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Abstract 
Collaborative model-based development of the hybrid 

power system often requires large-scale co-simulation and 

system parameter optimization. In this study, we 

investigate an architecture for parallel processing 

simulation of SSP (System Structure and Parametrization) 

and FMI (Functional Mock-up Interface), which enables 

high-speed computation by multi-core distribution. We 

combine Bayesian optimization and co-simulation, then 

we build a collaborative development platform for hybrid 

power systems design. We report performance 

experiments using hybrid electric vehicle simulation 

model published by JAMBE (Japan Automotive Model-

Based Engineering center). 
Keywords: Model exchange, FMI, SSP, Distributed co-

simulation 

1 Introduction 

Hybrid power systems are a combination of power 

generation and energy storage systems (batteries and fuel 

cells). As shown in Figure 1, a hybrid power system 

consists of systems for both power supply and power 

demand stakeholders, and each stakeholder has its own 

methods and tools for system design and analysis. Hybrid 

electric vehicles (HEVs) also consist of various 

components such as engines, electric motors, DC-DC 

converters, DC-AC inverters, and batteries, and OEMs 

and suppliers work together for system design and 

analysis. 

This means that system designing should consider 

different perspectives, which requires the use of several 

different tools and methodologies. However, connecting 

tools and exchanging information between different teams 

often leads to inefficiencies in system development. Since 

connecting tools from different vendors is not guaranteed 

to work and not supported by each vendor, it is necessary 

for the tool users to build and maintain their own 

environment for connecting tools.  

For these reasons, interoperability standards for model 

exchanging between tools are important. FMI (Functional 

Mock-up Interface) and SSP (System Structure and 

Parametrization) are standardized by Modelica 

Association to establish interoperability between tools for 

model exchanging at various levels of abstraction.  

SmartSE project of prostep ivip Association has 

published “SmartSE Recommendation” (SmartSE 2023) 

for simulation-based system design and decision making 

in collaborative development between multiple design 

teams across companies based on the utilization of FMI 

and SSP standard. 

1.1 FMI (Functional Mock-up Interface) 

FMI (Functional Mock-up Interface) is common interface 

and file format that allows simulation models to be passed 

between different tools. FMI standard is available on the 

official website (ref. FMI website). There are many tools 

over hundreds that support the FMI standard, and models 

can be exchanged between these tools.  

FMU (Functional Mock-up Unit), which is zipped 

compressed file format, contains modelDescription.xml 

file in XML document format and a library file in binary 

format (DLL on Windows systems, SO on Linux systems) 

that implements the model's definition expressions or 

solver functions. 

The format of modelDescription.xml is defined by the 

standard, and it contains information such as the names, 

types, and other attributes of the input and output signals 

of the model stored in the FMU, and a list of parameters 

that can be set and changed from outside the FMU. 

There are two types of FMI standards “Model 
Exchange” interface and “Co-simulation” interface. 

Model Exchange FMU contains only the model equations. 

 
Figure 1.  DX in Hybrid Power Supply Systems Design. 
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Co-simulation FMU includes both model equations and 

solver.  

Model Exchange interface assumes that the model 

equations in multiple FMUs are aggregated and computed 

by a single solver. This makes it difficult to speed up the 

calculation by distributed parallelization, and it is difficult 

to guarantee consistency between the results of a single 

solver and those of distributed parallel computation. The 

reason is that each individual Co-simulation FMU 

contains a model and a solver, so each FMU can be 

computed independently. 

1.2 SSP (System Structure and 

Parametrization) 

SSP (System Structure and Parametrization) is standard 

format for describing model and signal connection 

structures and other parameters necessary to conduct 

multi-domain co-simulation combining multiple FMUs. 

Specification of SSP can be obtained from the official SSP 

website (ref. SSP website). 

Like FMU, SSP is a compressed file in zip format, and 

its interior consists of several sub-formats and its interior 

consists of several sub-formats. SSD (System Structure 

Description) is an XML file that describes the hierarchical 

structure, connection relationships, and functional 

structure of the entire FMU network. 

1.3 Distributed co-simulation standards 

In collaborative development through model exchange, 

there are many opportunities for large-scale simulation 

that combine model components created by multiple 

teams. Most commercial simulation tools calculate 

models sequentially, so when model parts are exchanged 

between companies or design teams using FMI and SSP, 

the simulation speed decreases as the number of FMUs for 

model parts increases. 

