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Abstract
Degradation of the catalyst layer is a major challenge for
the commercialization of polymer electrolyte membrane
fuel cells (PEMFCs). Numerical modeling helps to under-
stand and analyze the degradation phenomena, to transfer
results from accelerated stress tests (ASTs) to real ap-
plications and to optimize operating conditions regarding
degradation. We implemented a typical catalyst degrada-
tion model for platinum used in literature in Modelica. A
numerical analysis shows the problem of “stiffness” for
these models, meaning the tremendous difference in time
constants. Assuming the platinum ion concentration in
the ionomer to be in quasi-equilibrium helps to reduce
the “stiffness”, increases simulation speed and numerical
robustness without any relevant inaccuracy. For a typical
AST, the simulation speed can be more than doubled end-
ing in a real-time factor of over 1,000. Thus, 500 hours of
AST can be simulated within less than 30 minutes, which
gives room for extensive analysis with the model.
Keywords: PEM Fuel Cells, Catalyst Degradation, Stiff
System, Time Constants, quasi-equilibrium

1 Introduction
Polymer electrolyte membrane fuel cells (PEMFCs) are
a promising technology which provides locally CO2-free
electrical energy. Their usage, e.g. in electric aircraft
or fuel cell electric vehicles (FCEVs) can contribute to
the announced aim of climate neutrality (European Union
2021).

PEMFCs use hydrogen at the anode and oxygen at
the cathode to produce water, electrical energy and heat
through the hydrogen oxidation reaction (HOR) and oxy-
gen reduction reaction (ORR):

H2
HOR−−−→ 2H++2e−, (1)

0.5O2 +2H++2e− ORR−−→ H2O, (2)
H2 +0.5O2 −−→ H2O. (3)

Figure 1 shows a schematic PEMFC. The HOR and
ORR take place at the catalyst layers (CLs), which are
placed on the membrane. In commercial PEMFCs, plat-
inum or platinum alloys are used as catalyst material. Be-
sides the catalyst particles, the CL consists of a porous
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Figure 1. Schematic illustration of a PEMFC (Figure based on
Proton Exchange Fuel Cell Diagram by Mattuci licensed under
CC0 1.0 Universal Public Domain Dedication)

support material, typically carbon, and the ionomer. The
latter allows the transport of protons.

Platinum is costly and its degradation is a main con-
tributor to PEMFC performance loss (Borup et al. 2020).
To reduce costs and nevertheless keep the efficiency high,
very small platinum particles in the range of nanometres
are used, which have a high surface area to mass ratio.
Those small particles are known to be less stable than
bulk material and, hence, more prone to electrochemical
platinum dissolution:

Pt←−→ Pt2++2e−. (4)

Platinum ions (Pt2+) migrate through the ionomer to
larger particles. That is why smaller particles are getting
smaller and finally completely dissolute, while larger par-
ticles are growing. The size dependency of the platinum
dissolution (Gibbs-Thomson effect) leads to the so-called
electrochemical Ostwald-Ripening (Wagner 1961; Shao-
Horn et al. 2007). The platinum surface decreases for a
constant platinum mass in the catalyst layer, since larger
particles have a lower surface to mass ratio. Figure 2
shows a schematic representation of this phenomena. The
reduced catalyst surface area leads to increased activation
losses (Zihrul et al. 2016; Bernhard et al. 2023), increased
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Figure 2. Schematic visualization of electrochemical Ostwald-Ripening. Smaller platinum particles are more prone to electro-
chemical dissolution, while platinum ions tend to re-deposit on larger particles. The increase of average particle size leads to a
decreased platinum surface and accordingly lower cell voltage and fuel cell efficiency.

oxygen transport resistances in the catalyst layer (Gres-
zler, Caulk, and Sinha 2012) and, hence, reduced cell
voltage and efficiency.

