
Proceedings of the
7tℎ International Modelica Conference

September 20-22, 2009
Grand Hotel di Como

Como, Italy

Francesco Casella (editor)

organized by
The Modelica Association and Politecnico di Milano

Proceedings of the 7tℎ Modelica Conference

Grand Hotel di Como, Italy, September 20-22, 2009

Editor:
Prof. Francesco Casella

Published by:
The Modelica Association

ISBN: 978-91-7393-513-5
Linköping Electronic Conference Proceedings
ISSN: 1650-3740
DOI: 10.3384/ecp0943

Copyright c⃝ The Modelica Association, 2009

I

Preface

The first International Modelica Conference took place in October 2000 in Lund, Sweden. Since
then, Modelica has increasingly become the preferred language for physical modelling of complex
systems, as this 7th edition of the Conference demonstrates. The number of presented papers, 83
regular and 22 posters, has significantly increased compared to the previous Conference, as well
as the number of Modelica-enabled tools being presented, which has reached the record number
of nine. The keynote talks about the ITEA2 Modelica-related European projects also prove how
Modelica is entering mainstream industry usage in system design. The Conference is a key op-
portunity for all players in the Modelica community (language designers, tool developers, library
designers, and end users) to meet and share their ideas and experience, thus promoting further
development of the language and of its applications.

The 7th International Modelica Conference was organized by Politecnico di Milano, Italy, and
by the Modelica Association. I would like to thank the local organizing committee for the excellent
job and the technical programme committee and the programme board for offering their time and
expertise in reviewing the papers.

Cremona, September 25, 2009

Francesco Casella

II

Organizing Committees

Programme Chair

∙ Prof. Francesco Casella, Politecnico di Milano, Italy

Programme Board

∙ Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany

∙ Prof. Peter Fritzson, Linköping University, Sweden

∙ Dr. Hilding Elmqvist, Dynasim AB, Lund, Sweden

∙ Dr. Michael Tiller, Emmeskay Inc., Plymouth, Michigan, USA

Programme Committee

∙ Dr. Johan Åkesson, Lund University, Lund, Sweden

∙ Dr. Peter Aronsson, MathCore Engineering AB, Linköping, Sweden

∙ Prof. Karl-Erik Årzén, Lund University, Lund, Sweden

∙ Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany

∙ Dr. John Batteh, Emmeskay Inc., Plymouth, Michigan USA.

∙ Dr. Ingrid Bausch-Gall, Bausch-Gall GmbH, Munich, Germany

∙ Daniel Bouskela, EDF R&D, Paris, France

∙ Prof. Felix Breitenecker, TU Wien, Vienna, Austria

∙ Prof. François E. Cellier, ETH Zürich, Zürich, Switzerland

∙ Mike Dempsey, Claytex Services Ltd, UK

∙ Dr. Hosam Fathy, University of Michigan, USA

∙ Prof. Gianni Ferretti, Politecnico di Milano, Italy

∙ Dr. Rüdiger Franke, ABB AG, Mannheinm, Germany

∙ Dr. Rui Gao, Dassault Systèmes Japan, Nagoya, Japan

∙ Anton Haumer, Technical consultant, St. Andrae-Woerdern, Austria

∙ Dr. Kay Juslin, VTT, Espoo, Finland

∙ Dr. Christian Kral, Arsenal Research, Austria

∙ Prof. Alberto Leva, Politecnico di Milano, Italy

∙ Kilian Link, Siemens AG, Erlangen, Germany

∙ Prof. Wolfgang Marquardt, RWTH Aachen, Germany

∙ Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany

∙ Prof. Chris Paredis, Georgia Institute of Technology, Atlanta, Georgia, USA

∙ Dr. Adrian Pop, Linköping University, Sweden

∙ Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany

∙ Peter Schneider, Fraunhofer IIS/EAS, Dresden, Germany

∙ Dr. Edward D. Tate, General Motors, Michigan, U.S.A.

∙ Dr. Wilhelm Tegethoff, TLK-Thermo GmbH and TU Braunschweig, Germany

∙ Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden

∙ Dr. Andreas Uhlig, ITI GmbH, Dresden, Germany

∙ Prof. Alfonso Urqúıa, UNED, Spain

∙ Prof. Hans Vangheluwe, McGill University, Montreal, Quebec, Canada

III

∙ Dr. HansJürg Wiesmann, formerly ABB Corporate Research, Baden, Switzerland

Local Organizing Committee

∙ Francesco Casella, Politecnico di Milano

∙ Martina Maggio, Politecnico di Milano

∙ Sara Gruppi, Politecnico di Milano, Polo di Cremona

∙ Maristella Pellini, Politecnico di Milano, Polo di Cremona

∙ Centro di Cultura Scientifica Alessandro Volta, Como

IV

V

Contents

Session MoAT1:
Automotive 1 1
Imke Lisa Krueger, Martin Sievers, Gerhard Schmitz: Thermal Modeling of Automotive

Lithium Ion Cells Using the Finite Elements Method in Modelica 1
Markus Andres, Dirk Zimmer, François E. Cellier: Object-Oriented Decomposition of Tire

Characteristics Based on Semi-Empirical Models 9
Thomas Lienhard Schmitt, Dirk Zimmer, François E. Cellier: A Virtual Motorcycle Rider

Based on Automatic Controller Design . 19

Session MoAT2:
Optimal Control and Optimization 1: Methods 29
Johan Åkesson, Tove Bergdahl, Magnus Gäfvert, Hubertus Tummescheit: Modeling and

Optimization with Modelica and Optimica Using the JModelica.org Open Source
Platform . 29

Jan Poland, Alf J. Isaksson, Peter Aronsson: Building and Solving Nonlinear Optimal
Control and Estimation Problems . 39

Atya Elsheikh, Katharina Nöh, Eric von Lieres: Improving Convergence of Derivative-
Based Parameter Estimation with Multi-Start Parameter Clustering Based on DAE
Decomposition . 47

Session MoAT3:
Power Plants and Energy Conversion Systems 1 56
Kevin Davies, Robert M. Moore, Guido Bender: Model Library of Polymer Electrolyte

Membrane Fuel Cells for System Hardware and Control Design 56
Kevin Davies, Comas L. Haynes, Christiaan J.J. Paredis: Modeling Diffusion and Reac-

tion Processes of Fuel Cells within Modelica . 66
Sindy Heil, Christian Brunhuber, Kilian Link, Julia Kittel, Bernd Meyer: Dynamic Mod-

elling of CO2-removal units for an IGCC power plant 77

Session MoAT4:
Non-Conventional Modelling Paradigms in Modelica 86
François E. Cellier, Victorino Sanz: Mixed Quantitative and Qualitative Simulation in

Modelica . 86
Victorino Sanz, Alfonso Urquia Moraleda, Sebastián Dormido: Parallel DEVS and Process-

Oriented Modeling in Modelica . 96

Session MoBT1:
Thermodynamic and Fluid Systems 1 108
Rüdiger Franke, Francesco Casella, Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson,

Martin Otter, Michael Sielemann: Stream Connectors – an Extension of Modelica
for Device-Oriented Modeling of Convective Transport Phenomena 108

Rüdiger Franke, Francesco Casella, Martin Otter, Katrin Prölss, Michael Sielemann,
Michael Wetter: Standardization of Thermo-Fluid Modeling in Modelica.Fluid . . . 122

Thorben Vahlenkamp, Stefan Wischhusen: FluidDissipation for Applications a Library
for Modelling of Heat Transfer and Pressure Loss in Energy Systems 132

François E. Cellier, Jürgen Greifeneder: Modeling Chemical Reactions in Modelica by Use
of Multi-Thermo-Bonds . 142

VI

Session MoBT2:
Aerospace 151
Niccolo Cymbalist, Chahé Adourian, Marc-André Lauriault: Modelica Library for Im-

proved Spacecraft Resource Budgeting . 151
Gianpietro Di Rito, Roberto Galatolo: Modelling and simulation of a fault-tolerant elec-

trical motor for aerospace servovalves with Modelica 160
Loig Allain, Marc Budinger, Jonathan Liscouet, Yvan Lefèvre, Julien Fontchastagner,

Abdelli Abdenour: Preliminary Design of Electromechanical Actuators with Modelica168
Jianjun Zhao, Ziqiang Li, Jianwan Ding, Liping Chen, Qifu Wang, Qing Lu, Hongxin

Wang, Shuang Wu: Hardware-In-The-Loop Simulation of Aircraft Thrust Reverser
Hydraulic System in Modelica . 178

Session MoBT3:
Modelica Tools and Language Design 1 184
Martin Sjölund, Peter Fritzson: An OpenModelica Java External Function Interface Sup-

porting MetaProgramming . 184
Peter Fritzson, Pavol Privitzer, Martin Sjölund, Adrian Pop: Towards a Text Generation

Template Language for Modelica . 193
George Giorgidze, Henrik Nilsson: Higher-Order Non-Causal Modelling and Simulation

of Structurally Dynamic Systems . 208
Hans Olsson, Martin Otter, Hilding Elmqvist, Dag Brück: Operator Overloading in Mod-

elica 3.1 . 219

Session MoBT4:
Symbolic/Numerical Methods 225
Dirk Zimmer: An Application of Sol on Variable-Structure Systems with Higher Index . 225
Andreas Uhlig, Torsten Blochwitz, Uwe Schnabel, Tobias Nähring: Initial Value Calcu-

lation for DAEs with Higher Index . 233
Francesco Casella, Filippo Donida, Johan Åkesson: An XML Representation of DAE

Systems Obtained from Modelica Models . 243
Martina Maggio, Kristian Stav̊aker, Filippo Donida, Francesco Casella, Peter Fritzson:

Parallel Simulation of Equation-Based Object-Oriented Models with Quantized State
Systems on a GPU . 251

Session MoCT1:
Mechanical and Multibody Systems 1 261
Isolde Dressler, Johannes Schiffer, Anders Robertsson: Modeling and Control of a Parallel

Robot Using Modelica . 261
Franciscus Leendert Johannes van der Linden, Pedro Henrique Vazques de Souza Silva:

Modelling and Simulating the Efficiency and Elasticity of Gearboxes 270
Tobias Zaiczek, Olaf Enge-Rosenblatt: Performance Analysis of Von Mises’ Motor Cal-

culus within Modelica . 278
Ivan Kosenko, Evgeniy Aleksandrov: Implementation of the Contensou-Erismann Model

of Friction in Frame of the Hertz Contact Problem on Modelica 288

Session MoCT2:
Air Conditioning and Climate Control 1 299
Norbert Stulgies, Manuel Graeber, Wilhelm Tegethoff, Sven Försterling: Evaluation of

Different Compressor Control Concepts for a Swash Plate Compressor 299
Christian Tischendorf, Denise Janotte, Ricardo Fiorenzano de Albuquerque, Wilhelm

Tegethoff: Investigation of Energy Dissipation in an Ejector Refrigeration Cycle . 304
Christian Flessner, Stefan Petersen, Felix Ziegler: Simulation of an Absorption Chiller

Based on a Physical Model . 312
Roland Kossel, Nils Christian Strupp, Wilhelm Tegethoff: Effects of Tool Coupling on

Transient Simulation of a Mobile Air-Conditioning Cycle 318

VII

Session MoCT3:
Power Plants and Energy Conversion Systems 2 326
Julia Kittel, Frank Hannemann, Friedemann Mehlhose, Sindy Heil, Bernd Meyer: Dy-

namic Modelling of the Heat Transfer into the Cooling Screen of the SFGT-Gasifier 326
Manuel Ljubijankic, Christoph Nytsch-Geusen, Steffen Unger: Modelling of Complex

Thermal Energy Supply Systems Based on the Modelica-Library FluidFlow 335
Kilian Link, Haiko Steuer, Axel Butterlin: Deficiencies of Modelica and Its Simulation

Environments for Large Fluid Systems . 341
Javier Bonilla, Lidia Roca, Luis José Yebra, Sebastián Dormido: Real-Time Simulation

of CESA-I Central Receiver Solar Thermal Power Plant 345

Session MoCT4:
Real-Time and Embedded Systems 354
Hilding Elmqvist, Martin Otter, Dan Henriksson, Bernhard Thiele, Sven Erik Mattsson:

Modelica for Embedded Systems . 354
Martin Otter, Martin Malmheden, Hilding Elmqvist, Sven Erik Mattsson, Charlotta

Johnsson: A New Formalism for Modeling of Reactive and Hybrid Systems 364
Marco Bonvini, Filippo Donida, Alberto Leva: Modelica As a Design Tool for Hardware-

In-The-Loop Simulation . 378
Torsten Blochwitz, Thomas Beutlich: Real-Time Simulation of Modelica-Based Models . 386

Session TuBT2:
Air Conditioning and Climate Control 2 393
Michael Wetter: Modelica Library for Building Heating, Ventilation and Air-Conditioning

Systems . 393
Boris Michaelsen, Joerg Eiden: HumanComfort Modelica-Library Thermal Comfort in

Buildings and Mobile Applications . 403
Zhu Wang, Kristian Tuszynski, Hubertus Tummescheit, Ales Alajbegovic: Integrated

Thermal Management Simulation: Evaluating the Effect of Underhood Recirculation
Flows on AC-System Performance . 413

Session TuBT3:
Automotive 2 423
Alessandro Picarelli, Mike Dempsey: Investigating the Multibody Dynamics of the Com-

plete Powertrain System . 423
Clemens Schlegel, Andreas Hösl, Sergej Diel: Detailed Loss Modelling of Vehicle Gearboxes434
Anand Pitchaikani, Kiran Kumar Koppu, Shankar Venkataraman, Michael M Tiller, John

Batteh: Powertrain Torsional Vibration System Model Development in Modelica for
NVH Studies . 444

Session TuBT4:
Hybrid Systems, Systems Biology and Biological Models 454
Sabrina Proß, Bernhard Bachmann: A Petri Net Library for Modeling Hybrid Systems in

OpenModelica . 454
Sabrina Proß, Bernhard Bachmann, Ralf Hofestädt, Karsten Niehaus, Rainer Ueckerdt,

Frank-Jörg Vorhölter, Petra Lutter: Modeling a Bacterium’s Life: A Petri-Net Li-
brary in Modelica . 463

Jan Brug̊ard, Marta Cascante, Gunnar Cedersund, Vitaly Selivanov, Elin Nyman, Daniel
Hedberg, Alex Gómez-Garrido, Dieter Maier, Peter Str̊alfors: Creating a Bridge
between Modelica and the Systems Biology Community 473

Session TuBT5:
Optimal Control and Optimization 2: Applications 480
Pontus Giselsson, Johan Åkesson, Anders Robertsson: Optimization of a Pendulum Sys-

tem Using Optimica and Modelica . 480
Jan Gall, Dirk Abel, Nils Ahlbrink, Robert Pitz-Paal, Joel A E Andersson, Moritz Diehl,

Cristiano Teixeira Boura, Mark Schmitz, Bernhard Hoffschmidt: Optimized Control
of Hot-Gas Cycle for Solar Thermal Power Plants 490

VIII

Hansjörg Kapeller, Dragan Simic: Feedback Loop Optimization for a Distillation System
by Applying C-Code Controllers with Dymola . 496

Session TuCT2:
Thermodynamic and Fluid Systems 2 502
Andreas Stückle: Modelling of High Temperature Storage Systems for Latent Heat . . . 502
Corinna Leonhardt, Dirk Müller: Modelling of Residential Heating Systems Using a Phase

Change Material Storage System . 507
Corey Bolduc, Chahé Adourian: Rapid Thermal Analysis of Rigid Three-Dimensional

Bodies with the Use of Modelica Physical Modelling Language 513
Helmut Kühnelt, Thomas Bäuml, Anton Haumer: SoundDuctFlow: A Modelica Library

for Modeling Acoustics and Flow in Duct Networks 519

Session TuCT3:
Mechanical and Multibody Systems 2 526
Regis Plateaux, Olivia Penas, Fäıda Mhenni, Jean-Yves Choley, Alain Riviere: Introduc-

tion of the 3D Geometrical Constraints in Modelica 526
Jens Frenkel, Christian Schubert, Guenther Kunze, Kristian Jankov: Using Modelica for

Interactive Simulations of Technical Systems in a Virtual Reality Environment . . 531
Tobias Bellmann: Interactive Simulations and Advanced Visualization with Modelica . . 541
Hilding Elmqvist, Sven Erik Mattsson, Christophe Chapuis: Redundancies in Multibody

Systems and Automatic Coupling of CATIA and Modelica 551

Session TuCT4:
Electronic Circuits 561
Kristin Majetta, Christoph Clauss, Matthias Franke, Peter Schneider: Improvement of

MSL Electrical Analog Library . 561
Kristin Majetta, Sandra Boehme, Christoph Clauss, Peter Schneider: SPICE3 Modelica

Library . 567
Loig Allain, Asma Merdassi, Laurent Gerbaud, Seddik Bacha: Automatic Modelling of

Power Electronic Converter, Average Model Construction and Modelica Model Gen-
eration . 576

Behrouz Roumizadeh, Jean-Yves Choley, Regis Plateaux, Olivia Penas, Alain Riviere:
Pre-Designing an Electronic Card Using a Multi-Domain Models Approach with DY-
MOLA . 587

Session TuCT5:
Computer-Aided Control System Design 593
Marcus Baur, Martin Otter, Bernhard Thiele: Modelica Libraries for Linear Control

Systems . 593
Johan Åkesson, Ulf Nordström, Hilding Elmqvist: Dymola and Modelica EmbeddedSystems

in Teaching - Experiences from a Project Course 603
Wladimir Schamai, Peter Fritzson, Christiaan J.J. Paredis, Adrian Pop: Towards Unified

System Modeling and Simulation with ModelicaML: Modeling of Executable Behavior
Using Graphical Notations . 612

Martina Maggio, Alberto Leva: Object-Oriented Simulation of Preemptive Feedback Pro-
cess Schedulers . 622

Session TuDT1:
Poster session 631
Peter Harman, Michael M Tiller: Building Modelica Tools Using the Modelica SDK . . . 631
Peter Harman: The Role of Modelica in a Robust Engineering Process 637
Ramine Nikoukhah, Sébastien Furic: Towards a Full Integration of Modelica Models in

the Scicos Environment . 641
Loig Allain, Stéphane Neyrat, Antoine Viel: Linear Analysis Approach for Modelica Models646
Philip Reuterswärd, Johan Åkesson, Anton Cervin, Karl-Erik Arzen: TrueTime Network

- a Network Simulation Library for Modelica . 657

IX

Fanli Zhou, Hehua Zhang, Hengwei Zhu, Xiong Gong, Boxing Wang, Jun Liu, Liping
Chen, Zhengdong Huang: Design and Implementation of Animation Post-Processor
Based on ACIS and HOOPS in MWorks . 663

Jörg Ungethüm, Dirk Hülsebusch: Implementation of a Modelica Library for Smooth
Spline Approximation . 669

Volker Beuter: Point-To-Curve Constraints and Other Contact Elements 676
Nils Ahlbrink, Boris Belhomme, Robert Pitz-Paal: Modeling and Simulation of a Solar

Tower Power Plant with Open Volumetric Air Receiver 685
Franck David, Annick Souyri, Guillaume Marchais: Modelling Steam Generators for

Sodium Fast Reactor with Modelica . 694
Juergen Birnbaum, Markus Jöcker, Kilian Link, Robert Pitz-Paal, Franziska Toni, Gerta

Zimmer: Simulation of the Dynamic Behavior of Steam Turbines with Modelica . . 702
Thomas Braig, Jörg Ungethüm: System-Level Modeling of an ICE-Powered Vehicle with

Thermoelectric Waste-Heat-Utilization . 708
Anton Sodja, Borut Zupancic, Janko Šink: Some Aspects of the Tube-And-Shell Heat-

Exchangers Modelling . 716
Tomas Skoglund: Reversed-Flow Models . 722
Alberto Leva, Filippo Donida: Control System Design for the Starch Mashing Phase in

the Production of Beer . 730
Martin Hast, Johan Åkesson, Anders Robertsson: Optimal Robot Control Using Modelica

and Optimica . 740
Lars Imsland, P̊al Kittilsen, Tor Steinar Schei: Using Modelica Models in Real Time

Dynamic Optimization – Gradient Computation . 748
Jens Rantil, Johan Åkesson, Claus Führer, Magnus Gäfvert: Multiple-Shooting Optimiza-

tion Using the JModelica.org Platform . 757
Lars Mikelsons, Hongchao Ji, Thorsten Brandt, Oliver Lenord: Symbolic Model Reduction

Applied to Realtime Simulation of Construction Machines 765
Johannes Edrén, Mats Jonasson, Andreas Nilsson, Adam Rehnberg, Fredrik Svahn, An-

nika Stensson Trigell: Modelica and Dymola for Vehicle Dynamics Applications at
KTH . 775

Damien Chapon, Guillaume Bouchez: On the Link between Architectural Description
Models and Modelica Analyses Models . 784

Uwe Schob, Ralf Böttcher, Torsten Blochwitz, Olaf Oelsner, Marek Winter: Model Based
Virtual Startup of Automation Systems . 790

Session TuET2:
Thermodynamic and Fluid Systems 3 798
Kristian Huchtemann, Dirk Müller: Advanced Simulation Methods for Heat Pump Systems798
Andreas Joos, Karin Dietl, Gerhard Schmitz: Thermal Separation: An Approach for a

Modelica Library for Absorption, Adsorption and Rectification 804
Uwe Kuessel, Dirk Abel, Matthias Schumacher, Martin Weng: Modeling of Rotary Kilns

and Application to Limestone Calcination . 814

Session TuET3:
Automotive 3 823
John Batteh, Michael M Tiller: Implementation of an Extended Vehicle Model Architec-

ture in Modelica for Hybrid Vehicle Modeling: Development and Applications . . . 823
Brad Schofield, Harish Surendranath, Magnus Gäfvert, Victor Oancea: Interfacing Abaqus

with Dymola: A High Fidelity Anti-Lock Brake System Simulation 833
Anand Pitchaikani, Kingsly Jebakumar S, Shankar Venkataraman, S A Sundaresan: Real-

Time Drive Cycle Simulation of Automotive Climate Control System Model 839

Session TuET4:
Electrical Drives and Power Systems 847
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V Gragger:

The AdvancedMachines Library: Loss Models for Electric Machines 847
Jörg Lehmann, Daniel Ohlsson, Hansjürg Wiesmann: A Modelica Library for High-

Voltage AC Circuit-Breaker Modeling . 855

X

Christian Kral, Anton Haumer, Bernhard Kubicek, Oliver Winter: Model of a Squirrel
Cage Induction Machine with Interbar Conductances 861

Session TuET5:
Modelica Tools and Language Design 2 868
Sébastien Furic: Enforcing Model Composability in Modelica 868
Dirk Zimmer: Module-Preserving Compilation of Modelica Models 880
Peter Aronsson, David Broman: Extendable Physical Unit Checking with Understandable

Error Reporting . 890

XI

Index of Authors

Abdenour, Abdelli, 168
Abel, Dirk, 490, 814
Adourian, Chahé, 151, 513
Ahlbrink, Nils, 490, 685
Alajbegovic, Ales, 413
Aleksandrov, Evgeniy, 288
Allain, Loig, 168, 576, 646
Andersson, Joel A E, 490
Andres, Markus, 9
Aronsson, Peter, 39, 890
Arzen, Karl-Erik, 657

Bacha, Seddik, 576
Bachmann, Bernhard, 454, 463
Batteh, John, 444, 823
Baur, Marcus, 593
Belhomme, Boris, 685
Bellmann, Tobias, 541
Bender, Guido, 56
Bergdahl, Tove, 29
Beuter, Volker, 676
Beutlich, Thomas, 386
Birnbaum, Juergen, 702
Blochwitz, Torsten, 233, 386, 790
Boehme, Sandra, 567
Bolduc, Corey, 513
Bonilla, Javier, 345
Bonvini, Marco, 378
Bouchez, Guillaume, 784
Braig, Thomas, 708
Brandt, Thorsten, 765
Broman, David, 890
Brug̊ard, Jan, 473
Brunhuber, Christian, 77
Brück, Dag, 219
Budinger, Marc, 168
Butterlin, Axel, 341
Bäuml, Thomas, 519, 847
Böttcher, Ralf, 790

Cascante, Marta, 473
Casella, Francesco, 108, 122, 243, 251
Cedersund, Gunnar, 473
Cellier, François E., 9, 19, 86, 142
Cervin, Anton, 657
Chapon, Damien, 784
Chapuis, Christophe, 551
Chen, Liping, 178, 663
Choley, Jean-Yves, 526, 587

Clauss, Christoph, 561, 567
Cymbalist, Niccolo, 151

David, Franck, 694
Davies, Kevin, 56, 66
Dempsey, Mike, 423
Di Rito, Gianpietro, 160
Diehl, Moritz, 490
Diel, Sergej, 434
Dietl, Karin, 804
Ding, Jianwan, 178
Donida, Filippo, 243, 251, 378, 730
Dormido, Sebastián, 96, 345
Dressler, Isolde, 261

Edrén, Johannes, 775
Eiden, Joerg, 403
Elmqvist, Hilding, 108, 219, 354, 364, 551,

603
Elsheikh, Atya, 47
Enge-Rosenblatt, Olaf, 278

Fiorenzano de Albuquerque, Ricardo, 304
Flessner, Christian, 312
Fontchastagner, Julien, 168
Franke, Matthias, 561
Franke, Rüdiger, 108, 122
Frenkel, Jens, 531
Fritzson, Peter, 184, 193, 251, 612
Furic, Sébastien, 641, 868
Försterling, Sven, 299
Führer, Claus, 757

Galatolo, Roberto, 160
Gall, Jan, 490
Gerbaud, Laurent, 576
Giorgidze, George, 208
Giselsson, Pontus, 480
Gong, Xiong, 663
Graeber, Manuel, 299
Gragger, Johannes V, 847
Greifeneder, Jürgen, 142
Gäfvert, Magnus, 29, 757, 833
Gómez-Garrido, Alex, 473

Hannemann, Frank, 326
Harman, Peter, 631, 637
Hast, Martin, 740
Haumer, Anton, 519, 847, 861

XII

Haynes, Comas L., 66
Hedberg, Daniel, 473
Heil, Sindy, 77, 326
Henriksson, Dan, 354
Hofestädt, Ralf, 463
Hoffschmidt, Bernhard, 490
Huang, Zhengdong, 663
Huchtemann, Kristian, 798
Hösl, Andreas, 434
Hülsebusch, Dirk, 669

Imsland, Lars, 748
Isaksson, Alf J., 39

Jankov, Kristian, 531
Janotte, Denise, 304
Ji, Hongchao, 765
Johnsson, Charlotta, 364
Jonasson, Mats, 775
Joos, Andreas, 804
Jöcker, Markus, 702

Kapeller, Hansjörg, 496, 847
Kittel, Julia, 77, 326
Kittilsen, P̊al, 748
Koppu, Kiran Kumar, 444
Kosenko, Ivan, 288
Kossel, Roland, 318
Kral, Christian, 847, 861
Krueger, Imke Lisa, 1
Kubicek, Bernhard, 861
Kuessel, Uwe, 814
Kunze, Guenther, 531
Kühnelt, Helmut, 519

Lauriault, Marc-André, 151
Lefèvre, Yvan, 168
Lehmann, Jörg, 855
Lenord, Oliver, 765
Leonhardt, Corinna, 507
Leva, Alberto, 378, 622, 730
Li, Ziqiang, 178
Link, Kilian, 77, 341, 702
Liscouet, Jonathan, 168
Liu, Jun, 663
Ljubijankic, Manuel, 335
Lu, Qing, 178
Lutter, Petra, 463

Maggio, Martina, 251, 622
Maier, Dieter, 473
Majetta, Kristin, 561, 567
Malmheden, Martin, 364
Marchais, Guillaume, 694
Mattsson, Sven Erik, 108, 354, 364, 551
Mehlhose, Friedemann, 326
Merdassi, Asma, 576
Meyer, Bernd, 77, 326
Mhenni, Fäıda, 526

Michaelsen, Boris, 403
Mikelsons, Lars, 765
Moore, Robert M., 56
Müller, Dirk, 507, 798

Neyrat, Stéphane, 646
Niehaus, Karsten, 463
Nikoukhah, Ramine, 641
Nilsson, Andreas, 775
Nilsson, Henrik, 208
Nordström, Ulf, 603
Nyman, Elin, 473
Nytsch-Geusen, Christoph, 335
Nähring, Tobias, 233
Nöh, Katharina, 47

Oancea, Victor, 833
Oelsner, Olaf, 790
Ohlsson, Daniel, 855
Olsson, Hans, 108, 219
Otter, Martin, 108, 122, 219, 354, 364, 593

Paredis, Christiaan J.J., 66, 612
Penas, Olivia, 526, 587
Petersen, Stefan, 312
Picarelli, Alessandro, 423
Pitchaikani, Anand, 444, 839
Pitz-Paal, Robert, 490, 685, 702
Plateaux, Regis, 526, 587
Poland, Jan, 39
Pop, Adrian, 193, 612
Privitzer, Pavol, 193
Proß, Sabrina, 454, 463
Prölss, Katrin, 122

Rantil, Jens, 757
Rehnberg, Adam, 775
Reuterswärd, Philip, 657
Riviere, Alain, 526, 587
Robertsson, Anders, 261, 480, 740
Roca, Lidia, 345
Roumizadeh, Behrouz, 587

S, Kingsly Jebakumar, 839
Sanz, Victorino, 86, 96
Schamai, Wladimir, 612
Schei, Tor Steinar, 748
Schiffer, Johannes, 261
Schlegel, Clemens, 434
Schmitt, Thomas Lienhard, 19
Schmitz, Gerhard, 1, 804
Schmitz, Mark, 490
Schnabel, Uwe, 233
Schneider, Peter, 561, 567
Schob, Uwe, 790
Schofield, Brad, 833
Schubert, Christian, 531
Schumacher, Matthias, 814
Selivanov, Vitaly, 473

XIII

Sielemann, Michael, 108, 122
Sievers, Martin, 1
Simic, Dragan, 496
Sjölund, Martin, 184, 193
Skoglund, Tomas, 722
Sodja, Anton, 716
Souyri, Annick, 694
Stav̊aker, Kristian, 251
Stensson Trigell, Annika, 775
Steuer, Haiko, 341
Strupp, Nils Christian, 318
Str̊alfors, Peter, 473
Stulgies, Norbert, 299
Stückle, Andreas, 502
Sundaresan, S A, 839
Surendranath, Harish, 833
Svahn, Fredrik, 775

Tegethoff, Wilhelm, 299, 304, 318
Teixeira Boura, Cristiano, 490
Thiele, Bernhard, 354, 593
Tiller, Michael M, 444, 631, 823
Tischendorf, Christian, 304
Toni, Franziska, 702
Tummescheit, Hubertus, 29, 413
Tuszynski, Kristian, 413

Ueckerdt, Rainer, 463
Uhlig, Andreas, 233
Unger, Steffen, 335
Ungethüm, Jörg, 669, 708
Urquia Moraleda, Alfonso, 96

Vahlenkamp, Thorben, 132
van der Linden, Franciscus Leendert Johannes,

270
Vazques de Souza Silva, Pedro Henrique, 270
Venkataraman, Shankar, 444, 839
Viel, Antoine, 646
von Lieres, Eric, 47
Vorhölter, Frank-Jörg, 463

Wang, Boxing, 663
Wang, Hongxin, 178
Wang, Qifu, 178
Wang, Zhu, 413
Weng, Martin, 814
Wetter, Michael, 122, 393
Wiesmann, Hansjürg, 855
Winter, Marek, 790
Winter, Oliver, 861
Wischhusen, Stefan, 132
Wu, Shuang, 178

Yebra, Luis José, 345

Zaiczek, Tobias, 278
Zhang, Hehua, 663
Zhao, Jianjun, 178
Zhou, Fanli, 663

Zhu, Hengwei, 663
Ziegler, Felix, 312
Zimmer, Dirk, 9, 19, 225, 880
Zimmer, Gerta, 702
Zupancic, Borut, 716

Šink, Janko, 716

Åkesson, Johan, 29, 243, 480, 603, 657, 740,
757

XIV

XV

Thermal Modeling of Automotive Lithium Ion Cells
using the Finite Elements Method in Modelica

Imke Krüger Martin Sievers Gerhard Schmitz
Institute of Thermofluid Dynamics, Applied Thermodynamics
Hamburg University of Technology, 21071 Hamburg, Germany

{imke.krueger, martin.sievers, schmitz}@tuhh.de

Abstract

In this paper, a finite element model for the heat trans-
fer inside an automotive lithium ion cell with Mod-
elica is developed. Convective cooling with several
coolants is examined. With the help of the cell model,
the effectiveness of several coolants are investigated.
As coolants air, 25 and 38 % (v/v) aqueous propylene
glycol, and a silicone oil are used.

