping to predefined CRML blocks in Modelica,
Modelica model with uninstantiated sets

Pre-compiled sets

Behavioural model

Julia support for dynamic
stryctrures, dynamic

recompilation

Simulation results

CRML predefined
functions

CRML user-
defined

functions

bindings

Compile to FMI

Co-Simulation in OMSimlator

Figure 5. Architecture of the CRML to Modelica compiler

In a second step, the generated abstract syntax tree
(AST) is then traversed to generate Modelica. Many el-
ements of the language can be translated in a straightfor-
ward way, but in this section we will focus on the main
CRML elements that require special consideration (Fig.
5).

4.1.1 4-valued Booleans

In Modelica booleans are two valued, therefore all refer-
ences to booleans and boolean operators need to be con-
verted to a special Modelica type Boolean4. To simplify,
the definitions of this type and of the fundamental logical
operators are given in a library and then calls to this library
are directly generated (Fig. 5).

import CRML.ETL.Types.Boolean4;
model Bool1

Boolean4 b0 = CRML.ETL.Types.Boolean4.
true4;

Boolean4 b1 = CRML.ETL.Types.Boolean4.
false4;

Boolean4 b2 = CRML.ETL.Types.Boolean4.
undecided;

Boolean4 b4 = CRML.Blocks.Logical4.and4(
b1,b2);

end Bool1;

4.1.2 Time dependent functions, templates and oper-
ators

Another big difference in CRML and Modelica is that
in CRML functions can be dependent on time while in
Modelica they cannot. Therefore CRML functions need
to be mapped to Modelica blocks. Built-in functions are

mapped to the predefined blocks in the CRML library and
user-defined Operators and Templates generate new Mod-
elica blocks.

For example the user defined

Template R1 ’xor’ R2 = (R1 ’or’ R2) and not
(R1 and R2);

is translated to the following Modelica snippet:

import CRML.ETL.Types.Boolean4;
model "xor"

input Boolean4 R1, R2;
output Boolean4 out;
"or" "or0"(R1 = R1,R2 = R2);

equation
out = CRML.Blocks.Logical4.and4(_or0.out,

CRML.Blocks.Logical4.not4
(CRML.Blocks.Logical4.and4(R1,R2)

));
end "xor";

And the call to the function is translated to an instanti-
ation of the corresponding block and corresponding con-
nectors. Quotation marks are used around operator names
to distinguish between user defined keywords in CRML
and Modelica keywords.

4.1.3 Sets

CRML is built around the concept of sets which are not
present in Modelica. We distinguish between event sets
that change in size throughout the execution of the pro-
gram, and object sets that are either statically specified or
calculated during the binding process.

Object sets are translated to arrays that are instantiated
during the binding. This can either be done in a semi-
automated manner or manually depending on whether the
behavioural model is in Modelica or FMI.

Since the number of events can potentially be unlim-
ited, event sets need to be mapped to dynamic structures,
also known as Variable Structured Systems that increase
in size as needed.

We have developed OpenModelica.jl (Tinnerholm et
al. 2021), a modular and extensible Modelica compiler
framework in Julia targeting ModelingToolkit.jl and sup-
porting Variable Structured Systems. We extend the Mod-
elica language with several new operators to support con-
tinuous time mode-switching and reconfiguration via re-
compilation at runtime. Our compiler supports the Mod-
elica language as well as these aforementioned extensions.

A special type, a dynamic event array is defined that
relies on the recompilation primitive to grow (or shrink
the array size at runtime). This model is extended to store
specific events.

partial model EventArray
Event events[N];
parameter Integer N=10; // s i z e
Integer i (start = 1); // index

equation
when (i = N) then

recompilation(N, N + 100);
end when;

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

505

end EventArray;

4.2 Integrating CRML with Architectural and
Behavioral Models

4.2.1 The Binding Mechanism

The most obvious way to bind variables is to fill in their
full pathnames in a connect statement. However, this re-
quires a large amount work from the user if a large number
of external variables are involved. Also, if the models that
provide the values are restructured, the pathnames must
be changed accordingly, inducing work overhead. To sim-
plify the work of binding, the idea is to prepare as much
as possible binding at the class level. Manual binding is
then done at the instance level by connecting together ob-
jects instead of variables. The final binding of individual
variables is performed automatically from the information
provided at the class and instance levels. As information
provided at the class level can be reused for any model,
the amount of manual work to be done for a given model
is on average divided by the number of objects carrying
the external variables. It is also easier to manually bind
objects than variables because objects are much easier to
spot than variables. Therefore, it always requires less ef-
fort to bind objects than variables, even in the worst case
of having no more than one external variable per object.

