
Asian

Modelica

Conference

2024
December 12-13

International Convention Center Jeju

P R O C E E D I N G S

Linköping Electronic Conference Proceedings Nr. 217

Proceedings of the Asian Modelica Conference 2024
Jeju, Korea, December 12 – 13, 2024

Editor
Dr. Andrea Neumayr, DLR, Germany

Published by
Modelica Association and Linköping University Electronic Press

Series: Linköping Electronic Conference Proceedings Nr. 217
ISBN: 978-91-8118-212-5
ISSN: 1650-3686
eISSN: 1650-3740
DOI: https://doi.org/10.3384/ecp217

Organized by
iVH Co., Ltd.
3F, 19, Yangjaecheon-ro 17-gil, Seocho-gu
Seoul, 06754, Korea

In cooperation with
Modelica Association
c/o PELAB, Linköpings University
SE-581 83 Linköping
Sweden

Conference location
International Convention Center Jeju, Korea

Copyright © Modelica Association, 2025

2 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

DOI Proceedings of the Asian Modelica Conference 2024 3
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

3

WELCOME TO ASIAN MODELICA CONFERENCE 2024

Welcome to the Asian Modelica Conference 2024 here in Jeju. It is a great honor to
have you all join us for what promises to be an enlightening and inspiring event.

The concept of Modelica is revolutionizing industries, from manufacturing to
healthcare, urban planning to energy management. Today, we gather to delve into the
latest advancements, share innovative ideas, and explore the vast potential of digital
twin technology.

This conference brings together a diverse group of experts, innovators, and
enthusiasts from around the world. Each of you plays a crucial role in shaping the future
of digital twins, and your presence here is a testament to the importance and impact of
this technology.

Over the next 2 days, we will have the opportunity to engage in thought-provoking
discussions, attend insightful presentations, and participate in hands-on workshops.
These sessions are designed not only to educate but also to inspire, challenge, and
drive forward our collective vision for the future of digital twins.

I would like to extend my heartfelt gratitude to our distinguished speakers, sponsors,
and organizers. Your dedication and hard work have made this event possible, and we
are deeply appreciative of your contributions.

As we embark on this journey together, I encourage each of you to take full advantage
of the opportunities to connect, collaborate, and learn. Let's make this conference a
catalyst for innovation and a platform for forging lasting partnerships.

Thank you, and once again, welcome to the Asian Modelica Conference 2024.
Let's create a truly remarkable and impactful event.

Yongha Han
Conference Chair

 Daeoh Kang
Program Chair

4 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

4

WELCOME TO ASIAN MODELICA CONFERENCE 2024

W
EL

C
O

M
E

TO
 A

SI
A

N
M

O
DE

LI
C

A
 C

O
NF

ER
EN

C
E

20
24

DOI Proceedings of the Asian Modelica Conference 2024 5
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

5

Name Affiliation Nationality

Prof. Martin Otter Professor, DLR Germany

Hubertus Tummescheit Chief Solutions Officer, Modelon Sweden

Woongcheol Choi Professor, Kookmin university Korea

YoonJei Hwang LG Electronics Korea

Byoungdoo Lee Team leader, Hyundai E&C
Technology Research Center Korea

Dr. Rui Gao RIGO TECH Co., Ltd Japan

HyungSik Um Samsung Electronics Korea

EungSoo Kim Professor, Seoul National University Korea

Juneyoung Song Hyundai Mobis Korea

CONFERENCE BOARD MEMBERS

Conference Chair

Yongha Han Daeoh Kang

Research Fellow,
HMC DLR

CEO, iVH

Name Name

Affiliation Affiliation

Nationality NationalityKorea Korea

Board Members

Program Chair

Prof. Martin Sjölund Professor, Linköping University Sweden

6 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

6

Reviewers

Prof. Martin Otter DLR

Dr. Dirk Zimmer DLR

Dr. Daeoh Kang iVH

Dr. Rui Gao Rigo Tech

Yongha Han HMC

Prof. Francesco Casella Politecnico di Milano

Dr. Wonyul Kang iVH

DOI Proceedings of the Asian Modelica Conference 2024 7
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

7

SCOPE OF ASIAN MODELICA CONFERENCE 2024

Modelica is a freely available, equation-based, object-oriented language for convenient
and efficient modeling of complex, multi-domain cyber-physical systems described by
ordinary differential, difference and algebraic equations. The Modelica language and the
companion Modelica Standard Library have been utilized in a variety of demanding industrial
applications, including full vehicle dynamics, power systems, robotics, buildings and
district energy systems, hardware-in-the-loop simulations and embedded control systems.
The Functional Mock-up Interface (FMI) is an open standard for the tool-independent
exchange of models and for co-simulation. It is supported by many Modelica and non-
Modelica tools and is the key to utilizing Modelica models in non-Modelica environments.
Development in the Modelica Association is organized in Modelica Association Projects:

LANG Modelica Language

LIB Modelica Libraries

FMI Functional Mock-up Interface

eFMI Functional Mock-up Interface for embedded systems

SSP System Structure and Parameterization of Components for Virtual
System Design

DCP Distributed Co-Simulation Protocol

8 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

8

These projects collaborate to design and maintain a set of coordinated standards for
modeling and simulation of complex physical systems.The Modelica conference will bring
together people using Modelica and/or other Modelica Association standards for modeling,
simulation, and control applications, such as Modelica language designers, tool vendors and
library developers. The Modelica Conference provides Modelica users with the opportunity
to stay informed about the latest language, library, and tool developments, and to get in
touch with people working on similar modeling problems. The conference will cover topics
such as the following:

Multi-engineering modeling and simulation with free and commercial Modelica libraries
(mechanics, electrical, hydraulics, thermal, fluid, media, chemical, building, automotive,
aircraft, …)

Automotive applications

Thermodynamic and energy systems applications

Mechatronics and robotics applications

Medicine and biology applications

Other industrial applications, such as electric drives, power systems, aerospace, etc.

Large-scale system modeling

Real-time and hardware-in-the-loop simulation

Simulation and code generation for embedded control systems

Simulation acceleration by use of many CPU cores or GPU cores

Applications of Modelica for optimization and optimal control

Modelica modeling, simulation and design tools

Symbolic algorithms and numerical methods for model transformation and simulation

DOI Proceedings of the Asian Modelica Conference 2024 9
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

9

Yongha Han

Research Fellow
Hyundai Motor Group

Speaker Bio

YongHa Han is Research Fellow at Hyundai Motor Group. He joined Hyundai Motor

Group in 1996 in Korea. He has been working in the areas of crash safety performance

development and virtual technology development. He was appointed as a research fellow

in charge of future core technologies in 2020 and is in charge of the Virtual Technology

Innovation Research Lab.

(Hyundai Motor Group has been operating a research fellow system since 2009, and has

been supporting top R&D experts to focus on their original research work, free from the

burden of management.)

Recent research has mainly focused on three areas: ① Development of safety and

NVH performance improvement solutions for electric vehicles based on virtual models

of batteries and motors ② Development of high-accuracy models simulating new

manufacturing processes such as giga casting, and development of solutions to map

manufacturing effect on performance analysis model ③ Development of Innovative body

and chassis mechanism solution and NVH active vibration control technology to increase

the completeness of future mobility.

[KEYNOTE SPEAKERS] Speech 1

10 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

10

Abstract

How can we stay competitive continuously?
Virtual vehicle development strategy and use cases

Recently, three trends are buffeting R&D in the automotive industry :

① The transition from the combustion engine to electric vehicle technology

② Software-defined vehicles with increased customer centricity

③ Automated vehicles and the emergence of generative AI (gen AI).

Under these circumstances, the increasing complexity of development requires

exponentially increasing costs and time, and it is essential to respond effectively through

virtual development. Virtual vehicle development refers to all activities of developing a

vehicle using a virtual model in the entire process from planning to sales. Recently, as

a virtual vehicle development strategy, Model Based System Engineering (MBSE) has

become a hot topic, and MBSE has the advantage of expressing system processes and

characteristics as models, enabling smooth communication between stakeholders, and

easily analyzing the overall system.

Hyundai Motor Group defines a practical MBSE from the perspective of vehicle

development, which is to structure and systematize tasks using a descriptive model

and efficiently implement (V-type) development using an executable model. In this

presentation, the process, application cases, and issues related to the integration and

operation of the virtual model, as well as several use cases related to virtual vehicle

development with a focus on concept engineering and virtual reality verification will be

given.

DOI Proceedings of the Asian Modelica Conference 2024 11
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

11

Dr. Moritz Hübel

Industry Director for Energy & Process
Modelon

Speaker Bio

Moritz Hübel is Industry Director for Energy & Process at Modelon. He joined Modelon
in 2019 in Hamburg, Germany and has been working with providing modelling and
simulation solutions for customers from the Energy & Power industries and managing
Modelon’s global team of energy experts. Prior to joining Modelon, he has been working
with customer and research projects for the Center of Combustion Engines and
Thermodynamics (FVTR GmbH), managing the energy system simulation team. Moritz
received his PhD in Thermodynamics & Power engineering from Rostock University in
2016. His PhD project was focused on flexibility optimization of large-scale thermal power
plants using Modelica solutions for thermodynamic system simulation. He also holds a
degree in mechanical engineering with a focus on energy systems and thermodynamics.

[KEYNOTE SPEAKERS] Speech 2

12 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

12

Abstract

Finding the right balance
What technologies can complement renewable energy to
achieve true sustainability?

The global situation of energy supply today is dominated by uncertainties: existing
energy systems need to be converted from conventional, mostly fossil generation towards
more sustainable, low carbon-emission solutions. Energy resource supply chains on a
global scale introduce political dependencies and complexities. Industries and societies
opt for cost efficient solutions. Emerging technologies for renewable energy generation,
storage and distribution are being developed with largely unknown future cost structure
and scalability. In that context, investment decisions need to be made, especially in the
energy industry usually require large investments and long payback periods. Engineers
working with Modelica know how to tackle this challenge on a fundamental basis: the
large set of unknowns needs to be addressed with an equally large number of equations.

The problem needs to be balanced with knowledge. While system simulation cannot
give a single universally applicable answer to such problems, its usage helps to
remove the unknows: energy balances are not negotiable and neither is the selection
of cost competitive supply options under given legal, social and reliability constraints.
The complexity of the problem can be reduced and broken down in a system model.
Some uncertainties can be captured with empirical correlations or learning of data.
In combination with the ability to quantify remaining uncertainty, e.g. future price
data, robust technology decisions can be identified that are truly sustainable. In this
presentation an overview of how Modelica can help make such choices will be given.

DOI Proceedings of the Asian Modelica Conference 2024 13
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

13

SPONSORS

Platinum Sponsors

Gold Sponsor

Silver Sponsor

14 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

8

 Session1A: Combining Equation-based and Multibody Models

Session1B: The DLR Cables Library

 Session1C: Validating the DLR Cables Library with Experiments and Parameter
Optimization

Session2A: A Study on the Methodology to Develop Virtual Drive Environment for
Autonomous Driving Evaluation

Session2B: Community Updates to the DLR ThermoFluid Stream Library

Session2C: An Integrated Optimization and Orchestration Toolchain for Adaptive
Optimal Control in Modelica Simulations

Session3A: Modeling Fuel Cell Electric Vehicle for Performance Prediction and
Optimal Component Selection

Session3B: Vehicle Health Monitoring for Driving Safety using Co-simulation
between Dymola and Simulink
Session4B: Study on nuclear and renewable hybrid energy system performance
prediction by using Modelica

Session5A: Testing Large Scale System Simulation using Linear Implicit Equilibrium
Dynamics

Session5B: Requirements-based, early stage Architecture Performance Validation
on a Brake System Use Case

Session6B: A Study on Model-Based Thermal Management Systems Architecture
Modeling and Energy Efficiency Prediction of Fuel Cell Electric Vehicles

 Session6C: Digital Human Body Model for Occupant Monitoring System

Content

Session7B: Modelling And Simulation of a Batch Reverse Osmosis Process Using
Modelica

Session8A: Object Oriented Modeling of Single and Multi-Bed Pressure Swing
Adsorption Processes using OpenModelica

17

27

37

43

51

57

67

73

79

85

93

103

109

113

119

DOI Proceedings of the Asian Modelica Conference 2024 15
10.3384/ecp217 December 12-13, 2025, Jeju, Korea

16 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217

Combining Equation-based and Multibody Models

Andrea Neumayr1 Martin Otter1

1German Aerospace Center (DLR), Institute of System Dynamics and Control (SR), Germany,
{andrea.neumayr,martin.otter}@dlr.de

Abstract
This article highlights the combination of equation-
based modeling with multibody models. In other
words, it combines the equation-based modeling lan-
guage Modia and the multibody module Modia3D.
The multibody system is defined in an object-oriented
way and parts of it are defined by equations. Alge-
braic loops are treated that appear due to the connec-
tion of multibody and equation-based components. A
new approach to variable structure systems are so-
called predefined acausal components which consist
of pre-compiled causal parts and acausal equations.
To generalize the concepts for variable structure sys-
tems, the multibody module is defined as a prede-
fined acausal component. As a result, the number
of degrees of freedom of the multibody system can
vary during simulation. This is demonstrated with a
non-trivial example of a walking space robot from the
MOSAR space project.
Keywords: Modia, Modia3D, Modelica, Julia, multi-
body, variable structure systems, segmented simula-
tion

1 Introduction
This publication is about generating Ordinary Differ-
ential Equations (ODEs) from equation-based mod-
els that are combined with variable structure multi-
body models. It summarizes, combines, and provides
a deep insight into the findings of previous publica-
tions on symbolic transformations in Modia (Otter
and Elmqvist 2017; Elmqvist et al. 2021), and it-
erative solving of multibody systems with Modia3D
(Neumayr and Otter 2019), and variable structure
systems (Neumayr and Otter 2023a; Neumayr and
Otter 2023b). For this purpose, parts of previous
publications are briefly repeated.

Modia is an equation-based modeling and simula-
tion environment. It is inspired by the modeling lan-
guage Modelica and has similar semantics. Modia
is a domain-specific extension of the Julia program-
ming language1 (Bezanson et al. 2017). Modia3D is
an open source multibody module with a modular and
customizable component-based design pattern and is
closely integrated with Modia. Furthermore, Modia

1The pseudocode snippets in this publication are Julia-like.

sorted and solved
equations

functions of
predefined acausal

components

solver
ẋ= f(x, t)
z = z(x, t)

x= (xinv,xvar)

z = (zinv,zvar)

xinv, t xvar, t

ẋinv,zinv ẋvar,zvar

Figure 1. Predefined acausal component. Communication
between the solver, the sorted and solved equations, and the
functions of the predefined acausal components. The state
vector x and the event indicators z are split into an invari-
ant and a variant part: x = (xinv,xvar), z = (zinv,zvar).
The variant parts consist of the states defined and used in
the causal partitions of all predefined acausal components.
The dimensions of the invariant parts are fixed before sim-
ulation begins. The dimensions of the variant parts can
change at events during simulation.

supports a new approach to variable structure sys-
tems with predefined acausal components. Modia3D
is one such component.

All current proposals for variable structure sys-
tems, e.g., (Mehlhase 2014; Mattsson, Otter, and
Elmqvist 2015; Tinnerholm, Pop, and Sjölund 2022)
require prior knowledge of all models and all modes
in order to switch between these models during simu-
lation. If this information is not available, and when-
ever the equation structure changes, the entire model
is reprocessed and its code is regenerated and recom-
piled (or interpreted), e.g., (Zimmer 2010; Tinner-
holm, Pop, and Sjölund 2022).

Neumayr and Otter (2023a) and Neumayr and Ot-
ter (2023b) introduce a new general concept for deal-
ing with variable structure systems in which variables
can appear and disappear during simulation. The two
previous publications are briefly summarized below.
There is no need to regenerate and recompile code
when the number of equations and states changes at
events. The method can be applied to declarative,
equation-based modeling languages, such as Modia
and Modelica. The transition between the modes,

DOI Proceedings of the Asian Modelica Conference 2024 17
10.3384/ecp21717 December 12-13, 2025, Jeju, Korea

RRR

called segments, is triggered by specific commands.
Both the number of variables and the number of equa-
tions can vary from segment to segment.

The idea is to introduce predefined acausal com-
ponents. Their equations are split into causal and
acausal partitions. The causal partition is always
evaluated in the same order, regardless of how the
component is connected to components. This par-
tition is sorted, explicitly solved for the unknowns,
and implemented with one or more functions. The
acausal partition is a set of equations that is sorted
and solved. A large part of the variables in the causal
partitions are hidden as local variables in functions
and passed directly to the solver. This leads to the
concept in Figure 1.

Based on this generic concept, this article shows
how it can be applied to a class of multibody models
implemented as a predefined acausal component.

2 Mathematical Descriptions
2.1 DAEs and ODEs
In equation-based modeling languages physical sys-
tems are described mathematically by Differential Al-
gebraic Equations (DAEs) (1)

F (ẋDAE,xDAE,wDAE,u, t) = 0, (1)

where xDAE(t) are variables appearing differentiated
in the model, wDAE(t) are algebraic variables that are
not differentiated, and u(t) are model inputs. These
vectors depend on time t∈R. F represents the equa-
tions of the system.

On the one hand, DAEs (1) can be solved nu-
merically with DAE solvers such as DASSL (Brenan,
Campbell, and Petzold 1996) or IDA from the Sun-
dials suite (Hindmarsh, Serban, and Collier 2015).
This approach has some limitations. For this reason,
there are solvers for DAEs with a particular struc-
ture (Arnold 2017) that have much better numerical
properties.

On the other hand, a system of DAEs F (1) can
be transformed into Ordinary Differential Equations
(ODE) in state-space form

ẋ= f(x,u, t), (2)

and solved with ODE solvers. The non-trivial trans-
formation from an implicit DAE system to an explicit
ODE system can be performed symbolically and au-
tomated by any compiler of equation-based model-
ing languages. If the structure of the physical sys-
tem changes during simulation – known as a variable
structure system – so does its underlying mathemat-
ical description represented by DAEs and its corre-
sponding ODEs. Therefore, it would be required to
execute the computationally expensive transforma-
tion and compilation from DAEs to ODEs again.

2.2 Multibody Equations
The equations of motion of a multibody system with
kinematic loops are described as follows, see e.g.,
(Arnold 2017):

q̇ = v
M(q, t)v̇+GT (q, t)λ+h(q,v, t) = τ

0 = g(q, t),
(3)

where q are the generalized coordinates of the joints
of the spanning tree (such as the angle of a revolute
joint), v are the derivatives of q, τ are the generalized
forces in the joints of the spanning tree (such as the
driving torque of a revolute joint), λ are the general-
ized forces/torques in the cut-joints, M =MT is the
positive definite mass matrix, g are the kinematic con-
straint equations of the cut-joints on position level,
G = ∂g

∂q are the partial derivatives of the constraint
equations with respect to q and has full row rank,
and h are applied generalized forces. This DAE with
index 3 gives rise to numerical problems when inte-
grating it directly. Instead, with the method of Gear,
Leimkuhler, and Gupta (1985) and Gear (1988) it can
be transformed to a DAE with index 1 (4), see (Otter
and Elmqvist 2017; Neumayr and Otter 2019) with
much more beneficial numerical properties:

0 = q̇−v+GT (q, t)µ̇int

0 =M(q, t)v̇+GT (q, t)λ̇int +h(q,v, t)−τ
0 = g(q, t)
0 =G(q, t)v+g(1)(q, t),

(4)

where:

1. The derivative of the constraint equations 0 =
g(q, t) are added as new equations.

2. New unknowns µ̇int are introduced to stabilize
the DAE.

3. The generalized constraint forces λ are replaced
by λ̇int the derivatives of its integral.

In the following, the focus is on the special case of
tree-structured multibody systems where (3) and (4)
simplify to the index 1 DAE

q̇ = v
M(q, t)v̇+h(q,v, t) = τ .

(5)

This equation can be transformed into the ODE

q̇ = v
v̇ =M−1(q, t)(τ −h(q,v, t))

= fmbs(q,v,τ , t).
(6)

Conceptually, it is easy to define this multibody
model as a predefined acausal component: The ODE

Combining Equation-based and Multibody Models

18 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21717

(6) is part of the sorted and solved equations. The
function fmbs is part of the functions of the prede-
fined acausal component, in Figure 1. However, this
approach has serious drawbacks. Therefore, it is han-
dled differently in Modia/Modia3D. The following is-
sues are discussed in detail in the following sections:

1. Object-oriented definition of multibody system.
A multibody model consists of various compo-
nents, such as bodies, joints, and force elements.
Users expect to drag and combine these elements
individually with equation-based components.
An example is shown in Figure 2 as a Mod-
elica object-diagram. The multibody compo-
nents body, rev, world are combined with com-
ponents from equation-based libraries. The cor-
responding Modia/Modia3D model is in List-
ing 1. In section 3 is explained, how to treat
the multibody components as specially marked
parameters. These are used to inject equations
before symbolic processing begins.

2. Algebraic loops between multibody and equation-
based models.
Algebraic loops can occur between multibody
systems (5) and equation-based components. For
example, if τ = τ (q,v, v̇, t) due to the connec-
tion structure. Figure 2 is an example that con-
tains an algebraic loop due to the connection of
the rotational components motorInertia, gear
to the flange of the revolute joint rev. Modi-
a/Modia3D treat such algebraic loops efficiently,
see section 4. For example, code-size grows lin-
early with the number of iteration variables.

3. Variable structure multibody systems.
In Modia3D the structure of the multibody sys-
tem and its degrees of freedom can vary during
simulation. A non-trivial example explains how
to generalize the newly introduced concepts, in
section 5.

3 Object-Oriented Definitions of
Multibody Systems

A Modia/Modia3D model2 of a one-arm robot with
a drive train is sketched in Listing 1 to briefly recap
the object-oriented definitions of multibody systems.
Parts are already published in Elmqvist et al. (2021).
A corresponding Modelica object-diagram is shown in
Figure 2.

Listing 1. Modia/Modia3D model of a one-arm robot
with motor, ideal gear and cascaded P-PI controller that
drives the flange of a revolute joint.

Servo = Model3D (

2Modia3D.jl, v0.12.2, test/Robot/ServoWithRampAndRev-
olute.jl

world = Object3D (feature =Scene ()),
body = Object3D (feature =Solid (...)),
rev = RevoluteWithFlange (

obj1 =: world, obj2 =: body, axis =3,
phi=Var(init =0.0), w=Var(init =0.0)),

ramp = Ramp,
ppi = Controller,
wSensor = UnitlessSpeedSensor,
motorInertia = Inertia,
gear = IdealGear,
connect = :[

(ramp.y, ppi.refGain)
(gear.flangeB, rev.flange)
...])

servo = @instantiateModel (Servo)
simulate !(servo, stopTime =...)

A Modia model is defined with the predefined dic-
tionary Model. All parts of the model are declared
with name/value pairs. Parameters are defined with
the predefined dictionary Par3. A Modia3D model
is defined with the predefined dictionary Model3D.
It may contain Modia components, see Listing 1.
The instances world, body, rev of multibody compo-
nents are individually defined and combined with in-
stances ramp, ppi, wSensor, motorInertia, gear of
equation-based Modia components.

Multibody components, such as Object3D, Revo-
luteWithFlange, are defined as very simple Modia
components, see Listing 2 and Listing 3. They con-
tain enough information to transform an instance of
such a component into acausal and causal partitions
before symbolic processing begins. This is a generic
Modia approach for predefined acausal components
and not specific to multibody systems.

Listing 2. Definitions of multibody components as special
parameters.

Object3D (; kwargs...) = Par (; kwargs...,
_constructor = :(Modia3D.Object3D))

Solid (; kwargs...) = Par (; kwargs...,
_constructor = :(Modia3D.Solid))

The components in Listing 2 are defined as Julia
functions with keyword arguments. All provided key-
word arguments are collected by variable kwargs....
The function body consists of one constructor Par.
It creates a dictionary that defines a parameter con-
sisting of the specified keyword arguments kwargs...,
and the additional keyword argument _constructor
= <name>. Before a model is symbolically processed,
all parameter definitions that contain a _construc-
tor keyword are replaced by a reference to a Julia
object. It is generated with _constructor and all key-
word arguments of the parameter. For example, in a

3For more details, see e.g., Elmqvist et al. (2021, section 2)
and the Modia tutorial https://modiasim.github.io/Modia.
jl/stable/tutorial/Tutorial.html.

Session1A

DOI Proceedings of the Asian Modelica Conference 2024 19
10.3384/ecp21717 December 12-13, 2025, Jeju, Korea

https://github.com/ModiaSim/Modia3D.jl/blob/v0.12.2/test/Robot/ServoWithRampAndRevolute.jl
https://github.com/ModiaSim/Modia3D.jl/blob/v0.12.2/test/Robot/ServoWithRampAndRevolute.jl
https://modiasim.github.io/Modia.jl/stable/tutorial/Tutorial.html
https://modiasim.github.io/Modia.jl/stable/tutorial/Tutorial.html

Figure 2. A single revolute joint of a manipulator rotates around the z-axis and is driven by a servo motor via an ideal
gear. The revolute angle is controlled by a cascaded P-PI controller, that tracks the reference ramp.

first step Object3D(feature = Solid()) is replaced by
Modia3D.Object3D(feature = Modia3D.Solid()). In a
second step, this constructor is executed and returns
a reference to a Julia object that is associated with
key body. This can be regarded as a generalization of
the concept of External Objects in Modelica.

Listing 3. Definition of multibody components as Modia
Models.

Flange = Model (phi=Var(potential =true),
tau=Var(flow=true))

RevoluteWithFlange (; obj1, obj2, axis =3,
phi=Var(init =0.0), w=Var(init =0.0)) =

Model (;
_constructor = Par(value =

:(Modia3D.Joints.Revolute),
_jointType = : RevoluteWithFlange),

obj1 = Par(value = obj1),
obj2 = Par(value = obj2),
axis = Par(value = axis),
flange = Flange,
phi = phi,
w = w,
equations = :[

phi = flange.phi
w = der(phi)])

The multibody component RevoluteWithFlange in
Listing 3 is defined as a Modia Model. It con-
sists of parameters obj1, obj2, axis, local variables
phi,w (that are initialized with zero), an instance
flange of a rotational flange, and two equations phi
= flange.phi and w = der(phi). These equations are
the acausal part of a revolute joint. The causal part
is defined with parameter _constructor together with
all parameters (defined with keyword Par).

During instantiation of a Modia model (before its
equations are symbolically processed), all parameter
definitions are evaluated. For example, if a parameter
p is defined with an equation p = 2*Lx + 3, assuming
that Lx = 4 is defined as a parameter, then this ex-

pression is replaced by p = 11.
Listing 4. Constructor generated for RevoluteWith-
Flange.

ref = Modia3D.Joints.Revolute (obj1, obj2,
axis =3)

During the parameter evaluation, a special action
is taken for parameters with name _constructor: A
constructor call is assembled from the constructor
name and any defined parameters. For example, the
RevoluteWithFlange definition of Listing 3 results in
the constructor call of Listing 4. This constructor is
called on the fly resulting in an instance of Julia struct
Revolute. The call returns a reference ref to the cre-
ated instance. A statement like rev = RevoluteWith-
Flange() in Listing 1 is a key/value pair with the key
rev and the value is an instance of a Model dictionary.
This value is replaced by an instance of a parameter
dictionary, resulting in rev = Par(value = ref). So,
the generated instance of the revolute joint is stored
as a parameter. The evaluated parameters are dis-
played with e.g., simulate!(logEvaluatedParameters
= true).

The keys of other instances are referenced in
the argument list, e.g., RevoluteWithFlange(obj1 =
:world). During parameter evaluation, symbols like
:world are searched for on the left side of the equal
signs. They are then replaced by the correspond-
ing value of this keyword. For example, :world is
replaced by the Julia reference created by the con-
structor call Modia3D.Object3D(feature = Modia3D.-
Scene()). Once all parameters are evaluated, all key-
word arguments of multibody components contain a
reference to the instantiated Julia objects.

A multibody model inside a Modia model is defined
with dictionary Model3D, see Listing 1. This dictio-
nary is a Model dictionary with two additional param-
eters _buildFunction and _initSegmentFunction, see

Combining Equation-based and Multibody Models

20 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21717

Listing 5. Before symbolic processing begins, a model
is recursively inspected. For each subdictionary con-
taining the parameter _buildFunction, the function
defined with functionName is called with the subdic-
tionary as an argument. The items returned by this
function call, are added to the subdictionary.

Listing 5. Definition of Model3D model.
predefined acausal component
Model3D = Model (

called once before symb. processing
_buildFunction = Par(functionName

= :(buildModel3D !)),
called before each new sim. segment
_initSegmentFunction = Par(functionName

= :(initSegmentModel3D !))
)

Furthermore, the entire model hierarchy is flat-
tened. Alias variables are eliminated. The set of all
equations is generated, as sketched in Listing 6 for
the model of Listing 1.

Listing 6. Flattened model equations with equations in-
jected by buildModel3D!.

Equation from RevoluteWithFlange
rev.w = der(rev.phi)

Equations injected with buildModel3D !
mbs1 = Modia3D.openModel3D !(model, _x,

time)
mbs2 = Modia3D.setStatesRevolute !(mbs1,

rev.phi, rev.w)
mbs3 = Modia3D.setAccelerationsRevolute !(

mbs2, der(rev.w))
genForces = ...

success =
Modia3D.setHiddenStatesDerivatives !(
model, mbs3, ...)

Function openModel3D! creates an instance of the
multibody system. It contains, e.g., the generated
instance of the revolute joint. The instantiated top
level model is passed as an argument. So, the func-
tion openModel3D! has access to the complete model
definition. Function setStatesRevolute! stores the
current values of the angles and angular velocities of
all revolute joints of the multibody model. These
variables are states in the Modia equations, due to
their definition in Listing 3. Function setAccelera-
tionsRevolute! stores the angular accelerations of all
revolute joints in the multibody model. Further func-
tion calls basically construct (5) in residue form. So,
fgen =M(q, t)v̇+h(q,v, t)−τ . The set of flattened
equations is processed symbolically, i.e., equations are
differentiated, sorted and simplified. The result is
stored as a Julia function. It is compiled into binary
code that is called by the simulate! function.

4 Symbolic Transformations
In Modia, models are symbolically transformed to
ODEs (2) in state-space form

ẋ= f(x,p, t), x0 = x(t0), (7)

where x(t) is the state vector, p is a hierarchical dic-
tionary of parameters, and t is the time. The al-
gorithms and the symbolic transformations are de-
scribed in Otter and Elmqvist (2017) and Elmqvist
et al. (2021). After the symbolic processing a Julia
function called getDerivatives is generated and com-
piled to calculate the derivatives ẋ.

Physical models often lead to linear equation sys-
tems. Modia generates very compact code to solve
them numerically during execution of the model.

Assume, a nonlinear equation system

0 = g(w,u), (8)

with unknown local variables w and known variables
u are identified by structural analysis. With the tear-
ing algorithm of Otter and Elmqvist (2017) this equa-
tion system can be transformed to

w1 = g1(weq,u) (9)
0 = geq(w1,weq,u). (10)

where the unknowns and equations are split into an
explicitly evaluable part w1 and weq is solved implic-
itly.

If g is linear in the unknowns w, it is possible to
rearrange (conceptually) equation (10) into a linear
equation system

0 =A(w1,u)weq−b(w1,u). (11)

In (11),A,b are functions of the explicitly solved vari-
ables w1 and the known variables u. The equation
has to be solved for variables weq. In the worst case,
A would have n2 elements (n = dim(weq)). There-
fore, the size of the rearranged code would be O(n2).
So, the code size would increase quadratically with
the number of iteration variables n.
Listing 7. Conceptual implementation of linear equation
iteration.

Initialize memory m (m.w_eq = 0, ...)
while true

w_eq = m.w_eq
w_1 = g_1(w_eq, u)
m.r = g_eq(w_1, w_eq, u)
if lEqIteration (m); break; end

end

Instead, the concept is to generate the code in List-
ing 7 and lEqIteration in Listing 8. Together they
construct and solve the linear equation system (11).
Residues r are computed and stored in the memory
m. The linear equation system is solved to compute
weq and w1 from this solution. The code size of this
approach is O(n).

Session1A

DOI Proceedings of the Asian Modelica Conference 2024 21
10.3384/ecp21717 December 12-13, 2025, Jeju, Korea

Listing 8. Linear equation iteration lEqIteration.
function lEqIteration (m)

n = length (m.w_eq)
if m.mode == QUIT

return true
elseif m.mode == COMPUTE_B

compute b with w_eq = 0
r = A*0 - b => b = -r
m.b = -copy(m.r)
m.j = 1
m.w_eq = e_1
m.mode = COMPUTE_A

else # m.mode == COMPUTE_A
compute column j of A with w_eq =

e_j
r = A*e_j - b => A[:,j]
m.A [:,j] = m.r + m.b
if m.j != n

m.j += 1 # j+1
m.w_eq = e_j # j+1- th unit vector

else
solve linear equation system
A*w_eq = b
m.w_eq = m.A \ m.b
m.mode = QUIT

end
end
m.r = zeros(n)
return false

end

The function lEqIteration in Listing 8 is called in
a while loop from Listing 7. It iteratively computes
vector b, matrix A, and finally weq, depending on
the actual mode (COMPUTE_B, COMPUTE_A, QUIT). All
vectors b,r,weq, matrix A, column counter j, and
the actual mode are stored in a memory m, and are
updated when needed. To compute vector b, the first
mode is COMPUTE_B. The residues r are computed with
weq = 0. This allows to set b = −r. To compute
matrix A, the next mode is COMPUTE_A. To iteratively
calculate the columns ofA, the residues are computed
with weq = ej that is the j-th unit vector from j =
1, . . . ,n. When the n-th column of A is computed, so
A is known, the linear equation system is solved for
weq. One final iteration of the while loop is needed
to evaluate w1.

Moreover, symbolic processing analyses if A is a
function of the parameters p, so it does not change af-
ter initialization. In this case, the LU-decomposition
of A is computed once at initialization and stored in
the memory m. During simulation, only a (cheap)
backwards solution is applied to compute the solu-
tion. If the size of the residual equation is one, a sim-
ple division is done, instead of using a linear equation
solver. These special cases are not shown in Listing 8
to keep the description simple.

Modia uses the linear equation solver of the Ju-
lia package RecursiveFactorization.jl4 with the left-
looking LU-algorithm of (Toledo 1997) for dimen-

4https://github.com/YingboMa/RecursiveFactorization.jl

sions up to n = 500 by default. Benchmarks show a
large speed-up compared to the linear standard solver
based on OpenBLAS5 which is otherwise used.

The ODE and DAE solvers of Julia package Dif-
ferentialEquations.jl6 (Rackauckas and Nie 2017) are
used for the generated getDerivatives function. The
getDerivatives function is called (automatically) as
required by the interface of the selected solver.

One powerful technique for DAE solvers increases
the simulation speed enormously. It is applicable
when the size n of a linear system of equations ex-
ceeds a certain limit (n≥ 50), and the unknowns weq
are a subset of the derivatives of the DAE states. The
relevant DAE state derivatives are used as solutions
weq of the linear system of equations. The residuals
r are used for the DAE solver. For each model evalu-
ation, the residuals of the linear equation system are
calculated only once instead of solving a linear equa-
tion system. At events (including initialization), the
linear equation system is constructed and solved, and
providing consistent initial conditions for the DAE
solver.

To demonstrate the outlined approach, the model
in Listing 1 resp. Figure 2 is symbolically processed
resulting in the getDerivatives function of Listing 9.
In the first statements of this function, all used pa-
rameters are inquired. The states _x provided by the
solver are assigned to the corresponding model vari-
ables. Afterwards, all explicitly solved equations are
present. To solve the algebraic loop present in the
sorted equations, a new memory m is allocated and
its stored data is initialized with zero values before
entering the while loop. The while loop computes the
residues iteratively, to solve the multibody equations
(6), the equations of components motorInertia, and
gear with lEqIteration in Listing 8 for the iteration
variable weq.

Listing 9. Generated function for model in Listing 1.
_x states vector from solver
function getDerivatives (_x, model, time)

< get parameters : startTime, duration,
kRefGain, gearRatio, ...>

states
rev.phi = _x [1]
rev.w = _x [2]
ppi.PI.x = _x [3]

explicitly solved equations
f1 from eq (6)
der(rev.phi) = rev.w
ppi.refGain.u =

ramp(time, startTime, duration)
ppi.refGain.y =

kRefGain * ppi.refGain.u
motorInertia.phi = gearRatio * rev.phi

5https://www.openblas.net/
6https://github.com/SciML/DifferentialEquations.jl

Combining Equation-based and Multibody Models

22 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21717

https://github.com/YingboMa/RecursiveFactorization.jl
https://www.openblas.net/
https://github.com/SciML/DifferentialEquations.jl

wSensor.flange.phi = motorInertia.phi
ppi.P.u =

ppi.refGain.y - wSensor.flange.phi
ppi.P.y = kP * ppi.P.u
der(motorInertia.phi) =

gearRatio * der(rev.phi)
der(wSensor.flange.phi) =

der(motorInertia.phi)
wSensor.w = der(wSensor.flange.phi)
ppi.PI.u = ppi.P.y - wSensor.w
der(ppi.PI.x) = ppi.PI.u / Tpi
motorInertia.flangeA.tau =

kpi * (ppi.PI.x + ppi.PI.u)
motorInertia.w =

der(motorInertia.phi)

open 3D model
mbs1 = openModel3D !(model, _x, time)

set states in revolute joints
mbs2 = setStatesRevolute !(mbs1,

rev.phi, rev.w)

begin
new memory m: m.A=zeros (1,1),
m.b=zeros (1), m.w_eq =zeros (1),
m.r=zeros (1), m.j =0
m.mode = COMPUTE_B
m = initlEqIteration (model)

while true
explicitly solved equations
der(rev.w) = m.w_eq [1]
der(der(rev.phi)) = der(rev.w)
der(der(motorInertia.phi)) =

gearRatio * der(der(rev.phi))
der(motorInertia.w) =

der(der(motorInertia.phi))
motorInertia.a =

der(motorInertia.w)
gear.flangeA.tau =

- Jmotor * motorInertia.a +
motorInertia.flangeA.tau

gear.flangeB.tau =
- gearRatio * gear.flangeA.tau

set acceleration in joints
mbs3 = setAccelerationsRevolute !(

mbs2, der(rev.w))

f2 from eq (6): compute generalized
forces in joints from position,
velocity, acceleration, collisions
genForces = computeGeneralizedF (mbs3)

compute residue vector
if m.mode != QUIT

m.r [1] =
genForces [1] + gear.flangeB.tau

end
if lEqIteration (m); break; end

end

report derivatives to solver
model.der_x [1] = der(rev.phi)
model.der_x [2] = der(rev.w)

model.der_x [3] = der(ppi.PI.x)
return nothing

end

5 Variable Structure Systems:
Relocatable Space Robot

Modia3D is designed as a predefined acausal compo-
nent of Modia. It offers invariant and variant joints.
The latter ones can be changed during simulation
of variable structure systems. Currently, the cate-
gory of variant joints consists of a joint type that
rigidly fixes two Object3Ds and a joint type that
allows a free motion between two Object3Ds. The
second joint type can be replaced exclusively by an-
other joint from this category with action commands
e.g., actionAttach, actionReleaseAndAttach, action-
Release, actionDelete.

In this article, a sophisticated application with a
new action command ActionFlipChain is discussed.
This new action command allows flipping a kinematic
chain with segmented simulation. It is demonstrates
with a relocatable space robot (Deremetz et al. 2020).
The symmetric, 7 DoF robotic manipulator belongs to
the MOSAR project (Modular and Re-Configurable
Spacecraft, see (Letier et al. 2019)). The robotic ma-
nipulator consists of one arm with 7 joints, and two
end effectors. One end effector is colorized blue while
the other is colorized green, see Figure 3. It enables
the detection, manipulation and positioning of space-
craft modules. The robot relocates itself on the in-
terfaces of the spacecraft or on the modules. The
visualization data and trajectory for each joint of the
robot are taken from Reiner (2022). The drive of
each joint has gear dynamics that is modeled by a
spring/damper pair with Modia. The 3D mechanics
is modeled with Modia3D.

The described behavior above is simulated with the
upcoming model. A robot places two modules and
walks on a platform, such as a spacecraft. The robot
uses the end effectors of its arm in Figure 3. The
model shows the robot’s ability of gripping the mod-
ules with either one of its end effectors and to al-
ternate between attaching of its end effectors to the
platform. This allows the robot to walk. In doing
so, the kinematic chain of the robot’s joints across
its span of arm must be reversed. This means that
the parent-child relationship between the Object3Ds
is flipped. Special treatments of the joints are re-
quired to appropriately implement this.

The platform program for the robot and six mod-
ules is sketched in Listing 10. Hereby, segments 9–12
correspond to Figure 3a – Figure 3d. At initializa-
tion, the robot and the six modules are not rigidly
attachted to the platform. In segment 2, the blue end
effector is rigidly attached to the platform. In seg-
ments 3–8, the six modules are rigidly attached to the

Session1A

DOI Proceedings of the Asian Modelica Conference 2024 23
10.3384/ecp21717 December 12-13, 2025, Jeju, Korea

(a) Segment 9. (b) Segment 10.

(c) Segment 11. Robot walks. (d) Segment 12.

Figure 3. Walking robot on a platform. One end effector of the arm is fastened to the platform while the other one is
able to place one of the two modules or it can walk on the platform.

platform. In segment 9 and 10, the green end effec-
tor is moving and replacing a module. In segment 11,
the robot is walking. This means that the attachment
to the platform alternates between the blue and the
green end effector. The blue one is released and the
green one is attached. The kinematic chain spanned
between the end effectors is reversed. In segment 12,
the blue end effector is gripping a module.

The relocatable space robot places two modules
and walks on the platform. This scenario lasts 86 s
and the simulation is performed in 2.2 s. This is much
faster than real-time, since collision handling with
point contacts is neglected. Moreover, it is impos-
sible to represent collisions between two parallel sur-
faces with a collision algorithm that computes point
contact like the Minkowski Portal Refinement (MPR)
algorithm (Snethen 2008; Neumayr and Otter 2017).

Listing 10. Platform program for relocatable robot.
function platformProgram (actions)

segment 1 (from initialization)
segment 2
attach blue end effector to platform
ActionAttach (actions,

" blueEnd ", " platform.X2Y2 ")
EventAfterPeriod (actions, 1e-10)
segment 3 - 8
attach 6 modules to platform
ActionAttach (actions,

" boxX1Y1Z1.Zneg ", " platform.X1Y1 ")
...
EventAfterPeriod (actions, 7.0)

segment 9
attach box to green end effector

ActionReleaseAndAttach (actions,
" boxX1Y1Z2.Xpos ", " greenEnd ")

EventAfterPeriod (actions, 17.0)

segment 10
release box off green end effector,
attach box to other box
ActionReleaseAndAttach (actions,

" boxX1Y1Z2.Zpos ", " boxX5Y1Z1.Zpos ")
EventAfterPeriod (actions, 6.0)

segment 11
attach green end effector to platform
flip kinematic chain between blue and
green end effector
ActionFlipChain (actions, " greenEnd ",

" platform.X2Y2 ", " blueEnd ")
EventAfterPeriod (actions, 14.0)

segment 12
attach box to blue end effector
ActionReleaseAndAttach (actions,

" boxX1Y2Z2.Xpos ", " blueEnd ")
EventAfterPeriod (actions, 23.0)

segment 13
release box off blue end effector,
attach box to other box
ActionReleaseAndAttach (actions,

" boxX1Y2Z2.Zpos ", " boxX5Y2Z1.Zpos ")
...

end

This application demonstrates that by introducing
new features and combining them with existing ones,
the new approach for variable structure systems is
relatively easy to extend.

