
Hybrid Power Systems Simulation and Optimization

Utilizing SSP and FMI

Dai Araki1 Magnus Sandell2
1Toshiba Digital Solutions Corporation, Japan, dai.araki@toshiba.co.jp

2Toshiba Europe Ltd., UK, Magnus.Sandell@toshiba-bril.com

Abstract
Collaborative model-based development of the hybrid

power system often requires large-scale co-simulation and

system parameter optimization. In this study, we

investigate an architecture for parallel processing

simulation of SSP (System Structure and Parametrization)

and FMI (Functional Mock-up Interface), which enables

high-speed computation by multi-core distribution. We

combine Bayesian optimization and co-simulation, then

we build a collaborative development platform for hybrid

power systems design. We report performance

experiments using hybrid electric vehicle simulation

model published by JAMBE (Japan Automotive Model-

Based Engineering center).
Keywords: Model exchange, FMI, SSP, Distributed co-

simulation

1 Introduction

Hybrid power systems are a combination of power

generation and energy storage systems (batteries and fuel

cells). As shown in Figure 1, a hybrid power system

consists of systems for both power supply and power

demand stakeholders, and each stakeholder has its own

methods and tools for system design and analysis. Hybrid

electric vehicles (HEVs) also consist of various

components such as engines, electric motors, DC-DC

converters, DC-AC inverters, and batteries, and OEMs

and suppliers work together for system design and

analysis.

This means that system designing should consider

different perspectives, which requires the use of several

different tools and methodologies. However, connecting

tools and exchanging information between different teams

often leads to inefficiencies in system development. Since

connecting tools from different vendors is not guaranteed

to work and not supported by each vendor, it is necessary

for the tool users to build and maintain their own

environment for connecting tools.

For these reasons, interoperability standards for model

exchanging between tools are important. FMI (Functional

Mock-up Interface) and SSP (System Structure and

Parametrization) are standardized by Modelica

Association to establish interoperability between tools for

model exchanging at various levels of abstraction.

SmartSE project of prostep ivip Association has

published “SmartSE Recommendation” (SmartSE 2023)

for simulation-based system design and decision making

in collaborative development between multiple design

teams across companies based on the utilization of FMI

and SSP standard.

1.1 FMI (Functional Mock-up Interface)

FMI (Functional Mock-up Interface) is common interface

and file format that allows simulation models to be passed

between different tools. FMI standard is available on the

official website (ref. FMI website). There are many tools

over hundreds that support the FMI standard, and models

can be exchanged between these tools.

FMU (Functional Mock-up Unit), which is zipped

compressed file format, contains modelDescription.xml

file in XML document format and a library file in binary

format (DLL on Windows systems, SO on Linux systems)

that implements the model's definition expressions or

solver functions.

The format of modelDescription.xml is defined by the

standard, and it contains information such as the names,

types, and other attributes of the input and output signals

of the model stored in the FMU, and a list of parameters

that can be set and changed from outside the FMU.

There are two types of FMI standards “Model
Exchange” interface and “Co-simulation” interface.

Model Exchange FMU contains only the model equations.

Figure 1. DX in Hybrid Power Supply Systems Design.

DOI
10.3384/ecp204743

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

743

Co-simulation FMU includes both model equations and

solver.

Model Exchange interface assumes that the model

equations in multiple FMUs are aggregated and computed

by a single solver. This makes it difficult to speed up the

calculation by distributed parallelization, and it is difficult

to guarantee consistency between the results of a single

solver and those of distributed parallel computation. The

reason is that each individual Co-simulation FMU

contains a model and a solver, so each FMU can be

computed independently.

1.2 SSP (System Structure and

Parametrization)

SSP (System Structure and Parametrization) is standard

format for describing model and signal connection

structures and other parameters necessary to conduct

multi-domain co-simulation combining multiple FMUs.

Specification of SSP can be obtained from the official SSP

website (ref. SSP website).

Like FMU, SSP is a compressed file in zip format, and

its interior consists of several sub-formats and its interior

consists of several sub-formats. SSD (System Structure

Description) is an XML file that describes the hierarchical

structure, connection relationships, and functional

structure of the entire FMU network.