Figure 6. Binding output information

The output information to be produced to bind external
variables of the requirement model to variables of the be-
havioral models is given in Fig. 6. There are two kinds
of variable bindings: (1) the connections of the input vari-
ables of the observation operators instances to the vari-
ables of the behavioral models, and (2) the connections of
the output variables of the observation operators instances
to the external variables of the requirement model.

The information to be provided by the user in order to
automate binding as much as possible is given in Fig. 7. It
shows that the only information to be provided at the in-
stance level is the correspondence between the objects in
the requirement models and the objects in the behavioral
or architectural models. The only assumption that makes
this procedure possible is that the behavioral and archi-

tectural models are expressed using an object-oriented
methodology, where objects are instances of classes. No
assumption is made on the way connections between vari-
ables are expressed. Binding input and output informa-
tion can be provided in a relational database. Connections
between variables can be expressed using Modelica state-
ments for white-box Modelica behavioral models, or FMI
statements for black-box behavioral models equipped with
an FMI interface.

Figure 7. Automatic binding input information

4.2.2 Bindings to Behavioral Models
For Modelica behavioral models, the CRML model is au-
tomatically translated to a Modelica model by the CRML
compiler. If the behavioral model is a Modelica model,
then it is possible to have bindings using Modelica state-
ments. Then the verification model (cf. Fig. 1) can be au-
tomatically generated as a Modelica model from the bind-
ing output information (cf. Fig. 6) (which itself can be
automatically generated from the binding input informa-
tion).

For black box models we can use the System Structure
and Parametrization standard (SSP) to connect to models
defined in other formalisms provided they can also be ex-
ported as FMUs as illustrated in Fig. 4. SSP connec-
tions can be generated automatically or manually based
on binding specifications.

One difference with when generating bindings for
FMUs is that there is no notion of classes in FMI, only
simple types. Therefore it is impossible to automatically
calculate sets of object of a certain type and they need to
be specified manually.

4.2.3 Bindings to Architectural Models
If the architecture model is given in SysMLv2, bindings
can also be defined in SysMLv2. The idea (shown below
on a simplified example) is to use CRML as the constraint
language to formalize requirements over the attributes of
the requirements element. These attributes can be bound
to attributes of the subject in specialized requirements, es-
sentially defining the binding between variables of the ar-
chitecture and of the requirement. A compiler can then
generate observation operators and requirements models
based on this information whenever the SysML model

The Common Requirement Modeling Language

506 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

is translated to a computable model for verification (e.g.
Modelica).

4.2.4 Execution of verification models
Having the requirements defined separately and bound
through a technology-agnostic syntax, means that differ-
ent approaches of verifying the requirements agains Mod-
elica or FMU models are possible. For instance proba-
bilistic requirements can be verified through Monte-Carlo
simulation, ensuring for example that failure rates are be-
low a certain threshold. Currently, test scenarios are gen-
erated by hand but in the future, generating test values
based on the behavioural envelopes specified by the re-
quirement models will also be investigated.

requirement def SpeedLimiterReq {
attribute speed : SpeedValue;
attribute limit : SpeedValue;
attribute on : Boolean;
require constraint { language "CRML" /∗

dur ing on ensure speed < l i m i t ; ∗/ }
}
requirement <r1> citySpeedLimiter :

SpeedLimiterReq {
subject vehicle : Vehicle;
attribute :>> speed = vehicle.

currentSpeed;
attribute :>> limit = 50[km/h];

}

5 The Intermediate Cooling System
Use Case

As explained in Section 1, the goal of the CRML initiative
is to support the engineering of complex CPS that are very
often over-constrained by a set of numerous (even conflict-
ing) requirements. The idea is to rely on a shared evalu-
ation toolset that helps stakeholders find the best trade-
offs and foster innovative solutions. The CRML language
and its underlying methodology make the traditional V-
model fully executable and should act as an enabler for
taking appropriate decisions at each step of engineering
projects. Inspired from (Azzouzi et al. 2022), the method-
ology should be seen as an iterative approach whose main
steps are summarized in Fig. 8.

Nuclear power plants are divided into approx. 200 sub-
systems. One of them is called the Intermediate Cooling
System (ICS). The goal of this section is to illustrate how
CRML can help justifying that the ICS properly fulfills its
missions.