Combining Equation-based and Multibody Models

24 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21717

6 Conclusion
In this article, equation-based modeling and multi-
body modeling are combined using the example of a
one-armed robot. It shows how to integrate multi-
body equations, equation-based Modia components
and a combination of both. Therefore, Modia3D’s
multibody components are defined as Modia param-
eters. In addition, Modia3D components are defined
as Modia models with an equation section. All of this
is processed to generate code that is solved iteratively.
The iterative solution method is discussed in detail.
The multibody tree is also set up during initialization,
and it is processed to calculate the generalized forces
needed to solve the generated code. When dealing
with variable structure systems, parts of the multi-
body tree are rebuilt when a new segmented is ini-
tialized.

References
Arnold, Martin (2017). “DAE Aspects of Multibody Sys-

tem Dynamics”. In: Surveys in Differential-Algebraic
Equations IV. Cham: Springer International Publishing,
pp. 41–106. doi: 10.1007/978-3-319-46618-7_2.

Bezanson, Jeff et al. (2017). “Julia: A fresh approach to
numerical computing”. In: SIAM review 59.1, pp. 65–98.
doi: 10.1137/141000671.

Brenan, Kathryn Eleda, Stephen L Campbell, and Linda
Ruth Petzold (1996). Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations. Vol. 14.
SIAM. isbn: 0-89871-353-6.

Deremetz, Mathieu et al. (2020). “MOSAR-WM: A relocat-
able robotic arm demonstrator for future on-orbit appli-
cations”. In: 71st International Astronautical Congress,
IAC 2020. IAF. url: https://elib.dlr.de/139962/.

Elmqvist, Hilding et al. (2021). “Modia - Equation Based
Modeling and Domain Specific Algorithms”. In: Proceed-
ings of the 14th International Modelica Conference. LiU
Electronic Press, pp. 73–86. doi: 10.3384/ecp2118173.

Gear, Charles William (1988). “Differential-Algebraic
Equation Index Transformations”. In: SIAM Journal on
Scientific and Statistical Computing 9.1, pp. 39–47. doi:
10.1137/0909004.

Gear, Charles William, Ben Leimkuhler, and Gopal K
Gupta (1985). “Automatic integration of Euler-Lagrange
equations with constraints”. In: Journal of Computa-
tional and Applied Mathematics 12, pp. 77–90. doi: 10.
1016/0377-0427(85)90008-1.

Hindmarsh, A.C., R. Serban, and A. Collier (2015). User
Documentation for IDA v2.8.2. Tech. rep. UCRL-SM-
208112. Lawrence Livermore National Laboratory.

Letier, Pierre et al. (2019). “MOSAR: Modular spacecraft
assembly and reconfiguration demonstrator”. In: 15th
Symposium on Advanced Space Technologies in Robotics
and Automation.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist
(2015). “Multi-mode DAE systems with varying index”.
In: 11th International Modelica Conference, pp. 89–98.
doi: 10.3384/ecp1511889.

Mehlhase, Alexandra (2014). “A Python framework to
create and simulate models with variable structure in

common simulation environments”. In: Mathematical
and Computer Modelling of Dynamical Systems 20.6,
pp. 566–583. doi: 10.1080/13873954.2013.861854.

Neumayr, Andrea and Martin Otter (2017). “Collision
Handling with Variable-step Integrators”. In: 8th Inter-
national Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. EOOLT’17. ACM, pp. 9–
18. doi: 10.1145/3158191.3158193.

Neumayr, Andrea and Martin Otter (2019). “Algorithms
for Component-Based 3D Modeling”. In: 13th Interna-
tional Modelica Conference. LiU Electronic Press. doi:
10.3384/ecp19157383.

Neumayr, Andrea and Martin Otter (2023a). “Modelling
and Simulation of Physical Systems with Dynamically
Changing Degrees of Freedom”. In: Electronics 12.3. doi:
10.3390/electronics12030500.

Neumayr, Andrea and Martin Otter (2023b). “Variable
Structure System Simulation via Predefined Acausal
Components”. In: Proceedings of the 15th International
Modelica Conference. LiU Electronic Press. doi: 10 .
3384/ecp204.

Otter, Martin and Hilding Elmqvist (2017). “Transforma-
tion of Differential Algebraic Array Equations to In-
dex One Form”. In: Proceedings of the 12th Interna-
tional Modelica Conference. LiU Electronic Press. doi:
10.3384/ecp17132565.

Rackauckas, Christopher and Qing Nie (2017). “Differ-
entialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia”.
In: Journal of Open Research Software 5.1. doi: 10.5334/
jors.151.

Reiner, Matthias J. (2022). “Simulation of the on-orbit
construction of structural variable modular spacecraft
by robots”. In: Proceedings of the American Model-
ica Conference. LiU Electronic Press. doi: 10 . 3384 /
ECP2118638.

Snethen, Gary (2008). “Xenocollide: Complex collision
made simple”. In: Game Programming Gems 7. Course
Technology. Charles River Media, pp. 165–178. isbn:
978-1-58450-527-3.

Tinnerholm, John, Adrian Pop, and Martin Sjölund (2022).
“A Modular, Extensible, and Modelica-Standard-
Compliant OpenModelica Compiler Framework in Ju-
lia Supporting Structural Variability”. In: Electron-
ics 11.11, p. 1772. issn: 2079-9292. doi: 10 . 3390 /
electronics11111772.

Toledo, Sivan (1997). “Locality of Reference in LU Decom-
position with Partial Pivoting”. In: SIAM Journal on
Matrix Analysis and Applications 18.4, pp. 1065–1081.
doi: 10.1137/S0895479896297744.

Zimmer, Dirk (2010). “Equation-based modeling of
variable-structure systems”. PhD thesis. ETH Zurich.
doi: 10.3929/ethz-a-006053740.

Session1A

DOI Proceedings of the Asian Modelica Conference 2024 25
10.3384/ecp21717 December 12-13, 2025, Jeju, Korea

https://doi.org/10.1007/978-3-319-46618-7_2
https://doi.org/10.1137/141000671
https://elib.dlr.de/139962/
https://doi.org/10.3384/ecp2118173
https://doi.org/10.1137/0909004
https://doi.org/10.1016/0377-0427(85)90008-1
https://doi.org/10.1016/0377-0427(85)90008-1
https://doi.org/10.3384/ecp1511889
https://doi.org/10.1080/13873954.2013.861854
https://doi.org/10.1145/3158191.3158193
https://doi.org/10.3384/ecp19157383
https://doi.org/10.3390/electronics12030500
https://doi.org/10.3384/ecp204
https://doi.org/10.3384/ecp204
https://doi.org/10.3384/ecp17132565
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.3384/ECP2118638
https://doi.org/10.3384/ECP2118638
https://doi.org/10.3390/electronics11111772
https://doi.org/10.3390/electronics11111772
https://doi.org/10.1137/S0895479896297744
https://doi.org/10.3929/ethz-a-006053740

Combining Equation-based and Multibody Models

26 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21717

The DLR Cables Library

Tobias Bellmann1 Andreas Seefried1 Thomas Bernhofer1

1Institute of System Dynamics and Control, German Aerospace Center, Germany,
{firstname,lastname}@dlr.de

Abstract
The DLR Cables Library can be used to simulate steel ca-
bles with nonlinear stiffness such as steel wire cables with
and without non-metal core or coatings. The cable itself is
simulated as discrete element component, and can easily
be connected to Modelica Multibody components.
Additional components like winches and pulleys are in-
cluded in the library. With those, complex cable systems
with multiple interconnected pulleys become possible in
Modelica. Two applications of the library are demon-
strated, a construction crane and a cable robot used to
compensate gravitation in a space robotic application.
Keywords: Modelica, Cables, Pulleys, Winches, Ropes

1 Introduction
In technical applications, cables oftentimes play important
roles e.g. in load handling, transportation, robotics, etc.
While the Modelica Standard library contains a feature-
rich set of multi-body components (Otter, Elmqvist, and
Mattsson 2003), the simulation of cable systems with pul-
leys and winches right now is only possible with addi-
tional libraries (e.g. (Wu et al. 2023), (Börner 2016),
(Berger and Heinrich 2011)). In this paper, we would like
to present a pure Modelica language based implementa-
tion of nonlinear cables, pulleys and winches (see exam-
ple in figure 1). The components can be coupled with the
standard Modelica Multibody frame connectors, enabling
the integrated simulation or optimization of complex me-
chanical systems. The implementation of the cables is fo-
cused on simulation speed, allowing complex models, e.g.
a construction crane, to be simulated in real-time. How-
ever, this library is mainly intended to model the (non-
linear) stretching behaviour of steel or composite cables
both of free cables under load and cables wound up on a
winch. The bending behaviour of the cables is simulated,
but due to the used modeling approach and the highly non-
linear nature of the inner cable mechanics, this can result
in sub-par accuracy concerning bending stiffness, damp-
ing, eigenmodes, etc.

1.1 Features of the library
The DLR Cables library provides models for cables,
winches and pulleys, as well as models to connect cables
to multi-body frames. The structure of the library can
be seen in Figure 2. A cable consists of n discrete cable
elements with flexible length.

Figure 1. A triple block and tackle system to lift heavy masses,
simulated with the DLR Cables Library.

Each cable element has two connectors, a
cableFrame_a and cableFrame_b. In
cableFrame_b, the normalized direction of the
current cable segment is stored and available for the
next cable element to calculate the bending of two
consecutive cable elements. The cable stiffness is defined
by a forces table: by lengthing the cable, a counterforce
between cableFrame_a and cableFrame_b is
applied. Thus, a nonlinear stiffness behaviour can be
easily implemented. The table has two columns: first the
lengthening of a 1m cable, second the force that is acting
against that lengthening. In addition to the stiffness force,
a damping force acts against the velocity of the cable
element along its direction. The damping coefficient is
constant. For bending, a constant stiffness and constant
damping coefficient can be set. It is possible to tear
a cable. The implementation is as follows: the force
between cableFrame_a and cableFrame_b is set
to zero. So there is still a complete cable, but one cable
element can be streched without any counterforce. For
visualization, the cable’s transparency element that is
’broken’ is set to 100%.

DOI Proceedings of the Asian Modelica Conference 2024 27
10.3384/ecp21727 December 12-13, 2025, Jeju, Korea

RRR

Figure 2. Package overview, showing the main components of
the DLR Cables Library.

1.2 Cable models
The Cable models utilises a FEM approach to model a
cable with tensile and bending stiffness / damping. Tor-
sion forces are not yet implemented. Three cable models
are provided, differing only in their interfaces (Cable-to-
Cable, Multi-Body-to-Cable, Cable-to-Multi-Body). The
cable stiffness can be defined via a table to reflect non-
linear stiffness characteristics of e.g. cables with a non-
metal core or coatings. The bending stiffness depends on
the modulus of elasticity and the diameter of the cable. A
simplified model is used to reduce the computational ef-
fort.

1.3 Winch models
The winch model can be used to simulate a winch con-
nected to a multi-body frame. There are two different
models available. An ideal winch that provides as much
cable as needed and a more realistic oscillating winch
where the cable is wound up and unwound in a meander-
ing manner. Both convert the rotation of the winch flange
into an elongation or shortening of the attached cable. It
is possible to store the cable stresses during the windup
of the cable to model the varying elongation of the cable
under dynamic loads. When unwinding the winch, this
elongation is restored.

1.4 Pulley model
The pulley model allows the connection of two cables to
model a pulley system. If one cable is elongated, the other

one is shorted by the same length. Effects of asymmetrical
stresses and elongations can be considered. For instance,
if an elongated cable under load is winded up the cable and
the rotational angle of the pulley are large than the trans-
ported un-elongated cable. If it is unwinded on the other
side of the pulley, a different length of cable is avaliable,
because the stress on the cable changes.

2 Modeling approach
In order to achieve a fast simulation speed, several meth-
ods are used to simplify the mechanics of the cable system
components. The concepts and ideas behind the modeling
approach are detailed in this section.

2.1 Basic concepts of the cable model
Every cable consists of n cable segments. Each segment
has a variable length and is comprised of two masses, in-
terconnected with a spring damper system to handle ten-
sile strength and lengthening, see Figure 3. The masses are
positioned at the ends of the cable segment, avoiding un-
necessary transformations from the pose of the connectors
to the location of a single central mass. By separating the
segments’ mass into two separate point masses with half
the weight m/2, the calculation of rotational inertia of a
single body can be omitted, further reducing complexity
(but of course by introducing errors such as ignorance of
rotations in longitudinal directions of the cable).
In general, the cable segment dynamics is only defined by
forces on the two separate masses. Torques (e.g. caused
by bending stiffness) are generated by a pair of opposite
forces fbend on the two masses of the segment. In order to
calculate effects caused by bending of the cable, the an-
gle between the two segments has to be known, therefore
the direction of the cable segment is communicated to the
adjunct segments. All forces are calculate in the world
frame.

m/2

m/2

f
f

rb

l element

bend

ra
f
bend

d

fc

Figure 3. A single cable segment with point masses at the ends
and acting forces.

2.2 Basic concept of winches and pulleys
By default, a cable has a fixed length, only subject to
change under tensile forces. However, technical systems

The DLR Cables Library

28 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21727

oftentimes use winches to unroll or roll up the cable.
While it is possible to use forces to bend a FEM based
cable around a winch drum, this approach is very costly in
terms of calculation time. In order to achieve fast simu-
lation results, suitable for real-time and optimization sce-
narios, the winch concept in this library differs from this
approach: Each cable has a variable length and mass, and
it is possible to control length and mass changes from the
cable connector. This allows for an external component,
in this case winches and pulleys, to change the length of
a cable, even if there is no actual unwinding process. Of
course, this simplification introduces several modeling er-
rors, such as an unrealistic mass transport behavior and a
constant mass and inertia of the winch. The latter is mit-
igated by also varying the mass of the winch to account
for the mass transfer between the winch and the unrolling
cable.

2.3 Elongation of a cable on a winch
In many applications where a load is transported with a
winch, the load acting on the cable might change during
operations. One example for this is an elevator, where the
load changes with the exchange of passengers. A notice-
able effect is the persistence of the lengthening of a cable
under load when rolled up on the winch due to friction
forces on the winch. Therefore, when modeling a sim-
plified winch, the elongated state of the cable has to be
preserved during the roll up of the cable, and restored dur-
ing the unroll process. This can be implemented e.g. with
a look-up table or other kinds of storage systems.

3 Implementation
The Modelica language allows for a distributed, object-
oriented modeling approach, therefore the library is struc-
tured in models and sub-models explained in this chapter.

3.1 Interfaces
As explained in the previous section, the concept of the
DLR Cables Library reduces the complexity of a full
multi-body modeling approach to an point mass based se-
ries of cable segments. Therefore, the standard Multi-
body Frame interfaces cannot be used, and a special
CableFrame connector without orientations and torques
is introduced:

Listing 1. CableFrame connector

connector CableFrame
SI.Position r_0[3];
Real e_pre[3] "The normalized direction

of the last cable element in world
coordinates";

Real e_next[3] "The normalized direction
of the next cable element in world
coordinates";

flow SI.Force f[3]
"Cut-force resolved in WORLD frame.";

end CableFrame;

It is notable, that the direction of the previous and next
cable segment is also communicated with this connector.
This enables the calculation of the bending stiffness and
damping.

3.2 Cable
The cable model comes in three variations, only differ-
ing in the available connectors (see figure 4). The mod-
els can either be connected with other cables or Model-
ica MultiBody frames on either side. Internally, the ca-

Figure 4. The three available cable models (from left to right):
CableCC, Cable MC, CableCM.

ble models hold an array of n CableSegment mod-
els, representing the cable segments. Only the first and
last CableSegment models are connected to the out-
side world, the other n−2 segments are connected to each
other in a for-loop connect statement. Other tasks of the

Figure 5. Cable model with two cable connectors (can be con-
nected to other cables, pulleys or winches). In the middle of the
diagram, the model array for the n cable segments is visible.

Cable models are the initialization of the cable segment
positions, the calculation of the elongation under load and
the calculation of the overall cable length. Initially the ca-
ble has an overall lenght of lcable. Additionally, the cable
has an input ∆l, defining the length change of the cable
caused by pulleys and winches. The cable is parameter-
ized using the following parameter record:

record CableData "base class to hold cable
information for 1m cable"

parameter String Name "Name of cable";
parameter Real forces[:,2]

"Linear approximation of force due to
stiffness of the cable of 1m.
Current force will be calculated
with [del_l1[m], Force_1 [N];
del_l2[m], Force_2 [N]].";

parameter Real d_axial(unit="N.s.m/m") "
Damping constant along direction of
cable element";

Session1B

DOI Proceedings of the Asian Modelica Conference 2024 29
10.3384/ecp21727 December 12-13, 2025, Jeju, Korea

parameter SI.ModulusOfElasticity E_bend "
Modulus of elasticity of bending";

parameter SI.RotationalDampingConstant
d_bend "Constant damping constant
against bending.";

parameter SI.LinearDensity linearDensity
"Mass of 1m cable";

parameter SI.Diameter diameter "Diameter
of the cable";

parameter SI.Force f_break "Ultimate
tensile strength of cable";

end CableData;

3.3 Cable Segment
The CableSegment model contains the physics of the
discrete cable segment. As previously explained, the ca-
ble consists of point masses, assembled as cable line via
tensile and bending forces. Figure 6 shows the modular
approach of the model. The two masses are positioned at
the CableFrame positions ra and rb. Between the two
masses, the tensile forces and bending forces are applied.
The tensile force is a simple spring/damper force along the
normal between the two masses e, with a nonlinear spring
force fc(l − l0) and a constant damping parameter d:

f
tens,c

= fc(l − l0) · e (1)

f
tens,d

= d
∂

∂ t
(l − l0) · e (2)

The nonlinear spring force fc(l − l0) is defined via an in-
terpolated table as forces depending on the lengthening of
the cable.

Figure 6. Modelica Implementation of the CableElement
model

The bending forces can be calculated in two different
ways, either with a fast non-physical approximation for-
mula, or via the exact bending radius and modulus of elas-
ticity of the cables material.

d

l=1

l=1

epre enext
e

Figure 7. Calculation of the deflection vector d between two
cable segments. The length of the cable segments is normalized
for this calculation

The simplified calculation method to calculate the
bending forces uses the deflection vector d from the nor-
mal axis of the last segment to obtain a measure for the
bending of the cable (see Figure 7). The resulting bend-
ing forces on the masses at the position ra and rb are then
calculate as follows,

f
bend,c

= d · cbend (3)

f
bend,d

=
∂d
∂ t

·dbend (4)

f
bend

= f
bend,c

+ f
bend,d

(5)

where cbend and dbend are a non-physical parameter
defining the bending stiffness and damping.

The physically correct but slower calculation of the
bending forces uses the calculation of the modulus of elas-
ticity of the material: The axes etau,pre and etau,next de-
fine the directions of the bending rotation axes between
the current segment and the previous, respectively the next
section:

etau,pre = ||epre × e|| (6)

etau,next = ||e× enext || (7)

Utilizing the angles αpre and αnext defining the angle be-
tween the current segment and the previous or next seg-
ment, the bending radii κpre and κnext can be calculated
as

κpre =
tan(αpre

2)

lelement
(8)

κnext =
tan(αnext

2)

lelement
(9)

The bending torque is replaced with a pair of forces, where
the directions are

npre = ||(etau,pre × e)|| (10)

nnext = ||(etau,next × e)|| (11)

The bending stiffness force on CableFrame_a and
CableFrame_b then results in

f
bend,c,a

=−npre ·
κpre ·Ebend · Iy

lelement
(12)

f
bend,c,b

= nnext ·
κnext ·Ebend · Iy

lelement
(13)

The DLR Cables Library

30 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21727

with Ebend being the modulus of elasticity of the material
and Iy(= Ix) being the inertia of the segment. The bending
damping is implemented as

f
bend,d,a

=−npre ·dbend ·
∂ (κpre)

∂ t
/lelement (14)

f
bend,d,b

= nnext ·dbend ·
∂ (κnext)

∂ t
/lelement (15)

The summarized bending forces are then obtained with

fbend,a = f
bend,c,a

+ f
bend,d,a

(16)

fbend,b = f
bend,c,b

+ f
bend,d,b

(17)

3.4 Winch
As mentioned in the last section, the winch comprises of
a rotating, cylindrical mass with a cable attached to it at a
defined point in space. Depending on the type of Winch,

Figure 8. Winch parameters

the position of the cable exit point is either fixed relatively
to the non-rotating winch coordinate system (Winch) or
is moved left and right and with varying radius while the
winch rotates (OscillatingWinch). In the case of a
fixed cable exit point the position defined via the parame-
ter exitAngle (αexit , see figure 8):

rlever = {r · cos(αexit),0,r · sin(αexit)} (18)

For the OscillatingWinch, the exit point moves left
and right and the radius changes with the rotation angle φ

of the winch so it is defined as

rlever = {r(φ) · cos(αexit),y(φ),r(φ) · sin(αexit)} (19)

where rphi describes a discrete change of the radius (±
diameter of the cable) when the cable drum is covered
with one layer of the cable or one layer has been fully
unrolled. The function y(φ) is described as a saw tooth
function to create the meandering movement of the cable
with the winch rotation.

The length (and mass) change of the attached cable is
defined as function of the rotational velocity ∂

∂ t φ of the
winch:

∂

∂ t
∆lcable =

r · ∂

∂ t φ

ηs f
(20)

Hereby ηs f is the so called stretch factor, defining the rel-
ative elongation of the cable, potentially resulting from
rolling up a cable under tension:

ηs f = lcable,current/lcable,nominal (21)

As the stretch factor can change with varying load on the
cable, it has to be stored and restored while rolling up or
unrolling the cable on the winch. For this purpose, the
spatialDistribution operator of the Modelica lan-
guage is being used.
The forces and torques resulting from the cable pulling
on the winch are applied also to the MultiBody frame of
the winch. For this purpuse, the resulting torques are di-
vided into torques acting on the winch’ rotational axis and
torques acting in other directions.

3.5 Pulley
A pulley is implemented as two winches, connected on
their rotational axes, see Figure 9: The pulley has two po-

Figure 9. Pulley model

sitions for the cable exit point, defined by the parameters
exitAngleA and exitAngleB.

3.6 Initialization
At the beginning of every simulation run, the spatial posi-
tion of the cable segments has to be initialized. As there is
a multitude of possible initialization scenarios, the initial-
ization routine is implemented as a replaceable function.
The base class for this initialization function has the fol-
lowing interfaces:

partial function baseCableInitialization
input Real r_a[3]={0,0,0} "Position of

cable start";
input Real r_b[3]={1,0,0} "Position of

cable end";
input Real l=10 "Length of cable";
input Integer n=10 "Number of cable

elements";
input Real g[3]={0,0,-9.8} "Gravity";
output Real r_start[n,3] "start positions

of cable elements";
output Real delta_l_init "Length

difference from initialization";
end baseCableInitialization;

Session1B

DOI Proceedings of the Asian Modelica Conference 2024 31
10.3384/ecp21727 December 12-13, 2025, Jeju, Korea

The inputs are provided by the cable model as these are
known parameters and states. The user can now use
this base class to create own initialization routines and
calculate the resulting start points of the cable segments
r_start and a length difference to the nominal cable
length delta_l_init (e.g. to account for a cable
initialized under tension).

There are three initialization routines provided with the
library:

1. Catenary initialization:
Depending on the positions of the ends of the cable
and the user-defined length lcable, the catenary line
is calculated and all points of the cable segments are
initialized on that line:

l > distance

distance

cable

Figure 10. Initialization of a cable on a catenery curve.

2. Linear initialization:
Depending on the positions of the ends of the cable,
the cable segments are distributed equally on the di-
rect connection between those two points, not chang-
ing the user-defined cable length lcable:

l not changed by
initialization

distance

cable

Figure 11. Initialization of a cable on a direct line. As the pa-
rameter lcable is not changed by this initialization routine, the
cable can be either stretched or compressed.

3. Linear initialization with adaptive length:
Depending on the positions of the ends of the cable,
the cable segments are distributed equally on the di-
rect connection between those two points. The user
defined cable length lcable is modified, so that the ca-
ble exactly fits between the two mount points. It is
possible to set a stretch factor to shorten the cable
and to initialize it pre-stretched.

l is set to (1-shortening) * distance

distance

cable

Figure 12. Initialization of a cable on a direct line. The length of
the cable is set to distance, but with a defined shortening factor
to account for initial tension on the cable.

3.7 Visualization
In order to support a wide range of visualization tools, the
library uses replaceable models for the visualizer blocks.
Right now, the following visualization tools are supported:

• Modelica tool visualization (Otter, Elmqvist, and
Mattsson 2003)

• DLR Visualization library (Hellerer, Bellmann, and
Schlegel 2014)

• DLR Visualization2 library (Kümper, Hellerer, and
Bellmann 2021)

As cables and winches are easily visualized with cylin-
ders, only few visualizer blocks are necessary.

Figure 13. Visualization of the OscillatingWinch show-
ing the process of rolling up a cable using the DLR Visualiza-
tion2 Library.

4 Application examples
In this section, some application examples, combining the
DLR Cables Library with Modelica MultiBody commpo-
nents are presented. The first example is a construction
crane, where the Cables library is used to simulate the me-
chanics of the load bearing cable and the cable moving the
cable trolley. In the second example, the Cables library is
used to simulate a gravity compensation mechanism to en-
able testing of a space robot system on earth.

4.1 Construction Crane
As part of the authors technology transfer activities, a
detailed multi-domain model of a construction crane has
been developed (see Figure 14).

It is used mainly for teaching and demonstration pur-
poses, and features the mechanical structure, drive trains
and cables. The three drive train each consist of the elec-
tric drive (asynchronous motor), a vector motor controller,
thermal effects, gearbox and brakes (See Figure 15).
For educational purposes, the model also features a calcu-
lation of its center of mass, demonstrating the stability of
the crane with different loads, varying jib working radius
and counterweights.
The model also contains a simplified air drag model for
the larger structures and load, further showing the effects
of wind load on the crane stability.

The construction crane uses two cable systems and a
rotational joint to move its load in three dimensions. The
structure of the crane is described in Figure 16. The main

The DLR Cables Library

32 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21727

Figure 14. Modelica model of a construction crane. The model
can be controlled interactively.

winch (red) is used to lift the load up and down. The ca-
ble attached to it (orange) runs from the main winch in the
back of the crane through two pulleys in the tower to the
trolley. There, it goes down via another pulley to the load
pulley and back up again to another pulley attached to the
trolley. It is fixated at the end of the cranes jib. The trolley
itself is pulled back and forth with the second cable system
(green), featuring a closed loop of three pulleys, each one
at the front and end of the crane jib and an actuated one in
between. The jib and crane top is rotated with a rotational
joint between the crane base and the crane top. In total,
the model uses nine cable blocks, one winch and six pul-
ley blocks. With 70 cable segments in total, the model is
running in real-time on a Intel Xeon W-2133 with 3.6GHz
(Integrator: Sdirk34h). It is visualized in 3D and can be
controlled by the user with on-screen controls from the
DLR Visualization 2 library (see Figure 17). Figure 18
shows some simulation data of a simple crane maneuver.
After initialization, the crane trolley is driven 5m forward
at t = 10s. The top graph shows the position of the trol-
ley, the middle graph the length of the load cables between
trolley and load, and the bottom graph the tensile force on
the trolley. Several cable related effects are visible, e.g.
the swaying of the load, leading to length changes of the
two load cables (middle plot), or the forces of the trol-
ley winch system, resulting in the movement of the trolley
sled (bottom plot). The crane can be controlled either via
an interface to an external PLC, utilizing a ProfiNet inter-
face, or by using on-screen overlays as a graphical joystick
and sliders. Additionally, predefined reference trajectories
can be used for repeatable simulations.

Figure 15. Modelica model of the main winch drive train with
asynchronous machine (IM_SquirrelCage from the MSL),
gearbox, PID controller, inverter, brake and a cooling system.

M2

M1

M3

Load
Figure 16. The structure of the construction crane, with the ac-
tuated rotational joint (M1), the main winch (M2, red) for the
load cable (orange) and the trolley actuator (M3) driving the trol-
ley cable (green). Pulleys are drawn in blue.

Figure 17. Interactive Simulation of the construction crane with
on-screen controls (bottom left), real time forces of the jib tie
load (middle left), and status information on the drives (upper
left).

Session1B

DOI Proceedings of the Asian Modelica Conference 2024 33
10.3384/ecp21727 December 12-13, 2025, Jeju, Korea

Figure 18. Trolley position (top), length of load cables between
trolley to load (middle), combined forces on the trolley (bottom).

4.2 Gravity Compensation for Space Robot
Arm

Space robots play an important role in on-orbit servicing
operations, including the repair, maintenance and refu-
elling of satellites. These robotic systems are designed to
operate in a zero-gravity environment, thus a gravity com-
pensation mechanism is required to test them on Earth.
Therefore, the Motion Suspension System (MSS) (Elhardt
et al. 2023), which is visualized in figure 19, has been de-
veloped. It allows a force to be applied to the robot in a
desired direction. The MSS consists of four cable winches
which are arranged in a rectangle on the floor around the
robot arm. Pulleys on the ceiling guide the cables to the
robot, where they are connected to each other. The sus-
pension cable connects the four cables from the winches to
the third segment of the robot arm. The simulation model

Figure 19. Visualization of the simulated Motion Suspension
System.

consists of four pulley blocks, four winch blocks and nine
cable blocks with a total of 57 cable segments. The cables
are connected to a seven degree of freedom robot using a
passive two degree of freedom coupling mechanism. The
inputs to the model are the winch torques and the robot
torques.
Figure 20 shows simulation data where the robot is held in
a fixed position and the winch torques are increased from
an initial 4Nm to 8Nm at t=3s, in order to compensate the
gravitational forces acting on the robot. The upper plot
shows the forces on the four winch cables and the force
on the suspension cable, which connects the four cables
to the robot. The lower plot shows the robot joint torques
two and three, as these are the joints most supported by
the MSS. At the beginning of the simulation, the forces
and torques oscillate strongly because the node position
of the four winch cables is not perfectly initialised. After
about 1.5s the system stabilises and a suspension force of
about 130N is applied to the robot. In this case, the drive
torques in joints two and three must be about −120Nm
and −37Nm respectively for the robot to hold its posi-
tion. By increasing the winch torque at t=3s, the suspen-
sion force is increased to about 260N. In this case the joint
torques are reduced to almost zero.

0 1 2 3 4 5 6

0

100

200

300

400

[N
]

MSS.F[1] MSS.F[2] MSS.F[3] MSS.F[4] MSS.SuspensionForce

0 1 2 3 4 5 6

-200

0

200

[N
⋅
m
]

MSS.robot.torqueSensor1[3].tau MSS.robot.torqueSensor1[2].tau

Figure 20. Plots of winch cable forces and suspension cable
force (top) and robot joint torques two and three (bottom).

5 Conclusion and Outlook
In this paper, a new pure Modelica based library for fast
simulation of cable systems has been presented and its
methodical background and implementation has been dis-
cussed. An important factor in the reliability of simula-
tion is the thorough validation of the models, in (Seefried
and Bellmann n.d.), the validation methods for the cable
models, and more real-world examples are discussed. In
the future, the library might be extended with more com-
ponents as more detailed and realistic non-linear bending
force models, arbitrary forces acting anywhere on the ca-
ble (e.g. to simulate a pulley running along a fixed ca-
ble) and collision detection of cables with the environ-
ment based on the DLR ContactDynamics Library (Buse,
Pignede, and Barthelmes 2023).

The DLR Cables Library

34 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21727

References
Berger, Maik and Stefan Heinrich (2011). “Analysis of Belt

Drives with circular and variable Pulleys in SimulationX”.
In: DOI: 10.3403/30219039u.

Börner, Denise (2016-11). URL: https://www.esi- group.com/
sites / default / files / news - release / 527 / pr _ esi _ group _
simulationx_3.8_en.pdf.

Buse, Fabian, Antoine Francois Xavier Pignede, and Stefan
Barthelmes (2023-Oktober). “A Modelica Library to Add
Contact Dynamics and Terramechanics to Multi-Body Me-
chanics”. In: Proceedings of the 15th International Model-
ica Conference. Vol. 204. Linköping Electronic Conference
Proceedings. Modelica Association and Linköping Electronic
Conference Proceedings. URL: https://elib.dlr.de/200107/.

Elhardt, Ferdinand et al. (2023-11). “The Motion Suspension
System – MSS: A Cable-Driven System for On-Ground Tests
of Space Robots”. In: 16th International Federation of The-
ory of Machines and Mechanisms World Congress, IFToMM
WC 2023. Vol. 148. Mechanisms and Machine Science 2.
Springer, Cham, pp. 379–388. URL: https : / / elib . dlr . de /
199117/.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014-03). “The DLR Visualization Library - Recent devel-
opment and applications”. In: Modellica. ISSN: 1650-3686.
DOI: 10.3384/ecp14096899.

Kümper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021-09). “DLR Visualization 2 Library - Real-Time Graph-
ical Environments for Virtual Commissioning”. In: Modelica
2021. ISSN: 1650-3686. DOI: 10.3384/ecp21181197.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (2003-
11). “The New Modelica MultiBody Library”. In: 3rd Inter-
national Modelica Conference. Ed. by Peter Fritzson. LIDO-
Berichtsjahr=2003, pp. 311–330. URL: https : / / elib. dlr. de /
11987/.

Seefried, Andreas and Tobias Bellmann (n.d.). “Validating the
DLR Cables Library with Experiments and Parameter Opti-
mization”. In: Asian Modelica Conference 2024.

Wu, Jianchen et al. (2023-12). “Object-Oriented Modelling of
Flexible Cables based on Absolute Nodal Coordinate Formu-
lation”. In: Modelica 2023. ISSN: 1650-3686. DOI: 10.3384/
ecp20453.

Session1B

DOI Proceedings of the Asian Modelica Conference 2024 35
10.3384/ecp21727 December 12-13, 2025, Jeju, Korea

https://doi.org/10.3403/30219039u
https://www.esi-group.com/sites/default/files/news-release/527/pr_esi_group_simulationx_3.8_en.pdf
https://www.esi-group.com/sites/default/files/news-release/527/pr_esi_group_simulationx_3.8_en.pdf
https://www.esi-group.com/sites/default/files/news-release/527/pr_esi_group_simulationx_3.8_en.pdf
https://elib.dlr.de/200107/
https://elib.dlr.de/199117/
https://elib.dlr.de/199117/
https://doi.org/10.3384/ecp14096899
https://doi.org/10.3384/ecp21181197
https://elib.dlr.de/11987/
https://elib.dlr.de/11987/
https://doi.org/10.3384/ecp20453
https://doi.org/10.3384/ecp20453

The DLR Cables Library

36 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21727

Validating the DLR Cables Library with Experiments and
Parameter Optimization

Andreas Seefried1 Tobias Bellmann1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{Andreas.Seefried,Tobias.Bellmann}@dlr.de

Abstract
The advantages of modelling and simulation are widely
known: Optimizing systems before production, generat-
ing alternatives in a few clicks, reducing costs, monitor-
ing, digital twin, etc. The quality of the simulation de-
pends heavily on the quality of the modeling, making it
an essential task. The DLR Cables library, which we pre-
sented in another work, allows the simulation of steel ca-
bles, focusing on use cases where their dynamic behavior
is of interest, such as cranes and elevators, but also spe-
cial motion systems using cables and amusement rides.
There, the numerical approach based on finite elements is
explained in detail and it is also shown that some simplifi-
cations are accepted in order to improve the computational
effort. This paper presents the crucial tasks of validation
and parameterization of the model, specifically focusing
on the material properties of bending stiffness and bend-
ing damping. To achieve this, a series of experiments were
carried out on four different cables. Optical systems are
used to record the cables and to compare them with the
simulation. For some of the experiments, we were able to
show a good match between reality and simulation, but it
also became clear that a linear approach may not be suffi-
cient depending on the application.
Keywords: Modelica, Steel Cables, Validation

1 Introduction
In this paper, we present our results of a validation cam-
paign for a Modelica library that can be used to simulate
steel cables, the DLR Cables library (Bellmann, Seefried,
and Bernhofer n.d.). The focus of that library was primar-
ily on computational speed, as our approach to describ-
ing a cable through multiple discrete bodies coupled to-
gether becomes computationally intensive with the stan-
dard Modelica Multibody Library (Otter, Elmqvist, and
Mattsson 2003). Therefore, in our approach, cable elonga-
tion, cable torsion, and cable bending are considered sep-
arately with simplified equations of motion. This leads to
an error that needs to be estimated.

For the validation campaign presented here, existing
measurement systems are utilized. The goal is to validate
the modelling of a cable in order to be able to simulate
more complex systems, where the dynamic behavior of a
cable is crucial, like Jomartov et al. (2023), Katliar et al.

(2017), Elhardt et al. (2023), and Yan et al. (n.d.).
In the second section, the cable model is outlined

briefly, and the potential parameters are listed, including
those already available and those to be determined through
experiments. Section three presents two different mea-
surement setups and the methodology for evaluation, as
well as the results from the measurements. The paper con-
cludes with a discussion of the results and future endeav-
ors aimed at further improving cable modelling.

2 Cable Model and Available Data for
Parameterization

Modelling a steel cable is a complex task. In the pa-
per "The DLR Cables Library" (Bellmann, Seefried, and
Bernhofer n.d.), we present an approach where a cable is
divided in a defined number of elements that are connected
in a row. To model the behavior of the cable, the calcula-
tion of elongation, bending and torsion are separated. This
reduces the computational time compared to an approach
using the standard Modelica Multibody components but
physical effects are also lost, the influence of which will
also be investigated in this validation study. Additionally,
depending on the task, different levels of complexity can
be used for the three main components.

In the literature, there are various approaches for iden-
tifying cable behaviour and to obtain information for pa-
rameterization. For cable elongation, data from the manu-
facturer is usually available. Here, a defined length of ca-
ble is clamped in a test rig and subjected to various tensile
loads. The resulting elongation is recorded and stored in a
table. Such a potential nonlinear characteristic curve can
be represented in the presented model. The axial damp-
ing along the cable is currently implemented as a linear
case. For cable bending, various setups can be found in
the literature, which either measure the resistance force of
the cable depending on lateral deflection (Z. Chen et al.
2015) or analytical or numerical considerations for bend-
ing stiffness are carried out (Zhu, Ren, and Xiao 2011;
Papailiou 1995). In the library, a more complex model
is available that takes the curvature into account and thus
becomes nonlinear for larger bending. The parameters for
bending stiffness and bending damping are single values
(no lookup table). For torsion we use a simple linear stiff-
ness and damping model. For bending and torsion, data

DOI Proceedings of the Asian Modelica Conference 2024 37
10.3384/ecp21737 December 12-13, 2025, Jeju, Korea

RRR

acquisition is not easy. Due to the missing parameters
and the uncertainties resulting from the modeling, vali-
dation is unavoidable. The study of cable research shows
more effects that are not implemented until now, for ex-
ample damping due to interwire friction (Spak, Agnes,
and Inman 2013; Y. Chen, Meng, and Gong 2017) or vari-
able bending stiffness due to axial load (Papailiou 1995).
These are not implemented in the current model and can
be considered for further refinement if needed.

3 Experimental Setup and Parameter
Identification

At DLR, highly versatile and precise laser measurement
systems are available, therefore a test rig setup has been
devised to utilize the existing equipment to record the be-
haviour of different steel cables as accurately as possible
and compare it with our model (Häusler 2019). The fol-
lowing setup was used for four different steel cables from
Pfeifer, see Table 1. The manufacturer provided detailed
data for the stiffness of the cable. The focus of the follow-
ing experiments was on the bending stiffness and bending
damping.

Name D [mm] Weight q0 [kgm−1]
10 P 524 10 43
16 P 524 16 110
20 P 524 20 172

16 PN 152/9 16 104

Table 1. Cables used for the experiment. The P 524 cable has
a plastic coated steel core while the PN 152/9 has only a steel
core. Both have an ordinary lay.

3.1 Experiment 1: Horizontal Clamped Cable
To identify static parameters, a short piece of cable is
clamped horizontally in a holding device. The aim is to
check the extent to which the bending beam theory ap-
plies to such a short piece and to determine the Modulus of
Elasticity on the basis of the measured values, see Fig. 1.

Cable weight q0

Additional mass m

Length l

Diameter dx
w(x),y

Figure 1. Using beam theory for a short piece of cable to
get the Modulus of Elasticity.

Different masses m are applied to the free end of the
piece of cable. A line laser scanner (Keyence LJ-V7300)
measures the deformation of the cable section. Hystere-
sis behavior was observed during the tests. Depending on

whether the weight tends to be deflected upwards or down-
wards, different positions result after releasing the weight,
see Fig. 2. This indicates a kind of static friction in the
cable. Since this is not currently represented by the cable
model, the mean value is used for further consideration.

In Fig. 3, the mean deflections over the distance from
fixed clamping are shown with different additional masses
m for the four cables.

From these measurements, the Modulus of Elasticity
can be calculated (Byskov 2013). At this moment, we’ve
used a simple approach with small deformations.

For the constant load from the cable, the deflection of
the beam can be described by

wq0(x) =
q0l4

24EI

(
6
(x

l

)2
−4

(x
l

)3
+
(x

l

)4
)
, (1)

for the additional mass m it is

wm(x) =
mgl3

6EI

(
3
(x

l

)2
−4

(x
l

)3
)
. (2)

with g the gravitational constant and

I =
r4π

4
(3)

the second moment of area for a cylindrical cross section
with a radius r of the cable. Combining Eq. (1) and Eq. (2)
with w(x) = wq0(x)+qm(x) and solving for E leads to

E(x) =
q0l4

24w(x)I

(
6
(x

l

)2
−4

(x
l

)3
+
(x

l

)4
)
+

mgl3

6w(x)I

(
3
(x

l

)2
−4

(x
l

)3
)

(4)

Fig. 4 shows the resulting Moduli of Elasticity for the
cables. The first 5 cm are not meaningful but then the
curves align and show an approximately constant behav-
ior, which was used for parameterization in the library, see
Table 2. It is planned to carry out further measurements
with more complex theories and other bending tests like
presented in Cao and Wu (2018) or Z. Chen et al. (2015).

Name D [mm] E-module [Nm−2]
10 P 524 10 0.65×108

16 P 524 16 1.9×108

20 P 524 20 2.1×108

16 PN 152/9 16 1.75×108

Table 2. Experimentally obtained Moduli of Elasticity

3.2 Experiment 2: Free Swinging Cable
To measure the dynamic behavior of the cables, we use a
very precise laser tracking system (Leica AT 960). A 8m
cable is mounted on the ceiling in our lab. A mass of 10 kg
is added at the free end of the cable. For the experiment,

Validating the DLR Cables Library with Experiments and Parameter Optimization

38 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21737

Figure 2. Experiment 1: Upper and lower deflection of cable with different weights at the free end of the cable.
Because of static friction, the cable rests at different positions depending on the direction. Here, the deflections of PN
152 are shown.

