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Abstract
This article outlines a new approach of the experi-
mental open-source modeling and simulation system
Modia to simulate systems where the number of vari-
ables and equations can be changed after compila-
tion and also during simulation, without having to
re-generate and re-compile the code. Details are given
for heat transfer in an insulated rod, where the dis-
cretisation of the rod is completely hidden from the
symbolic engine. It is discussed how this approach
could also be used in a future version of Modelica
and/or FMI. Furthermore, this feature is also used in
various variants to speed up collision handling in 3D
mechanical systems. For example, by rigidly fixing
an object after it has been gripped, with or without
calculating the elastic response, and thereby dynam-
ically changing the number of degrees of freedom.
Keywords: Modia, Julia, multibody, segmented simu-
lation, heat transfer, collision handling

1 Introduction
Modia (Elmqvist et al. 2021) is an experimental, open
source modeling and simulation system to develop
new approaches to overcome the limitations of declar-
ative, equation-based modeling languages such as
Modelica (Modelica Association 2023). Modia is im-
plemented with the powerful Julia programming lan-
guage (Bezanson et al. 2017). It consists of a set of Ju-
lia packages, in particular of Modia.jl1 for equation-
based modeling à la Modelica and of Modia3D.jl2 for
modeling of multibody systems.

Neumayr and Otter (2023) extend Modia to pro-
cess so called predefined acausal components3. These
model components consist of a (usually small) set of
Modia equations in which Julia functions are called
that contain the core variables and equations of the
components. These variables and equations can ap-
pear and disappear during simulation, without re-

1https://github.com/ModiaSim/Modia.jl, v0.12.0, visited
on 2023-06-13

2https://github.com/ModiaSim/Modia3D.jl, v0.12.0, vis-
ited on 2023-06-13

3Neumayr and Otter (2023) refers to these components as
acausal built-in components. We decided to rename them to
predefined acausal components to be more descriptive.

generation and re-compilation of code and without
knowing in advance which model equations are uti-
lized during such a simulation.

In contrast to this new approach, all previous pro-
posals for systems with variable structure must either
know in advance the entire models for all modes and
switch between these models during simulation, (e.g.,
Mehlhase 2014; Mattsson, Otter, and Elmqvist 2015;
Tinnerholm, Pop, and Sjölund 2022). Or the entire
model is newly processed and code is re-generated
and re-compiled (or interpreted) whenever the equa-
tion structure is changed4, (e.g., Zimmer 2010; Tin-
nerholm, Pop, and Sjölund 2022).

In this article, the novel approach in Modia for
modeling predefined acausal components is demon-
strated with 1D heat transfer in a rod, where the
number of discretization nodes can be changed be-
fore simulation start without re-compilation. It would
also be possible to change the number of discretiza-
tion nodes during simulation.

Modia3D is a more complex predefined acausal
component. It was recently extended to cope with
variable structure systems where the number of de-
grees of freedom can change during simulation, with-
out re-compilation. The core part of this article dis-
cusses how this new feature is used to improve colli-
sion handling as an extension to the elastic response
calculation introduced in (Neumayr and Otter 2019).

Elmqvist et al. (2021, Section 2) describe the
Modia Language, and Neumayr and Otter (2023, Ap-
pendix A) provide a short overview of it. A more
detailed explanation is available in the Modia Tuto-
rial5.

2 Predefined Acausal
Components

Neumayr and Otter (2023) introduce predefined
acausal components which are based on a proposal of
Elmqvist (2022): The equations of an acausal compo-
nent are split into causal and acausal partitions. The
intuition is that the causal partition is always evalu-

4Generated compiled code maybe cached.
5https://modiasim.github.io/Modia.jl/stable/, visited

on 2023-06-13
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ated in the same order, regardless of how the compo-
nent is connected with other components. This parti-
tion is sorted, explicitly solved for the unknowns, and
implemented with one or more functions. In contrast,
sorting and solving of the acausal partition depends
on the actual connection of the component. This par-
tition is kept as a set of equations. Note that, the
figures and some text fragments used below in this
section are from Neumayr and Otter (2023)