1.3 Distributed co-simulation standards

In collaborative development through model exchange,

there are many opportunities for large-scale simulation

that combine model components created by multiple

teams. Most commercial simulation tools calculate

models sequentially, so when model parts are exchanged

between companies or design teams using FMI and SSP,

the simulation speed decreases as the number of FMUs for

model parts increases.

Distributed co-simulation is expected to speed up large-

scale simulations by running models in parallel.

Distributed co-simulation may be run in a multi-core

distribution within a single machine, on a set of machines

interconnected via a local area network, or on globally

distributed computers communicating via the Internet.

Typical distributed co-simulation standards include

IEEE 1516 HLA and DSP.

IEEE 1516 HLA (High Level Architecture) (IEEE

1516) standardizes distributed co-simulation and standard

interface for connecting multiple heterogeneous

simulators. HLA defines controller called RTI (Run-time

Infrastructure) which provides services such as data

distribution and time synchronization among multiple

connected simulators (called federates in HLA). Through

this RTI, simulators are combined in a star-like network

configuration for distributed simulation.

DCP (Distributed Co-simulation Protocol) (ref. DCP
website) is a new protocol developed for the purpose of

connecting real-time systems (HILS or prototype

machines) and simulators. DCP protocol has two modes:

real-time mode that connects a real-time system (actual

device) and a simulator, and non-real-time mode that is

used to connect virtual simulators. In both modes, the role

of controller (equivalent to RTI in HLA standard) is

limited compared to HLA. For data communication, each

simulator node communicates directly with the other

simulator node on a point-to-point basis. DCP protocol

configures mesh-type network for distributed simulation.

In the real-time mode of DCP protocol, each node runs

using its own timer, so there is no explicit synchronization

of time between nodes. In the non-real-time mode, the

controller sends clock signal to each node, and the

simulator on each node runs explicit synchronized to the

clock signal.

1.4 Contributions of this paper

In this paper, we design a multi-core distributed simulator

which performs high speed co-simulations that connect

many model parts (FMUs). Next, we combine Bayesian

optimization and distributed co-simulation to create a

toolset that can automatically perform parameter

optimization of hybrid power systems design.

2 Computation of distributed co-

simulation

This section considers distributed co-simulation for SSP

and FMI that can perform parallel computation with

multi-core distribution.

The upper part of Figure 2 shows the sequence of

execution of the calculations of each simulator connected

to the distributed simulation, the time synchronization for

distributed simulation, and the data distribution. The

lower part of Figure 2 shows the case of simulation by

sequential computation without distributed computation

as a comparison.

In the upper part of Figure 2, each of the three

simulators computes independently and in parallel until

the logical time set as the synchronization timing

(coupling point), at which point the simulators exchange

output values with the other simulators. After that, the

three simulators again perform calculations in parallel and

exchange output values with the other simulators at the

next synchronization timing. This process is repeated.

This figure shows a simple case in which the

communication step size of the three simulators is the

same and does not vary, but there may be other cases in

which the synchronization period varies, or in which each

simulator has a different synchronization period or

synchronization timing.

In contrast, in the case of sequential calculations as in

the lower part of Figure 2, which do not involve

distributed calculations, the three calculations are repeated
in sequence using a set of simulators. Most commercial

simulation tools are considered to be sequential.

Hybrid Power Systems Simulation and Optimization Utilizing SSP and FMI

744 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204743

Comparing distributed and sequential computation

cases, the distributed simulator is expected to increase

simulation speed compared to the sequential case.

However, the simulation speed does not increase linearly

with the degree of parallelism. In the case of distributed

computation, there is the overhead of synchronization and

signal transmission, so it is important how lightly this

process can be made and how much the computation time

can be shortened. It should also be assumed that the

computational complexity of each model component is not

uniform, so even if distributed computation is used, there

is a tendency for the speed to decrease when there is a

model with a large computational complexity.