Figure 3. Experiment 1: Mean deflections of the cable section with different weights at the free end.

we put the free end of the cable to five different positions
and release the end. This way, the cable swings in dif-
ferent but repeatable ways. A marker for the laser tracker
is attached at the cable on nine different positions. The
laser tracking system can only track one target at the same
time, so there are 45 runs to do for each cable. Figure 5a
shows the cable with the different starting positions and
the positions of the markers for the laser tracking system.
Figures 5b and 5c show two different starting positions
for the cable and the evolution of the swinging behavior.
With such different starting positions, excitation at vari-
ous frequencies within the cable can be achieved. These
are harmonics and the decay of these movements helps to
identify the cable bending and damping.

On the modelling side, we also use a 8m long cable

with the same mass at the end. The number of elements is
set to 50, so that the transitions between the discrete cable
elements match the positions of the markers. The error

e1(t) = (rE,1(t)− rS,1(t))
2 (5)

describes the time dependent distance of the position of
the cable in the experiment, here at marker ’1’, rE,1(t), and
the corresponding position of the cable in the simulation,
rS,1(t). The integral of e1(t) describes the cost function

J1 =
∫ te

0
e1(t)dt (6)

and is taken to find the optimal parameter for the damping
bending by minimizing J1. For a more complex optimiza-
tion, where all positions of the markers are optimized at

Session1C

DOI Proceedings of the Asian Modelica Conference 2024 39
10.3384/ecp21737 December 12-13, 2025, Jeju, Korea

Figure 4. Moduli of Elasticity of the different cables depending on their distance to the fixed clamping

A
B
C
D
E
D

1
2

3

4

5

6

7

8

9

(a) Numbering of starting po-
sitions (A to E) and positions
of the marker of the laser
tracker (1 to 9).

A
B
C
D
E
D

I II III

(b) Example of swinging ca-
ble with starting position A
(I). After a few milliseconds,
the cable has the configura-
tion II and then III.

A
B
C
D
E
D

I

II
III

(c) Example of swinging ca-
ble with starting position D
(I). After a few milliseconds,
the cable has the configu-
ration II and then III with
strong harmonics.

Figure 5. Experimental setup of the 8m long cable mounted at the ceiling with different starting positions.

the same time, the cost function expands to

J =
∫ te

0
e1(t)+ e2(t)+ . . .+ e9(t)dt. (7)

In Fig. 6, the model is shown of that optimization to
measure the difference between the recorded first marker
position and the corresponding point at the cable, here
at the additional mass. The optimization is implemented
with the DLR Optimization library (Pfeiffer 2012). The
optimization variable is the parameter for the bending
damping, d_bend.

In Fig. 6b the output of an optimization is shown where
a small change of the bending damping leads to a very pre-
cise match of the simulated and the real movement. Here,
the cable was released at the starting position A.

The cable is then deflected both in the simulation and
in the test and released from the start position ’E’. After
a short time, the oscillation behavior of the lowest point
’1’ is very similar to the previous case. On the other hand,
clear changes can be seen at position ’7’, see Fig. 7a. It is
also easy to see that the simulation and the measurement
do not match well in terms of the amplitude of the har-
monics. Even after renewed optimization, see Fig. 7b, the
result is not as good as expected.

4 Discussion and Conclusion
The validation of simulation models is crucial in order to
be able to rely on the results. In a first step, the parame-
ters for bending stiffness and bending damping were deter-

Validating the DLR Cables Library with Experiments and Parameter Optimization

40 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21737

(a) Modelica model to run an optimization with the DLR Optimization library (Pfeiffer 2012).
Here, only the position of the additional mass is compared in simulation and from real mea-
surements, that have been recorded and are used here as a lookup table.

(b) Result of the optimization shown in Fig. 6. A small change of the bending damping parameter d_bend
leads to a very good match between the measured, real swinging of the cable and the simulation.

Figure 6. Model made in Dymola of a cable simulated with the Cables library and compared to real measurement. The
position of marker ’1’ and the starting position is ’A’ is shown, see Fig. 5a. The comparison is used to optimize the
bending damping parameter.

Session1C

DOI Proceedings of the Asian Modelica Conference 2024 41
10.3384/ecp21737 December 12-13, 2025, Jeju, Korea

(a) Comparison of simulation and measurement
for a cable, started at position ’E’.

(b) Comparison of simulation and measurement
for a cable, started at position ’E’. Even af-
ter optimization, the curves of the higher fre-
quency do not match well.

Figure 7. Comparison of a swinging cable P 524 with 10 mm diameter simulated with the Cables library and real
measurement. The position of marker ’7’ and the starting position is ’E’ is shown, see Fig. 5a.

mined experimentally in this work and transferred to the
simulation model using an optimization-based method.
For simple pendulum movements, the agreement between
the simulation model and reality is very good. In the case
of excitation, where higher frequencies also occur in the
cable itself, the simulation shows a sufficient fit with the
reality but can still be improved, for example by choosing
a more complex model. Changing the number of elements
did not improve the results thus the authors assume that
the modelling itself need to be updated if such complex
motions are of interest.

An extension of the bending model with a lookup ta-
ble for stiffness and damping to enable non-linearity could
help to improve the accuracy of the simulation compared
to the reality. Furthermore, according to literature, the ef-
fect of axial load is high so that those experiments should
be made, too. At the moment, another validation is carried
out using the Motion Suspension System - MSS (Elhardt
et al. 2023) and the results will taken into account to refine
the modelling of the cable.

References
Bellmann, Tobias, Andreas Seefried, and Thomas Bernhofer

(n.d.). “The DLR Cables Library”. In: Asian Modelica Con-
ference 2024.

Byskov, Esben (2013). Elementary Continuum Mechanics
for everyone: with applications to Structural Mechanics.
Vol. 194. Springer Science & Business Media.

Cao, Xin and Weiguo Wu (2018). “The establishment of a me-
chanics model of multi-strand wire rope subjected to bending
load with finite element simulation and experimental verifica-
tion”. In: International Journal of Mechanical Sciences 142,
pp. 289–303.

Chen, Yuanpei, Fanming Meng, and Xiansheng Gong (2017).
“Study on performance of bended spiral strand with interwire
frictional”. In: International Journal of Mechanical Sciences
128-129, pp. 499–511. ISSN: 0020-7403. DOI: 10 . 1016 / j .
ijmecsci.2017.05.009.

Chen, Zhihua et al. (2015-10). “Experimental research on bend-
ing performance of structural cable”. English. In: Construc-

tion and Building Materials 96, pp. 279–288. ISSN: 0950-
0618. DOI: 10.1016/j.conbuildmat.2015.08.026.

Elhardt, Ferdinand et al. (2023). “The Motion Suspension
System–MSS: A Cable-Driven System for On-Ground Tests
of Space Robots”. In: IFToMM World Congress on Mecha-
nism and Machine Science. Springer, pp. 379–388.

Häusler, Leonhard (2019). “Identifikation und Modellierung von
Stahlseilen”. Bachelorarbeit. Hochschule München. URL:
https://elib.dlr.de/139717/.

Jomartov, Assylbek et al. (2023-03). “Simulation of suspended
cable-driven parallel robot on SimulationX”. In: Interna-
tional Journal of Advanced Robotic Systems 20.2. ISSN:
1729-8814.

Katliar, Mikhail et al. (2017). “Nonlinear model predictive
control of a cable-robot-based motion simulator”. In: Ifac-
papersonline 50.1, pp. 9833–9839.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (2003-
11). “The New Modelica MultiBody Library”. In: 3rd Inter-
national Modelica Conference. Ed. by Peter Fritzson. LIDO-
Berichtsjahr=2003, pp. 311–330.

Papailiou, Konstantin O (1995). “Bending of helically twisted
cables under variable bending stiffness due to internal fric-
tion, tensile force and cable curvature”. In: Doctor of Techni-
cal Sciences thesis, ETH, Athens, Greece 168.

Pfeiffer, Andreas (2012). “Optimization library for interactive
multi-criteria optimization tasks”. In.

Spak, Kaitlin, Gregory Agnes, and Daniel Inman (2013-01).
“Cable Modeling and Internal Damping Developments”. In:
Applied Mechanics Reviews 65.1. DOI: https : / /doi .org /10 .
1115/1.4023489.

Yan, Fei et al. (n.d.). “Dynamic modelling and parameter iden-
tification for cable-driven manipulator”. In: Current Science
116.8 (), p. 1331. ISSN: 0011-3891. DOI: 10.18520/cs/v116/
i8/1331-1345.

Zhu, W. D., H. Ren, and C. Xiao (2011-04). “A Nonlinear Model
of a Slack Cable With Bending Stiffness and Moving Ends
With Application to Elevator Traveling and Compensation
Cables”. In: Journal of Applied Mechanics 78.4. DOI: https:
//doi.org/10.1115/1.4003348.

Validating the DLR Cables Library with Experiments and Parameter Optimization

42 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21737

https://doi.org/10.1016/j.ijmecsci.2017.05.009
https://doi.org/10.1016/j.ijmecsci.2017.05.009
https://doi.org/10.1016/j.conbuildmat.2015.08.026
https://elib.dlr.de/139717/
https://doi.org/https://doi.org/10.1115/1.4023489
https://doi.org/https://doi.org/10.1115/1.4023489
https://doi.org/10.18520/cs/v116/i8/1331-1345
https://doi.org/10.18520/cs/v116/i8/1331-1345
https://doi.org/https://doi.org/10.1115/1.4003348
https://doi.org/https://doi.org/10.1115/1.4003348

A Study on the Methodology to Develop

Virtual Drive Environment for

Autonomous Driving Evaluation

Wonyul Kang1 Jongho Park1 Daeoh Kang1
1iVH, South Korea

Abstract
It takes many hours and restrictions once

AD(Autonomous Driving) evaluation based on real tests.

This paper presents a methodology for development of

virtual driving environment that can replace the real

vehicle test. When developing a virtual driving

environment, it is important to develop the same virtual

element model (Road, Vehicle model, etc.) as the real

world. So the high-occupancy BRT (Bus Rapid Transit)

bus route in Cheongna zone was modelled using the

MMS(Mobile Mapping System) as the openDRIVE

format which is the ASAM(Association for

Standardization of Automation and Measuring Systems)

road standard. In addition, we develop a vehicle model

that simulates the dynamic performance of BRT based on

Modelica language. Finally, we develop an interface

module that integrates the virtual environment, the vehicle

model, and the driver model. In conclusion, this paper

present virtual test drive platform for AD Evaluation.

Keywords: Autonomous, BRT, Vehicle Model, AWS

1 Introduction

The recent leader companies in autonomous driving are

not automobile manufacturers, but IT companies or

venture companies. In the case of Google Waymo, it uses

Carcraft software to verify edge cases that cannot be tested

in real cars and performs tests by driving more than 8

million miles a day virtually. This is the distance that in

virtual reality, the real vehicle travels about three times

the distance that can be driven in one year. Therefore, it is

essential to accelerate the autonomous driving logic based

on the virtual driving environment.1)

The virtual driving environment consists of basic elements

such as road network/logic, road surface, traffic flow,

vehicle dynamics model, driver model, weather model,

and sensor model. Existing studies have evaluated

representative scenarios after creating artificial road

models, and in the case of vehicle dynamics models, there

is a problem that the low-DOF vehicle model cannot be

applied to reflect the vehicle's behavior in response. 2) The

vehicle's responsiveness here means the time and behavior

until the vehicle responds to the vehicle's steering and

acceleration/deceleration pedal inputs. The factors

affecting the vehicle's response are determined by the

structure and characteristics of the tire, powertrain, and

suspension and in the case of mathematical vehicle

models and low-DOFvehicle models, it is difficult to

reproduce the characteristics of the vehicle's response to

the input.

Therefore, as an alternative to the existing representative

scenario-based autonomous driving evaluation method,

this study proposes a virtual driving environment that can

evaluate control logic in driving distance-based random

traffic situations and a vehicle model construction and

linkage technique that can reflect the vehicle response and

dynamic characteristics of the real vehicle.

In addition, the virtual driving environment developed in

this study was developed as a simulation standard defined

by the Association for Standardization of Automation and

Measuring Systems (ASAM) for usability. The simulation

standards defined by ASAM are openDRIVE for roads,

openCRG for road surfaces, and openSCENARIO for

scenarios. The detailed research sequence is as follows.

This study was conducted to virtually evaluate the

autonomous driving logic of the large-capacity refractive

type BRT (Bus Rapid Transit) operating in the Cheongna

district of Incheon.

As for the order of the study, first, a high-definition virtual

driving environment was constructed. Based on MMS, the

BRT route of Cheongna district was scanned. By

extracting road information from the scanning data, the

openDRIVE file was modeled and the actual road was

virtualized. Next, a scenario model for driving on a BRT

driving route was constructed. In this study, a traffic

model was created around the control vehicle (Ego car) by

using Pulk Traffic (Random Traffic) supported by the

VTD (Virtual Test Drive). The driver model is an

autonomous driving logic to be developed and evaluated,

and in this study, the autonomous driving logic provided

by VTD was used. The sensor model used for autonomous

driving performed autonomous driving according to

object list information using the Perfect sensor provided

by VTD

The second is the development of a modelica-based high
fidelity vehicle dynamics model. In order to reflect the

dynamic performance of the actual BRT vehicle, the

DOI Proceedings of the Asian Modelica Conference 2024 43
10.3384/ecp21743 December 12-13, 2025, Jeju, Korea

RRR

vehicle dynamics model was modeled using Dymola, a

1D analysis simulation software. In addition, a BRT

handling test was performed to validate model

responsiveness.

Third, an interface module was developed to interface a

virtual driving environment with a 3rd part vehicle

dynamic model. The interface module interworks data

between the VTD and the dymola vehicle model based on

UDP (User Datagram Protocol) communication.

Finally, the driver's seat Mock-up of an actual BRT

vehicle was manufactured. And a standardized high-

definition virtual environment was developed.

2 Building virtual driving

environments based on real roads

In Chapter 2, a virtual driving environment was developed

to evaluate large-capacity BRT. For the static element, a

high-definition road model was developed using MMS

equipment.

2.1 Road Scanning Based on MMS

In Section 2.1, an MMS-based road network model was

developed. In this study, the Pegasus 2 Ultimate

equipment of Leica Geosystems was used and scanned at

a speed of 50 kph. The driving route is from Cheongna

International City Station to Gajeong Station. The BRT in

Cheongna District has two routes, and the route bus is bus

701 and 702. The scanning data consists of image data

generated from a 360-degree camera and four cameras,

and is used to generate LAS (LAS) data. Table 1 shows

the MMS equipment specifications, and Figure 1 is the

vehicle mounting and calibration setup diagram of the

MMS equipment.

Table 1 Mobile mapping system specification (Pegasus 2 Ultimate)

 Specification Remark

Camera 4 ea 12M Pixels

360° camera 1 ea 24MP panorama

Scanner Z+F 9012

accuracy
0.015m(Vertical),

0.02m(Horizontal)

Fig. 1 Mobile mapping system calibration setup

2.2 openDRIVE Road modeling

The LAS data is generated by mapping the image

information of the camera corresponding to the cloud

points x, y, and z points generated from the LiDAR sensor.

The LAS data generation process is as follows. First, the

x, y, and z point information, which are cloud point

location information, is acquired. A colored cloud point

data base is generated by inputting red green blue (RGB)

values of pixel information corresponding to x, y, and z of

the point by using the camera image information captured

when generating the cloud point. The LAS data generated

for the BRT driving route in this study is shown in Figure

2.

Fig. 2 Scanned las data of BRT route

Next is the classification of cloud points. Also called point

grouping of points, LAS data was performed using the AI

logic of the Road Factory. Grouping proceeds by object,

and point grouping is performed by distinguishing objects

such as trees, roads, buildings, and wires. Through point

grouping, the user can extract only the LAS data of the

desired object. In this study, a road point group was used

to utilize LAS data for the road model, and later elements

such as buildings and trees were separately modeled using

the VTD Road Designer.

Next, openDRIVE-based BRT driving route was created.

openDRIVE is an ASAM standard that defines road

network information. In openDRIVE, road lanes, widths,

altitudes, and bank angles were fitted with a third-order

polynomial. In order to virtualize random lanes, vehicle

widths, altitude information, etc. extracted based on LAS

data generated from MMS equipment, it is impossible to

virtualize real roads with a combination of general straight

or curved shapes. Therefore, in this study, fitting based on

a third-order polynomial was performed, and all road

information is defined by the values of a, b, c, and d in

Equation (1).

y= a+bx+cx^2+dx^3 (1)

A Study on the Methodology to Develop Virtual Drive Environment for Autonomous Driving Evaluation

44 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21743

Here, x is information on the length direction of the road,

and y is the width, altitude, and bank angle of the road. In

openDRIVE, road attribute information on the road length

direction is expressed by the definition of a, b, c, and d

values.

In openDRIVE, you can define surrounding

environmental objects in style items. openDRIVE

includes only location information for user data, and

actual graphic data is managed in other databases. In this

study, graphic data such as basic buildings, trees,

guardrails, streetlights, and traffic lights provided by VTD

were used, and openDRIVE includes location information

of graphic data. In this way, VTD's virtual environment

consists of two types of road network files called

openDRIVE and osgb graphic files in the form of

openscene graph. In this study, graphic elements such as

road marks, stop lines, traffic lights, guardrails, trees,

buildings, and underground roads were modeled. Figure 3

shows a landscape graphic model.

Fig. 3 Landscape & tunnel graphic model

Fig. 4 openDRIVE modeling process based on MMS

Figure 4 shows the process of creating an MMS-based

open DRIVE model

2.3 BRT Autonomous-Driving Testing

Scenario Modeling

In this study, the scenario was modeled using the

openSCENARIO standard. openSCENARIO is the

scenario standard of ASAM and expresses the dynamic

behavior of an object during simulation. This study

evaluated the performance of the controller by modeling

the general driving situation for BRT driving routes as a

scenario using Random traffic. In the next year, the

controller performance evaluation will be improved by

developing a test automation function that considers the

edge case (cut-in, cut-out, fedarian scenario etc.) for

control logic performance evaluation.

As for the scenario for BRT evaluation, a scenario model

was constructed in which the location of the bus stop was

modeled on the bus line BRT 701 and then stopped for 30

seconds at the bus stop and then departed. The traffic

model utilized VTD's Pulk traffic. Pulk Traffic creates a

traffic model around a control vehicle (ego) as random

traffic provided by VTD. The traffic model generation

conditions are as follows. 60 traffic volumes were

generated centering on ego vehicles and the traffic flow in

the urban area was reflected. In addition, the vehicle

distribution was defined as front:40%, rear:30%, left:15%,

and right:15% centering on the ego vehicle. The

distribution of vehicle types was defined as passenger cars:

75%, van:10%, bus:5%, truck:5%, and two-wheeled

vehicles:5%. Details are shown in Figure 5.

Fig. 5 Scenario model based on openSCENARIO

3 BRT Vehicle Model Modelling and

Validation

In Section 3, a vehicle dynamics model based on the

Modelica language was developed to implement a real

vehicle response to steering input, acceleration, and

braking pedal. The chassis system modeled a three-axis

vehicle model that can simulate bimodal behavior and

modeled the steering system on each axis. The powertrain

model was deveoloped by modeling batteries, motors,

diesel engines, and controllers based on Dimola's Battery

Library and Vehicle Dynamics Library. The tire model

expressed nonlinear tire behavior by applying the Pacejka

Tire model.

3.1 Chassis modeling

In order to implement AWS in the chassis system, the

steering function independent of each axis was modeled

by applying the steering system to each axis of the vehicle.

Session2A

DOI Proceedings of the Asian Modelica Conference 2024 45
10.3384/ecp21743 December 12-13, 2025, Jeju, Korea

The second and third axes were modeled as a Hook (Ball

joint) joint to simulate the bimodal behavior of the vehicle.

The suspension types on the 1, 2, and 3 axes are all double

wishbone types, and the anti-roll bar is modeled on each

axis. Figure 6 shows the block diagram of the suspension

type.

Fig. 6 Modelica based chassis model

The spring of each shaft was modeled as an air spring

model, and the air spring formula and performance graph

are shown in Equations (2) and Fig.7 below.

 (2)

Fig. 7 Air spring stiffness

3.2 Powertrain modeling

The large-capacity BRT is a diesel engine-based serial

hybrid vehicle, and Euro 6 209 kW diesel engine and 140

kW generator are applied. The battery was modeled based

on Modelon's Battery Library, and the motor was

constructed as a model that controls the torque as an

angular acceleration target using a controller. The

controller converts the displacement of the accelerator

pedal into voltage to power the vehicle.

Fig. 8 Modelica based powertrain model

The figure below shows the powertrain integration

template. The brake module and powertrain module are

interlocked with the chassis module for each shaft.

Fig. 9 Modelica based BRT template model

The vehicle dynamics model becomes a sub-module of the

test mode, enabling virtual simulation of vehicle

dynamics tests.

3.3 Vehicle model Validation

In order to validate the vehicle dynamics model developed

in Section 3.2, a real vehicle-based dynamic characteristic

test was performed. In this study, tests were conducted in

the airways under construction due to the test vehicles and

vehicle movement conditions, and acceleration, braking,

and double lane change test modes were selected to

vaildate the vehicle dynamics model. The maximum

speed of a large-capacity BRT is 80 kph. In this study, the

acceleration test measured data from a stopped state to
reaching 70 kph, and in the case of a braking test, the test

data from 70 kph to a stop was measured. Due to the safety

of the BRT vehicle of the double lane change, steering

𝑽𝟎 = 𝑨𝒗 ∗ 𝟎. 𝟐

𝑭𝒑 = 𝒅𝑷 ∗ 𝑨𝒇

𝑭𝒔 = 𝒄𝒌 ∗ 𝒔𝒓𝒆𝒍

𝑽 = 𝑽𝟎 + 𝑨𝒗 ∗ 𝒔𝒓𝒆𝒍

𝒅𝑷 =
(𝑷𝟎 + 𝑷𝒂𝒕𝒎) ∗ 𝑽𝟎

𝒏

𝑽𝒏 − 𝑷𝒂𝒕𝒎 − 𝑷𝟎

−𝑭 + 𝑭𝟎 + 𝑭𝒑 = 𝑭𝒔

𝒔𝒓𝒆𝒍 = 𝒅𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝑭𝒍𝒂𝒏𝒈𝒆. 𝒃

 −𝒅𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝑭𝒍𝒂𝒏𝒈𝒆. 𝒃

A Study on the Methodology to Develop Virtual Drive Environment for Autonomous Driving Evaluation

46 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21743

was limited so that a lateral acceleration of 0.2 g occurred

at 60 kph for safety reasons.

In this study, the data required for validation were

measured through the IMU (Inertial Measurement Unit)

sensor installed in the target vehicle. In the IMU sensor,

vehicle state information and three-axis data were

measured to measure the result of each test mode. In the

test, commercial electric buses are refractive buses, and

IMU sensors were attached to Front and Rear to vaildate

bimodal behavior to obtain measurement results,

respectively.

The steering signal and pedal information were measured

through the vehicle's controller area network (CAN)

communication. The time vs steering angle information

obtained in the actual vehicle test was applied to the

vehicle dynamics model validation environment, and the

dynamic simulation result value and the measured value

in the actual vehicle test were compared. The figure below

shows that a sensor for measurement is installed on a

refractive bus.

Fig. 10 BRT test equipment setup

The vehicle model validation built in this study was

performed based on the results of the actual vehicle

conducted by the experimental method defined. the

simulation validation environment was modeled as shown

in the figure below to vaildate the results and model for

the acceleration test, braking test, and double lane change

test.

Fig. 11 Vehicle model validation environment

For the validation environment, the steering angle and

acceleration and braking pedal values measured in the

vehicle dynamics test were applied to the vehicle model

as input values.

The actual vehicle test was conducted three times each of

acceleration, braking, and double lane change tests, and

the analysis of the performance index was performed to

vaildate the vehicle dynamics model as the average of the

three performance index values in each test.7)

Fig. 12 Acceleration test result

Fig. 13 Braking test result

Session2A

DOI Proceedings of the Asian Modelica Conference 2024 47
10.3384/ecp21743 December 12-13, 2025, Jeju, Korea

Fig. 14 Double lane change result

The validation was performed based on the speed and

acceleration of the front and rear body of the large-

capacity BRT. Acceleration and braking tests were

verified based on the longitudinal speed and acceleration

of the vehicle body, and in the case of a double lane

change, they were verified based on the lateral speed and

acceleration. The index is expressed as RMSPe as shown

in Equation (10), and it shows that the model accuracy of

the vehicle dynamic characteristics test results in Table 4

is over the target 80%. In addition, it is thought that the

model developed by satisfying the model accuracy of 80%

or more and the real-time performance of the model at the

same time can be sufficiently used as a vehicle model in a

virtual driving environment. Details of the vehicle model

validation results are shown in the table below.

𝑬𝒓𝒓𝒐𝒓(%) = √𝟏

𝒏
∑ (

𝒚𝒔−𝒚𝒕

𝒚𝒕
)

𝟐
 × 𝟏𝟎𝟎 (10)

where ys= simulation result

 yt= test result

Table 1 Vehicle Test results(RMSPe)

Acceleration

test
Braking test

Double lane

change test

Front Acceleration

RMSPe(%)
11.9 16.81 16.91

Velocity
RMSPe(%)

1.92 2.24 1.2

Rear Acceleration
RMSPe(%)

7.34

18.56 19.38

Velocity

RMSPe(%)
2.14 2.31 1.6

4 Development of Virtual Driving

Environment and Vehicle Model

Interface Module

In Section 4, an interworking environment between a

virtual driving environment and a vehicle model was

constructed. First, after defining the interworking data

items, the virtual environment can be controlled based on

the C++ source code defined by the user in the virtual

driving environment Plug-in environment. The C++

source code includes vehicle control and communication

modules, which can be linked with vehicle models. In this

study, a communication module in a virtual driving

environment and a communication module of a vehicle

dynamics model were constructed, respectively. Figure 15

shows the virtual driving environment and the interface

environment between vehicle models. 8)

Fig. 15 Data flow based on interface modules

4.1 Modelling UDP Communication Module

for Virtual Driving Environments

All data in a virtual driving environment is defined in a

data structure called a Runtime Data Bus (RDB). RDB is

a standard that defines all data calculated in a virtual

driving environment as a structure. Data refers to all

components for a virtual environment, such as speed,

acceleration, driver signal, location information,

pedestrian location, traffic light location, current signal,

etc., for all vehicles. The RDB can be output and

controlled by a user in a C++ development environment

and functions the same as CAN data of a vehicle. In a C++

development environment, the RDB has HEADER and

DATA items, similar to a general Packet, and is defined

in a structure format.

In order to communicate the RDB data of the virtual

driving environment, the C++ source code was generated

and the code was executed in conjunction with the virtual

driving environment in a Plug-in format. For example, in

the RDB structure mentioned in the above section, a code

for outputting and transmitting vehicle state information

was modeled and a file generated after compile was plug-

in to the virtual environment to build an interface

environment.

The Driver Model uses the actual steering device and

pedal device to provide steering signals by the actual

A Study on the Methodology to Develop Virtual Drive Environment for Autonomous Driving Evaluation

48 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21743

driver and controls the vehicle with autonomous driving

logic when switching control. The user-defined Driver

signal is controlled by the Task Control module, a central

control module of the virtual driving environment, and

reflects the vehicle response by transmitting the driver

control signal to the vehicle model.

4.2 UDP Communication Module Modelling

for Vehicle Model

Vehicle data was defined with strucrture data to control

the BRT model. The structure is composed of vehicle state

information and altitude information at each wheel to

reflect the altitude of the road surface in a virtual driving

environment.

One contact point between the tire and the road in the

vehicle dynamics model was designated per wheel. Figure

16 shows the contact mechanism between road and

vehicle models on openDRIVE.

Fig. 16 Road contact mechanism

An interface module was constructed to receive RDB data

transmitted in the virtual environment from the vehicle

model and transmit vehicle data to the virtual environment.

A module capable of receiving actual driver input signals

or vehicle controller signals on the steering, acceleration,

and deceleration pedals of BRT vehicles, and a module

that transmits vehicle state information to the virtual

environment were constructed as shown in the figure

below.

Fig. 17 Interface module for vehicle model

5 Development of Virtual Driving

Environment Platform for

Autonomous Driving Evaluation

In Section 5, a virtual driving environment platform was

constructed using Vires' Virtual Test Drive. In this study,

in order to virtually develop the autonomous driving logic

of a large-capacity BRT running on the real road in

Cheongna District, a virtual driving environment platform

was constructed that integrated the previously built road,

scenario, and vehicle model based on interface modules.

Figure 18 is a summary of the virtual driving environment

platform presented in this study.

Fig. 18 Virtual drive environment platform for autonomous driving

evaluation

In Section 5, the virtual environment of bus routes 701 and

702 of the Cheongna district constructed in this study. The

driving simulator manufactured the driver seat of the

actual BRT vehicle as a mock-up and the steering angle

and pedal input of the controller are implemented through

the actuator. In the driving simulator, when the control

authority is transitioned, the driver can control the vehicle,

and the driver's steering and pedal inputs are applied to the

vehicle model, constructing an environment in which the

driver can directly drive. The figure below is a diagram of

driving the BRT bus route based on an actual driving

simulator. The driving rate of the simulation was checked

in a random traffic situation, and the driving rate was

defined as the number of deviation cases and collisions per

number of round trips on the driving route. Based on the

VTD autonomous driving logic, 0 cases of route deviation

and 0 cases of collision were shown during 236 round trips.

Session2A

DOI Proceedings of the Asian Modelica Conference 2024 49
10.3384/ecp21743 December 12-13, 2025, Jeju, Korea

Fig. 19 Driving simulator based on virtual drive environment platform

6 Conclusion

In this study, a high-definition virtual driving environment

was developed to evaluate the autonomous driving logic

in the preceding stage before converting a large-capacity

BRT operating in Cheongna into an autonomous driving

system. The VTD (Virtual Test Drive) control logic and

the virtual driving environment were linked to the same

communication environment as the autonomous driving

control logic to be applied to the real vehicles, and the

autonomous driving performance for bus routes was

evaluated. The VTD autonomous driving control logic

will be evaluated by being replaced by the autonomous

driving control logic that will be developed for real

vehicles in the future. In addition, the vehicle model

developed in this study implemented pedal input and

powertrain characteristics that could not be implemented

when using a low-DOF vehicle model, and a high-fidelity

vehicle model was constructed that reflected the response

and behavioral characteristics of the vehicle. Through this,

a methodology was proposed to develop a controller in

consideration of the vehicle response delay phenomenon

when developing an autonomous driving controller in

virtual. Finally, large-capacity BRT is a public

transportation that is actually in operation, and there are

many restrictions when evaluating autonomous driving

logic based on actual vehicles, and there is a high risk of

accidents. Therefore, using the virtual driving

environment developed in this study, the control logic was

evaluated virtually for a driving distance of 7080 km one-

way in the preceding stage. The results derived from this

paper are as follows.

(1) A real road virtualization technique based on MMS

was established, and a road model that can be evaluated in

a simulation environment was constructed by creating a

road model of openDRIVE, the ASAM standard.

(2) Through the development of a modelcia-based vehicle

dynamics model, a high-precision vehicle model that

simulates the dynamic characteristics of the actual vehicle

was constructed.

(3) Through the development of interface modules, an

environment that can interface 3rd part modules (vehicle

models, driver models, and logic) to a virtual driving

environment in a plug-in format was established.

(4) Based on the ASAM standard, a highly useful platform

was established by constructing a virtual driving

environment for autonomous driving evaluation. In the

future, when changing the road model, scenario, and

vehicle model of the ASAM standard, the platform

developed in this study can be used as it is.

In this study, control logic evaluation was conducted in

random traffic situations around control vehicles, and

actual traffic volume will be applied using traffic

simulation tools in the future. In addition, we plan to

evaluate the control logic based on the mileage by

applying edge cases, accidents, and unexpected situations

to the traffic model. Control logic is planning to build and

upgrade an evaluation automation environment based on

this platform by applying the BRT autonomous driving

logic for real vehicles.

7 References

1) State of California Department of Motor Vehicles,

Disengagement Report 2019,

https://www.dmv.ca.gov/portal/vehicle-industry-

services/autonomous-vehicles/disengagement-reports/,

2020.

2) Schiller M, Dupius M, Krajzewicz D, Kern A, & Knoll

A, “Multi-resolution traffic simulation for large-scale

high-fidelity evaluation of VANET applications.”,

Springer Cham, In Simulating Urban Traffic Scenarios,

pp.17-36, 2019.

3) J Jo, W Kang, D Kang, “Vehicle Dynamics

Model and Tire Filer for Ride Comfort Analysis”,

Transactions of KSAE, Vol. 28, No. 12, pp.859-864, 2020.

4) Vehicle Dynamics Library, Modelon, 2019.

5) Vehicle Dynamics – theory and application, Reza N.

Jazar, Springer, 2015.

6) Hans B. Pacejka, "Tyre and Vehicle Dynamics",

pp.483-512, 2006.

7) M Hyun, J Yoon, G Lee, “Study on Suspension Bush

Model for Predicting Frequency and Amplitude

Dependent Nonlinear Dynamic

Characteristics”, Transactions of KSAE, Vol 28,

No.9, pp.621-628. 2020.

8) M Lee, “A study on the construction of commercial

electric vehicle fuel efficiency analysis platform based on

real road virtual test driving”, Master’s thesis, Kookmin

university, Seoul, 2020

A Study on the Methodology to Develop Virtual Drive Environment for Autonomous Driving Evaluation

50 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21743

Community Updates to the DLR ThermoFluid Stream Library

Raphael Gebhart1 Philipp Jordan2 Peter Stein2 Peter Junglas3 Niels Weber1 Peter
Eschenbacher1 Dirk Zimmer1

1Institute of System Dynamics and Control, German Aerospace Center (DLR) Germany, {raphael.gebhart,
niels.weber, dirk.zimmer}@dlr.de

2HTWG Konstanz (University of Applied Sciences), Germany,
{peter.stein,philipp.jordan}@htwg-konstanz.de

3PHWT-Institut, PHWT Vechta/Diepholz, Germany, peter@peter-junglas.de

Abstract
Since its inception in 2021, the user base of the DLR Ther-
moFluid Stream Library has steadily grown. This growth
was accompanied by improved or refined models, new ad-
ditions such as models for static head pressure and also
new examples, especially for teaching. This paper sum-
marizes these updates for the reader and reports on the
recent developments.
Keywords: Thermal Modeling, Pipes, Pumps, Heat Ex-
changers, Static Head, Media modeling

1 Introduction
Since winning the Modelica Library Award in 2021, the
DLR ThermoFluid Stream (Zimmer, Meißner, and Weber
2022) Library steadily grew in popularity with users all
around the world.

To further encourage both usage but also contributions,
we staged the first ThermoFluid Stream (TFS) community
event, which took place as a pure online event on June 19,
2024.

The preparations for this event led to many notable con-
tributions for this library which have widened its applica-
tion field but also have increased the fidelity of its compo-
nents. This paper reports on these contributions.

1.1 What is special about the DLR Ther-
moFluid Library?

The ThermoFluid Stream Library distinguishes itself from
other approaches by its robust modeling concept (Zimmer
2020) that avoids the formulation of large non-linear equa-
tion systems that span across components. Also it supports
initialization at zero mass-flow which makes the library
relatively easy to use even for complex architectures.

1.2 Overview

Figure 1 providers a quick overview of the library for read-
ers that are unfamiliar with its content. We will highlight
certain elements and sections throughout this paper to pro-
vide guidance where to find the additions.

Figure 1. Overview of the TFS library

2 New Concepts and Interfaces
2.1 Static Head Pressure
Pressure increase due to gravitational acceleration had
been largely ignored by the prior versions of the Ther-
mofluid Stream Library. A simple tank model with its
height vector defined as being parallel to the gravitational
vector was the only exception.

Figure 2. cuboid tanks and global acceleration model

DOI Proceedings of the Asian Modelica Conference 2024 51
10.3384/ecp21751 December 12-13, 2025, Jeju, Korea

RRR

The new update now includes models that aim to pro-
vide a more general solution than just constant gravita-
tional acceleration. Instead the thermofluid system can
even be regarded as part of a moving object with a globally
defined vector for acceleration that can change over time.
This is for instance relevant for applications in aircraft or
spacecraft.

To this end, a second inner/outer model is provided to
specify the acceleration vector. There exists a static head
model for pipes that computes the static head pressure
based on the coordinates of its starting and end point. Fur-
thermore, there is an elaborate model of cuboid tanks that
approximates the liquid surface based on the direction of
the acceleration vector and the geometry. Knowing this,
enables the computation of the static head pressure for its
various inlets and outlets.

This solution is also provided for bi-directional compo-
nents.

2.2 Interface to TIL Media
The usage of sophisticated media models plays an impor-
tant role in the modeling of thermal architectures. Robust
media models with high computational performance are
inevitably needed, especially for phase changing refriger-
ants that become more important in future thermal man-
agement systems. As such media models are provided in
the TILMedia Suite (TIL Media Suite 2024) developed by
TLK Thermo GmbH, an interface to enable their usage
within the TFS was developed (TILMediaWrapper).

The current state of the wrapper is a Dymola specific
implementation and only supports vapor-liquid equilib-
rium (VLE) fluids (phase changing media). In general,
the interface follows the structure of the TILMedia Suite
itself. The basic idea is to adjust the VLE-Fluid model
of the TILMedia Suite with pressure, enthalpy and mass
fraction as independent variables to match the TFS media
interface. In the corresponding package, the functions of
partialTwoPhaseMedium are redeclared and the thermo-
dynamic properties are calculated with the functions from
the TILMedia Suite.

For each media model that needs to be interfaced, an
according substance record has to be defined and then cus-
tom media models can easily be added. Also media mod-
els inherited from other libraries as Refprop, Coolprop or
the VDI Heat Atlas are available and can be added.

Keep in mind that the package only provides the func-
tionality of an interface to the TILMedia Suite and does
not include the media models itself! For usage of the me-
dia models, a license of the TILMedia Suite is necessary.

3 Improved Components
3.1 New Pipe and Fitting Models
For this update, piping models for pipes and fittings
respectively like curved bend, edged bend, sudden con-
traction and expansion, as well as edged orifice have been
developed utilizing the provided pressure loss functions in

Modelica.Fluid.Dissipation.PressureLoss.
The components calculate either the pressure change
from inlet to outlet ∆p depending on the mass flow
rate ṁ or the mass flow rate ṁ depending on the pressure
change ∆p along the component using medium properties
and geometry. The advantage of re-using standard library
components for TFS is in their well known and well
validated background.

Additionally, several new models for diffuser, Y-splitter
and Y-junction flow have been implemented, based on
Idel’chik and using the TFS framework. All novel models
are verified against literature or partially validated against
CFD flow simulations.

Figure 3. new pipe models

The curved and edged bend models are
adaptions of the respective models from
Modelica.Fluid.Fittings.Bends to enable
their usage within the TFS environment. Both bends con-
sider wall friction as well as geometry induced pressure
losses. The flow path of the edged bend is assumed to be
five perimeters up- and downstream of the edge. For in-
compressible application it is recommended using default
setting assumeConstantMaterialProperties
= true, while neglecting this choice is beneficial for
compressible calculations e.g. Ma > 0.3.

The models for sudden contraction and ex-
pansion of a circular pipe are utilizing the
sudden-change pressure loss function from
Modelica.Fluid.Dissipation.Orifice
and extend the novel partial model
SISOFlow_nonConstArea, which is based on the
Bernoulli equation. The models for sudden contraction
and expansion respectively are basically identical and
differ only in their icons as well as flow direction.

The edged orifice model is equivalent to
Modelica.Fluid.Dissipation.Orifices.
ThickEdgedOrifice and therefore it shares the
same pressure loss function. The difference to Modelica
Standard Library (MSL) is in the definition of the
Darcy friction factor λ f ric as parameter, which enables a
calibration of the model.

The diffuser model is a model of a conical diffuser

Community Updates to the DLR ThermoFluid Stream Library

52 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21751

based on equations from Idel’chik (1966). Here, the local
coefficient of flow resistance consists of two components,
one for expansion and the other for friction. k1 character-
izes the state of the boundary layer, here a uniform veloc-
ity profile is assumed (k1 = 1).

ζdi f = k1 ·ζexp +ζ f r (1)

For diffuser opening angles α ≤ 40◦ the flow resistance is
calculated as

ζexp,1 = k2 · tan
α

2
· 4

√
tan

α

2
· (1− A0

A1
)2 (2)

with k2 for the cross sectional shape of the diffuser (circu-
lar: k2 = 3.2) and an inlet to outlet area-ratio A0/A1. For
α > 60◦ a polynomial function is used

ζexp,2 = p1 ·α2 + p2 ·α + p3 (3)

with the coefficients p1,2,3 = f (A0/A1) which are manu-
ally fit to the diagrams in Idel’chik (1966). The transition
region 40◦ ≤ α ≤ 60◦ is approximated by a cubic-hermite
spline (C-Spline). The wall friction is determined by

ζ f ric =
1.5 ·λ

8 · sin α

2
·
(

1− A0

A1

)2

(4)

Equation 4 is an adaption of Idel’chik (1966), since the
original equation leads to non-physical pressure losses for
small angles and it is based on the work of Mfon et al.
(2019).

The model for flow splitter assumes a diverg-
ing y-pipe of branching angles 15◦ ≤ α ≤ 90◦

with circular cross section. For implementation of
the basic flow equations a partial model similar to
ThermofluidStream.Topology.SplitterN is
used, but limited to 2 outlets and extended by dynamic
pressure. Two geometry types are distinguished
I) straight pipe with attached pipe branch (Ab +As > Ac
and Ac = As)
II) straight pipe splitting in two smaller branches, whereby
the inlet area equals the overall outlet are (Ab + As =
Ac). Depending on the users choice the corresponding
pressure loss function based on Idel’chik (1966) is used.
Each function calculates both flow resistances, one in the
straight channel ζs and the other in the pipe branch ζb with
respect to the velocity in the common channel vc and out-
puts the respective pressure loss ∆p. The model is limited
with respect to the flow design direction.

The junction model is the flow-reversed equiva-
lent to the splitter model. It describes the same
geometry specifications and differentiation as the y-
shaped splitter. Since mixing fluid streams is far
more complex than separating, a specialized partial
model is required. This model uses an adaption
of ThermofluidStream.Topology.JunctionN,
calculating the mixing properties for two fluid streams of

Figure 4. Validation of the Modelica splitter flow model against
CFD

Figure 5. Validation of the Modelica junction flow model
against CFD

the same medium, while taking the conservation of kinetic
energy into account. The extending model calls the pres-
sure loss functions based on (Idel’chik 1966), depending
on the geometry type.