In Neumayr and Otter (2023), various variants of
this basic approach are discussed. In particular, (a)
the variables computed in the causal partitions can ei-
ther be still visible in the equation part as proposed by
Elmqvist (2022) or (b) a large part of these variables
is hidden in the functions and do no longer appear
in the equation part. Variant (a) has the advantage,
that index reduction is still possible by differentiat-
ing the functions of the causal partitions. Variant (b)
has the advantage that the causal partition, in par-
ticular the number of its variables and equations, can
be changed after compilation and during simulation.
Variant (b) has the drawback that index reduction is
no longer possible for the causal partitions. Index re-
duction in the acausal partitions is still possible and
is sufficient in many practical cases. However, it is
not possible to use a predefined, acausal component
as an inverse model if implemented with variant (b).
In Modia and Modia3D variant (b) is used.

In Figure 1 the communication structure between
the solver, the sorted and solved equations and the
functions6 of the causal partitions are shown: The
variables of the solver (state vector x and the vector
of event indicators z) are split into an invariant and
a variant part: x = (xinv,xvar) and z = (zinv,zvar).
The dimensions of the invariant parts are fixed before
the simulation starts. The dimensions of the vari-
ant parts, which are contained in the functions of the
causal partitions, can change at events during sim-
ulation. Since xvar,zvar are communicated directly
between the functions and the solver, the symbolic
processing of the equation part of a model is not af-
fected by these variables. Therefore, these variables
can in principle be changed at event times - variables
can be added or can disappear.

This basic approach is demonstrated using the pre-
defined acausal component of Figure 2, which models
heat transfer in a rod with an insulated surface. On
the left and right sides of the rod, thermal connec-
tors a,b are present (called port_a, port_b in List-
ing 1) with potential variables aT , bT (temperatures)
and flow variables aQflow , bQflow (heat flow rates). The
partial differential equation, which mathematically
describes the heat transfer in one dimension is dis-
cretized in space by volumes Vi = ∆x ·A of equal

6These functions have a memory and are therefore no math-
ematical functions.

sorted and solved
equations

functions of
predefined acausal

components

solver
ẋ = f(x, t)
z = z(x, t)

x = (xinv,xvar)

z = (zinv,zvar)

xinv, t xvar, t

ẋinv,zinv ẋvar,zvar

Figure 1. Communication between the solver, the sorted
and solved equations, and the functions of the predefined
acausal components. The state vector x and the event in-
dicators z are split into an invariant and a variant part:
x = (xinv,xvar), z = (zinv,zvar). The variant parts consist
of the states defined and used in the causal partitions of
all predefined acausal components. The dimensions of the
invariant parts are fixed before simulation starts. The di-
mensions of the variant parts can change at events during
simulation.

T1 Ti−1 Ti Ti+1 Tna b
aT bT

aQflow
bQflow
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Qflow,i = λ
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aQflow =Qflow,0

bQflow = −Qflow,n
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Ti(t= t0) = T0

Figure 2. Space discretized partial differential equation
of one-dimensional heat transfer in a rod with an insu-
lated surface. It is defined with parameters L (length
of rod), n (number of volumes), A (area), % (density), c
(specific heat capacity), λ (thermal conductivity), T0 (ini-
tial value in each volume), states Ti (temperatures in the
center of each volume), thermal connectors a,b with po-
tential variables aT , bT (temperatures), and flow variables
aQflow , bQflow (heat flow rates).

lengths ∆x and identical areas A. In the center of
volume i, a temperature Ti is defined, leading to a
temperature vector T = [T1,T2, . . . ,Tn].