Different groups have implemented catalyst degrada-
tion models for PEMFCs. Most of them use the kinetic
model for platinum oxidation and dissolution initially pro-
posed by Darling and Meyers (2003). Bi and Fuller (2008)
and Darling and Meyers (2005) calculated the platinum
dissolution not only for one but two particle groups with
different radii which allowed to describe the reduction of
electrochemical surface area (ECSA) for the first time.
Later, Holby and Morgan (2012) calculated the platinum
dissolution for a particle size distribution (PSD) approx-
imated by several particle groups which allowed to de-
scribe the loss of ECSA more precisely. Li et al. (2015)
used a similar model approach with a 1D through-plane
(x-axis direction in figure 1) discretized CL. Schneider et
al. (2019) added other degradation mechanisms like car-
bon corrosion and cathodic dissolution, i.e. dissolution
during a reduction of potential, to the model. Jahnke
et al. (2020) coupled the degradation model with a 2D
along-the-channel (x and z-axis direction in figure 1) fuel
cell model. Other contributions came from, among oth-
ers, Rinaldo, Stumper, and Eikerling (2010), Zhang et al.
(2013), Ahluwalia, Arisetty, Peng, et al. (2014), Kregar et
al. (2019) and Prokop et al. (2019).

A lot of work was done with catalyst degradation mod-
els of the type based on Darling and Meyers (2003). How-
ever, to the best of the authors’ knowledge, we present for
the first time a numerical analysis for these kind of mod-
els and an implementation in the multi-physics modeling
language Modelica. Assuming the platinum ion concen-
tration to be in quasi-equilibrium, we propose a possibil-
ity to increase simulation speed and numerical robustness
without relevant inaccuracies.

2 Modeling of Catalyst Degradation
in PEM Fuel Cells

In the following section, the catalyst degradation model
is described briefly to allow the reader to understand the
differential equations. For the sake of simplicity, the fol-
lowing assumptions were made:

• Anodic platinum dissolution and, thus, Ostwald

ripening is the main irreversible degradation mech-
anism. Neither coalescence nor chemical dissolution
of platinum oxide is part of the model.

• Platinum ion diffusion in the membrane can be ne-
glected. Thus, no Platinum band is forming.

• Platinum oxidation can be described with a simple
one-step reaction mechanism without size effect on
platinum oxidation. Sub-surface oxide is not taken
into account. Thus, no cathodic dissolution takes
place.

• The catalyst is pure platinum and the geometric sur-
face area of the spherical particles is equal to the
ECSA.

• The CL can be described with a 0D model with a
uniform platinum ion concentration in the ionomer.
This assumption is justified due to high electric con-
ductivity (electric potential as the main stressor) and
the high ratio of catalyst surface to ionomer volume.

Platinum particles in the catalyst layers exist with dif-
ferent sizes forming a PSD, which can typically be ap-
proximated by using a log-normal distribution. Figure 3
shows the used PSD. It is approximated using 20 equidis-
tant distributed particle groups between r1 = 0.75nm and
r20 = 3.5nm, where 20 is an arbitrary compromise be-
tween accuracy and simulation speed. The average diam-
eter, standard deviation and platinum loading is based on
the data from Jahnke et al. (2020), see appendix A. All par-
ticles in one group have the same radius and they shrink or
grow due to electrochemical dissolution or re-deposition,
which is called the radial evolution approach (Holby and
Morgan 2012). The surface area of all particles can be
described with the roughness factor rf (catalyst surface
divided by geometric surface of the fuel cell) using the
platinum loading Li

Pt (platinum mass divided by geometric
surface of the fuel cell) of each particle group i:

rf = ∑
i=1

(
3

ρPtri Li
Pt

)
, (5)

Li
Pt =

4
3

πρPttCL(ri)3ni. (6)
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Figure 3. Initial PSD with continuous log-normal distribution
and discrete particle groups

The radius ri of a particle group changes due to Ostwald
ripening. The volumetric specific number of particles ni,
the platinum density ρPt and the catalyst thickness tCL stay
constant.

Platinum oxidation is assumed to follow the simple one
step reaction proposed by Darling and Meyers (2003).
Oxide coverage might dependent on the particle size.
Ahluwalia, Arisetty, Wang, et al. (2013) measured an in-
creasing coverage with particle size, while most models,
including Darling and Meyers (2003), assume the oppo-
site. That is why no dependency of the oxide coverage
θPtO on the particle size is considered and the platinum ox-
ide coverage can be described with one differential equa-
tion:

dθPtO

dt
=

RPtO

Γ
, (9)

where Γ is the number of active sites on a platinum surface
and RPtO is the reaction rate of platinum oxidation calcu-
lated according to equation 7. All parameters are listed in
table 2.