As mentioned above, some models have been verified
against CFD calculations. Those models representing a
re-use of the Modelica standard library did not require a
validation, only a verification. The models for splitter and
junction flow are new, and therefore the were partially val-
idated. The validation has been performed against AN-
SYS CFX, whereby water as incompressible fluid was
taken. In CFD the walls have been treated as free slip
walls, because the 1-D models also don’t consider wall
friction losses. The calculations were performed against
a range of splitter/junction angles. Figure 4 and Figure 5
show the result of the validation for both, the static (black)
as well as the total (grey) pressure change. Considering
the complexity of a 3D flow and the generic usage of such
a 1D model, both cases show a good agreement and are
therefore useful for pipe flow simulations.

Session2B

DOI Proceedings of the Asian Modelica Conference 2024 53
10.3384/ecp21751 December 12-13, 2025, Jeju, Korea

3.2 New Pump Models
Models for simple pumps and centrifugal pumps have
been developed. Following the TFS approach all models
avoid non-linear equation systems and work for zero mass
flow rate ṁ and/or zero angular velocity ω .

Figure 6. new pump models

A simple pump uses a constant efficiency η and ensures
either

1) a given pressure difference ∆p or

2) a given outlet pressure pout, compara-
ble to a an electrical voltage source
Modelica.Electrical.Analog.Sources.
SignalVoltage, or

3) a given mass flow rate ṁ or

4) a given volume flow rate V̇ , compa-
rable to an electrical current source
Modelica.Electrical.Analog.
Sources.SignalCurrent.

The set-point may be either a constant parameter or a
time varying signal using real input connector.

In addition, there is a simple piston pump
model with a fixed volume flow per revolution us-
ing a mechanical flange connector comparable to
Modelica.Electrical.Analog.Basic.
RotationalEMF.

Centrifugal pumps use similarity laws for head h ∼ ω2,
volume flow rate V̇ ∼ ω and power P ∼ ρω3 of angu-
lar velocity ω and density ρ and quadratic polynomials
for head h and power P as a function of volume flow
rate V̇ . The 6 coefficients can be determined by approxi-
mation of measurements at reference angular velocity ωref
of head hi and power Pi at volume flow rates V̇i. In addi-
tion, a method was developed to scale existing pumps or
to estimate a reasonable centrifugal pump requiring only
minimal user knowledge. The TFS provides pump data

(measurements and coefficients suitable for scaling) of 19
centrifugal pumps using records. Thereby the user may
add a new pump simply by defining a new record.

3.3 New 2-Phase Heat Exchanger Models
When condensation or evaporation happens in heat ex-
changers, the heat exchange rates change dramatically.
Therefore, models become very inaccurate if they describe
heat exchangers by constant coefficients.

However in cooling processes, phase changes are oc-
cur regurlarly. We therefore developed models for heat
exchangers which calculate the heat exchange rates based
on the physical processes.

Three types of processes have been considered:

• film condensation of a 2-phase fluid

• evaporation of a 2-phase fluid

• condensation of water vapor in liquid air

With these processes the cooling of humid air as well
as cooling by a vapor cycle can be remarkably precisely
described. Besides the physical constants of the media
only geometric data of the heat exchanger are required.

The description of the physical processes is taken from
the text book of (Baehr and Stephan 2010).

Figure 7. Illustration of the condensation of vapour at the walls
of a pipe

4 Tool Support
4.1 Compatibility
We check the compatiblity to differemt Modelica compil-
ers, most notably OpenModelica (Fritzson 2018). These
cross checks ensure that the library is available for a wide
range of users for free.

4.2 Improved Performacce
A notable improvement regarding the simulation perfor-
mance has been made in Dymola that benefits the sim-
ulation of 2-phase systems. Thanks to this implementa-
tion, the examples of vapour cycle and heat pump now run
three times faster. The improvements become available
with version 2025x.

Community Updates to the DLR ThermoFluid Stream Library

54 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21751

5 Application
5.1 Application in Teaching
At HTWG Konstanz in Germany, the TFS is used for
teaching of system design and simulation focusing on
renewable energy systems. The TFS library provides a
wide-ranging set of important components, media as well
as examples suitable for teaching purpose. Its simple ap-
plication and robustness enables students to achieve rapid
progress in modeling and simulation. Besides the demon-
stration in lecture, HTWG Konstanz places great value
on practical training. In practice lessons and projects the
students are empowered to model and simulate complex
thermo-fluid systems using TFS as well as developing on
models using the TFS-framework.

Figure 8. Example of an Ericsson cycle taken from (Junglas
2023)

At PHWT in Vechta/Diepholz in Germany the study of
classic thermodynamic cycles is part of the curriculum.
Using only literature, this is often very dry and provides
little excitement for the students. Using the TFS enabled
us to create models of classic cycles such as the Erics-
son cycle and the Clausius-Rankine cycle (Junglas 2023).
While setting up these simulation models is still substan-
tial work, it can be made available to the students for free
using OpenModelica.

5.2 Usage for Aircraft Systems
In the European project Thema4HERA which is part of
the Clean Aviation initiative, the aircraft industry, most
notably the system suppliers research on new solutions for
aircraft thermal management. Here the DLR ThermoFluid
Stream Library is used as basis for a Digital Twin. The
corresponding model focuses on the main environmental

control system including the different cabin sections and
is able to perform full mission evaluation.

6 Outlook
We were very glad seeing the DLR ThermoFluid Stream
library grow so much in popularity. First, this is a
validation of our effort and clearly reveals how much
users appreciate robust components and a robust model-
ing methodology. Second, it encourages us to go on with
the development of the library and improve its quality.
Finally, we want invite the Modelica community to con-
tribute to this library. A healthy community of users and
developers is ultimately best driver for success.

Acknowledgements
We would like to thank Ingela Lind from Saab for the con-
tribution regarding the static head pressure. Furthermore
we would like to thank Francesco Casella for always keep-
ing an eye on the OpenModelica compatibility. Also we
like to thank the team of Dag Brück from Dassault Sys-
tèmes for their effort in improving the performance re-
garding the vapour cycle models.

References
Baehr, H.D. and K. Stephan (2010). Wärme- und Stoffüber-

tragung. Springer Berlin Heidelberg. ISBN: 9783642101946.
URL: https://books.google.de/books?id=U60oBAAAQBAJ.

Fritzson, Peter et al. (2018). “The OpenModelica Integrated
Modeling, Simulation, and Optimization Environment”. In:
Proceedings of The American Modelica Conference 2018.

Idel’chik, I.E. (1966). HANDBOOK OF HYDRAULIC RESIS-
TANCE - Coefficients of Local Resistance and Friction. Isreal
Program for Scientific Translations.

Junglas, Peter (2023). “Implementing Thermodynamic Cyclic
Processes Using the DLR Thermofluid Stream Library”. In:
Simulation Notes Europe 33, pp. 175–182. DOI: 10 .11128/
sne.33.sw.10665.

Mfon, Samuel et al. (2019). “A Semi-empirical Model for Esti-
mation of Pressure Drop Coefficient of a Conical Diffuser”.
In: Chemical Engineering 74, pp. 1003–1008. DOI: 10.3303/
CET1974168.

TIL Media Suite (2024). URL: https://www.tlk-thermo.com/en/
software/tilmedia-suite (visited on 2024-07-26).

Zimmer, Dirk (2020). “Robust object-oriented formulation of di-
rected thermofluid stream networks”. In: Mathematical and
Computer Modelling of Dynamical Systems 26.3, pp. 204–
233. DOI: 10 . 1080 / 13873954 . 2020 . 1757726. URL: https :
//doi.org/10.1080/13873954.2020.1757726.

Zimmer, Dirk, Michael Meißner, and Niels Weber (2022). “The
DLR ThermoFluid Stream Library”. In: Electronics 11.22.
ISSN: 2079-9292. DOI: 10.3390/electronics11223790. URL:
https://www.mdpi.com/2079-9292/11/22/3790.

Session2B

DOI Proceedings of the Asian Modelica Conference 2024 55
10.3384/ecp21751 December 12-13, 2025, Jeju, Korea

https://books.google.de/books?id=U60oBAAAQBAJ
https://doi.org/10.11128/sne.33.sw.10665
https://doi.org/10.11128/sne.33.sw.10665
https://doi.org/10.3303/CET1974168
https://doi.org/10.3303/CET1974168
https://www.tlk-thermo.com/en/software/tilmedia-suite
https://www.tlk-thermo.com/en/software/tilmedia-suite
https://doi.org/10.1080/13873954.2020.1757726
https://doi.org/10.1080/13873954.2020.1757726
https://doi.org/10.1080/13873954.2020.1757726
https://doi.org/10.3390/electronics11223790
https://www.mdpi.com/2079-9292/11/22/3790

Community Updates to the DLR ThermoFluid Stream Library

56 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21751

An Integrated Optimization and Orchestration Toolchain for
Adaptive Optimal Control in Modelica Simulations

Zizhe Wang1,2

1Boysen-TU Dresden-Research Training Group, Dresden, Germany
2Software Technology Group, Technische Universität Dresden, Germany

zizhe.wang@tu-dresden.de

Abstract
This paper introduces a novel Python-based toolchain,
"OptiOrch", designed to enhance optimal control in
Modelica-based simulations by integrating an optimiza-
tion framework and an orchestration workflow. OptiOrch
leverages the "MOO4Modelica" optimization framework,
which supports both single- and multi-objective parame-
ter optimization, and incorporates the "ModelicaOrch" or-
chestration workflow to dynamically adapt models based
on real-time input data and goals. The toolchain features a
user-friendly interface, feature model transformation, par-
allel computing, and automated workflow coordination,
making it a powerful and generalized solution for var-
ious applications. Practical examples and a case study
demonstrate how this toolchain can be effectively applied
to Modelica systems for optimal control.
Keywords: Modelica, simulation, optimization, multi-
objective optimization, parallel computing, self-adaptive
systems, optimal control, feature model

1 Introduction
Digital twins are becoming increasingly important in re-
search and development. These virtual replicas of physical
systems allow for real-time monitoring and optimization.
The Modelica language, proposed by Fritzson and En-
gelson 1998, has emerged as the leading equation-based
modeling language for multi-domain, multi-physical sys-
tems. It has been widely used in industry and academia to
build digital twins of complex systems, such as the mod-
eling and simulation of integrated energy systems (Senkel
et al. 2021). Modelica-based software, both open-source
and commercial, offers user-friendly graphical interfaces
and advanced debugging capabilities. Notable examples
include OpenModelica (Fritzson, Aronsson, et al. 2005)
(Fritzson, Pop, et al. 2022) (Modelica Association 2023)
as an open-source option, and commercial environments
like Dymola (Elmqvist 1979) (Brück et al. 2002), Mode-
lon Impact, SimulationX, MWorks (Chen and Wei 2008).
Additionally, various open-source and commercial Mod-
elica libraries are available in the community, with the
Modelica Standard Library (current release v4.0.0 as of
July 2024) serving as the foundational library for all Mod-
elica environments.

Modern multi-domain, multi-physical systems are com-
plex entities comprising diverse components, highlight-
ing the importance of advanced modeling languages like
Modelica in their development and optimization. Single-
objective optimization is often inadequate for these com-
plex products, necessitating multi-objective optimization
(MOO) to address various competing objectives. For in-
stance, in the field of renewable energy, optimizing a wind
farm might involve balancing energy output and the min-
imization of environmental impact (Thirunavukkarasu,
Sawle, and Lala 2023). However, the current Modelica
ecosystem lacks robust support for MOO, particularly in
terms of a generalized open-source framework. This work
addresses this gap by proposing a comprehensive open-
source MOO framework that leverages Modelica and the
Python ecosystem using the OMPython API (Ganeson et
al. 2012). As systems become more complex, model-
ing them also becomes more challenging, especially since
many systems need to self-adapt based on different con-
texts/conditions and performance targets. For example, in
cloud computing systems, hardware components like CPU
cores and frequencies need to be adjusted based on user
demands and specific tasks to achieve the optimal energy-
performance balance. Modelica, as a powerful model-
ing language, is particularly useful for optimizing self-
adaptive systems, especially in achieving optimal control.

2 Background
2.1 Optimization and MOO in Modelica
According to Sharma and Kumar 2022, optimization tech-
niques can be categorized into three types: exact (classi-
cal) methods, heuristic and meta-heuristic methods, and
hybrid methods combining elements of both. Exact meth-
ods aim to find optimal solutions within a small, man-
ageable solution space but are often impractical for com-
plex real-world applications. Heuristic and meta-heuristic
methods, while not guaranteeing optimal solutions, are
more feasible and effective for such scenarios. Hybrid
methods leverage the strengths of both exact and heuris-
tic approaches to mitigate their weaknesses. MOO tech-
niques, often classified as stochastic meta-heuristic meth-
ods, are divided into three classes: evolutionary, swarm-
based, and hybrid algorithms.

DOI Proceedings of the Asian Modelica Conference 2024 57
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

RRR

Different Modelica environments provide support for
single-objective optimization tasks. The current state of
MOO in Modelica involves various tools. In the commer-
cial sphere, software like Dymola and Modelon Impact of-
fers MOO support. Dymola includes a comprehensive op-
timization library (Pfeiffer 2012) (current version v2.2.6
as of July 2024) focusing on general optimization algo-
rithms, including the weighted sum method, which con-
verts a MOO problem into a single-objective problem by
assigning weights to each objective. Although Dymola
supports MOO, it may lack the specialized algorithms of
dedicated optimization tools. Therefore, frameworks like
the one by Leimeister 2019 have been designed for Dy-
mola. Modelon Impact provides a cloud-based platform
with robust optimization features, enabling users to effec-
tively handle complex multi-objective problems in various
engineering and industrial applications. OpenModelica, a
prominent open-source Modelica environment, integrates
with external optimization libraries and tools to facili-
tate MOO. However, its specific tool, OMOptim (Thieriot
et al. 2011), primarily designed for single-objective opti-
mization, has been excluded from the OpenModelica soft-
ware and is not currently maintained or further developed.
Consequently, developers often create custom methods to
integrate Python-based libraries tailored to their specific
optimization needs.

There is a critical need for a universal, open-source op-
timization framework capable of addressing both single-
objective and multi-objective optimization tasks. There-
fore, a primary objective of this work is to tackle this chal-
lenge by developing a comprehensive, open-source op-
timization framework that robustly supports both single-
objective and multi-objective optimization scenarios.

2.2 Optimal Control of Self-adaptive Systems
In real-world, many systems are self-adaptive. For exam-
ple, a cellphone reduces hardware functionality to con-
serve power when its battery is low. Similarly, energy sys-
tems adjust operations based on user demand, and traffic
light systems adapt themselves according to traffic flow.
These scenarios require dynamic simulations that can up-
date configurations and parameters based on the real-time
conditions and goals. Currently, Modelica environments
require developers to manually write scripts for continu-
ous optimization and adaptation. Implementing an auto-
mated workflow that optimizes and updates simulations as
needed would be significantly more practical and efficient.
Such an automated workflow is crucial as it would enable
systems to continuously monitor their state and environ-
ment, triggering updates to the simulation model with op-
timized parameters and configurations. This approach en-
sures that the simulation remains accurate and effective,
thereby significantly enhancing the system’s performance
and reliability. Therefore, another primary objective is to
design a robust, automated workflow for generalized or-
chestration, enabling optimal control for self-adaptive sys-
tems in the Modelica ecosystem.

3 The Optimization Framework
Figure 1 illustrates the concept and the structure of the
MOO4Modelica optimization framework. Key compo-
nents of this framework are feature model transformation
and optimization operation.

3.1 Feature Model Transformation
This component can be used to transform the Modelica
models into feature models. This allows the users to an-
alyze and select parameters and variables that need to be
varied and optimized, especially for large-scale models,
this would be beneficial. It also allows developers to lo-
cate corresponding parameters and variables as well as to
identify their relationships in the models quickly.

The method for transforming a Modelica model into
a feature model is inspired by the approach described
by Zhang et al. 2022. By parsing the selected Modelica
model with ANTLR (Parr and Quong 1995), the param-
eters and variables, along with their types and values, as
well as equation sets, can be progressively and recursively
obtained. These will then form a feature model, which is
saved as a JSON file. Still, the users can choose the pa-
rameters and variables they want without transforming a
Modelica model into a feature model. That is the reason
why the two key components are decoupled.

modelica.g4 This is a grammar file of ANTLR for
the Modelica language1. It defines the syntax rules that
ANTLR uses to generate a lexer and parser for Modelica.
Lexer rules specify how to recognize the smallest units
(tokens) e.g. keywords, identifiers, and operators. Parser
rules define how these tokens are combined to form valid
Modelica constructs like expressions, statements, and dec-
larations, specifically in Modelica e.g. classes, compo-
nents (parameters and variables), and equations. With the
help of these rules, the parser generated by ANTLR can
understand and process Modelica code.

parse_model.py This process parses a Modelica
model to extract its components, including parameters and
variables, along with their values. Utilizing the ANTLR-
generated lexer and parser to construct a parse tree and
traverse it to gather the relevant information. Pseudocode
1 illustrates the workflow. By systematically extracting
these components, the framework enables users to effi-
ciently identify and manipulate key model elements.

feature_model.py This process invokes the
parse_model function to parse a Modelica model,
extracting its components and equations and organizing
them into a hierarchical feature model. It includes
functionalities to display the feature model and save it to
a JSON file, which facilitates interoperability with other
tools and platforms, enhancing the flexibility and utility
of the framework. Pseudocode 2 illustrates the workflow.

1https://github.com/antlr/grammars-v4/tree/master/modelica

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

58 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

https://github.com/antlr/grammars-v4/tree/master/modelica

MOO4Modelica

Multi-objective Optimization (MOO) Framework for Modelica

collect and plot results

modelica.g4 parse_modelica.py feature_model.py

ANTLR4 grammar for Modelica parse a Modelica model create a feature tree

feature model of a Modelica file

Feature Model Transformation

config.py

configurate setup parameters

optimization_libs.pyparallel_computing.pyoptimize_main.py

select and initialize algorithmdefine and run simulation handle parallel computing

Optimization Operation

compile and execute model

Figure 1. Structure of the framework MOO4Modelica.

Pseudocode 1 Modelica Parsing

1: 1. Import Libraries and Setup
2: Import antlr4 library and lexer/parser;
3: 2. Define FeatureExtracton Class
4: Create lists for components and equations;
5: Define method to handle component clauses
6: Extract component and add to list;
7: Define helper method to extract the value
8: Extract and add values to the list;
9: Define method to handle equation sections

10: Extract and add equations to the list;
11: 3. Define parse_model function
12: Read and parse Modelica file into parse tree;
13: Initialize FeatureExtractor, traverse tree;
14: Return components and equations;
15: 4. Main execution block
16: Call parse_model and print results;

Pseudocode 2 Feature Model Extraction
1: 1. Import Libraries and Setup
2: 2. Define FeatureModel Class
3: Define method to add components/equations
4: Create node for component type and name;
5: Add parameters as children nodes;
6: Add equation as a node;
7: Define method to convert to dictionary
8: Convert tree to dictionary format;
9: 3. Main Execution Block

10: Call parse_model to get components;
11: Initialize FeatureModel with model name;
12: Add components and equations to feature model;
13: Display and save feature model to JSON;

3.2 Optimization Operation
The second component is used for operating optimiza-
tion tasks. This can be used for both single-objective
and multi-objective optimization. This component uses
OMPython (Ganeson et al. 2012) as the bridge to con-
nect the simulation of Modelica models to Python.
All the global settings have been abstracted into the
config.py. The main workflow of the optimization op-
eration is outlined in the following steps:

• Step 1: Basic settings

– Set model name, path, and simulation time.

– Import external library (if needed).

– Configure plot diagram settings.

• Step 2: Selection of parameter(s) to be varied

– Set the range and data type.

• Step 3: Selection of objectives to be optimized

– Set precision (decimal places) of the results.

• Step 4: Optimization options

– Select optimization type and algorithm.

– Set population size and number of generations.

• Step 5: Parallel computing options

– Enable or disable parallel computing.

– Set the number of CPU cores to be used.

Session2C

DOI Proceedings of the Asian Modelica Conference 2024 59
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

optimize_main.py This process sets up and exe-
cutes the optimization using configured algorithms and
parameters. It involves defining the optimization problem,
initializing the algorithm, running the optimization, and
subsequently printing and plotting the results. As the main
driver for conducting and analyzing the optimization, it
ensures a streamlined and efficient workflow. Pseudocode
3 illustrates the workflow.

Pseudocode 3 Optimization

1: 1. Import Libraries and Configuration
2: 2. Define OptimizationProblem Class
3: Define superclass initializer
4: Initialize with PARAMETERS need to be varied;
5: Initialize with RESULTS need to be minimized;
6: Initialize with RESULTS need to be maximized;
7: Set bounds for the parameters;
8: Call superclass initializer
9: Implement evaluate method;

10: Convert parameter values to list of dictionaries;
11: Parallel processing for evaluation with n_jobs;
12: Negate objectives that need to be maximized;
13: Store results;
14: 3. Initialize Algorithm
15: Initialize algorithm based on configuration;
16: 4. Run Optimization and Handle Clean Up
17: Define problem instance;
18: Cleanup temporary directories;
19: 5. Collect, Print, and Plot Results
20: Iterate through results;
21: Negate back maximized objectives;
22: Print each solution with formatted results;
23: Create scatter plot with results;

parallel_computing.py This process enhances
computational efficiency by facilitating parallel execution
of simulations. It defines functions for running simula-
tions with different parameter sets concurrently using the
joblib2 library, significantly speeding up data process-
ing and model evaluations. This is essential for handling
computationally intensive tasks by leveraging parallel pro-
cessing capabilities. Pseudocode 4 shows the workflow.

optimization_libraries.py This module pro-
vides a unified interface for initializing and configuring
various optimization algorithms for the optimization op-
eration. By abstracting the complexity of setting up dif-
ferent optimization libraries and algorithms, it simplifies
the process of switching between them and configuring
their parameters. This module includes the powerful open-
source framework pymoo, introduced by Blank and K.
Deb 2020 which offers state-of-the-art algorithms and fea-
tures for visualization and decision-making. In this script,
users can easily extend its capabilities to meet their spe-
cific needs.

2https://joblib.readthedocs.io

Pseudocode 4 Parallel Computing

1: 1. Import Libraries and Configuration
2: 2. Initialize Variables
3: Initialize temp_dirs for temporary directories;
4: 3. Define optimization_function
5: Create temp_dir for each worker;
6: Attempt for each worker
7: Create OpenModelica session omc;
8: Copy, load and build model in omc;
9: Set parameters and simulate model in omc;

10: Retrieve and return simulation results;
11: Shutdown omc;
12: 4. Define shutdown_omc
13: Quit and close omc;
14: Print success or error message;
15: 5. Define cleanup_temp_dirs
16: Attempt to remove temp_dir;
17: Print success message and break loop if successful;
18: If PermissionError occurs, sleep for backoff;

3.3 Examples
The first example features a simple heating system mod-
eled using Modelica. In this model, increasing the heat-
ing power will raise the room temperature more quickly,
thereby enhancing human comfort compared to slower
heating. However, this approach results in higher energy
consumption. Additionally, setting the target tempera-
ture too high can also decrease human comfort. In this
context, the key parameters to be adjusted are heating
power and target temperature. The objective is to find
the optimal settings that maximize human comfort while
minimizing energy consumption. Table 1 summarizes
this scenario, including the parameters to be adjusted, ob-
jectives, and the goal.

Parameters Objectives
Heating Power Human Comfort

Target Temperature Energy Consumption
Goal

Maximize Human Comfort
Minimize Energy Consumption

Table 1. Parameters, objectives, and goal-setting of example 1.

A feature tree is not required in this simple heating sys-
tem. The configurations and parameters are directly set in
the config.py. The default configuration has been used
for this example, and the simulation time has been set to
3000 seconds. The ranges for heating power and target
temperature are 1000 - 5000 Watts and 280 - 310 Kelvin,
respectively. The NSGA2 algorithm (Kalyanmoy Deb et
al. 2002) has been chosen for the optimization. The result
shown in Figure 2 displays the corresponding Pareto front
of human comfort versus energy consumption.

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

60 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

https://joblib.readthedocs.io

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy Consumption 1e6

1800

2000

2200

2400

2600

2800

3000

Co
m

fo
rt

Pareto Front of Energy Consumption vs Comfort

Figure 2. Pareto front of the simple heating system.

Another example involves an electric driving robot
modeled using Modelica. This model focuses on a robot
where the challenge is to find an optimal balance between
travel distance and energy consumption at various driv-
ing speeds. In this scenario, driving speed is the key
parameter to be adjusted. The objective is to fine-tune
the speed to achieve the longest possible travel distance
while minimizing energy consumption. Table 2 summa-
rizes this scenario, including the parameter to be adjusted,
objectives, and the goal.

Parameter Objectives

Driving Speed
Travel Distance

Energy Consumption
Goal

Maximize Travel Distance
Minimize Energy Consumption

Table 2. Parameters, objectives, and goal-setting of use case 2.

The default configuration was used for this example,
and the simulation time was set to 3000 seconds. The
range for driving speed is 3 - 15 m/s (10.8 - 54 km/h).
The NSGA2 algorithm has been chosen for the optimiza-
tion. Since the diagrams of the Pareto front are similar, the
result for the second use case is not shown here.

The results can inform decision-making processes for
various applications. For instance, the first example helps
decision-makers efficiently develop a strategy for heating
a room. The second example involves multiple scenarios:
(1) Optimizing an electric robot or electric vehicle for the
target range and performance etc. (Dharumaseelan et al.
2021); (2) Optimizing electric car-sharing systems by an-
alyzing vehicle states to select the most suitable car for a
client, balancing environmental and economic considera-
tions (Hamroun, Labadi, and Lazri 2020).

4 The Orchestration Workflow
Figure 3 shows the four components of the "Modeli-
caOrch" orchestration workflow.

ModelicaOrch

Orchestration Workflow for Modelica

config.json

configurator.pywrapper.pyorchestrator.py

adapt the system automatically

Figure 3. Structure of the workflow ModelicaOrch.

config.json The configuration file. It also dynami-
cally adapts the MOO4Modelica configuration file.

orchestrator.py It initializes components, reads
data, runs the optimization, and manages the entire sim-
ulation and evaluation loop. It acts as the central orches-
tration unit, ensuring that each component functions cor-
rectly and in sync with the others.

wrapper.py It manages the optimization process us-
ing MOO4Modelica, handles optimization results, and
provides parameter sets for simulation. It effectively
bridges the optimization and optimal control processes,
ensuring that the best possible configurations are tested.

configurator.py The configurator updates the
configuration based on the current status. It also prepares
and sets parameters for the simulation.

Figure 4 shows how the orchestration workflow oper-
ates. After reading input data it enters the adaptive con-
trol loop that iterates over defined time units. In each it-
eration, the orchestrator calls the configurator
to update optimization configurations and the wrapper
to assign and retrieve optimized parameter sets found by
MOO4Modelica. The configurator simulates and
evaluates these sets to check if the goal is satisfied. If
satisfied, the result is added to the final report; if not, the
system tries the next parameter set until all options are
exhausted. This process repeats until all time units are it-
erated, culminating in a comprehensive final report of the
optimization results. This report can be used to refine the
system and guide future adjustments. The adaptive nature
of this workflow allows for continuous improvement and
ensures that the system can respond effectively to chang-
ing conditions and requirements. By automating the op-
timization and adaptation process, the workflow signifi-
cantly reduces the need for manual intervention, allow-
ing for more efficient and reliable system management.
This capability is particularly beneficial in complex sys-
tems where numerous parameters and configurations need
to be considered.

Session2C

DOI Proceedings of the Asian Modelica Conference 2024 61
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

Yes

No Yes

No

No

Yes

OptiOrch

Read Input Data

Adaptive Control Loop: Iteration Over Time Units

Orchestrator: Call Configurator and Wrapper

Configurator: Update Configuration for Optimization

MOO4Modelica: Find the Best Parameter Sets

Wrapper: Retrieve Optimized Parameter Sets

Wrapper: Assign Optimized Parameter Set to the Model

Configurator: Simulate and Evaluate Parameter Sets

Goal Satisfied?

Goal Satisfied with Current Optimized Parameter Set

Try Next Optimized Parameter Set

Any Parameter Sets Left?

Goal Not Satisfied After trying All Parameter Sets

Add to Final Report

All Time Units Iterated?

Final Report

Figure 4. Flowchart of the orchestration workflow: The adaptive control loop iteratively optimizes parameters, updates configura-
tions, evaluates models, and checks goal satisfaction over defined time units, systematically documenting results into a final report.

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

62 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

5 Case Study
In the future, autonomous driving vehicles need dis-
tributed edge computing systems for low latency as well
as high security and privacy, such as computing and data
sharing locally. Based on this background, the case study
built a simple edge computing system powered by Pho-
tovoltaic. Key parameters in this model are active CPU
cores and frequency; different combinations of these pa-
rameters will result in various combinations of perfor-
mance (computing power) and remaining energy, which
are the key variables. In real applications, traffic flow
varies at different times. For example, during the morn-
ing rush hour, available energy is still low, but user de-
mand (the required computing power) is high. From 10
AM to 4 PM, user demand is low, and available energy is
medium. During the afternoon rush hour, user demand is
high, and the available energy is also high. Therefore, the
system needs to adapt to different available energy levels
and user demands to meet the user demand while keeping
the remaining energy ≥ 0 for each defined time unit.

Input

• Energy Available (hourly)

• User Demand (hourly)

Goals

• Meet User Demand: The system aims to provide the
necessary performance to meet user demand. User
demand is considered satisfied when the system’s
performance (computing power the system provides)
≥ user demand.

• Maximize Energy Efficiency: The system seeks to
optimize energy consumption to prolong operation
and maintain efficiency, ensuring that the remaining
energy ≥ 0 at the end of the simulation.

Listing 1 shows the configuration for this case study.
The defined time unit is the hour, and the adaptive con-
trol loop runs for each hour in the simulation. For conve-
nience, the time range has been selected between 8 AM
and 12 AM, despite the input data having a time range of
24 hours. The model will be simulated for one hour (3600
seconds). Both objectives are set to be maximized, and
the bounds and data types for parameters to be tuned are
set to 1 - 4 (integer) and 1.0 - 3.0 (float), respectively. The
goal expressions are set such that performance needs to
be greater than or equal to user demand, and the energy
should not run out (remaining energy should not be neg-
ative). N_JOBS has been assigned as "-1", which means
that parallel computing is enables for the optimization, us-
ing all CPU cores. The CONFIG_PATH is the configura-
tion file of the MOO4Modelica optimization framework.
For each time unit, the orchestration configuration file will
also update MOO4Modelica’s configuration file to run op-
timization.

Listing 1. The configuration file for the case study.

"DATA_FILE_PATH": "data.txt",
"CONFIG_PATH": "config.json",
"MODEL_FILE": "ITSystem.mo",
"SIMULATION_TIME": 3600,
"TIME_CONFIG": {

"START_TIME": 8,
"END_TIME": 12,
"TIME_UNIT": "hour"

},
"OBJECTIVES": [

{"name": "remainingEnergy",
"maximize": true},

{"name": "performance",
"maximize": true}

],
"TUNABLE_PARAMETERS": {

"PARAMETERS": [
"activeCores",
"cpuFrequency"],

"PARAM_BOUNDS": {
"activeCores": {

"bounds": [1, 4],
"type": "int"},

"cpuFrequency": {
"bounds": [1.0, 3.0],
"type": "float"}

}
},
"INPUT_PARAMETERS": {

"available_energy": "
availableEnergy",

"user_demand": "userDemand"
},
"CRITERIA": {

"GOAL_EXPRESSION": [
"evaluation_results[’

performance’] >=
simulation_inputs[’
user_demand’]",

"evaluation_results[’
remainingEnergy’] >= 0"

]
},
"OPTIMIZATION_CONFIG": {

"USE_SINGLE_OBJECTIVE": false,
"ALGORITHM_NAME": "nsga2",
"POP_SIZE": 10,
"N_GEN": 10

},
"LIBRARY_CONFIG": {

"LOAD_LIBRARIES": false,
"LIBRARIES": [

{"name": "", "path": ""}
]

},
"N_JOBS": -1

Figure 5 demonstrated the visualized result of the case
study. At 8 AM, neither goal is satisfied. At 9 AM, the first
goal is not satisfied. From 10 AM to 12 PM, both goals are
satisfied. Based on these results, it is clear that for 8 AM
and 9 AM, we need more power and updated hardware to
meet the system requirements. For the remaining periods,
we have already found the best configurations, which we
can now implement into the real hardware.

Session2C

DOI Proceedings of the Asian Modelica Conference 2024 63
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

Figure 5. Visualized result of the case study

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

64 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

6 Conclusion and Future Work
OptiOrch34 is a toolchain integrating the MOO4Modelica
optimization framework and the ModelicaOrch orchestra-
tion workflow. MOO4Modelica facilitates both single-
and multi-objective optimization in Modelica-based sim-
ulations, featuring user-friendly setup configurations and
practical feature model transformations. It leverages par-
allel computing to enhance performance. ModelicaOrch
orchestrates the entire workflow, coordinating the opti-
mization process and updating configurations dynami-
cally. Together, they enable efficient and optimal con-
trol in complex Modelica simulations. Additionally, this
toolchain is designed to be flexible and extensible, allow-
ing users to adapt it to a wide range of optimization and
orchestration scenarios.

Despite its robust capabilities, optimizing and orches-
trating large-scale models can be both resource-intensive
and time-consuming. To address this challenge, it would
be interesting to investigate strategies such as using surro-
gate models for Modelica-based simulation and optimiza-
tion (Costa Paulo et al. 2023) or implementing adaptive
instance reduction (automatic search space reduction) to
reduce the computation complexity. How these two con-
cepts work in the Modelica ecosystem presents interest-
ing research topics. In real-life applications such as edge
computing systems, tasks can vary significantly, requir-
ing the system to dynamically allocate resources (CPU,
memory, etc.) based on their current demands and priori-
ties. A future goal of this work is to integrate the toolchain
with real-time hardware configurators. To achieve this, an
architecture will be developed that combines simulation-
based optimal control with real-time hardware configu-
rators. By incorporating software like MQuAT (Multi-
Quality Auto-Tuning by Contract Negotiation) by Götz
2013 and BRISE (Benchmark Reduction via Adaptive In-
stance Selection) by Pukhkaiev 2023 into the architecture
shown in Figure 6, we can effectively fine-tune and config-
ure real hardware systems to maximize performance and
energy efficiency.

Modelica Simulation

The “OptiOrch” Toolchain

Simulation-based
Optimal Control

BRISE

MQuAT

Real-time
Hardware Configurator

“Autotuner” Architecture

Figure 6. The "autotuner" architecture will define the interface
between simulation-based optimal control and real-time hard-
ware configurator.

3Repository: https://git-st.inf.tu-dresden.de/wang/OptiOrch
4Documentation: https://wangzizhe.github.io/OptiOrch

Acknowledgements
The author would like to thank the Boysen–TU Dres-
den–Research Training Group for the financial and gen-
eral support that has made this contribution possible. The
Research Training Group is co-financed by the Friedrich
and Elisabeth Boysen Foundation and the TU Dresden.

References
Blank, J. and K. Deb (2020). “pymoo: Multi-Objective Opti-

mization in Python”. In: IEEE Access 8, pp. 89497–89509.
Brück, Dag et al. (2002). “Dymola for multi-engineering model-

ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Citeseer.

Chen, Xia and Zhongchao Wei (2008). “A new modeling and
simulation platform-MWorks for electrical machine based on
Modelica”. In: 2008 International Conference on Electrical
Machines and Systems. IEEE, pp. 4065–4067.

Costa Paulo, Breno da et al. (2023). “Surrogate model of a
HVAC system for PV self-consumption maximisation”. In:
Energy Conversion and Management: X 19, p. 100396.

Deb, Kalyanmoy et al. (2002). “A fast and elitist multiobjective
genetic algorithm: NSGA-II”. In: IEEE transactions on evo-
lutionary computation 6.2, pp. 182–197.

Dharumaseelan, Elavarasan et al. (2021). “Model Based Anal-
ysis and Multi-objective Optimization of an Electric Pickup
truck for Range, Acceleration, Drivability, Handling and Ride
Comfort Performances”. In: 2021 IEEE Transportation Elec-
trification Conference (ITEC-India). IEEE, pp. 1–6.

Elmqvist, Hilding (1979). “DYMOLA-a structured model lan-
guage for large continuous systems”. In.

Fritzson, Peter, Peter Aronsson, et al. (2005). “The OpenModel-
ica modeling, simulation, and development environment”. In:
46th Conference on Simulation and Modelling of the Scandi-
navian Simulation Society (SIMS2005), Trondheim, Norway,
October 13-14, 2005.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: ECOOP’98—Object-Oriented Programming:
12th European Conference Brussels, Belgium, July 20–24,
1998 Proceedings 12. Springer, pp. 67–90.

Fritzson, Peter, Adrian Pop, et al. (2022). “The OpenModelica
integrated environment for modeling, simulation, and model-
based development”. In: Mic.

Ganeson, Anand Kalaiarasi et al. (2012). “An OpenModelica
python interface and its use in PySimulator”. In.

Götz, Sebastian (2013). “Multi-Quality Auto-Tuning by Con-
tract Negotiation”. In.

Hamroun, A, K Labadi, and M Lazri (2020). “Modelling and
performance analysis of electric car-sharing systems using
Petri nets”. In: E3S Web of Conferences. Vol. 170. EDP Sci-
ences, p. 03001.

Leimeister, Mareike (2019). “Python-Modelica framework for
automated simulation and optimization”. In.

Modelica Association (2023-03). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
pdf.

Parr, Terence J. and Russell W. Quong (1995). “ANTLR: A
predicated-LL (k) parser generator”. In: Software: Practice
and Experience 25.7, pp. 789–810.

Session2C

DOI Proceedings of the Asian Modelica Conference 2024 65
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

https://git-st.inf.tu-dresden.de/wang/OptiOrch
https://wangzizhe.github.io/OptiOrch
https://specification.modelica.org/maint/3.6/MLS.pdf
https://specification.modelica.org/maint/3.6/MLS.pdf

Pfeiffer, Andreas (2012). “Optimization library for interactive
multi-criteria optimization tasks”. In.

Pukhkaiev, Dmytro (2023). “A Software Product Line for Pa-
rameter Tuning”. In.

Senkel, Anne et al. (2021). “Status of the transient library: Tran-
sient simulation of complex integrated energy systems”. In:
Modelica Conferences, pp. 187–196.

Sharma, Shubhkirti and Vijay Kumar (2022). “A comprehen-
sive review on multi-objective optimization techniques: Past,
present and future”. In: Archives of Computational Methods
in Engineering 29.7, pp. 5605–5633.

Thieriot, Hubert et al. (2011). “Towards design optimiza-
tion with OpenModelica emphasizing parameter optimization
with genetic algorithms”. In: Proceedings of the 8th Interna-
tional Modelica Conference. Vol. 63, pp. 756–762.

Thirunavukkarasu, M, Yashwant Sawle, and Himadri Lala
(2023). “A comprehensive review on optimization of hybrid
renewable energy systems using various optimization tech-
niques”. In: Renewable and Sustainable Energy Reviews 176,
p. 113192.

Zhang, Congcong et al. (2022). “A Multi-objective Optimization
Algorithm and Process for Modelica Model”. In: 2022 4th
International Conference on Artificial Intelligence and Ad-
vanced Manufacturing (AIAM). IEEE, pp. 9–13.

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

66 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

Modeling Fuel Cell Electric Vehicle for

Performance Prediction

and Optimal Component Selection

Juhyeong Park1 Kwonhee Suh2

Junbeom Lee1 Donkyu Joo1 Junghun Yun1 Daeoh Kang1*
1iVH, Republic of Korea, {jhp, jblee, dkjoo, jhy, bigfive*}@ivh.co.kr

2KIA Corporation, Republic of Korea, lastadam@kia.com

Abstract
This study involves modeling and simulating a Fuel Cell

Electric Vehicle (FCEV) to predict whether it meets the

target performance requirements. The FCEV model

includes an electrified powertrain, composed of a

hydrogen fuel cell, motor, battery, and controller, along

with a chassis model. A test environment was also

modeled to evaluate these components. Different

combinations of chassis and motor candidates were

examined to predict vehicle performance for each

configuration and determine if the target requirements

were met. The results of this study served as a reference

for selecting optimal components during the development

process.

Keywords: Fuel cell electric vehicle, Electrified

powertrain, Model based system engineering

1 Introduction

With the increasing demand for eco-friendly vehicles,

such technologies are gaining attention in various fields,

including the military. Military electric vehicles, in

particular, are highly regarded for their low heat emission,

reduced noise, which enhances concealment, and the

inherent mobility unique to electric vehicles.

According to the IP Defense Forum (2024), South

Korea views the utilization of hydrogen fuel cell vehicles

in military operations positively. Fuel Cell Electric

Vehicles (FCEVs) are especially preferred for their rapid

refueling capabilities and long driving range, further

highlighting their suitability as military electric vehicles.

Additionally, the International Energy Agency (2019)

predicts that hydrogen will account for 24% of the global

energy mix by 2050. In response to this global trend,

South Korea is actively refining its policies and

regulations. Against this backdrop, FCEVs are emerging

as a vital solution that meets the dual objectives of

sustainable energy transition and advancements in
military technology.

Model-Based Systems Engineering (MBSE) utilizing

electric vehicle models can significantly streamline the

design and development process, enabling more efficient

achievement of target performance goals. According to

Shevchenko, N. (2020), MBSE enhances traceability

across requirements, design, analysis, and validation,

ensuring consistency and efficiency throughout the

system's lifecycle. Additionally, performance prediction

through modeling supports optimal component selection

and facilitates effective risk management as specifications

evolve during the development process.

In this study, an electrified powertrain model

comprising key components of an FCEV was developed,

and simulations were conducted on various component

specifications to predict performance. Through this

process, optimal components were selected, and

specifications were evaluated.

2 Vehicle Modeling

Vehicle models consist of a chassis, an electrified

powertrain, and a brake model. In this study, two chassis

models and three electrified powertrain models were

created based on their specifications. By combining these,

a total of four vehicle models were generated.

Table 1. Architecture combinations of each vehicles

Number Chassis Powertrain

1 1 1

2 2 1

3 2 2

4 2 3

2.1 Chassis

The chassis model calculates the vehicle’s behavior based

on vehicle dynamics, taking into account driving force,

braking force, steering input, and driving resistance.

Driving and braking forces are input from the powertrain

and brake models, while steering input is provided by the

driver model. Driving resistance is calculated through

each component of the chassis model.

The chassis model comprises body, suspension, and tire

models. The body model includes a mass model and an

DOI Proceedings of the Asian Modelica Conference 2024 67
10.3384/ecp21767 December 12-13, 2025, Jeju, Korea

RRR

aerodynamics model, with parameters set for sprung mass,

center of gravity, inertia, drag coefficient, and frontal area

to calculate air resistance. For efficiency, the suspension

model also adopts a lumped mass approach, focusing on

wheel center position and spring and damping

characteristics. The tire model includes wheel weight

information and calculates rolling resistance based on a

rolling resistance coefficient. In this study, two types of

chassis models were created for each specification based

on Vehicle Dynamics Library from Modelon AB(2021).

Table 2. Comparison between chassis models.