Listing 1. Simple usage of insulated rod InsulatedRod2
with one-dimensional heat-transfer. On the left side it is
connected with a fixed temperature source FixedHeatFlow
with T = 220 °C = 493.15 K, and on the right side with a
fixed heat flow source FixedHeatFlow with Qflow = 0.

using Modia
include (
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"$( Modia.path )/ models / HeatTransfer.jl ")

# Temp. source - rod - heat flow source
HeatedRod = Model(

# temperature source
fixedT = FixedTemperature |

Map(T =493.15) ,

# heat flow source ( Q_flow =0)
fixedQflow = FixedHeatFlow,

# insulated rod with 5 volumes
rod = InsulatedRod2 |

Map(L =1.0, T0 =273.15, nT =5),

# connecting the components
equations = :[

connect ( fixedT.port, rod.port_a ),
connect ( rod.port_b, fixedQflow.port )]

)

# generate and compile Julia code
heatedRod = @instantiateModel ( HeatedRod )

# change to 8 volumes and simulate model
simulate !( heatedRod, stopTime = 1e5,

merge =Map(rod = Map(n=8))

# plot temperatures
plot( heatedRod,

(" fixedT.port.T ", "rod.T"))

In Listing 1, a Modia model is shown with a prede-
fined acausal component InsulatedRod2 of the rod7.
Its left thermal connector port_a has a fixed tem-
perature source FixedTemperature. Its right thermal
connector port_b has a fixed heat-flow source Fixed-
HeatFlow with the default zero heat-flow rate. This
means that, the rod is completely insulated on the
right side and has a fixed temperature on the left
side. Note that, A|B merges model or parameters B
with model A. Command @instantiateModel(Heated-
Rod) symbolically processes this model and generates
Julia code that is translated to executable code. The
simulate! statement changes the discretization, and
thus the dimension of the temperature vector T , from
5 to 8 volumes before simulation starts without a

7This model can be found in Modia, v0.12.0, models/Heat-
Transfer.jl.

Figure 3. Plot of temperatures of heated rod model.

new translation. The plot of Figure 3 is generated
with plot(heatedRod, ...), displaying the tempera-
tures at the temperature source and in the rod vol-
umes.

Listing 2. Modia definition of InsulatedRod2 model.
include (" HeatTransfer / InsulatedRod2.jl ")

InsulatedRod2 = Model (;
# Called once before symb. processing
_buildFunction = Par( functionName =

:( buildInsulatedRod2 !)),

# Called once before new sim. segment
_initSegmentFunction =Par( functionName =

:( initSegmentInsulatedRod2 !)),

# Parameters
L = 1.0,
A = 0.0004,
rho = 7500.0,
lambda = 74.0,
c = 450.0,
T0 = 293.15,
nT = 1,

# Connectors
port_a = HeatPort,
port_b = HeatPort

)

The implementation of the InsulatedRod2 model is
shown in Listing 2. To start with, file Insulated-
Rod2.jl is included containing the definition of a Julia
struct holding the data and the local variables of the
component, as well as some Julia functions. More de-
tails are given below. A standard Modia definition of
the model is then given defining the parameters and
connectors of the component. Contrary, to a stan-
dard Modia component, no equations are present. For
simplicity, no units are used in this model and its as-
sociated functions. However, the actual implementa-
tion of the component in Modia supports units. The
component is a predefined acausal component model,
since the following special parameters are provided at
the beginning of the model, defining functions to be
used for symbolic processing and during simulation:

• _buildFunction: Before symbolic processing be-
gins, the hierarchical dictionary of the root
model to be compiled is traversed and func-
tion buildInsulatedRod2, defined from _build-
Function, is executed for each sub-model it con-
tains. This function (a) defines additional model
variables and equations that are merged with the
corresponding model and (b) returns an instance
of the Julia structure, which acts as the internal
memory of the component.

• _initSegmentFunction: This function is called by
the simulation engine before the root model is
initialized and at each FullRestart event before

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204511

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

513



the root model is re-initialized at a new simula-
tion segment. In both cases, all local variables
of the predefined acausal component model (in-
cluding states and zero-crossing functions) must
be redefined, as well as initial values for newly
defined states.