The proton concentration cH+ used in equation 7 is cal-
culated, according to Darling and Meyers (2003), using
the equivalent weight of the membrane EW, the density
of the dry ionomer ρi,dry, the molar weight of water MH2O
and its density ρH2O:

cH+ =
1

EW
ρi,dry

+
λMH2O
ρH2O

. (10)

The water content λ is calculated according to Springer,
Zawodzinski, and Gottesfeld (1991) and is only a function
of relative humidity.

At high electric potential E, platinum tends to dissolve
in the ionomer. The reaction rate for platinum dissolution
Ri

diss is calculated according to equation 8. The higher the
oxide coverage, the lower the platinum dissolution since
the oxide protects the platinum. In the model, the surface
fraction available for platinum dissolution θav is calculated
by the simple relationship θav = max(0,1− θPtO). The
dissolution leads to an increase of platinum ion concen-
tration cPt2+ in the ionomer of the catalyst layer, which is

described by the differential equation:

εi,CL
dcPt2+

dt
= 4π ∑

(
(ri)2niRi

diss
)
, (11)

where εi,CL is the ionomer volume fraction in the CL.
Small particles are more prone to dissolution, which is

described using a constant surface energy σPt:

Eeq,i
diss = Eeq,bulk

diss − σPtMPt

2riρPtF
. (12)

There seems to be a confusion about the radius depen-
dency of the equilibrium potential for platinum dissolu-
tion in literature. Since the value for σPt is taken from
Darling and Meyers (2003), their formulation is used, too.
However, one can find a factor of 2 or 3 in the numerator
in different publications (Bi and Fuller 2008; Holby and
Morgan 2012; Kaptay 2017; Jahnke et al. 2020).

The radius of the particle group i either shrinks or grows
due to the dissolution rate Rdiss, which adds another differ-
ential equation per particle group to the system of ordinary
differential equations (ODEs):

dri

dt
=
−MPt

ρPt
Ri

diss. (13)

All in all, the model has initially n+2 differential states
where n = 20 is the chosen number of initial particle
groups (see above). The translated model has no nonlinear
system to solve. Table 3 lists all differential states includ-
ing the chosen nominal value within a typical range for
that state.

Using the described radial evolution approach, smaller
particles are getting smaller until they disappear. Since
the equilibrium potential for platinum dissolution (equa-
tion 12) goes to negative infinity for a radius of zero, a
minimum valid radius rmin is defined and set to 0.45nm.
If the radius of a particle group reaches this value, an event
is triggered and the particles “disappear”. Thus, the radius
is set to zero and an integer in the trigger vector is set to
zero which deactivates the corresponding equations, i.e.
equation 12 and 13 for the that particle group.

Listing 1. Event indicating and handling

for i in 1:n_groups loop
when r[i] < r_min then
reinit(r[i], 0);
trigger[i] = 0;

end when;
end for;

Degradation phenomena are typically measured in ac-
celerated stress tests (ASTs). Such an AST is simulated
for a temperature of 80 ◦C, a relative humidity of 80 %
and an electric potential symmetrically changing within
0.5 s between a lower potential limit (LPL) of 0.6 V and
an upper potential limit (UPL) of 0.95 V in a period of
5 s. The simulation was performed with the DASSL solver
and a tolerance of 10−4. Figure 4 shows the result for a
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Table 1. Equations used to describe the reaction rates of platinum oxidation and dissolution

RPtO = kPtO

[
exp
(−ωPtOθPtO

RT

)
exp
(

αPtO,oxzPtOF
RT

(E−Eeq
PtO)

)
−θPtO

(cH+

cref

)2
exp
(−αPtO,redzPtOF

RT
(E−Eeq

PtO)

)]
(7)

Ri
diss = kdissθav

[
exp
(

αdiss,oxzdissF
RT

(
E−Eeq,i

diss

))
−
(cPt2+

cref

)
exp
(
−αdiss,redzdissF

RT

(
E−Eeq,i

diss

))]
(8)

Table 2. Parameter of the catalyst degradation model

Parameter Description Value Unit Literature

cref Reference concentration 1×10−3 molm−3 Darling and Meyers (2003)
Eeq,bulk

diss Equilibrium potential 1.188 V Darling and Meyers (2003)
Eeq

PtO Equilibrium potential 0.765 † V Darling and Meyers (2003)
EW Equivalent weight of the ionomer 1.1 kgmol−1