Specifications Chassis 1 Chassis 2

GVW + ++

Tire dynamic radius + ++

Frontal Area ++ +

Figure 1. Chassis model.

2.2 Electrified Powertrain

The electrified powertrain model for the FCEV consists of

the following subsystems. The subsystems are based on

Electrification Library from Modelon AB(2021).

• Hydrogen Fuel Cell

• Motor

• Battery

• Controller

Figure 2. Electrified powertrain model for FCEV.

The hydrogen fuel cell model is designed to calculate

hydrogen consumption based on the power demand, using

a battery model as its foundation. The model incorporates

the current-voltage characteristic curve, with resistance

values tuned to reflect this curve. A tabular model with

current-hydrogen consumption curve data is used to

calculate hydrogen consumption according to the current

level. The load model connected to the hydrogen fuel cell

model simulates the power consumption of the Balance of

Plant (BOP), enabling the calculation of the gross and net

output of the hydrogen fuel cell.

Figure 3. Simple Fuel cell model based on battery model.

Modeling Fuel Cell Electric Vehicle for Performance Prediction and Optimal Component Selection

68 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21767

Figure 4. Fuel cell model(simple) validation.

The motor model simulates either a DC motor or an AC

motor with an inverter. The motor’s torque map model

calculates the maximum torque based on motor speed

according to the set maximum power and torque limits,

restricting torque if the demanded torque exceeds the

calculated maximum. The efficiency model uses

efficiency values or an efficiency map to determine the

power consumption based on motor output. The

calculated torque is transmitted to the chassis model via a

mechanical connector, while the consumed power is sent

to a power source model, such as a battery or hydrogen

fuel cell, via an electrical connector to calculate SOC or

hydrogen consumption. Thermal losses, calculated from

the difference between consumed power and mechanical

output, allow the motor’s temperature to be tracked within

the thermal model.

Figure 5. Electric machine(motor & generator) model.

The battery model is configured to supplement the output

of the hydrogen fuel cell. The battery characteristics are

modeled by setting the cell capacity, OCV curve, internal

resistance properties, and cell configuration details. The

capacity model calculates SOC based on the set capacity

and consumed charge. The OCV model simulates the

discharge characteristics of the battery according to SOC.

The resistance model represents the internal resistance of

the battery cells, calculating voltage drop and, through

losses, determining the battery’s temperature.

Figure 6. Battery model.

The controllers calculate the output of the motor and

hydrogen fuel cell, respectively. The motor controller

determines the required torque of the motor based on the

accelerator pedal input, controlling the motor model

accordingly. In the motor model, the output torque is

determined based on the demanded torque and the torque

map.

The hydrogen fuel cell system controller calculates the

gross power based on the motor’s required power. It then

computes the BOP’s power consumption according to the

calculated gross power and transfers this to the load model

within the hydrogen fuel cell, ensuring that the net output

is supplied to the motor.

Figure 7. Fuel cell system controller

The hydrogen fuel cell system controller calculates the

gross power based on the motor’s required power. It then

computes the BOP’s power consumption according to the

Session3A

DOI Proceedings of the Asian Modelica Conference 2024 69
10.3384/ecp21767 December 12-13, 2025, Jeju, Korea

calculated gross power and transfers this to the load model

within the hydrogen fuel cell, ensuring that the net output

is supplied to the motor.

Three types of electrified powertrain models were

created based on the specifications and combinations of

each component.

Table 3. Comparison of electrified powertrain configurations.

Specifications 1 2 3

System voltage ++ +++ +

Peak power ++ ++ +

Peak torque + + +

Continuous power + + +

Continuous torque + ++ ++

Max speed of motor ++ + +

Reduction Ratio + ++ ++

Efficiency

of powertrain

+

(Const.)

++

(Map)

++

(Map)

3 Performance Anaysis
To evaluate whether each vehicle meets the required

performance, a vehicle performance evaluation

environment is modeled and configured according to the

test conditions for assessing each requirement.

Subsequently, the performance of each vehicle, composed

of various subsystem combinations, is evaluated.

3.1 Test Environment Modeling

The vehicle performance evaluation environment consists

of vehicle, driver, road surface, and atmosphere models.

The driver model controls the vehicle model by providing

acceleration/brake pedal inputs and steering inputs. The

driver model is broadly classified into open-loop and

closed-loop models.

The open-loop model delivers predefined acceleration

and brake pedal inputs directly into the vehicle model

without any feedback control. This approach is suitable

for evaluating acceleration and top speed through full-

throttle scenarios.

On the other hand, the closed-loop model controls the

vehicle's speed by adjusting the acceleration and brake

pedal inputs to follow a predefined speed profile. By

comparing the vehicle's current speed with the speed

defined in the profile, the inputs are dynamically adjusted.

This method is suitable for evaluating fuel efficiency or

energy consumption during specific speed profile driving.

The road surface model defines the road characteristics

by setting the friction coefficient and the

lateral/longitudinal slope of the surface. This makes it

suitable for evaluating vehicle performance in scenarios

such as driving on inclined roads.

3.2 Requirements

The vehicle performance evaluation criteria include five

items: acceleration performance, maximum speed,

gradeability, maximum grade speed, and driving range.

Acceleration performance is evaluated by measuring the

time it takes for the vehicle to reach the target

performance on flat terrain using the peak performance of

the powertrain.

Maximum speed is determined by assessing the highest

speed the vehicle can achieve on flat terrain based on the

continuous performance of the powertrain.

Gradeability tests the vehicle's ability to start from a

standstill and maintain a certain speed on steep slopes,

utilizing the powertrain's peak performance.

Maximum grade speed evaluates the maximum speed

the vehicle can achieve on a general incline using the

continuous performance of the powertrain.

Lastly, driving range is estimated by analyzing hydrogen

consumption during constant-speed driving on flat terrain,

using the continuous performance of the powertrain to

predict the total distance the vehicle can travel.

Table 4. Performance requirements and test conditions.

Performance Road Motor
Velocity

Control

Acceleration Flat Peak Full throttle

Max speed Flat Cont. Full throttle

Gradeability
Very steep

slope
Peak Full throttle

Max

gradient

speed

Moderate

slope
Cont. Full throttle

Driving

Range
Flat Cont.

Controlled

for contant

speed

3.3 Results

The acceleration performance evaluation results showed

that all four vehicles met the requirements. Vehicles 3 and

4 demonstrated the best acceleration performance, while

Vehicle 2 had the lowest acceleration performance. This

is attributed to the increased reduction ratio in Vehicles 3

and 4, which provided greater torque amplification for the

same motor torque output, despite their heavier weight.

Modeling Fuel Cell Electric Vehicle for Performance Prediction and Optimal Component Selection

70 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21767

Figure 8. Result of acceleration test.

The maximum speed evaluation results showed that

Vehicles 3 and 4 achieved the highest top speeds, while

Vehicle 1 recorded the lowest. Although the continuous

output of the powertrain was identical across all four

vehicles, Vehicle 1's larger frontal area resulted in greater

aerodynamic drag, leading to a lower maximum speed. In

contrast, the improved aerodynamics and enhanced

powertrain efficiency of Vehicles 3 and 4 contributed to

their superior top speed performance.

Figure 9. Result of max speed test.

The gradeability evaluation results showed that Vehicles

3 and 4 performed the best, while Vehicle 2 failed to meet

the requirements. Compared to Vehicle 1, Vehicle 2

maintained the same powertrain performance but

experienced increased gradient resistance due to its

heavier weight. Vehicles 3 and 4 demonstrated significant

improvements in gradeability, attributed to the increased

reduction ratio, which amplified torque and enhanced

their climbing performance.

Figure 10. Result of gradeability test.

The maximum grade speed evaluation results indicated

that Vehicle 2 had the lowest performance due to

increased gradient resistance caused by its heavier weight.

In contrast, Vehicles 3 and 4 demonstrated the best

performance, attributed to the improved powertrain

efficiency.

The driving range evaluation results revealed that

Vehicles 3 and 4 achieved the best performance. This

outcome is attributed to their superior aerodynamics and

enhanced powertrain efficiency compared to the other two

vehicles.

Figure 11. Result of max gradient speed test.

Figure 12. Result of driving range test.

Session3A

DOI Proceedings of the Asian Modelica Conference 2024 71
10.3384/ecp21767 December 12-13, 2025, Jeju, Korea

Table 5. Summary of evaluation results.

Performance
Vehicle (+: Passed / -: Failed)

1 2 3 4

Acceleration ++ + +++ +++

Max speed + ++ +++ +++

Gradeability + - ++ ++

Max

gradient

speed

++ + +++ +++

Driving

Range
+ + ++ ++

4 Conclusion

In this study, modeling and simulation were conducted to

predict the performance of FCEVs. Instead of using

detailed specifications of hydrogen fuel cells, which are

critical to information security, the study utilized results

from component-level tests to develop a hydrogen fuel

cell model. This approach provides a foundation for

predicting FCEV performance and examining optimal

component combinations during the early stages of design.

However, as the model does not fully reflect the

physical and chemical characteristics of actual hydrogen

fuel cells, further validation is required. Additionally,

studies on the control of electrical flows between the

hydrogen fuel cell and the battery in real FCEV systems

are necessary.

Future research will focus on validating the model

using test results from actual vehicles and conducting

comparative validation with models incorporating

detailed hydrogen fuel cell specifications and

characteristics. Moreover, research will explore methods

for integrating the control of electrical flows between the

hydrogen fuel cell and the battery to enable more realistic

performance predictions.

Acknowledgements

This work has been supported by KIA.

References

IP Defense Forum (2024). “South Korea aims to fuel

military with hydrogen technology”. URL:

https://ipdefenseforum.com/2024/07/south-korea-aims-to-

fuel-military-with-hydrogen-technology/

International Energy Agency (2019). “The Future of

Hydrogen”. URL: https://www.iea.org/reports/the-

future-of-hydrogen

Shevchenko, N. (2020, December 21). An Introduction to

Model-Based Systems Engineering (MBSE). Retrieved

November 14, 2024, from

https://doi.org/10.58012/d464-qf49.

Modelon AB (2021). Vehicle Dynamics Library Version

4.0.

Modelon AB (2021). Electrification Library Version 1.7.

Modeling Fuel Cell Electric Vehicle for Performance Prediction and Optimal Component Selection

72 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21767

https://ipdefenseforum.com/2024/07/south-korea-aims-to-fuel-military-with-hydrogen-technology/
https://ipdefenseforum.com/2024/07/south-korea-aims-to-fuel-military-with-hydrogen-technology/
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://doi.org/10.58012/d464-qf49

Vehicle Health Monitoring for Driving

Safety using Co-simulation between

Dymola and Simulink

Yeongmin Yoo1 Yong Ha Han1 Dae-Un Sung1 Kyung-

Woo Lee1
1Hy CompanyMotorundai , ofRepublic Korea,
{yym9514,yongha,dusung,caselee}@hyundai.com

Abstract
A vehicle dynamics model-based health monitoring

process is presented to enhance driving safety. The vehicle

model can simulate driving by reflecting degradation

performance of suspension and tires. The model was

developed using Dymola, and driving simulation was

performed by integrating the lane keeping assistant system

with the vehicle model using Simulink. The degradation

behavior was monitored with k-nearest neighbor and

Gaussian mixture model. The remaining useful life for

vehicle components was predicted using Gaussian process

regression. The proposed method predicts remaining

useful life with a 95% confidence level for vehicle

components to improve safety for driving.

Keywords: Vehicle Health Monitoring, Lane Keeping

Assistant System, Prognostics and Health Management,

Anomaly Detection, Remaining Useful Life

1 Introduction

As driving technology is gradually becoming automated,

the functional safety of vehicle is becoming more

important. The advanced driver assistance system (ADAS)

assists the driver for convenient of driving. However, it is

need for a technology to prevent risks caused by vehicle

defects that may occur while driving.

Recently, prognostics and health management (PHM)

technology for detecting defects in vehicle parts and

predicting lifetime has been applied. PHM is an

engineering approach that enables real-time health

assessment of a system under its actual operating

conditions, as well as the prediction of its future state

based on up-to-date information, by incorporating various

disciplines including sensing technologies, physics of

failure, machine learning, modern statics, and reliability

engineering. It enables engineers to turn data and health

states into information that will improve our knowledge

on the system and provide a strategy to maintain the

system in its originally intended function. While PHM has

roots from the aerospace industry, it is now explored in

many applications including manufacturing, automotive,

railway, energy and heavy industry (Kim et al., 2017;

Sankararaman and Goebel, 2015).

In the automotive area, it is possible to provide vehicle

state information to the driver and the maintenance

company. This ensures vehicle maintenance efficiency

and driving safety. It is necessary to obtain degradation

data of components by monitoring the vehicle state.

However, it takes a significant amount of time to obtain

the degradation data.

This study proposes a vehicle dynamics model-based

PHM process. The vehicle modeling, including

degradation of suspension and tires, was performed using

Dymola. The driving simulation was performed by

integrating the lane keeping assistant system (LKAS) with

the vehicle model using Simulink. The vehicle model was

imported in the Simulink environment using functional

mock-up interface (FMI). The LKAS is a control system

that aids a driver in maintaining safe travel within a

marked lane of a highway. Simulation data-based machine

learning was used to determine normal/abnormal vehicle

states and to assess the lifetime for vehicle components as

shown in Figure 1.

The remainder of this paper is organized as follows.

Section 2 explains the degradation modeling for vehicle

components and the co-simulation process between

Dymola and Simulink. Section 3 explains machine

learning algorithms used for vehicle states and lifetime

assessment. Finally, Section 4 concludes the study and

discusses future study plans.

Figure 1. Virtual driving simulation-based vehicle health

monitoring.

DOI Proceedings of the Asian Modelica Conference 2024 73
10.3384/ecp21773 December 12-13, 2025, Jeju, Korea

RRR

2 Virtual Driving Simulation

2.1 Vehicle Modeling

The vehicle model was developed using components from

Claytex and vehicle systems modelling and analysis

(VeSyMA) libraries in Dymola (Deuring et al., 2011; Yoo

et al., 2018). The model was comprised of subsystems for

vehicle body, suspension, driveline, electric motor,

battery, brake, and tires as shown in Figure 2.

The front suspension was designed with a MacPherson

strut suspension. The rear suspension was designed with

an integral link suspension. The suspension blocks

included shock absorber, rubber bush and stabilizer bar

components. The tires were designed with 215/50R17

Pacejka model. The electric motor was designed with an

AC induction motor on the front wheel, and the maximum

torque of the motor was 350 Nm. The battery was

designed with a 240 V voltage and 85.5 kWh capacity.

(a)

(b)

Figure 2. Vehicle model developed using components from

Claytex and VeSyMA libraries: (a) graphics and (b) animation

views.

2.2 Degradation Modeling

The shock absorber, rubber bush, and tire models were

developed for degradation simulation of vehicle driving.

The degradation rates for shock absorber damping, rubber

bush stiffness, and tire friction coefficients were reflected

in the models as shown in Figure 3. As the cycle increases,

the degradation rates of the damping and friction

coefficients decrease, but the stiffness increases.

(a)

(b)

(c)

Figure 3. Degradation models: (a) shock absorber damping,

(b) rubber bush stiffness and (c) tire friction coefficients.

The degradation rate data were converted into exponential

functions and reflected in the components as shown in

Listing 1. D_damping is shock absorber damping.

D_stiffness is rubber bush stiffness. D_friction is tire

friction coefficient. Param1 and Param2 are coefficients

of exponential function.

Listing 1. Degradation equations

equation

D_damping=Param2_damping*exp(Param1_damping*cycle) ;

equation

D_stiffness=Param2_stiffness*exp(Param1_stiffness*cycle) ;

equation

D_friction=Param2_friction*exp(Param1_friction*cycle) ;

Vehicle Health Monitoring for Driving Safety using Co-simulation between Dymola and Simulink

74 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21773

2.3 FMI-based Co-simulation

The vehicle model was converted to functional mock-up

unit (FMU) to co-simulate with LKAS in Simulink as

shown in Figure 4. The input ports of the FMU are steering

angle and longitudinal velocity. The output ports are

longitudinal position, lateral position, longitudinal

velocity, lateral velocity, yaw angle, and yaw rate.

Figure 4. Vehicle model converted to FMU.

The LKAS (Lee et al., 2014) detects when the vehicle

deviates from a lane and automatically adjusts the steering

to restore proper travel inside the lane without additional

input from the driver. The LKAS was constructed as

shown in Figure 5.

(a)

(b)

Figure 5. LKAS in Simulink: (a) LKAS blocks and (b) vehicle

dynamics block imported with FMU.

The lane keeping assist block contains lane center

estimation, lane keeping controller, lane departure

detection, and assist blocks. The lane center estimation

block outputs the data from lane sensors to the lane

keeping controller. The goal for the lane keeping

controller block is to keep the vehicle in its lane and

follow the curved road by controlling the front steering

angle. The lane departure detection block outputs a signal

that is true when the vehicle is too close to a detected lane.

The assist block decides if the lane keeping controller or

the driver takes control of the vehicle. The switch to

assisted steering is initiated when a lane departure is

detected.

The vehicle and environment block contains vehicle

dynamics, scenario reader, vision detection generator, and

driver blocks. The vehicle dynamics block includes the

vehicle model converted to FMU. The input and output

ports of the block are the same as the FMU. The scenario

reader block generates the ideal left and right lane

boundaries based on the position of the vehicle with

respect to the scenario. The vision detection generator

block takes the ideal lane boundaries from the scenario

reader block. The driver block generates the driver

steering angle based on the driver path.

Figure 6. Driving road view.

Figure 7. Lateral deviation between road centerline and

vehicle for 15 laps of driving.

Session3B

DOI Proceedings of the Asian Modelica Conference 2024 75
10.3384/ecp21773 December 12-13, 2025, Jeju, Korea

The driving road was designed with elliptical type as

shown in Figure 6. The initial vehicle speed was 15 km/h.

It was increased to 60 km/h within 15 seconds, after which

it ran 15 laps while remaining constant. The lateral safety

distance of the LKAS was set to 1 meter. Figure 7 shows

the lateral deviation between road centerline and vehicle

for 15 laps of driving. The smaller lateral deviation means

better driving safety. However, the lateral deviation

increased due to degradation of vehicle components.

3 Vehicle Health Monitoring

3.1 Feature Extraction

The feature extraction was performed to analyze the

lateral deviation data. It refers to the process of

transforming raw data into numerical features that can be

processed while preserving the information in the original

data set. The eight features were extracted from the lateral

deviation data as shown in Figure 8. The features were

mean, max, root mean square, skewness, kurtosis, crest

factor, impulse factor, and shape factor. It is important to

find an effective factor that has consistent tendency to

increase or decrease in proportion to vehicle mileage.

Principal component analysis (PCA) was performed for

eight features as shown in Figure 9. It is a dimensionality

reduction method used to simplify a large data set into a

smaller set while still maintaining significant patterns and

trends. The data is linearly transformed onto a new

coordinate system such that the directions capturing the

largest variation in the data can be easily identified. The

first principal component is the direction in space along

which the data points have the highest or most variance.

The larger the variability captured in the first component,

the larger the information retained from the original

dataset. The second principal component accounts for the

next highest variance in the dataset and must be

uncorrelated with first principal component. The third

principal component is the same way.

Figure 8. The eight features of lateral deviation data.

Figure 9. PCA for eight features.

3.2 Anomaly Detection

The lateral deviation data were classified into normal,

abnormal, and failure states using machine learning

algorithms as shown in Figure 10.

(a)

(b)

Figure 10. Classifiers of normal and abnormal: (a) k-NN and

(b) GMM.

Vehicle Health Monitoring for Driving Safety using Co-simulation between Dymola and Simulink

76 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21773

The k-nearest neighbor (k-NN) is a non-parametric

classification method (Cunningham and Delany, 2021). It

tries to classify an unknown sample based on the known

classification of its neighbors. If the classification of a

sample is unknown, then it could be predicted by

considering the classification of its nearest neighbor

samples. Given an unknown sample and a training set, all

the distances between the unknown sample and all the

samples in the training set can be computed. The distance

with the smallest value corresponds to the sample in the

training set closest to the unknown sample. Therefore, the

unknown sample may be classified based on the

classification of this nearest neighbor. The k was set to

three for the classification of normal, abnormal, and

failure for driving performance.

The Gaussian mixture model (GMM) is a parametric

probability density function represented as a weighted

sum of Gaussian component densities (Reynolds, 2009).

The GMM parameters are estimated from training data

using the maximum a posteriori estimation from a well-

trained prior model.

3.3 Lifetime Assessment for Components

The lifetime of shock absorber, rubber bush, and tire was

assessed using Gaussian process (GP) regression. The GP

regression (Schulz et al., 2018) is one of regression-based

methods used for data-driven prognostics, which is a

linear regression like the least squares method. The

difference between GP and ordinary linear regression is

whether the correlation in errors between a regression

function and data are considered or not. It is assumed that

errors are independent and identically distributed in the

ordinary linear regression, while they are assumed to be

correlated in GP.

As the results, the degradation and remaining useful life

(RUL) are predicted as shown in Figure 11. The data point

means the average value of degradation datasets, and the

true line (i.e., solid line) is a fitting curve for actual

degradation data. The median line and the 95% prediction

interval (PI) line (i.e., dotted line) are the probabilistic

results predicted using the GP regression.

Table 1 shows the percentiles of RUL distribution. It can

be confirmed that the 95% PI of the predicted RUL

distribution of each degradation component was satisfied

with respect to the actual RUL value.

(a)

(b)

(c)

Figure 11. GP prediction results: (a) shock absorber, (b)

rubber bush, and (c) tire.

Table 1. Percentiles of RUL distribution.

Component True Estimation 95% PI

Damper 9.04 6.97 4.76~10.69

Bush 6.42 5.41 4.33~7.03

Tire 9.48 7.67 5.77~10.26

4 Conclusions

The health monitoring process using virtual driving

simulation based on a vehicle dynamics model was

proposed. It takes a significant amount of time to obtain

the actual degradation data. To solve this problem,

degradation data was obtained using co-simulation

between Dymola and Simulink, and anomaly detection

and lifetime assessment based on machine learning

algorithms were performed. The main results are as

follows:

• The virtual driving simulation involving degradation

of vehicle components was constructed using

Dymola and Simulink.

• The degradation behavior was monitored with k-NN

and GMM.

• The GP regression predicted RUL with a 95%

confidence level for vehicle components to improve

safety for driving.

Session3B

DOI Proceedings of the Asian Modelica Conference 2024 77
10.3384/ecp21773 December 12-13, 2025, Jeju, Korea

The future study plan is to construct vehicle health

monitoring system using virtual driving simulation for

battery degradation.

References

Kim N. H., An D., and Choi J. H. (2017). “Prognostics and health

management of engineering systems”. Switzerland: Springer

International Publishing.

Sankararaman S., and Goebel K. (2015). “Uncertainty in

prognostics and systems health management”. International

Journal of Prognostics and Health Management 6, pp. 1-14.

Deuring A., Gerl J., and Wilhelm H. (2011). “Multi-domain

vehicle dynamics simulation in Dymola”. Proceedings of the

8th International Modelica Conference 63, pp. 13-17.

Yoo Y., Lee S., Yoon J., and Lee J. (2018). “Modelica-based

dynamic analysis and design of lift-generating disk-type wind

blade using computational fluid dynamics and wind tunnel

test data”. Mechatronics 55, pp. 1-12.

Lee J., Choi J., Yi K., Shin M., and Ko B. (2014). “Lane-keeping

assistance control algorithm using differential braking to

prevent unintended lane departures”. Control Engineering

Practice 23, pp. 1-13.
Cunningham P., and Delany S. J. (2021). “K-nearest neighbour

classifiers-a tutorial”. ACM computing surveys 54, pp. 1-25.

Reynolds D. A. (2009). “Gaussian mixture models”.

Encyclopedia of Biometrics 741, pp. 659-663.

Schulz E., Speekenbrink M., and Krause A. (2018). “A tutorial

on Gaussian process regression: Modelling, exploring, and

exploiting functions”. Journal of mathematical

psychology 85, pp. 1-16.

Vehicle Health Monitoring for Driving Safety using Co-simulation between Dymola and Simulink

78 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21773

Study on nuclear and renewable hybrid energy system performance prediction by using

Modelica

Hae-Ryong Hwang1*, Daeoh Kang 2, Kagsu Jang3, Jiyeon Kang3

1ISMR, 210, Dongho-ro, Jung-gu, Seoul, Republic of Korea, 04601
2iVH, 19, Yangjaecheon-ro 17-gil, Seocho-gu, Seoul, Republic of Korea, 06754

3KEPCO E&C, 269 Hyeoksin-ro, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea, 39660
*Corresponding author: harold.hwang@ismr.co.kr

1. Introduction

The production and use of electric energy is constantly

evolving in the building, industrial and transportation

areas [1,2].

Looking at the electric energy production sector, the

market share of variable renewable energy such as wind

and solar power (PV) is continuously increasing.

Among the use sectors, the transportation area is

encouraged to use eco-friendly fuels, and accordingly,

the use rate of battery and hydrogen electric fuel vehicles

is rapidly increasing. In the building area, energy

efficiency is increasing due to building energy

management system (BEMS) and high-insulation

materials.

Since 2010, researches in nuclear-renewable hybrid

energy system (NRHES) have been actively conducted

to maximize efficiency in electric energy production and

use.

The NR HES, which combines production and use, is

a system that actively controls electricity production and

use and surplus energy utilization [3].

In this study performance analysis is performed for the

architecture depicted in the former study[3] by digital

twin for securing operation efficiency of NRHES.

Digital twin is built based on multi-physics system

using Modelica. All components were modeled to

consider electricity, heat, mechanics and environment at

the same time[4,5].

2. Methods and Results

This study was proceeded in two stages for the

evaluation of the efficiencies of three proposed

architectures of NRHES. The first step is to build an

NRHES digital twin using Modelica. Renewable energy

consists of solar and wind power. Nuclear power consists

of a steam generator and a turbine generator. Energy is

stored in battery energy storage system(ESS) and

Thermal storage. The industrial process produces

hydrogen. Only low temperature water electrolysis (LTE)

was considered in this study.

The second step is to define scenarios for each energy

storage method and predict the optimal architecture

through efficiency analysis. There are three scenarios

used. The first is to use only battery ESS, and the second

is to use the battery ESS and the low-temperature water

electrolysis (LTE) at the same time. Finally, battery ESS,

LTE, and thermal storage are added all together.

2.1. Digital twin construction of NRHES system

As shown in Figure 2.1 and Table 2.1, NRHES is

composed of renewable energy block, nuclear energy

block, energy storage block, industrial process block,

demand load block and controller. The detailed modeling

method for each block is as in the subsection. All module

m

Fig 2.1. NRHES architecture

Table 2.1 NRHES sub-module list

Part Name Content

Nuclear steam

generator

Steam production model with heat from

reactor

PV panel Solar Photon-powered models

Wind turbine
Power generation model with wind velocity

as input

ESS ESS Model using battery

IP (electrolyzer) Hydrogen model in LTE method

Thermal storage
Heat storage model with salt water as

medium

2.1.1. Nuclear Steam Generator

The steam generator is a key component for the

operation and the safety of the plant because it is

responsible for the generating steam and cooling of the

reactor.

Water and steam flow is as follows. The primary water

flows into U-tubes and yields its heat to the secondary

water. The secondary water, circulating outside the U-

tubes, is liquid at the inlet of the steam generator, then

flows down the outer part of the steam generator and

starts to boil when reaching the bottom center part of the

steam generator, until the top of the boiling section.

DOI Proceedings of the Asian Modelica Conference 2024 79
10.3384/ecp21779 December 12-13, 2025, Jeju, Korea

RRR

There, the ratio between the total flow rate and steam

flow rate (circulation rate) reaches a value of 4 to 5 at

nominal power.

This part of the steam generator is called the riser,

where the flow is mainly two-phase (a mixture of water

and steam). Moreover, due to the non-homogeneity of

heat exchange inside the riser, two regions must be

considered. When secondary water is flowing outside the

first half part of U-tubes with hot primary water flowing

in, the region is called “hot leg”. When flowing outside

the other half part of U-tubes with cooler primary water

flowing in, the regions is called “cold leg”.

The water and steam mixture passes then through

separators where the two phases are separated in the

upper part of the steam generator. The liquid part goes

back to the steam generator feedwater, and the vapor part

goes to the turbine. This part of the steam generator is

called the dome.

The thermal load on the riser tube increases at t=500.

This increases the pressure initially before the pressure

controller increases the opening of the high-pressure

steam valve to control the pressure back to the set point,

increasing the steam flow and increasing the production

power.

The current model produces 275 ℃ of steam from

nuclear energy block. The main steam is produced by the

reactor and controlled by the auxiliary heat source, using

default parameters for pumps and capacitors.

Fig 2.2 Close loop steam cycle

As a result of model verification, the nuclear steam

generator produces 60.8 MW of electric power, which

predicts approximate results with the specifications of

60.0 MW. A comparison of the physical quantities at key

points is shown in Table 2.2.

Table 2.2 Comparison of steam cycle state with reference data

Location Variable Model Referenc

e

Error

Turbine

inlet

Temperature 275.6 276.0 0%

Pressure 60.0 60.0 0%

Enthalpy 2752.0 2787.0 1%

Mass flow rate 102.3 102.7 0%

Turbine

outlet

Temperature 34.1 43.0 21%

Pressure 0.057 0.086 34%

Enthalpy 1892.0 1838.0 -3%

Mass flow rate 102.3 74.5 -37%

2.1.2. Wind turbine

The wind turbine components take wind speed data as

input and carry the power generated based on the given

parameters.

The main model parameters are summarized as

follows:

1) Environmental factors: Typical values of air density,

reference height and friction coefficients for which wind

speed is measured, and friction coefficients for different

areas are shown in Figure 2.3.

2) Shape of wind turbine: hub height and blade length

L (Own area A is calculated based on blade length).

Rated power capacity, the rated wind speed is calculated

from the given correlation.

3) Cut-in and cut-out wind speeds: represent the

operating conditions of the turbine.

4) The total power is calculated to reflect efficiency.

Fig 2.3. Turbine model

Between the cut-in and rated speeds, the power is

calculated as follows.

𝑃𝑐𝑎𝑙𝑐 = 𝑃𝑟𝑎𝑡 ∙
(𝜈3−𝜈𝑐𝑖

3)

𝜈𝑟𝑎𝑡
3 −𝜈𝑐𝑖

3 (1)

𝑃𝑤𝑖𝑛𝑑 = 𝑃𝑐𝑎𝑙𝑐 ∙ 𝜂 (2)

As a result of the model verification, the power output

per hour of the prediction and reference was found very

similar.

Study on nuclear and renewable hybrid energy system performance prediction by using Modelica

80 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21779

Fig 2.4. wind power correlation results

2.1.3. Photovoltaics Power

The solar module and array generate DC power and

are next connected to DC-AC inverter. Inverters

typically contain control logic to regulate the DC voltage

of the photovoltaic module. This is typically a Maximum

Power Point Tracker (MPPT).

Solar modules do not generate the same amount of

power for a given environmental boundary condition

(mostly illuminance, temperature, and air mass). In fact,

the power depends on the DC voltage of the module pin.

This is easily understood by considering the 0V voltage

drop between the pins. Whatever the current is, the power

becomes zero. However, in grid applications, power

sources such as solar modules must provide optimal

power. Therefore, the DC voltage should be set to a value

that maximizes the power of the module.

This model allows you to extract the maximum power

point analytically from the equation. This prevents the

inverter DC voltage from being set using an external

controller (tracer), which is typically computationally

expensive.

When MPPT is enabled, the current on the pin

corresponding to the module operating at the maximum

power point is set.

When MPPT (default) is disabled, the actual current

corresponding to the voltage set on the pin is provided.

This still allows you to analytically extract the maximum

power point voltage and output it via real output, but a

feedback loop (mostly via an inverter) is required to set

the voltage at this value.

Power output depends on solar radiation and the

efficiency of the solar components. The mitigation factor

eta is defined as a parameter that depends on PV

component aging, wiring loss, and dust cover.

𝑃(𝑡) =

 𝑃𝑟𝑎𝑡 ∙ 𝜂𝑃𝑉 ∙ 𝐺(𝑡)[1 + 𝛼𝑃𝑉 ∙ (𝑇𝑃𝑉 − 298.15)] (3)

, 𝑇𝑃𝑉 =
𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡+𝐴∙Γ

1+𝐵∙Γ

, 𝐴 = 1 −
𝜂𝑆𝑇𝐶∙(1−25𝛼𝑇𝑃)

0.9

, 𝐵 =
𝛼𝑇𝑃∙𝜂𝑆𝑇𝐶

0.9

, Γ =
(𝑇𝑁𝑂𝐶𝑇−293.15)𝐺(𝑡)

0.8

Based on the results of the reference, the model

verification confirmed that the power output per hour

was more than 98% consistent.

Fig 2.5. PV panel correlation results

2.1.4 Industrial Process(IP)

This is an alkaline electrolyte model for use in the

microgrid optimization framework. This model has the

following connectors:

- Fluid ports for hydrogen flow generated in

electrolytic cells.

- Current control input. This input determines the

current that the stack uses to produce hydrogen.

- Electrolytic cell pin - Connect the electrolytic cell

stack to the electrical grid. This model assumes an ideal

DC/DC converter that converts electrolytic cell voltage

to system voltage.

- Electrolytic pin - similar to the electrolytic pin, but

instead uses the same principle to connect the

compressor. The ideal DC/DC converter between the

compressor and the system voltage level.

The model used in this task used the following

assumptions.

- The electrolysis process assumes a constant

operating point (constant pressure and

temperature). The cooling requirements required

to maintain the electrolytic cell at a constant

temperature are calculated and monitored by the

model variable Qdot_cool.

- The compressor operation required for the

calculation assumes ideal isothermal compression

and constant pressure on the electrolytic cell side

(inlet).

LTE model is Semi-Empirical model. The main

equation is shown in equations below and is calculated

between the current density and the production of

electrolysis hydrogen.

𝐶𝑒𝑙𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒:

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑟𝑒𝑣 + 𝑟 ∙ 𝐽 + 𝑠 ∙ log10(𝑡 ∙ 𝐽 + 1) (4)

𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒:

𝑛̇𝐻2 = 𝜂𝑓 ∙ 𝑛𝑐𝑒𝑙𝑙 ∙
𝐼

𝑧∙𝐹
 (5)

0

2

4

6

8

0 5 10 15 20

P
o
w

er
 [

m
w

]

Time [h]

Prediction Reference

0

10

20

30

0 5 10 15 20

P
o

w
er

 [
m

w
]

Time [h]

Prediction Reference

Session4B

DOI Proceedings of the Asian Modelica Conference 2024 81
10.3384/ecp21779 December 12-13, 2025, Jeju, Korea

𝑇ℎ𝑒 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦:

𝜂𝑓 = 𝑓2 ∙ (
𝐽2

𝑓1+𝐽2) (6)

Since there is no verification data of LTE model, only

the results produced by the model were analyzed.

Fig 2.6. Electrolyzer Performance for hydrogen production

2.1.5 Thermal Storage

The thermal storage comprises an indirect thermal

energy storage system consisting of a valve, a pump and

two tanks with a heat exchanger and the molten salt.

Figure 2.7 shows both energy charging and discharging

where the heat transfer fluid exchanges energy with the

storage system.

The initial temperature of the thermal storage is 240 ℃.

Heat can be stored up to 290 ℃ through heat exchange.

Fig 2.7. Thermal storage sample results

2.1.6. NRHES model Validation

Figure 2.8 is verification system based on Kim [3]. It

consists of steam generator, load, battery ESS, etc.

Digital twin with identical structure was configured in

this task

Fig 2.8. NRHES architecture digital twin model

As a result of the model verification, it was confirmed

that the reference result and the prediction result

provided were within 1% of the error rate in both

operation periods. This demonstrates the significance of

the digital twin model proposed in this study.

Fig 2.9. Total generation power

Fig 2.10. Surplus power

2.2. Performance Analysis by NRHES Scenario

Based on battery ESS, thermal storage, and LTE, we

analyzed the power production patterns of three

NRHES scenarios. Each scenario is expected to help

develop an understanding and utilization strategy for

NRHES.

2.2.1. Scenario 01: Add ESS Only

Model

Only battery ESS has been added to the reference

0

20

40

60

80

100

0 5 10 15 20

P
o
w

er
 [

m
w

]

Time [h]

Prediction Reference

-80

-60

-40

-20

0

20

40

60

0 5 10 15 20

P
o
w

er
 [

m
w

]

Time [h]

Prediction Reference

Study on nuclear and renewable hybrid energy system performance prediction by using Modelica

82 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21779

model in Chapter 2 with battery ESS Controller. The

controller determines the battery charge by monitoring

the renewable energy output, surplus power, etc. in real

time.

Fig 2.11. Scenario 01 Model

Fig 2.12. ESS Controller Model

Results

Simulation results show a 22% reduction in excess

power when using battery ESS.

In the absence of energy storage, the excess power is

34.8 MW root-mean-square(rms). When the battery is

added, the excess power is 27.3 MWrms.

Fig 2.13. Scenario-01 Results

2.2.2 Scenario 02: Scenario 01 + IP added

Model

IP was added to Scenario 01 model. Electrolyzer and

controller are also added. The controller determines

hydrogen production by monitoring renewable energy

production, surplus power, etc. in real time.

Fig 2.14. Scenario 02 model

Fig 2.15. Electrolyzer controller

results

Simulation results show a 70% reduction in excess

power when using IP.

When IP is added, the excess power is 10.64 MWrms.

Fig 2.16. Scenario 02 Results

2.2.3 Scenario 03: Scenario 02 + Thermal Storage

added

Model

Thermal storage has been added to the Scenario 02

model. In addition, the controller has been modeled.

The controller determines the amount of heat exchange

by monitoring the renewable energy output, surplus

power, etc. in real time.

Session4B

DOI Proceedings of the Asian Modelica Conference 2024 83
10.3384/ecp21779 December 12-13, 2025, Jeju, Korea

Fig 2.17. Scenario 03 model

Fig 2.18. Scenario 03 Controller

Results

Simulation results show a 75% reduction in excess

power when using IP.

When IP is added, the excess power is 9.6 MWrms.

Fig 2.19 Scenario 03 results

3. Conclusions

This paper conducted a study to analyze the

performance of NRHES architectures by different

scenarios. Digital twin is built based on a multi-physical

integrated model using Modelica. The architecture

identified three methods according to the strategy for

using surplus energy, and the analysis results are as

follows.

NRHES was built using the digital twin technology,

and research was conducted on the efficiency of each

operation strategies.

- Scenario 1: A model that adds battery ESS to the

reference model. The battery capacity was set at 20 MWh.

As a result of analyzing the efficiency of using surplus

power, it was confirmed that 30% was improved

compared to the reference model.

- Scenario 2: model that adds low-temperature water

electrolysis to the scenario 1 model. The daily hydrogen

production was determined to be 130 kg. As a result of

analyzing the efficiency of using surplus power, it was

confirmed that it was improved by 70% compared to the

reference model.

Scenario 3: Model that adds a heat storage device to

the Scenario 2. As a result of analyzing the efficiency of

using surplus power, it was confirmed that 75% was

improved compared to the reference model.

If the cost model is added in the future, it will be

possible to study the economics based NRHES

architecture and optimal operation scenario.

REFERENCES

[1] Mark Ruth, Dylan Cutler, Francisco Flores-Espino, and

Greg Stark, The Economic Potential of Nuclear-Renewable

Hybrid Energy Systems Producing Hydrogen, NREL/TP-

6A50-66764, April 2017

[2] Kim, Jong Suk, Bragg-Sitton, Shannon, Boardman, Richard,

Status on the Component Models Developed in the Modelica

Framework: High-Temperature Steam Electrolysis Plant & Gas

Turbine Power Plant, DO: 10.2172/1333156

[3] Sung Ho Kim*, Chang Kyu Chung, Hee Hwan Han, Byung

Jin Lee, Development of Nuclear-Renewable Hybrid Energy

System using Thermal Energy Storage for Industrial Processes,

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

[4] Roberto Ponciroli, Yu Tang, and Richard B. Vilim ,

Characterization of Flexible Operation Performance of N-R

HES Components in Support of a Model-Based Pre-

conditioner, Philip Eberhart et al., ANL/NE-18/6

[5] Ruediger Franke and Hansjuerg Wiesmann, Flexible

Modeling of Electrical Power Systems – the Modelica

PowerSystems Library, Proceedings of the 10th International

Modelica Conference, Lund, Sweden, March 10-12, 2014

Study on nuclear and renewable hybrid energy system performance prediction by using Modelica

84 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21779

Testing Large Scale System Simulation
using Linear Implicit Equilibrium

Dynamics
Dirk Zimmer

Institute of System Dynamics and Control,
German Aerospace Center (DLR), dirk.zimmer@dlr.de

Abstract
The concept of flattening where all model equations are
collected in a single set is deeply hardwired into the
Modelica language. While flattening enables effective
symbolic manipulation such as the reduction of systems
with a higher-index, it also imposes limitations. Two of
these limitations are that the code generation for very large
systems may not scale very well and that a statement on
the regularity of the system often cannot be made before
the flattening took place. Whereas it is difficult to
overcome these limits in the general case, there is a sub-
class within Modelica models that is comparatively easy
to precompile while still enabling the modeling of
complex systems. This paper explores this path and
presents first experiments on the scalability for larger
systems.
Keywords: Compilation, Modelling Methodology, Large
Scale Systems

1 Introduction

1.1 Motivation
This work has its origins in the quest for robust modeling
methodologies. The goal of such a methodology is to
enable a sufficient statement for object-oriented
modeling:

Any valid combination of components (under rules of
limited complexity) shall have a solution

representing a physical system.

In practice that means, that robust components will lead to
robust overall system simulation. One particular solution
for this task is the class of Linear Implicit Equilibrium
Dynamics or short: LIED.

Because solvability can be guaranteed upfront, also the
compilation of this class of models can be simplified, even
to such a degree that the pre-compilation of components
can be enabled, making it attractive for large system
simulation. However, before explaining LIED we shall
revisit the current approaches for precompiling or
simulating larger systems in Modelica.

1.2 State of the Art
The problems that occur with the compilation of very large
Modelica models has been noted more than 15 years ago
(Zimmer2009) with suggestions how to mitigate this issue
with a post flattening analysis. While this never came to
any fruitful results, multiple other approaches have been
conceived for this problem. Most notably a full test suite
has been provided (Casella2015) to help the simulation of
large system in OpenModelica (Braun2017). This work is
now supported by a new research compiler MARCO
(Agosta2023).

One (albeit limited) approach is to find a particular
solution for large arrays or vectors. Per default, these
elements will all be scalarized, leading to a large number
of variables. It would be very helpful keeping them as one
entity.

A specific solution for this approach can be found for
instance in (Neumayr2023). For a general Modelica
compiler, it is however not always clear which vector or
matrices can avoid scalarization so that casualization still
can take place. This has been investigated by
(Abdelhak2023) and is also experimented on in MARCO.

Other attempts originate from a different perspective.
The pre-analysis or even pre-compilation of components
is also useful for variable-structure or multi-modal
systems (Benveniste2019). One elaborate proposal in this
direction for the general case stems from
(Benveniste2023).