Listing 3. _buildFunction function definition.
# Called once before symb. processing
function buildInsulatedRod2 !( model,..,ID )

model = model | Model(
# Instance of an internal struct
insRod = Var( hideResult =true),

# Dummy return argument
success = Var( hideResult =true),

equations = :[
# copy states into insRod
insRod = openInsulatedRod !(

instantiatedModel, $ID)

# equations at the boundaries
port_a.Q_flow = getGe2 ( insRod )*

( port_a.T - getT1( insRod ))
port_b.Q_flow = getGe2 ( insRod )*

( port_b.T - getTend ( insRod ))

# compute der(T)
success =

computeInsulatedRodDerivatives !(
instantiatedModel, insRod,
port_a.T, port_b.T )

]
)
return ( model, InsulatedRodStruct ())

end

In Listing 3, the implementation of function build-
InsulatedRod2 is shown. In this function, the model
instance (of the actual InsulatedRod2 component) is
merged with additional model definitions consisting
of two variables and several equations. It returns
the merged model. Additionally, the internal mem-
ory of the component is instantiated with Insulated-
RodStruct() and is also returned by buildInsulated-
Rod2!. This internal memory is later identified by the
unique identifier ID, which is specified in the function
call. Function call openInsulatedRod! in the equation
section copies the rod temperatures T from the state
vector of the simulation engine into the InsulatedRod-
Struct memory and returns a reference to it as ins-
Rod. The argument list of this function call includes
the unique identification ID of the predefined acausal
component. It is provided when buildInsulatedRod2!
is called. $ID is inside an Abstract Syntax Tree, due to
:[...] and $ inserts the actual (literal) value at this
place. In Julia terminology this is called “interpola-
tion”. The insRod reference is then used in subsequent
function calls, for example, to retrieve the value of
the first temperature node with getT1(insRod). This

value is used in an equation to calculate the heat flow
from port_a to the first internal node. Finally, com-
puteInsulatedRodDerivatives! computes the deriva-
tives of the temperatures and copies them into the
state derivative vector of the simulation engine. As
can be seen, the equation section is independent from
the number of discretization elements nT. Therefore,
the number of these discretization elements can be
changed without re-generation and re-compilation.

Listing 4. _initSegmentFunction definition.
# Called once before new sim. segment
function initSegmentInsulatedRod2 !(

m, path, ID, parameters )
insRod = get_instantiatedSubmodel (m,ID)

if isFirstInitialOfAllSegments (m)
initFirstSegmentInsulatedRod2 !(

insRod ; parameters... )
end

# Define new states and state derivat.
insRod.T_startIndex =

new_x_segmented_variable !(m,
path*".T", path*".der(T)",
insRod.T, "K")

return nothing
end

The implementation of the _initSegmentFunction
is shown in Listing 4. This function is called be-
fore a new simulation segment is initialized. The first
statement inquires the reference insRod of the inter-
nal memory of the component. Before the first simu-
lation segment, the (evaluated) parameters are stored
in insRod. Furthermore, some dependent parameters
are computed and also stored in this memory. Finally,
new_x_segmented_variable is called to define the name
of a new state, its derivative and its unit together with
the initial value of insRod.T which is the current value
of vector T. It is initialized with parameter T_init in
initFirstSegmentInsulatedRod2!. Note that, even if
the InsulatedRod2 component always uses the same
definition, the states must be newly defined for each
new simulation segment.