Keywords: lithium ion cell; Modelica; OpenModel-
ica Compiler; heat transfer; finite element method

1 Introduction

Lithium ion cells are a promising technology for the
use in hybrid vehicles due to their high energy and
power densities. However, thermal management is
necessary to prevent premature aging, and for safety
reasons. The modeling and simulation of the temper-
ature distribution in a lithium ion cell is therefore of
high interest for the design of a cooling system. Heat
sink for the cells is the automotive refrigeration cycle.
since the refrigeration cycle will be modeled in Model-
ica it is obvious to model the battery pack with Model-
ica as well. In this way, one can avoid time-consuming
coupling with other software packages.

Due to the anisotropic heat conduction and the
distributed heat generation inside the cell, a simple
lumped capacity model is not sufficient to assure that
the maximum temperature inside the cell is kept be-
yond a certain level. To determine the temperature dis-
tribution in a cylindrical Li-ion cell, a two-dimensional
finite element model is developed and presented in this
paper [1]. The thermal models are simulated with Dy-
mola and the OpenModelica Compiler in combination
with the GUI simforge.

The paper is structured as follows. The following
section describes the structures of the Lithium ion cell
and the cooling system. In Section 3, the idea of the

finite element method is presented and its Modelica
implementation illustrated. In Section 4, the results for
several coolants are compared. Conclusions are drawn
in the final section.

2 Lithium Ion Cells

Li-ion cells are characterized by the type of electrolyte
that is used, the geometry of the cell, the type of the
electrodes and the material of the electrodes and other
parts. In this project the temperature of a commonly
used cell type is simulated.

Fig. 1 shows the architecture of a spirally wound
cylindrical cell.

Figure 1: Architecture of a spirally wound cell [2]

A winding consisting of a negative electrode with a
negative conductor, a separator layer, a positive elec-
trode with a positive conductor and a further separator
layer is rolled up and put in a metal casing. This casing
is then filled up with the electrolyte. The investigated
cell has a LiCoO2 positive electrode with an aluminum
conductor, a graphite negative electrode with a copper
conductor and PE/PP separators. The casing is made
of steel. The cylindrical cell uses the standard elec-
trolyte LiPF6. Many commercially available cells are

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 1 DOI: 10.3384/ecp09430072

Material Thermal Conductivity /WmK

Steel 15
LiPF6 0.6
Aluminum 240
PE / PP 0.22
Graphite 1.04
Copper 395
LiCoO2 1.58

Table 1: Thermal conductivity of the cell components
[3, 4, 5, 6, 7]

based on this LiCoO2-graphite system. Thermal con-
ductivities of the cell materials are listed in Table 1. In
this model 31 windings are used, the foil thicknesses
from 20 to 140µm are used. This results in a capacity
around 7.5Ah.

To construct an HEV battery pack, many Li-ion
cells are connected serial and parallel within the pack.
An essential part of the battery pack is its thermal and
electrical management. Current and voltage of every
single Li-ion cell in a battery pack must be controlled
because overcharging can lead to thermal runaway. As
heat is generated continuously within the cell during
charging and unloading, an appropriate cooling sys-
tem is necessary.

Cell performance generally improves with increas-
ing temperature, as diffusive processes dominate the
reaction. On the other hand ageing processes become
faster as well with increasing temperatures. At room
temperature the reduction of cell life can reach up to
50 % for a temperature increase of 10 deg C. A ther-
mal management system ensures a long life time and
good cell performance. At temperatures above 70∘C
the cell is at risk of thermal runaway. The separator
melts and direct contact between the electrodes results
in a highly exothermic reaction. The optimum bal-
ance between long life time and cell performance is
achieved when the mean temperature lies between 25
and 30∘C [2]. The maximum temperature within the
cell should exceed 40∘C in exceptional cases only [2].
Temperature differences within the cell lead to me-
chanical stress. One measure of this stress is the maxi-
mum temperature difference, which should not exceed
5 deg C.

These limits have to be fullfilled for a variety of
boundary conditions because the same battery system
has to operate efficiently in different climates. Three
different cooling systems are possible in a hybrid ve-
hicle:

∙ air cooling: the air is provided by the air condi-
tioning system,

∙ secondary loop cooling: a coolant is circulated in
an additional loop,

∙ evaporative cooling: the battery heat exchanger is
connected to the refrigeration unit of the air con-
ditioning.

In this paper, the first two approaches are investi-
gated. Forced convection in the longitudinal direction
is directly applied to the cell shell and natural convec-
tion to the caps. The configuration is shown in Fig.
2.

Figure 2: Configuration of the heat transfer at the cell
surface

3 Finite Element Method

3.1 Mathematical Aspects

The finite element method is widely used for mechan-
ical problems, but can also be successfully applied
to heat transfer problems. This applies especially to
problems, for whom an analytical solution is difficult
to find due to complex geometries or heat generation
inside the object of interest.

The temperature distribution inside the cell is inde-
pendent of the circumferencial direction if longitudi-
nal flow of the coolant is assumed. The Fourier dif-
ferential equation of heat transfer in cylindrical coor-
dinates:

λ
[

1
r

∂
∂ r

(

r
∂ϑ
∂ r

)

+
1
r2

∂ 2ϑ
∂ϕ2 +

∂ 2ϑ
∂z2

]

+ ė= ρ cp
∂ϑ
∂ t
(1)

is reduced to two dimensions. With the assumption of
constant radial und axial heat conductivity, it can be

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 2

further simplified to

1
r

[

λr
∂
∂ r

(

r
∂ϑ
∂ r

)]

+λz
∂ 2ϑ
∂z2 + ė= 0 (2)

with the following boundary conditions

ϑ = ϑb (3)

and

λr
∂ϑ
∂ r

l +λn
∂ϑ
∂z

n+α(ϑ −ϑin f)+ q̇= 0. (4)

Equation (3) defines temperatures at the boundaries
(Dirichlet boundary conditions). A heat flux can be
prescribed by (4), it considers a heat flux due to heat
conduction or convection as well as a given heat flux ˙q
(Neumann boundary condition).

To model a certain cylinder, the area is subdivided
into elements. In this approach, triangular elements
with linear basis functions are used[8].

For each element, a stiffness matrixS and the load
vector⃗b are calculated. The stiffness matrixS defines
the heat conduction inside the triangle:

S =
∫

V
BT D B dV+

∫

O
α NT N dO (5)

with

B =

⎡

⎢

⎢

⎣

∂ϑ
∂ r

∂ϑ
∂z

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

∂N1
∂ r

∂N2
∂ r

∂N3
∂ r

∂N1
∂z

∂N2
∂z

∂N3
∂z

⎤

⎥

⎥

⎦

=
1

2 A

[

b1 b2 b3

c1 c2 c3

]

(6)
the heat conductivity matrix

D =

[

λr 0
0 λz

]

(7)

and the basis functions matrixN

N = [N1 N2 N3] . (8)

The load vector⃗b consists of inner heat sources and
the boundary conditions

b⃗=
∫

V
ė NTdV+

∫

O
q̇ NTdO+

∫

O
αϑaNTdO (9)

Applying the Galerkin method (a form of weighted
residual method) to Eq. (2) one yields the following
equation

∫

V
N
[

1
r

λr
∂
∂ r

(r
∂ϑ
∂ r

)+λz
∂ 2ϑ
∂z2 + ė

]

dV = 0 (10)

which can also be written as the finite element equa-
tion with u⃗T = [ϑ1ϑ2ϑ3]

S u⃗= b⃗. (11)

The global stiffness matrix and the global load vec-
tor are formed by adding the corresponding elements
of neighboring triangles. The global finite element
equation can then be set up and solved.

3.2 Implementation in Modelica

Due to the axisymmetry of the heat transfer inside the
cell, the temperature does not depend on the angleϕ .
Only longitudional flow of the coolant can be exam-
ined with this approach, since for transvers flow the
heat transfer coefficient depends onϕ .

The three nodes of the triangular element are repre-
sented by connectors with the temperature as a single
variable.

connector node
Modelica.siunits.Temp_K T;
end node;

The triangle model consists of the local stiffness ma-
trix S, the local load vector⃗b, the local temperature
vector u⃗, three nodes, their geometric parameters in
cylindrical coordinates and everything necessary to
define the heat transfer. Several parameters have the
attribute fixed set to false as their value will be set
in the aggregated cell model (see next subsection).
The convective heat transfer coefficients depend on the
medium temperature at the element and are calculated
in the cell model, thus they are declared as input vari-
ables. The element size can be varied to be able to
account for the terminals and the casing of the cell.

The following code listing shows, how two trian-
gles are connected (see Fig. 3). First, the connectors
have to be connected. Then the global stiffness matrix
and the load and temperature vectors are constructed.
The finite element equation is formulated in the global
model only.

model 2Elements
siunits.Temp_K u[4,1];
siunits.ThermalConductivity S[4,4];
siunits.Heat b[4,1];

triangle A(...);
triangle B(...) ;

equation
connect(A.node2, B.node3);
connect(B.node2, A.node3) ;
S={{A.S[1,1], A.S[1,2], A.S[1,3],0},

{A.S[2,1], A.S[2,2]+B.S[3,3],
A.S[2,3]+B.S[2,3], B.S[3,1]},

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 3

Figure 3: Example 2Elements

{A.S[1,3], A.S[2,3]+B.S[2,3],
A.S[3,3]+B.S[2,2], B.S[1,2]},

{0,B.S[1,3],B.S[1,2], B.S[1,1]}};
u={{A.u[1,1]},{A.u[2,1]},
{A.u[3,1]}, {B.u[1,1]}};
b={{A.b[1,1]}, {A.b[2,1]+B.b[3,1]},

{A.b[3,1]+B.b[2,1]},{B.b[1,1]};
S*u=b;
end 2Elements;

The construction of the global stiffness matrix be-
comes more and more complicated with a rising num-
ber of connected elements. However, once the equa-
tions for large stiffness matrices are formulated by
means of loops, they can be reused for every other ax-
isymmetric problem if triangular elements with linear
basis functions are used.

3.3 Cell model

The model for the lithium-ion cell is made up of two
arrays of triangles: A and B. Their directions and co-
ordinates are chosen such that e.g. triangle A[1,1]
and B[1,1] are connected to form a rectangle as shown
above. All triangles together form the whole cell.

The attempt to take every single layer in the winding
into account by at least one element in radial direction
would lead to a high number of equations and is there-
fore dismissed. Instead, the axial and radial heat con-
ductivities are calculated for each layer of sheets as the
thermal resistances (axial, radial) vary with the radius.
Fig. 4 shows the layers of the winding and the cor-
responding two triangular elements representing one
winding.

For the whole cell a grid with 35 x 10 elements
with different element sizes is generated. Using a
model with more elements leads to an unreasonable
increase in simulation time. The cell model can easily
be adopted to simulate different cell dimensions. Be-
sides this, the cell materials can be varied. The lid and

Figure 4: Layers in one winding

the casing of the cell are also taken into account.

3.4 Coolant model

As the OpenModelica Compiler does not yet support
the Modelica.Media library, simple linear medium
models are used to calculate the medium properties.
For air, the relative deviation up to 60∘C is less than
5 % for the relevant properties. Pressure drop of the
fluid is neglected.

Fig. 5 illustrates the heat transfer from the cell wall
to the fluid. The heat flow from the cell element i to
the coolant is described by the following equation

Q̇w,i = α ⋅A⋅∆ϑi (12)

with the mean temperature difference

∆ϑi =
ϑW,i +ϑW,i+1

2
−

ϑC,i +ϑC,i+1

2
(13)

between the wall temperatureϑW and the coolant tem-
peratureϑC .

Figure 5: Heat transfer from cell to fluid

The convective heat transfer coefficientα is calcu-
lated from a Nusselt number relationship for longitu-
dional flow along a cylinder [3]. As the coolant flows

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 4

along the cell, the fluid is heated up:

ϑC, i+1 = ϑC, i +
Q̇W, i

ṁcp
. (14)

The temperature difference between cell wall and fluid
decreases, less heat can be transferred to the fluid.

At the caps at the top and the bottom of the cell,
only natural convection is taken into account (Fig. 2).

The calculated heat flow out of the cell is added to
the load vector⃗b.

4 Comparison of Coolants

The coolant type, flow velocity, temperature and flow
direction were varied for different simulations. The
objective was to find a configuration that fulfills the
benchmarks for maximum and mean temperature, to-
gether with the maximum temperature difference, as
specified in Section 2. The coolants investigated were
air, 25 and 38 % (v/v) aqueous propylene glycol, and
a silicone oil. Further details of the analyses may be
found in [1].

In the simulations, it is assumed that the cell is con-
stantly charged or discharged. The amount of heat
generated inside the cell is approximated by a re-
lation given by Gibbard [9]. For moderate loading
rates, the heat generation is about 200kW/m. For very
fast charging/discharging, the heat generation is about
300kW/m.

4.1 Air Cooling

The first set of simulations was performed for air cool-
ing. Fig. 6 shows the result for an air flow veloc-
ity of 5 m

s , an inlet temperature of 20∘C and a heat
generation of 200kW/m. The coolant flows upwards
along the right-hand side of the diagram; the left-hand
side represents the center line of the cell. The maxi-
mum temperature exceeds the thermal runaway limit,
and the maximum temperature difference greatly ex-
ceeds the 5 deg C limit (see Table 2). The heat trans-
fer coefficient decreases in the flow direction, so that
the hottest cell zone is close to the center line in the
upper half of the cell, and heat is predominantly re-
moved through the cap at the coolant inlet. Since the
forced convective heat transfer is considerably greater
than the natural convective heat transfer at the caps,
most of the heat is conducted radially to the coolant
within the caps. The isotherms are almost parallel
within the electrolyte-filled cavity along the center line
of the cell, as no heat is generated there. Some of the

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

84

86

88

90

92

94

96

98

100

102

104

Figure 6: Temperature field for air cooling with a
flow velocity of 5m

s , an inlet temperature of 20∘C and
200kW/m3 heat generation

heat from the cell is transported to the caps within this
cavity.

Chen et al. [5] state that radiative heat transfer
should be taken into account when modeling surface
heat transfer. This applies to cooling with air, whose
optical thickness is low. When liquid coolants are
used, radiative heat transfer is neglected because of the
higher optical thickness. A simple model which as-
sumes grey Lambert bodies for a single cell was used
to demonstrate the influence of radiative heat transfer
for cells located in the outermost regions of the battery
pack.

For the same boundary conditions as in Fig. 6,
the maximum temperature is reduced from 105.9∘C
to 82.7∘C, and the maximum temperature difference
is reduced from 22.2 deg C to 17.8 deg C, see Fig. 7
and Table 2.

Table 2: Characteristic temperatures of the different
simulations. A: air, inlet flow velocity 5m/s, inlet tem-
perature 10∘C, 200kW/m3 heat generation

ϑmax ϑavg ∆ϑmax
∘C ∘C deg C

Fig. 6 105.9 97.6 22.2
Fig. 7 82.7 75.9 17.8
A 95.6 87.3 22.2
Fig. 8 31.5 25.9 11.1
Fig. 9 left 42.0 33.8 16.6
Fig. 9 right 41.6 33.3 16.3

Another way of lowering the cell temperature is to
reduce the inlet temperature. A simulation was con-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 5

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

66

68

70

72

74

76

78

80

82

Figure 7: Temperature field for cooling with air at a
flow velocity of 5m

s , an inlet temperature of 20∘C and
200kW/m3 heat generation, taking radiative heat trans-
fer into account

ducted for an air flow velocity of 5ms , an inlet temper-
ature of 10∘C and a heat generation of 200kW/m3 (see
Table 2, case A). Comparison with Fig. 6 shows that
the temperature reduction within the cell is approxi-
mately equal to the inlet temperature reduction. The
higher energy demand of the refrigeration cycle in or-
der to cool the fluid below ambient temperature should
be noted.

No air cooling configuration has been found that
keeps the temperature within the permissible tempera-
ture range. Air cooling is therefore not recommended
for the stationary case.

4.2 Cooling with 38 %(v/v) Aqueous Propy-
lene Glycol

Aqueous propylene glycol is used as a coolant in in-
ternal combustion engines. The thermal capacity of
glycol is higher than for air, so the flow velocity is re-
duced. The result of a simulation for an inlet flow ve-
locity of 1 m

s , an inlet temperature of 20∘C and a heat
generation of 200kW/m3 is shown in Fig. 8.

The high heat transfer coefficients lead to a con-
siderable improvement in thermal performance. The
mean temperature of 25.9∘C and maximum temper-
ature of 31.5∘C are both within limits; the maximum
temperature difference of 11.1 deg C exceeds the limit.
Temperature benchmarks are nearly satisfied, and tem-
perature management is possible.

The heat generation is increased to 300kW/m3,
which corresponds approximately to a charging rate
that allows 20 complete chargings and dischargings

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

21

22

23

24

25

26

27

28

29

30

31

Figure 8: Temperature field for cooling with 38 %(v/v)
aqueous propylene glycol at a flow velocity of 1m

s , an
inlet temperature of 20∘C and 200kW/m3 heat gener-
ation

per hour. Fig. 9 shows the effect of varying the in-
let flow velocity for an inlet temperature of 25∘C and
300kW/m3 heat generation.

An increase in flow velocity from 1ms to 1.5 m
s re-

duces the temperature within the cell only slightly, by
about 0.5∘C. This is because the wall temperature is
already close to the coolant temperature. Increasing
the coolant flow velocity above 1ms is thus of minor
advantage for temperature control.

A change in inlet temperature has a considerable
and therefore useful influence upon cell temperature.
Reducing the inlet temperature to 15∘C results in a
maximum cell temperature of 32.2∘C and a mean tem-
perature of 24.0∘C, temperatures which are very close
to the benchmark temperature. The maximum temper-
ature difference of 16.6 deg C still exceeds the limit
(see Table 3, case B).

To reduce the maximum temperature difference
within the cell even further, a change in cell geometry
must be considered. This may involve cell material,
external diameter and length, and also the dimensions
of internal components or the thickness of the caps.
Changes in cell design have been evaluated in [1].

To ensure safe operation, the maximum temperature
within the cell should never exceed the critical tem-
perature of 60∘C. simulations have shown that, when
cooling with 38 %(v/v) aqueous propylene glycol at
a flow velocity of 1m

s and with a heat generation of
300kW/m3, the maximum inlet temperature is 43∘C.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 6

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

26

28

30

32

34

36

38

40

42

26

28

30

32

34

36

38

40

42

Figure 9: Comparison of temperature fields for cool-
ing with 38 %(v/v) aqueous propylene glycol at a flow
velocity of 1m

s (left) and 1.5 m
s (right), an inlet temper-

ature of 25∘C and 300kW/m3 heat generation

4.3 Comparison with other Coolants

To show the effect of different coolants, simula-
tions with 25 %(v/v) aqueous propylene glycol and
Syltherm 800 were performed. Fig. 10 shows a com-
parison between all three coolants for an inlet flow ve-
locity of 1 m

s , an inlet temperature of 25∘C and a heat
generation of 300kW/m3. The propylene glycol con-
centration is seen to have only a minor influence on
the temperature, whilst the use of Syltherm 800 sili-
cone oil results in much higher temperatures.

Table 3: Characteristic temperatures of the different
simulations. B: 38 %(v/v) aqueous propylene gly-
col, inlet flow velocity 1m

s , inlet temperature 15∘C,
3300kW/m3 heat generation

ϑmax ϑavg ∆ϑmax
∘C ∘C deg C

B 32.2 24.0 16.6
Fig. 10 left 36.4 30.9 11.1
Fig. 10 center 36.1 30.6 11.0
Fig. 10 right 40.7 34.9 13.4

5 Conclusion

The stationary thermal model simulates the two-
dimensional temperature distribution within the cell
for natural and forced convective as well as for radia-
tive heat transfer. It can be easily adapted to other cell

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Le
ng

th
, m

Radius, m

0 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Le
ng

th
, m

Radius, m

0 0.005 0.01
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

26

28

30

32

34

36

38

40

26

28

30

32

34

36

38

40

26

28

30

32

34

36

38

40

Figure 10: Comparison of temperature fields for cool-
ing with 38 (left), 25 %(v/v) aqueous propylene glycol
(center) and Syltherm 800 (right) at inlet flow velocity
of 1 m

s , an inlet temperature of 25∘C and 300kW/m3

heat generation

geometries, and can therefore be used to simulate other
cell designs.

simulations show that air cooling is insufficient to
keep temperatures within the required limits. Mean-
while, liquid coolants keep the maximum and mean
temperature within the desired range for a heat genera-
tion of 200kW/m3, and thus ensure safe cell operation.
The cell cannot be operated safely at a heat generation
of 300kW/m3.

The simulation of heat transfer with the finite el-
ement method has been succesfully implemented in
Modelica. Various cylindrical bodies can be modeled.
The quality of the model is only limited by the maxi-
mum number of equations that can be handled by the
tool. The construction of the global stiffness matrix is
quite complex, but can be reused for other cylindrical
models.

The modeling attempt was also tested with the
OpenModelica Compiler. Arrays with large dimen-
sions could not be succesfully simulated, the model for
the whole cell can therefor not be translated. For small
models consisting of four triangles, the simulation was
possible. Only little modifications of the models were
necessary.

The introduction of a capacitance matrix into each
element would enlarge the range of application to dy-
namic problems as well.

Smaller numbers of equations can be reached by us-
ing different element types for the inside (only heat
conduction) and the outside of the cell (additional heat
transfer by convection and radiation).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 7

References

[1] Sievers, M.: Modellierung der Tempera-
turverteilung in Lithium-Ionen-Batterien mit
der Finite-Elemente-Methode. Bachelor thesis,
Hamburg University of Technology, Department
of Mechanical Engineering, 2008.

[2] Jossen, A., Weydanz, A.: Moderne Akkumula-
toren richtig einsetzen. Reichert Verlag, Unter-
meitingen, 2006.

[3] Verein Deutscher Ingenieure, VDI-Gesellschaft
Verfahrenstechnik und Chemieingenieurwesen
(GVC): VDI-Wärmeatlas. 10. Auflage, Springer-
Verlag, Berlin, 2006.

[4] Julien, C., Stoynov, Z.: Materials for lithium-ion
batteries: Proceedings of the NATO Advanced
Study Institute on Materials for Lithium-Ion Bat-
teries, Design and Optimization. Sozopol, Bul-
garia, September 21 - October 1, 1999, Kluwer
Academic Publishers, Dordrecht, 2000.

[5] Chen, S.-C., Wang, Y.-Y., Wan, C.-C.: Ther-
mal Analysis of Spirally Wound Lithium Batter-
ies. Journal of the Electrochemical Society, 153
(2006) 4, pp. A637-A648.

[6] Al-Hallaj, S., Maleka, H., Selman, J. S.: Thermal
modeling and design considerations of lithium-
ion batteries. Journal of Power Sources, 83
(1999) 1-2, pp. 1-8.

[7] Wu, M.-S., Liu, K.H., Wang, Y.-Y., Wan, C.-C.:
Heat dissipation design for lithium ion batteries.
Journal of Power Sources, 109 (2002) 1, pp. 160-
166.

[8] Lewis, R. W., Nithiarasu, P., Seetharamu, K. N.:
Fundamentals of the Finite Element Method for
Heat and Fluid Flow, John Wiley, Chichester,
2004.

[9] Gibbard, H. F.: Thermal properties of battery
systems, Journal of the Electrochemical Society,
125 (1978), pp. 353-358.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 8

Object-Oriented Decomposition of Tire Characteristics
based on semi-empirical Models

Markus Andres
Vorarlberg Univ. of Appl. Sc.

Austria
Markus.Andres@students.fhv.at

Dirk Zimmer
ETH Zürich
Switzerland

DZimmer@Inf.ETHZ.CH

François E. Cellier
ETH Zürich
Switzerland

FCellier@Inf.ETHZ.CH

Abstract

This article introduces a new and freely available Mod-
elica library, called Wheels and Tires, for modeling
wheels and tires. The contained models are intended
to be used in vehicle simulations, where computational
performance is a major concern. Semi-empirical sin-
gle contact point models are well suited for this kind of
applications and are therefore applied in the presented
library.

The Wheels and Tires library provides a tool to
quickly build custom tire models, and allows a con-
venient customization of existing models. This is
achieved by a modular and expandable design system
utilizing well established models. In addition, a set of
ready-made models is provided to allow a quick in-
sight in the used modeling structure and to enable a
direct application in vehicle models. The final version
of the library will be published as a free library via
the Modelica website as well as the website of F. E.
Cellier.

Keywords: object-oriented tire modeling; object-
oriented tyre modelling; semi-empirical tire model;
tire decomposition

1 Introduction

During the last decades a fairly large number of tire
models of varying levels of complexity suiting basi-
cally differing fields of application have been devel-
oped. These range from simple non-slipping tires to
very complex FEA (finite element analysis) models for
performance prediction [6].

The library developed is intended to be used in sim-
ulations that cover entire vehicles, therefore compu-
tational effort is an important issue. Hence, the selec-
tion of the appropriate level of detail for the used mod-
els is essential for the overall simulation performance.
Semi-empirical single contact point models provide a

very good trade-off between accuracy and computa-
tional effort. Such models are based on physical con-
siderations, like those emerging from multibody dy-
namics. These physical aspects get enhanced with
empirical formulas representing measurement results
that cover e.g. friction and slip characteristics. Two of
these semi-empirical models are commonly accepted
and widely used. These are TMeasy by G. Rill [11]
and the magic-formula model by H. B. Pacejka [10].
However, both are often implemented in a flat and
mainly unstructured fashion, which makes them dif-
ficult to understand and maintain. Customizing these
models for particular situations or expanding them in
order to cover new aspects of tires can be cumbersome
and is often error-prone.