F Faraday constant 96,485.33 Asmol−1

kdiss Reaction constant 3×10−6 molm−2 s−1 Bi and Fuller (2008)
kPtO Reaction constant 7×10−6 molm−2 s−1 Bi and Fuller (2008)
MPt Molar mass 195×10−3 kgmol−1 Darling and Meyers (2003)

MH2O Molar mass 18.02×10−3 kgmol−1

R Molar gas constant 8.314 Jmol−1 K−1

zdiss Number of electrons 2 1 Darling and Meyers (2003)
zPtO Number of electrons 2 1 Darling and Meyers (2003)

αdiss,ox Transfer coefficient 0.5 1 Darling and Meyers (2003)
αdiss,red Transfer coefficient 0.5 1 Darling and Meyers (2003)
αPtO,ox Transfer coefficient 0.4 1 Bi and Fuller (2008)
αPtO,red Transfer coefficient 0.1 1 Bi and Fuller (2008)

Γ Number of active sites 2.18×10−5 molm−2 Darling and Meyers (2003)
εi,CL Ionomer volume fraction 0.3 1 Bi and Fuller (2008)
ρi,dry Density 2×103 kgm−3

ρPt Density 21.45×103 kgm−3 Darling and Meyers (2003)
σPt Surface energy 2.37 Jmol−1 Darling and Meyers (2003)

ωPtO Interaction parameter 30×103 Jmol−1 Darling and Meyers (2003)

† Takes into account particle size effect according to Darling and Meyers (2003) for a constant particle radius of 2nm.

Table 3. Differential states

State Unit Nom. Description

θPtO 1 1 Platinum oxide coverage
cPt2+ molm−3 10−3 Platinum ion concentration

ri m 10−9 Radius of particles in group i

simulation over 500 operating hours. In figure 4 (a), the
evolution of the radii can be seen. Smaller particles are
getting smaller and finally disappear, while larger particles
are getting larger. The color bar indicates the initial radii
of the particle groups. The electrochemical Ostwald ripen-
ing leads to a reduced catalyst surface, which is shown in
figure 4 (b) expressed as the roughness factor rf. The kinks
are due to the discretization of the PSD. After 500 h of
AST, over 70 % of the initial catalyst surface is lost. This

leads to a decrease of cell voltage and, thus, efficiency of
the fuel cell (both not part of the model).

The loss of electrochemical surface area shown in fig-
ure 4 (b) has the typical characteristic of an high initial
loss followed by a slower degradation, since the platinum
particles radii has increased. Both, qualitative curvature
and quantitative loss is comparable to the available litera-
ture mentioned in section 1. Nevertheless, for quantitative
statements the model parameters in table 2 needs to be
fitted to measurement data.

3 Numerical Analysis
The described irreversible catalyst degradation occurs
over several hundreds or thousand of hours. Thus, the
model should be much faster than real-time for its us-
age, e.g. in prognostic and health management (PHM)
or for the optimization of operating conditions regarding
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Figure 4. Simulation result for an AST over 500 hours. (a)
Radial evolution. (b) Loss of electrochemical surface area ex-
pressed as roughness factor.

lifetime. A numerical analysis of the model may help to
identify differential equations that slow down the simula-
tion and find more efficient numerical formulations.

For that purpose, the linearized state space formulation
is used:

dx
dt

= Ax+Bu, (14)

where A is the state or system matrix, B is the input ma-
trix, x is called state vector and u is called input vector
(Brenan, La Campbell, and Linda Ruth Petzold 1996).

For the described model using SI-units, the typical val-
ues of the differential states differ by several orders of
magnitude. Visualizing A could be misleading since high
absolute values are only due to the dimensions. E.g., a
change in particle radius would have a massive impact on
platinum ion concentration, since the particle radii are in
the range of 1×10−9 (m) and concentration in the range of
1×10−3 (molm−3). That is why the state space system is
normalized with respect to the nominal values ni of the
states (see table 3) and a typical height for a changing
input hi:

ẋ1
n1
...