Step 0: Identification of System’s Missions The ICS
missions sum up to:

• Evacuate the heat produced by a served systems
when they are in operation (served systems are aux-
iliary equipment such as the alternator or pumps);

• With the use of demineralized water (because water
flowing directly from the cold source -sea or river-
could damage equipment);

• At an acceptable availability rate (the plant must be
shut down if the ICS is unavailable).

Step 1: Formalize the System’s Environment and Its
Interfaces To fulfill its missions, the ICS should phys-
ically interact with the different served systems to be
cooled but also with (Fig. 4):

• A source of demineralized water (SED) to provide
"clean" water to the ICS;

• A source of cold water (SEN) to cool the ICS itself
(here a sea or a river);

• A drain sewer (SEK) in case of ICS leaks;

• A means to communicate with the plant operator
(OP).

Although the ICS is not a large system, it involves
9 stakeholders coming with their own data and require-
ments.

For the engineer in charge of the ICS design, this makes
his/her work even more challenging as it multiplies the in-
formation channels, the sources of potential changes dur-
ing the project and the types of verification studies he/she
needs to produce (i.e. one stakeholder being interested
only by the achievements of its own goals). Formalizing
the different constraints using CRML appears as a means
to gather all these sources of data in a more rigorous and
reproductible way than relying on a one-person expertise.
It also enables the automation of verification tasks and
hence provides more flexibility when input data changes
and design studies must be rerun to assess the impact on
the current solutions.

This formalization step should be performed for each
system (or stakeholder) in interface with the ICS. For the
sake of conciseness, let us focus on two different inter-
faces: the one between the ICS and the served system and
the one between the ICS and the cold-water source.

Contract between the ICS and the served systems
Each served system should have a physical interface with
the ICS to be cooled by its refreshed demineralized wa-
ter. In practice, there should be some physical means such
as a valve at the inlet of a heat exchanger to "activate"
cooling when necessary. In order to leave as many design
options open as possible, we set the expectations on the
served systems as follows: The cooling service should be
provided as soon as the minimum temperature is reached
(because too cold water could damage equipment). Re-
quirements being common to all served systems, they are
modelled in a generic class "Served_system" as follows:

class Served_system is {
[...]
// Miss ion : When the s e r v ed system i s

ope ra t ing , a l l the heat produced
shou ld i n s t a n t l y be evacuated by the
i c s

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

507

Figure 8. The main steps of the CRML methodology (left) leading to a structured set of models (right)

Figure 9. Architecture model of the ICS environment

constant Real epsilon is 0.001; //
t o l e r a n c e

Boolean cool_served_system_0 is
during inOperation ensure 0 <= ics.W -

W <= epsilon
// Requirement : The se r ved system shou ld

not be supe r coo l ed by the i c s (to
avo id thermal s t r e s s e s) .

Boolean cool_served_system_1 is
during ics.tRW <= (tRWMin - 0.1 Celsius

) ensure not open; // 0 .1 C e l s i u s
i s a de s i gn margin (t o l e r a n c e)

// Requirement : The se r ved system shou ld
be coo l ed by the i c s as soon as the
i c s water temperature i s above the
minimum accep tab l e .

Boolean cool_served_system_2 is
during ics.tRW >= tRWMin ensure open;};

"inOperation" is a Boolean indicating whether the
served system is operating, "W" is the power of the served
system, "tRW" is the ICS temperature, "tRWMin" is the
minimum temperature acceptable by a served system,
"open" is a Boolean stating whether the cooling service
should be provided. These requirements are then auto-

matically instantiated when the different served systems
are themselves defined and parameterized.

Contract between the ICS and the cold-water source
The ICS should have a physical interface with the cold
source such as sea or river. To avoid environmental dam-
ages on the fauna and flora, regulations are enacted by a lo-
cal authority regarding thermal effluents. Failure to com-
ply with the regulations forces the plant to be shut down.
In CRML, these requirements are modelled as follows:

class Cooling_system is {
[...]
// Requirement : When the ICS i s ope ra t ing ,

the temperature o f the co ld water
sou rce shou ld

// be below i t s a c c ep tab l e maximum (no
ove rhea t o f the sea or r i v e r) .