A paper by D. Zimmer and M. Otter [14] builds
on the previously mentioned models and demonstrates
how models of varying levels of complexity can be in-
tegrated within the object-oriented framework of Mod-
elica. However, the object orientation in these models
limits itself primarily to their external interfaces. The
models themselves continue to be mostly flat. For in-
stance the most complex tire model created, defines
approximately 200 equations [14] and is a good exam-
ple showing the difficulties that arise from the com-
mon flat structure.

Another example for a quite flat structure can be
found in the freely available but outdated Vehicle Dy-
namics library [2]. There, a wheel-base model gets
extended with friction models of [11] and [10], but
not much further effort was spent regarding object-
orientation.

In [1], a tire model is modularized in hub, belt and
road elements. A further enhancement is made in [5]
by redesigning the model’s structure as well as en-
abling uneven road surfaces and losing contact to the
ground due to enhanced vertical dynamics. This mod-
ularization is well defined, but still the different as-
pects of friction are summarized in the Tyre-Road class

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 9 DOI: 10.3384/ecp09430029

and can not be customized easily. Moreover the li-
braries presented in [14], [1] and [5] are not freely
available.

The newly developed library takes the object-orien-
tation even further than in [5]. Therefore the focus
of this research effort concerns itself less with mod-
eling new tire properties, but more with an improved
organization of existing knowledge. This will enable
future modelers to conveniently customize the models
to their own purposes.

2 Basic Considerations

2.1 A Closer Look at Tires

In motion dynamics of vehicles the forces exerted by
the tire-road contact are of major importance. This
section is intended to provide basic knowledge about
tires buildup. For a more detailed information the
reader is referred to [8], [9], [10] or [11].

The modern tire is a complex construction result-
ing from clashing requirements. They basically have
to carry the vertical load, transmit forces to accelerate
(and slow down) the vehicle and generate cornering
forces to guide the vehicle through curves securely.
This has to be fulfilled under a large variety of envi-
ronmental conditions with a long life time ensured.
The rolling resistance has to be as small as possible,
with damping and acoustic properties suiting modern
demands. As one can imagine there is no optimal so-
lution to this problem resulting in a large variety of
different tires for varying demands.

Tread

Belt

Carcass

Side Wall

Bead

Tread

Belt

Carcass

Side Wall

Bead

Figure 1: Basic structure of a tire.

A quite basic design example for a tire is depicted
in Figure 1. For today’s passenger cars steel-belt tires
are used exclusively, which differ in construction only
marginally, when treated from such a basic point of

view. On the inside of the tire a coating (not depicted
in Figure 1) inherits the function of the tube, prevent-
ing the over-pressurized air to leak to the outside. The
Bead is usually built of steel wire with synthetic rubber
components, ensuring a tight fit of the tire on the rim,
allowing a reliable operation under difficult conditions
e.g. when driving over a curbstone. The rubber ele-
ments building the sidewall strongly affect the vertical
dynamics of the tire and are important when it comes
to handling precision and stability. The carcass is the
element absorbing the tension from the inflation pres-
sure. Therefore, it has to be protected from damage,
which is ensured by the side wall. The tread is respon-
sible for the force generation by establishing a reliable
contact to road and is therefore a very central element
of the tire. Its composition is a major factor when it
comes to the frictional properties of the tire. The tread
is reinforced by the steel belt that enhances mileage
and reduces the rolling resistance. Overall a mixture of
more than 20 rubber composites form the tire, which
makes them quite difficult to describe as well as en-
abling the tire engineer to adjust the tire properties to
different needs.

2.2 Definition of Coordinate Systems

Figures 2 to 5 are intended to present basic as-

Y

X

Z

eAxis

eLat

eLong

rCP

eN

vLong

Pitch

tLong

tLat

tN

Figure 2: The unitary vectors of the tire without a lean
angle and the vector rCP pointing from the rim’s center
to the contact point.

sumptions made. Figure 2 shows the two coordinate
systems used to describe the orientation of a wheel.
The contact point’s coordinate system is described by
eLong, eLat and eN , whereas eLong, eAxis and ePlane

1 form
the rim’s system. Figure 4 shows the standardized

1Pointing in the opposite direction of eN in Figure 2 and shown
in Figure 3 and 4.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 10

Y

X

Z

eAxis

eLat

eLong

rCP

eN

vLong

ö

ePlane

Turn

Figure 3: The unitary vectors of the tire with a lean
angle ϕ of 10◦.

Y

X

Z

eAxis

eLong
-ePlane

roll/lean

pitch

yaw

Figure 4: Standardized names of the angles and angu-
lar velocities.

names of the angels and their corresponding angular
velocities.

An enlarged view of the contact point is depicted
in Figure 5. It shows important properties like the
translational velocity of the contact point in longitu-
dinal (vLong) and lateral (vLat) directions, the overall
velocity v and the slip angle α . The sliding veloc-
ity in longitudinal vSlipLong direction is calculated by
(ω× rCP) · eLong + vLong.

3 Object-oriented Tire Modeling

Section 3.1 is intended to demonstrate the considera-
tions that lead to the actual structure of the tire model.
Afterwards Section 3.2 explains the resulting structure
from the modeler’s point of view. Sections 3.3 to 3.10
shallowly introduce the classes forming the tire.

Y

X

Z

v

rCP

vLong

x ù rCP
x ù rCP

vSlipLong

vLat

v

á

Figure 5: An enlarged view of the contact point with
sliding velocities.

3.1 Decomposition into Objects

Thinking about wheels, the first division of the model
is quite obvious, as there are two physical components:
the rim and the tire. The rim does not need to be split
up into further objects, as its properties can be mod-
eled in a quite simple fashion in a semi-empirical tire
model. This and the main properties of tires regarding
modeling are shown in Figure 6.

Wheel

Rim Tire

Subareas:
Contact Patch, Parts without Contact
Subareas:

Geometry:
Diameter, Cross-Section, Tread
Geometry:

Build-Up:
Side-Wall, Bead, Carcass, Tread, Belt
Build-Up:

Duties:
Carrying normal Load, Force Generation, Torque
Generation, Damping of Surface Unevenness, Stability
and Precision

Duties:

Requirements:
 Rolling Resistance, Driving Noise, Milage, Reliability

Requirements:

Influences:
Weather Conditions, Surface Properties,

Deformation, Losses,
 Slip, Velocity, Load, dynamic Forces,

Inflation Pressure

Temperature,
Wear, Pressure Distribution in

the Tread Area,

Influences:

Properties:
Weight, Inertia Tensor,
Geometry

Properties:

Figure 6: Composition of wheels and properties of
tires. Properties depicted in gray are neglected in the
presented tire model.

The tire does require a much closer look concerning
its properties. Modeling every single of the properties
shown in Figure 6 by a class of its own is an infeasible
task, suggesting a certain grouping of properties. Due
to the semi-empirical single contact point model one
constraint is fixed. There has to be a model describ-
ing the contact point. It is named the Contact Physics
model.

One of the most challenging tasks when modeling
a tire, is to calculate the forces the tire excites in dif-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 11

ferent driving situations. There are several different
models trying to describe the relations resulting in the
forces that act on the contact point. Hence a decision
was made to create a class that gathers the different ef-
fects that are responsible for the generation of forces
and torques acting on the contact point. Due to its ori-
gin it is called the Friction class, resulting in Figure 7.

Friction
Tire Diameter

Cross-Section

Force Generation

Torque Generation

Carrying normal Load

Stability and Precision

Damping of Surface Unevenness

 Rolling Resistance

Velocity

Slip

Load

Dynamic Forces

Weather Conditions

Surface Properties

Losses

Deformation

Inflation Pressure

Contact
Physics

has influence on is modeled by Classinner Class[...] ...

Contact Patch/Point

Figure 7: Properties from Figure 6 shown in relation to
the corresponding Tire Component classes which are
closely related with the semi-empirical contact point
model. Properties depicted in gray are considerably
simplified in the model.

Still, absolutely basic properties of the tire are not
yet part of the model as shown in Figure 7. The proba-
bly most obvious are the Tire Diameter and the Cross-
Section. These properties basically define the geome-
try of the tire, which shall be changeable conveniently
in the final tire model, allowing basically different ge-
ometric properties of the tire. Therefore a Geometry
class is introduced, defining the positional relation be-
tween the tire hub and the contact point and some other
properties.

The next very basic duty the tire has to fulfill, is the
Carrying of normal Load resulting in a normal force.
Due to the changing requirements to these aspects, the
effects are described in a class named Vertical Dynam-
ics.

Until now, all possible tire models would be totally
rigid. To enable a certain deformation of the tire, the
Belt Dynamics class is introduced. It allows a flexibil-
ity of the still rigid tire, defined by the Geometry class,
related to the tire’s hub.

The wheel is now modularized into six classes in-
cluding the Rim class which is not depicted in Fig-
ure 8, as it was shown in Figure 6. Section 3.2 ex-
plains the implemented version of these classes from
the modeler’s point of view. It also explains why the
final model of the tire contains seven classes, introduc-

Friction

Contact Patch/Point

Diameter

Cross-Section

Force Generation

Torque Generation

Carrying normal Load

Stability and Precision

Damping of Surface Unevenness

 Rolling Resistance

Velocity

Slip

Load

Dynamic Forces

Weather Conditions

Surface Properties

Losses

Deformation

Inflation Pressure

Contact
Physics

Vertical
Dynamics

Geometry

Belt
Dynamics

[Surface]

has influence on is modeled by Classinner Class[...] ...

Figure 8: Final decomposition of the tire.

ing a Center to Contact Point class.
Still there is one class found in Figure 8 that has

not been introduced until now. This is justified as it is
an inner model and does not form a part of the actual
tire model. It realizes uneven surfaces and allows a
position-depending friction coefficient. This model is
described in Section 5.

3.2 The Tire Model’s Structure

The tire is split up into seven objects shown in Fig-
ure 9. It consists of objects modeling

• Vertical Dynamics,

• Friction,

• Geometry,

• Contact Physics,

• the translation from Center to Contact Point,

• Belt Dynamics and

• the Rim.

The single classes are described in the following sec-
tions. Here the relations between the classes shall be
illustrated.

The connection to the superordinate vehicle model
is established by the three-dimensional frame named
Tire Hub depicted in Figure 9. The Tire Hub, a stan-
dard element of the MultiBondLib [13], is rigidly con-
nected to the model of the Rim. The rim’s frame con-
nected to the Tire Hub therefore models the center-
point of the rim. The “output” of the Rim again mod-
els the center-point of the Rim, and is connected to
the Belt Dynamics model. In this model the relative
movement between the rigid belt and the rim can be
described. The “output” of the Belt Dynamics is again

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 12

v

ContactPhysics

F,T

Friction
eN

eLong

eLat

tN

tLong

tLat fLong

fLat

ideal

RimBeltDynamics

Geometry

Ideal slim

center2CPcenter2CP

VerticalDynamics

no

fr... fr... fr...

TireHub

fr...fr...

Figure 9: Model of the ideal tire showing the seven
used objects and the communication structure on the
top level. The Tire Bus is colored red whereas the Con-
tact Point Connector is green.

positioned at the center-point of the belt. Therefore an
element is needed to realize the translation from this
point to the contact point. As this cannot be mod-
eled by a standard element, the Center To Contact
Point model has been created. It connects the Contact
Physics model that applies forces and torques to the
contact point. This lower part of the model represents
the mechanically connected part of the model. The up-
per three classes are not directly connected by a me-
chanical connector, although the Contact Point Con-
nector implies kind of a mechanical connection. The
Vertical Dynamics class determines if and how the tire
is able to lift from the ground and how it responds to
normal load. The Friction class determines the longi-
tudinal and lateral forces as well as the torques that act
on the contact point. Finally, the Geometry class de-
termines the unitary vectors shown in Figure 2 and the
position of the contact point depending on the actual
geometry, position and orientation of the tire.

The visualization is implemented in the correspond-
ing object, e.g. the rim is visualized in the Rim ob-
ject and the tire is visualized in the Geometry class.
This makes it possible to recognize basic changes to
the models in the animation directly.

All of the featured classes that model a certain type
of effect are extended from the corresponding base
class, ensuring that the necessary output is calculated.
This guarantees also that all models stay exchangeable
not depending on the implementation of the class. In
this way, the user can add new classes or adapt existing
ones being sure that the other elements stay unchanged
and remain exchangeable.

3.3 Rim Class

The Rim Class is a rather simple model, as the rim can
be modeled ideally just consisting of a body that has a
mass and an inertia tensor.

3.4 Friction

For the sake of object oriented modeling, the different
modeled effects are put into subclasses (see Figure 10
as an example) that are of varying complexity. The

SlipProperties

Combined

BoreTorque

Combined

CamberForce

phi

Flat

Combined

SelfAligningTorque

lTrail

Rill

RollResistance

velocityDepending

LoadInfluence
mu

fN

quadratic

OverturningTorque

tOver

phi

linear

U
V

C
P

S
V

RBelt wBeltrCPlCRbCReLong ContacteAxisePlaneeNeLatfLong fLat fN

vLong vLat

tLong tLat tN

xCP

Figure 10: Model of the advanced friction.

communication between the classes is established us-
ing inner/outer statements. Therefore no connections
between the sub-models are visible in Figure 10.

To use a certain combination of frictional effects in
a tire model, a class gathering these effects has to be
created as shown in Figure 10. This class can then e.g.
replace the Ideal Friction depicted in Figure 9. In the
library three different combinations of Friction classes
are composed, forming an Ideal Friction, one simple
Dry Friction With Rolling Resistance but without e.g.
Bore Torque or Camber Force and one Advanced Fric-
tion that is shown in Figure 10. New frictional models
can be created easily, which is the reason why only
three frictional classes were included in the library.

3.5 Geometry

All geometric classes have two main tasks to fulfill.
The first is to determine the contact point properties
including the vector rCP that points from the center of
the rim to the contact point and the penetration depth.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 13

Secondly the unit vectors shown in Figure 2 get com-
puted by the Geometry class. To enable that func-
tionality it utilizes the Surface’s functions get_eN and
get_elevation establishing the connection from the tire
to the surface.

Three different Geometry classes are provided for
ideally Slim, Circular tires with cross-section being
modeled as a semi-circle, and a “Belt” profile with side
walls and a sector of a circle modeling the tread area.

3.6 Contact Physics

The Contact Physics model applies forces and torques
on the contact point, as well as measuring its veloc-
ities. All these physical quantities are connected to
the models determining frictional and vertical dynamic
properties via the Contact Point Connector. Measur-
ing and setting of speeds and forces has to be done in
an a-casual way as ideal models set velocities rather
then apply forces.

The second property determined by the Contact
Physics class is the dynamic behavior of the contact
point. It can introduce flexibility of the contact point
in longitudinal and lateral direction.

3.7 Center to Contact Point

The Center To Contact Point class is a model with-
out a nice physical interpretation. It is kind of a Fixed
Translation element known from the Modelica Stan-
dard Library. The model is built using multi-bond
graphs and therefore derived from the Fixed Transla-
tion in the MultiBondLib [13]. It describes the con-
nection between the contact point and the belt’s center
point.

3.8 Vertical Dynamics

The models in the Vertical Dynamics package deter-
mine the behavior of the tire normal to the surface. The
normal force is related to the penetration depth com-
puted in the Geometry class. The Vertical Dynamics
models can either set the penetration depth to a cer-
tain value, or use it as a base for the calculation of the
normal force fN .

There are basically three different approaches to
model vertical dynamics in the library. One is to not al-
low any elevation from the ground or penetration into
it introducing a holonomic constraint. The second uti-
lizes an ElevationGap model that compensates forces
of a attached 1D mechanical model when the tire lifts
from the ground. It is a derivation from the ElastoGap

model found in the BondLib [7]. It makes the vertical
dynamics easily changeable by a modification of the
1D mechanical system. The third is a derivation of the
ElastoGap model of the Modelica Standard Library
3.0. It overcomes the sticking effect of the Elevation-
Gap but is harder to adapt to different dynamics.

3.9 Belt Dynamics

The models described in this section allow the tire to
have a certain flexibility. This is realized by connect-
ing an ideal (virtual) belt to the ideal rim in a flexi-
ble fashion. All models except the Rigid Belt model
add a considerable amount of complexity to the sim-
ulation. Different models are provided to realize the
dynamic behavior. One allows translation of the belt
in longitudinal and lateral direction, another models
a rotational degree of freedom around the axis of ro-
tation, both defining the dynamics by 1D mechanical
elements. The last model is the most complex with the
dynamics defined by four ideally stiff translational el-
ements for rim and belt respectively, connected by 3D
spring damper systems.

3.10 Communication Structure

The tire’s objects compute a bunch of different vari-
ables, some of which are used in different objects as
well. The Tire Bus, with a connector as shown in
Figure 11, gathers the variables used in most of the
objects. Additionally a division into records of sim-
ilar variables ensures a better overview and allows a
more convenient graphical connection. For each of
these sets of variables separate inputs and outputs have
been created. This makes it possible to show, in which
objects variables are computed or just used (see Fig-
ure 11). The second communication structure is the

C
P

S
V

U
V

RBelt eLong eAxisePlaneeNeAxisS...Contact penetra... xBeltlCR bCR rCP eLatxCP

Figure 11: Separation of the Tire Bus connector (lower
quadratic element) within the Geometry Class in an in-
put for Sensor Values (SV) and outputs for Contact
Properties (CP) and Unit Vectors (UV). The rhom-
buses define protected variables used in the model.

connector that contains the velocities as well as the
forces and torques that act on the contact point. It

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 14

is named Contact Point Connector. This connector
is implemented in an a-causal manner due to the re-
quirements of this connection. It can be found con-
necting Contact Physics, Vertical Dynamics and Fric-
tion. Both bus connectors are illustrated in Figure 9.

4 Provided Tire Models

All tires are basically built up like the ideal tire in Fig-
ure 9. In the library eleven ready-made tires are pro-
vided for a quick application and a better understand-
ing of the model structure. Four models of slim tires
include three rigid versions and one with a dynami-
cally behaving contact point. Two tires with semi-
circular cross section are provided, one rigid and the
other having rotational dynamics. The so-called belted
tires feature three rigid models differing in frictional
behavior. The other two belted tires behave dynami-
cally.

5 Environment

The Environment in the current version of the library
is limited to even or uneven but slowly changing sur-
faces, which is a limitation arising from the single con-
tact point model. Basically the method to be imple-
mented has to be able to compute elevation (the y co-
ordinate shown in Figure 12) and the normal vector on
the surface. There are many significantly different ap-
proaches, whereas the one chosen is rather simple but
still conveniently configurable.

5.1 Surface Base

The Surface Base (Section 5.1) class ensures compat-
ibility with future enhancements. This partial inner
model defines the functions necessary to calculate the
behavior of the tire. These include the following func-
tions.

• get_eN_Base – returning the normal vector of the
surface with the actual x and z coordinates as in-
puts.

• get_elevation_Base – returns the y coordinate of
the surface (x and z are inputs again).

• get_mu_Base – returns the frictional coefficient
at the x and z coordinates of the contact point.

5.2 Surface Class

The implemented version of the Surface in the Wheels
and Tires library is based on the method shown in [4].
It is an interpolation in a unit square based on four
y values and the eight corresponding partial deriva-
tives. A sketch of the unit square is shown in Fig-
ure 12. To enable the user to define more complex

Y

X

dy

y[0,0]

Z

y[1,0]

y[0,1]
y[1,1]

dx [0,0]

dy
dz [0,0]

dy
dx [0,1]

dy
dz [0,1]

Figure 12: The basis for the interpolation used to find
the elevation y and normal vector in one square.

surfaces an arbitrary amount of interpolated elements
can be combined to one surface of definable size. The
only fact limiting the amount of rectangles is simula-
tion time, especially the time consumed for compila-
tion that rises quickly with growing surfaces.

6 Simulation Results

The following sections are intended to give an impres-
sion of what the simulation results look like. There-
fore, results from the Test Bench package and from the
Example package are depicted.

6.1 Test Bench

Figures 13 to 16 show results from different models in
the Test Bench package. The models are used to test
basic functionalities of the tire and the surface classes.

6.2 Examples

Six examples are included in the library demonstrat-
ing the application of the models in vehicles. Five of
the Examples are two-wheeled (single-track) vehicles

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 15

Figure 13: Tire elevating from the ground while driv-
ing a curve.

Figure 14: Tire’s overturning torque Test Bench result.

that are provided by [12] and copied to the Used Mod-
els in the Examples package of the Wheels and Tires
library. Three of the five examples are unsprung bi-
cycle models composed of rigid elements exclusively.
The other two models are sprung motorcycles includ-
ing front and rear suspension. For both vehicles, mod-
els are provided to analyze the uncontrolled stability,
e.g. with different tire properties for geometry and fric-
tion as shown in Figures 17 and 18.

The other two models are “nice to show” models
with the bicycle being accelerated by a strong torque
to make the front wheel lift from the ground as shown
in Figure 19 and the motorcycle jumping over a gap as
depicted in Figure 20.

The last example is a very basic unsprung model of
a four-wheeled vehicle with a predefined steering an-
gle profile and driving torques acting on the rear tires.
An impulse in the driving torque makes the vehicle-
model slide after a certain simulation time, with the

Figure 15: A tire rolling up an uneven surface with an
initial lean angle.

Figure 16: Tire dropping on an uneven surface.

Figure 17: Two similar bicycles with non-slipping
tires differing in their geometric properties. The upper
bicycle is equipped with ideally slim tires, whereas the
lower one driving a narrowing curve has a belted tire
with a width of 2cm.

model “reacting” by a full breaking, which makes the
wheels slide to a standstill of the vehicle.

Regarding the simulation speeds of the examples it
can be stated, that the bicycle models take about half
of the simulated time for the computation of the re-
sult. The motorcycle jumping over the gap takes about
250s of calculation time for 16s of actual simulation.
The reason for that is the more complex structure of
the motorcycle in comparison with the bicycle. The
again undamped four-wheeled models compute the re-
sults in a little less time than the simulation time. All
models used non-dynamic tires either with slipping or
the advanced friction models. The simulations have

Figure 18: Two similar bicycles with slipping tires dif-
fering in their frictional properties. The one driving
the inner circle is equipped with the Advanced Fric-
tion class, whereas the outer bicycle is equipped with
the Dry Fricition with Constant Roll Resistance class.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 16

Figure 20: A motorcycle jumping over a gap.

Figure 19: A bicycle with non-ideal tires accelerated
by a torque on the rear tire, with the front tire lifting
from the ground.

been carried out on a Intel Core2Duo clocked at 2GHz
and equipped with 4GB RAM, computing 250 output
intervals per second. It has to be mentioned that no
big effort was spent regarding the optimization of sim-
ulation speed of the overall models. A more suitable
combination of state variables would most likely lead
to a considerable enhancement in speed.

7 Library Structure

This section introduces the top level packages that are
contained in the Wheels and Tires library and are de-
picted in Figure 21.

The Tire Components package covers the classes
that the Tires are built of. The contained sub-packages
are described in Sections 3.3 to 3.10. These classes
form the ready-made tires contained in the Tires pack-
age as one example shows for the Ideal Tire as de-
picted in Figure 9.

The Environment package contains the Surface Base
as well as a possible implementation for even and un-
even surfaces. It is described in Section 5. The Test
Bench and the Example Package are top-level pack-
ages as well. They are provided to test the tire mod-
els’ functionality and get an insight into the usage of
the models. A short description can be found in Sec-
tions 6.1 and 6.2 respectively. Finally the Visualization
package gathers a few models used to enable the ani-
mation of all necessary parts of the library.

8 Conclusion

To sum up, the library enables a quick and convenient
building of easily customizable tire models. There are
some further enhancements possible but the structure
of the tire models should persist as it is well expand-
able, fulfilling the major requirements that were de-
manded at the beginning of the work. Still the lack of
comparison to real applications and measurement data
is considered to be a drawback as some minor mal-
functions could probably not be identified.

For the use of the models in real-time applications
a further optimization of the computational efficiency
would be desirable to ensure quick enough simula-
tion. Furthermore a prediction of the influences that
different objects have on the computational effort of
the overall tire would be of advantage.

A more detailed description of the library can be
found in the corresponding master’s thesis [3].

References

[1] J. Andreasson and J. Jarlmark. Modularised
tyre modelling in modelica. In Proceedings
of the Second International Modelica Confer-
ence, Oberpfaffenhofen, Germany, pages 267–
274, 2002.

[2] Johan Andreasson. Vehicledynamics library. In
Proceedings of the Third International Model-
ica Conference, Linköping, Sweden, pages 11–
18, 2003.

[3] Markus Andres. Object-oriented modeling of
wheels and tires in dymola/modelica. Master’s
thesis, Vorarlberg University of Applied Sci-
ences, 2009.

[4] G. Aumann and K. Spitzmüller. Computerorien-
tierte Geometrie. BI-Wiss.-Verl, 1993.

[5] Mats Beckmann and Johan Andreasson. Wheel
model library for use in vehicle dynamic studies.
In Proceedings of the third Modelica Conference,
Linköping, Sweden, pages 385–392, 2003.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 17

Wheels and
Tires

Tire
Components Tires Environment Test Bench Examples Visualization

Figure 21: The library’s top level packages.

[6] P. Bohara, A. Saha, P. Ghosh, and M. Roopak.
Tyre perfomance prediction through fea. Hasetri
- Hari Shankar Singhania Elasotmer and Tyre
Research Institute, 2008.

[7] F. E. Cellier and À. Netbot. The modelica bond-
graph library. In Proceedings of the 4th Inter-
national Modelica Conference, Hamburg, pages
57–65, 2005.

[8] John C. Dixon. Tires, Suspension and Handling.
Cambridge University Press, 1996. Second Edi-
tion.

[9] Günter Leister. Fahrzeugreifen und Fahrwerk-
entwicklung. Vieweg + Teubner, 2009. 1. Au-
flage.

[10] Hans B. Pacejka. Tyre and Vehicle Dynamics.
Butterworth-Heinemann, 2006. Second Edition.

[11] Georg Rill. Simulation von Kraftfahrzeugen.
Vieweg-Verlag, 2007. genehmigter Nachdruck.

[12] Thomas Schmitt. Modeling of a motorcycle in
dymola/modelica. Master’s thesis, Vorarlberg
University of Applied Sciences, 2009.

[13] Dirk Zimmer. A modelica library for multibond
graphs and its application in 3d-mechanics. Mas-
ter’s thesis, ETH Zürich, 2006.

[14] Dirk Zimmer and Martin Otter. Real-time mod-
els for wheels and tires in an object-oriented
modeling framework. Accepted for publication
in Vehicle Dynamics, 2009.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 18

A Virtual Motorcycle Rider Based on
Automatic Controller Design

Thomas Schmitt
Vorarlberg Univ. of Appl. Sc.

Austria
Thomas.Schmitt@students.fhv.at

Dirk Zimmer
ETH Zürich
Switzerland

DZimmer@Inf.ETHZ.CH

François E. Cellier
ETH Zürich
Switzerland

FCellier@Inf.ETHZ.CH

Abstract

This paper introduces a new and freely available Mod-
elica library for the purpose of simulation, analysis
and control of bicycles and motorcycles (single-track
vehicles). The library is called MotorcycleLib and fo-
cuses on the modeling of virtual riders based on auto-
matic controller design.

For the single-track vehicles, several models of dif-
ferent complexity have been developed. To validate
these models and their driving performance, virtual
riders are provided. The main task of a virtual rider
is to track either a roll angle profile or a pre-defined
trajectory using path-preview information. Both meth-
ods are implemented and several test tracks are also
included in the library.

Keywords: virtual rider; automatic controller de-
sign; state-space controller, bicycle and motorcycle
modeling; pole placement

1 Introduction

Among the vehicle models, models of bicycles and
motorcycles turn out to be particularly delicate.
Whereas a four-wheeled vehicle remains stable on its
own, the same does not hold true for a single-track
(two-wheeled) vehicle. For this reason, the stabiliza-
tion of such a vehicle, a control issue, requires special
attention.

A key task for a virtual rider is to stabilize the vehi-
cle. To this end, a controller has to generate a suitable
steering torque based on the feedback of appropriate
state variables of the vehicle (e.g. lean angle and lean
rate). One major problem in controlling single-track
vehicles is that the coefficients of the controller are
strongly velocity dependent. This makes the manual
configuration of a controller laborious and error-prone.
To overcome this problem, an automatic calculation of
the controller’s coefficients is desired. This calcula-

tion requires an eigenvalue analysis of the correspond-
ing uncontrolled vehicle which is performed in order
to determine the self-stabilizing area. The library in-
cludes the means for such an analysis and its results
can be interpreted by three different modes that qual-
itatively describe the vehicle’s motion [12]. This en-
ables a convenient controller design and hence several
control laws that ensure a stable driving behavior are
provided. The corresponding output represents a state
feedback matrix that can be directly applied to ready-
made controllers which are the core of virtual riders.
The functionality of this method is illustrated by sev-
eral examples in the library.