Listing 5. Function to compute state derivatives
# Inquire values from InsulatedRodStruct
getT1( insRod ) = insRod.T [1]
getTend ( insRod ) = insRod.T [end]
getGe2 ( insRod ) = insRod.Ge2

# = 2* lambda *A/dx

# Compute and copy state derivatives
function computeInsulatedRodDerivatives !(

m, insRod, Ta, Tb)
T = insRod.T
k = insRod.k # = lambda /(c*rho*dx*dx)
for i in 1: length (T)

insRod.der_T [i] =
k*( T_grad1 ( T,Ta,i ) -
T_grad2 ( T,Tb,i ))
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end
copy_der_x_segmented_value_to_state (m,

insRod.T_startIndex, insRod.der_T )
return true

end

In Listing 5, the most important remaining func-
tions are shown. The state derivatives are computed
and copied to the state derivative vector of the simu-
lation engine with computeInsulatedRodDerivatives!.

Listing 6. Sketch to implement InsulatedRod model as
Modelica ExternalObject.

class InsulatedRodObject
extends ExternalObject ;

function constructor
input Real L, A, rho, lambda, d, T0;
input Integer nT;
output InsulatedRodObject insRod ;
external "C" insRod =

openInsulatedRod ( L,A,rho,lambda,
d,T0,nT );

end constructor ;

function destructor
input InsulatedRodObject insRod ;
external "C"

closeInsulatedRod ( insRod );
end destructor ;

end InsulatedRodObject ;

model InsulatedRod
import H= Modelica.Thermal.HeatTransfer ;
parameter Real L;
parameter Real A;
parameter Real rho;
parameter Real lambda ;
parameter Real T0;
parameter Integer nT =1;

H.Interfaces.HeatPort_a port_a ;
H.Interfaces.HeatPort_b port_b ;

protected
InsulatedRodObject insRod =

InsulatedRodObject (
L,A,rho,lmbda,T0,nT );

Boolean success ;
equation

// equations at the boundaries
port_a.Q_flow = getGe2 ( insRod )*

( port_a.T-getT1 ( insRod ));
port_b.Q_flow = getGe2 ( insRod )*

( port_b.T-getTend ( insRod ));

// compute der(T)
success =

computeInsulatedRodDerivatives (
insRod,port_a.T,port_b.T )

end InsulatedRod ;

Note that, a similar approach could be imple-
mented in Modelica with reasonable effort: The sim-
plest implementation would be to use External Ob-
jects and add additional utility functions (Modelica
Association 2023, Section 12.9.6–12.9.7). These are

equivalent to the utility functions of Modia, e.g., to
add variables at events. These utility functions would
directly communicate with the underlying simulation
engine. If they are available, the Modia example of
the insulated rod could be implemented as outlined in
Listing 6. The main benefit would be that the number
of temperature nodes can be changed after transla-
tion and that the Modelica model consists essentially
of three scalar equations. These equations are inde-
pendent from the number of temperature nodes. The
drawback is that functions openInsulatedRod, close-
InsulatedRod, getGe2, getT1, getTend, computeInsu-
latedRodDerivatives need to be implemented in C.
Note that these would be simple C-functions. For ex-
ample, computeInsulatedRodDerivatives could be im-
plemented as shown in Listing 7.

Listing 7. C-function to compute state derivatives
int computeInsulatedRodDerivatives (

struct M *m, struct InsRod * insRod,
double Ta, double Tb) {

double * T = insRod- >T;
double * der_T = insRod- >der_T;
double k = insRod- >k;
int nT = insRod- >nT;
double k1 = insRod- >k1;

der_T [1] =
k1 *(2*( Ta-T [1]) -(T[1]-T[2]));

der_T[nT] =
k1*(T[nT-1 ]-T[nT ]-2*(T[nT]-Tb));

for (i=2; i < nT-1; ++i) {
der_T[i] =

k1*(T[i+1]-T[i]-(T[i]-T[i-1 ]));
}
copy_der_x_segmented_value_to_state (m,

insRod- > T_startIndex, der_T);
return 0;

}

The eFMI standard (Functional Mockup Interface
for embedded systems, (Lenord et al. 2021)) de-
fines an intermediate language GALEC to transform
acausal models to production code. GALEC is ba-
sically a very small subset of the Modelica language
with some extensions as needed for embedded sys-
tems. The extension also includes a simple form of
member functions. If such member functions were
supported in Modelica, the implementation of prede-
fined acausal components could be done completely in
the Modelica language and without External Objects
or C-code.