In Figure 2, all simulators synchronize at the same

period, but in general, each simulator may synchronize at

a different period. DSP described in section 1.3 is suitable

for distributed co-simulations that synchronize at a single

cycle, but not for distributed simulations that synchronize

at different cycles, because it synchronizes by distributing

clock signals from the controller node to the slaves. On the

other hand, IEEE 1516 HLA is suitable for both single-

period and multi-period synchronization because it

schedules slave nodes by supervising the global time in

the controller node. Therefore, this paper adopts the IEEE

1516 HLA mechanism.

3 Distributed SSP-FMI co-simulation

3.1 Architecture of distributed simulator

This section shows the architecture of SSP-FMI simulator

with distributed computation shown in Figure 3. SSP-FMI

simulator was developed using distributed co-simulation

platform VenetDCP from Toshiba Digital Solutions (ref.

VeneDCP website).

"FMI Executable" loads and executes Co-simulation

2.0 interface FMU file. FMI standard defines the function

APIs used to initialize the FMU and execute model

computation. These functions are stored in DLL binary

library file in the FMU. "FMI Executable" unzips FMU

file, obtains information of input/output signals and

parameters from modelDescription.xml file, and calls the

function APIs in DLL binary library file to drive and

simulate the imported FMU. In co-simulation where

multiple FMUs are running, multiple FMI executables are

launched for individual FMUs to achieve parallel

distributed computation.

Recording and monitoring of the test data time series

signal input and output signal time series are performed

using Python.

Figure 2. Comparison of computation between distributed co-simulation and sequential co-simulation.

Figure 3. Architecture of distributed SSP & FMI simulator.

D
istrib

u
te

d
 sim

u
la

tio
n

co
n
tro

lle
r

FMI Executable

Process

Master

FMI

FMI Executable

Process

Master

FMI

FMI Executable

Process

Master

FMI

・
・
・

T
im

e
 sy

n
ch

ro
n
iza

tio
n
 se

rv
ice

S
ig

n
a
l tra

n
sm

issio
n
 se

rv
ice

SSP file

FMI file

FMI file

Driving pattern data

(CSV file)

Python

Process

Master
Monitor

(CSV file)

FMI file

S
y
n
c
h
ro

n
iz

a
tio

n
 +

 S
ig

n
a
l tra

n
sm

issio
n

S
y
n
c
h
ro

n
iz

a
tio

n
 +

 S
ig

n
a
l tra

n
sm

issio
n

S
y
n
c
h
ro

n
iz

a
tio

n
 +

 S
ig

n
a
l tra

n
sm

issio
n

S
y
n
c
h
ro

n
iz

a
tio

n
 +

 S
ig

n
a
l tra

n
sm

issio
n

Simulator 1

Simulator 2

Simulator３

Cycle N Cycle N+1 Cycle N+2 Cycle N+3

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calc.
R
x

T
x

Calculation
R
x

T
x

Calculation
R
x

T
x

Calculation
R
x

T
x

Calculation
R
x

T
x

Sync timing

(Coupling point)

Sync timing

(Coupling point)

Sync timing

(Coupling point)

Sync timing

(Coupling point)

Sync timing

(Coupling point)

Simulator 1 Calc. Calc. Calculation Calc. Calc. Calculation Calc. Calc. Calculation Calc. Calc. Calculation

Cycle N Cycle N+1 Cycle N+2 Cycle N+3

Poster Presentation

DOI
10.3384/ecp204743

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

745

 "Distributed simulation controller" provides the signal

transmission service and the time synchronization service

between FMI Executables and Python.

This mechanism corresponds to the RTI (Run-time

Infrastructure) of the IEEE1516 HLA. The signal

exchange service also reads SSP file and sets up the signal

connection relationship between FMUs and parameters.

Since "FMI Executable," "Python," and "Distributed

simulation controller" are independent processes, each

process will be distributed across multiple CPU cores

when run on a multi-core CPU machine. The number of

processors and CPU core allocation can be changed using

the processor affinity option in Microsoft Windows.

Processor Affinity, also called CPU pinning, allows the

user to assign a process to use only a few cores.

Inter-process communication between "FMI

Executable," "Python," and "Distributed simulation

controller" uses shared memory between processes on the

same machine and TCP communication between

processes on different machines.

Figure 4 shows the execution screen of the SSP-FMI

simulator, with the "Distributed simulation controller"

screen on the left and the simulation output signal time

series on the right, plotted as a graph using Python's

Matplotlib library (ref. Matplotlib website).