ẋn
nn

=

 a11 . . . a1n
nn
n1

...
. . .

...
an1

n1
nn

. . . ann




x1
n1
...

xn
nn



+


b11

h1
n1

. . . b1n
hn
n1

...
. . .

...
bn1

h1
nn

. . . bnn
hn
nn




u1
h1
...

un
hn

 .

(15)

The input heights were chosen to hE = 0.1V and hT =
10K for the electrical potential and temperature at the CL,
respectively. Neither the diagonal entries of matrix A nor
the eigenvalues change due to this normalization.

The model was linearized and analyzed at typical con-
ditions, i.e. an electric potential of 0.85 V, a temperature
of 80 ◦C and a relative humidity of 80 % after reaching
quasi-equilibrium using the “full linear analysis” method
in Dymola 2023x and the Modelica_LinearSystems2 pack-
age (DLR Institute of System Dynamics and Control
2020). Note, that due to degradation and the changing
PSD no true equilibrium is reached.

Figure 5 shows a graphic visualization of the system
matrix A and input matrix B. Dark gray is associated with
a high absolute value, white are values close to zero or
zero. Positive values are additionally marked as blue.
Both matrices can be interpreted as follows: The column
marks the changing variable (differential state in A or
input in B) and the row marks the normalized change of
derivative. The higher the value (dark gray), the higher
the absolute impact of the changing variable on the state
derivative. Exemplary, all radii have a relatively high im-
pact on the derivation of the platinum ion concentration
but no impact on the oxide coverage, since the oxide cov-
erage does not depend on the particle radii (see section 2).
However, the oxide coverage has an impact on the deriva-
tion of the radii. The impact is positive for small radii
(marked as blue), since an increased oxide coverage leads
to a reduced electrochemical dissolution and, thus, to a
less negative change of particle radii (see equation 8). The
largest absolute value on the main diagonal corresponds
to the platinum ion concentration, indicating that this state
has the smallest time constant.

In matrix B, the big impact of the electrical potential
on all differential states can be seen. As expected and
later further discussed, the impact on platinum ion con-
centration and oxide coverage is much higher than on the
particle radii, since latter are changing much slower due
to degradation.

The matrix A can be used to determine the eigenvalues
λ of the system, since they are the root of

[λ I−A]x = 0 (16)

with the identity matrix I. The eigvals-method from Scipy
in python is used to determine λ .

Table 4 lists the extracted eigenvalues and time con-
stants τ . They are sorted and numbered from smallest to
largest time constant. The eigenvalues can be interpreted
as follows: Number one is associated with the platinum
ion concentration in the ionomer. Number two is asso-
ciated with the platinum oxide coverage. All others can
be interpreted as the particle radii changing due to degra-
dation. This irreversible degradation phenomena is very
slow compared to the fast changing platinum ion concen-
tration and the platinum oxide coverage. Hence, the time
constants are much higher. However, for a system ma-
trix A that is no triangular matrix, the contribution of the
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Figure 5. Visualization of the normalized matrices A and B.
Absolute values of matrix entries are used for color bar. Positive
values are marked blue.

eigenvalue to the continuous states is not unambiguously.
Since 19 out of 22 eigenvalues are positive, the linearized
system is not stable.

Table 4. Eigenvalues and time constants τ of the degradation
model with dynamic platinum ion concentration

# associated Eigenvalue τ [s]

1 cPt2+ −1.5×103 6.7×10−4

2 θPtO −1.7 6.0×10−1

3 ri 2.5×10−4 4.0×103

. . . ri . . . . . .
21 ri 2.1×10−6 4.7×105

22 ri −1.6×10−6 6.3×105

The ratio from largest to smallest eigenvalue is around
109. This large ratio indicates that the system of ODEs is
a so called “stiff system” (T. D. Bui and T. R. Bui 1979).
The problem of “stiffness” is discussed in literature for
several decades. Nevertheless, there is no clear mathemat-
ical definition of “stiffness” (Hairer and Wanner 1991). It
is typically defined as a system where explicit methods
do not work or implicit methods are tremendously better
(Curtiss and Hirschfelder 1952; Ascher and Linda R. Pet-
zold 1998). In this work, we use the ratio from largest to
smallest eigenvalue to quantify the “stiffness”.