In 2006, F. Donida et al. introduced the first Motor-
cycle Dynamics Library in Modelica [5] and [4]. The
library focuses on the tire/road interaction. Moreover
different virtual riders (rigidly attached to the main
frame or with an additional degree of freedom (d.o.f.)
allowing the rider to lean sideways) capable of track-
ing a roll angle and a target speed profile are presented.
Until now these virtual riders include fixed structure
controllers only [4]. This means that virtual rider sta-
bilizes the vehicle only correctly within a small veloc-
ity range.

Using the automatic controller design functions pro-
vided by the MotorcycleLib this major deficiency can
be overcome. Furthermore, to validate the motorcy-
cle’s performance, the virtual rider is capable of either
tracking a roll angle profile (open-loop method) or a
pre-defined path (closed-loop method).

2 Bicycle and Motorcycle Models

The mathematical modeling of single-track vehicles
is a challenging task which covers a wide range of
models of varying complexity. The library provides
several single-track vehicle models of different com-
plexity. The models are composed of multibody el-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 19 DOI: 10.3384/ecp09430030

ements and are based on bond graphs [2] and multi-
bond graphs [17]. Basically two types of models
are provided. Some include out-of-plane modes only,
while others include both in-plane and out-of-plane
modes. Roughly speaking, out-of-plane modes are re-
lated to stability and handling of single-track vehicles
whereas in-plane modes are dealing with riding com-
fort. The wheels used in this library are either pro-
vided by D. Zimmer’s MultiBondLib [17] or by M.
Andres’ WheelsAndTires library [1]. The former are
ideal, whereas in the latter models non-ideal effects
such as slip can be considered. For the bicycle, both
3 and 4 d.o.f. out-of-plane mode models are included
in the library. The former are composed of four rigid
bodies, namely a front frame, a rear frame including a
rigidly attached rider and two wheels, connected via
revolute joints. The wheels are infinitesimally thin
(knife-edge). The latter introduce an additional d.o.f.
that allows the rider’s upper body to lean sideways.
Both models are based on those introduced by Schwab
et al. [12] and [11].

The out-of-plane mode motorcycle model is a 4
d.o.f. model that is based on a model established by
V. Cossalter [3]. Basically, V. Cossalter’s model is the
same as the one introduced by R. S. Sharp in 1971
[13]. This model allows a lateral displacement of the
rear frame since the wheels are no longer ideal. Due to
the fact that the wheels of D. Zimmer’s MultiBondLib
[17] are ideal, the model is reduced to 3 d.o.f.L̇ater,
with reference to the WheelsAndTires library [1], it is
possible to consider non-ideal effects of wheels and
tires and thus simulate the lateral displacement of the
wheels caused by tire slip. The animation of a 3 d.o.f.
motorcycle is depicted in Figure 1. To incorporate in-

Figure 1: Animation of a 3 d.o.f. motorcycle model

plane modes two more complex models are included
in the library. The first model was originally devel-
oped by C. Koenen during his Ph.D. Thesis [9]. R. S.
Sharp and D. J. N. Limebeer introduced the SL2001
model which is based on Koenen’s model [15]. They
reproduced Koenen’s model as accurately as possible
and described it by means of multibodies. The model

developed in this library is based on the SL2001 mo-
torcycle. The second model is based on an improved
more state-of-the-art version of the former developed
by R. Sharp, S. Evangelou and D. J. N. Limebeer [14].
A very detailed description of these models can be
found in S. Evangelou’s Ph.D. Thesis [6]. Such mod-
els are composed of a front frame including the front
forks and handle bar assembly, a rear frame including
the lower rigid body of the rider, a swinging arm in-
cluding the rear suspensions, the rider’s upper body,
a front and a rear wheel. Furthermore several addi-
tional freedoms due to twist frame flexibility at the
steering head, suspensions, non-ideal tire models and
aerodynamics are taken into account. The animation
of the SL2001 model is depicted in Figure 2. In con-

Figure 2: Animation of the SL2001 motorcycle model

trast to the former models each body is created in a
fully object-oriented fashion. As with the out-of-plane
models these models only include all degrees of free-
dom in combination with the WheelsAndTires library.
Without this library several freedoms are inhibited.

It is important to keep in mind that vehicles in com-
bination with ideal wheels include so called holonomic
constraints. Such constraints are based on location
and in case of single-track vehicles prevent them from
sinking into the ground.

3 Eigenvalue Analysis

Due to geometry and gyroscopic forces Klein and
Sommerfeld [8] found out that a single-track vehicle
is self-stabilizing within a certain velocity range. That
is, the vehicle performs a tail motion in the longitudi-
nal direction. Below this range the steering deflections
caused by gyroscopic forces are too small in order to
generate enough centrifugal force. Thus the amplitude
of the tail motion increases and the vehicle falls over.
Although, these interactions are damped by the trail1

it is still impossible to achieve stable behavior. Hence

1The trail is the distance between the front wheel contact point
and the point of intersection of the steering axis with the ground
line (horizontal axis).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 20

the rider has to apply a steering torque to ensure that
the vehicle stays upright. Above this range, for high
speeds, the gyroscopic forces are almost unnoticeable
for the rider. That is, the amplitude of the tail motion
is close to zero. More precisely, although the vehicle
feels stable, after a certain time, it falls over like a cap-
sizing ship. However, by applying a steering torque it
is rather simple to stabilize the vehicle. In most cases
it is sufficient that one solely touches the handle bars
in order to compensate for the instabilities.

An eigenvalue analysis is performed in order to de-
termine the self-stabilizing range of an uncontrolled
bicycle or motorcycle. For this purpose the state vari-
ables of the vehicle that are responsible for stability
are of interest. These are the steer angle δ , the lean
angle φ , and their derivatives.

x =

δ

δ̇

φ

φ̇

In case of vehicles with an additional d.o.f. allowing
the rider’s upper body to lean sideways, the state vari-
ables γ and γ̇ are also taken into account, where γ is
the lean angle of the rider’s upper body relative to the
rear frame and γ̇ the corresponding lean rate. All the
other state variables (e.g. lateral- and longitudinal po-
sition) of the state vector have no influence on the sta-
bility of single-track vehicles. Now, the eigenvalues
(one for each state variable) are calculated as a func-
tion of the vehicle’s forward velocity λ = f (v) (e.g.
v = 10ms−1 to v = 50ms−1). Thus, for each specific
velocity the model is linearized. The result of such
an analysis are three different velocity ranges at which
the motion of the vehicle changes qualitatively. Fig-
ure 3 depicts a typical result of such an analysis. The
first velocity range is below the stable region, the sec-
ond one is within, and the third one above the stable
region. Positive eigenvalues, or more precisely eigen-
values with a positive real part, correspond to unstable
behavior whereas eigenvalues with a negative real part
correspond to stable behavior. Eigenvalues including
an imaginary part emphasize that the system is oscil-
lating whereas eigenvalues without an imaginary part
are non-oscillating. A stable region exists, if and only
if all real parts of the eigenvalues are negative. In the
following, the modes of single-track vehicles are ex-
plained with reference to Figure 3.

0.0 2.5 5.0 7.5 10.0

-10

-8

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e
a
l,
 I
m

a
g
in

a
ry

 E
ig

e
n
v
a
lu

e
s

vw vc

stable regionunstable unstable

Figure 3: Result of the eigenvalue analysis for a 3
d.o.f. motorcycle model. The stable region is deter-
mined by eigenvalues with a negative real part. Here it
is from vw = 6.1ms−1 to vc = 10.3ms−1.

3.1 Weave Mode

The weave mode begins at zero velocity. This mode
is non-oscillating in the beginning and after a certain
velocity passes over into an oscillating motion. The
non-oscillating motion at very low speeds states that
the bicycle is too slow to perform a tail motion and
thus falls over like an uncontrolled inverted pendu-
lum. As soon as it passes a certain value of approx-
imately vw = 0.12ms−1 the real parts of the eigenval-
ues merge and two conjugate complex eigenvalues ap-
pear. Hence, a tail motion in the longitudinal direc-
tion emerges. This motion is still unstable but be-
comes stable as soon as the real parts of the eigen-
values cross zero. This happens at a velocity of about
vw = 6.1ms−1. For all velocities greater than vw this
motion is stable.

3.2 Capsize Mode

The capsize mode is a non-oscillating motion that cor-
responds to a real eigenvalue dominated by the lean.
As soon as the bicycle speed passes the upper limit of
the stable region of about vc = 10.3ms−1, it falls over
like a capsizing ship. However, above the stable re-
gion the bicycle is easy to stabilize although the real
eigenvalue is positive. In the paper [12] of Sharp et al.
this motion is called “mildly unstable” as long as the
absolute value of the eigenvalues is smaller than 2s−1.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 21

3.3 Castering Mode

The castering mode is a non-oscillating mode that cor-
responds to a real negative eigenvalue dominated by
the steer. In this mode the front wheel has the tendency
to turn towards the direction of the traveling vehicle.

4 Controller Design

4.1 An Introduction to State-Space Design

In general, the state-space representation of a linear
system is given by:

ẋ = A · x+B ·u, x(0) = x0 (1)

y = C · x+D ·u (2)

where x is a (n× 1) state vector, y is a (m× 1) out-
put vector, A is referred to as system matrix with a
dimension of (n× n), B is a (n× r) input matrix, C
is a (m× n) output matrix and D the “feedthrough”
matrix with a dimension of (m× r). Usually D is set
to zero, except if the output directly depends on the
input. The state vector x at time t = 0 includes the ini-
tial conditions, sometimes referred to as initial distur-
bances x0. The block diagram of a system described in
state-space is illustrated in Figure 4. One major advan-

S
u yx 1

s

A

.

CB
x

S

x0

Figure 4: Block diagram of a system described in
state-space

tage of state-space control compared to classic control
is that each state of the system can be controlled. In
order to control the system, the state vector x is fed
back. The state feedback control law for a linear time-
invariant system is given by:

u(t) =−F · x(t) (3)

where F is a constant matrix.
By substituting u of Equation 1 with Equation 3 the

state equation results in

ẋ = A · x−B ·F · x = (A−B ·F)x (4)

The block diagram of the equation above is shown
in Figure 5.

y
C

-F

S
u x 1

s

A

.

B
x

S

x0

Figure 5: State feedback

The elements of the feedback matrix F have to be
chosen in such a way that the initial disturbances x0(t)
for t→ ∞ converge towards zero

lim
t→∞

x(t) = 0 (5)

and that the system becomes stable.
The main task of the state feedback control is to find

appropriate coefficients for the feedback matrix F in
order to achieve the desired dynamical behavior of the
system. One method that fulfills all the requirements
is the so-called pole placement technique (refer to [7]).
Figure 6 illustrates the graphical interpretation.

jw

s

... open-loop

... closed-loop

Figure 6: Graphical interpretation of the pole place-
ment technique. Eigenvalues (poles) of the system lo-
cated in the left-half plane correspond to stable behav-
ior.

4.2 State-Space Controller Design Based on a
Preceding Eigenvalue Analysis

The library includes several different stabilizing con-
trollers. Although classic controllers and linear
quadratic regulators (LQR) are included in the library,
the focus lies in state-space controller design via the
pole placement technique. In the simplest case the lean
angle and the lean rate of the vehicle are fed back in
order to generate an appropriate steering torque. How-
ever, since a physical interpretation of these eigenval-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 22

ues is not possible an alternative approach is intro-
duced in this paper. This approach is based on a pre-
ceding eigenvalue analysis. That is, exactly the same
state variables, namely the steer angle δ , the lean an-
gle φ , and their derivatives, are used to design the con-
troller (see Figure 7). Of course if the upper body of

y
C

f1

S
u x 1

s

A

B
x

S

x0

S f2

d

d

F

f1

f2

f3

f4

f

f

-
-

-
-

Figure 7: State-space controller based on a preceding
eigenvalue analysis

the rider is movable, the states γ and γ̇ are taken into
account as well. Thus, a physical interpretation of the
poles is available.

As already mentioned the eigenvalues are a func-
tion of the velocity, i.e. the trajectory of each eigen-
value is thus perfectly known. With this knowledge
the velocity dependent coefficients of the state feed-
back matrix can be conveniently calculated. To this
end, three different approaches were developed. In the
first approach all eigenvalues (poles) of the system are
simply shifted towards the left-half plane (see figure 6)
by the same value (offset). A typical result for the con-
trolled version of the 3 d.o.f. motorcycle is illustrated
in Figure 8.

Two improved control laws have been established.
Both are based on solely shifting those poles towards
the left-half plane that are unstable. Within the stable
region the motorcycle needs no control and thus no
offset. Above the stable region (for velocities greater
than vc) the behavior of the bicycle is dominated by
the capsize mode. Hence, it is absolutely sufficient to
shift just this pole towards the left-half plane and leave
all other poles unchanged. Below the stable region, for
velocities lower than vw, the instability of the motorcy-
cle is caused by the weave mode (see Figure 9). To en-
sure stable behavior the two real parts of the conjugate
complex poles have to be shifted towards the left-half

4 5 6 7 8 9 10 11 12

-10

-8

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e

a
l,
 I

m
a
g

in
a

ry
 E

ig
e

n
va

lu
e

s

Figure 8: Result of the controller design for a velocity
range from 4ms−1 to 12ms−1, where the offset is d = 5.

plane. Now, a control law for the regions below and
above the stable region is set up:

control law

v < vw : d = dw · (vw− v)
vw < v < vc : d = 0
vc < v : d = dc · (v− vc)

0.0 2.5 5.0 7.5 10.0

-10

-8

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e
a
l,

Im
a
g
in

a
ry

 E
ig

e
n
va

lu
e
s

vw vc

stable region

d = d (v -v)w w

d = d (v-v)c c

unstable unstable

d = 0

Figure 9: Controller design with reference to a pre-
ceding eigenvalue analysis. The stable region is left
unchanged - below vw, the weave mode eigenvalues
are modified - above vc, the capsize mode eigenvalue
is modified.

Figure 10 shows the result of the individual con-
troller design. Although the results of the individual
controller are rather good, there is still potential for
improvements. For velocities equal to vw or vc the
eigenvalues that are responsible for stability are close
or equal to zero. To be more precise, for such veloc-
ities the stability of the motorcycle is critical since a
real part equal to zero has no damping. Somewhere in

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 23

4 5 6 7 8 9 10 11 12

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e
a
l,
 I
m

a
g
in

a
ry

 E
ig

e
n
va

lu
e
s

Figure 10: Result of the individual controller design
for a velocity range from 4ms−1 to 12ms−1, where
vw = 6.1ms−1, vc = 10.3ms−1, dw = 1.5 and dc = 0.1.

the stable region the weave and the capsize mode have
an intersection point vi. Instead of the previous control
law, the improved control law results in:

control law
{

v < vi : d = d0 +dw · (vi− v)
vi < v : d = d0 +dc · (v− vi)

A graphical interpretation of the control law is illus-
trated in Figure 11.

0.0 2.5 5.0 7.5 10.0

-10

-8

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e
a
l,

Im
a
g
in

a
ry

 E
ig

e
n
va

lu
e
s

vw vc

stable region

vi

d = d + d (v-v)0 w i d = d (v-v)c id + 0

Figure 11: Controller design with reference to a pre-
ceding eigenvalue analysis. Below vi, the weave mode
eigenvalues are modified - Above vi, the capsize mode
eigenvalue is modified. In addition, the weave and
capsize eigenvalues can be shifted by an offset d0.

Figure 12 depicts the result of the improved individ-
ual controller design.

4 5 6 7 8 9 10 11 12

-6

-4

-2

0

2

4

6

Eigenvalue Analysis

Velocity [m/s]

castering mode

capsize mode

Re(weave mode)

Re(weave mode)

Im(weave mode)

Im(weave mode)

R
e
a
l,
 I
m

a
g
in

a
ry

 E
ig

e
n
va

lu
e
s

Figure 12: Result of the improved individual con-
troller design for a velocity range from 4ms−1 to
12ms−1, where vi = 6.9ms−1, dw = 0.75, dc = 0.1 and
d0 = 0

4.3 Results

The results are several pole placement functions that
automatically calculate the controller coefficients, i.e.
the elements of the feedback matrix. The correspond-
ing output represents a state feedback matrix that can
be directly applied to ready-made controllers. The
algorithm of the functions is based on Ackermann’s
formula. Unfortunately, it is just valid for single-
input, single-output (SISO) systems. In order to de-
sign a multiple-input, multiple-output (MIMO) con-
troller, e.g. for vehicles including rider’s capable of
leaning sideways, a MATLAB m-file based on the
place-function is provided.

Finally, the coefficients of the state feedback ma-
trix are automatically fed into a ready-made controller
which is incorporated into a virtual rider. With respect
to the virtual rider the vehicle’s performance can now
be evaluated.

5 Development of a Virtual Rider

5.1 Roll Angle Tracking

For virtual riders capable of tracking a roll angle pro-
file, several test tracks are provided. So far, no refer-
ence input was used, i.e. the set-value of the state vari-
ables was zero. Instead of a set-values equal to zero,
the roll angle profile (e.g. of a standard 90◦-curve) is
fed into the virtual rider. The corresponding block di-
agram is illustrated in Figure 13. Since each vehicle
has its own specific profile, some records including
such profiles are provided. The corresponding Mod-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 24

y
C

f2

S
u x 1

s

A

B
x

S

x0

S f1

d

F

f4

f3

f

-

S
xset

d
dt

-

S

d
dt

d

lean2steer

f

Figure 13: Block diagram of a virtual rider composed
of a state-space controller and an additional block in
order to calculate the corresponding steer angle. The
reference input xset is the desired roll angle profile.

elica model is depicted in Figure 14. The incorporated

derivative

der()

derivative1

der()
F=f(v) X

stateSpac...

-

feedback

-

feedback1
Lean2Steer

v

phi_set

T_steer

delta

phi

Figure 14: Wrapped model of the virtual rider com-
posed of a state-space controller for a user defined ve-
locity range. The inputs (blue) are lean and steer angle,
lean angle set-value and the velocity of the motorcycle,
the output Tsteer (white) is the steering torque

controller is shown in Figure 15.

5.2 Path Tracking

In order to track a pre-defined trajectory using path
preview information, a randomly generated path is in-
cluded in the library. The path generation was done
with MATLAB. This path is defined by its lateral pro-
file [16]. To emulate the behavior of a human rider,
single-point path preview is performed by the virtual
rider. That is, the rider looks a pre-defined distance
ahead in order to follow the path. It is worth noting that

product

product1

product2

product3

add

+1

+1

add

+

+1

+1

add1

+1

+1

add1

+

+1

+1

add2

+1

+1

add2

+

+1

+1

combiTable1Ds

phi_steer

der_phi_steer

phi_lean

der_phi_lean

v

T_steering

Figure 15: Wrapped model of a state-space controller
for a specific velocity range. The table includes the
state feedback matrix coefficients which by default are
stored in place.mat

a similar deviation pattern is actually observed from
human riders. In order to track a path, the controllers
have to be extended [16] (see Figure 16). In the sim-

y
CS

u x 1
s

A

.

B
x

S

x0

S
- F1

?F2

-

non-preview

path-preview

x1 x2

xpath

Figure 16: Basic structure of a state-space path pre-
view controller. The state vector x1 includes the states
that are responsible for the stability (non-preview),
whereas x2 = (xlat ẋlat)T includes the states required
for path tracking.

plest case the lateral position xlat of the rear frame’s
center of mass is fed back in order to generate an addi-
tional steering torque that keeps the vehicle on the de-
sired path. For the utilized state-space controllers the
lateral rate ẋlat is additionally taken into account. The
corresponding Modelica model is basically the same
as the one depicted in Figure 14. To cover the path
tracking capabilities two additional inputs, namely xlat
and ẋlat are included. For the state-space path tracking
controller the pole placement functions were extended
in order to conveniently design such a controller.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 25

6 Examples

The first example demonstrates a 3 d.o.f. motorcycle
stabilized by a virtual rider. The animation of the un-
controlled vehicle with a velocity of 4ms−1 is depicted
in Figure 17. In order to determine the self-stabilizing

Figure 17: Animation result of the uncontrolled 3
d.o.f. motorcycle. After about 2s the motorcycle falls
over like an uncontrolled inverted pendulum

range of the motorcycle an eigenvalue analysis is car-
ried out. The results are shown in Figure 3. According
to these results it can be seen that the vehicle is truly
unstable for a velocity of 4ms−1. Furthermore, it can
be seen that an offset of d = 2 is absolutely sufficient
to achieve stable behavior. With this information the
coefficients of the state feedback matrix are calculated.
For this purpose the pole placement function based on
the first approach is executed. The corresponding out-
put is stored in the controller of the ready-made virtual
rider introduced in Figure 14. The model of the con-
trolled motorcycle is depicted in Figure 18. The ani-

Figure 18: Example: controlled 3 d.o.f. motorcycle.
The wrapped model of the virtual rider corresponds to
Figure 14.

mation of the controlled vehicle is shown in Figure 19.

In the second example the motorcycle tracks a roll

Figure 19: Animation result of the controlled 3 d.o.f.
motorcycle

angle profile. The utilized model is depicted in Fig-
ure 18. Instead of a constant source block, the model
of a 90◦-curve is included. The coefficients of the
feedback matrix were automatically calculated for an
offset d = 5. The resulting eigenvalues are equal to
those depicted in Figure 8. The animation result is de-
picted in Figure 20.

Figure 20: Animation result of a 3 d.o.f. motorcycle
tracking a 90◦-curve

In the last example the motorcycle tracks a pre-
defined path. The utilized model is depicted in Fig-
ure 21.

Again, the coefficients of the feedback matrix are
automatically calculated for an offset d = 5. Addition-
ally, an offset dlat = 5 is needed in order to keep the
motorcycle on the desired path. The results are shown
in Figure 22.

7 Structure of the Library

The structure of the MotorcycleLib is depicted in Fig-
ure 23. For each single-track vehicle a separate sub-
package is provided. The basic bicycle sub-package
is composed of a rigid rider and a movable rider sub-
package. Both include the corresponding wrapped
model and a function in order to perform an eigen-
value analysis. The motorcycle sub-package also in-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 26

Figure 23: Library structure

Figure 21: Example: model of a 3 d.o.f. motorcycle
tracking a pre-defined path

cludes a wrapped model and an eigenvalue analysis
function. The structure of the advanced motorcycle
models is much more detailed since each part (e.g.
front frame) is created in a fully object-oriented fash-
ion. It is composed of a parts, an aerodynamics and a
stability analysis sub-package. The parts sub-package
includes several different front and swinging arms, a
rear frame, the rider’s upper body, a torque source (en-
gine), an elasto-gap and a utilities sub-package. In the
latter one, models of characteristic spring and damper
elements are stored. The aerodynamics sub-package
includes a lift force, a drag force and a pitching mo-
ment model.

The controller design sub-package contains pole
placement functions in order to design appropriate
controllers. The virtual rider sub-package includes,

0 4 8 12 16 20 24 28 32

-6

-4

-2

0

2

4

6

8
pathPreview.x1_lateralPosition path.p_pre

0 4 8 12 16 20 24 28 32

-6

-4

-2

0

2

4

6

8
absoluteSensor.out[3] [N] path.p_act

Figure 22: Simulation result of a motorcycle tracking
a pre-defined path. Upper plot: The red signal is the
path a pre-defined distance ahead, the blue signal is
the preview distance of the rider. Lower plot: The red
signal is the actual path, the blue signal is the traveled
path measured at the rear frame’s center of mass

among others, a virtual rigid rider and a virtual mov-
able rider sub-package. In both the riders are capable
of either tracking a roll angle profile or a pre-defined
trajectory. To this end, several different controllers
(e.g. classic, state-space and LQR) are incorporated
into the virtual riders.

The environments sub-package provides tracks for
both roll angle tracking and path tracking. In addition,
the models for single-point path tracking are included.
The visualization sub-package provides the graphi-
cal information for the environments sub-package. In
the ideal wheels sub-package the visualization of the
rolling objects from D. Zimmer’s MultiBondLib were
modified such that the appearance is similar to real
motorcycle wheels. The utilities sub-package provides
some additional functions and models which are partly

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 27

used in the library. The purpose of the examples sub-
package is to provide several different examples that
demonstrate how to use the library.

8 Conclusion

The library provides an appropriate eigenvalue func-
tion for each vehicle. Beside the controller design
such an analysis is beneficial for the optimization of
the vehicle’s geometry. By changing the geometry or
the center of mass’ locations of a vehicle, the eigen-
values of the system are changing as well. It is thus
possible to optimize the design of a vehicle regarding
self-stability.

Furthermore, due to the results of the eigenvalue
analysis it is now possible to conveniently design
a state-space controller valid for a specific velocity
range of the vehicle. Thus, for the calculation of the
state feedback matrix coefficients, a pole placement
function was developed. In order to design an LQR,
MATLAB functions are provided.

To test the performance of the vehicles, the virtual
riders are capable of tracking both, a roll angle profile
and a pre-defined path. Therefore, several test tracks
are included in the library.

A very detailed description of this paper can be
found in the corresponding master’s thesis [10].

References

[1] M. Andres. Object-oriented modeling of wheels
and tires. Master’s Thesis, 2009.

[2] F. E. Cellier and À. Netbot. The modelica bond-
graph library. In Proceedings of the 4th Inter-
national Modelica Conference, Hamburg, pages
57–65, 2005.

[3] V. Cossalter. Motorcycle Dynamics. 2006. 2nd
edition.

[4] F. Donida, G. Ferreti, S. M. Savaresi, and
M. Tanelli. Object-oriented modeling and sim-
ulation of a motorcycle. Mathematical and Com-
puter Modelling of Dynamic Systems, 14, No.
2:79–100, 2008.

[5] F. Donida, G. Ferreti, S. M. Savaresi, M. Tanelli,
and F. Schiavo. Motorcycle dynamics library in
modelica. Proceedings of the Fifth International
Modelica Conference, 5:157–166, 2006.

[6] S. Evangelou. The control and stability analysis
of two-wheeled road vehicles. PhD thesis, Impe-
rial College London, September, 2003.

[7] Otto Föllinger. Regelungstechnik, Einführung in
die Methoden und ihre Anwendungen. Hüthig,
2008. 10. durchgesehene Auflage.

[8] F. Klein and A. Sommerfeld. Über die theo-
rie des kreisels. Quarterly Journal of Pure and
Applied Mathematics, Chapter 9, Section 8:863–
884, Leipzig, 1910.

[9] C. Koenen. The dynamic behaviour of motorcy-
cles when running straight ahead and when cor-
nering. PhD thesis, Delft University, 1983.

[10] Thomas Schmitt. Modeling of a motorcycle in
dymola/modelica. Master’s thesis, Vorarlberg
University of Applied Sciences, 2009.

[11] A. L. Schwab, J. D. G. Kooijman, and J. P. Mei-
jaard. Some recent developments in bicycle dy-
namics and control. Fourth European Confer-
ence on Structural Control, page 8, 2008.

[12] A. L. Schwab, J. P. Meijaard, and J. M. Pa-
padopoulos. Benchmark results on the linearized
equations of motion of an uncontrolled bicycle.
KSME International Journal of Mechanical Sci-
ence and Technology, pages 292–304, 2005.

[13] R. S. Sharp. The stability and control of motorcy-
cles. Journal Mechanical Engineering Science,
Volume 13:316–329, 1971.

[14] R. S. Sharp, S. Evangelou, and D. J. N. Lime-
beer. Advances in the modelling of motorcycle
dynamics. Multibody System Dynamics, Volume
12:251–283, 2004.

[15] R. S. Sharp and D. J. N. Limebeer. A mo-
torcycle model for stability and control analy-
sis. Multibody System Dynamics, Volume 6:123–
142, 2001.

[16] R. S. Sharp and V. Valtetsiotis. Optimal preview
car steering control. Vehicle System Dynamics,
Supplement 35:101–117, 2001.

[17] D. Zimmer and F. E. Cellier. Multibond graph
library. Proceedings of the Fifth International
Modelica Conference, pages 559–568, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 28

Modeling and Optimization with Modelica and Optimica Using

the JModelica.org Open Source Platform

Johan Åkessona,b Tove Bergdahla Magnus Gäfverta Hubertus Tummescheita
a Modelon AB, Sweden

b Department of Automatic Control, Lund University, Sweden

Abstract

This paper reports a new Modelica-based open source
project entitled JModelica.org, targeted towards dy-
namic optimization. The objective of the project is
to bridge the gap between the need for high-level de-
scription languages and the details of numerical opti-
mization algorithms. JModelica.org is also intended
as an extensible platform where algorithm developers,
particularly in the academic community, may integrate
new and innovative methods. In doing so, researchers
gain access to a wealth of industrially relevant opti-
mization problems based on existing Modelica mod-
els, while at the same time facilitating industrial use
of state of the art algorithms. In this contribution, an
overview of the platform is presented and the main fea-
tures of JModelica.org are highlighted.