3.2 Performance evaluation using hybrid

vehicle simulation

This section reports the performance evaluation of

distributed SSP-FMI simulation by using series parallel

hybrid electric vehicle (HEV) simulation model shown in

Figure 4. Example of SSP-FMI Simulation (series parallel hybrid vehicle model).

Figure 5. Series parallel hybrid electric vehicle model (ref. JAMBE HEV model)

Hybrid Power Systems Simulation and Optimization Utilizing SSP and FMI

746 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204743

 Figure 5 and continuously variable transmission (CVT)

engine vehicle simulation model shown in Figure 6. Both

simulation model is published by JAMBE (Japan

Automotive Model-Based Engineering center).

 The original model was built in MathWorks Simulink.

We divided Simulink model and exported in FMI format.

The number of FMI files for the hybrid vehicle model is

21 files divided by the block units of BXXX in Figure 5,

and the CVT vehicle model is 7 files divided by the block

units of color marks in Figure 6.

Each simulation was performed with the input of 1800

second standard driving pattern of WLTC (Worldwide

harmonized Light vehicles Test Cycles) class 3b

developed by UNECE (United Nations Economic

Commission for Europe). Both simulations were run with

a sampling time of 2.5 millisecond which is the same as

the original JAMBE model.

We measured the RTF (real-time factor) of simulation

speed using two different machines. The first machine

equips Intel Core i7-10870H processor with 8 cores and

16 threads. The second machine equips Intel Core i7-8700

processor with 6 cores and 12 threads.

We used Windows 10 as the OS. The SSP-FMI

simulator we developed allows the user to select the

number of CPU cores (threads) used in the calculation

using the processor affinity option of Windows, and we

compared the simulation speed when using a single CPU

and when using multiple CPU cores (threads).

Figure 7 shows the measurement results on the machine

with Intel Core i7-10870H processor. The vertical axis

represents RTF. The horizontal axis is the number of CPU

cores (threads) used. The upper measurement is for a CVT

vehicle simulation with 7 FMUs, and the lower

measurement is for a hybrid vehicle simulation with 21

FMUs. Figure 8 shows the measurement results using the

machine with Intel Core i7-8700 processor, and the

notation is the same as in Figure 7.

 The measurement results show that increasing the

number of CPUs used in a distributed calculation can

increase the speed by up to a factor of two compared to a

Figure 6. CVT vehicle simulation model (ref. JAMBE CVT model)

Figure 7. Number of CPU cores (threads) and RTF

 (Core i7-10870H)

Figure 8. Number of CPU cores (threads) and RTF

 (Core i7-8700)

0

10

20

30

40

50

60

70

1 2 4 8 12 16

Series parallel hybrid CVT

0

5

10

15

20

25

30

35

40

1 2 4 8 12

Series parallel hybrid CVT

Poster Presentation

DOI
10.3384/ecp204743

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

747

calculation using a single CPU. However, it was also

found that speed increases only up to 8 CPU cores

(threads) and that speed tends to decrease slightly when

more than 8 CPU cores (threads) are used. This is thought

to be because excessive use of processor CPU cores

(threads) affects the execution of non-simulation

processes and has the opposite effect on the performance

of distributed computation.

Table 1 compares RTF of each individual component

FMU in a hybrid vehicle simulation using 21 FMUs with

8 threads on a Core i7-10870H, measuring the execution

time that "FMI Executable" was running. It can be seen

that the simulation speed varies by a factor of several

depending on the complexity of the model included in the

FMU and the amount of calculation. The overall

simulation RTF is 21.785 while the RTF of the single

FMU of HV_CNT (hybrid control controller) is close to

this at 26.651, indicating that the calculation of HV_CNT

is the overall speed-determining factor. This shows that

the overall simulation speed tends to be dragged down by

the computationally intensive FMU, and that no further

speed-up can be expected in the hybrid vehicle simulation

even if the number of threads is increased to 8 or more.

By measuring the overall RTF and RTFs of each

individual FMU in this manner, it is believed that it is

possible to determine the optimal number of CPU cores

(threads) that will provide the maximum simulation speed

in the parallel distributed SSP-FMI simulator.