Modelica models can be exported in FMI for-
mat (Modelica Association 2022). This includes Mod-
elica models with External Objects. The FMI stan-
dard communicates the values of variables explicitly
with setter and getter function calls. In principle,
it would be possible to add another variable type to
the FMI standard, where internal variables (includ-
ing states) are communicated directly to the solver
and no longer via the setter/getter function calls. If
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such an enhancement were available, the causal par-
tition part of the Modelica model of Listing 6 could
be transformed to an FMU, where the node tempera-
tures would no longer be communicated via the FMI
setter/getter functions and would no longer be visible
in the environment in which the FMU is used. This
would have the great advantage that the number of
variables and equations can be changed during the
simulation.

3 Segmented Simulation and
Collision Handling

Modia3D is a multibody tool for 3D mechanical sys-
tems implemented as a predefined acausal component
of Modia according to section 2. Modia3D is tar-
geted for solvers with adaptive step size control to
compute results close to real physics including colli-
sion handling using the Minkowski Portal Refinement
(MPR) algorithm (Snethen 2008; Neumayr and Ot-
ter 2017) and collision response for elastic contacts
(Hertz 1896; Flores et al. 2011; Neumayr and Otter
2019). Modia3D has a very flexible and modular de-
sign pattern. It is extended (since v0.12.0) to cope
with variable structure systems where the number of
degrees of freedom (DoF) can change during simula-
tion, without re-compilation.

Modia3D offers two kinds of joints: The first kind
of joints contains Modia equation sections with in-
variant variables, including invariant states. These
invariant elements are visible for Modia and cannot
be removed or added during simulation. The inter-
face to the Modia3D functionality is designed to de-
fine differential equations only on the Modia side in
Modia equation sections, so that state constraints can
be defined and index reduction can be performed on
invariant states. The joints of the second kind de-
fine variant variables, including variant states, which
are visible only in the Modia3D predefined acausal
component. These joints can be added or removed
during simulation. For example, an Object3D has an
optional keyword fixedToParent with a default value
of true. In this case, the Object3D is rigidly con-
nected to its parent Object3D. This means it has zero

Figure 4. YouBot gripping or releasing a sphere on a
plate.

degrees of freedom. If the value is set to false, the
Object3D is allowed to move freely with respect to
its parent, meaning it has 6 degrees of freedom and
12 variant states. At events, keyword fixedToParent
can be changed from false to true and vice versa.
Neumayr and Otter (2023, Table 2) define Modia3D
actions which modify the second (variant) kind of
joints and trigger structural changes during simu-
lation, e.g., actionAttach, actionReleaseAndAttach,
actionRelease, actionDelete. The new states (joints)
added during simulation with e.g., actionRelease are
initialized based on the last known position, veloc-
ity, acceleration and rotation. All remaining states
are re-initialized with their last known values. Based
on that, the internal 3D structure is rebuilt and exe-
cuted until another action for a structural change is
triggered. This restructuring is performed with dy-
namic data structures and is extremely fast (< 1 ms).
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Figure 5. States of the sphere. They are equivalent to
the translation of the sphere center in x, y, z direction with
respect to its parent. If the sphere is freely moving, world is
its parent. States can only be displayed if they are present.
If the sphere is rigidly attached to the plate or gripper,
there are no states, and nothing is displayed. The sphere
in Scenario 4 (S4) has no states. Therefore, nothing is
displayed. The states for scenarios 2 and 3 (S2, S3) are
available and are displayed if the sphere is freely moving.
For the absolute position of the sphere center see Figure 6.
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Figure 6. Absolute position of sphere center for the 4
scenarios.