Distributed co-simulation is expected to speed up large-

scale simulations by running models in parallel. 

Distributed co-simulation may be run in a multi-core 

distribution within a single machine, on a set of machines 

interconnected via a local area network, or on globally 

distributed computers communicating via the Internet. 

Typical distributed co-simulation standards include 

IEEE 1516 HLA and DSP. 

IEEE 1516 HLA (High Level Architecture) (IEEE 

1516) standardizes distributed co-simulation and standard 

interface for connecting multiple heterogeneous 

simulators. HLA defines controller called RTI (Run-time 

Infrastructure) which provides services such as data 

distribution and time synchronization among multiple 

connected simulators (called federates in HLA). Through 

this RTI, simulators are combined in a star-like network 

configuration for distributed simulation. 

DCP (Distributed Co-simulation Protocol) (ref. DCP 
website) is a new protocol developed for the purpose of 

connecting real-time systems (HILS or prototype 

machines) and simulators. DCP protocol has two modes: 

real-time mode that connects a real-time system (actual 

device) and a simulator, and non-real-time mode that is 

used to connect virtual simulators. In both modes, the role 

of controller (equivalent to RTI in HLA standard) is 

limited compared to HLA. For data communication, each 

simulator node communicates directly with the other 

simulator node on a point-to-point basis. DCP protocol 

configures mesh-type network for distributed simulation. 

In the real-time mode of DCP protocol, each node runs 

using its own timer, so there is no explicit synchronization 

of time between nodes. In the non-real-time mode, the 

controller sends clock signal to each node, and the 

simulator on each node runs explicit synchronized to the 

clock signal. 

1.4 Contributions of this paper 

In this paper, we design a multi-core distributed simulator 

which performs high speed co-simulations that connect 

many model parts (FMUs). Next, we combine Bayesian 

optimization and distributed co-simulation to create a 

toolset that can automatically perform parameter 

optimization of hybrid power systems design.  

2 Computation of distributed co-

simulation 

This section considers distributed co-simulation for SSP 

and FMI that can perform parallel computation with 

multi-core distribution. 

The upper part of Figure 2 shows the sequence of 

execution of the calculations of each simulator connected 

to the distributed simulation, the time synchronization for 

distributed simulation, and the data distribution. The 

lower part of Figure 2 shows the case of simulation by 

sequential computation without distributed computation 

as a comparison. 

In the upper part of Figure 2, each of the three 

simulators computes independently and in parallel until 

the logical time set as the synchronization timing 

(coupling point), at which point the simulators exchange 

output values with the other simulators. After that, the 

three simulators again perform calculations in parallel and 

exchange output values with the other simulators at the 

next synchronization timing. This process is repeated. 

This figure shows a simple case in which the 

communication step size of the three simulators is the 

same and does not vary, but there may be other cases in 

which the synchronization period varies, or in which each 

simulator has a different synchronization period or 

synchronization timing. 

In contrast, in the case of sequential calculations as in 

the lower part of Figure 2, which do not involve 

distributed calculations, the three calculations are repeated 
in sequence using a set of simulators. Most commercial 

simulation tools are considered to be sequential. 
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Comparing distributed and sequential computation 

cases, the distributed simulator is expected to increase 

simulation speed compared to the sequential case. 

However, the simulation speed does not increase linearly 

with the degree of parallelism. In the case of distributed 

computation, there is the overhead of synchronization and 

signal transmission, so it is important how lightly this 

process can be made and how much the computation time 

can be shortened. It should also be assumed that the 

computational complexity of each model component is not 

uniform, so even if distributed computation is used, there 

is a tendency for the speed to decrease when there is a 

model with a large computational complexity. 

In Figure 2, all simulators synchronize at the same 

period, but in general, each simulator may synchronize at 

a different period. DSP described in section 1.3 is suitable 

for distributed co-simulations that synchronize at a single 

cycle, but not for distributed simulations that synchronize 

at different cycles, because it synchronizes by distributing 

clock signals from the controller node to the slaves. On the 

other hand, IEEE 1516 HLA is suitable for both single-

period and multi-period synchronization because it 

schedules slave nodes by supervising the global time in 

the controller node. Therefore, this paper adopts the IEEE 

1516 HLA mechanism. 

3 Distributed SSP-FMI co-simulation 

3.1 Architecture of distributed simulator 

This section shows the architecture of SSP-FMI simulator 

with distributed computation shown in Figure 3. SSP-FMI 

simulator was developed using distributed co-simulation 

platform VenetDCP from Toshiba Digital Solutions (ref. 