Keywords: Modelica; Optimica; Optimization;

Model Predictive Control

1 Introduction

Optimization is becoming a standard methodology in
many engineering disciplines to improve products and
processes. The need for optimization is driven by
factors such as increased costs for raw materials and
stricter environmental regulations as well as a general
need to meet increased competition. As model-based
design processes are being used increasingly in indus-
try, the prerequisites for optimization are often ful-
filled. However, current tools and languages used to
model dynamic systems are not always well suited for
integration with state of the art numerical optimization
algorithms. As a result, optimization is not used as fre-
quently as it could, or less efficient, but easier to use,
algorithms are employed.

More often than not, systems to be optimized are
complex and dynamic. Such problems offer several
challenges at different levels. Much effort has been

devoted to encapsulating expert knowledge in model
libraries encoded in domain specific languages such
as VHDL-AMS [30] and Modelica [44]. While such
model libraries have been primarily intended for sim-
ulation, it is desirable to enable also other usages, in-
cluding optimization. From a user’s perspective, it
is desirable that the optimization specification is ex-
pressed in a high-level language in order to provide a
comprehensive description both of the dynamic model
to be optimized and of the optimization problem. An-
other aspect that requires attention is that of enabling
flexible use of the wealth of numerical algorithms
for dynamic optimization, based on the high-level de-
scriptions specified by the user.

Several common engineering tasks are conveniently
cast as optimization problems. This includes param-
eter estimation problems to obtain models that match
plant data, design optimization for improving product
performance, and controller parameter tuning. In ad-
dition, dynamic optimization is a key to implementing
for example model predictive controllers and receding
horizon state estimators.

This contribution reports a new Modelica-based
open source initiative targeted at dynamic optimiza-
tion entitled JModelica.org. JModelica.org [36] is a
novel open source project with the mission:

“To offer a community-based, free, open source, ac-

cessible, user and application oriented Modelica en-

vironment for optimization and simulation of complex

dynamic systems, built on well-recognized technology

and supporting major platforms.”

JModelica.org is primarily focused on dynamic opti-
mization of Modelica models. To meet this end, JMod-
elica.org supports Optimica, which is an extension to
the Modelica language that offers language constructs
for encoding of cost functions, constraints and the op-
timization interval with fixed or free end points. The
platform consists of compilers for translating Model-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 29 DOI: 10.3384/ecp09430057

ica and Optimica models into C and XML code, a
C API for evaluation of model equations and Python
bindings to enable scripting and custom algorithm de-
velopment. The software is distributed freely under
the GPL license.

The paper is outlined as follows. In Section 2, a
review of optimization tools and the Optimica exten-
sion are given. Section 3 describes the JModelica.org
platform. Previous case studies performed based on
JModelica.org, and the opportunities provided by ab-
stract syntax tree access are discussed in Section 4. In
Section 5, an example of a model predictive control
application is given. The paper ends with a summary
and comments on future work in Section 6.

2 Background

It is typical that numerical algorithms for dynamic op-
timization is written in C or Fortran. Often, the user
is required to encode the dynamic model and the opti-
mization specification in the same languages. While C
and Fortran enables efficient compilation to executable
code, such languages are not well suited for encoding
of dynamic models and optimization problems. In par-
ticular, it is difficult to write the code in a modular way
that enables reuse. This observation was made several
decades ago in the context of modeling and simulation
and resulted in high-level modeling languages, includ-
ing ACSL and later Omola, [4], VHDL-AMS [30], and
Modelica [44]. See [5] for a comprehensive overview
of the evolution of continuous-time simulation lan-
guages and tools.

2.1 Optimization Tools

There are several tools for optimization on the market,
offering different features. In essence, three different
categories of tools can be distinguished, although the
functionality is sometimes overlapping. Model inte-

gration tools addresses the problem of interfacing sev-
eral design tools into a a single computation environ-
ment, where analysis, simulation and optimization can
be performed. Examples are ModelCenter, [41], Op-
tiY, [40], modeFRONTIER [21], and iSIGHT, [11].
Typically, such tools are dedicated to design opti-
mization of extremely complex systems which may
be composed from subsystems encoded in different
tools. Accordingly, model integration tools typically
offers interfaces to CAD and finite element software as
well as simulation tools for, e.g., mechanical and hy-
draulic systems. As a result of the heterogeneity and

complexity of the target models, models are usually
treated as black boxes, i.e. the result of a computation
is propagated to the tool, but the structure of a par-
ticular model is not explored. Accordingly, heuristic
optimization algorithms which do not require deriva-
tive information or detailed structural information, are
usually employed. In addition, model integration tools
often have sophisticated features supporting model ap-
proximation and visualization.

Several Simulation tools comes with optimization
add-ons, e.g., Dymola [14], gPROMS [42] and Jaco-
bian [37]. Such tools typically offer strong support
for modeling of physical systems and simulation. The
level of support for optimization in this category dif-
fers between different tools. Dymola, for example,
offers add-ons for parameter identification and design
optimization, [18]. gPROMS, on the other hand, also
offers support for solution of optimal control prob-
lems. Tools in this category are usually limited to a
predefined set of optimization algorithms. Integration
of new algorithms may be difficult if the tools do not
provide the necessary API:s.

In the third category we have numerical packages

for dynamic optimization, often developed as part of
research programs. Examples are ACADO [39], Mus-
cod II [46], and DynoPC [33], which is based on
Ipopt [48]. Such packages are typically focused on
efficient implementation of an optimization algorithm
for a particular class of dynamic systems. Also, de-
tailed information about the model to optimize is gen-
erally required in order for such algorithms to work,
including accurate derivatives and in some cases also
sparsity patterns. Some of the packages in this cate-
gory are also targeting optimal control and estimation
problems in real-time, e.g., non-linear model predic-
tive control, which require fast convergence. While
these packages offer state of the art algorithms, they
typically come with simple or no user interface. Their
usage is therefore limited due to the effort required to
code the model and optimization descriptions.

The JModelica.org platform is positioned to fill the
gap left between simulation tools offering optimiza-
tion capabilities and state of the art numerical algo-
rithms. Primarily, target algorithms are gradient based
methods offering fast convergence. Never the less,
JModelica.org is well suited for use also with heuristic
direct search methods; the requirements with respect
to execution interface is typically a subset of the re-
quirements for gradient based methods. The problems
addressed by model integration tools is currently be-
yond the scope of JModelica.org, even though its in-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 30

model VDP

Real x1(start=0);

Real x2(start=1);

input Real u;

equation

der(x1) = (1x2^2)*x1 x2 + u;

der(x2) = x1;

end VDP;

Listing 1: A Modelica model of a van Der Pol oscilla-
tor.

optimization VDP_Opt

Ç(objective=cost(finalTime),

startTime=0,

finalTime(free=true,

initialGuess=1))

À VDP vdp(u(free=true,

initialGuess=0.0));

Á Real cost (start=0);

equation

Â der(cost) = 1;

constraint

Ã vdp.x1(finalTime) = 0;

Ä vdp.x2(finalTime) = 0;

Å vdp.u >= 1;

Æ vdp.u <= 1;

end VDP_Opt;

Listing 2: An Optimica optimization specification
based on the van Der Pol Oscillator.

tegration with Python offers extensive possibilities to
develop custom applications based on the solution of
simulation and optimization problems.

2.2 Optimica

The Optimica extension is discussed in detail [1, 2]. In
this paper, a brief overview of Optimica is given and
the extension is illustrated by means of an example.

We consider the following dynamic optimization
problem:

min
u(t)

∫ t f

0
1dt (1)

subject to the dynamic constraint

ẋ1(t) = (1− x2(t)
2)x1(t)− x2(t)+u(t), x1(0) = 0

ẋ2(t) = x1(t), x2(0) = 1
(2)

and
x1(t f) = 0

x2(t f) = 0

−1 ≤u(t) ≤ 1

(3)

The dynamic model (2) of the problem is a van Der
Pol oscillator, and the optimization problem corre-
sponds to bringing the system from initial conditions
x1(0) = 0, x2(0) = 1 to the origin in minimum time. In
addition, the transition is to be performed with limited
control authority.

A Modelica model corresponding to the dynamic
system (2) is given in Listing 1. Based on this model,
an Optimica specification can be formulated, see List-
ing 2. Since Optimica is an extension of Modelica,
language elements valid in Modelica are also valid in
Optimica. In addition Optimica also contains new con-
structs not valid in Modelica.

The Optimica program corresponding to the van
Der Pol example can be seen in Listing 2. In order
to specify an optimization problem in Optimica, the
new specialized class optimization is used. Inside
such a class, Optimica constructs, as well as Model-
ica constructs may be used. An instance of the VDP

model is created by declaring a corresponding compo-
nent, À. In order to express that the input u is to be
tuned in the optimization, the Optimica-specific vari-
able attribute free is set to true, and in addition,
an initial guess for u is provided. In order to define
the cost function, a variable, cost Á, is introduced
along with a defining equation, Â. Further, the con-
straints are given in the constraint section, which is
a new Optimica construct. In this section, Ã–Ä cor-
respond to the terminal constraints, whereas Å–Æ cor-
respond to the control variable bounds. Notice how
the value of a variable at a particular time instant is
accessed using an Optimica-specific function call-like
syntax. finalTime is a built-in variable of the special-
ized class optimization and is used to refer to the
time at the end of the optimization interval. Finally,
the objective and the optimization interval is specified,
Ç. The construct introduced in Optimica to meet this
end can be viewed as built-in class attributes which
are given values through class arguments. Here the
variable representing the cost function is bound to the
built-in class attribute objective and it is specified
that finalTime is to be free in the optimization.

The Modelica and Optimica specifications are then
typically translated by a compiler into a format suit-
able for compilation with a numerical solver in order
to obtain the solution.

3 The JModelica.org platform

In order to demonstrate the feasibility and effective-
ness of the proposed Optimica extension, a prototype

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 31

Figure 1: Overview of the JModelica.org platform ar-
chitecture.

compiler was developed, [1]. Currently, the initial pro-
totype compiler is being developed with the objective
of creating a Modelica-based open source platform fo-
cused on dynamic optimization.

The architecture of the JModelica.org platform is il-
lustrated in Figure 1. The platform consists essentially
of two main parts: the compiler and the JModelica.org
Model Interface (JMI) runtime library. The compiler
transforms Modelica and Optimica source code into a
flat model description and then generates C and XML
code. The generated C code contains the actual model
equations in a format suitable for efficient evaluation,
whereas the XML code contains model meta data,
such as variable names and parameter values. The JMI
runtime library provides a C interface which in turn
can be interfaced with numerical algorithms. There is
also an Eclipse plug-in and a Python integration mod-
ule under development. In this section, the key parts
of the JModelica.org platform will be described.

3.1 Compiler Development—JastAdd

Compiler construction has traditionally been associ-
ated with intricate programming techniques within the
area of computer science. Recent research effort has,
however, resulted in new compiler construction frame-
works that are easier to use and where it is feasible
to develop compilers with a comparatively reasonable
effort. One such framework is JastAdd [28, 17]. Jas-
tAdd is a Java-based compiler construction framework
based on concepts such as object-orientation, aspect-
orientation and reference attributed grammars [15]. At
the core of JastAdd is an abstract syntax specification,
which defines the structure of a computer program.
Based on an abstract syntax tree (AST), the compiler
performs tasks such as name analysis, i.e, finding dec-

model M

Real x;

equation

x = 1;

end M;

Figure 2: A simple Modelica model (left) and its cor-
responding abstract syntax tree (right). The dashed ar-
row represents the reference attribute myDecl which
binds an identifier to its declaration.

larations corresponding to identifiers, type analysis,
i.e., verifying the type correctness of a program, and
code generation.

The JastAdd way of building compilers involves
specification of attributes and equations based on the
abstract syntax specification. This feature is very simi-
lar to ordinary Knuth-style attribute grammars [32] but
enhanced with reference attributes. Accordingly, at-
tributes may be used to specify, declaratively, links be-
tween different nodes in the AST. For example, iden-
tifier nodes can be bound to their declaration nodes.
In Figure 2, an example of a small Modelica program
and its corresponding AST is shown. Notice how the
reference attribute myDecl links an identifier (IdUse)
to its declaration (CompDecl).

JastAdd attributes and equations are organized into
separate aspects, which form a convenient abstrac-
tion for encoding of cross cutting behavior. Typically,
implementation of a semantic function, for example
type analysis, involves adding code to large number
of classes in the AST specification. Using aspects,
much like in AspectJ [31], cross cutting behavior can
be modularized in a natural way. In addition, this ap-
proach is the basis for one of the distinguishing fea-
tures of JastAdd: it enables development of modularly
extensible compilers. This means that it is feasible to
develop, with a comparatively moderate effort, modu-
lar extensions of an existing JastAdd compiler without
changing the core compiler. This feature has been used
in the implementation of the JModelica.org Modelica
and Optimica compilers, where the Optimica compiler
is a fully modular extension of the core Modelica com-
piler.

The JastAdd compiler transforms the JastAdd spec-
ification into pure Java code, where the definition of
the abstract grammar translates into Java classes corre-
sponding to Modelica classes, components, functions,
and equations. The JastAdd attributes are woven into

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 32

the Java classes as methods. In addition, methods for
traversing an AST and query properties of a particular
AST class, e.g., obtain a list of variables contained in a
class declaration, are automatically generated. As a re-
sult of this approach, compilers produced by JastAdd
are in the form of standard Java packages, which in
turn can be integrated in other applications. It is there-
fore not necessary to know the particular details of
how to write JastAdd specifications in order to use the
JModelica.org compilers, knowledge of Java is gener-
ally sufficient.

3.2 The Modelica and Optimica Compilers

At the core of the JModelica.org platform is a Mod-
elica compiler that is capable of transforming Mod-
elica code into a flat representation and of generat-
ing C code. In the Modelica compiler, several design
strategies, for example name look-up, developed for
a Java compiler developed using JastAdd [16], were
reused. For additional details on the implementation
of the compiler, see [3].

In order to support also the Optimica extension, a
modular extension of the core Modelica compiler has
been developed. The extended compiler is capable of
translating standard Modelica enhanced with the new
Optimica syntax presented in Section 2.2. The Optim-
ica extension is reported in more detail in [27].

The JModelica.org Modelica compiler currently
supports a subset of Modelica version 3.0. The Mod-
elica Standard Library version 3.0.1 can be parsed
and the corresponding source AST can be constructed.
Flattening support is more limited, but is being contin-
uously improved.

3.3 Code Generation

The JModelica.org offers a code generation frame-
work implemented in Java as part of the compil-
ers. The framework facilitates development of custom
code generation modules and is based on templates

and tags. A template is used to specify the structure
of the generated code and tags are used to define ele-
ments of the template which is to be replaced by gen-
erated code. In order to develop a custom code gener-
ation module, the user needs to define a template and
a set of tags, and then implement the actual code gen-
eration behavior corresponding to each tag. In order to
perform the latter, the AST for the flattened Modelica
model is typically used, where objects corresponding
to declarations, equations and functions are queried for
information used to generate the target code.

The JModelica.org platform contains two code gen-
eration modules, one for C and one for XML. The
generated C code contains the model equations and is
intended to be compiled and linked with the JModel-
ica.org Model Interface (see below) in order to offer
efficient evaluation of the model equations. The XML
output consists of model meta data such as specifica-
tions of variables, including their names, attributes and
type. Also, the XML output includes a separate file for
parameter values. The XML output is similar to what
is discussed within the FMI initiative [12], and the
intention is for the JModelica.org XML output to be
compliant with FMI once finalized. In addition, there
is on-going work aimed to develop an XML specifica-
tion for flattened Modelica models, including variable
declarations, functions, and equations [9]. The objec-
tive is for JModelica.org to be compliant also with this
specification.

3.4 C API

The JModelica.org platform offers a C API, entitled
the JModelica.org Model Interface (JMI1), suitable for
integration with numerical algorithms. The interface
provides functions for accessing and setting parame-
ter and state values, for evaluation of the DAE residual
function and for evaluation of cost functions and con-
straints specified in an Optimica model. In addition,
Jacobians and sparsity patterns can be obtained for all
functions in the interface. To meet this end, a package
for automatic differentiation, CppAD [6], has been in-
tegrated into JMI. The JMI code is intended to be com-
piled with the C code that is generated by the compiler
into an executable, or into a shared object file.

The JMI interface consists of four parts: the ODE
interface, the DAE interface, the DAE initialization
interface, and the Optimization interface. These in-
terfaces provide access to functions relevant for differ-
ent parts of the optimization specification. The ODE
and DAE interfaces provide evaluation functions for
the right hand side of the ODE and the DAE residual
function respectively. The DAE initialization problem
provides functions for solving the DAE initialization
problem, whereas the Optimization interface provides
functions for evaluation of the cost functions and the
constraints.

1Notice that this acronym is unrelated to Java Metadata inter-
face

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 33

3.5 Interactive Environment—Python

Solution of engineering problems typically involves
atomization of tasks in the form of user scripts.
Common examples are batch simulations, parameter
sweeps, post processing of simulation results and plot-
ting. Given that JModelica.org is directed towards sci-
entific computing, Python, see [23], is an attractive op-
tion. Python is a free open-source highly efficient and
mature scripting language with strong support in the
scientific community. Packages such as NumPy [38]
and SciPy [20], and bindings to state-of-the art numer-
ical codes implemented in C and Fortran make Python
a convenient glue between JModelica.org and numeri-
cal algorithms. In addition, IPython [19] with the visu-
alization package matplotlib [29] and the PyLab mode
offer an interactive numerical environment similar to
the ones offered by Matlab and Scilab.

The JModelica.org Pyhon package includes sub
packages for running the compilers, for managing
file input/output of simulation/optimization results and
for accessing the function provided by the JMI inter-
face. The compilers are run in a Java Virtual Machine
(JVM) which is connected to the Python environment
by the package JPype, [35]. One of JPype’s main fea-
tures is to enable direct access to Java objects from a
Python shell or script. This feature is used to com-
municate with the compilers, but can also be used to
retrieve the ASTs generated by the compilers. The lat-
ter feature enables the user to traverse and query the
ASTs interactively, see 4.2 for a discussion on exam-
ple usages of this feature.

The integration of the JMI is based on the ctypes
package [22]. Using ctypes, a dynamically linked li-
brary (DLL) can be loaded into Python, All the con-
tained functions of the DLL are then exposed and can
be called directly from the Python shell. In order to en-
able use of Numpy arrays and matrices as arguments
to the JMI functions, the argument types has been ex-
plicitly encoded using standard features of ctypes. In
order to provide a more convenient interface to the
JMI functions, a Python class, Model has been created.
This class encapsulates loading of a DLL and typing
of the JMI functions, and also provides wrapper func-
tions supporting Python exceptions. In addition, upon
creation of a Model class, the generated XML meta
data files are loaded and parameter values and start at-
tributes are set in the loaded model instance. Model

objects can then be manipulated, e.g., by setting new
parameter values, or passed as an argument to a simu-
lation or optimization algorithm.

3.6 Optimization Algorithms

The JModelica.org platform offers two different al-
gorithms for solving dynamic optimization problems.
The first is a simultaneous optimization method based
on orthogonal collocation on finite elements [7]. Us-
ing this method, state and input profiles are parame-
terized by Lagrange polynomials which are based on
Radau points. This method corresponds to a fully im-
plicit Runge-Kutta method, and accordingly it pos-
sesses well known and strong stability properties. By
parameterizing the variable profiles by polynomials,
the dynamic optimization problem is translated into
a non-linear programming (NLP) problem which may
be solved by a numerical NLP solver. This NLP is,
however, very large. In order to efficiently find a solu-
tion to the NLP, derivative information as well as the
sparsity patterns of the constraint Jacobians need to be
provided to the solver. The simultaneous optimization
algorithm has been interfaced with the large-scale NLP
solver Ipopt [48], which has been developed particu-
larly to solved NLP problems arising in simultaneous
dynamic optimization methods. The algorithm is im-
plemented in C as an extension of JMI, and provides
an example of how to implement algorithms based on
the JMI functions. In particular, Jacobians computed
by CppAD is used, including sparsity patterns.

In addition to the simultaneous optimization algo-
rithm, JModelica.org contains a multiple shooting al-
gorithm, [8]. The algorithm is based on an integra-
tor which is used to simulate the system dynamics and
thereby evaluate the cost function, and an optimiza-
tion algorithm which modifies the optimization vari-
ables. Typically, the optimization variables are Mod-
elica parameters in the case of a design or parame-
ter optimization problem, or parameters resulting from
discretization of a control input. The multiple shoot-
ing algorithm is implemented in Python, and relies on
the integrator SUNDIALS [34], its Python interface
PySUNDIALS [47], and the optimization algorithm
scipy_slsqp, which is included in Scipy. In order to im-
prove the convergence of the optimization algorithm
sensitivities are computed and propagated to the op-
timization algorithm. The sensitivities are computed
using SUNDIALS. The implementation serves also as
an example of how to develop algorithms based on the
JModelica.org Python interface. The multiple shoot-
ing algorithm is described in more detail in [43].

The above algorithms are both based on the avail-
ability of derivatives. For some optimization prob-
lems, it is not possible to reliably compute derivatives,
and accordingly, numerical optimization algorithms

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 34

requiring derivative information may fail. This situ-
ation may occur for certain classes of hybrid systems.
In such cases, heuristic methods which do not require
derivative methods may be better suited. Examples of
such methods are genetic algorithms, pattern match-
ing, simulated annealing, and simplex (Nelder-Mead).
Some methods of this class are freely available for
Python, see the OpenOpt project [13] for more infor-
mation, and may be integrated with the JMI Python
interface.

4 Applications

4.1 Dynamic optimization

Prototype versions of the JModelica.org software has
been used successfully in applications in different do-
mains. In [26], an application is reported where op-
timal start-up trajectories are computed for a plate re-
actor. The problem is challenging not only due to the
complexity of the model (approx. 130 differential and
algebraic equations), but also due to non-linear and
in some conditions unstable dynamics. A main chal-
lenge in this project was to obtain trajectories robust
to parameter variations. The procedure of finding ac-
ceptable solutions was highly iterative in that the cost
function and the constraints required several redesigns.
The high-level specification framework in combina-
tion with automatic code generation offered by Optim-
ica and the JModelica.org platform proved very useful
in this respect.

The prototype software has as also been used in a
number of other projects involving vehicle systems.
For example, in [10] optimal tracks for racing cars
were optimized, and in [45], optimal rail profiles were
computed for a novel mass transportation system, the
NoWait train concept. Other examples where Optim-
ica has been used are reported in [25] where minimum
time optimization for an industrial robot is considered
and in [24] where an optimal control application of a
pendulum system is reported.

4.2 Using ASTs

As described above, the JModelica.org compilers pro-
vide direct access to abstract syntax trees (ASTs). The
ASTs are abstract representations of Modelica mod-
els, and provides a means to access the contents of a
Model in a structured and programmatic way. Three
different types of ASTs are used during the procedure
of producing a flat Modelica representation: the source
AST, the instance AST, and the flat AST. The ASTs

in the JModelica.org org compilers consists of stan-
dard Java objects instantiated from the AST classes
produced by the JastAdd compilers. Also, means to
traverse the AST are provided automatically, in addi-
tion to the methods corresponding to attributes defined
in the compiler.

The source AST results from parsing of a Model-
ica source file. Its structure corresponds precisely to
the actual structure of the code, but the details of the
concrete syntax has been removed. Given the source
AST, a number of queries can be performed. For ex-
ample, the AST may be traversed and for each class
declaration, the documentation annotation and the sig-
natures of the public parameters may be extracted and
pretty printed according to a HTML template. Another
example would be to traverse the AST and output the
default values of all parameters in XML format.

Based on a particular class declaration in the source
AST, an instance AST may be constructed. The in-
stance AST differs from the source AST in that in the
instance AST the components structurally contained
in a component declaration is explicitly represented.
Also, in the instance tree, modifications, e.g., class
and component redeclarations take effect. In fact, the
key to constructing the instance tree is to handle mod-

ification environments consisting of an ordered set of
modifications applicable to a particular class or com-
ponent instance. Construction of the instance AST is
described in [3]. Access to the instance AST enables
several analyses to be performed. For example, the in-
stance AST may be traversed, and for each primitive
variable encountered the corresponding modification
environment may be retrieved and output to file.

The flat AST, corresponding to a flattened Modelica
model, is constructed by traversing the instance AST
and collecting all primitive variables, equations, algo-
rithms and functions. The flat AST offers a predefined
API for retrieving variables of the primitive types. For
example, Java methods are provided for retrieving all
parameters of Real type, for retrieving all differenti-
ated variables, for querying if a variable occurs lin-
early in the model equations etc. The flat AST is typi-
cally used as a basis for code generation.

5 An Example

We consider the Continuously Stirred Tank Reactor
(CSTR) process depicted in Figure 3. The tempera-
ture and the reactant concentration of the inlet flow are
constant and the control input of the process, u corre-
sponds to the coolant flow. The coolant temperature,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 35

Tc, u Tc, u

Tf , c
in = 1 T, c

Figure 3: A schematic figure of the CSTR process.

Figure 4: Optimization result for the CSTR example.

Tc, is constant. A dynamic model for an exothermic
reaction is then given by

ċ = β (1− c)− ke−N/Tc

Ṫ = β (Tf −T)+ ke−N/Tc−α(T −Tc)u
(4)

where c is the normalized concentration in the reactor,
T is the normalized reactor temperature, and β , k, N,
and α are physical parameters for the process.

Based on the CSTR model, the following dynamic
optimization problem can be formulated:

min
u(t)

∫ t f

0
q1(cr− c)2 +q2(Tr−T)2 + r(ur−u)2dt (5)

subject to the dynamics (4). The cost function penal-
izes deviations from a desired operating point given by
target values cr, Tr and ur for c, T and u respectively.
Starting at fixed initial conditions, the optimal solu-
tion transfers the system from one operating point to
another.

In this case, the numerical solver IPOPT [48] is used
to solve the transcribed NLP resulting from direct col-
location. The result of the optimization is shown in
Figure 4.

Figure 5: Simulation result of the MPC.

The optimal control problem formulated above can
also be used in conjunction with other algorithms
available in Scipy. To demonstrate this, a simple
model predictive controller (MPC) has been imple-
mented. The MPC control strategy is based on the
receding horizon principle, where an open loop opti-
mal control problem is solved in each sample. Simu-
lation of an MPC requires joint simulation of the plant
and solution of the optimal control problem. Such op-
erations are easily encoded in Python. The result of
executing the MPC is shown in Figure 5.

6 Summary and future work

In this paper, the JModelica.org open source platform
has been presented. The platform features compilers
written in JastAdd/Java, Optimica support, a C model
API, and XML export. The compilers and the C API
for evaluation of the model equations have been inter-
faced with Python, in order to provide an environment
for scripting and development of custom applications.
In addition, the abstract syntax trees representing the
Modelica source code, the instance hierarchy and the
flattened model are accessible.

Future plans include improvement of the Modelica
compliance of the compiler front-end, integration of
additional numerical optimization algorithms, simu-
lation support, and support for heuristic optimization
methods such as simulated annealing and genetic algo-
rithms. Also, an Eclipse plug-in is under development
where current research on custom IDE development
based on JastAdd is explored.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 36

References

[1] Johan Åkesson. Tools and Languages for Op-

timization of Large-Scale Systems. PhD thesis,
Department of Automatic Control, Lund Univer-
sity, Sweden, November 2007.

[2] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th

International Modelica Conference 2008. Mod-
elica Association, March 2008.

[3] Johan Åkesson, Torbjörn Ekman, and Görel
Hedin. Implementation of a modelica com-
piler using jastadd attribute grammars. Sci-

ence of Computer Programming, July 2009.
doi:10.1016/j.scico.2009.07.003.

[4] Mats Andersson. Object-Oriented Modeling and

Simulation of Hybrid Systems. PhD thesis, De-
partment of Automatic Control, Lund Institute of
Technology, Sweden, December 1994.

[5] Karl Johan Åström, Hilding Elmqvist, and
Sven Erik Mattsson. Evolution of continuous-
time modeling and simulation. In Proceedings

of the 12th European Simulation Multiconfer-

ence, ESM’98, pages 9–18, Manchester, UK,
June 1998. Society for Computer Simulation In-
ternational.

[6] B. M. Bell. CppAD Home Page, 2008. http:

//www.coinor.org/CppAD/.

[7] L.T. Biegler, A.M. Cervantes, and A Wächter.
Advances in simultaneous strategies for dynamic
optimization. Chemical Engineering Science,
57:575–593, 2002.

[8] H.G. Bock and K. J. Plitt. A multiple shooting
algorithm for direct solution of optimal control
problems. In Ninth IFAC world congress, Bu-
dapest, 1984.

[9] F. Casella, D. Filippo, and J. Åkesson. n XML
Representation of DAE Systems Obtained from
Modelica Models. In In 7th International Mod-

elica Conference 2009. Modelica Association,
2009.

[10] Henrik Danielsson. Vehicle path optimisation.
Master’s Thesis ISRN LUTFD2/TFRT--5797--
SE, Department of Automatic Control, Lund
University, Sweden, June 2007.

[11] Dassault Systèmes. iSIGHT Home Page,
2009. http://www.simulia.com/products/

isight.html.

[12] DLR, Dynasim, ITI and QTronic. The functional
model interface. Draft.