Table 1. Mean x̄ and standard deviation s of the simula-
tion time of all four scenarios (S1–S4) each for n= 12 runs
on a standard notebook8.

x̄ s

S1 7.816 s 0.123 s
S2 7.255 s 0.075 s
S3 6.863 s 0.388 s
S4 0.397 s 0.016 s

In this section, several combinations of segmented
simulation and collision handling are discussed using
a KUKA YouBot robot gripping and transporting a
sphere, see Figure 4. This robot has a 5 DoF arm and
was manufactured in the years 2010–2016. Elmqvist
et al. (2021) model the drive trains and controllers
of the robot in Modia, and the 3D mechanics with
Modia3D.

Four variants of the following transportation sce-
nario are simulated. In all these scenarios, the robot
follows the same trajectory. Initially, the cargo, e.g.,
a sphere, rests on a plate. It is gripped by the robot’s
gripper and transported upwards until it is placed
down again, where it rests on the plate until it is

8Intel(R) Core(TM) i7-9850H CPU @ 2.6 GHz, RAM 32 GB

gripped again. The states of the freely moving sphere
(see Figure 5), if available, and the absolute position
of the sphere center (see Figure 6) are displayed. The
simulation times of all four scenarios are compared in
Table 1.

Scenario 1 (S1)9: The transportation scenario is
modeled with collision handling, compare (Neumayr
and Otter 2023, Scenario 2(b)). This means, the
sphere collides with the plate, as well as with the fin-
gers of the gripper.

Scenario 2 (S2)10: The transportation scenario is
modeled with segmented simulation and collision han-
dling, see Listing 8. DoFs are added or removed dur-
ing simulation: At the beginning, the sphere is rigidly
attached to the plate. Shortly before the gripper
reaches the sphere, the sphere is released (+6 DoF)
and collides with the plate. Shortly afterwards it col-
lides with the gripper. After approximately one sec-
ond, the sphere is rigidly attached to the gripper (-6
DoF). Until the gripper is again close to the plate
to release the sphere (+6 DoF), which collides with
the plate. Collision handling remains on even if the
sphere is rigidly connected to the gripper or plate, as
collisions with other bodies can still occur.
Listing 8. Robot program of Scenario 2. Collision han-
dling is enabled by default. It can be turned off or on
again in all action commands with enableContactDetec-
tion. Scenario 3 is defined, by setting this flag to false, as
indicated in the comment lines.

function robotProgram ( actions )
addReferencePath ( actions, ...)

# 1. attach sphere to plate, -6 DoF
ActionAttach ( actions, " sphereLock ",

" robot.base.plateLock ",
# enableContactDetection = false)

# 2. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to top
# open gripper + move to plate ])

# 3. release sphere off plate, +6 DoF
# it collides with plate and gripper
ActionRelease ( actions, " sphereLock ")

# 4. gripping via collision handling
ptpJointSpace ( actions, [

# grip
# grip + transport a bit ])

# 5. attach sphere to gripper, -6 DoF
ActionAttach ( actions, " sphereLock ",

" robot.gripper.gripperLock ",
# enableContactDetection = false)

# 6. some movement of robot with sphere

9This model can be found in Modia3D, v0.12.2, test/Robot/-
ScenarioCollisionOnly.jl.
10This model can be found in Modia3D, v0.12.2, test/Seg-

mented/ScenarioSegmentedCollisionOn.jl.
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ptpJointSpace ( actions, [
# grip + move to top
# grip + transport
# grip + move near to plate
# open gripper ])

# 7. release sphere off gripper, +6 DoF
# it collides with plate
ActionRelease ( actions, " sphereLock ")

# 8. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to plate ])

# repeat step 1. - 8.
...

end

Scenario 3 (S3)11: The transportation scenario is
modeled with segmented simulation and collision han-
dling. Scenario 3 is very similar to Scenario 2, except
that collision handling is disabled when the sphere is
rigidly connected to the gripper or plate, since in this
scenario it is already known that no further collisions
will occur. This is deactivated with enableContact-
Detection = false in Listing 8. Basically, this means
that the distance calculations between each collision
pair is switched off in these phases.