Pre-compilation is of course not only useful for multi-
modal systems but (as shown in this paper as well) is a
promising technique for large scale systems as well.
Indeed, the paper (Benveniste2023) provides a
scalarization example of the casualization algorithm.
One common challenge of all of these approaches is that
they add complexity to existing Modelica compilers and a
full Modelica compiler is already very complex. Some of
the approaches hence switch to other experimental
modeling languages.

Also, it shall be noted that the support for large models
has meanwhile been improved in existing tools. An order
of magnitude could be gained in the last decade for certain
commercial tools, seemingly by improving the quality of
implementation and the availability of more memory.

DOI Proceedings of the Asian Modelica Conference 2024 85
10.3384/ecp21785 December 12-13, 2025, Jeju, Korea

RRR

This paper now focusses not on a general solution but on
a special class of models. Let us hence study how this class
is being defined.

2 Linear Implicit Equilibrium
Dynamics

Linear Implicit Equilibrium Dynamics (LIED) is
technically defined as a special class of Differential
Algebraic Equation (DAE) Systems.

2.1 Formal Definition
A DAE system with potential state derivatives 𝒙̇, time 𝑡
and algebraic variables 𝐰

𝟎 = 𝑭(𝒙̇, 𝒙, 𝐰, 𝑡)

is defined as LIED system when it can be transformed into
the following form:

[
𝐰𝐸
𝒙̇𝐸] = g(𝒙𝐼, 𝒙𝐸 , 𝑡)

𝐀(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸) [

𝐰𝐼
𝒙̇𝐼] = f(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸 , 𝑡)

We see that both the algebraic variables as well as the state
derivatives can be split into a fully explicit part (𝒙̇𝐸; 𝐰𝐸)
and a part (𝒙̇𝐼; 𝐰𝐼) with a linear system in implicit form
expressed by the regular matrix 𝐀 . Furthermore, the
following conditions shall hold true:

𝒙̇𝐸 ∩ 𝒙̇𝐼 ⊆ 𝒙̇

𝐰𝐸 ∩ 𝐰𝐼 ⊇ 𝐰

𝒙̇𝐸 ∩ 𝒙̇𝐼 ∩ 𝐰𝐼 ⊇ 𝒙̇

𝒙̇𝐸 , 𝒙̇𝐼 , 𝐰𝐸 , 𝐰𝐼 are all disjoint

These conditions essentially mean that it is allowed to
perform certain symbolic mechanism of index reduction
such as the dummy derivative method (Mattsson1993)
originating from (Pantelides1988). Using this method,
states variables of 𝒙 can be transformed to algebraic
variables in 𝐰𝐼 and further derivatives may be added to
𝐰𝐼 or 𝐰𝐸. In practice, this is important because it means
that the linear implicit dynamics can be expressed by far
fewer states than suggested by the vector 𝒙 of the original
DAE formulation.

2.2 Informal Explanation
The formal definition above may be primarily perceived
as a relatively strong restriction on the model equations
and not many systems may be intuitively expected to fall
into this category. Surprisingly, LIED can be applied
successfully for the object-oriented modelling of complex
thermo-fluid architectures (Zimmer2020,2022) or to
mechanical systems with stiff contacts (Zimmer2023).

The idea is that the non-linear behavior of the slow
mode is explicitly expressed whereas the fast dynamics
that typically is needed to uphold non-linear constraints is
expressed by a linear implicit system that fulfils the
constraint in its equilibrium. Hence the name: linear
implicit equilibrium dynamics. The equilibrium dynamics
is thereby often a replacement dynamic and only an
approximation of reality (as all modelling is).

2.3 Use Cases for LIED
As the above references demonstrate, LIED has been
applied using Modelica for the object-oriented modeling
of thermo-fluid or mechanical systems. To this end, it is
necessary to use triplets as interface of the model
components that consist in a signal for the explicit non-
linear part and a pair of potential and a pair of potential
and flow for the implicit part as presented in Table 1.

Table 1. Connection triplets for the object-oriented
modelling of LIED Systems.

Domain Signal Potential Flow

trans.

mechanics

position:
𝑟

 [m]

velocity:

 𝑣 [m/s]

force:

 𝑓 [N]

rotational

mechanics

angle: 𝜑

[rad]

angular

velocity: 𝜔

[rad/s]

torque:

 𝜏 [Nm]

Thermo-

fluid

streams

Thermo-

dynamic

state: Θ̂

inertial

pressure

𝑟 [Pa]

mass-

flow

rate:

 𝑚̇ [kg/s]

More background on the derivation of these triplets can be
found in (Zimmer2024). It goes beyond the scope of this
paper how the equations are formulated in detail but the
two Modelica model diagrams shown in Figure 1 and
Figure 2 may illustrate the practical usefulness.

Figure 1. Model diagram of a reversible heat pump
systems using the ThermoFluid Stream Library.

Testing Large Scale System Simulation using Linear Implicit Equilibrium Dynamics

86 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21785

Especially the ThermoFluid Stream Library has
meanwhile become a popular OpenSource library used by
academia (Junglas2023) and by industry.

LIED systems have very benevolent characteristics for
object-oriented modelling. Following simple connection
rules, the resulting matrix 𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) will be regular
and an a-priori statement on solvability can be given
(Zimmer2020). This makes this class of modeling very
robust and prevents many computational simulation
errors.

Figure 2. Model diagram of a reversible heat pump

systems using the ThermoFluid Stream Library.

New libraries are currently under development that follow
this methodology.

3 Potential Compilation of LIED
Systems

It turns out that components modeled according to the
LIED Methodology have a predictable computational
structure. As outlined in (Zimmer 2024), suitable
variables for states, their derivatives, for tearing variables
and residuals are known a-priori on the level of individual
components. This means that flattening is not necessary
for LIED systems anymore and that instead the
compilation could be performed on the component level.
Such a compiler has not yet been developed. So far only a
sketch exists on how Modelica models would need to be
prepared to enable a component wise compilation.

From a dedicated compiler for LIED systems, we would
expect the following advantages:
• Better scalability in terms of code generation speed

and memory consumption
• Better error messages based on the connection rules

on component level instead on equation level

There may be also disadvantages to be expected:
• Slower simulation code (at least for smaller systems)

due to lack of symbolical optimization
• Of course: such a compiler is only applicable of the

subset of LIED system and not a full Modelica
compiler.

Hence, before making the effort of developing a dedicated
compiler for LIED systems, it makes sense to study these
benefits and drawbacks of the corresponding compile
target. To do so, a dedicated LIED simulator was
implemented in C++.

4 Building a Simulator for the LIED
Compilation Target.

When compiling a LIED component from Modelica into
C++, how would the corresponding C++ code look like?
Essentially each LIED component can be represented by a
C++ class. The class may thereby define the following
elements:

• Interfaces for the signals
• Member functions for the blocks that process

these signals
• Local parameters and variables
• Special member objects of type

ContinuousState that define state variables
and their derivatives

• Special member objects of type Tearing that
define tearing variables and their linear
dependent residuals.

• A mandatory virtual member function metainfo
that provides meta information for the simulation
engine.

To better understand these elements, let us look at a
concrete example. Figure 3 presents a simple planar
mechanical system of a crane crab (a pendulum attached
to a slider). To each component of the system, 3
computational blocks are assigned of different color: blue,
green, and orange. The blue and green blocks form
thereby a computational sequence directed from the root
whereas the orange signal leads to the root. For this
particular domain of LIED systems, the blue signal
contains the positional state and undergoes non-linear
transformations. The green signal represents the velocity.
Its derivative may be used as tearing variable for which
the orange signal that represents the force provides a linear
response.

Session5A

DOI Proceedings of the Asian Modelica Conference 2024 87
10.3384/ecp21785 December 12-13, 2025, Jeju, Korea

Figure 3. Crane crab modelling diagram

Let us look at one example component that contains all of
the elements described above: the revolute joint. In Figure
4, the 3 member functions are marked with the colors to
match Figure 3.

Figure 4. C++ class diagram of a model component.

The virtual member function metainfo is crucial to
understand how the simulator works. Here is the
corresponding code for the RevoluteJoint.

Listing 1. Function for metainformation on the revolute
joint.

virtual void metainfo(Meta& meta) override {
 meta.regComp(&flangeTo,"flangeA");
 meta.regComp(&flangeOn,"flangeB");
 meta.regComp(&position, "position");
 meta.regComp(&velocity, "velocity");
 meta.regComp(&zeroTorque, "zeroTorque");

 meta.regVariable(&phi,"phi: [rad]");
 meta.regVariable(&phi_der,"phi_der:[1/s]");
 meta.regVariable(&w, "w_kin: [1/s]");
 meta.regVariable(&z, "z: [1/s2] ");

 meta.regVariable(&residualTorque,"…");

 meta.addBlock(this,
 [](Component* c) {
 return ((RevoluteJoint*)c)->evalState();
 },
 Signals{&flangeTo.state,
 &position.state },
 Signals{&flangeOn.state}
);
 meta.addBlock(this,
 [](Component* c) {
 return ((RevoluteJ…*)c)->evalKinetic();
 },
 Signals{&flangeTo.kinetic,
 &velocity.state,
 &zeroTorque.tearing },
 Signals{&flangeOn.kinetic}
);
 meta.addBlock(this,
 [](Component* c) {
 return ((RevoluteJoint*)c)->evalForce();
 },
 Signals{&flangeOn.j},
 Signals{&flangeTo.j,
 &position.derivative,
 &velocity.derivative,
 &zeroTorque.residual}
);
 };

The Meta object, whose reference is passed to the
metainfo function, crawls through the entire model in a
recursive way and collects all information of interest.
There are different child classes of the abstract Meta class:
for instance, the DiagnosisMeta class collects meta
information about the variable names. In order to
construct the simulation code, the StructuralMeta
class is most relevant to us. It collects all the information
which block depends on which signals and what variables
are states, derivatives, tearing variables or residuals.
Given this information callback objects can be created.
The final simulation program is then simply a list of these
call backs. Sections for dynamic evaluation and tearing of
linear equation systems are thereby separately marked.

The following listing shows the top-level representation
of the crane crap model in C++ as potential compile target.
As you can see, it is possible to maintain the original
structure of the model. The reader may use these examples
to trace the recursive calls of the metainfo function.

Listing 2. CraneCrab Example in the compile target.

class CraneCrab : public Component {
public:
 Fixed fixed{};
 PrismaticJoint prismatic1{Vector2d{1.0,0}};
 Body body1{1.0,0.1};
 RevoluteJoint revolute2{};
 FixedTranslation rod2{Vector2d{0.5,1.5}};
 Body body2{0.5,0.05};

Testing Large Scale System Simulation using Linear Implicit Equilibrium Dynamics

88 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21785

 Connections con {
 Connection{&fixed.flangeOn,
 &prismatic1.flangeTo},
 Connection{&prismatic1.flangeOn,
 &body1.flangeTo},
 Connection{&prismatic1.flangeOn,
 &revolute2.flangeTo},
 Connection{&revolute2.flangeOn,
 &rod2.flangeTo},
 Connection{&rod2.flangeOn,
 &body2.flangeTo}
 };

 virtual void metainfo(Meta& meta) override {
 meta.regComp(&fixed, "fixed");
 meta.regComp(&prismatic1, "prismatic1");
 meta.regComp(&body1, "body1");
 meta.regComp(&revolute2, "revolute2");
 meta.regComp(&rod2, "rod2");
 meta.regComp(&body2, "body2");
 };
};

Figure 5 presents the overall architecture of the
simulation program. We can go through its main elements
from the left to the right.

Models consist of Components, Signals and
Connections, whereby both signals as well as components
may have member functions that represent blocks.

When a model gets instantiated, it gets prepared for its
evaluation. This is the function of the ModelEvaluation
class. It will use the StructuralMeta crawler to collect
all necessary meta information. Then all blocks will be
sorted and the sections representing torn linear equation
systems will be compressed and marked. Compression
hereby means that all blocks not belonging to the linear
system are placed outside this section.

The Simulator class will now apply a numerical ODE
solver. Currently zimsim features a generalized solver for
explicit Runge-Kutta Fix Step Methods with Butcher
Tableaus for order 1 to 4, Backward Euler, and
ESDIRK23 (Jørgensen2018) as solver algorithms.

When the simulator generates results, it calls the
Recorder class. The recorder then decides on its own what
to store at which frequency. The recorder may use a
separate crawler on the simulated model to retrieve
information on variable names, model hierarchy etc. Also,
it may trigger the model evaluation if separate evaluations
are needed for the generation of output variables. The
recorder class is defined in a very generic manner and can
be used to multiplex the output to other recorders.

We see that the design of a simulator for pre-compiled
components may differ significantly from the monolithic
generation of simulation code.

The structure of the model is maintained for the
simulation code and instead of having to decide which
meta-information to provide for the output before
translation, this decision can be done at simulation time or
even after simulation took place.

What are the benefits and drawbacks of such an
architecture? We would expect a much lower memory
consumption because meta-information can be generated
on demand. On the other hand, we would expect a higher
computational overhead: alias variables are not eliminated
and linear equation systems need to be numerically solved
instead of symbolically.

To better quantify these benefits and drawbacks, a
scaling experiment is being performed where memory
consumption and computational speed is being measured
for models of different size.

Figure 5. Architecture of the object-oriented simulator program

Session5A

DOI Proceedings of the Asian Modelica Conference 2024 89
10.3384/ecp21785 December 12-13, 2025, Jeju, Korea

5 Evaluation of the Scaling
Properties.

The crane crab model of Figure 3 has been used to
perform a simple scaling experiment. Using a logarithmic
grid of factor 4, 1 to 4,194,304 crane crabs have been
instantiated and simulated using zimsim. The same
exercise has been performed within an equivalent
Modelica model using the same equations. OpenModelica
(Fritzson2019) (abbreviated by OM) and a commercial
Modelica tool have been used for the simulation tests.
Here, this generates models ranging from 206 equations
up to 792 million equations. In Figure 6 to Figure 8, we
use the equation number since this quantity is more
familiar to Modelica users.

Comparing simulation speed and memory consumption
across tools is not trivial. For instance, the simulation
speed may be influenced by the generation of output. For
this reason, output generation was largely suppressed.
Memory consumption refers to the estimated peak
consumption of the whole program.

In general, one should be very careful when comparing
absolute numbers for a specific case. What matters to a
scaling test though is the slope in the log-log diagram.

All tests have been performed on a machine with
Intel(R) Core(TM) i7 at 1.80 GHz and 32GB of RAM
using Windows 10 as operating system.

All tools have been tested to their maximum extent.
There are however orders of magnitude in difference
between the tools. In the end, zimsim was limited by
available memory. Also the memory consumption of the
commercial tool caused disk swapping slowing down the
whole process to such an extent that it did not finish within
several hours. In OpenModelica, a clang linker error
occurred for 1024 crane crabs. Simulation performance
could thus not be estimated. Memory consumption and
compile time for this data point were replaced by values
that exclude the linking.

5.1 Memory Consumption
zimsim has been written with efficient use of memory in
mind: Meta information is generated only on-demand and
also the object-oriented formulation enables to do more
computation on the steak than on the heap.

Peak memory usage for model translation, compilation
and simulation is orders of magnitudes lower using
zimsim. This is shown in Figure 7. The likely reasons are:

• Avoidance of flattening leading to much less
instruction code.

• On demand generation of meta-information
• More variables on stack than on heap

For small models, comparing the memory usage hardly

makes any sense and is also not fair because we compare
the memory usage of a dedicated simulator (LIED) with
the one of a whole modeling and simulation environment.

The two orders of magnitude for small models is thus not
surprising. What is surprising that this gap does not
significantly close for larger models. Peak memory
consumption seems to appear in the tools at model
translation for the Modelica tools but this is also true for
zimsim. The last data point of Figure 7 is misleading.
The model was assigned 29GB of RAM by the operating
system while the estimated remaining 15 GB of memory
demand where provided by disk swapping. This also
shows in the performance of model instantiation but not in
simulation because this can be performed within the
provided 29GB.

5.2 Computation Time
Pure simulation time is compared here. Time for
translation, compilation and instantiation is ignored.
Generation of output has been reduced to a negligible
amount.

Figure 8 reveals that simulation speed of zimsim is
competitive to OpenModelica but slower for small models
than a commercial tool. The likely reason is the numerical
solution of linear equation systems in zimsim instead of
symbolical transformation. This primarily reveals one
thing: flattening for the sake of flattening is not worth
it. Structured code is also fast. Flattening is then a good
idea when you can replace an iterative solver with a
symbolic solution. (however, there might be ways to
generate structured code that reduces iterations as well)

We can observe that for larger systems, the
performance penalty is smaller, the reason is unknown.

A side remark: The performance study has only been
performed using explicit solvers, ignoring the
computation of the Jacobian which is very relevant for
implicit solvers. However, implicit solvers scale badly for
very large systems.

5.3 Time for Translation + Compilation or
Instantiation

One expected advantage of pre-compilation would be that
a model could be instantiated almost immediately. Hence,
the time for model instantiation in zimsim is displayed in
Figure 6.

The instantiation essentially uses the famous Tarjan
algorithm for strong component analysis that provides a
partial order of the dependence graph as side effect. It can
be performed very efficiently. For it to take longer than a
single second, models of more than 1 million equations are
needed.

Time for Translation and Compilation in the Modelica
tool is added to the chart. This measurement is not very
precise (at least 20% error bar) and for all smaller models
completely dominated by the C compiler. The comparison
is hence not fair for smaller models.

Testing Large Scale System Simulation using Linear Implicit Equilibrium Dynamics

90 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21785

Figure 8: Computation speed: milliseconds per model evaluation over number of equations

Figure 7. Peak memory usage in bytes over number of equations

Figure 6. Instantiation Time or Translation+Compile time in ms over number of equations

Session5A

DOI Proceedings of the Asian Modelica Conference 2024 91
10.3384/ecp21785 December 12-13, 2025, Jeju, Korea

6 Conclusion

The goal of this paper is to explore and compare
alternative pathways for the compilation of simulation
code. Naturally flattening and the generation of
monolithic rather unstructured simulation code are
procedures inherent to compiling Modelica. These
procedures enable the effective symbolical manipulations
and the removal of alias variables.

How strong these advantages are compared to a more
structured generation of simulation code that compiles on
the component level was however examined sparsely.

The preliminary examination presented in this paper is
not sufficient to provide conclusive answers yet.
Improvements in the algorithm and simulation code are
needed because many potentials for code optimization
have not yet been exploited. Furthermore, a much wider
set of examples is needed. At the current stage, it merely
indicates that the performance gain by flattening per se is
not very significant, symbolic solution are preferable over
iterative ones and it also shows that pre-compilation has a
great potential to be way more memory efficient enabling
the simulation of much larger models.

We also have to recall that the component-wise
compilation could not be performed on arbitrary models
but only on models following the LIED methodology.
Albeit this is a remarkably powerful subclass of Modelica,
it is still only a subclass.

Acknowledgement
This work was supported by the ITEA4 research project
OpenScaling with financial support of the German federal
ministry of education and research referring to the grant
number: 01IS23062C

References

Abdelhak, K., F. Casella, B. Bachmann (2023) Pseudo Array

Causalization. Proceedings of the 15th International
Modelica Conference, Aachen

Agosta F., et al. (2023) MARCO: An Experimental High-
Performance Compiler forLarge-Scale Modelica Models
Proceedings of the 15th International Modelica Conference,
Aachen.

Benveniste, Albert, Benoît Caillaud, Hilding Elmqvist, et al.
(2019). “Multi-Mode DAE Models - Challenges, Theory and
Implementation”. In: Computing and Software Science –
State of the Art and Perspectives. Vol. 10000. Lecture Notes
in Computer Science. Springer, pp. 283–310.

Benveniste, A., B. Caillaud, M. Malandain, J. Thibault (2023)
Towards the separate compilation of Modelica: modularity
and interfaces for the index reduction of incomplete DAE
systems Proceedings of the 15th International Modelica
Conference, Aachen.

Braun, Willi, Francesco Casella, and Bernhard Bachmann
(2017). “Solving large-scale Modelica models: new
approaches and experimental results using OpenModelica”.

In: Proceedings of the 12th International Modelica
Conference.

Casella, Francesco (2015). "Simulation of Large-Scale Models
in Modelica: State of the Art and Future Perspectives",
Proceedings of the 11th International Modelica Conference,
doi:10.3384/ecp15118459

Fritzson, Peter A. et al. (2019) “The OpenModelica Integrated
Modeling, Simulation, and Optimization Environment.”

Proceedings of The American Modelica Conference 2018,
October 9-10, USA

Jørgensen, J.B., Kristensen M. R. and Grove, P. (2018) A Family
of ESDIRK Integration Methods. arXiv Numerical Analysis
eprint :1803.01613

Junglas, P. (2023) Implementing Thermodynamic Cyclic
Processes Using the DLR Thermofluid Stream Library.
Simulation News Europe E 33(4)

Mattsson, S.E., Gustaf Söderlind (1993). “Index Reduction in

Differential-Algebraic Equations Using Dummy
Derivatives” In: SIAM Journal on Scientific Computing 1993

14:3, 677-692
Neumayr, A.; Otter, (2023) M. Modelling and Simulation of

Physical Systems with Dynamically Changing Degrees of
Freedom. Electronics, doi.org/10.3390/electronics12030500

Pantelides, C. (1988), The consistent initialization of
differential-algebraic systems, SIAM J. Sci. Statist. Comput.,
9, 213–231

Zimmer, Dirk (2009) Module-Preserving Compilation of
Modelica Models. In: Proceedings 7th Modelica Conference,
Como, Italy, Sep. 20-22

Zimmer, D. (2020), Robust Object-Oriented Formulation of
Directed Thermofluid Stream Networks. Mathematical and
Computer Modelling of Dynamic Systems, Vol 26, Issue 3.

Zimmer, D., N. Weber, M. Meißner (2022) The DLR
ThermoFluid Stream Library. MDPI Electronics - Special
Issue.

Zimmer, D., C. Oldemeyer (2023). “Introducing Dialectic

Mechanics”. Proceedings of the 15th International Modelica

Conference, Aachen.
Zimmer D. (2024) Object-Oriented Modeling of Classic

Physical Systems using Linear Implicit Equilibrium
Dynamics Preprints 2024, 2024031139

Testing Large Scale System Simulation using Linear Implicit Equilibrium Dynamics

92 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21785

Requirements-based, early stage Architecture Performance
Validation on a Brake System Use Case

Sinyoung Kang1 Marcel Gottschall2 Sunghyun Cho1 Torsten Blochwitz2

1Hyundai Motor Company (HMC), Republic of Korea {Newyoung,hyuni}@hyundai.com
2ESI Group, Germany, firstname.lastname@esi-group.com

Abstract
Automotive industry OEMs and suppliers are progressing
their engineering processes and performance to the next
maturity level gearing to digital thread solutions. Cur-
rent challenges like continuous engineering, virtual cer-
tification, distributed development, consolidated virtual
proving grounds, homologation, digital twin and opera-
tional applications, require well informed decision making
in a comprehensive, reliable, traceable and customizable
environment. In particular, in automotive domain, with
widespread tight collaborative ecosystems between inte-
grators and suppliers, the capability of tracing each deci-
sion and its underlying artifacts becomes a key value of an
engineering platform.

This paper will outline a middleware approach to reuse
generated artifacts and their relationships in a federated
engineering environment and applying Modelica simula-
tion models as the key integrator between architectural de-
cision making and subsequent development up to detailed
3D design. Based on an exemplary, automotive brake sys-
tem setup, the benefits of integrated data and workflows
from specification to virtual architecture exploration and
design verification are highlighted to motivate their value
towards a realization of continuous model-based systems
engineering methodologies.
Keywords: MBSE, System Simulation, Virtual Validation,
Automotive Brake System

1 Introduction
The increasing complexity of vehicle development has led
to a continuous effort to adopt system engineering-based
approaches. Organic integration and management through
system engineering are essential to achieve optimal per-
formance and reliability. Recently, model-based systems
engineering (MBSE) methodologies have emerged as an
alternative to document-centric systems engineering, en-
abling a holistic view and systematic management of the
growing complexity of requirements.

The vehicle architecture validation process for brak-
ing performance involves various aspects and engineer-
ing disciplines, such as braking distance, deceleration,
and thermal capacity. However, past performance vali-
dation efforts have lacked systematic systems engineer-
ing review, and requirements and test case management

have not been well-structured, leading to significant chal-
lenges, both in traceability and integrated performance as-
sessment, particularly in the early stages of vehicle de-
velopment. Specifically, a structured approach to linking
requirements and 1D simulation models has been lacking,
and MBSE methods have been proposed as a solution to
systematically manage these relationships in theory.

In the daily engineering reality, the disconnection be-
tween requirements, MBSE-based architecture models,
and 1D models, each managed in separate specialized
software, has hindered effective traceability management.

Therefore, the primary objective of this paper is to im-
plement a digital thread that organically connects and
manages requirements, architecture models, and 1D per-
formance models, covering the early stages of devel-
opment of cyberphysical systems1. By establishing a
database-centric digital thread, the aim is to build an in-
tegrated and efficient management approach that ensures
traceability and consistency. Specifically, this study will
leverage MBSE methodologies to effectively integrate
SysML-based architecture with 1D models and design re-
quirements. This approach not only addresses the current
inefficiencies, but also lays the foundation for a more ro-
bust and scalable systems engineering process.

2 Motivation and Implementation Ap-
proach

Achieving digital continuity along the engineering cycle
as shown in Figure 1, leveraging the available information
and digital assets, is a major contributor to more efficient
development processes forced by cost and cycle time re-
duction needs. However, this is not yet state of the art, in
particular in real-world, multipartner, industrial and pro-
ductive applications and ecosystems.

2.1 The Need for MBSE at HMC
Traditionally, product development has been conducted
independently in various isolated disciplines such as me-
chanical, electrical/electronic, and control engineering.
This approach has led to challenges in addressing issues
that arise during the development process, which can re-
sult in difficulties in design, product integration, and ver-

1technical systems that consist of a physical part and a software/con-
troller component

DOI Proceedings of the Asian Modelica Conference 2024 93
10.3384/ecp21793 December 12-13, 2025, Jeju, Korea

RRR

Figure 1. Flat representation of the well known V-cycle model (only major steps, excluding operation of system of interest)

Figure 2. OMG SysML Diagram Taxonomy (Hause et al. 2006)

ification, ultimately leading to delays in product launch.
With the increasing complexity and intelligence of mod-
ern products, there is a growing need to address these
limitations. Model-based technologies, like MBSE have
emerged as an alternative to overcome the limitations of
traditional systems engineering and development frame-
works. Those approaches are lacking of effective com-
munication and collaboration across different engineering
domains. These siloed methods often result in misaligned
objectives, conflicting requirements, and a fragmented un-
derstanding of how changes in one area can impact others.
Consequently, critical design decisions may be made with-
out fully considering their implications on the overall sys-
tem performance, leading to inefficiencies and increased
risk of failure in the final product.

Hence, in this research and proof of concept applica-
tion, the focus is on utilizing the MBSE methodology in
the domain of brake system performance, with the aim
of not only validating the approach itself within a single
performance area and system, but also exploring the po-
tential for understanding the relationships and traceability
between multiple performance aspects and across multi-
ple systems within complex, multidimensional design pro-
cesses.

2.2 Architecture System Modeling
The Systems Modeling Language (SysML) is a standard-
ized language developed to effectively implement MBSE,
(Object Management Group 2022). SysML, defined by
the Object Management Group, is an extensible, graphi-

cal language that can comprehensively represent the struc-
ture, behavior, requirements, and parameters of complex
systems in a single model representation.

While the widely used Unified Modeling Language
(UML) has been primarily focused on software-centric
modeling, SysML extends it to support modeling across
various domains, including hardware, software, informa-
tion, and processes, encompassing the entire system. Thus
it ideally covers the scope of cyberphysical systems, like
the mentioned brake system. The key SysML diagrams
shown in Figure 2 include Requirement Diagrams, Struc-
ture Diagrams, Behavior Diagrams, and Parametric Dia-
grams, which enable clear visualization and analysis of
different aspects of the system.

Specifically, when modeling dedicated performance do-
mains, such as braking performance, SysML offers the
following advantages (Hause et al. 2006):

• Requirement Traceability: The Requirement Dia-
gram (REQ) allows for the clear definition of sys-
tem requirements and enables tracing them through-
out the design and verification process to ensure re-
quirement fulfillment.

• Structural Analysis: The Block Definition Diagram
(BDD) and Internal Block Diagram (IBD) can be
used to explicitly express the functional and logical
structure of the system, helping to clarify the rela-
tionships between system components and maintain
consistency from the design stage to the integration
and verification stages.

Requirements-based, early stage Architecture Performance Validation on a Brake System Use Case

94 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21793

• Behavioral Modeling: Diagrams such as Activity
Diagrams (AD) and State Machine (SM) Diagrams
can be used to model the dynamic, but abstract, non-
physical behavior of the system, enabling the simu-
lation of operational scenarios and the identification
of potential issues in advance.

• Parametric Analysis: Parametric Diagrams can be
utilized to define the performance parameters of the
system and analyze the system’s performance under
various conditions.

Based on these SysML features and capabilities, the
present work will explore the benefits of such hierarchi-
cally concatenated artifacts, when they are reused in phys-
ical simulation domain. It is expected, that a seamlessly
integrated workflow consisting of a) summarizing the ver-
ification requirements for braking performance in vehicle
development, b) representing traceability of these require-
ments through the relationships between Requirement Di-
agrams and Block Definition Diagrams, and c) extract-
ing structural analysis of the brake system architecture
through Block Definition Diagrams and Internal Block
Diagrams will demonstrate the effectiveness of MBSE
methodology for real, cross-domain early stage engineer-
ing processes for hierarchical multiphysical systems.

2.3 Limitations of existing Approach at HMC
In current systems engineering practices, requirements
are typically managed using documents such as Excel
or Word, or requirement management software like IBM
DOORS. However, it is not straightforward to link the re-
quirements managed or handled in these documents or
software to the Requirement Diagram in a SysML-based
architecture model, particularly in typical multi-vendor
engineering tool landscapes that are in place at enterprise
level. While some SysML authoring tools like Dassault
Systems CAMEO Systems Modeler provide plugins, these
often expect the requirements to be exchanged as a Re-
qIF standard XML file, necessitating additional, manual
steps to directly integrate the requirements in the model
and continuous process.

Furthermore, there are even greater challenges in con-
necting the SysML architecture model to the analysis
models used for actual verification. To validate the con-
tent of the SysML model, 1D and 3D analyses, or physical
testing must be performed. Even if the SysML architec-
ture model is used as a basis, significant time and effort are
still required to set up the analysis models, especially for
1D, physical analysis approaches like Modelica-based so-
lutions (Modelica Association 2021), where a separate 1D
model needs to be created, despite the similarities in the
structure. Recent standards, like Modelica SSP2 (Model-
ica Association 2022) are tackling some of these integra-
tion aspects between architecture and simulation domains,

2System, Structure and Parametrization

but are still far away from productive application and dis-
semination.

As described above, while the benefits of MBSE-based
architecture models are recognized, it remains difficult
to maintain traceability between requirements, test cases,
and 1D simulation models, as these are often managed in
separate tools. Additionally, it is challenging to verify 1D
model results against the requirements-based validation.

2.4 Digital Thread Implementation
To address the inconvenience caused by the incompatibil-
ities in the working environments for requirements, archi-
tecture models, and 1D models, we conceived the idea
of integrating the artifacts, created by the engineering
clients, instead of connecting relevant software tools one-
to-one by import/export actions.

In order to achieve such tool agnostic, vendor neutral
continuous engineering platform, a microservice-based
middleware approach is implemented as shown in Fig-
ure 3. Consisting of OSLC3 compliant, domain-specific
webservices, e.g. requirements- or testmanagement, this
layer provides full flexibility and scalability with respect
to the considered process. It stays intact even when fron-
tend (engineering clients) or backend (data management)
tools are replaced over time, thus keeping consistency
throughout the linked engineering data, (Open Services
Project 2021). Moreover, depending on the features of the
applied backend systems, the middleware layer can also
provide general support functions like user management
or versioning. However, usually such capabilities are inte-
grated in modern datamanagement backbones, e.g. PLM4

systems. On the other side, the engineering clients are ac-
cessing the engineering data by dedicated plugins (as the
only component to be adapted in case of changes in tool-
ing), which replicate the corresponding, desired engineer-
ing workflows using the linked data that is exposed by the
middleware. Hence, from user perspective, this reflects
the single source of truth paradigm, as each participant
that is part of such integrated process consumes or pushes
his information from or to the same entry point without
data replication.

With this technology, we connected a representative
multi-vendor engineering environment, covering early
stage design and verification phases:

• the requirements management software
IBM DOORS (classic),

• the SysML architecture modeling tool
Sparx Systems Enterprise Architect,

• and the Modelica-based 1D analysis tool
ESI SimulationX,

to ensure traceability and enable efficient architecture-
level braking performance validation. Furthermore, we

3Open Services for Lifecycle Collaboration
4Product Lifecycle Management

Session5B

DOI Proceedings of the Asian Modelica Conference 2024 95
10.3384/ecp21793 December 12-13, 2025, Jeju, Korea

Figure 3. Tool agnostic, digital thread middleware approach based on OSLC compliant webservices

Figure 4. MBSE approach linking design artifacts, logical struc-
ture (L) implements functions (F) that satisfy requirements (R)

implemented a bidirectional traceability structure, not just
a unidirectional link from requirements to the 1D simu-
lation model. By leveraging the OSLC technology and a
database-driven approach, we were able to establish a con-
nection that allows the verification results from the 1D per-
formance model to be reflected back in the requirements
definition and management system. The application of the
implementation will be demonstrated and discussed in the
next sections.

3 Design Methodology
Following the principles of MBSE, a formal and clearly
structured process, shown in Figure 4, enables the deriva-
tion of structural descriptions (components and their in-
terrelation) of the target architecture, as the main input for

the simulation domain. Starting with high level require-
ments or stakeholder needs (R) on the system of inter-
est, a functional architecture (F) is designed which satis-
fies the requirements. Applying various abstract modeling
and analysis descriptions like Use Case- and Activity Dia-
grams or State Machine simulations, enable the (non phys-
ical) justification of the design and a further decomposi-
tion of the functional behavior into logical components
(L). Apart from logical and discrete simulations, the sys-
tems architecture has to be verified against performance
requirements by 1D physical simulation, before propagat-
ing system sizing and design parameters to the 3D design
stage.

However, historically, systems engineering (holistic)
and simulation (domain experts) have been disconnected,
which results in a gap in the level of detail for the logi-
cal structure description (L), as the architecture definition
in MBSE output is still abstract and does not fulfil phys-
ical simulation needs. This issue, recently discussed in
(Cederbladh et al. 2024), has to be handled and adressed,
when aiming for a cross-domain digital thread implemen-
tation with seamless integration from architecture to per-
formance simulation. Applying stereotyping to connec-
tions between different logical components (L), maps the
abstract layer of description in SysML language (e.g. "two
components are exchanging energy") to the information in
physical domains (e.g. "electrical connection is required
between motor and battery"), that is necessary to build
corresponding physical simulation models to be used for
the architecture verification. Hence, these physical mod-
els are not only serving the actual performance validation
activities, but also enable the detailing and specification
of interface definitions on the logical layer based on simu-
lation justification, which is absolutely required for com-
plex systems, early stage architecture exploration activi-
ties. With this extension to SysML model descriptions, it
becomes possible to automate the reuse of architecture in-
formation for generating physical simulation model tem-

Requirements-based, early stage Architecture Performance Validation on a Brake System Use Case

96 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21793

Figure 5. Specific case for brake thermal management, representation of the performance requirement in DOORS with content
(first column), version (second column), virtual verification result (third column) and ID of OSLC artifact (fourth column)

Figure 6. Closed loop, MBSE-based early stage, architecture and design verification using 1D Modelica models replicating virtual
test scenarios defined by system requirements (REMARK: due to IP restrictions, the screenshots do not show the actual brake
system models, but demonstrate the concept and workflow)

plates, that are linked to certain requirements and used in
subsequent performance analysis tasks. Another benefit
of this cross-domain integration from design perspective,
is the inheritance of global architecture design parameters
that automatically become (Modelica) parameters of the
resulting behavioral models, as demonstrated below.

3.1 Brake System Performance Use Case
To validate the braking performance, the vehicle devel-
opment requirements managed internally by the company
were consolidated, serving as a foundation for establish-
ing the objectives to be verified through a 1D simulation
model. It should be remarked, that there are of course
plenty of structural and performance requirements on the
brake system, referring to different hierarchy levels (sub-
systems, components), which are qualified for virtual ver-
ification by simulation and have been used in this study,
e.g stopping distance with ABS or several system- and
unit fail scenarios. However, to demonstrate an efficient,
integrated validation process, the Energy Saving Rate ver-
ification shown in Figure 5 is selected as a representative
case, as the Modelica-based multiphysics model includes
brake hydraulic, mechanical, thermal and electrical sys-
tem behavior for simulating braking performance .

The Energy Saving Rate (ESR) is obtained through en-
ergy analysis. First, energy is calculated by integrating
power during braking periods in driving cycles, such as the

WLTP5 for Hybrid Electric Vehicles (HEV) and Electric
Vehicles (EV) that are equipped with regenerative brak-
ing. Then, the calculation ESR formula is as follows:

• ESR = Regenerative Braking Energy / Total Braking
Energy, with

• Total Braking Energy = Regenerative Braking En-
ergy + Mechanical Braking Energy

Each company has established target values for the
ESR, which is considered confidential information within
each organization. Therefore, a sample value of approxi-
mately 0.9 has been set for the target in this study.

3.2 Process Demonstration
As described above and summarized in Figure 6, the vir-
tual validation process consists of 4 major steps, seam-
lessly linking and integrating the disciplines of require-
ments, functional and logical architecture and physical
simulation models for design and verification tasks. With
the implemented digital thread, a closed-loop workflow
with digital continuity is established, enabling collabora-
tion between the R-F-L-P and test domains. Such setting
will allow for certification credits based on simulation re-
sults, as end-to-end traceability is one of the key require-

5Worldwide Harmonized Light Vehicles Test Procedure

Session5B

DOI Proceedings of the Asian Modelica Conference 2024 97
10.3384/ecp21793 December 12-13, 2025, Jeju, Korea

ments in regulations like ISO 26262, (Peraldi-Frati and
Albinet 2010; Maro, Staron, and Steghöfer 2017).

The braking system and performance requirements es-
tablished earlier, are stored in the digital thread database
backend by a plugin in the DOORS client. Please note,
that this digital thread backend is running in parallel
to databases that are potentially in place when com-
mon engineering tools client/server architectures are de-
ployed. Depending on their flexibility with respect to the
datamodel modifications and extensions, another multi-
purpose database might be required to handle the linkages
between the different engineering artifacts. In a second
step, the requirements are retrieved into the architectural
design tool Enterprise Architect, again using a dedicated
plugin. This way, the requirements and their hierarchy
are automatically added to the SysML model, as a starting
point for the functional design step.

Using the requirements retrieved via the digital thread,
the braking functional elements were created in the
architecture model, represented through requirements
diagrams and block definition diagrams. Additionally,
the physical structure necessary to implement the defined
functions for brake validation is depicted in an internal
block diagram, facilitating architecture modeling based
on physical structure analysis. This process allows for the
definition of traceability among requirements, functional
definitions, and physical structures, with their interrela-
tionships expressed through connections between blocks.
A more detailed description of the different, formalized
steps can be found in Aleksandraviciene and Morkevicius
(2018). It is one of the key strengths of a holistic systems
model representation, to easily express the allocation
of architectural components to certain requirements for
verification purposes in a user convenient, graphical way.

After the logical structure breakdown is derived from the
functional design, the various connections between the
different components are allocated to dedicated physical
domains, like hydraulics, electrics or mechanics, using
stereotyping6. This step drives an active collaboration and
iteration between the systems- and simulation engineer,
as the latter is the domain expert on specific systems
and has knowledge on potential limitations or boundary
conditions when mapping physical realizations to a cer-
tain logical structure. In addition, the already mentioned
architecture design parameters are defined and added to
the corresponding logical components. Such parameters
refer to system level, global sizing or structural variants
inside a certain architecture descriptions and are reused
to define simulation runs downstream in the verification
process.

The physical structure - or more precisely, the logical
structure augmented with physical information - repre-
sented in SysML IBDs, is organized specifically for the
brake system to evaluate braking performance. In partic-

6adding additional information to modeling components

Figure 7. Concept of partial IBDs as representation of specific
aspects, e.g. a single physical domain, of a logical component
for integrated virtual verification purposes

ular, for complex systems with many hierarchical levels,
the corresponding physical models become big with high
computational efforts, leading to weak performance in
use cases like architecture exploration with large amount
of simulation runs. Hence, the concept of partial IBDs is
introduced for improved virtual testing performance. As
shown in Figure 7, dedicated IBDs, focussing on specific
aspects of a complex logical component, like thermal
or mechanical domain, are extracted from the inner
structure described by the full (multiphysics) architecture
IBD. These partial IBDs only show components and
subsystems, that are contributing to the specific aspect
of the component or system, like the thermal behavior
in the current demonstration use case. As mentioned
above, these architectural components are then linked or
allocated to the corresponding (sub-system) requirements.
Hence, there is a clever separation between the reduced
architectural models used for physical verification runs
(here: the thermal management model), and the full
logical structure representation (here: the brake system
model), used for design descriptions like bill of materials
of a system. Another benefit of this approach is the easy
support of function-based design and testing methods
in the 1D simulation domain, because of the allocation
of the reduced architectural models to functions and
requirements, following the R-F-L process. In summary,
structural information in (partial) IBDs and linking of
architecture to requirements are key information and input
for the subsequent step of system simulation in the design
process. The available, integrated information of a
system adheres to the Model-Based Systems Engineering
methodology, enabling the direct reuse of the internal
block diagram for cross-domain linking of architecture-
with the corresponding 1D simulation model.

Similar to the requirements, relevant information of
the SysML model from process perspective, like the IBD
representing the physical structure of the brake system,
or tracelinks between requirements and the internal block
diagram, are uploaded to the digital thread environment’s
database using the plugin developed for Enterprise

Requirements-based, early stage Architecture Performance Validation on a Brake System Use Case

98 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21793

Figure 8. Testmodel (simplified) for the thermal management requirement example, consisting of 3 main components: a) design
model instance (Unit under Test), b) stimulation, environment and parameters (Scenario), and c) test verdict extraction (Evaluation)

Figure 9. Design parameter study (sizing) to identify simulation
runs within a desired range of model parameters (pink bars) us-
ing python scripting capabilities integrated in the model

Architect. This is required, as the version of the tool used
in this study is not connected to any data backend but
relies on local file storage.

In the following, by utilizing the SimulationX plugin,
a connection is established with the database through the
digital thread, enabling the automatic generation of Mod-
elica libraries (packages) and types (models), that corre-
spond to and reflect the structure of the IBD of the SysML
architecture model. These automatically generated Mod-
elica templates implement the connections and ports as
well as the system hierarchy represented in the IBD. How-
ever, it is important to note that the Modelica blocks de-
rived from the SysML architecture model are not imme-
diately executable models, they merely represent the ar-
chitectural structure of the brake system. Therefore, to
conduct a 1D performance analysis, it is necessary to add
components capable of performing such operations.