VeneDCP website). 

"FMI Executable" loads and executes Co-simulation 

2.0 interface FMU file. FMI standard defines the function 

APIs used to initialize the FMU and execute model 

computation. These functions are stored in DLL binary 

library file in the FMU. "FMI Executable" unzips FMU 

file, obtains information of input/output signals and 

parameters from modelDescription.xml file, and calls the 

function APIs in DLL binary library file to drive and 

simulate the imported FMU. In co-simulation where 

multiple FMUs are running, multiple FMI executables are 

launched for individual FMUs to achieve parallel 

distributed computation. 

Recording and monitoring of the test data time series 

signal input and output signal time series are performed 

using Python. 

Figure 2. Comparison of computation between distributed co-simulation and sequential co-simulation. 

 
Figure 3. Architecture of distributed SSP & FMI simulator. 
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 "Distributed simulation controller" provides the signal 

transmission service and the time synchronization service 

between FMI Executables and Python. 

This mechanism corresponds to the RTI (Run-time 

Infrastructure) of the IEEE1516 HLA. The signal 

exchange service also reads SSP file and sets up the signal 

connection relationship between FMUs and parameters. 

Since "FMI Executable," "Python," and "Distributed 

simulation controller" are independent processes, each 

process will be distributed across multiple CPU cores 

when run on a multi-core CPU machine. The number of 

processors and CPU core allocation can be changed using 

the processor affinity option in Microsoft Windows.  

Processor Affinity, also called CPU pinning, allows the 

user to assign a process to use only a few cores.  

Inter-process communication between "FMI 

Executable," "Python," and "Distributed simulation 

controller" uses shared memory between processes on the 

same machine and TCP communication between 

processes on different machines. 

Figure 4 shows the execution screen of the SSP-FMI 

simulator, with the "Distributed simulation controller" 

screen on the left and the simulation output signal time 

series on the right, plotted as a graph using Python's 

Matplotlib library (ref. Matplotlib website).  

3.2 Performance evaluation using hybrid 

vehicle simulation 

This section reports the performance evaluation of 

distributed SSP-FMI simulation by using series parallel 

hybrid electric vehicle (HEV) simulation model shown in  

Figure 4.  Example of SSP-FMI Simulation (series parallel hybrid vehicle model). 

 
Figure 5.  Series parallel hybrid electric vehicle model (ref. JAMBE HEV model) 
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 Figure 5 and continuously variable transmission (CVT) 

engine vehicle simulation model shown in Figure 6. Both 

simulation model is published by JAMBE (Japan 

Automotive Model-Based Engineering center). 

 The original model was built in MathWorks Simulink. 

We divided Simulink model and exported in FMI format. 

The number of FMI files for the hybrid vehicle model is 

21 files divided by the block units of BXXX in Figure 5,  

and the CVT vehicle model is 7 files divided by the block 

units of color marks in Figure 6. 

Each simulation was performed with the input of 1800 

second standard driving pattern of WLTC (Worldwide 

harmonized Light vehicles Test Cycles) class 3b 

developed by UNECE (United Nations Economic 

Commission for Europe). Both simulations were run with 

a sampling time of 2.5 millisecond which is the same as 

the original JAMBE model. 

We measured the RTF (real-time factor) of simulation 

speed using two different machines. The first machine 

equips Intel Core i7-10870H processor with 8 cores and 

16 threads. The second machine equips Intel Core i7-8700 

processor with 6 cores and 12 threads. 

We used Windows 10 as the OS. The SSP-FMI 

simulator we developed allows the user to select the 

number of CPU cores (threads) used in the calculation 

using the processor affinity option of Windows, and we 

compared the simulation speed when using a single CPU 

and when using multiple CPU cores (threads). 