Scenario 4 (S4)12: The transportation scenario is
modeled with segmented simulation only, compare
(Neumayr and Otter 2023, Scenario 2(a)) and List-
ing 9. Collision handling is switched off for this sce-
nario. This means, the sphere is rigidly attached to
the plate, when resting, and rigidly attached to the
gripper during transportation. Each time the sphere
is rigidly connected to the plate or gripper, the seg-
ment is re-initialized. Since the relative velocity and
angular velocity between the sphere and the gripper
is zero, when the sphere is attached to the gripper or
attached to the plate, the physics is correctly modeled
under the idealized assumption that gripping time is
infinitely small. Basically, this means that gripping
effects are neglected.

Listing 9. Robot program of Scenario 4.
function robotProgram ( actions )

addReferencePath ( actions, ...)

# 1. attach sphere to plate
ActionAttach ( actions, " sphereLock ",

" robot.base.plateLock ")

# 2. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to top
# open gripper + move to plate
# grip ])

11This model can be found in Modia3D, v0.12.2, test/Seg-
mented/ScenarioSegmentedCollisionOff.jl.
12This model can be found in Modia3D, v0.12.2, test/Seg-

mented/ScenarioSegmentedOnly.jl.

# 3. attach sphere to gripper
ActionAttach ( actions, " sphereLock ",

" robot.gripper.gripperLock ")

# 4. some movement of robot
ptpJointSpace ( actions, [

# grip + transport a bit
# grip + move to top
# grip + transport
# grip + move near to plate
# open gripper ])

# 5. release sphere off gripper
# attach it to plate
ActionReleaseAndAttach ( actions,

" sphereLock ", " robot.base.plateLock ")

# repeat step 2. - 5.
...

end

The simulation time of Scenario 4 is about 19 times
less than that of Scenario 1. This is because Scenario
4 (segmented simulation only) is basically a non-stiff
system where the solver can use large step sizes. In
addition, the time for reconfiguration of the multi-
body system, for gripping and releasing, is negligible.
Fine-tuning of collision handling during transporta-
tion of the gripped freight is no longer required. Fur-
thermore, any type of cargo can be transported, re-
gardless of its shape. The disadvantage is that the
details of the gripping are not modeled, but this can
be important.

Scenario 1 (collision handling only) is a stiff system
because the gripper holds the sphere by elastic con-
tact and friction forces, which change during trans-
port. Therefore, the solver must use much smaller
step sizes. One limitation of collision handling with
the MPR algorithm is that it only supports point con-
tacts. If the cargo would be a box, see (Neumayr and
Otter 2023, Scenario 3(b)), it would not be possible
to calculate a unique point contact that is continu-
ous over time, for example, because one box and one
gripper face or one box and one plate face are paral-
lel to each other during contact. All these considera-
tions lead to a compromise in modeling the gripping
and releasing of the cargo with collision handling, and
otherwise rigidly attaching the sphere to the plate or
gripper, resulting in Scenario 2 and Scenario 3.

There is not such a big difference in simulation time
for Scenarios 1,2,3, see Table 1. In all three cases,
the calculation of the elastic contact response is the
limiting factor. This effect is modeled in all these
cases. In more realistic scenarios, the approach of
Scenario 2 or 3 may pay off, if the number of collision
phases is small relative to the remaining actions.

4 Conclusion
The novel approach of variable structure systems with
Modia/Modia3D seems to be very promising. De-
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pending of the predefined acausal component and the
application one can design (extend) specific actions to
trigger new segments and re-initialize the model. In
this paper, existing Modia3D actions are extended by
enabling or disabling collision handling during simu-
lation, which speeds up the simulation and allows to
model form locked fixing of cargos. Furthermore, an
example was sketched of how the Modelica language
and the FMI standard could be enhanced to allow
the number of variables and equations to be changed
during simulation.
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