Another way to quantify the contribution of the dif-
ferent states to the numerical effort is the analysis of the
states which dominate error or limits step size during in-
tegration. Values extracted from Dymola 2023x for the
previously described simulation (figure 4) are listed in
table 5. It can be seen that the platinum ion concentration
in the ionomer cPt2+ dominates the error and is limiting the
step size.

Table 5. Contribution of the different states to the numerical
effort

state limits step size [%] dominates error [%]

θPtO 0.03 9.07
cPt2+ 99.97 90.93
∑ri 0.00 0.00

4 Increasing Simulation Speed
The platinum ion concentration in the ionomer limits the
step size and, thus, slows down the simulation. This can
be explained with the very small time constant of the
corresponding state, c.f. table 4. It is much smaller than
the typical excitation signal, i.e. the change of temper-
ature, electrical potential or relative humidity in the CL.
Hence, we propose that it should be treated to be in quasi-
equilibrium.

The left side of equation 11 is set to zero to calculate
the platinum ion concentration in quasi-equilibrium:

0 = 4π ∑
(
(ri)2niRi

diss
)
. (17)

The explicit formulation

cPt2+ =
∑

[
(ri)2ni exp

(
αdiss,oxzdissF

RT

(
E−Eeq,i

diss

))]
∑

[
(ri)2ni

cref exp
(
−αdiss,redzdissF

RT

(
E−Eeq,i

diss

))] (18)

does not need to be implemented since Modelica can
handle implicit formulations but might help others to im-
plement it in programming languages that need explicit
formulations. Note, that diffusion of platinum ions into
the membrane (Pt-band) using Fick’s law of diffusion can
be easily integrated in equation 18. The new model uses
equation 17 instead of equation 11. Thus, the model has
n+ 1 differential states and still no nonlinear system of
equations.

Figure 6 shows a comparison between the “classic”
formulation where the platinum ion concentration is a
differential state and the new formulation where the con-
centration is analytically calculated in quasi-equilibrium.
At t = 2s, the electric potential is jumping from 0.6 V to
0.95 V and at t = 4s back to 0.6 V, c.f. figure 6 (a). Figure
6 (b) shows the increasing platinum oxide coverage. The
time constant in the sub-second range can be seen, c.f.
eigenvalue 2 in table 4. Due to platinum dissolution, the
ion concentration suddenly increases (figure 6 (c)). Only
a small deviation between the two variants can be seen,
visualizing the very small time constant for the platinum
ion concentration. The slight increase in concentration be-
tween t = 2s and t = 4s is due to irreversible degradation,
i.e. the changing PSD.

Note, that a potential jump is the scenario with the
highest deviation between both variants. Typically, the
potential is changing ramp-like within a second or more.
Nevertheless, even for the case with potential jumping

Numerically Efficient Degradation Model of Catalyst Layers in PEM Fuel Cells using Modelica

670 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204665



0.6

0.7

0.8

0.9

E
[V

]

(a)

0.0

0.2

0.4

0.6

θ P
tO

[−
]

(b)

0.000

0.002

0.004

0.006

0.008

c P
t2

+
[m

ol
m

−
3
]

(c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

t [s]

10−5

10−3

10−1

S
te
p
si
ze

[s
]

(d)

quasi-equilibrium

dynamic

2.00 2.03

quasi-equilibrium

dynamic

Figure 6. Comparison between the variant with platinum ion
concentration in the ionomer as a differential state (orange) and
in quasi-equilibrium (blue). (a) shows the electric potential, (b)
shows the platinum oxide coverage (same for both variants), (c)
shows the platinum ion concentration and (d) shows the steps
sizes.

from 0.6 V to 0.95 V and vice versa every 2 s, the rf-
loss (loss of electrochemical surface area) after 500 hours
differs less than 0.1 % between both variants (not shown).

Figure 6 (d) shows the step sizes used for integration by
DASSL. It can be seen that the step size is much smaller
for the variant where platinum ion concentration is a dif-
ferential state, especially after the decreasing potential at
t = 4s. Fast and large changes in electric potential with
the “classic” formulation were also leading to situations
where the platinum ion concentration did not converge for
the minimum allowed step size. Those problems did not
occur with the new formulation.