4 System parameter optimization

using SSP-FMI co-simulation

4.1 Framework of system parameter

optimizetion

This chapter describes an application of SSP-FMI co-

simulation to system parameter optimization.

Collaborative and rapid development of hybrid power

supply systems often requires various configuration and

many control parameters to be optimized. It also requires

to facilitate model exchange between partners while

keeping confidentiality of model. We think distributed co-

simulation utilizing model interoperability standard FMI

and SSP and Bayesian optimization will be solve the

problems.

Figure 9 illustrates the framework of collaborative

development platform for hybrid power suppy systems. In

this framework, model parts are collected from partners

in FMI format and optimum parameter set can be searched

by Bayesian optimizer and distributed co-simulation.

4.2 Optimization set-up

A flowchart for optimization functionality is shown in

Figure 10, where an initial value is first generated (either

randomly or by user input). The SSP file for the co-

simulation is then modified, where the values of the

parameters to be optimized over are changed. This allows

the co-simulation to be run for the chosen parameter

values.

Once the co-simulation has finished, the cost function

to be optimized can be extracted from the output. Based

on the parameter and output values, an optimization

module can determine the next point to evaluate.

4.3 Optimization algorithms

Compared to most optimization problems, the cost

function in co-simulation is often time- and resource-

consuming. The system may comprise a large number of

subsystems and even with parallel and distributed

simulation, it can take a long time to evaluate its

performance. Furthermore, the inner workings of the

subsystems are often not known to the co-simulation

master as they may originate from different vendors or

developers. Hence, we can treat the cost function as a

black box which is expensive to evaluate.

For this kind of optimization problem, a suitable

algorithm is Bayesian optimization (Brochu09). This

works by placing a Gaussian prior on the function and

updating the posterior distribution based on the observed

input and output values. This can be used to compute the

best next value to evaluate, where criteria such as

“probability of improvement” and “expected

improvement” can be used. The advantage of Bayesian

optimization is that it requires few evaluations of the cost

function, as opposed to, e.g., evolutionary methods

Table 1. Comparison of RTF for each FMI model.

 (Series parallel hybrid vehicle)

Parts Speed ratio

DCDC_HI_CNT 84.755

BK_CNT 79.029

BT_HI_PNT 74.171

BT_PNT 70.812

BK_PNT 66.966

DCDC_HI_PNT 63.065

DCDC_PNT 60.866

DF_PNT 58.56

Driver 53.997

EL_HI_PNT 54.604

EL_PNT 52.353

ENG_CNT 49.95

ENG_PNT 48.118

MD1_PNT 45.65

HV_CNT 26.651

MD2_PNT 42.494

MG1_CNT 45.802

MG2_CNT 42.333

TM_PNT 35.417

TR_PNT 38.759

VL_PNT 35.661

Total 21.785

Hybrid Power Systems Simulation and Optimization Utilizing SSP and FMI

748 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204743

 (NSGA-II, genetic algorithms, particle swarms, etc.)

which need many evaluations (Emmerich18).

 It should be pointed out that it is possible to consider

more than one cost function. Multi objective optimization

is common in large and complex systems, where there are

many metrics by which a system performance can be

measured in. These are often conflicting, and an optimal

trade-off is sought. Bayesian optimization can be extended

to multi objective optimization, e.g., with efficient

algorithms such as TSEMO (Bradford18).

Figure 10. Optimization principle with co-simulation.

4.4 Optimization example

As an example of system parameter optimization, we

considered the JAMBE HEV model. In particular we

considered the role the clutch thresholds play in the

propulsion. As shown below, the clutch helps activate

electric only (Figure 11a) or hybrid-electric assist (Figure

11b). This is determined by, among other things, a

threshold to open and a threshold to close it (measured in

vehicle speed, km/h). These two thresholds were chosen

as the system parameters to optimize over. The cost

function was set as the fuel consumption during the

WLTC class3b test drive cycle shown in Figure 12.

Figure 11. Scenario for the considered JAMBE model.

Figure 12. WLTC Class 3b test driving cycle consisting of Low,

Medium, High and Extra High phases.

Figure 9. Framework of collaborative development platform.