Thus, the simulation engineering process is taking
place in a next step, creating physical models inside

the templates, describing the actual behavior of the
components. Please be aware, that the model generation
can only be automated based on available information,
and as mentioned above, SysML language is limited to
an abstract layer of system modeling not intended for
physical simulation. This physical modeling can happen,
either by using native Modelica models from the library,
e.g. a valve or heat exchanger, or reusing models from
other, external sources by means of FMI, (Modelica
Association 2014), e.g. a controller modelled in The
Mathworks Simulink. The internal components of the
brake system Modelica blocks are detailed to enable 1D
analysis of braking performance. Again, the engineering
artifacts (system simulation models) are shared with the
stakeholders by uploading the information to the digital
thread database using the SimulationX plugin.

To enable the actual virtual verification and to measure
brake performance, the physical models of the brake
system architecture have to be augmented as shown in
Figure 8. Now, the previously created tracelink between
architectural components and requirements are reused by
the SimulationX plugin to support the simulation engineer
and show a list of test cases, consisting of requirements
that need to be tested by simulation and are already allo-
cated to structural components. By selecting a certain test
case, a testmodel is automatically generated, instantiating
the appropriate Modelica component from the generated
system library as Unit under Test in the figure above.
The architecture design parameters, discussed before,
are present on the corresponding Modelica component
and inside the Unit under Test block, and can be used
to execute variants studies (design space or architecture
exploration) or component optimization tasks as shown in
Figure 9 within a given system structure. Such analysis

Session5B

DOI Proceedings of the Asian Modelica Conference 2024 99
10.3384/ecp21793 December 12-13, 2025, Jeju, Korea

Figure 10. Evaluation result of braking scenario for thermal management requirement use case, transient behavior in the Modelica
model (left), test verdict representation in tool plugins (right)

workflows can be automated easily by considering only
valid simulation runs, since the model is connected by the
digital thread to requirements to be tested and fulfilled.

In order to replicate a test scenario described by the
linked requirement, additional components need to be
modeled by the simulation engineer. As shown in the ther-
mal management model above, environment and stimu-
lation incorporating virtual vehicle models, including the
driver, signals, vehicle weight, and wheelbase, etc. are
added to the model collected in the green Scenario part.
Moreover, the testmodel is augmented by the test verdict
analysis, using dedicated feature extraction and require-
ments fulfilment elements7 from the associated Simula-
tionX Modelica library, collected in the orange Evaluation
part. Finally, these ready to use simulation models are syn-
chronized with the digital thread database using the Sim-
ulationX plugin. With the defined and established links
along the process and end to end traceability from require-
ment to virtual verification (simulation) result is deployed.

In a last step closing the loop shown in Figure 6, the
test results are synchronized with the requirements man-
agement system DOORS using the corresponding plugin
as shown in Figure 5, thus realizing a (simple) test man-
agement and tracking system. Figure 10 illustrates the ver-
ification of the ESR using the discussed thermal manage-
ment 1D simulation model and demonstrates, how trace-
ability between the verification results of the braking per-
formance 1D model and the requirements is established in
this proof of concept study.

4 Discussion of Decision Making
The demonstrated requirements-based early stage archi-
tecture performance validation process is expected to
bring significant benefits to daily engineering and design

7providing a "passed", "failed" or "undefined" result depending on
specified conditions

efforts. Developing and certifying commercial vehicle
components is challenging, in particular in the demon-
strated example of safety critical elements like brak-
ing systems. Because of the complicated interrelations
between the various systems, sub-systems and compo-
nents, new techniques for digital continuity, reusability
and traceability of development artifacts need to be ap-
plied, to handle the complexity throughout the develop-
ment cycle. With the MBSE methodology, a holistic view
and tracking along the increasing maturity level of the sys-
tem of interest becomes possible in real life applications.
Based on the natural, structured R-F-L-P steps, a complex
cyberphysical system with multiple hierarchy levels and
tight interactions with other systems, gets feasible to man-
age. Applying simulation results from multilevel models
(from simple 0D to 1D/3D) for integrated decision making
gives confidence on every decision gate from one domain
to the other, throughout the early stage architecture de-
sign and verification process. This incremental approach
allows to cascade and derive lower level, more detailed re-
quirements on sub-systems and components based on the
initial, top level stakeholder needs on product level.

However, it should be noted the introduction and de-
ployment of this process will have a considerable im-
pact on current workflows and will necessitate changes in
both processes and personnel (mindset). Apart from these
general side effects, the key attributes and considerations
from industrial users perspective are summarized below
as they share positive impact on engineering and design
processes, contributing to a more efficient and systematic
working environment.

Benefits in Daily Engineering and Design Tasks: By
preventing redundancy and omissions in requirements and
functions while ensuring traceability, engineers will have
clearer criteria for their work. This will reduce ambiguity
in communication and facilitate collaboration among team
members.

Requirements-based, early stage Architecture Performance Validation on a Brake System Use Case

100 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21793

Modeling Guidance: Guidelines have been developed
and need to be applied to map SysML models to simu-
lation requirements. As the SysML language is "method
agnostic", the degree of freedom for the systems engineer
creating the logical structure needs to be limited to en-
abled the seamless reuse of information in the subsequent,
physical model-based design. These guidelines enhance
the consistency of modeling efforts for architecture design
and performance validation, supporting effective decision
making.

Complexity Resolution and Consistency in Decision
Making: By structuring complex and diverse require-
ments to build the system architecture, it becomes possi-
ble to analyze the system before detailed design. This ap-
proach allows for easy tracking of components affected by
changes and provides linkage information for impact anal-
ysis. Furthermore, decision making based on structured
information and relationships during the MBSE process
supports objective and consistent decisions, independent
of the decision maker’s intent or the engineer’s expertise.

Role of Digital Thread: The digital thread plays a cru-
cial role in systematically connecting information through
model-based approaches, enhancing the overall under-
standing of automotive systems through integrated anal-
ysis. Furthermore, when multiple personnel can collabo-
rate via a database-driven digital thread, it facilitates more
efficient teamwork and information sharing.

5 Conclusions
This study proposes a Model-Based Systems Engineering
(MBSE) methodology, extended to and integrated with
model-based design activities, as a means to address the
complexities involved in vehicle design and validation,
specifically within the context of performance validation
for braking systems at early stages of vehicle develop-
ment. The implementation of digital threads has facili-
tated the integration of requirements, abstract architecture
models, and 1D physical simulation models. The signif-
icance of this research and proof of concept application,
from an industrial early adopter perspective, can be de-
fined as follows:

• The methodology provides an integrated and visual
modeling environment for vehicle development re-
searchers, demonstrating how MBSE-based, design
and validation processes enhance quality and relia-
bility.

• By connecting requirements, architecture-, and 1D
simulation models through cross-domain digital
threads, the methodology enables more efficient
workflows. Notably, the internal block diagrams of
SysML architecture models can be directly trans-
formed into Modelica blocks as components of 1D
models, thereby reducing the inconvenience of re-
working defined elements from SysML in the per-

formance model, thus improving overall process ef-
ficiency.

• The verification results of requirements achieved
with the 1D simulation models can be directly
validated and documented in the requirements
management software, establishing a closed-loop
requirements-based verification framework.

However, the applied MBSE methodology is currently
implemented and demonstrated on the validation of brak-
ing performance at the early stage of vehicle development,
and the integration with other performance domains and
software remains a significant challenge. Particularly, de-
spite being at the early stage, verification through 3D anal-
ysis presents constraints that hinder the direct reusage of
SysML architecture modeling results, similar to the 1D
simulation domain. Nonetheless, in other performance ar-
eas where verification is conducted using software, based
on the Modelica language, it is anticipated that imple-
menting connections through digital threads, as demon-
strated in this study, will lead to more efficient operational
directions. A concrete idea in this direction is the seam-
less reuse and continuous integration of architecture, sim-
ulation models and scenarios in the virtual verification of
Electronic Control Units by SiL and HiL8 testing meth-
ods. Further automation of test model generation, based
on available SysML descriptions like sequence- or para-
metric diagrams, will add on top of the aforementioned
improved usability and efficiency.

Additionally, the utilization of automated parameter
value selections in heterogenous verification environments
(like co-simulation of Modelica and CarMaker) becomes
possible and can significantly enhance development effi-
ciency, (Lu et al. 2021). This would leverage the poten-
tial of our digital thread integration approach to streamline
processes and improve outcomes in vehicle system design
and validation at HMC and similar industrial applications.

References
Aleksandraviciene, Aiste and Aurelijus Morkevicius (2018). No-

Magic Magic Grid - Book of Knowledge. 1st ed. Vitae Litera.
Cederbladh, Johan et al. (2024). “Correlating Logical and Physi-

cal Models for Early Performance Validation - An Experience
Report”. In: IEEE Systems Conference SYSCON2024. IEEE.

Hause, Matthew et al. (2006). “The SysML modelling lan-
guage”. In: Fifteenth European systems engineering confer-
ence. Vol. 9, pp. 1–12.

Lu, Jinzhi et al. (2021). “Model-based systems engineering tool-
chain for automated parameter value selection”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems
52.4, pp. 2333–2347.

Maro, Salome, Miroslaw Staron, and Jan-Philipp Steghöfer
(2017). “Challenges of establishing traceability in the auto-
motive domain”. In: Software Quality. Complexity and Chal-
lenges of Software Engineering in Emerging Technologies:
9th International Conference, SWQD 2017, Vienna, Austria,
January 17-20, 2017, Proceedings 9. Springer, pp. 153–172.

8Software- and Hardware-in-the-Loop

Session5B

DOI Proceedings of the Asian Modelica Conference 2024 101
10.3384/ecp21793 December 12-13, 2025, Jeju, Korea

Modelica Association (2014-07). Functional Mock-up Interface
for Model Exchange and Co-Simulation Version 2.0. Tech.
rep. Linköping: Modelica Association. URL: https : / / fmi -
standard.org.

Modelica Association (2021). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Speci-
fication Version 3.5. Tech. rep. Linköping: Modelica Associ-
ation. URL: https : / / specification .modelica .org /maint /3 .5 /
MLS.html.

Modelica Association (2022). System Structure and Parameter-
ization Version 1. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://fmi-standard.org.

Object Management Group (2022). OMG Systems Modeling
Language Version 1. Tech. rep. Massachusetts: Object Man-
agement Group. URL: https://www.omg.org/spec/category/
systems-engineering/.

Open Services Project (2021). Open Services for Lifecycle Col-
laboration Version 3. Tech. rep. Open Services Project. URL:
https://open-services.net/.

Peraldi-Frati, Marie-Agnès and Arnaud Albinet (2010). “Re-
quirement traceability in safety critical systems”. In: Pro-
ceedings of the 1st Workshop on Critical Automotive appli-
cations: Robustness & Safety, pp. 11–14.

Requirements-based, early stage Architecture Performance Validation on a Brake System Use Case

102 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp21793

https://fmi-standard.org
https://fmi-standard.org
https://specification.modelica.org/maint/3.5/MLS.html
https://specification.modelica.org/maint/3.5/MLS.html
https://fmi-standard.org
https://www.omg.org/spec/category/systems-engineering/
https://www.omg.org/spec/category/systems-engineering/
https://open-services.net/

A Study on Model-Based Thermal

Management Systems Architecture

Modeling and Energy Efficiency

Prediction of Fuel Cell Electric Vehicles

Junbeom Lee1 Kwonhee Suh 2 Juhyeong Park1

Donkyu Joo1 Junghun Yun1 Daeoh Kang1*
1iVH, Republic of Korea, {jblee, jhp, dkjoo, jhy, bigfive*}@ivh.co.kr

2KIA Corporation, Republic of Korea, lastadam@kia.com

Abstract
The purpose of this study is to predict the energy

efficiency of Fuel Cell Electric Vehicles (FCEVs) based

on the configuration of the Thermal Management System

(TMS). The energy efficiency of an FCEV is closely tied

to the effective thermal management of the electric

powertrain. Therefore, this paper investigates TMS

modeling for FCEVs and multi-physics modeling of

FCEVs. The main modules of the target multi-physics

FCEV model include the vehicle dynamics model,

thermal management system, electric powertrain and

controller. The main research focus is the water-cooled

TMS architecture. The main thermal management

components (heat-generating components) include the

fuel cell, battery, motor and BOP (Balance of Plant). The

model was developed using Modelica and used to predict

the energy efficiency under various driving conditions

(extremely cold, moderate and extreme heat) and driving

conditions.

Keywords: Vehicle System Engineering, Thermal

Management System, Fuel Cell Electric Vehicle

1 Introduction

The transition towards eco-friendly and sustainable

transportation has accelerated the development of

alternative powertrain systems, such as Fuel Cell Electric

Vehicles (FCEVs). FCEVs, which use hydrogen fuel cells

as their primary energy source, offer the advantages of

high efficiency and zero-emission operation. However,

they present critical challenges in terms of thermal

management. Efficient thermal management is essential to

maintain the optimal operating of fuel cells and other key

components. This ensures passenger comfort, extends

vehicle life, and optimizes overall energy consumption.

Thermal management in FCEVs is highly complex, as it

must account for varying power demands, dynamic

environmental conditions, and the unique operational

characteristics of fuel cells, which generate both heat and

water as byproducts. A robust TMS is necessary to

effectively distribute and dissipate heat, minimizing

energy losses and optimizing performance under diverse

driving conditions. To optimize the TMS architecture of

FCEVs, it is crucial to develop multi-physics models

integrating thermal, electrical, and dynamic systems.

This paper proposes a Modelica based modeling approach

of TMS architecture and the prediction of FCEV

performance under varying conditions. Model-based

approaches provide a structured and predictive method for

designing and analyzing the TMS architecture of FCEVs,

especially in the early stages of design. Modelica, a non-

proprietary, object-oriented, equation-based modeling

language, is particularly suitable for this purpose.

Modelica supports the integration of thermal, electrical,

and fluid systems into unified multi-domain models,

enabling the analysis of complex interactions within

FCEV TMS and the prediction of energy efficiency using

a single simulation framework.

In this study, we aim to develop a model-based approach

using Modelica to model the TMS architecture of FCEVs

and accurately predict energy efficiency under various

operating conditions. The objective of this research is to

provide a systematic method for TMS design and control

that enhances the energy efficiency and reliability of

FCEVs.

2 Methodology

In this paper, vehicle dynamics, electric powertrain, and

TMS models are developed to predict the performance

changes of FCEVs by TMS architecture. The vehicle

dynamics model was built using the Vehicle Dynamics

Library from Modelon AB, while the electric powertrain

model was based on Modelon AB's Electrification Library.

The TMS was modeled using the Thermal Systems

Library from TLK-Thermo GmbH. The integrated model

was constructed using Dymola from Dassault Systèmes.

DOI Proceedings of the Asian Modelica Conference 2024 103
10.3384/ecp217103 December 12-13, 2025, Jeju, Korea

RRR

2.1 Vehicle Model

The vehicle model is organized in a hierarchical structure,

and includes detailed sub-systems such as the Chassis

System, Thermal Management System, Powertrain

System, and Brake System.

Figure 1. Vehicle Model

Each sub-system exchanges Dynamics, Electrical, and

Thermal signals. The Powertrain System transfers the heat

generated during operation to the TMS, and the

powertrain model transmits both the power and movement

produced by the Fuel Cell, battery, and motor to the

Chassis System.

2.2 Chassis Model

The chassis model consists of front and rear suspension,

frame, wheel, and body models. The suspension model

transmits vibrations from the wheel model to the body. It

is constructed using a multi-body dynamics approach.

However, since this model is designed for energy

efficiency prediction, the bushing models are simplified

and replaced with joint models.

Figure 2. Chassis Model

2.3 Electrified Powertrain

The main components of the electrified powertrain

model are the battery model, hydrogen fuel cell, and motor.

The battery model is parameterized with cell capacity,

open-circuit voltage curves, internal resistance values, and

cell configurations. It generates power while producing

heat during operation.

The hydrogen fuel cell model is built based on the

battery model. It calculates hydrogen consumption based

on power demand and shares a similar structure with the

battery model. By connecting a load model that simulates

the power consumption of the Balance of Plant (BOP), the

total output (gross output) and net output can be calculated.

Like the battery model, the fuel cell model generates heat

during power production.

The motor model incorporates torque maps and

efficiency maps as parameters and includes a maximum

torque limit. It generates driving torque according to the

vehicle's speed requirements by receiving power from the

battery model and hydrogen fuel cell model. The

generated driving torque is transmitted through the

driveline to control the vehicle's speed. Heat is produced

due to losses occurring during torque generation.

Figure 3. Electrified Powertrain Model

2.4 Thermal Management System

In this vehicle model, the primary heat-generating

components are the hydrogen fuel cell, battery, and motor.

Due to the different optimal operating temperatures of

each component, the cooling cycles are configured

independently. In addition to the 4 major heat-generating

components mentioned above, other components

requiring thermal management include the Low Voltage

DC-DC Converter (LDC) for low-voltage equipment in

the vehicle, the Balance of Plant (BOP) responsible for

managing fuel, moisture, air, and power distribution, and

the Fuel Cell DC-DC Converter (FDC), which ensures

stable delivery of electricity generated by the hydrogen

fuel cell stack to the high-voltage battery for charging or

to the inverter.

Table 1. List of heat generating components by cycle

Cycle Name Heat Components Name

Battery Cycle Battery

PE Cycle Front PE

A Study on Model-Based Thermal Management and Energy Efficiency Prediction of Fuel Cell Electric Vehicles

104 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217103

Rear PE

BOP

LDC

FDC

FC Stack Cycle Fuel Cell

Each cooling cycle operates independently, forming a

total of three separate cycles. There is no cross-flow or

mixing between the coolant of these cycles. Different

cooling liquids should be used depending on operating

conditions (voltage and current), but this model is

simplified by using a single cooling liquid for all cycles.

Table 2. Coolant by cooling cycle

Cycle Name Liquids

Battery Cycle

Ethylene Glycol 50% PE Cycle

FC Stack Cycle

Figure 4. TMS Architecture

The actuators for each cycle are as follows, and they

consume power during operation. Consequently, the

consumed power is accounted as a load, which reduces the

battery's available power.

Table 3. List of Actuators by Cooling Cycle

Cycle Name Actuator

Battery Cycle
Water Pump

PTC

PE Cycle
Water Pump

Water Pump(BOP)

FC Stack Cycle Water Pump

Common Fan

2.5 Controller

To meet the target temperature of each cycle, the actuators

within each cycle must be operated based on the state

variables of the cycle and its components. Accordingly, a

controller model is required, where the controller adjusts

the actuators according to the temperatures of the

components within the cycle. The actuators in each cycle

control the water pump based on the outlet temperatures

of individual components and ambient temperature. In the

battery cycle, the PTC (Positive Temperature Coefficient

heater) is additionally controlled to heat the battery as

needed. The fan adjusts its volumetric flow rate using the

outlet temperatures of the battery, fuel cell stack, PE, LDC,

BOP, and the ambient temperature.

2.6 Scenario

The Chassis, Electrified Powertrain, Thermal

Management System, and Controller configured above

are integrated into the Vehicle Model. In order to predict

the power consumption of a vehicle model, the vehicle

model is driven according to the Drive Cycle, and the

Drive Cycle utilized is the Worldwide harmonized Light

vehicles Test Cycle (WLTC). The WLTC (Worldwide

harmonized Light vehicles Test Cycle) is a globally

standardized driving cycle used to measure the fuel

consumption, CO₂ emissions, and pollutant emissions of

passenger cars and light-duty vehicles. It was developed

by the UNECE (United Nations Economic Commission

for Europe) as part of the WLTP (Worldwide harmonized

Light vehicles Test Procedure) framework. In this study,

to reflect the limitations of the electrified powertrain in

the vehicle model, the drive cycle was modified with an

upper speed limit of 120 kph, and performance predictions

were conducted based on the adjusted cycle. In this

scenario, the WLTC was repeated for 2 cycles.

Session6B

DOI Proceedings of the Asian Modelica Conference 2024 105
10.3384/ecp217103 December 12-13, 2025, Jeju, Korea

Figure 5. WLTC speed profile reflecting vehicle driving limit

performance

3 Result
- Components Temperature(Extreme Hot)

In the extreme hot scenario, it was observed that the

temperature of the Front and Rear PEs requires control for

only a short duration, yet it remains within the target

temperature range. The FC stack also showed a short

control duration, successfully converging within the

target temperature range. For the battery, due to the

minimal operational time governed by the control

conditions (drive control), heat generation was negligible,

resulting in insignificant temperature changes.

Figure 6. Components Temperature in Extreme Hot

- Components Temperature(Moderate)

Under moderate conditions, it was confirmed that the

temperature levels of the components are lower compared

to extreme heat conditions. Rear PE is located further back

than the Front PE, resulting in slightly higher

temperatures, but it still did not reach the optimal

temperature. FC Stack reached the optimal temperature

range during certain high-speed sections, indicating that

its temperature is being effectively controlled by the

controller. Meanwhile, the battery exhibited very low heat

generation due to driving conditions, similar to extreme

heat conditions.

A Study on Model-Based Thermal Management and Energy Efficiency Prediction of Fuel Cell Electric Vehicles

106 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217103

Figure 7. Components Temperature in Moderate

- Components Temperature(Extream Cold)

Under extreme cold conditions, it was observed that the

Front PE, Rear PE, and FC Stack could not reach their

target temperatures solely through self-heating.

Particularly for the FC Stack, failing to achieve its target

temperature can lead to overall efficiency degradation,

reduced lifespan, and decreased power output. Therefore,

it is necessary to consider the integration of forced heating

components, such as a COD heater and air heater, within

the system architecture.

The battery, equipped with a PTC heater, raises the

cooling water temperature within the battery cycle when

the ambient temperature is low. After reaching the target

temperature, temperature control is carried out to maintain

the optimal temperature range. This demonstrates the

effective temperature management within the battery

cycle under extreme cold conditions.

Figure 8. Components Temperature in Extreme Cold

- Hydrogen consumption

The model developed in this study does not include

parameters that can reflect individual component

performance changes based on their temperatures.

Therefore, the changes in vehicle system performance

Session6B

DOI Proceedings of the Asian Modelica Conference 2024 107
10.3384/ecp217103 December 12-13, 2025, Jeju, Korea

due to component temperatures are predicted through

variations in hydrogen consumption.

Under extreme hot conditions, the presence of a TMS

leads to increased hydrogen consumption due to the

operation of fans and water pumps to maintain

component temperatures within the optimal range. In this

study, as efficiency data based on component

temperatures was not considered, it was observed that

hydrogen consumption is higher with the application of

TMS compared to when TMS is not applied.

Even under moderate conditions, the presence of a TMS

results in increased hydrogen consumption, as fans and

water pumps are operated to control component

temperatures within the optimal range. However,

compared to extreme heat conditions, the duration of

temperature control to maintain the target component

temperatures is shorter, leading to lower hydrogen

consumption.

Under extreme cold conditions, hydrogen consumption

increased significantly compared to extreme heat and

moderate conditions. This is attributed to the substantial

rise in high-voltage power usage caused by the operation

of the PTC heater.

Figure 9. Hydrogen consumption by With/Without TMS in

Extreme cold conditions

Table 4. Hydrogen consumption according to ambient

conditions and TMS

Ambient

Condition
TMS

Hydrogen

Consumption

Extreme

Hot

X +

O +++

Moderate
X +

O ++

X +

Extreme

Cold
O ++++

4 Conclusion
 This study developed a model-based approach for

modeling the TMS architecture and predicting the energy

efficiency of FCEVs using Modelica. By integrating

vehicle dynamics, thermal management, and electric

powertrain systems, this model highlights the importance

of thermal management in optimizing system

performance under various environmental conditions. The

study results indicate that TMS operations, influenced by

external conditions, activate components such as fans,

water pumps, and PTC heaters, leading to variations in

hydrogen consumption. Under extreme heat conditions,

TMS increases hydrogen consumption as it controls

component temperatures, while in moderate conditions,

the impact is relatively smaller due to shorter control

durations. In contrast, under extreme cold conditions,

hydrogen consumption increases significantly as the PTC

heater operates to achieve target temperatures,

emphasizing the necessity of effective thermal

management in extreme conditions.

However, the current model does not include performance

change data for individual components based on

temperature variations, preventing direct assessment of

TMS-related energy efficiency changes. This study

underscores the importance of advanced TMS

architectures for maintaining optimal component

temperatures and improving energy efficiency. Future

research should focus on parameterizing performance

changes in individual components caused by temperature

variations and exploring alternative thermal management

strategies that can reduce energy losses while maintaining

system stability.

Acknowledgements

This work has been supported by KIA Corporation.

References

Modelica Association (2023-03). Modelica – A Unified Object

Oriented Language for Systems Modeling. Language

Specification Version 3.6. Tech. rep. Linköping: Modelica

Association.

URL: https://specification.modelica.org/maint/3.6/MLS.pdf

Stellato, M., Bergianti, L., Batteh, J. (2017). Powertrain and

Thermal System Simulation Models of a High Performance

Electric Road Vehicle 12th International Modelica Conference,

Prague, Czech Republic, pp. 171-180, May 15-17,

Batteh, J., Gohl, J., Sureshkumar, C.(2014). Integrated Vehicle

Thermal Management in Modelica: Overview and Applications

10th International Modelica Conference, Lund, Sweden

Modelon AB (2021). Vehicle Dynamics Library Version 4.0.

Modelon AB (2021). Electrification Library Version 1.7.

TLK-Thermo GmbH(2022). Thermal Systems Library Version

1.9.

A Study on Model-Based Thermal Management and Energy Efficiency Prediction of Fuel Cell Electric Vehicles

108 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217103

Digital Human Body Model for Occupant

Monitoring System

Man Yong Han1 Yong Ha Han2 Hyung Yun Choi3
1, 2 Hyundai Motor Company, Republic of Korea,

{myhan1037,yongha}@hyundai.com
3Dept. of Mechanical and System Design Engineering, Hongik Univ.

Korea, hychoi@hongik.ac.kr

Abstract
Occupant monitoring systems have been developed and

used for Autonomous Driving (AD) level 3+. These

occupant monitoring systems have limitations in accuracy

and measurement items. To compensate for this, a Digital

Human Body Model (DHBM) based on the Modelica

language is developed, and its features are introduced.

Inverse Kinematics (IK) and Inverse Dynamics (ID)

DHBMs are interlocked with the occupant monitoring

system to increase measurement accuracy and calculate

various information such as motion sickness and fatigue.

However, simulation of occupant behavior prediction is

impossible. Forward Dynamics (FD) DHBM is a model

that implements the characteristics of the live human

studied through experiments and can predict occupant

behavior. However, parameter verification is necessary to

trust the results of FD DHBM. It is developing real-time

validation and parameter update algorithms for FD

DHBM using occupant monitoring data, which are

expected to be available in various fields such as comfort

and safety.

Keywords: Digital Human Body Model (DHBM),

Occupant Monitoring, Autonomous Driving (AD), Active

Safety System (ASS)

1 Introduction

For autonomous driving level 3+, technology

development and practical application of sensors,

Advanced Driver-Assistance Systems (ADAS), and

Active Safety Systems (ASS) are underway. ASS

increases the pre-crash phase before impact and

minimizes crash severity. Due to ASS, occupants have

time to react, and physical characteristics such as sitting

posture and muscle strength can affect their behavior. As

a result, research on occupant behavior in driving and pre-

crash phases has become necessary. Virtual simulation is

needed to research various vehicle and occupant

conditions effectively. However, Human Body Models

such as the Global Human Body Model Consortium

(GHBMC) and Total Human Model for Safety (THUMS)

for virtual simulation are specialized in crash simulation

and injury prediction and validated for PostMortem

Human Subjects (PMHS) -based in-crash (John J.

Combest 2018; Toyota Motor Corporation 2021). In

addition, because it is an FE-based model, the CPU cost is

high and difficult to simulate for the long term, making it

unsuitable for long-term passenger behavior research.

The Occupant Model For Integrated Safety (OM4IS)

consortium and several studies have conducted occupants’

behavior studies based on volunteer experiments

(Kirschibichler 2014; Huber 2015). OM4IS measured and

analyzed occupant kinematics assuming the operation of

the ASS. With the recent advances in posture detection

technology, in-cabin occupant monitoring systems are

installed in vehicles (e.g., Mobis DSM). In PC/mobile

environments, machine learning-based human body

monitoring systems (e.g., Google MediaPipe, Yolo v4) are

being developed and are expected to be applied to actual

vehicles in the future under Software Defined Vehicle

(SDV) environments. Occupants' actual status and

movement can be monitored and used for safety, comfort,

etc. However, since the measured occupant movement is

displacement-based data, the precision is relatively low,

and it is impossible to predict the occupant behavior; a

method to supplement this is necessary. Methods using

mathematical filters (e.g., Kalman filters) can eliminate

noise, but reflecting human characteristics and predicting

behavior is still challenging. A Digital Human Body

Model (DHBM) based on the Modelica language with low

CPU cost and acausal characteristics was developed to

supplement the occupant monitoring system.

Modelica language can build a multi-body system model

and has acausal characteristics, which will be described

later in Inverse Kinematics (IK), Inverse Dynamics (ID),

and Forward dynamics (FD) models, which can be built

based on a single basic model. It has the advantage of

quickly conducting long-term simulations with low CPU

costs. Moreover, since the Modelica language supports the

Functional Mock-up Unit (FMU), it can conduct various

simulations with other S/Ws that support the Functional

Mock-up Interface (FMI). The control unit of the DHBM

used the blocks module of Modelica (e.g., Continuous,

nonlinear, table), and the human model part used the

mechanic's modules such as multibody, rotational, and

translational modules. It was conducted using Open-

Modelica and ESI's SimulationX.

DOI Proceedings of the Asian Modelica Conference 2024 109
10.3384/ecp217109 December 12-13, 2025, Jeju, Korea

RRR

2 DHBM for Occupant Monitoring

In an environment where occupants are monitored, a

DHBM for improving accuracy and calculating additional

information has been created for more diverse use.

2.1 Base of DHBM

The basic DHBM consists of the pelvis as the root and is

deployed to the end of each body (Head, Upper-, Lower-

extremity). The body segments are set to rigid-body, and

each segment contains body properties such as center of

mass, mass, and inertia information. The body segments

consist of the head, neck, trunk, upper arm (UA), forearm

(FA), upper leg (UL), lower leg (LL), and foot. Depending

on the occupant monitoring information or needs, the

trunk shall be two (UT, LT) or three (UT, CT, LT). An

articulated joint connects each segment, and each joint

except the elbow (1D) is composed by connecting three

1D revolute joints in series. In the case of the lower

extremity, the joints are fixed as necessary to prevent

movement. Properties of body segments and joint

positions are based on values corresponding to the

GHBMC AM 50th %tile or the subject's body dimensions.

These values are fixed before the analysis begins.

2.2 Seat-Human Interaction & Seat Belt

In situations where lateral acceleration occurs, such as

evasive lane change, seat cushions, and bags affect human

body behavior. Conversely, in emergency braking

situations, the effect of the seat back is eliminated, and the

seat cushion and seat belt affect occupant movement. A

seat-human interaction module and a seat belt module

were developed to describe this.

For seat back-human interaction, contact force was

calculated using an elastic-gap block. For seat cushion-

human interaction, contact force was calculated using a

foam characteristic table and kinematics between the

cushion and lower body and applied to the lower body.

Figure 1. Seat belt model in Open-Modelica (left),

 and in SimulationX (right)

The seat belt was composed of three parts and four contact

points, and the belt loosening amount was measured with

a dummy spring, as shown in Figure 1. Based on this, the

belt tension force was calculated, and the belt tension

force was applied to the trunk. In the lateral direction of

the belt, lateral friction force was applied to the DHBM

using a sliding part. In SimulationX, seat belts were

implemented using a belt, belt preset, and pulley block, as

shown in Figure 1.

2.3 Inverse Kinematics (IK) of DHBM

The occupant monitoring information used in this study is

the 3D position of the main landmarks and joints of the

human body and includes a certain level of error. If IK

analysis is performed using each position as an input, the

length of each segment is continuously changed due to

errors included in the input. This conflicts with the

segment length of the dummy set in a rigid body, making

normal IK simulation impossible. To solve this problem,

a spring-damper connects each input point and the

corresponding point of the human model to function as a

buffer. The angle of each joint can be calculated through

the IK DHBM, and acceleration that is difficult to

calculate mathematically other than displacement and

angle, it is possible to calculate angular velocity. However,

the active torque of each joint cannot be calculated

through the IK DHBM.

Figure 2. Conceptual Diagram of IK, ID DHBM

2.4 Inverse Dynamics (ID) of DHBM

To obtain the DHBM's kinetic information, an ID DHBM

was constructed using the IK model's joint angle as the

input. Each joint's kinetic information (joint torque) can

be calculated using the acausal characteristics to satisfy

the input kinematic (joint angle). This is the same as the

occupant monitoring results. All kinematic and kinetic

information can be obtained.

3 DHBM for Simulation

IK, ID DHBM can describe and analyze the behavior of

passengers based on the measured (or under measurement)

monitoring information, but it is impossible to predict the

behavior of occupants. The FD DHBM, including the

characteristics of a living human, can predict the

occupant's behavior according to the vehicle's movement.

Live humans exhibit different behaviors from the

Anthropomorphic Test Device (ATD) or PMHS under the

same external force conditions (Beeman 2012). This is

due to the characteristics of live humans, and its typical

characteristics include muscle contraction (co-contraction)

and awareness (Kirschibichler 2014). Various

Digital Human Body Model for Occupant Monitoring System

110 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217109

characteristics of the human body needed for calculating

occupant behavior and their application are as follows:

3.1 Active Joint Torque

The live human generates muscle force through the

contraction and relaxation of various muscles, which is

applied as a torque to rotate the body segment. Among the

methods of modeling muscle contraction in the human

body, calculating muscle contraction and muscle force

according to the activation level by modeling all muscles

is also used. This requires an excessive amount of

computation. To speed up computation, the concept of

active joint torque (equivalent torque applied to each joint)

was introduced without calculating the contraction force

of each muscle. The active joint torque actuator was

configured based on the PID closed-loop control, and the

change in the joint angle (or body segment angle)

compared to the reference was set as an error. And the

torque to be applied to each joint was set as an output.

Choi (2016) verified an active elbow model reflecting

active joint torque and co-contraction.

3.2 Co-contraction

Beeman (2012) conducted low-speed sled tests on ATD,

PMHS, and human volunteers. The volunteer showed

behavior between the PMHS and the ATD and differences

in behavior according to the co-contraction level. It

showed more similar behavior to ATD in the braced

condition (high level of co-contraction) than in the relaxed

condition (low level of co-contraction). As the co-

contraction level increases, the human joint stiffs and

behaves like a rigid body. It is applied to a human model

by damping torque, and an example is shown in Figure 3.

Figure 3. An overview of co-contraction (left), an example of

co-contraction torque applied to the model (right)

Figure 4. Validation result of low-speed sled test

A low-speed sled test confirmed DHBMs that reflect co-

contraction (Beeman 2012). Compared to the results of

the same validation of the GHBMC FE active model

(Devane 2019), both relaxed and braced conditions

showed high similarity except for the shoulder at the

braced condition, as shown in Figure 4.

3.3 Awareness

OM4IS measures the behavior of passengers according to

their awareness of evasive single-lane change and

emergency braking situations assuming an autonomous

driving situation. In the unaware condition (low level of

awareness), in which passengers do not know the situation,

they showed large behavior with a neural delay time

longer than the informed condition (high level of

awareness) in which all situations are known. The higher

the awareness level, the shorter the neural delay time, so

the torque is rapidly actuated, and the amount of excursion

decreases. In the DHBM, awareness was reflected by not

applying the active joint torque calculated during the

neural delay time to the torque actuator (Han 2019).

3.4 Response Strategy

Vehicle occupants have two strategies: driver behavior

and passenger behavior. In the case of the driver, to

perform driving, the driver moves with a strategy of fixing

the head position as much as possible and adjusting the

gaze in the direction of progress. On the other hand, the

passenger has a strategy of resisting the body more

passively without considering the head position (Zikovitz

1999). For passengers, the same strategy as the driver can

be taken, which can be viewed as a characteristic

according to inter- and intra-subject variations. To reflect

this, DHBM's PID control error used both the weighted

joint and segment angles (Son 2023).

3.5 Forward Dynamics (FD) DHBM

The validation of critical parameters is necessary for the

DHBM to describe occupants' behavior. The main

parameters are PID gains, co-contraction, awareness level,

and strategy ratio. The optimization technique can find

parameters that show the same behavior as the subject test

data. Using the OM4IS evasive lane change results,

optimization targeting each subject's behavior and overall

average behavior was conducted and reviewed (Han 2019).

By applying floor input (or pelvis input) to the validated

model and simulating it, the behavior of the human body

according to a given vehicle movement can be predicted.

Through this, it is possible to predict the occupants'

behavior and use the result to optimize vehicle control.

However, in the case of live humans, since inter- and intra-

subject variations exist, the accuracy of the simulation

may decrease as it deviates from the validation condition.

4 Use Case

IK DHBM can improve the accuracy of body kinematic

information in occupant monitoring systems and calculate

more information. For example, head translational acc.,

rotational vel. can be calculated, and motion sickness can

Session6C

DOI Proceedings of the Asian Modelica Conference 2024 111
10.3384/ecp217109 December 12-13, 2025, Jeju, Korea

be calculated using models such as Motion Sickness

Incidence (MSI).

ID DHBM is used to calculate kinetic information using

occupant kinematic information. Active joint torques, the

simulation results of ID DHBM, can be viewed as the

energy needed to maintain posture. The regression

equation obtained through the volunteer experiment can

be converted into the Metabolic Equivalent of Task (MET)

and kCal units, and the muscle fatigue of passengers

caused by maintaining posture while driving can be

checked.

FD DHBM uses vehicle movement to predict occupant

kinematics and kinetics. Since occupant monitoring

information is not needed, it is possible to simulate

occupant behavior according to vehicle kinematics

quickly. For example, it is possible to decide which ASS

strategy is more dangerous to passengers under various

conditions.

5 Conclusion

This paper introduces the types and characteristics of

passenger monitoring systems and available Modelica

language-based DHBMs. In addition, it presents the main

characteristics of the human body found through ATD,

PHMS, and live-human subject experiments and how to

implement them in FD DHBM. The main characteristics

of DHBM are as follows.

1. The main characteristics of the human body include

active joint torque, co-contraction, awareness, and

response strategy. These characteristics must be

reflected in the human model to express the human

body's behavior well in DHBM.

2. DHBMs using the Modelica language have a lower

CPU time than FE models, can be simulated for a

long time, and can be linked to the occupant

monitoring system. It also supports FMU with FMI,

enabling co-simulation with various programs.

3. The IK and ID HBMs enhance the accuracy of

occupant monitoring information and calculate the

kinematics and kinetics of occupants to enable

quantitative evaluation, such as motion sickness and

muscle fatigue. However, they have a disadvantage

in using already measured (or being measured)

information, and it is impossible to simulate

behavior prediction.

4. FD HBM has the advantage of implementing co-

contraction, awareness, and individual size, which

are characteristics of the human body, so that

occupant kinematics and kinetics can be calculated

and predictive simulations can be performed.
However, the validation of the model parameter is

required, and the reliability of the FD HBM is

guaranteed only for the conditions under which the

model parameter validation is performed.

The currently developed DHBM based on the Modelica

language has the advantage of quantitatively analyzing

and utilizing occupant behavior and is being reviewed for

use in more diverse fields. To improve the limitations of

the FD model, an algorithm for periodic validation and

parameter updates is being developed using the IK model

or occupant monitoring information. It is expected that

this will increase the accuracy of predicting passenger

behavior.

References

Byeong Lak Son et al. (2023). “Simulation of Occupant Head

Roll Motion Using Active Human Body Model”. In: Trans.

Korean Soc. Mech. Eng. C, Vol. 11, No. 1, pp. 9-19. DOI:

10.3795/KSME-C.2023.11.1.009

Daniel C. Zikovitz and Laurence R Harris (1999). “Head tilt

during driving”. In: Ergonomics. pp. 740-746. DOI:

10.1080/001401399185414.

Hyung Yun Choi et al. (2016). “Active Elbow Joint Model”. In:

Proceedings of the 1st Japanese Modelica Conference. May

23-24. pp. 50-54. DOI: 10.3384/ecp1612450.

John J. Combest (2018). “Current Status and Future Plans of the

GHBMC”. In: 7th International Symposium: Human

Modeling and Simulation in Automotive Engineering. Carhs

GmbH. URL: https://www.ghbmc.com/wp-content/ uploads/

2019/05/HMS18-18_Combest_Nissan-and-GHBMC.pdf.

Karan Devane et al. (2019). “Validation of a simplified human

body model in relaxed and braced conditions in low-speed

frontal sled tests”. In: Traffic Injury Prevention. pp. 832-837.

DOI: 10.1080/15389588.2019.1655733.

Kirschibichler, S. et al. (2014). “Factors Influencing Occupant

Kinematics during Braking and Lane Change Maneuvers in a

Passenger Vehicle.” In: IRCOBI Conference. pp. 614-625.

URL: https://www.ircobi.org/wordpress/downloads/irc14/

pdf_files/70.pdf.

Man Yong Han (2019). “Active Human Body Model for Virtual

Vehicle Ride Simulation”. Ph.D. thesis. Hongik University,

Mechanical Engineering. DOI: 10.23174/hongik.

000000023241.11064.0000288

Philipp Huber et al. (2015). “Passenger kinematics in braking,

lane change and oblique driving maneuvers.” In: IRCOBI

Conference. pp. 783-802. URL: https://www.ircobi.org/

wordpress/downloads/irc15/pdf_files/89.pdf.

Stephanie M. Beeman et al. (2012). “Occupant kinematics in

low-speed frontal sled tests: Human volunteers, Hybrid Ⅲ

ATD, and PMHS”. In: Accident Analysis and Prevention 47,

pp. 128-139. DOI: 10.1016/j.aap.2012.01.016.

Toyota Motor Corporation (2021). “Total Human Model for

Safety (THUMS): Revolutionizing Crash Simulation to

Support Safe Mobility for All. Development Story: Toyota

Motor Corporation. URL: https://www.toyota.co.jp/thums/

contents/pdf/Toyota_THUMS_History_English.pdf.

Digital Human Body Model for Occupant Monitoring System

112 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217109

1

Modelling And Simulation of a Batch Reverse Osmosis

Process Using Modelica

B Sai Mukesh Reddy1, Mrugesh Joshi2, Seongpil Jeong3, Jaichander Swaminathan1*
1ICER, Indian Institute of Science Bengaluru, India1 ,{saimukesh, jaichander}@iisc.ac.in

2Mechanical Engineering Discipline, IIT Gandhinagar, Gujarat, India2, mrugesh.joshi@iitgn.ac.in

3Division of Energy & Environment Technology, KIST 02792, Seoul, Korea3, spjeong@kist.re.kr

Abstract
Batch operation of reverse osmosis (RO) has emerged as

a promising strategy for enhancing energy efficiency and

reducing fouling in seawater and brackish water

desalination applications. This study implements a

transient numerical model using Modelica to investigate

the behavior of a batch seawater RO (BSWRO) system.