By calculating the platinum ion concentration in the
ionomer in quasi-equilibrium it is possible to get rid of
the smallest time constant and decrease the systems “stiff-
ness”. The ratio from largest to smallest time constant
can be reduced from 9.4×108 to 1.1×106. This helps to
increase simulation speed and numerical robustness mean-
ing less problems with convergence.

To quantify the increase of simulation speed, a real-time
factor is introduced as the ratio of simulation time and
CPU-time. The higher the real-time factor, the faster the
simulation. All simulations were performed on a personal
laptop computer with an AMD Ryzen 7 PRO 4750U (Base
Clock 1.7 GHz). The CPU-time and, thus, the real-time
factor, varies due to other processes on the computer and,
since a solver with variable step size is used, on the chosen
step sizes. The chosen steps are the same for each repeated
identical simulation but can vary dramatically for differ-
ent parameters or inputs. Therefore, 1,000 Monte-Carlo
simulations are performed with different AST-profiles. A
shape-factor is randomly chosen between 0 (square wave
signal) and 1 (triangular wave). LPL is varied between
0.4 V and 0.7 V, UPL between 0.8 V and 1.2 V. The pe-
riod of 5 s is kept constant for a simulation time of 1 h.
Again, DASSL with a tolerance of 10−4 is used.

Figure 7 shows a comparison of the simulation speed
for both variants. The thickness of the violin plots indi-
cates the density of occurrence. The differences in simula-
tion speed within one variant is mainly due to the variation
of the potential profile. The variant with platinum ion
concentration in quasi-equilibrium is much faster. The
simulation time is nearly proportional to the number of F-
evaluations (not shown), i.e. evaluations of the right hand
sight (RHS) of the hybrid ODE. This indicates, again, that
larger step sizes are possible due to the quasi-equilibrium
formulation. In all 1,000 simulated cases, the variant with
platinum ion concentration in quasi-equilibrium is faster
than the dynamic variant (not shown). The average real-
time factor was more than doubled ending in a factor of
approximately 1,260. Thus, 500 hours of AST can be
simulated within 23 minutes.

5 Summary and Discussion
A fast and efficient catalyst degradation model for PEMFC
was introduced using the multi-physics modeling lan-
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Figure 7. Real-time factor, i.e. the ratio of simulated time and
CPU-time, for the variants with dynamic platinum ion concen-
tration and concentration in quasi-equilibrium. The thickness of
the violin plots indicates the density of occurrence.

guage Modelica. The model, predominantly based on
Darling and Meyers (2003), can describe platinum oxide
formation, platinum dissolution and, thus, electrochemi-
cal Ostwald ripening and the reduction of catalyst surface
area.

Using the state space formulation, the system matrix
A and the input matrix B were discussed and the eigen-
values respectively time constants were extracted. The
problem of “stiffness” for this type of degradation model
was discussed, meaning a tremendous difference in time
constants. It was shown, that the time constant for the
platinum ion concentration in the ionomer is much lower
than the typical excitation signal, i.e. the change of the in-
puts temperature and electrical potential. Calculating the
platinum ion concentration explicit in quasi-equilibrium
removes the differential state with the smallest time con-
stant, reduces “stiffness” and increases simulation speed
without creating a nonlinear system of equations or rel-
evant inaccuracies. Using the new formulation, the sim-
ulation speed could be more than doubled ending in an
average real-time factor for a typical AST of over 1,000.
Thus, 500 hours of AST can be simulated within less
than 30 minutes which allows the usage of the model for
extensive parameter studies, PHM and optimization, e.g.
regarding the operating conditions.
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A Initial Particle Size Distribution
The initial PSD (figure 3) is approximated using 20 par-
ticle groups with equidistant distributed radii between
0.75nm and 3.5nm and a log-normal distribution

ni =
n0

riσ
√

2π
exp

(
(ln(ri)−µ)2

2σ2

)
, (19)

where the parameter n0 describes the absolute amount of
platinum particles

n0 =
LPt

∑i=1
4
3 π(ri)3nitclρPt

. (20)

The parameter for the distribution ln(µ) = 1.58×10−9 m,
σ = 0.31, tcl = 20µm and LPt = 0.6mgcm−2 are taken
from Jahnke et al. (2020). The resulting geometric surface
area is 71.2m2 g−1.
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