Poster Presentation

DOI
10.3384/ecp204743

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

749

4.5 Optimization results

Using the MATLAB toolbox, Bayesian optimization of

the clutch thresholds was implemented. Note that this

allows the Optimization module in Figure 10 to output a

suggested next value to evaluate in the next co-simulation,

which was based on the “expected improvement”

criterion. The cost function was extracted from the co-

simulations as the fuel consumption after the 1800

seconds drive cycle. This is measured in km/l, so we are

looking for its maximum.

The results are shown in Figure 13, where the fuel

consumption (in km/l) is plotted against the two clutch

thresholds parameter which defined in the JAMBE HEV

model. HV_CNT_Clutch_ON_threshold_vel_kmph

means that closing clutch is possible above this speed.

HV_CNT_Clutch_OFF_threshold_vel_kmph means that

opening clutch is prohibited below this speed.

To appreciate the optimization result, we also

performed an exhaustive evaluation for all feasible

parameter values. This involved around 400 co-

simulations, whereas the optimization approach only used

10. Compared with the default parameter values which

defined in the JAMBE HEV model (red circle), the

optimized values (blue circle) showed a 2% improvement

in fuel consumption. Although this is quite small, more

gains can be had by considering other blocks, possibly in

combination with each other.

Figure 13. Optimization results for the co-simulated JAMBE

model. The red and blue circles represent the default and

optimized operational values, respectively.

5 Conclusion

FMI and SSP standards establish model exchange at

various levels of abstraction and interoperability between

tools. In this paper, we investigated a configuration of

SSP-FMI simulator that enables parallel computation by

multi-core distribution. We also examined application of

SSP-FMI simulator to the system parameter optimization.

We are planning to apply collaborative development

platform to the development of electric vehicles

(integration of batteries, BMS, power trains, vehicle

dynamics, etc), hybrid electric aircrafts (hydrogen fuel

cells with batteries and high-performance electric motors)

and offshore wind turbines (optimize efficiency and cost

by wind & wave prediction).

We also plan to support co-simulation interface of

FMI3.0 standard, whose official specification will be

issued in 2022, and the newly introduced Scheduled

Execution (SE) interface with the distributed parallel

simulation in this paper.

References

SmartSE (2023). “SmartSE Recommendation V3 (Smart

Systems Engineering Collaborative Simulation-Based

Engineering Version 3.0), prostep ivip Association,

January 2023.

https://www.prostep.org/fileadmin/downloads/PSI_11_V

3_SmartSE_Rec_and_Part_A-I.zip

FMI - Functional Mock-up Interface)

https://fmi-standard.org

SSP - System Structure and Parameterization

https://ssp-standard.org

IEEE1516. “IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA)”,

DOI： 10.1109/IEEESTD.2010.5553440

https://standards.ieee.org/ieee/1516/3744/

DCP - Distributed Co-Simulation Protocol

https://dcp-standard.org/

VenetDCP - Distributed Co-Simulation Platform

https://www.global.toshiba/ww/products-

solutions/manufacturing-ict/venetdcp.html

Matplotlib - Visualization with Python

https://matplotlib.org/

JAMBE HEV model. “Fuel efficiency models and manuals

for series parallel hybrid 2 vehicles”

https://www.jambe.jp/system/link.aspx?cid=200091

JAMBE CVT model. “Fuel efficiency model and manual for

CVT”

https://www.jambe.jp/system/link.aspx?cid=200101

Brochu, E., Cora, M., and de Freitas, N. (2009). “A tutorial

on Bayesian optimization of expensive cost functions,

with application to active user modeling and hierarchical

reinforcement learning”. Technical Report TR-2009-023,

Department of Computer Science, University of British

Columbia. arXiv:1012.2599.

Emmerich, M.T.M., Deutz, A.H. A tutorial on multi

objective optimization: fundamentals and evolutionary

methods. Nat Comput 17, 585–609 (2018).

https://doi.org/10.1007/s11047-018-9685-y

Bradford, E., Schweidtmann, A.M. & Lapkin, A. “Efficient

multi objective optimization employing Gaussian

processes, spectral sampling and a genetic algorithm”. J

Glob Optim 71, 407–438 (2018).

https://doi.org/10.1007/s10898-018-0609-2

Hybrid Power Systems Simulation and Optimization Utilizing SSP and FMI

750 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204743