Boolean coldW_ics_1 is
during not (state_stopped or

state_stopping)
ensure sen.tCW <= sen.tCWMax;

// Requirement : When the ICS i s ope ra t ing ,
the temperature i n c r e a s e o f the co ld

water sou rce shou ld
// be below i t s a c c ep tab l e maximum .
Boolean coldW_ics_2 is

during not (state_stopped or
state_stopping)

ensure tWW < (sen.tCW + sen.deltaTMax);
};

"state_stopped" and "state_stopping" are Booleans stat-
ing whether the ICS is respectively stopped or in a stop-
ping state, "tCW" is the temperature of the cold-water
source, "tCWMax" is the maximum acceptable tempera-
ture of the cold-water source, "deltaTMax" is the maxi-
mum increase of temperature of the cold-water source.

Step 2: System Design After having identified and for-
malized the different requirements and constraints, the
ICS engineer imagines some design alternatives. Fig.
10 represents one possible solution modeled in Modelica

The Common Requirement Modeling Language

508 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

with the use of the open source ThermoSysPro1 library.

Figure 10. Behavioral model of the ICS

During this step, the ICS engineer could add some spe-
cific performance goals such as maintaining the circuit
temperature around a setpoint (here 17 ◦ C) to optimize
thermal transfer in heat exchangers. In CRML, this is ex-
pressed by adding the following requirement in the "Cool-
ingSystem" class:

class Cooling_system is {
[...]
// Kpi : When ope ra t ing , i c s temperature

shou ld be around 17 C e l s i u s
constant Temperature tolerance is 0.5

Celsius;
Boolean kpi_1 is
during inOperation
ensure tRW >= (17 Celsius - tolerance)

and tRW <= (17 Celsius + tolerance)
;

};

Step 3: System Verification Using the concept of bind-
ings, the ICS engineer is then able to compose the differ-
ent models to build a verification model. The purpose is
to check by simulation whether the requirements are sat-
isfied.

Fig.11 shows the simulation results obtained to monitor
the 4-valued Boolean variable "kpi_1". The green curve
is the evolution of "tRW" given by the behavioral model.
"kpi_1" is computed by the CRML model. One can easily
see that the "kpi_1" is not achieved (is false) as soon as
"tRW" goes beyond its tolerance interval.

Although this seems like quite a simple performance
target, it involves the dynamics of the system, so that pos-
sible violations of constraints are difficult to spot and in-
terpret by visual inspection of continuous curves such as
"tRW". The final verdict given by "kpi_1" alleviates this
difficulty.

1URL: https://www.thermosyspro.com/

Figure 11. Simulation results of the verification model to mon-
itor "kpi_1"

Step 4: Design Report Test reports can be customized.
Below is an example that filters the requirements associ-
ated to the served systems only.

model GlobalReports is {
// Conjunct ion o f a l l r equ i r ement s on

Served_system
Boolean globalReport_ForServedSystems is

and flatten filter
(flatten filter sriRequirements

(type element == Served_system)) (
type element == Boolean);};

6 Conclusion and Future Work
A new formal language called CRML (Common Require-
ment Modeling Language) for the modeling and simula-
tion of requirements has been presented. The goal is to
release CRML as an international standard interoperable
with other standards such as SysML, Modelica, FMI and
SSP. The purpose of CRML is to enable different stake-
holders in different disciplines in charge of the design
and operation of complex cyber-physical systems to reach
a formal common agreement in terms of contracts made
of formal constraints, so that they can successfully build,
modify and operate such systems.

The salient innovative features of the language are its
ability to capture all possible constraints on the real sys-
tem, including real-time dependent constraints comple-
mented with probabilities for failure, because no require-
ment can be fulfilled at any time at any cost (the lower
the probability for failure, the higher the cost of the sys-
tem). The language includes the possibility to structure
the system using objects as instances of classes and build
libraries of standard requirements that can be customized
when used to express constraints on particular systems. A
formal definition for the satisfaction of requirements has
been given that uses a 4-valued Boolean algebra. This
algebra provides the framework to combine requirements
together to form high-level generic constraints that can be
stored in libraries for further reuse.

Design can be verified against requirements by cou-
pling, via so-called bindings, requirements models with
behavioral models that capture the dynamic behavior of
the physical system under study. To that end, a CRML to

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

509

Modelica compiler is being developed in the OpenModel-
ica framework that automatically produces the executable
verification models from the CRML models and the bind-
ing specifications (i.e., the way to associate the variables
to be monitored in requirements to the variables that rep-
resent the states of the physical system).

Ways to use CRML within SysML v2 are being ex-
plored. It is believed that CRML will efficiently bridge the
semantic gap between SysML and physical modeling and
simulation, so that digital twins will be more efficiently
used for the engineering and operation of cyber-physical
systems. The reason is that CRML provides a formal way
to translate functional concepts embedded in requirements
models to the various concepts (such as physical concepts)
embedded in behavioral models.