Figure 7 shows the measurement results on the machine 

with Intel Core i7-10870H processor. The vertical axis 

represents RTF. The horizontal axis is the number of CPU 

cores (threads) used. The upper measurement is for a CVT 

vehicle simulation with 7 FMUs, and the lower 

measurement is for a hybrid vehicle simulation with 21 

FMUs. Figure 8 shows the measurement results using the 

machine with Intel Core i7-8700 processor, and the 

notation is the same as in Figure 7. 

 The measurement results show that increasing the 

number of CPUs used in a distributed calculation can 

increase the speed by up to a factor of two compared to a 

Figure 6.  CVT vehicle simulation model (ref. JAMBE CVT model) 

 
Figure 7.  Number of CPU cores (threads) and RTF 

 (Core i7-10870H) 

 

 
Figure 8.  Number of CPU cores (threads) and RTF 

 (Core i7-8700) 
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calculation using a single CPU. However, it was also 

found that speed increases only up to 8 CPU cores 

(threads) and that speed tends to decrease slightly when 

more than 8 CPU cores (threads) are used. This is thought 

to be because excessive use of processor CPU cores 

(threads) affects the execution of non-simulation 

processes and has the opposite effect on the performance 

of distributed computation. 

Table 1 compares RTF of each individual component 

FMU in a hybrid vehicle simulation using 21 FMUs with 

8 threads on a Core i7-10870H, measuring the execution 

time that "FMI Executable" was running. It can be seen 

that the simulation speed varies by a factor of several 

depending on the complexity of the model included in the 

FMU and the amount of calculation. The overall 

simulation RTF is 21.785 while the RTF of the single 

FMU of HV_CNT (hybrid control controller) is close to 

this at 26.651, indicating that the calculation of HV_CNT 

is the overall speed-determining factor. This shows that 

the overall simulation speed tends to be dragged down by 

the computationally intensive FMU, and that no further 

speed-up can be expected in the hybrid vehicle simulation 

even if the number of threads is increased to 8 or more. 

By measuring the overall RTF and RTFs of each 

individual FMU in this manner, it is believed that it is 

possible to determine the optimal number of CPU cores 

(threads) that will provide the maximum simulation speed 

in the parallel distributed SSP-FMI simulator. 

4 System parameter optimization 

using SSP-FMI co-simulation 

4.1 Framework of system parameter 

optimizetion 

This chapter describes an application of SSP-FMI co-

simulation to system parameter optimization.  

Collaborative and rapid development of hybrid power 

supply systems often requires various configuration and 

many control parameters to be optimized. It also requires 

to facilitate model exchange between partners while 

keeping confidentiality of model. We think distributed co-

simulation utilizing model interoperability standard FMI 

and SSP and Bayesian optimization will be solve the 

problems. 

Figure 9 illustrates the framework of collaborative 

development platform for hybrid power suppy systems. In 

this framework, model parts are collected from partners 

in FMI format and optimum parameter set can be searched  

by Bayesian optimizer and distributed co-simulation. 

4.2 Optimization set-up 

A flowchart for optimization functionality is shown in 

Figure 10, where an initial value is first generated (either 

randomly or by user input). The SSP file for the co-

simulation is then modified, where the values of the 

parameters to be optimized over are changed. This allows 

the co-simulation to be run for the chosen parameter 

values. 

Once the co-simulation has finished, the cost function 

to be optimized can be extracted from the output. Based 

on the parameter and output values, an optimization 

module can determine the next point to evaluate. 

4.3 Optimization algorithms 

Compared to most optimization problems, the cost 

function in co-simulation is often time- and resource-

consuming. The system may comprise a large number of 

subsystems and even with parallel and distributed 

simulation, it can take a long time to evaluate its 

performance. Furthermore, the inner workings of the 

subsystems are often not known to the co-simulation 

master as they may originate from different vendors or 

developers. Hence, we can treat the cost function as a 

black box which is expensive to evaluate.  

For this kind of optimization problem, a suitable 

algorithm is Bayesian optimization (Brochu09). This 

works by placing a Gaussian prior on the function and 

updating the posterior distribution based on the observed 

input and output values. This can be used to compute the 

best next value to evaluate, where criteria such as 

“probability of improvement” and “expected 

improvement” can be used. The advantage of Bayesian 

optimization is that it requires few evaluations of the cost 

function, as opposed to, e.g., evolutionary methods  

Table 1.  Comparison of RTF for each FMI model. 