[13] Dmitrey L. Kroshko. OpenOpt Home Page,
2009. http://openopt.org/Welcome.

[14] Dynasim AB. Dynasim AB Home Page, 2008.
http://www.dynasim.se.

[15] T. Ekman and G. Hedin. Rewritable Reference
Attributed Grammars. In Proceedings of ECOOP

2004, volume 3086 of LNCS, pages 144–169.
Springer-Verlag, 2004.

[16] Torbjön Ekman and Görel Hedin. The jastadd ex-
tensible java compiler. In Proceedings of OOP-

SLA 2007, 2007.

[17] Torbjörn Ekman, Görel Hedin, and Eva Magnus-
son. JastAdd, 2008. http://jastadd.cs.lth.se/web/.

[18] H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück,
C. Schweiger, D. Joos, and M. Otter. Optimiza-
tion for design and parameter estimation. In
In 7th International Modelica Conference 2009.
Modelica Association, 2005.

[19] Inc. Enthought. IPython FrontPage, 2009. http:
//ipython.scipy.org/moin/.

[20] Inc. Enthought. SciPy, 2009. http://www.

scipy.org/.

[21] ESTECO. modeFRONTIER Home Page, 2009.
http://www.esteco.com/.

[22] Python Software Foundation. ctypes: A for-
eign function library for Python, 2009. http:

//docs.python.org/library/ctypes.html.

[23] Python Software Foundation. Python Program-
ming Language – Official Website, 2009. http:
//www.python.org/.

[24] P. Giselsson, J. Åkesson, and A. Robertsson. Op-
timization of a pendulum system using optimica
and modelica. In In 7th International Modelica

Conference 2009. Modelica Association, 2009.

[25] M. Hast, J. Åkesson, and A. Robertsson. Optimal
Robot Control using Modelica and Optimica. In
In 7th International Modelica Conference 2009.
Modelica Association, 2009.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 37

[26] Staffan Haugwitz, Johan Åkesson, and Per Ha-
gander. Dynamic start-up optimization of a plate
reactor with uncertainties. Journal of Process

Control, 2009. doi:10.1016/j.jprocont.

2008.07.005.

[27] Görel Hedin, Johan Åkesson, and Torbjön Ek-
man. Building DSLs by leveraging base
compilers—from Modelica to Optimica. IEEE

Software, 2009. Submitted for publication.

[28] Görel Hedin and Eva Magnusson. JastAdd:
an aspect-oriented compiler construction system.
Science of Computer Programming, 47(1):37–
58, 2003.

[29] J. Hunter, D. Dale, and M. Droettboom. mat-
plotlib: python plotting, 2009. http://

matplotlib.sourceforge.net/.

[30] IEEE. Standard VHDL Analog and Mixed-
Singnal Extensions. Technical report, IEEE,
1997.

[31] Gregor Kiczales, Erik Hilsdale, Jim Hugunin,
Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. LNCS,
2072:327–355, 2001.

[32] Donald E. Knuth. Semantics of context-
free languages. Mathematical Systems Theory,
2(2):127–145, June 1968. Correction: Mathe-
matical Systems Theory 5, 1, pp. 95-96 (March
1971).

[33] Y.D. Lang and L.T. Biegler. A software en-
vironment for simultaneous dynamic optimiza-
tion. Computers and Chemical Engineering,
31(8):931–942, 2007.

[34] Center for Applied Scientific Computing
Lawrence Livermore National Laboratory.
SUNDIALS (SUite of Nonlinear and DIf-
ferential/ALgebraic equation Solvers), 2009.
https://computation.llnl.gov/casc/

sundials/main.html.

[35] S. Menard. JPype Home Page, 2009. http://

jpype.sourceforge.net/.

[36] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[37] Numerica Technology. Jacobian Home Page,
2009. http://www.numericatech.com/

jacobian.htm.

[38] T. Oliphant. Numpy Home Page, 2009. http:

//numpy.scipy.org/.

[39] OPTEC K.U. Leuven. ACADO Home Page,
2009. http://www.acadotoolkit.org/.

[40] OptiY. OptiY Home Page, 2009. http://www.

optiy.de/.

[41] Phoenix Integration. ModelCenter Home
Page, 2009. http://www.phoenixint.com/

software/phx_modelcenter.php.

[42] Process Systems Enterprise. gPROMS Home
Page, 2009. http://www.psenterprise.com/

gproms/index.html.

[43] J. Rantil, J. Åkesson, C. Führer, and M. Gäfvert.
Multiple-Shooting Optimization using the JMod-
elica.org Platform. In In 7th International Mod-

elica Conference 2009. Modelica Association,
2009.

[44] The Modelica Association. The Modelica As-
sociation Home Page, 2007. http://www.

modelica.org.

[45] Jan Tuszynskia, Mathias Persson, Johan
Åkesson, Johan Andreasson, and Magnus
Gäfvert. Model-based approach for design and
validation of a novel concept of public mass
transport. In 21st International Symposium on

Dynamics of Vehicles on Roads and Tracks,
2009. Accepted for publication.

[46] University of Heidelberg. MUSCOD-II
Home Page, 2009. http://www.iwr.

uniheidelberg.de/~agbock/RESEARCH/

muscod.php.

[47] Triple-J Group for Molecular Cell Physiol-
ogy University of Stellenbosch. PySUNDI-
ALS: Python SUite of Nonlinear and DIfferen-
tial/ALgebraic equation Solvers, 2009. http:

//pysundials.sourceforge.net/.

[48] Andreas Wächter and Lorenz T. Biegler. On
the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear
programming. Mathematical Programming,
106(1):25–58, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 38

Building and Solving Nonlinear Optimal
Control and Estimation Problems

Jan Poland Alf J. Isaksson
ABB Corporate Research

<jan.poland@ch.abb.com> <alf.isaksson@se.abb.com>

Peter Aronsson
MathCore Engineering AB

< peter.aronsson@mathcore.com>

Abstract

We introduce a tool for obtaining optimal control
and estimation problems from graphical models.
Graphical models are constructed by combining
blocks that can be implemented in Modelica or taken
from a palette. The models can be used for predictive
control, moving horizon estimation, and/or parame-
ter estimation. We show that the solution time and
robustness of the resulting nonlinear program
strongly depends on the way the model was built and
translated. These observations yield modeling guide-
lines for increasing robustness and efficiency of the
optimization. In particular, we find out that eliminat-
ing as many variables as possible from the optimiza-
tion problem may help a lot.
Keywords: Modelica; Optimization; Optimal Con-
trol; State Estimation; Receding Horizon; MPC;
MHE

1 Introduction

Model-based methods have been important in many
industrial applications for a long time, and their im-
portance still increases today. One typical applica-
tion field is simulation, where computer models are
used to approximate physical processes to great ac-
curacy. Today’s models used for simulation are often
very complex.
In contrast, computational limits are reached much
earlier if a model is used for (online) optimization.
Nevertheless, Model Predictive Control (MPC) [1] is
nowadays a widely applied optimal control method
which works by translating the model to an optimiza-
tion problem, with the help of a performance meas-
ure (“cost function”) defined in terms of the vari-
ables in the model. As opposed to other optimal con-

trol methods such as the linear quadratic regulator
(LQR), this allows to accommodate constraints,
which is very important in practice. In most applica-
tions, the optimization problem is formulated and
solved for a fixed horizon in time, and the resulting
first control move is applied to the plant. This proce-
dure is applied repeatedly (“receding horizon con-
trol”).
Most MPC applications work with models that are
discrete in time or discretized. Depending on the
type of the model (linear, nonlinear, involving con-
tinuous or discrete variables or both) and the cost
functions, different types of optimization problems
can arise: linear programs (if both the model and the
cost function are linear), quadratic programs (linear
model and quadratic cost function), mixed integer
linear / quadratic programs (linear model with dis-
crete variables), or (mixed integer) nonlinear pro-
grams (NLP) (resulting from a nonlinear model with-
out or with discrete variables). We restrict our atten-
tion to the online optimization approach, where the
full optimization problem has to be solved in each
time step (as opposed to approaches where this is
avoided, such as explicit MPC). Hence, the question
if MPC can be used efficiently and robustly for an
application can be answered in the affirmative if an
appropriate solver for the optimization is available.
Consequently, most existing industrial applications
use MPC based on linear models. Furthermore, since
reliable and efficient mixed integer linear solvers
have been available for some time now, also models
with discrete variables become increasingly popular
[2]. On the other hand, nonlinear models result in
nonlinear programs (NLPs) which are much harder
to solve in general. In particular, solving to global
optimality is not possible unless the problem is small
or additional structure is given (e.g. convexity
holds). Consequently, for nonlinear MPC (NMPC),
proving guarantees on the performance, stability, etc.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 39 DOI: 10.3384/ecp09430004

is often impossible. Still, there have been successful
applications of NMPC, e.g. [3].
Recently, both computational hardware and nonlin-
ear solvers have become more powerful, making
nonlinear MPC applicable for more complex models
in principle. In this paper, we will solve NMPC
problems without further considering provable per-
formance guarantees, stability, etc. All results in this
work have been obtained with IpOpt [4]. We will see
later on that it happens quite easily that models are
translated to NLPs that are highly multimodal and
very difficult to solve. Hence, it is important to con-
struct models in a favorable way. Showing how to do
so is one focus of this paper.
Design of the model is rightly considered to be the
most difficult and involved task when constructing a
model predictive controller. In industrial applications
in particular, it is highly desirable that engineers with
a moderate mathematical background are able to do
so. For this aim, graphical modeling environments
are especially appropriate: Models are constructed by
using blocks and connecting them by lines. Each line
represents a signal that leaves one block and enters
another block1.
Blocks should be intuitively understandable func-
tions, e.g. summation of signals, some (nonlinear)
function of a signal, or an integrator. A model library
or palette should be available which contains a suffi-
ciently flexible collection of predefined blocks,
while it must be possible to implement customized
blocks. In the present tool, this is done in Modelica.
In short, the main graphical modeling functionality
of existing Modelica environments (e.g. Dymola,
MathModelica) is desirable.
A corresponding graphical modeling environment
for linear models with continuous and discrete vari-
ables has been realized in ABB’s commercial control
and optimization platform Expert Optimizer [8], [5].
Combination of blocks is based on matrix multiplica-
tion in principle, and the resulting optimization prob-
lems (linear programs, quadratic programs, mixed
integer linear programs, or mixed integer quadratic
programs) are internally represented as matrices.
Blocks can be implemented in a description language
for this kind of hybrid systems, HYSDEL [6].
We will see that for nonlinear optimization, the way
how blocks are implemented and combined can

1 Note that this is less expressive than standard Modelica,
which is object-oriented, and where signals can represent
causal structure. However, since our graphical modeling
environment allows importing Modelica blocks from
MathModelica (see below), we do not lose Modelica’s full
expressiveness.

really make a computational difference. Standard
graphical Modelica environments (e.g. Dymola,
MathModelica) treat a model as a DAE system, and
each block that is added to the system typically adds
to the number of variables in the system. For in-
stance, if the squared difference of some process
variable x to some other signal is of interest, one
could attach a corresponding difference to the signal
x and then a square function to the difference. Usu-
ally, all these quantities will become extra variables
in the DAE system. For simulating the system, this
will not introduce particular difficulties. For optimi-
zation however, it can be very important that these
extra variables do not enter the system, but are
eliminated. In our framework, still Modelica code
written in MathModelica is used to realize user-
defined blocks2. When connecting blocks however,
the chain rule is the crucial instrument that we use to
eliminate variables.
In the tool we present in this work, graphical models
are formulated (stated) in Matlab/Simulink. They are
then used to state objective, constraints, derivatives,
Jacobian and Hessian of the associated optimization
problem by recursively parsing the model for each
evaluation.
So far, we have been talking only of optimal control
problems. Typical MPC needs starting values for all
states of the model in order to compute and optimize
future trajectories. If not all states are observed, then
the model can be conveniently used for estimating
them, using the moving horizon estimation (MHE,
[10]) approach. Here, for a fixed number of time
steps in the past, an optimization problem is formu-
lated and solved in order to find those values for the
state variables that are most in accordance with the
observations and the model dynamics. Technically,
the MHE task translates to a similar optimization
problem as MPC. MHE can be extended to estimat-
ing some of the model parameters by adding them as
states to the model.
The optimization framework discussed in this paper
is similar to ABB’s Dynamic Optimizer described in
[7], but has a different scope: It is located at a higher
level of a plant’s automation system and to be inte-
grated into Expert Optimizer, and it focuses on
highly customizable modeling by offering a direct
access to the graphical modeling environment. As
opposed to other modeling frameworks, it directly
translates a graphical model into an optimization
problem, where care is taken to perform the transla-

2 Actually, MathCore and ABB have developed together
the ABB edition of MathModelica, which the optimization
framework we discuss is based on.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 40

tion in a way that robust and fast-to-solve optimiza-
tion problems are obtained. One key for this is vari-
able elimination, as we will see below.

2 Translating a Graphical Model

Consider, for an illustration, the well-known inverted
pendulum model

,
)sin(

u
l

g += θθ��

where θ is the angle of the pendulum (the upright
position is at θ = 0), g is the gravitational force, l is
the length of the pendulum (in the experiments be-
low, we used g / l = 0.5), and u is (a constant multi-
ple of) the torque applied. A graphical model repre-
senting this is shown in the red framed part of Figure
1. Here, the constants are hidden in the “plus” block,
and the evolution of θ and θ� is implemented by sin-
gle input single output linear time-continuous dy-
namics

.
,

DuCxy

BuAxx

+=
+=�

 (eq. 1)

Each of the blocks “theta” and “theta_dot” has one
own state, and the parameters are set to A = 0, B = 1,
C = 1, and D = 0, respectively.

Figure 1: An inverted pendulum model

The implementation shown in Figure 1 is the Simu-
link model, which allows for a maximum variable
elimination. A functionally equivalent model can be
implemented graphically in MathModelica shown in
Figure 2. Also, the following Modelica listing repre-
sents the same model:

Figure 2: The inverted pendulum model graphically
implemented in MathModelica

block InvertedPendulum
 parameter Real g;
 parameter Real l;
 Real theta;
 Real th_dot;
 output Real y;
 input Real u;
equation
 der(theta) = th_dot;
 der(th_dot)= g*sin(theta)/l+u;
 y=theta;
end InvertedPendulum;

2.1 The Optimal Control Problem

Translating a dynamic model into an optimal control
problem including user-defined constraints is a well-
established method: Let n

j
j

tt xx 1)(== be the vector

of variables in the model realized in a single time
step t. A realized variable is a model variable that is
present in the optimization problem, as opposed to a
virtual variable, which is not present. Then an opti-
mal control problem, discrete in time and for a hori-
zon of M > 0, is stated as

.

,00)(sconstraint

,00)equations(

,1)dynamics(
..

)(cost)(

0

1

0

statesjallforxx

Mtallforx

Mtallforx

Mtallforxx

ts

xxJ

j
start

j

tt

t

tt

M

t
tt

opt

∈=

≤≤≤
≤≤=

≤≤=

=

−

=
�

Out2
2

Out1
1

weight

theta_dot

d A B
dt C D

theta

d A B
dt C D

sin

power1

power

plus observation

obs. input (delayed)

costs1

costs

bounds

NMT scope

In1
1

=45

(square)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 41

Here, the realized variables comprise at least the in-
puts to be optimized (and typically they comprise
more variables). Costs and constraints may be time
dependent, and xstart contains the starting values of
the states. Note that this framework also permits the
formulation of a static optimization problem, where
M = 0 and states = ∅. Figure 1 shows how cost func-
tions can be graphically stated.
This optimization problem is solved, in the present
work, always with IpOpt [4]. We provide all deriva-
tive information up to the Hessian, computed ana-
lytically, to the solver.
Translation of Modelica components is done by
MathModelica ABB Edition.
If we are dealing with a time continuous system, the
system must be discretized. Here and in the follow-
ing we assume that discretization is performed ac-
cording to implicit Euler, i.e. a differential equation

,...).,(x
 tod translateis ,...),(

1t ttt uxftx

uxfx

⋅∆+=
=

−

�

A crucial question to be posed here is which respec-
tively how many variables should be realized as part
of xt. It is clear that at least the inputs to be optimized
and the states need to be realized (unless we are able
to and desire to recursively solve the evolution equa-
tions for the states). However, we can include more
or less of the variables defined by the equations into
our optimization problem3. This decision has a sig-
nificant impact on the computational time required to
solve the resulting optimization problem, as well as
the robustness of the solving. We show two numeri-
cal examples at this point and draw some conclu-
sions.

0 10 20 30
-1

0

1

2

3

4

time [steps]

force
thetadot
theta

Figure 3: Swing-up trajectory for the inverted
pendulum

3 Not including, i.e. eliminating a variable that appears in
a cost function or a constraint implies that we will need to
use the chain rule to compute its derivatives.

For the first example, we consider the inverted pen-
dulum model. The weights and bounds on the input
are tuned in a way that the optimum is a swing-up, as
shown in Figure 3. In the following table, we evalu-
ated the probability that IpOpt finds this optimal so-
lution, starting from randomly initialized values (uni-
formly in [0, 10]) for all realized variables. We fur-
ther show the time IpOpt requires on average, as well
as the average quality of the successful solutions: the
number of time steps after which the predicted tra-
jectory converges to the target. The averages of 500
runs each are shown.

Realized variables Success

rate[%]
Quality
[steps]

Time
[s]

States and input only (3
per step)

41.2 22.7 0.27

States, input + input and
output of θ (5 per step)

42.4 23.0 0.37

As above plus input and

output of θ� (6 per step)
46 22.6 0.42

As above plus output of
the “sin” block (7 per
step)

37.4 22.7 0.55

The second numerical example we show is a static
nonlinear optimization problem defined by the model
in Figure 4, which represents the equation

() (
) ()

.41

8707.95

..

85)exp(1065.4

)2exp(10649.81)8(2

2

1

2
11

5

1
92

1
3

21
2
2

≤≤
≤≤

−+⋅

−⋅++−−=
−

−

u

u

ts

uu

uuuuuy

y=u1+5u2

y=2u1+u2+4u3-u4

x4.65e-5

square

square

square

product

exp

difference

difference

cube

costs

const=8

const=1

5<=u<=10

1<=u<=4

-10<=u<=0.9

2

1

Figure 4: A static nonlinear optimization problem

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 42

Figure 5: Static nonlinear optimization problem:
Probability of converging to the global optimum for six
different scenarios, shown in dependence of the 2-
dimensional starting points. Hot colors indicate high
probabilities, the large area in the top left plot is prob-
ability one. The globally optimal solution is shown as a
cyan circle, there are two local optimal shown as blue
circles. Top left: only the inputs are realized (1), top
right: the inputs and the output of the product are re-
alized (2), middle left: the inputs and in- and outputs
of the product are realized (3), middle right: all signals
are realized (4), bottom: scenarios (2a) and (3a) with
consistent initialization.

The first input variable is plotted over [5, 10], the
second input variable over [1, 4]. We test four differ-
ent scenarios: (1) realizing only the input variables
(i.e. 2 variables), (2) realizing in addition the output
of the product (i.e. 3 variables), (3) realizing in addi-
tion the inputs of the product (i.e. 6 variables), and
(4) realizing all signals in Figure 4. The resulting
computation time and probability of finding the
global optimum are summarized in the table below.
Figure 5 shows the probabilities of convergence as a
function of the starting point for the two inputs (all
other realized variables have been initialized with
Gaussian distributed values). We observe that for
starting points around the global optimum, we relia-
bly converge in scenario (1), while this is no longer
true in scenario (2) and seems almost completely

arbitrary in scenarios (3) and (4). If we modify sce-
nario (2) and (3) such that the realized variables are
initialized with the values corresponding to the in-
puts instead of Gaussian, we get scenarios (2a) and
(3a), and the computation times and probabilities can
be seen below.

Scenario Success rate [%] Time [s]

(1) 62.0 0.004
(2) 22.1 0.004

(3) 10.9 0.021

(4) 20.2 0.01
(2a) 22.1 0.005
(3a) 27.4 0.022

2.2 Consequences and Recommendations for
realizing or eliminating variables

The two examples clearly show that the time re-
quired for solving the optimization problem in-
creases with the number of realized variables. Al-
though this has been observed for IpOpt only here, it
is realistic to say that the statement can be general-
ized to any solver. In particular, more variables re-
quire more equality constraints to be satisfied and
hence typically increase the number of iterations
needed by the solver. In the second of the above ex-
amples, scenarios (3) and (4) need about 20 times
more CPU times than (1) and (2). Looking a bit
closer into what happens when IpOpt optimizes sce-
narios (3) and (4), what can be observed is the fol-
lowing: In the first step of the optimization, the
equality constraints are non-satisfied to a high de-
gree, causing the actual solution to move very far
away, where in particular the input variables leave
the box. Then, it takes quite long for the solution to
get back into the region which is feasible for the in-
put variables. The dependence on the exact starting
points is very sensitive (chaotic), which causes the
rough behavior of the middle two graphs in Figure 5.
This happens to a much lesser degree in scenario (2),
and not at all in scenario (1). Even when we use a
consistent initialization, i.e. one that satisfies the
constraints, we see in the lower two graphs that we
do not improve the roughness much.
In the inverted pendulum example, we see that simi-
lar things happen (not as strongly as in the other ex-
ample). However, introducing additional variables
may to a certain extent even help the optimizer to
find the global optimum.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 43

In general, we expect that the optimization problem
will be not only more efficiently, but also more ro-
bustly solved, the less variables are realized. In a
MPC situation, typically, we start already close to
the optimal solution, since the starting solution is
obtained by the optimum from one step before.
Hence, the roughness observed for the scenarios (2),
(3) and (4) of the second example is a very undesir-
able property here: it increases the probability that
even in the absence of major disturbances, we will
not be able to track the optimal trajectory.
We summarize: with IpOpt as underlying solver, our
results indicate that for both robustness and solution
time it is favorable in general to realize as few vari-
ables as possible. For the robustness, there are excep-
tions where realizing some variables may be good.
The solution time is always expected to increase with
more variables, this should also hold for other solv-
ers.

2.3 The Estimation Problem

The optimal control problem needs in particular
starting values for all states. If they are not directly
observed, they can be estimated with a model-based
observer that uses the same model as MPC. To this
aim, the following cost function (“moving horizon
estimator”) can be minimized [10]:

.

,01)(

,010)(sconstraint

,010)equations(

,02)dynamics(

..

)(

1

1

0

1

2

2

0

2

2

2

2

2

statesjallforxx

tNallforxyy

tNallforx

tNallforx

tNallforxx

ts

xJ

j
initial

j
initial

j
N

j
initial

obs
t

obs
tt

obs
t

tt

t

state
t

state
ttt

Nt

obs
t

Nt

state
t

initialest

∈+=

≤≤+−+=

≤≤+−≤
≤≤+−=

≤≤+−+=

++=

+−

−

+−=+−=
��

εσ
εσ

εσ

εεε

Here, we minimize the quadratic state noise εt

state,
measurement noise εt

obs, and initial state noise εinitial,
with weighting factors that are standard deviations
(i.e. scales of the noise) σt

state, σt
obs, and σinitial, re-

spectively. For the standard deviations, the valid
range is [0, ∞]. The quantity yt

obs contains the obser-
vations available at time t, while xj

initial is the target
for the initial state (if desired). The constraints may
but need to be the same as in the definition of Jopt, in
general it makes sense to consider a subset here.
It is just a matter of notational convenience to in-
clude the noise variables (“slack variables”) εt

state,
εt

obs, and εinitial explicitly in the formulation of the
optimization problem. It not necessary to realize

them, in fact, it may be more efficient not to do so.
In the following simulations, we do not realize the
noise variables.
Figure 6 shows an example trajectory of the estima-
tion (and then optimization) with the inverted pendu-
lum model from Figure 1. There are two observa-
tions defined, namely the input force and θ. The
speed θ� is not observed, but is reliably estimated.

-5 0 5 10 15 20

0

1

2

3

time [steps]

force
theta
thetadot
costs

Figure 6: Estimation and optimization trajectory for
the inverted pendulum model. Observations are
marked by circles, dotted lines are estimations.

2.4 Reducing Interactions in Case of Poor Ob-
servability

The toolbox presented in this work facilitates com-
bining models of a large plant from its parts, and op-
timizing the plant as a whole. In practice however,
the whole plant may not be sufficiently observable to
allow a reliable state estimation based on the com-
plete model. Namely, if there are relatively poor
measurements available in the parts of the plant, the
estimation will use the model in order to obtain the
numerically most likely estimator for the joint state
of the plant. If the model does not very well match
the plant, this procedure can easily result in estimates
that are poor, or that drastically change from one
time step to the next. Of course, this is highly unde-
sirable, as it prevents the model-based controller
from stabilizing the plant.
Here, we describe two techniques for cutting the
model in several parts that do not interact in the es-
timation. Hence, the measurements available within
one part of the plant are used only within that part,
and do not interact with different parts.

2.4.1 Cutting with dynamics
If the parts to be separated are connected by one or
more blocks that evolve dynamically, e.g. a delay or

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 44

a filter, then it is possible to not estimate the states of
these blocks, but rather provide their values by an
external simulation. In the estimation problem, the
dynamics of these blocks are removed from the cost
function / constraints.

2.4.2 Cutting without dynamics
If two parts to be separated are connected without
dynamics, then the following method can be used:
The connection is broken, the estimation is executed
with open connection, and some constant value is
used as input for the destination of the broken con-
nection. After the estimation, the states in the part
connected to the source of the broken connection
have attained their values. Now, also the value the
broken signal should have is known. Hence, we need
to use this value as an input for the destination of the
broken connection and rerun the estimation. In gen-
eral, if the model is divided into n parts, we need to
run the estimation for n times. Note that this method
may not converge if the dependence of the parts is
circular, hence it should be used only for tree struc-
tures (and we should run the estimation n times,
where n is then length of the longest branch of the
tree). Also, a signal to be cut must have a clear direc-
tion, providing its value from the source to the desti-
nation. It must not be used as an implicit input,
which enters the dynamics or equations at the source
and is defined by some constraint at the destination.

2.5 Parameter Estimation

If observability permits, parameters can be coded as
states and estimated by the state estimation. One
standard procedure to do so is coding a parameter as
a state which evolves as a constant and admits state
noise.

3 A Building Block Library

Here we describe a basic set of blocks that is suffi-
cient to model a broad variety of plants.

3.1.1 Single input single output lin-
ear time-continuous dynamics, as de-
scribed in (eq. 1).

3.1.2 Single input single output lin-
ear time-discrete dynamics:

.

,11

ttt

ttt

DuCxy

BuAxx

+=
+= −−

3.1.3 Constant

3.1.4 Adaptive constant / bias term,
see 2.5.

3.1.5 Nonlinear function, to be cho-
sen from {exp, log, sin, cos, tan, sinh,
cosh, tanh, asin, acos, atan}

3.1.6 Power, i.e. y = un

3.1.7 Weighted sum (linear combina-
tion), i.e. y = a1u1 + … + anun . Also
implements gains.

3.1.8 Product: y = u1 × … × un

3.1.9 n-step delay

3.1.10 Generalized absolute function.
The function y = abs(u) can be imple-
mented using an auxiliary variable z to
be minimized, and including z ≥ u and
z ≥ -u to the constraint set. This block
implements a general convex piecewise
linear function with the same principle.

3.1.11 Upper and lower bounds

3.1.12 Marks a signal as a cost func-
tion

3.1.13 Marks a signal as an observa-
tion

3.1.14 Cut for estimation without dy-
namics as described in 2.4.2.

3.1.15 Users can implement own
Modelica blocks.

Note that these basic blocks are sufficient to express
a wide range of coupled ODE systems. For example,
the following model encodes a harmonic oscillator.

d A B
dt C D

A B
C D

t-X

$

(est)

y=-u

a=0, b=1, c=1, d=0

d A B
dt C D

a=0, b=1, c=1, d=0

d A B
dt C D

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 45

4 Applications, Discussion and Con-
clusions

We have presented several simulations with toy ex-
amples in this paper. The modeling framework pre-
sented here will become part of ABB’s advanced
process control and optimization platform Expert
Optimizer, which is described e.g. in [8]. This article
and [7], [9] report some results from application of
similar modeling techniques to industrial plants. Our
modeling framework has been based on the results of
ongoing collaboration of ABB and MathCore, [11]
describes an early application of related methods.
We have presented a graphical modeling framework
and a procedure to directly translate graphical mod-
els into optimization problems. We have collected
some evidence that, for formulating the optimization
problems, it is favorable for speed and robustness to
realize as few variables as possible.

References

[1] J. Maciejowski: Predictive Control with Con-
straints. Pearson Education Limited, Pren-
tice-Hall, Essex, United Kingdom (2002).

[2] A. Bemporad and M. Morari: Control of sys-
tems integrating logic, dynamics, and con-
straints, Automatica 35(3) (1999), 407-427.

[3] R. Franke, M. Rode, K. Krüger: On-line Op-
timization of Drum Boiler Startup. Proceed-
ings of the 3rd International Modelica Con-
ference, Linköping, November 3-4, 2003.