The way to use CRML for the design of a subsys-
tem of a nuclear power plant has been presented. Future
work will essentially bear on providing a graphical design
methodology that will enable designers to specify systems
without explicitly writing CRML code. Such graphical
work will also improve the understandability of CRML
by non-experts and empower the spread of CRML across
different engineering teams.

Acknowledgements
This work has been supported by the ITEA3 EMBrACE
project, as well as National Research, Development and
Innovation Fund of Hungary, financed under the [2019-
2.1.1-EUREKA-2019-00001] funding scheme.

References
Alur, Rajeev (1999). “Timed automata”. In: International Con-

ference on Computer Aided Verification. Springer, pp. 8–22.
Azzouzi, Elmehdi et al. (2022). “A Model-Based Engineering

Methodology for Stakeholders Coordination of Multienergy
Cyber-Physical Systems”. In: IEEE Systems Journal 16.1,
pp. 219–230. DOI: 10.1109/JSYST.2021.3071231.

Baier, Christel and Joost-Pieter Katoen (2008). Principles of
model checking. MIT press.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A new tem-
poral language for the verification of cyber-physical sys-
tems”. In: 2018 Annual IEEE International Systems Con-
ference (SysCon), pp. 1–8. DOI: 10 . 1109 / SYSCON . 2018 .
8369502.

Bouskela, Daniel, Thuy Nguyen, and Audrey Jardin (2017). “To-
ward a rigorous approach for verifying cyber-physical sys-
tems against requirements”. In: Canadian Journal of Electri-
cal and Computer Engineering 40.2, pp. 66–73.

Henzinger, Thomas A (2000). “The theory of hybrid automata”.
In: Verification of digital and hybrid systems. Springer,
pp. 265–292.

Kanso, Bilal and Safouan Taha (2013). “Temporal Constraint
Support for OCL”. In: Czarnecki K., Hedin G. (eds) Software
Language Engineering. SLE 2012. Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg. 7745.

Mattsson, Sven Erik, Hilding Elmqvist, and Martin Otter (1998).
“Physical system modeling with Modelica”. In: Control En-
gineering Practice 6.4, pp. 501–510.

Nguyen, Thuy (2014-03). “FORM-L: A MODELICA Exten-
sion for Properties Modelling Illustrated on a Practical Ex-
ample”. In: Proceedings of the 10th International Model-
ica Conference. Linköping Electronic Conference Proceed-
ings. Lund, Sweden: Modelica Association and Linköping
University Electronic Press, pp. 1227–1236. DOI: 10.3384/
ecp140961227.

Nguyen, Thuy (2019). “Formal Requirements and Constraints
Modelling in FORM-L for the Engineering of Complex
Socio-Technical Systems”. In: 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW),
pp. 123–132. DOI: 10.1109/REW.2019.00027.

OMG (2017). Unified Modeling Language (UML) version 2.5.1.
URL: https://www.omg.org/spec/UML/2.5.1/PDF (visited on
2023-05-13).

OMG (2019). Precise Semantics of UML State Machines
(PSSM). formal/19-05-01.

OMG (2021). SysML Extension for Physical Interaction and
Signal Flow Simulation (SysPhS). formal/21-05-03.

OMG (2023). Systems Modeling Language (SysML) version 2.
URL: https : / / github. com/Systems- Modeling /SysML- v2-
Release / blob / master / doc / 2 - OMG _ Systems _ Modeling _
Language.pdf (visited on 2023-06-08).

Otter, Martin et al. (2015-09). “Formal Requirements Model-
ing for Simulation-Based Verification”. In: Proceedings of
the 11th International Modelica Conference. Linköping Elec-
tronic Conference Proceedings. Versailles, France: Model-
ica Association and Linköping University Electronic Press,
pp. 625–635. DOI: 10.3384/ecp15118625.

Tinnerholm, John et al. (2021-09). “OpenModelica.jl: A modu-
lar and extensible Modelica compiler framework in Julia tar-
geting ModelingToolkit.jl”. In: Proceedings of the 14th Inter-
national Modelica Conference. Linköping Electronic Confer-
ence Proceedings 181. Linköping, Sweden: Modelica Asso-
ciation and Linköping University Electronic Press, pp. 109–
117. ISBN: 978-91-7929-027-6. DOI: 10.3384/ecp21181109.

The Common Requirement Modeling Language

510 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497