 (Series parallel hybrid vehicle) 

 
 

Parts Speed ratio

DCDC_HI_CNT 84.755

BK_CNT 79.029

BT_HI_PNT 74.171

BT_PNT 70.812

BK_PNT 66.966

DCDC_HI_PNT 63.065

DCDC_PNT 60.866

DF_PNT 58.56

Driver 53.997

EL_HI_PNT 54.604

EL_PNT 52.353

ENG_CNT 49.95

ENG_PNT 48.118

MD1_PNT 45.65

HV_CNT 26.651

MD2_PNT 42.494

MG1_CNT 45.802

MG2_CNT 42.333

TM_PNT 35.417

TR_PNT 38.759

VL_PNT 35.661

Total 21.785
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 (NSGA-II, genetic algorithms, particle swarms, etc.) 

which need many evaluations (Emmerich18). 

 It should be pointed out that it is possible to consider 

more than one cost function. Multi objective optimization 

is common in large and complex systems, where there are 

many metrics by which a system performance can be 

measured in. These are often conflicting, and an optimal 

trade-off is sought. Bayesian optimization can be extended 

to multi objective optimization, e.g., with efficient 

algorithms such as TSEMO (Bradford18).   

 

 
 

Figure 10.  Optimization principle with co-simulation. 

 

4.4 Optimization example 

As an example of system parameter optimization, we 

considered the JAMBE HEV model. In particular we 

considered the role the clutch thresholds play in the 

propulsion. As shown below, the clutch helps activate 

electric only (Figure 11a) or hybrid-electric assist (Figure 

11b). This is determined by, among other things, a 

threshold to open and a threshold to close it (measured in 

vehicle speed, km/h). These two thresholds were chosen 

as the system parameters to optimize over. The cost 

function was set as the fuel consumption during the 

WLTC class3b test drive cycle shown in Figure 12.  

 

 
 

Figure 11.  Scenario for the considered JAMBE model. 

 

 
Figure 12.  WLTC Class 3b test driving cycle consisting of Low, 

Medium, High and Extra High phases. 

 

Figure 9.  Framework of collaborative development platform. 
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4.5 Optimization results 

Using the MATLAB toolbox, Bayesian optimization of 

the clutch thresholds was implemented. Note that this 

allows the Optimization module in Figure 10 to output a 

suggested next value to evaluate in the next co-simulation, 

which was based on the “expected improvement” 

criterion. The cost function was extracted from the co-

simulations as the fuel consumption after the 1800 

seconds drive cycle. This is measured in km/l, so we are 

looking for its maximum. 

The results are shown in Figure 13, where the fuel 

consumption (in km/l) is plotted against the two clutch 

thresholds parameter which defined in the JAMBE HEV 

model. HV_CNT_Clutch_ON_threshold_vel_kmph 

means that closing clutch is possible above this speed. 

HV_CNT_Clutch_OFF_threshold_vel_kmph means that 

opening clutch is prohibited below this speed. 

To appreciate the optimization result, we also 

performed an exhaustive evaluation for all feasible 

parameter values. This involved around 400 co-

simulations, whereas the optimization approach only used 

10. Compared with the default parameter values which 

defined in the JAMBE HEV model (red circle), the 

optimized values (blue circle) showed a 2% improvement 

in fuel consumption. Although this is quite small, more 

gains can be had by considering other blocks, possibly in 

combination with each other.  

 

 
Figure 13.  Optimization results for the co-simulated JAMBE 

model. The red and blue circles represent the default and 

optimized operational values, respectively. 

5 Conclusion 

FMI and SSP standards establish model exchange at 

various levels of abstraction and interoperability between 

tools. In this paper, we investigated a configuration of 

SSP-FMI simulator that enables parallel computation by 

multi-core distribution. We also examined application of 

SSP-FMI simulator to the system parameter optimization. 

We are planning to apply collaborative development 

platform to the development of electric vehicles 

(integration of batteries, BMS, power trains, vehicle 

dynamics, etc), hybrid electric aircrafts (hydrogen fuel 

cells with batteries and high-performance electric motors) 

and offshore wind turbines (optimize efficiency and cost 

by wind & wave prediction). 

We also plan to support co-simulation interface of  

FMI3.0 standard, whose official specification will be 

issued in 2022, and the newly introduced Scheduled 

Execution (SE) interface with the distributed parallel 

simulation in this paper. 
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