[4] A. Wächter and L. T. Biegler: On the imple-
mentation of a primal-dual interior point fil-
ter line search algorithm for large-scale
nonlinear programming. Mathematical Pro-
gramming, 106(1):25-57, 2006.

[5] E. Gallestey, D. Castagnoli, and A. Stothert:
Method of generating optimal control prob-
lems for industrial processes, European Pat-
ent EP1607809 (2006).

[6] F.D. Torrisi and A. Bemporad: HYSDEL - A
tool for generating computational hybrid
models for analysis and synthesis problems.
IEEE Transactions on Control Systems
Technology 12(2) (2004), 235-249.

[7] R. Franke, B. S. Babji, M. Antoine, A. Isaks-
son: Model-based online applications in the
ABB Dynamic Optimization framework.
Proceedings of the Modelica Conference,
2008, pp. 279-285.

[8] K. Stadler, E. Gallestey, J. Poland, G. Cairns:
Optimal Trade-Offs. ABB Review, 2/2009,
pp. 17-22.

[9] E. Dahlquist, F. Wallin, H. Ekwall: Dynamic
simulators for process control and optimiza-
tion as well as for operator training in pulp
and paper industry, SIMS - 43rd Conference
on Simulation and Modeling, Oulu, 2002

[10] C.V. Rao: Moving Horizon Strategies for the
Constrained Monitoring and Control of
Nonlinear Discrete-Time Systems, Ph.D.
Thesis, University of Wisconsin, 2000.

[11] J. Pettersson, L. Ledung and X. Zhang: Deci-
sion support for pulp mill operations based
on large-scale on-line optimization, Preprints
of Control Systems 2006, Tampere 6-8 June,
2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 46

Improving Convergence of Derivative-Based Parameter
Estimation with Multistart Parameter Clustering

Based on DAE Decomposition

Atya Elsheikh∗ Katharina Nöh Eric von Lieres†

Research Center Jülich, Institute of Biotechnology 2
{a.elsheikh, k.noeh, e.von.lieres}@fz-juelich.de

Abstract

Derivative-based optimization methods for parameter
estimation require good start values in order to con-
verge to the global optimum. A conventional multi-
start strategy is often not practical for identifying such
start values, especially for high dimensional problems.
Moreover, the computational efforts for each iteration
of the optimizer are significantly increased by the com-
putation of parameter sensitivities. We hence present
a multistart recursive clustering strategy that utilizes
DAE decomposition algorithms, in particular Tarjan’s
and tearing algorithms. These algorithms are also used
by standard Modelica compilers for improving the per-
formance of solving large DAE systems. Our key con-
cept is to provide a natural decomposition of the pa-
rameter estimation problem into smaller clusters (i.e.
subproblems), each of which requires fewer start val-
ues and less computation. The resulting local min-
ima are taken as start values for enlarged subproblems,
and so forth until good start values for the original
problem are found. This approach serves to improve
global convergence and computational speed of multi-
start derivative-based optimization strategies for large
sparse DAE systems.

Keywords: Parameter estimation, global optimiza-
tion, cluster methods, DAE decomposition algorithms

1 Introduction

1.1 Problem Specification

Differential algebraic equations (DAE) are widely
used in modeling and simulation applications, for ex-
ample in Electrical Engineering, Biochemical Engi-

∗Evonik Industries are acknowledged for financial support
within the BMBF co-funded project SysMAP (project no.
0313704)

†To whom correspondence should be addressed.

neering, Mechanics and Thermodynamics. In most ap-
plications the values of some model parameters are not
known a priori and must hence be estimated from mea-
sured data. A parametrized DAE system is formally
given by:

F(ẋ,x, p, t) = 0, x(0) = x0 (1)

with a function F : R2N+M+1 → RN that is sufficiently
smooth with respect to the state variables x ∈ RN and
parameters p ∈ RM. Typical parameter estimation
problems aim at minimizing the distance between sim-
ulation results x(p, t) and measurement data x̃(tj)∈RN

at discrete time points tj with j = 1..T in the sense of
least squares:

r =
1
2
||Q||22 ∈ R (2a)

Q = [q1, ..,qT] ∈ RN·T (2b)

qj = x̃(t j)− x(p, t j) ∈ RN , j = 1..T (2c)

Note that Q /∈ RN×T is a vector and not a matrix.
For start values p0 ∈ RM that are chosen sufficiently
close to a local optimum p∗loc ∈ RM, the Gauss-Newton
algorithm converges to p∗loc by iterating the following
scheme [1, 2]:

pi+1 = pi − (ri
pp)

−1 · ri
p

≈ pi −
(

[

xi
p

]T · xi
p

)−1
· [xi

p

]T ·Q
where

ri
p =

∂ r
∂ p

(pi) ∈ RM

ri
pp =

∂ 2r
∂ p2 (pi) ∈ RM×M

are first and second order partial derivatives of the
residual r with respect to the unknown parameters, and

xi
p =

∂x
∂ p

(pi) ∈ RN·T×M

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 47 DOI: 10.3384/ecp09430039

are first order partial derivatives of the model solu-
tion x with respect to the unknown parameters, also
referred to as parameter sensitivities.

1.2 Common Problems in Derivative-Based
Optimization

Practical application of derivative-based optimization
methods (for instance Gauss-Newton) for obtaining a
global optimum

p∗ = argmin
p∈{p∗loc}

r(p)

is typically hindered by the following problems:

1. Good start values are hard to obtain: The re-
sulting optimization problem can be efficiently
solved when good start values are known. How-
ever, from most arbitrarily chosen start values the
algorithms either diverge or converge only to a lo-
cal optimum. This problem will be discussed in
more depth in section 1.3.

2. The Hessian rpp is usually approximated by
(xi

p)
T · xi

p which is often semi-singular: In this
case the inverse cannot be exactly computed but
is usually approximated by a pseudo-inverse us-
ing singular value decomposition. This approx-
imation is however inaccurate, in particular for
high dimensional matrices in large optimization
problems.

3. Parameter sensitivities xp are expensive to com-
pute: These sensitivities are usually computed
by either solving the original DAE system (equa-
tion 1) together with the associated computation-
ally expensive sensitivity equations:

Fẋ · ẋp +Fx · xp +Fp = 0, xp(0) = 0 (3)

or by using less precise finite difference methods.

1.3 Identification of Successful Start Values

The determination of suitable start values for high
dimensional parameter estimation problems that are
located within the global convergence area of a
derivative-based optimization algorithm is not trivial
because:

1. The space Sp ⊆ RM of parameter values that are
physically admissible is typically large.

2. The DAE system extended with parameter sen-
sitivities (equations 1 and 3) is usually solvable
only in a subspace Ssol ⊆ Sp.

3. Some parameter values can cause numerical dif-
ficulties that are associated with the numerical
solver. We denote the subspace covering such pa-
rameter values by Sdi f f ⊆ Ssol . For example, as-
sume that the DAE system (equation 1) together
with the sensitivity equations 3 are not stiff in the
global optimum p∗, but the optimizer may iterate
over parameter values for which these equations
are stiff, and hence numerically harder to solve.

4. Nonlinear optimization problems usually have
numerous local optima, and global convergence
is guaranteed only for start values p0 ∈ Nε(p∗)
from a subspace SNε (p∗) ⊆ Sp around the global
optimum p∗.

Start values should hence ideally be chosen within
the subspace Sconv = SNε (p∗)

⋂

(Ssol/Sdi f f) in order to
efficiently find the global optimum p∗. Conventional
multistart optimization strategies are not practical for
high dimensional problems in which Sconv is notably
smaller than Sp. Moreover, computational efforts are
significantly increased by the computation of parame-
ter sensitivities.

1.4 Multistart Recursive Clustering

We here present a multistart recursive clustering strat-
egy that is specifically designed to reduce the num-
ber of starts required for identifying values in Sconv

from which the applied derivative-based optimiza-
tion method globally converges. This multistart strat-
egy heuristically decomposes the optimization prob-
lem into smaller clusters (i.e. subproblems), and has
similarities with cluster optimization methods. Each
cluster Ci defines a parameter estimation subproblem
that is characterized by:

• a parameter subset pi ∈ RMi with ∑
i

Mi = M,

• a variable subset xi ∈ RNi with ∑
i

Ni = N,

• the corresponding subset of measurement data
x̃i ∈ RNi×T ,

• a residual r that is a function only of pi, xi and x̃i

(compare equation 2).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 48

Each cluster Ci is recursively decomposed into sub-
clusters Ci, j and so forth. In this way, rather small clus-
ters are created and our strategy begins with separately
estimating the respective parameter subsets. Once op-
tima are found, the resulting parameters are taken as
new start values and the cluster size is enlarged, and
so forth until the complete original system is reconsid-
ered.

In the present study we aim to optimally decom-
pose the parameter estimation problem into smaller
subproblems specifically for DAE systems. A related
problem has already been researched in the context
of speeding up the solution of high dimensional DAE
systems, namely finding optimal decompositions of a
DAE system into smaller DAE subsystems, each of
which solves a subset of state variables. We here de-
termine the clusters Ci with the same DAE decompo-
sition algorithms [7, 8]. These algorithms use intuitive
but powerful clustering heuristics to naturally decom-
pose the optimization problem into smaller subprob-
lems with well defined dependencies. The details of
this approach will be explained in section 3.

1.5 Practical Aspects

The proposed strategy can effectively solve the pre-
viously discussed problems of parameter estimation
with derivative-based optimization algorithms:

1. Fewer starts are required. The recursive mul-
tistart parameter clustering strategy helps to ra-
tionally identify good start values from which
derivative-based optimization algorithms con-
verge to the global optimum. This optimum can
hence be identified with significantly fewer starts
for the full system as compared to conventional
multistart strategies.

2. Smaller subproblems are processed most of the
time. The parameter estimation problem for each
individual cluster Ci involves fewer parameters
pi, fewer state variables xi, and mostly also fewer
model and sensitivity equations. The full set of
system equations is solved only for few itera-
tions from start values that are already close to
the global optimum. Moreover, the approxima-
tions to the Hessian are often more accurate and
numerically better conditioned for small clusters.

3. Automatic differentiation enables efficient com-
putation of parameter sensitivities. We apply
ADModelica (Automatic Differentiation of Mod-
elica), a self developed tool that exploits high

level Modelica compiler techniques for generat-
ing Modelica code for efficiently and precisely
computing the required parameter sensitivities.
Automatic differentiation involves significantly
less equations as explicit differentiation and finite
difference methods [3, 4, 5]. Moreover, we ex-
ploit the known structure of the sensitivity equa-
tions for reducing compilation and simulation
time on both serial and parallel computers [6].

1.6 Outline

The remainder of this contribution is structured as fol-
lows: In section 2 we give an overview of the DAE de-
composition algorithms that we reuse in the context of
parameter estimation. The implementation of the pro-
posed strategy is then presented in section 3 in a sim-
plified form without low level tricks, although fine tun-
ing could further improve the results that are reported
in section 4. In section 5 we conclude with discussion
of potential limitations as well as future developments
and applications of the presented method.

2 DAE Decomposition

2.1 Structure Digraph of DAE Systems

Directed graphs are used as intermediate representa-
tions for symbolical handling and simulation of DAE
systems that are automatically generated from Mod-
elica models. Figure 1 shows the simple example of
a linear reaction chain, that is mathematically repre-
sented by equation 4 with initial values Xi(0) = X0

i for
i = 1..5.

Figure 1: Five nodes with capacities Xi that are con-
nected by flows vi and subjected to mass conservation.

Ẋ1 = −v1 (4a)

Ẋi = vi−1 − vi, i = 2..5 (4b)

v j = v j,max · Xj

k j +Xj
, j = 1..4 (4c)

v5 = d ·X5 (4d)

The differential equations 4a to 4b are also referred
to as rate equations, and the algebraic equations 4c

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 49

to 4d determine the flow rates vj as functions of the
maximal flow rates vj,max, saturation parameters kj

with j = 1..4, and of the degradation rate d. Figure 2a
shows the bipartite graph representation of the DAE
system 4 according to the following definition:

Definition (Bipartite Graph Representation) A bi-
partite graph representation G = (V,E) of a DAE sys-
tem (equation 1) consists of a set of vertices:

V = Ve ∪Vx

Ve = {ei : equation number i}
Vx = {xi : variable number i}

and a set of edges:

E = {(ei,x j) : x j occurs in equation ei}
with i, j ∈ {1, ...,N}.

Figure 2: Bipartite graph representation (a) and struc-
ture digraph (b) of the example DAE system (equa-
tion 4). Red dashed arrow: equation e is explicitly
solved for variable x. Blue arrow: variable x is re-
quired for solving equation e for another variable.

The bipartite graph representation can be trans-
formed into a structure digraph [7], as illustrated in
figure 2b for the DAE system from equation 4. This
directed graph reveals the causality relations among
variables and equations. Ideally each equation e is ex-
plicitly solved for one variable x. In practice, however,
algebraic loops can occur when a group of equations
must be concurrently solved for a group of variables,
for instance the ODE system ẋ = y and ẏ = x.

2.2 DAE Decomposition Algorithms

DAE systems that are generated from descriptive
Modelica models usually consist of many components

and connectors. They are hence high-dimensional
and sparse, meaning that only few variables appear
in each equation. Instead of solving these equations
at once, one can often decompose such systems into
smaller blocks of equations. Sequential solution of
these blocks reduces overall complexity and conse-
quently speeds up the computation.

The example DAE system (equation 4) can be de-
composed into sorted blocks of equations. Application
of Tarjan’s algorithm [9] to the directed graph in fig-
ure 2b yields a set of Strongly Connected Components
(SCCs) as shown in figure 3. Each SCC Ci represents
an equation block that is solved for a subset of the vari-
ables. The SCCs are subjected to a topological sorting
"<", imposing an order in which the blocks must be
solved. Ci < Cj if xi is required for determining xj.
In figure 3, Ci < Cj if i < j, resulting in the solution
scheme shown in figure 4.

Figure 3: Strongly Connected Components (SCCs) of
the structure digraph of the example DAE system.

The block C1 in figure 3, representing the equations
4a and 4c for j = 1, is solved for X1 and v1. The value
of v1 is then used to solve the equations represented
by the block C2, and so forth until all variables are
determined. A sequential system decomposition as in
figure 3 cannot always be achieved. For example con-
sider figure 1 with an additional flow connection from
X5 to X1. In contrast to figure 3, the resulting digraph
now has a cyclic structure, as shown in figure 5.

In this example all equations must be concurrently
solved for all variables. Such problems can be solved
with Tearing methods [10, 11]: First initial guesses are
provided for certain state variables in order to decou-
ple the corresponding SCCs. For example, specifica-
tion of X5 would make C5 independent from C4. The
SCC structure is made acyclic by tearing the graph
apart through the tear variable X5 at the connection
between C4 and C5. The DAE system is then decom-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 50

posed as before, and the remaining state variables Xi

with i = 1..4 are sequentially determined. With these
solutions the initial guess of X5 is corrected through v4,
and this process is repeated until X5 does not signifi-
cantly change any more. The choice of suitable tear
variables generally is a key question of tearing meth-
ods. In the present study we apply physical knowledge
about the modeled system.

Figure 4: Solution scheme of the equation blocks for
the example DAE system (equation 4).

Figure 5: SCCs of the structure digraph of an example
DAE system with cyclic structure.

3 Parameter Estimation

We now address the estimation of unknown model pa-
rameters by minimizing the distance between simula-
tion results and measurement data. Our basic idea is to
decompose the DAE system into SCCs as described in

the previous section, and to treat the individual clusters
Ci as separate parameter estimation subproblems.

3.1 Example with Linear Structure

Reconsider the model from equation 4 (figure 1), and
suppose that X̃(t j) ∈ R5 are corresponding measure-
ment data at discrete time points tj with j = 1..T . Each
of the parameter estimation subproblems is character-
ized by:

• the parameters ki and vi,max for i = 1..4 or, respec-
tively, d for i = 5,

• the variables Xi(t) and vi(t) that equation block
Ci is solved for,

• the corresponding measurements X̃i(t j) at times
t j with j = 1..T .

The dependency between the subproblems is well-
defined, because the fluxes vi−1(t) that are required in
an equation block Ci are always determined from the
previous equation block Ci−1 (see figure 4). The rela-
tion Ci < Cj for i < j enables to estimate parameters
k j and vj,max from measurements Xj after ki and vi,max

have been estimated for i < j.

3.2 Algorithm

Algorithms 1 and 2 formally describe the procedure of
our multistart recursive parameter clustering strategy.
Three inputs are required:

1. C: A cluster specifying the processed parameter
estimation subproblem, in particular the involved
parameter, variable and data subsets, as well as
the space of feasible parameter values (see sec-
tion 1.3).

2. OptAlg: The optimization strategy to be applied,
for example Gauss-Newton algorithm.

3. N: The number of start values for estimating the
involved parameter set with a multistart strategy.
Alternatively, algorithm 2 can be called with a
specific set of start values.

Algorithm 1 first attempts to optimize the parameters
in a given cluster C. Algorithm 2 is called for process-
ing a conventional multistart strategy (line 1). If an ac-
ceptable residual r is achieved, the solution is returned
(line 2), and otherwise the optimization problem is fur-
ther decomposed.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 51

Algorithm 1 Multistart Clustering Strategy
ClusterOptAlg(C, OptAlg, N)
input Cluster: C

Optimization Algorithm: OptAlg
Number of Start Values: N

output Optima: p1..M
C with M ≤N

1: p1..M
C = Multistart(C, OptAlg, N)

2: if IsAcceptable(p1..M
C) then

3: return
4: end if
5: if IsDecomposable(C) then
6: [Ck,<] = SCC(C)
7: for all k do
8: p1..Mk

Ck
= ClusterOptAlg(Ck , OptAlg, N)

9: for all j do
10: if Ck < Cj and adjacent(Ck ,Cj) then
11: Cj ⇐ xk(p1..Mk

Ck
)

12: end if
13: end for
14: end for
15: � construct start values from local optima
16: p1..N

0 = ∪k p1..Mk
Ck

17: p1..M
C = Multistart(C, OptAlg, p1..N

0)
18: else
19: � Decompose using a tear variable xt
20: [Ck,<] = Tearing(C,xt)
21: � Start values of all parameters
22: C1 ⇐ p1..N

0
23: ITR = 0
24: while ITR < MAX_ITERATIONS do
25: for all k do
26: p1..Mk

Ck
=Multistart(Ck , OptAlg, N)

27: for all j do
28: Cj ⇐ p1..Mk

Ck

29: end for
30: end for
31: p1..N

0 = ∪k p1..Mk
Ck

32: p1..M
C = Multistart(C, OptAlg, p1..N

0)
33: if IsAcceptable(p1..M

C) then
34: return
35: end if
36: ITR = ITR + 1
37: end while
38: end if

The type of decomposition in algorithm 1 depends
on the structure of the underlying DAE system: Linear
structures are processed in lines 6-17, and cyclic struc-
tures in lines 19-37. The constructed subproblems are
sequentially solved (lines 8,26), according to the op-

Algorithm 2 Multistart Strategy
Multistart(C, OptAlg, N or p1..N

0)
input Cluster: C

Optimization Algorithm: OptAlg
(Number of) Start Values: N or p1..N

0
output Optima: p1..M

C with M ≤N

1: if 3rd Input is N then
2: p1..N

0 = generateStartValues(C, N)
3: end if
4: � compute optima from start values
5: p1..N

C = OptAlg(C, p1..N
0)

6: � Remove poor local optima
7: p1..M

C = Filter(p1..N
C)

erator "<". The results of solved clusters are passed
to dependent clusters (lines 9,27). Finally, the orig-
inal problem is reconsidered with the resulting local
optima as start values (lines 15-17,31-32).

3.3 Implementation Details

Algorithm 2 applies the optimization algorithm
OptAlg to compute local optima p1..N

C of a cluster Ci

from N start values that are either self-generated or
passed as p1..N

0 . In our actual implementation, the re-
sulting local optima of each cluster are sorted with re-
spect to the quality of their corresponding residuals
ri. A χ2-test is then performed, and the worst local
optima are removed such that the remaining optima
follow a uniform distribution with prespecified con-
fidence level. DAE systems with linear structure are
processed with higher confidence levels than DAE sys-
tems with cyclic structure.

Moreover, we apply tearing heuristics not for seek-
ing decompositions that are most optimal for effi-
ciently solving the DAE systems, but rather aim at
constructing clusters that are small and require only
few start values. However, automatic recognition of
decompositions that are optimal for the parameter esti-
mation problem is not yet implemented, and tear vari-
ables are manually chosen on the basis of physical
knowledge about the model topology.

3.4 Example with Linear Structure
(continued)

Figure 6 illustrates a run of our algorithm for the ex-
ample DAE system with linear structure (equation 4,
figure 1). First, the parameters of cluster C1 are es-
timated with the Gauss-Newton algorithm and a con-
ventional multistart strategy. This strategy generates

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 52

N start values for k1 and v1,max, respectively. From
M ≤N of these start values the optimization algorithm
converges to local optima k1..M

1 and v1..M
1,max.

Figure 6: Multistart clustering strategy for the example
DAE system with linear structure (equation 4).

In case the optimization algorithm has not con-
verged for all start values, N−M optima are randomly
chosen and copied in order to maintain a full set of
N optima. The corresponding N solutions for the state
variable v1 are passed to the next cluster, C2. The same
process is then repeated for C2 with N start values for
k2 and v2,max, respectively, that are randomly paired
with the N solutions for v1, and so on until all param-
eters are estimated.

Next, larger clusters are constructed by merging
smaller clusters. For instance C1 is merged with C2,
and C3 with C4. We apply a binary tree data-structure
in order to always merge clusters that are adjacent to
each other. Start values are not newly generated at
this stage, but the optima from the merged clusters are
used. For instance, the optima that were individually
estimated for clusters C1 and C2 are now together used
as start values for the cluster that is merged from C1
and C2. This process is recursively performed until the
original problem is reconsidered with very good start
values for global optimization.

3.5 Example with Cyclic Structure

Figure 7 illustrates a run of our algorithm for the exam-
ple DAE system with cyclic structure (figure 5). The
clusters are defined as before, but the clustering strat-

egy is somewhat different, because the whole DAE
system must be concurrently solved for the state vari-
ables of all clusters when the parameters of one clus-
ter are estimated. This explains the difference between
lines 9 and 27 in algorithm 1.

Figure 7: Multistart clustering strategy for the example
DAE system with cyclic structure.

We treat parameter estimation problems with cyclic
structure similarly to the decomposition of DAE sys-
tems with cyclic structures for fast solution. Again,
N start values are chosen for each unknown parame-
ter (line 21). The N initial guesses for one cluster are
fixed, for instance k5 and v5,max in cluster C5. Then the
parameters of all clusters are sequentially estimated
with a conventional multistart strategy. The resulting
optima are passed to all clusters (line 27), and the val-
ues of those parameters that were originally fixed are
refined. Finally the parameters of the original DAE
system are estimated with the combined optima of the
clusters as start values. This procedure is repeated for
several rounds, until either the residual r of the origi-
nal DAE system drops below a prespecified threshold
or the number of rounds exceeds a predefined maxi-
mum.

4 Benchmark

Equation 5 defines an abstract example that we use as
benchmark for comparing the performance of our mul-
tistart clustering strategy with the conventional multi-
start strategy. The benchmark is again a reaction net-
work model that consists of a linear pathway (X1−X6)
and a cyclic pathway (X6 −X12). Simulation results
without additional noise are used as synthetic data for

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 53

re-estimating the model parameters. We applied the
Gauss-Newton optimization algorithm, and initially
choose the interval (p∗

2 ,2p∗) around the known global
optimum as admissible region Sp for each parameter.

Ẋ1 = −v1 (5a)

Ẋi = vi−1 − vi, i = 2..5 (5b)

Ẋ6 = v5 + v12 − v6 (5c)

Ẋi = vi−1 − vi, i = 7..12 (5d)

v j = v j,max · Xj

k j +Xj
, j = 1..12 (5e)

Table 1 documents that we used ten times fewer at-
tempts for our clustered multistart strategy than for the
conventional approach with random start values. How-
ever, most attempts of the clustered strategy converged
to the global optimum, whereas the conventional mul-
tistart strategy did not at all converge from 1000 start
values that were arbitrarily chosen in Sp.

Table 1: Conventional vs. clustered multistart strategy
Multistart Conventional Clustered

of attempts 1000 100, N = 10
Best Quality of r ∞ 10−5

Success Rate 0% 96%
of Simulations 2223 980 / attempt

Table 2 shows that the success rate decreases
when the admitted parameter region Sp is enlarged to
(p∗

4 ,4p∗), even if the number of attempts per cluster is
increased from 10 to 20. More attempts improve the
probability of finding successful start values at the cost
of computational effort.

Table 2: Effect of start value region and number
Start Values Sp : p0 ∈ (p∗

4 ,4p∗)
of attempts 100

N 10 20
Success Rate 16% 44%

of simulations / attempt 2550 4906

Table 3 illustrates how the residual r improves with
each iteration in the cyclic part of the model for N = 20
and Sp ⊂ (p∗

4 ,4p∗). The residual r is significantly
reduced in the very first iteration, since the average
residual for the initial guesses varied around 890. In
attempts 1 to 5 start values close to the global opti-
mum were found after several iterations. After each
iteration, the strategy attempts to improve the solution

of the tear variable (X12 in this example). In attempts 2
and 6 the start values diverged, though small residuals
were achieved.

Table 3: Residuals in cyclic DAE part
Attempt 1 2 3 4 5 6

Iter 1 2.59 1.76 1.91 4.83 2.85 3.64
Iter 2 1.19 1.47 0.00 0.89 0.90 2.55
Iter 3 0.79 2.66 - 0.41 0.26 1.47
Iter 4 0.33 - - 0.00 0.00 1.19
Iter 5 0.00 - - - - 0.81

5 Conclusions and Outlook

In this contribution we have presented a multistart re-
cursive clustering strategy for efficiently estimating
the parameters of DAE systems with derivative-based
optimization algorithms. The algorithm has been illus-
trated by two simple examples with and without cyclic
dependencies in the solved DAE system. A slightly
more complex example that combines linear and cyclic
structures has been used as benchmark for compar-
ing the performance of our clustering strategy with the
conventional multistart strategy.

At some points we have dealt with special cases,
and the algorithms and examples can be generalized
and extended in various directions:

• In the presented examples each parameter occurs
only in one equation, and clear physical causal-
ity relation exist between the variables and the
parameters. In general, however, the parameters
must be included in the causality analysis.

• The benchmark was manually constructed. Sys-
tem analysis and clustering can be implemented
using the ADModelica tool, which provides a
suitable infra-structure for analyzing Modelica
models and for implementing DAE decomposi-
tion algorithms.

• Real measurements are afflicted with errors,
which complicates the evaluation and comparison
of residual values for different optima.

• Redundant computations can be avoided by stor-
ing and recognizing local optima that were al-
ready found in earlier computations [13].

• Other optimization algorithms can be applied, for
example Levenberg-Marquardt. Different clus-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 54

ters might even be optimized with different al-
gorithms, which might be particularly useful for
large models with many variables and parame-
ters. Hyper-heuristics [12] can help to identify
the suitable algorithms for each subproblem.

References

[1] A. Antoniou, W. Lu. Practical Optimiza-
tion, Algorithms and Engineering Applications,
Springer Verlag, 2007.

[2] J. Nocedal, S. J. Wright. Numerical Optimiza-
tion, Springer Series in Operations Research,
2000.

[3] A. Elsheikh and W. Wiechert. Automatic sensi-
tivity analysis of DAE systems generated from
equation-based modeling languages. Pages 235-
246 in C. H. Bischof, et al. (editors). Advances
in Automatic Differentiation. Springer, 2008.

[4] A. Elsheikh, S. Noack and W. Wiechert. Sensi-
tivity analysis of Modelica applications via auto-
matic differentiation. In 6th International Model-
ica Conference, Bielefeld, Germany, March 3-4,
2008.

[5] A. Griewank. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation,
Frontiers in Applied Mathematics, SIAM, 2000.

[6] X. Ke. Tools for sensitivity analysis of Model-
ica models, Master Thesis, University of Siegen,
2009.

[7] F. E. Cellier. Continuous System Modeling.
Springer Verlag, 1991.

[8] K. Murota. Systems Analysis by Graphs and Ma-
troids, Springer Verlag, 1987.

[9] R. Tarjan. Depth-First Search and Linear Graph
Algorithms, SIAM Journal on Computing 1
(1972): 146-160.

[10] H. Elmqvist and M. Otter. Methods for tearing
systems of equations in object oriented model-
ing. In ESM’94 European Simulation Multicon-
ference, Barcelona, Spain, June 1-3 1994.

[11] G. Kron. Diakoptics - The piecewise solution of
large-scale systems. MacDonald & Co. London,
1963.

[12] E. Özcan, B. Bilgin, and E. E. Korkamz. A com-
prehensive analysis of hyper-heuristics, Intelli-
gent Data Analysis 12 (2008): 3-23.