The feed solution volume decreases and its salinity

increases with time. It is pressurized by pumping product

water into the other side of a piston. The model

incorporates features such as the feed solution residence

time in the inlet and outlet piping and captures the local

variation in flux and concentration polarization over the

membrane area. The instantaneous power consumption of

the high-pressure and circulation pumps is calculated. The

ease of adoption of Modelica underscores its utility in

simulating complex transient and non-linear phenomena.

The developed model can be expanded in the future to

answer questions related to optimal control of batch RO

systems.

Keywords: Batch Reverse Osmosis, Modelica,

mathematical modeling, transient

Nomenclature

Symbol Name Units

Q flowrate l/h

s salinity g/l

t time s

P pressure Pa

v velocity m/s

ΔL
individual membrane discrete

element length
m

ρ density kg/m3

f friction factor -

A area m2

𝛼 permeability coefficient m/s.Pa

𝐷h hydraulic diameter m

De diffusivity m2/s

k mass transfer coefficient m/s

𝑁Re Reynolds number -

𝜈 kinematic viscosity m2/s

𝜋 osmotic pressure Pa

J mass flux kg/m2s

Di internal diameter of pipe m

Δx individual pipe element length m

w specific energy consumption kWh/m3

n Osmotic Pressure coefficient -

Subscripts

Symbol Definition

f feed

r reject

p permeate, pipe

cs cross section

avg average

in inlet

out outlet

m membrane-feed interface

t tank

b bulk

tot total

atm atmospheric

Abbreviations

Symbol Definition

RO Reverse Osmosis

BRO Batch Reverse Osmosis

CP Concentration Polarization

OM Open- Modelica

PS Pressure Sensor

ERD Energy recovery devices

OOP object-oriented programming

SEC Specific Energy Consumption

HPP High Pressure Pump

1 Introduction

The Reverse Osmosis (RO) process, which is widely

utilized for desalination, water purification, and

wastewater treatment, is commonly operated in

continuous flow mode. Batch reverse osmosis (BRO)

systems can achieve higher recovery rates with lower

energy consumption compared to continuous RO systems.

In batch RO, the applied pressure is increased gradually to

make-up for the increasing osmotic pressure of the saline

brine being treated. As a result, BRO process can approach

the thermodynamic energy minimum more closely than

continuous processes, enabling significant energy savings
(Werber et al., 2017). Batch and hybrid batch/semi-batch

configurations are especially suitable for high recovery

DOI Proceedings of the Asian Modelica Conference 2024 113
10.3384/ecp217113 December 12-13, 2025, Jeju, Korea

RRR

2

desalination where the osmotic pressure of the final brine

is significantly higher than that of the feed inlet (Patel et

al., 2024). Additionally, batch configurations allow for

enhanced process flexibility and can eliminate the need for

energy recovery devices. To evaluate the economic

feasibility of BRO process and design them optimally,

mathematical modelling is employed.

Modeling and simulation of the BRO processes are

critical for understanding the complex physical

phenomena governing system behavior, such as pressure

variation, flow rate and salinity changes, fouling

dynamics, and power consumption. The variation of these

phenomena locally across the membrane surface are often

challenging to observe or measure experimentally, making

modeling an essential tool for simulating various

operating conditions and studying the behavior of

concentration polarization and fouling. Through

modeling, these parameters can be examined in greater

detail, facilitating better optimization strategies and

process designs that may not be achievable through

experimental methods alone (Ghernaout, 2017).

While substantial research has focused on modeling

continuous RO processes, with studies by Lee et al. (Lee

et al., 2010) and Jeong et al. (Jeong et al., 2021) addressing

membrane behavior, concentration polarization, and

fouling in such systems, modeling of batch RO systems

remains limited. Only a few studies (Barello et al., 2015;

Kim & Park, 2024; Warsinger et al., 2016; Wei, n.d.), have

explored batch processes in detail. However,

comprehensive models specific to BRO systems that

consider transient conditions, are limited. The need for

more detailed models arises due to the unique dynamics of

time-dependent concentration polarization and permeate

removal, which are not fully captured by existing models.

Modelica, an object-oriented modeling language for

complex systems (Fritzson & Engelson, n.d.; Introduction

to Object-Oriented Modeling and Simulation with

OpenModelica, n.d.; Loeffler et al., 2006), provides an

ideal platform for simulating BRO processes. Unlike

traditional simulation tools, Modelica enables the creation

of reusable components that can be easily adapted to

different system configurations, offering better flexibility

in modeling BRO systems. Al-Zainati et al. (Al-Zainati et

al., 2022) used Modelica for modeling a continuous RO

system. Modelica's capabilities in developing dynamic

control systems make it particularly useful for optimizing

operational parameters such as pressure, flow rate, and

recovery ratio, all of which are crucial for efficient BRO

operation. Despite these advantages, no studies have yet

applied Modelica to model BRO systems. This gives the

opportunity to leverage this tool for simulating and

controlling BRO processes.

Overall, this work presents the development of a BRO

model using Modelica language and Open-Modelica as

the tool to simulate key variables such as local pressure,
flux, salinity variations and overall permeate production

rate over time. By utilizing Modelica's strengths in

reusability, flexibility, and control system modeling, this

study proposes a promising approach for advancing the

simulation of batch RO processes.

2 Theoretical Background

BRO process which is depicted in Figure 1 operates by

treating a fixed volume of recirculated feedwater until a

desired overall recovery is achieved. This is different from

a conventional continuous RO process where the desired

recovery is achieved in a single pass through the

membrane element. The process begins with feed water

being filled into the tank, pipes, and membrane element,

displacing the final reject brine from the previous cycle.

The current model focuses on the dynamics of the system

after this point, and hence the local salinity throughout the

system is set equal to the feed salinity at t = 0.

This feed is circulated from the tank into the membrane

element and back into the tank by a circulation pump that

works to overcome the frictional losses in the channel and

piping. This entire loop is pressurized to overcome the

osmotic pressure and drive pure water flux through the

membrane. Unlike in continuous RO, where the applied

pressure at the inlet to the membrane is maintained at a

nearly constant value with time, in BRO, pressure is

increased with time to dynamically adjust for the

increasing osmotic pressure as the solution gets more

concentrated. This dynamic adjustment is the key reason

for energy savings which minimizes the unnecessary

excess pressure application in conventional continuous

RO to achieve the same average flux. Due to these

dynamic changes in pressures and concentrations over

time, a transient model is needed to study the process in

detail.

Figure 1 Batch Reverse Osmosis Process

2.1 Modelling of BRO process – Overall

flowsheet

Modelling a BRO process involves capturing the dynamic

nature of its operation, where feedwater undergoes cyclic

pressurization and permeate recovery. One of the critical

considerations is the variation in pressure over time, which

must match the increasing osmotic pressure as the brine

becomes more concentrated. Models must also account for

concentration polarization (CP), which affects local flux

and energy consumption by reducing effective driving

pressure for water transport through the membrane.

Energy consuming and energy recovery devices like

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

114 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217113

3

pumps and turbines (if any) which are a part of the BRO

systems, must be included in the model to estimate net

energy consumption accurately.

M ’ j -oriented programming (OOP)

approach offers significant advantages in reducing

redundant code and enabling efficient reuse of

components. In the modelling of BRO systems, a reusable

connector is developed to carry information on pressure,

salinity, and flow rate. This connector can be flexibly

utilized for the feed, reject, or permeate stream, depending

on the specific application. Finite volume models for RO

and pipe elements are created and structured to allow

extension, facilitating the development of complete RO

and pipe network models.

Additionally, separate models for tanks and pumps are

designed for integration into the overall process. These

individual components are then assembled into a complete

flowsheet. This flowsheet serves as a basis for detailed

mathematical simulations, for analysing system

performance and transient dynamics in BRO processes.

The overall architecture to model the BRO systems in

Open-Modelica (OM) is given in the Figure 2.

Figure 2 Architecture for BRO system modeling in OM

2.2 Modeling of individual components

2.2.1 Modeling of RO element

In the initial proof-of-concept model developed here,

several simplifying assumptions are made such as treating

membrane properties like water permeability coefficient

(𝛼) and feed density as constant. These assumptions can

be relaxed in future work. While the RO process is often

assumed to operate under steady-state conditions with

negligible pressure losses due to pipe friction, this paper

accounts for frictional pressure drop in the pipes and

membrane channels. Concentration polarization near the

membrane surface is modeled using the film theory to

account for solute accumulation near the membrane

interface due to water flux from the bulk solution.

The rate of change of local salinity at each feed node is

calculated using Eq. (1). Since feed density variations are

assumed to be small, Eq. (2) governs the overall solution

mass balance at each node, accounting for water transport

through the membrane as product. Local water flux is

calculated using equation 1, which depends on pressure

and osmotic differences across the membrane. Osmotic

pressure of the feed is calculated using the equation 11,

while the local concentration polarization is given by Eq.

10. The channel pressure drop is accounted for using the

Haigen Poiseuille equation 3.

𝑑𝑠

𝑑𝑡
= 𝑄f. 𝑠f − 𝑄r. 𝑠r − 𝑄p. 𝑠p

(1)

𝑄f = 𝑄r + 𝑄p (2)

𝑃f − 𝑃r

Δ𝐿
=

2𝜌𝑣avg
2 𝑓

𝐷ℎ

(3)

𝑣f =
𝑄f

𝐴cs

(4)

𝑣avg =
𝑣f + 𝑣r

2

(5)

Re =
𝐷h𝑣avg

 𝜈

(6)

𝑘 = 2.53
𝐷e

𝐷h
. (16Re

2

+

0.4892

Re
0.2964

)
(7)

𝑓 =
16

Re
+

0.4892

Re
0.036

(8)

𝐽 = 𝛼(𝑃avg − 𝜋m) (9)

𝑠m = 𝑠. 𝑒
𝐽
𝑘

(10)

𝜋m = 𝜋0 𝑠m
𝑛 (11)

2.2.2 Modeling of Tank

The tank is assumed to be well-mixed, which ensures that

the salinity within the tank remains uniform at any given

time. This assumption eliminates the need to model spatial

variations in the tank, which may be considered in later

detailed analyses. The governing equations 12,13

represent volume and salinity balances in the tank. These

equations incorporate time-dependent dynamics of

volume and salinity based on inflow and outflow of the

tank which are readily available using the connectors.

𝑑𝑉

𝑑𝑡
= 𝑄t,in − 𝑄t,out

(12)

𝑑(𝑉 ∙ 𝑠)

𝑑𝑡
= 𝑠t,in ∙ 𝑄t,in − 𝑠t,out ∙ 𝑄t,out

(13)

2.2.3 Modeling of Pipe element

Modeling a pipe in Modelica to account for salinity and

pressure variations involves representing mass and

momentum balances along its length. The salinity changes

are governed by equation 14, where flow rates (Q) and

salinity (s) are measured at both inlet and outlet. Pressure

drop is modeled using the Darcy-Weisbach equation 15,

with the friction factor as fp. The model assumes steady

flow in a cylindrical pipe with constant fluid properties

and negligible heat transfer. In Modelica, connectors

handle pressure, flow rate, and salinity inputs and outputs,

enabling integration with other system components. Mass

and momentum balances are implemented with equations

Session7B

DOI Proceedings of the Asian Modelica Conference 2024 115
10.3384/ecp217113 December 12-13, 2025, Jeju, Korea

4

capturing salinity transport and pressure loss, while spatial

discretization ensures accurate simulation of flow

characteristics along the length of the pipe.

𝑉
𝑑𝑠

𝑑𝑡
= 𝑠p,in ∙ 𝑄p,in − 𝑠p,out ∙ 𝑄p,out

(14)

𝑃p,in − 𝑃p,out

Δ𝑥
=

𝜌𝑣avg
2 𝑓p

2 ∙ 𝐷i

(15)

2.3 Flowsheet Simulation in Open Modelica

The individual models explained in section 2.2 for the

tank, pipe, and RO modules were systematically

integrated to create a complete flowsheet representation of

the BRO process as shown in Figure 3. Each module is

designed to operate independently, with connectors

enabling data transfer. By combining these modular

components, the flowsheet can capture the dynamic

interactions between the tank, pipes, and the RO module.

The flowsheet integrates these models to represent the

physical experimental setup, providing a comprehensive

framework for simulating the process.

In the overall flowsheet, initial conditions are set for

salinity throughout the system. Initial values are also set

for variables involved in non-linear equations to ensure

numerical stability and solution convergence. These initial

values allow the system to reach the desired operational

state efficiently, replicating realistic startup and steady-

state conditions. Using OM, the interconnected

components facilitate the study of the BRO process under

various scenarios, enabling detailed analysis of system

performance, such as energy consumption, recovery

efficiency, and pressure profiles. The modular structure of

the flowsheet also allows for easy scalability and

customization, supporting future extensions or

modifications, such as adding energy recovery devices or

advanced control schemes.

Figure 3 Flowsheet simulation of BRO process in Open

Modelica

2.4 Specific Energy Consumption

The specific energy consumption (SEC) is a critical

parameter in evaluating the efficiency of a BRO process.

It is calculated based on the total mass of permeate

produced and the energy consumption of the pumps over

the operating time. For each pump the high-pressure pump

and the recirculation pump, the energy consumption at

each time step is determined as the function of the

volumetric flow rate, the pressure differential, and the

pump efficiency.

The equation 16 is used to calculate SEC in this study.

Note that the actual SEC may be higher when factors such

as permeate back-flux and pump energy usage during the

cycle reset are considered.

𝑤 =
𝑊tot

𝑄p

(16)

𝑊HPP = 𝑄p∙(𝑃t,out − 𝑃atm)/𝜂HPP (17)

𝑊CP = 𝑄t,in(𝑃t,out − 𝑃t,in)/𝜂CP
 (18)

𝑊tot = 𝑊HPP + 𝑊CP (19)

3 Results and Discussions

The critical parameters and constants for the membrane

are given in the Table 1. The simulations were conducted

using Open-Modelica software version 1.23.0 on a

computing system equipped with a 13th Gen Intel(R) Core

(TM) i9-13900K processor (3.00 GHz), 64 GB RAM, and

a 64-bit operating system. All transient simulations were

carried out over a one-hour period, equivalent to 3600

seconds of runtime with a 60 second time step, to capture

the system's dynamic behaviour under operational

conditions.

 Table 1 Parameters

Symbol Value Units Description

RO membrane module

W 20 m Width of the channel

L 1 m Length of the channel

H 7e-4 m Height of the channel

N 50 -
Number of finite

elements discretized

α 2.7e-7 m/(s·Pa)
Permeability

coefficient

De 1.5e-9 m²/s
Diffusivity

coefficient

Dh 8.2e-4 m Hydraulic diameter

Amem 40 m²
Available area for the

membrane

Acs 0.014 m²
Cross-sectional area

of the channel

Javg 15 kg/(m3·hr)
Average permeate

flux

RR 0.5 - Recovery Ratio

Tank

V 1.2 m3 Volume of the tank

Area 0.4 m2 Area of the tank

Pipe

Di 0.0762 m
Internal Diameter of

the pipe

L 0.5 m Length of the pipe

Pumps

𝜂CP 0.9 -
Efficiency of the

circulation pump

𝜂HPP 0.9 - Efficiency of the HPP

Tank

text Pump

HPP

pipe
RO

pipe

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

116 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217113

5

3.1 Transient Analysis of Salinity and Flux

Variation Along the Membrane Length

Figure 4 illustrates how local salinity changes across the

length of a 1-meter membrane length over time. The

membrane is discretized into 50 equal sections of 0.02-

meter length each. The local salinity variation along the

membrane length is plotted at different time-steps during

the process. The first line corresponds to t = 1 min, the

second at t = 11 min, and the final line at t = 60 min (1

hour).

Figure 4 Local salinity profile along the length of the

membrane for increasing time

Initially, all the water in the RO module is at 35 g/l

salinity. But as the time progresses, salinity in RO

increases due to permeate production. At the same time,

feed entering the RO module is less saline compared to the

local brine. Hence, at the start of the membrane, salinity is

lower compared to end of the membrane where gradually

more permeate is recovered along the flow. As time

progresses, tank gets much more saline as less volume of

low salinity water mixes with same amount of brine.

Therefore, feed entering the module gets even more saline,

resulting in steeper increase in in inlet salinity with time.

This makes salinity gradient along the membrane more

pronounced with time. This effect is captured in Figure 4.

3.2 Transient Analysis of Flux Variation

Along the Membrane Length

Figure 5 illustrates how the flux changes along the

membrane length at each single node of the membrane

element. The spatial variance in flux increases with time.

This can be explained by effect of salinity as shown in

Figure 4 as well as pressure drop along the module length.

At any given time, pressure at inlet is higher compared to

pressure at the outlet. Therefore, first term in driving force

(𝑃 − 𝜋m) is less at outlet compared to inlet. Also, as

explained in Figure 4, salinity at inlet is lower compared

to salinity at the outlet. Hence, the second term in the

driving force is more at outlet compared to inlet. These

both effects simultaneously make flux at outlet less

compared to inlet. Specifically, as salinity gradient along

the membrane length increases with increase in time, flux

variance also increases with time. This effect is captured

by the model and shown in Figure 5.

Figure 5 Local permeate flux profile along the length of the

membrane for increasing time

3.3 Pressure Changes in the Tank

Figure 6 shows how pressure increases with time in batch

RO operation when a constant flux is maintained. This is

due to increase in average feed salinity as more permeate

is recovered. This increased salinity results in increase in

osmotic pressure of the tank and consequently of the feed.

Therefore, pressure is further increased to maintain a

constant permeate flux. As salinity increases slowly at first

when the volume of the tank is larger, the same trend is

observed for pressure in Figure 4, where the pressure

increases more rapidly at later times.

Figure 6 Pressure changes with time for a fixed average flux

3.4 Energy consumption

Figure 7 represents the relationship between the specific

energy consumption (w) and the average permeate flux

(Javg). The x-axis shows the set or fixed average permeate

flux, while the y-axis indicates the specific energy

consumption of the two pumps used in the process, which

operate under varying pressure conditions in the tank.

As the average permeate flux increases, the specific

energy consumption rises significantly. This trend occurs

because higher permeate flux requires greater pressure

differences across the membrane, leading to increased

energy demands for the pumps. At lower flux values, the

energy consumption is relatively low due to smaller

pressure requirements. However, as the flux increases, the

pressure requirements rise non-linearly, causing a steep

increase in specific energy consumption.

Session7B

DOI Proceedings of the Asian Modelica Conference 2024 117
10.3384/ecp217113 December 12-13, 2025, Jeju, Korea

6

This graph highlights the trade-off between achieving

higher permeate flux and maintaining energy efficiency.

The results emphasize the importance of optimizing

operational parameters to balance water production and

energy consumption in reverse osmosis systems.

Figure 7 Average Permeate flux vs SEC

4 Conclusion

This study demonstrates the effectiveness of using an

OOP approach in Open-Modelica to model and analyse

the transient dynamics of BRO systems. By integrating

modular components such as the membrane, tank, and

pipe models into a comprehensive flowsheet, the system's

behaviour under varying conditions was successfully

simulated. The transient simulations revealed key insights

into salinity and flux variation along the membrane length

and variation in specific energy consumption rate of the

system with time.

The relationship between average permeate flux and

specific energy consumption underscores the need to

optimize operating conditions to achieve a balance

between performance and energy efficiency. The

modelling framework helps explain the dynamic

behaviour of BRO systems and paves the way for further

optimization of the BRO process.

Acknowledgements

This collaborative work between Indian Institute of

Science Bengaluru and Korean Institute of Science and

Technology has been supported and funded by

Department of Science and Technology, Government of

India, (Project no. INT/Korea/P-690) and Indian Institute

of Science Bengaluru.

References

Al-Zainati, N., Subbiah, S., Yadav, S., Altaee, A.,

Bartocci, P., Ibrar, I., Zhou, J., Samal, A. K., &

Fantozzi, F. (2022). Experimental and theoretical

work on reverse osmosis - Dual stage pressure

retarded osmosis hybrid system. Desalination, 543.

https://doi.org/10.1016/j.desal.2022.116099

Barello, M., Manca, D., Patel, R., & Mujtaba, I. M. (2015).

Operation and modeling of RO desalination process

in batch mode. Computers and Chemical
Engineering, 83, 139–156.

https://doi.org/10.1016/j.compchemeng.2015.05.02

2

Fritzson, P., & Engelson, V. (n.d.). Modelica-A Unified

Object-Oriented Language for System Modeling and

Simulation.

Ghernaout, D. (2017). Reverse Osmosis Process

Membranes Modeling-A Historical Overview.

Journal of Civil, Construction and Environmental

Engineering, 2(4), 112–122.

https://doi.org/10.11648/j.jccee.20170204.12

Introduction to Object-Oriented Modeling and Simulation

with OpenModelica. (n.d.).

Jeong, K., Son, M., Yoon, N., Park, S., Shim, J., Kim, J.,

Lim, J. L., & Cho, K. H. (2021). Modeling and

evaluating performance of full-scale reverse

osmosis system in industrial water treatment plant.

Desalination, 518.

https://doi.org/10.1016/j.desal.2021.115289

Kim, G. Y., & Park, K. (2024). Application of batch

reverse osmosis as an appropriate technology for

inland desalination: Design, modeling, and

operating strategies. Desalination, 592.

https://doi.org/10.1016/j.desal.2024.118185

Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010).

Comparison of fouling behavior in forward osmosis

(FO) and reverse osmosis (RO). Journal of

Membrane Science, 365(1–2), 34–39.

https://doi.org/10.1016/j.memsci.2010.08.036

Loeffler, M., Huhn, M., Richter, C., & Kossel, R. (2006).

The Modelica Association Modelica (Vol. 4).

Patel, D., Ankoliya, D., Raninga, M., Mudgal, A., Patel,

V., Patel, J., Mudgal, V., & Choksi, H. (2024). Batch

Reverse Osmosis: Evolution from the Concept to the

Technology. In A. Mudgal, P. Davies, M. Kennedy,

G. Zaragoza, & K. Park (Eds.), Advances in Water

Treatment and Management (pp. 175–200).

Springer Nature Singapore.

Warsinger, D. M., Tow, E. W., Nayar, K. G., Maswadeh,

L. A., & Lienhard V, J. H. (2016). Energy efficiency

of batch and semi-batch (CCRO) reverse osmosis

desalination. Water Research, 106, 272–282.

https://doi.org/10.1016/j.watres.2016.09.029

Wei, Q. J. (n.d.). BATCH REVERSE OSMOSIS:

EXPERIMENTAL RESULTS, MODEL

VALIDATION, AND DESIGN IMPLICATIONS.

Werber, J. R., Deshmukh, A., & Elimelech, M. (2017).

Can batch or semi-batch processes save energy in

reverse-osmosis desalination? Desalination, 402,

109–122.

https://doi.org/10.1016/j.desal.2016.09.028

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

118 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217113

Object Oriented Modeling of Single and Multi-Bed Pressure Swing
Adsorption Processes using OpenModelica

Nikhil Sharma1 Kannan Moudgalya1 Sunil Shah2

1Department of Chemical Engineering, Indian Institute of Technology Bombay , India,
{nikhil_sharma,kannan}@iitb.ac.in

2Modelicon Infotech, Bengaluru, India sunil.shah@modelicon.in

Abstract
Pressure Swing Adsorption has been implemented to pro-
duce pure oxygen from air. Its model is solved using the
methods of finite difference and orthogonal collocation on
finite elements. Discrete events of this process are mod-
elled using state graphs. Solution to the PSA process us-
ing a single bed is presented. With two beds, it is shown
that it is possible to produce oxygen continuously. All of
these have been done using OpenModelica, and the code
is released as open source.
Keywords:Pressure swing adsorption, state graph, Open
Source, High purity oxygen production

1 Introduction
Pressure Swing Adsorption (PSA) is a technology em-
ployed for separations and purification of gases. PSA
operates on the basis of preferential adsorption of some
gases on adsorbents, such as molecular sieves. Pres-
sure is varied across the operations, and hence the name.
(Skarstrom 1959) used the PSA process first time to en-
rich oxygen and nitrogen in a heatless drier. Skarstrom
invented a two-bed cycle for the PSA to produce oxygen
with pressure equalization step using zeolite 13X adsor-
bent. The PSA process has been widely utilised from
then on ruthven1984principles. (Hassan, D. Ruthven, and
Raghavan 1986) proposed a simple dynamic model to pro-
duce oxygen from the PSA process, It is based on lin-
ear rate of mass transfer and used Langmuir adsorption
equilibrium equations. They further assumed that pres-
sure remained constant during adsorption and desorption
steps. (Farooq, D. Ruthven, and Boniface 1989) also in-
troduced a kinetically controlled dynamic model for the
Oxygen-PSA process. The advantage of kinetically con-
trolled model is that mass transfer effects and axial disper-
sion are easy to calculate. (Farooq and D. Ruthven 1990)
developed a linear driving force model and used carbon
molcular sieves. The four steps used for the PSA cycle
consists of:

1. Pressurisation.

2. Adsorption

3. Blow-down.

4. Purging with product.

PSA process is greatly influenced by design parameters
such as bed length, time for each step viz. pressurization,
feed, blowdown and purge. It is also influenced by feed
and purge flow rates, production rate, temperature, pres-
sure, etc. So it is imperative to obtain optimum amount of
process variables.

In this work a general purpose OpenSource simulator
for PSA is developed on the top of OpenModelica. Par-
tial differential equations governing PSA model are solved
numerically by developing generalized functions for finite
difference and orthogonal collocation on finite elements
techniques. Use of state-graphs enable visual and hence
error-free implementation of the switching operation.

2 State-Graph Library in OpenMod-
elica

StateGraph is an inbuilt library in OpenModelica which
is used here for control applications. It is an upgraded fi-
nite state machine based on JGrafchart method that utilises
Modelica feature of "action" language. The StateGraph
has similar modeling capabilities as that of StateCharts
with improved features. Main elements of a StateGraph
are Steps and Transitions, as shown in Fig. 1.

Figure 1. Steps and Transition blocks in StateGraphs

We explain the concept of StateGraph now, as it is
used extensively in this wrok. Steps are represented by
square boxes and transition by rectangles. Initial step is
represented by double square boxes. Possible states of
the StateGraphs are represented by Steps. A state can be
changed by the use of Transitions. If a step is active then

DOI Proceedings of the Asian Modelica Conference 2024 119
10.3384/ecp217119 December 12-13, 2025, Jeju, Korea

RRR

associated Boolean variable is true and becomes false oth-
erwise. A transition fires when condition associated with
it becomes true leading to input step to change to inactive
state and output step becomes active.

In Fig. 1 the wait time for transition is given as 0 sec and
set true. Therefore at time 0 tranistion1 fires and step1 be-
comes active leading to initialStep become inactive. The
wait time for transition2 is 10 sec. Therefore, transition2
fires after 10 sec of transition1 leading step1 to be inactive
and initialStep becomes active and cycle continuous.

3 PSA Process
Pressure Swing Adsorption (PSA) is based on the pref-
erential adsorption of some gases on adsorbents, such as
molecular sieves. In general, PSA includes four-steps:

1. Pressurization: Pressure plays a crucial role in ad-
sorption of gases on solids. A gas is particularly ad-
sorbed on the solid bed at high pressure according to
bed characteristics and desorbed at lower pressure.
The first step is pressurization where bed is pressur-
ized with high pressure inert gas. This helps in avoid-
ing sudden shock during the high pressure feed inlet
step.

2. Adsorption or Production: This step is the produc-
tion process wherein the feed is introduced from the
bottom of the bed. Some components of the gas
mixture preferentially get adsorbed according to the
adsorbate and adsorbent characteristics, thereby en-
abling the separation of gases. Pure product gas is
taken out from the other end.

3. Counter-Current Blowdown: When the bed gets sat-
urated with adsorbed gases, whatever feed comes in
it goes as it is to the outlet. No more separation is
now possible. So bed needs to be regenerated by ex-
posing it to atmosphere/low pressure. Due to pres-
sure difference components flow out of the bed.

4. Counter-Current Purge: Pure product gas at low
pressure is passed counter current from the top of the
bed. Desorption takes place and bed gets regenerated
for using in next cycle. fig:O2Prod demonstrates this
for oxygen production.

4 Numerical Solution of Adsorption in
a Fixed Bed

In this section, we will outline the model for adsorption in
a fixed bed, and the numerical methods to solve them.

We assume that the concentration gradients are mainly
along axial direction because of high aspect ratio of the
bed. Linear driving force for mass transfer is assumed.
The concentration and the mole fraction of components in
the gas stream are given by

C j =
YjP
RTg

(1)

where, P and Tg are the total pressure and temperature of
gas stream, respectively, C j and Yj are the concentration
and mole fraction of component j.
Langmuir Model:

∂ q̄ j

∂ t
=−KL, j(q∗j − q̄ j) (2)

Component Mass Balance:

ε
∂C j

∂ t
+

∂uC j

∂Z
= εDax

(
∂ 2C j

∂ 2Z

∣∣∣
z=0−

)
−(1−ε)ρP

∂ q̄ j

∂ t
(3)

Bulk Mass Balance:

ε
∂CT

∂ t
+

∂uCT

∂Z
= εDax

(
∂ 2CT

∂ 2Z

)
−∑(1− ε)ρP

∂ q̄ j

∂ t
(4)

Initial Conditions:
t = 0 :

C j(Z,0) = q̄ j(Z,0) = 0 (5)

Boundary Conditions:
Counter-current Pressurization Step:
Z = L :

εDax

(
∂C j
∂Z

)∣∣∣
Z+

=−u(C j
∣∣
Z− −C j

∣∣
Z+)

Z = 0 (
∂C j

∂Z

)∣∣∣
Z−

= 0 (6)

Production Step:
Z = L :

εDax

(
∂C j

∂Z

)∣∣∣
Z+

=−u(C j
∣∣
z− −C j

∣∣
z+) (7)

Z = 0 : (
∂C j

∂Z

)∣∣∣
Z−

= 0 (8)

Counter-current Blowdown Step:
Z = 0 : (

∂C j

∂Z

)∣∣∣
Z−

= 0 (9)

Counter-current Purge Step
Z = L :

εDax

(
∂C j
∂Z

)∣∣∣
Z+

=−u(C j
∣∣
Z− −C j

∣∣
Z+)

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

120 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217119

Z = 0 (
∂C j

∂Z

)∣∣∣
Z−

= 0 (10)

Table 1. Variables used in Fixed Bed Model

C j Concentration of species (mol/m3)
P Total pressure (bar)
R Gas Constant

T g Temperature of gas (K)
q̄ j Equilibrium Concentartion of species
q∗j Concentration of species in solid bed
ε Porosity
u Velocity(m/s)

Dax Axial dispersion coefficient
ρp Density of particle (kg/m3)
CT Bulk gas concentration

The easiest method to solve the above set of equations is
the finite difference method, using which, the PDE is con-
verted into ordinary differential equations (ODEs), which
are solved using an integrator, such as DASSL. In this
work, we divided the bed into 10 intervals of equal length.

Orthogonal collocation on finite elements is in general
a faster method to solve the PDEs. We divide the entire
length of the bed into three short subsections (0-0.3, 0.3-
0.7, 0.7-1), which allows us to use a low order polynomial
to approximate the solution. This in turn reduces the un-
desirable oscillatory phenomenon. Legendre third degree
polynomials are used in this work to approximate the so-
lution. It is possible to find the coefficients of the polyno-
mials in the three subsections using appropriate continuity
conditions. The resulting ODEs are solved using DASSL.

5 Modelling Pressure Swing Adsorp-
tion

In this section, we concentrate on operating the fixed bed
in four different modes, namely, pressurization, produc-
tion, blowdown, and purge. We begin with the example
of oxygen production from air. The OpenModelica code
developed in this work is available at (NikhilOM 2021).

5.1 Example: Oxygen Production from Air
using PSA

In this section, we devote our attention to the process of
producing high purity oxygen by separating it from nitro-
gen in air. Mathematical equations that describe the un-
derlying adsorption process have already been presented
in Sec. 4. The four step process for fixed bed adsorption
is shown in Fig. 2.

Figure 2. Four step adsorption process for fixed bed adsorption

The fixed bed is pressurized with pure O2 at high pres-
sure of 6 bar absolute pressure at 300 K. Feed is a mix-
ture of N2 and O2 with 79% and 21% composition respec-
tively is passed from the opposite end to that of pressur-
ization. Here the adsorption of N2 takes place and pure O2
comes out till the bed is saturated. Next step after bed gets
saturated is blowdown operation where bed is exposed to
low pressure atmosphere and due to pressure difference
adsorbed gases comes out after desorption and effluent is
rich in N2. During the purging operation pure O2 is passed
counter currently at low pressure of 1 bar and bed is re-
generated with effluent coming out from the other end.
The time intervals for pressurization, production, blow-
down, and purging are taken respectively as 30%, 20%,
30% and 20% of the cycle time, as suggested by (Douglas
M Ruthven 1984).

5.2 Implementing Discrete Events using State-
Graphs

Depending on the four modes of operating the fixed bed,
an appropriate model has to be solved. The model selec-
tion for each of the four modes is achieved by opening/-
closing valves using using state-graphs, an inbuilt library
in OpenModelica. Fig. 3 shows the diagram view of PSA
process for the fixed bed adsorber for O2 production in
OpenModelica. It shows process steps are actuated by
valves which in turn are modeled separately using State-
Graphs shown in Fig. 4. The valve connected to pressur-
ization unit is opened when boolean expression associated
with it is true. As shown in Fig. 3 boolean expression
connected to pressurised section becomes true when step
is active which is evident from Fig. 4 that it happens at
time 0. The same logic is applicable to opening and clos-
ing of valves associated with other steps.

Session8A

DOI Proceedings of the Asian Modelica Conference 2024 121
10.3384/ecp217119 December 12-13, 2025, Jeju, Korea

Figure 3. Diagram view of the four step PSA process in Open-
Modelica. Boolean expressions are activated as per the Stage-
Graph in Fig. 4.

Figure 4. Steps Implementation of Fixed Bed Adsorber using
StateGraphs. Variables step1, step2, step3 and step4 are acti-
vated respectively at (0.3,0.2,0.3,0.2) × (cycle time)

6 Simulation of Single Bed PSA Pro-
cess

The parameters used for O2 production in this work are
given in Table 2 and Table 3.

For pressurization, pure O2 at high pressure of 6 bar is
passed for 30% of cycle time. During the production step
feed air which is a mixture of N2 and O2 is supplied at
the other end. The feed step takes place for 20% of the
cycle time. For blowdown operation, the bed is exposed
to atmosphere for 30% of the cycle time. During the purge
operation, pure O2 is again passed counter-currently at a
low pressure of 1 bar for 20% of the cycle time. These
values are tabulated in Table 4.

Fig. 5 shows the mole fraction of N2 at outlet i.e at the
point at each time. Cycle time is taken as 1100s. One can
see from the figure that no N2 comes out at time interval
600-780s, as the mole fraction of N2 during this interval is
zero. During this interval, pure oxygen is produced, as one

Table 2. Input Parameters

Particle Dia. 0.0038 m
Void Fraction, ε 0.5418

Particle Density, ρ 600 Kg/m3

Table 3. Properties of Adsorbent

Species Max. Adsorbed b0
Conc. qm Pa−1

N2 14 4.96e-10
CO2 7.90 1.55e-11

Table 4. Step Time for O2 Production

Steps Time
Pressurization 330 sec

Production 220 sec
Blowdown 330 sec

Purge 220 sec

can see from the O2 mole fraction profile, given in Fig. 6.
This process is repeated at other time intervals also, as can
be seen from these figures.

Figure 5. Mole Fraction of N2 at outlet point

Figure 6. Mole Fraction of O2 at outlet point

Using single bed adsorber pure oxygen can be obtained
but the supply of pure Oxygen in the product is not contin-
uous because the bed needs to be regenerated after satura-
tion. One way to address this difficulty is to employ more

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

122 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217119

beds.

7 Simulation of two bed PSA process
In this section, we show that it is possible to produce O2
continuously with the help of two fixed beds. When prod-
uct is taken out from a bed the other bed remains in the
regenerated phase and vice-versa. Each of the two beds is
operated exactly as described in the previous section.

The four step process for oxygen production using two
beds of adsorbers is shown in Fig 7.

Figure 7. Multi-Cylinder adsorber for O2 production

The operation of multi cylinder adsorber is described in
Table 5.

Table 5. Four step process for multi cylinder bed

Step Open valve Bed-1 Bed-2
1 V1, V8 Pressurization Blowdown
2 V2, V7, V8 Production Purging
3 V3, V5 Blowdown Pressurization
4 V3,V4 V6 Purging Adsorption

Recall that we used the StateGraph in Fig. 4 for the
single bed operation. The same StateGraph works for the
two bed operation as well. The only difference is that now
more than one valve is operated when a Boolean operation
is active, as shown in Table 6.

Table 6. Steps Time for CO2 Capture

Steps Time
Pressurization 30 % of cycle time

Production 20 % of cycle time
Blowdown 30 % of cycle time

Purge 20 % of cycle time

The mole fraction of O2 produced by the two bed PSA
process is given in Fig 8. Blue line indicates the oxygen
production in one bed, and the red line corresponds to that
in the other bed. One can see that the oxygen mole fraction
is almost 1 at all times.

Figure 8. Mole fractions of O2 at outlet of both beds for 1100
seconds

8 Conclusion
A model for PSA has been implemented and solved us-
ing the open source modeling and simulation environment
OpenModelica. The object oriented modeling capability
has enabled easy extension of a single bed PSA to multi-
bed processes. The transitions occurring in PSA are im-
plemented through the inbuilt library StageGraph in Open-
Modelica. As it is a visual method of programming, it is
natural for engineers, and hence results in error-free cod-
ing. As the StateGraph capability is inbuilt, it results in
error-free implementation as well.

Commercial software that is capable of modeling niche
operations, such as PSA, can be prohibitively expensive to
students, and to small and medium scale enterprises. As
a result, this population may not have access to such im-
portant technologies. We are happy to partially address
this issue by releasing our code as open source Code. We
also believe that this is another initiative in the direction of
collaborative content creation, and improving the employ-
ability of students, as articulated by (Nayak et al. 2019).

The authors would like to thank the Ministry of Educa-
tion (previously MHRD), Government of India, for fund-
ing this work through the FOSSEE project at IIT Bombay.

References
Farooq, S and DM Ruthven (1990). “A comparison of linear

driving force and pore diffusion models for a pressure swing
adsorption bulk separation process”. In: Chemical engineer-
ing science 45.1, pp. 107–115.

Farooq, S, DM Ruthven, and HA Boniface (1989). “Numerical
simulation of a pressure swing adsorption oxygen unit”. In:
Chemical Engineering Science 44.12, pp. 2809–2816.

Hassan, MM, DM Ruthven, and NS Raghavan (1986). “Air sep-
aration by pressure swing adsorption on a carbon molecu-
lar sieve”. In: Chemical Engineering Science 41.5, pp. 1333–
1343.

Nayak, P. et al. (2019). “Chemical Process Simulation Using
OpenModelica”. In: I&EC Research 58, pp. 11164–11174.

Session8A

DOI Proceedings of the Asian Modelica Conference 2024 123
10.3384/ecp217119 December 12-13, 2025, Jeju, Korea

NikhilOM (2021). Pressure Swing Adsorption. https : / /github.
com/NikhilOM/Pressure- Swing- Adsorption/. [GitHub; ac-
cessed 20-Dec-2021].

Ruthven, Douglas M (1984). Principles of adsorption and ad-
sorption processes. John Wiley & Sons.

Skarstrom, Charles W (1959). “Use of Adsorption Phenomena
in Automatic Plant-Type Gas Analyzers”. In: Annals of the
New York Academy of Sciences 72.13, pp. 751–763.

Modelling And Simulation of a Batch Reverse Osmosis Process Using Modelica

124 Proceedings of the Asian Modelica Conference 2024 DOI
 December 12-13, 2025, Jeju, Korea 10.3384/ecp217119

https://github.com/NikhilOM/Pressure-Swing-Adsorption/
https://github.com/NikhilOM/Pressure-Swing-Adsorption/

	Proceedings30.10
	Reviewers_Neumayr
	ProceedingsA4Neumayr

	Allv0
	Allv0
	Allv0
	Allv0
	Allv0
	Proceedings
	Session1A
	Introduction
	Mathematical Descriptions
	DAEs and ODEs
	Multibody Equations

	Object-Oriented Definitions of Multibody Systems
	Symbolic Transformations
	Variable Structure Systems: Relocatable Space Robot
	Conclusion

	Session1B
	Introduction
	Features of the library
	Cable models
	Winch models
	Pulley model

	Modeling approach
	Basic concepts of the cable model
	Basic concept of winches and pulleys
	Elongation of a cable on a winch

	Implementation
	Interfaces
	Cable
	Cable Segment
	Winch
	Pulley
	Initialization
	Visualization

	Application examples
	Construction Crane
	Gravity Compensation for Space Robot Arm

	Conclusion and Outlook

	Session1C
	Introduction
	Cable Model and Available Data for Parameterization
	Experimental Setup and Parameter Identification
	Experiment 1: Horizontal Clamped Cable
	Experiment 2: Free Swinging Cable

	Discussion and Conclusion

	Session2A
	Session2B
	Introduction
	What is special about the DLR ThermoFluid Library?
	Overview

	New Concepts and Interfaces
	Static Head Pressure
	Interface to TIL Media

	Improved Components
	New Pipe and Fitting Models
	New Pump Models
	New 2-Phase Heat Exchanger Models

	Tool Support
	Compatibility
	Improved Performacce

	Application
	Application in Teaching
	Usage for Aircraft Systems

	Outlook

	Session2C
	Introduction
	Background
	Optimization and MOO in Modelica
	Optimal Control of Self-adaptive Systems

	The Optimization Framework
	Feature Model Transformation
	Optimization Operation
	Examples

	The Orchestration Workflow
	Case Study
	Conclusion and Future Work

	Session3A
	Session3B
	Session4B
	Session5A
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 State of the Art

	2 Linear Implicit Equilibrium Dynamics
	2.1 Formal Definition
	2.2 Informal Explanation
	2.3 Use Cases for LIED

	3 Potential Compilation of LIED Systems
	4 Building a Simulator for the LIED Compilation Target.
	5 Evaluation of the Scaling Properties.
	5.1 Memory Consumption
	5.2 Computation Time
	5.3 Time for Translation + Compilation or Instantiation

	6 Conclusion
	Acknowledgement
	References

	Session5B
	Introduction
	Motivation and Implementation Approach
	The Need for MBSE at HMC
	Architecture System Modeling
	Limitations of existing Approach at HMC
	Digital Thread Implementation

	Design Methodology
	Brake System Performance Use Case
	Process Demonstration

	Discussion of Decision Making
	Conclusions

	Session6B
	Session6C
	Session7B
	Session8A
	Introduction
	State-Graph Library in OpenModelica
	PSA Process
	Numerical Solution of Adsorption in a Fixed Bed
	Modelling Pressure Swing Adsorption
	Example: Oxygen Production from Air using PSA
	Implementing Discrete Events using StateGraphs

	Simulation of Single Bed PSA Process
	Simulation of two bed PSA process
	Conclusion

	S16

	S26

	S36

	S56