[13] C. Voglis and I.E. Lagaris. Towards ideal multi-
start. A stochastic approach for locating the min-
ima of a continuous function inside a bounded
domain. Applied Mathematics and Computation
213 (2009): 216-229.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 55

Model Library of Polymer Electrolyte Membrane Fuel
Cells for System Hardware and Control Design

Kevin L. Davies
Georgia Institute of Technology, Woodruff School of Mechanical Engineering

Atlanta, Georgia USA

Robert M. Moore Guido Bender
Hawaii Natural Energy Institute

Honolulu, Hawaii USA

Abstract

The trade-offs among dynamic response, effi-
ciency, and robustness to external factors are fun-
damental to the optimization of hardware and
controls for fuel cell systems. No previously pub-
lished model of polymer electrolyte membrane fuel
cells (PEMFCs) has the capability to simultane-
ously provide dynamic modeling capabilities, a
clear representation of physical configurations, ad-
justable fidelity, and flexible interfaces. This pa-
per presents the first such library, explains key
aspects of the library’s architecture, and demon-
strates simulations under representative scenarios.
The models, implemented in the acausal Modelica
modeling language, are quasi-three-dimensional
(quasi-3D), discretizing the fuel cell and its layers
along the directions from the anode to the cath-
ode and down the channel length. Keywords: fuel
cell; system design; hardware; control

1 Introduction

Computer-based models are most useful in the de-
sign of hardware and controls for fuel cell (FC)
systems if they provide the capability for dynamic
simulation, clarity, adjustable fidelity, and acausal
interfaces. Control design inherently concerns the
dynamic response of a system, as the design of a
FC system often requires a compromise between
transient performance and efficiency. Thus the
model’s suitability is dependent on its ability to
determine the system’s dynamic response from the
description of system components.
Hardware design often involves the consider-

ation of multiple configurations. Because the

configurations are typically chosen by humans, a
model is most useful if it is represented in a clear,
intuitive form. As illustrated in Figures 1a and
1b, the form of the model depends strongly on the
modeling paradigm. The acausal schematic in Fig-
ure 1a directly corresponds to the physical connec-
tions between discrete components, therefore it is
more understandable. Acausal models exist for all
domains in which interactions among components
are dominated by energy flow, including domains
of mechanical, fluid, and thermal systems.
Typical design involves a top-down process of

specification, from the system level to the compo-
nent level, followed by a bottom-up process of val-
idation (i.e., the system “Vee” [6]). Models used
for all stages of design require adjustable fidelity,
or the capacity for multiple levels of detail. Dur-
ing the process of specification at the system level,
many configurations must be evaluated with lim-
ited resources, so that excessively detailed mod-
els are time-consuming, unfeasible, and unjusti-
fied. At the component level, however, the accu-
rate representation of physical processes demands
more detail.
Models should also have acausal interfaces so

that they can be evaluated with different simu-
lation inputs and outputs. The underlying equa-
tions for potentials and flows in physical systems
are bidirectional, with no explicit specification of
the order of calculations. The current through a
FC, for instance, is determined by bidirectional in-
teractions between the FC and its electronic load
(see Zenith et al. [14]). Most physical systems
do not inherently have directionality and thus are
best represented by acausal models. Acausal mod-
els allow inputs and outputs to be defined dur-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 56 DOI: 10.3384/ecp09430107

(a) (b)

Figure 1: An electrical system represented as an (a) acausal diagram and a (b) causal diagram [7].

ing the final preparation for simulation, whereas
causal and noncausal models have predefined in-
puts and outputs. Noncausal models have inputs
and outputs that are opposite relative to a given
causal model and should also be clearly distin-
guished from acausal models.
The Modelica language [8] supports acausal

models. The models are expressed using differ-
ential algebraic equations (DAEs) and discrete
events. Within the DAE formalism, the dynamic
behavior of components is captured in terms of im-
plicit ODE combined with algebraic constraints.
The behavior of components is explicitly dis-
cretized over space, in contrast to a PDE formal-
ism.

2 Background
In the early 1990s, Springer et al. [11], [10] and
Bernardi et al. [1] established groundwork for
modeling PEMFCs and related key model pa-
rameters to FC test results. The models con-
tinued to increase in sophistication, up to the
inclusion of two-phase flow in three-dimensional
(3D)s. In 2004, Weber and Newman [13] re-
viewed the rapidly growing body of literature on
the transport mechanism within PEMFCs. The
models range from the detailed description of spe-
cific processes to the coverage of the entire cell and
take both first-principle and empirical approaches.
However, as noted by Zenith et al. [14], many FC
models consider the electronic current as an in-
put. In fact, only four of the more than 250 pub-
lished models [13] are known to be acausal. The
model of Rubio et al. [9] provides an acausal and
detailed representation of cell polarization. How-
ever, it lacks robustness, clear correlation to previ-
ous literature and the physical configuration of the

FC, fidelity with respect to the concentration gra-
dient down the flow channel (it is one-dimensional
(1D)) and consideration of the reactant streams
as a mixed fluid, and only has electrical inter-
faces (no fluid or thermal interfaces). The model
of Ungethüm [12] describes the entire FC system
and has an acausal fluid network, but no details
of the FC stack model have been published. The
model described in this paper is a continuation of
the work of Davies et al. [3, 4].

The approach and goal of the research described
in this paper is to utilize state-of-the-art acausal
modeling tools and methods to develop a robust
model of a PEMFC that provides the capability
for dynamic modeling, clarity, adjustable fidelity,
and flexible interfaces.

3 Model Components

3.1 FC Components

The equations of the models in this section and
subsequent sections are described in schematic
form. At each physical interface node in the
schematic (whether it is fluid, or thermal, or elec-
trical), the flow variables sum to zero. This repre-
sents the balance equations for energy and chemi-
cal species. In the electrical case, for instance, this
corresponds to Kirchhoff’s Current Law. In addi-
tion, the across variables (e.g., electric potential,
pressure, temperature) are set equal at every node.
This implies that potential energy differences sum
to zero around loops, which is analogous to Kirch-
hoff’s Voltage Law.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 57

3.1.1 Flow Plate

Figure 2 provides a schematic for the FlowPlate,
which consists of a network of PortVolume, Pres-
sureLoss, DiffusionSurface, ThermalConduc-
tor, ThermalConvection, HeatCapacitor, and
HeatingResistor elemental models. The large
interface icons along the boundary of the Figure
represent the outside connections to the Flow-
Plate and the smaller icons in the interior repre-
sent the interfaces of the elemental models within
the FlowPlate. The equations of the fluid net-
work describe the pressure loss down the length
of the channel, the storage of fluid in the chan-
nel volume, and the interface to the gas diffusion
layer (GDL). The equations of the thermal net-
work describe the heat conduction across the flow
plate, the resistance heating and thermal energy
storage in it, and the heat convection between the
fluid and the flow plate. The equations of the elec-
trical network describe the voltage loss across the
flow plate, which may or may not be negligible,
depending on the values of the parameters that
represent the properties and thickness of the ma-
terial.
The model captures pressure loss due to bulk

flow along the reactant/product stream and down
the channel (the f direction). The contents of the
dotted area are repeated for each of Nf segments
(Nf = 1 for a 1D FC and Nf > 1 for quasi-3D).
Where the connection “wire” loops back on itself
in Figure 2, the elements included in the loop are
connected in series. The model assumes perfect
electrical and thermal conduction in the f direc-
tion, which is appropriate because the electronic
flow and heat flow are predominately in the z di-
rection.

3.1.2 Catalyst Layers

Figure 3 is a schematic for the model of a cathode
catalyst layer, CatLayer_ca, which contains of a
network of ORR, MembraneSurface, Capacitor,
ThermalConductor, HeatingResistor, HeatCa-
pacitor, PoreVolume, TransportPorous, Diffu-
sionMembrane, ElectroOsmoticDrag, and Mem-
braneVolume elemental models. The physical
meaning of the networks is similar to that of the
FlowPlate. The contents of the outer dotted
rectangle are duplicated Nf times, and the con-
tents of the inner dotted rectangles are duplicated
N z + 1 and N z times. In this manner, the oxy-

gen reduction reaction (ORR) is distributed over
Nf (N z+1) instantiations of the ORR . The model
assumes perfect fluid, thermal, and electrical in-
sulation in the f direction, which is appropriate
because the transport within the flow plate dom-
inates that of the other layers in the f direction.
The model of an anode catalyst layer, CatLay-
er_an, is identical except that it contains the HOR
instead of the ORR and the media model repre-
sents hydrogen (H2) and carbon monoxide (CO)
instead of oxygen (O2) and nitrogen (N2).

3.1.3 GDL and PEM

All of the elements of the GDL and PEM model
are also contained within the CatLayer_ca. Like
the CatLayer_ca, both of these models contain
N z lumped segments through the thickness of the
cell and Nf segments in the direction along the
length of the flow channel. The network of elemen-
tal models in the upper right of Figure 3 (Ther-
malConductor, HeatingResistor, HeatCapaci-
tor, PoreVolume, and TransportPorous) repre-
sents the GDL . The thickness and porosity of each
of the N z lumped segments through the GDL
can be independently specified, making it possi-
ble to model a GDL with a microporous layer
(MPL). Likewise, the network of elemental mod-
els in the lower right of Figure 3 (DiffusionMem-
brane, ElectroOsmoticDrag, and MembraneVol-
ume), as well as ThermalConductor and HeatCa-
pacitor, is representative of the PEM . The trans-
port processes due to diffusion and electro-osmotic
drag act in parallel. Electro-osmotic drag trans-
ports H2O from the anode to the cathode, in
the direction of protonic flow. Both the electro-
osmotic drag process and generation of H2O from
the ORR generally lead to a higher molar concen-
tration of H2O on the cathode side, so there is
a net diffusion of H2O from the cathode to the
anode.

3.2 FC

Figure 4 represents the FC . It is a set of Flow-
Plate, GDL, CatLayer_an, CatLayer_ca, and PEM
s connected through fluid, heat, and electrical in-
terfaces. Each of these interconnections contains
Nf interfaces in parallel (one for each channel seg-
ment). There are alternative methods to describe
numerous processes within the FC. These options
allow the model’s fidelity to be adjusted to suit

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 58

Figure 2: Schematic of the FlowPlate model.

the available simulation time and computational
resources. Table 1 lists all of the options and notes
the baseline options with asterisks.

3.3 Test Scenarios

Figure 5 shows the baseline test scenario used to
evaluate the polarization curve of the model of
a FC. The test scenario is essentially a model of
an ideal FC test stand. The anode and cath-
ode reactant streams are generated by the Flu-
idSource_an and FluidSource_cas and are dis-
sipated into the Boundary_an and Boundary_ca
components, respectively. The H2O content of
the reactant streams is specified in terms of rel-
ative humidity (RH) or, alternatively, mole frac-
tion of H2O. The molar concentration of O2 in
the dry cathode gas can be adjusted, allowing the
FC to be simulated with air or O2. In the baseline
scenario, the reactant flow rates are specified as
constants in terms of equivalent current (i.e., the
current corresponding to 100% utilization). Al-

ternatively, the flow can be variable, specified in
terms of an equivalence ratio and a current mea-
surement. Concurrent or counter flow scenarios
can be modeled by switching the cathode flow di-
rection with the Reverser. The pressures at the
anode and cathode outlets, as well as the temper-
atures at the exterior surface of the flow plates,
are specified by constant signal sources. The FC
is wired to an electrical circuit where the current is
specified by a signal source and the electric poten-
tial is measured as the dependent variable. The
signal source is a ramp function, and the ramp rate
is small (1mAcm−2 s−1) so that transient effects
are negligible.

The test scenario is the highest level of the
model. It provides the simulation stimuli as an in-
put to the model under test (i.e., the FC). There-
fore, the test scenario contains causal assignments,
as shown by the arrows in Figure 4. In the base-
line scenario, the signal sources are constants and
ramp functions but could instead be data files,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 59

Figure 3: Schematic of the CaLayer_ca model.

inputs from a control system, or real-time signals
from hardware-in-the-loop (HiL) equipment. Note
that the acausal model formulation extends to the
physical boundary of the system of interest, and
causal stimuli are applied at the boundary. If the
boundary was expanded to encompass a larger sys-
tem, the causal stimuli would be applied at the
new boundary (e.g., a vehicle drive profile applied
to a FC vehicle model).

4 Simulation Results

The FC is evaluated by varying conditions and set-
tings relative to a baseline scenario. Except where
noted, the baseline conditions are used. Under
the baseline scenario, the flow plates are held at
80 ◦C, and the anode|cathode reactant conditions
are: H2|Air, 1.0|1.0atm, 80|80 ◦C, 100|100%RH,
and 2.0|3.0Acm−2 equivalent current. The cell
is 1D (Nf = 1) and the baseline model options
are noted by the asterisks in the third column
of Table 1. Figure 6 shows the polarization
of individual channel segments of a quasi-3D cell
(Nf = 10) under anode|cathode reactant flows

at constant flow rates of 1.4|1.4Acm−2 equiva-
lent current and at fixed equivalence ratios of
1.25|1.25, with minimum equivalent current den-
sity of 0.18|0.18Acm−2. Here, the fluid is assumed
to be non-condensing (option 1.1a in Table 1), and
the flow rates are low in order to exaggerate the
difference in polarization between upstream and
downstream segments. In both scenarios, as cur-
rent density is increased, the upstream segments
pass an increasingly disproportionate share of the
current. This occurs due to a positive feedback
mechanism within the cell, whereby increased cur-
rent from the upstream segments leads to lower
O2 molar concentration in the downstream seg-
ments, decreasing their performance and requir-
ing increased current from the upstream segments
in order to meet the current demand on the en-
tire cell. As shown in Figure 6a, this mechanism
can even cause the polarization of the downstream
segments to fold back when the flow rate is fixed.
Figure 7a shows the effect of several model op-

tions from Table 1. The polarization curves shown
in the plot are the outliers among the set of all the
polarization curves produced by varying only one
option from the baseline.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 60

Table 1: Selectable model options

Model Element Characteristic Option

Media
H2O behavior 1.1a: Non-condensing

1.1b: *Condensing
Pressure-diffusivity
products

1.2a: *Constant
1.2b: Dependent on temperature

PressureLoss
Flow regime

2.1a: *Laminar (valid for Re < 1000)
2.1b: Quadratic turbulent (valid for Re > 4000)
2.1c: Laminar and quadratic turbulent (valid for
Re < 1000 and Re > 4000)
2.1d: Detailed (valid over full Re range)

Fluid density and
dynamic viscosity

2.2a: *Nominal
2.2b: Calculated from the media model

TransportPorous Liquid H2O transport 3.1a: *Not included
3.1b: Included

HOR Voltage 4.1a: *Constant
4.1b: Thermodynamic (modified Butler-Volmer
equation)

ORR Product H2O

5.1a: Liquid
5.1b: Vapor
5.1c: *Two-phase

PEM

Protonic resistance
6.1a: Constant
6.1b: Dependent on current density
6.1c: *Dependent on hydration

Diffusion coefficient
6.2a: *Constant
6.2b: Dependent on hydration, specified as a poly-
nomial
6.2c: Dependent on hydration, specified as a lookup
table

Figure 4: Schematic of the FC model.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 61

Figure 5: Schematic of the baseline test scenario.

The number of channel segments (Nf) is an-
other important model setting. As Nf is in-
creased, the model becomes more representative,
but the simulation takes more time. Figure 7a
shows the effect of Nf on the polarization curve.
As Nf is increased, there is an apparent change
in performance because the O2 molar concentra-
tion in each segment is calculated as the average
of that at the inlet and outlet of the segment. The
profile of H2O and O2 concentration is nonlinear
down the channel length due to unequal current
through the segments (as demonstrated in Fig-
ure 6). These concentrations affect the polariza-
tion via the overpotential in the cathode catalyst
layer and the resistance loss in the polymer elec-
trolyte membrane (PEM), and the effect is more
pronounced where there is a large concentration
gradient down the flow channel (e.g., at high cur-
rents). However, there is a limit beyond which
there is negligible effect from increasing Nf , as
shown in Figure 7a.
Figure 8 demonstrates the dynamics of the FC

. The electronic load is cyclical, with a sinusoidal
current from 0 to 1.5Acm−2 with a 30 s period.
Figure 8a shows the voltage losses of the cell. The

cathode activation and concentration losses are
dominant, and a small loop appears in the polar-
ization curve due to the hysteresis in temperature
at the cathode reaction site and the hydration of
the PEM. Figure 8b shows that the temperature
vs. current hysteresis occurs counterclockwise. As
current increases, the internal losses increase, in-
creasing the temperature at the cathode catalyst
layer. There is a lag in the temperature response,
however, due to the heat capacities of the ma-
terials within the cell. The PEM hydration vs.
current hysteresis occurs clockwise. As current
increases, more H2O flows from the anode to the
cathode due to electro-osmotic drag, resulting in
a net drying effect of the PEM. There is a lag in
the PEM hydration response since H2O is stored
in the PEM material.

5 Discussion

The models simulate quickly enough to be man-
ageable for design studies of the FC or combined
with other models for studies of larger systems.
However, any real-time application of the model,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 62

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

Cell Segment Polarization
Segmented Cell under Fixed Flow Rate

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH

Current Density / A cm−2

P
ot

en
tia

l /
 v

Avg. Cell
Seg. 1
Seg. 2
Seg. 3
Seg. 4
Seg. 5
Seg. 6
Seg. 7
Seg. 8
Seg. 9
Seg. 10

(a)

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

Cell Segment Polarization
Segmented Cell under Fixed Stoichiometric Ratio

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH

Current Density / A cm−2

P
ot

en
tia

l /
 v

Avg. Cell
Seg. 1
Seg. 2
Seg. 3
Seg. 4
Seg. 5
Seg. 6
Seg. 7
Seg. 8
Seg. 9
Seg. 10

(b)

Figure 6: Cell segment polarization with anode/cathode reactants provided at (a) fixed flow rate of
2.0|2.0Acm−2 and (b) fixed equivalence ratio of 1.25|1.25.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Cell Polarization
Varying Number of Channel Segments

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH, 2/3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

nx = 1
nx = 2
nx = 5
nx = 10

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Cell Polarization
Varying Model Options

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH, 2/3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

*
2.1d
4.1b
5.1a

(b)

Figure 7: Effect of model options on the FC polarization curve: (a) selected model options from
Table 1 and (b) number of channel segments.

e.g., for HiL or model based control (MBC), would
likely require simplification or other adjustments.
The baseline simulation has 31 time-varying state
variables and 1595 nontrivial equations. Each ad-
ditional channel segment in the quasi-3D case adds
23 states and 985 equations. As translated by the
Dynamic Modeling Laboratory (Dymola) [5] and
simulated with the Differential/Algebraic System
Solver Library (DASSL), the baseline simulation
requires 1.6 s to run on an Intel Centrino Duo
T7300 2.0GHz based computer.

The model translator performs symbolic manip-
ulation on the model so that the simulation is
manageable. Several guidelines have been used in
the design of the model library so that this simpli-

fication is possible. First, storage elements (e.g.,
capacitors or media storage volumes) are placed at
nodes where processes are connected to reduce the
size of nonlinear systems of implicit DAEs. This
introduces state variables, and the model transla-
tor is then able to break the equations into smaller
sets which can be calculated independently over
each simulation time step. Second, media stor-
age volumes are generally not connected directly,
but rather through processes, to avoid index re-
duction steps in the model translation [2]. Third,
the models provide provisions to manage model
stiffness (where the time constants of the model
vary widely) via the model options listed in Ta-
ble 1. Fourth, the model equations are carefully

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 63

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Voltage Loss vs. Current Density
Sinuosoidal Load (Period of 30 s, 0 to 1.5 A cm−2)

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH, 2/3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

v
PEM

v
GDL_an

 + v
GDL_ca

v
activation,an

 + v
concentration,an

v
activation,ca

 + v
concentration,ca

Increasing current Decreasing current

(a)

0 0.5 1 1.5
80

81

82

83

84

Temperature and Hydration vs. Current Density
Sinuosoidal Load (Period of 30 s, 0 to 1.5 A cm−2)

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH, 2/3 A cm−2 equiv. flow

Current Density / A cm−2

T
em

pe
ra

tu
re

 /
°C

0 0.5 1 1.5
6

8

10

12

14

H
yd

ra
tio

n
/ m

ol
 H

2O
 m

ol
−

1 S
O

3−

T
catLayer_ca

λ
PEM

Increasing
current

 Decreasing
 current

Increasing
current

 Decreasing
 current

(b)

Figure 8: FC response with a sinusoidal load: (a) losses due to resistance, activation, and concentration
in the PEM, GDL, and catalyst layers and (b) cathode catalyst layer temperature and PEM hydration.

formulated to reduce the sensitivity to numerical
precision, as in the TransportPorous, for exam-
ple.
The model avoids or carefully handles discrete

events where the structure of the model equations
changes abruptly, as in the two-phase behavior of
H2O. This gives the model translator more flex-
ibility in the symbolic manipulation of the model
equations, and it avoids the need for the simula-
tor to reinitialize when the events occur. When a
discrete event occurs, the simulation solver must
reinitialize, and by default it begins a guess pro-
cess with the values of the state variables before
the event occurred. However, the discrete events
that occur when switching between one-phase and
two-phase regions still slow down the simulation.
When the quasi-3D model of a FC is used with
Nf = 10, events occur frequently enough to in-
crease the simulation time significantly. For that
reason, H2O condensation is not included unless
absolutely necessary.

6 Conclusion

As described in the introduction, computer-based
models are most useful for the hardware and con-
trol design of FCs if they provide the capability for
dynamic simulation, clarity, adjustable fidelity,
and acausal interfaces.
The model library presented here addresses

these requirements by modeling the FC as a sys-
tem of acausal, object-oriented models specified in

terms of DAEs in the Modelica language. This pa-
per provides a high-level view of how the models
are structured and presents results from several
usage scenarios. The research demonstrates the
power of combining the empirical and theoretical
knowledge in the field of FCs with a state-of-the-
art tool for acausal modeling.
In the hardware design of a FC system, there

is often a trade-off between attributes of the FC
(e.g., efficiency or performance metric) and the
balance of plant (e.g., parasitic loss or economic
cost). The results demonstrate the ability of the
model to evaluate the efficiency of the FC, even
with variable causality.

7 Acknowledgments

This research was supported in its initial stages
by the Office of Naval Research under grant
#N00014-04-0682 to the Hawaii Natural Energy
Institute and later by the Robert G. Shackelford
Fellowship of the Georgia Tech Research Institute.
The authors wish to acknowledge the support of
the Modelica Association and the Modelica com-
munity by the open sharing of the Modelica Stan-
dard Library and Modelica_Fluid. Although it is
not currently possible to offer the library described
within this paper online as open source, the au-
thors request that any interested readers contact
them.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 64

References

[1] D. M. Bernardi and M. W. Verbrugge. A
mathematical model of the solid-polymer-
electrolyte fuel cell. Journal of The Electro-
chemical Society, 139(9):2477–91, 1992.

[2] F. E. Cellier and E. Kofman. Continuous Sys-
tem Simulation. Springer, New York, NY,
2006.

[3] K. Davies and R. Moore. Object-oriented
fuel cell model library. ECS Transactions,
11(1):797, 2007.

[4] K. Davies and R. Moore. PEMFCSim: A fuel
cell model library in Modelica. In Fuel Cell
Seminar, Austin, TX, 2007.

[5] Dynasim AB. Dymola: Dynamic modeling
laboratory, 2007. v6.2.

[6] K. Forsberg and H. Mooz. System engi-
neering for faster, cheaper, better. The
Center for Systems Management, Reprinted
by SF Bay Area Chapter of INCOSE,
http://www.incose.org/sfbac/, 1998.

[7] Modelica Association. Modelica: A Unified
Object-Oriented Language for Physical Sys-
tems Modeling: Tutorial. Linköping, Sweden,
ver. 1.4 edition, December 2000.

[8] Modelica Association. Modelica: A unified
object-oriented language for physical systems
modeling, February 2 2005.

[9] M. A. Rubio, A. Urquia, L. GonzÃ¡lez,
D. Guinea, and S. Dormido. FuelCellLib: A
modelica library for modeling of fuel cells.
In 4th International Modelica Conference,
Hamburg-Harburg, Germany, March 2005.
Modelica Association.

[10] T. E. Springer, M. S. Wilson, and S. Gottes-
feld. Modeling and experimental diagnostics
in polymer electrolyte fuel cells. Journal of
The Electrochemical Society, 140(12):3513–
3526, 1993.

[11] T. E. Springer, T. A. Zawodzinski, and
S. Gottesfeld. Polymer electrolyte fuel cell
model. Journal of The Electrochemical Soci-
ety, 138(8):2334–2342, 1991.

[12] J. Ungethüm. Fuel cell system model-
ing for real-time simulation. In 4th In-
ternational Modelica Conference, Hamburg-
Harburg, Germany, March 2005. Modelica
Association.

[13] A. Z. Weber and J. Newman. Transport
in polymer-electrolyte membranes III: Model
validation in a simple fuel-cell model. Journal
of The Electrochemical Society, 151(2):326–
339, 2004.

[14] F. Zenith, F. Seland, O. E. Kongstein, B. Bor-
resen, R. Tunold, and S. Skogestad. Control-
oriented modelling and experimental study of
the transient response of a high-temperature
polymer fuel cell. Journal of Power Sources,
162(1):215–227, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 65

Modeling Reaction and Diffusion Processes of Fuel Cells
within Modelica

Kevin L. Davies Comas L. Haynes Christiaan J.J. Paredis
Georgia Institute of Technology, Woodruff School of Mechanical Engineering

Atlanta, Georgia USA

Abstract

The field of fuel cell (FC) technology offers a chal-
lenging and rewarding application for the Model-
ica language because it is highly multi-disciplinary
and it entails physical phenomena (e.g., catalysis)
that are not fully understood. Modelica is a valu-
able platform from which to explore FCs because
it is appropriate for the representation of physical
interactions. This paper describes elements of a
FC library which has been developed in Modelica.
The goal of the modeling effort is to take full ad-
vantage of the physically representative nature of
the Modelica language. To this end, it is impor-
tant for the models to be consistent and explicit
in terms of energy and species balances. The pa-
per emphasizes the representation of diffusion and
electrochemical processes. In these areas, the tra-
ditional approach is to represent empirically ob-
served behavior, and this is not necessarily rigor-
ous from the standpoint of energy and species bal-
ances. To describe the diffusion and electrochem-
ical processes in a form that is suitable for Model-
ica, alternative and possibly more physically fun-
damental model equations have been developed.
Keywords: media; streams; diffusion; fuel cell

1 Introduction

Traditionally, FC models have been developed
with the goal of capturing behavior that has been
observed empirically [13]. However, a model that
is empirically representative under a certain range
of conditions may not be representative under
others. Moreover, empirically-based models are
not necessarily consistent in terms of energy and
species balances.
The goal of the research described in this pa-

per is to create a robust, flexible, and dynamic
model of FCs in the Modelica language. In order

to take full advantage of the Modelica language,
it is important for the model to be consistent and
explicit in terms of energy and species balances.
This presents both a challenge and an opportunity.
Problems may occur if empirically derived equa-
tions have inconsistencies and are implemented in
Modelica. When these problems are solved, how-
ever, a deeper understanding of the fundamental
phenomenon may be uncovered.
This paper describes elements of a FC library in

Modelica. It emphasizes two areas that have not
been fully explored in Modelica: the transport of
chemical species by diffusion and electrochemical
reactions. Most FC models in the literature de-
scribe diffusion via the dusty-gas model or deriva-
tives of it, which are empirically based and may
lead to singularities [14]. Also, most FC mod-
els describe the anode and cathode jointly, with
only the net reaction and a single electric poten-
tial. However, this approach is not suitable for the
FC library because the anode and cathode catalyst
layers are separate and are connected to opposite
sides of the proton exchange membrane (PEM).

2 Model Equations

2.1 Media Library

The Media library defines the relationship be-
tween the properties of chemical mixtures. The
medias within the library are based on the ideal
gas assumption. This assumption is appropriate
because FCs typically operate at low pressures
and high temperatures with respect to the criti-
cal pressures and temperatures of the gases that
are present, with the exception of H2O. Depend-
ing on a model option, H2O is either described as
an equilibrium mixture of an incompressible liquid
and an ideal gas or as a non-condensing ideal gas.
A media is specified within every interface and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 66 DOI: 10.3384/ecp09430106

higher-level model of the FC library. In the anode,
the media represents a mixture of H2O, hydrogen
(H2), and carbon monoxide (CO). In the cath-
ode, it represents H2O, oxygen (O2), and nitrogen
(N2). At each instantiation, a minimal set of me-
dia properties is defined by the conditions within
the interface or element. This set, the state, is
sufficient to uniquely determine all other intensive
properties of the fluid. As Gibb’s phase rule [7]
states, NF = 2+NS−NP , where NF is the num-
ber of degrees of freedom, NS is the number of
species, and NP is the number of phases present.
For example, the cathode fluid contains H2O, O2,
and N2, which means that NF = 3. Therefore,
ND = 3 if liquid and gas are both present, but
NF = 4 if the fluid is entirely gaseous.

The varying degrees of freedom require care-
ful attention. The Modelica language currently
does not support models with variable structure
[4]. In addition, the media and the element with
which it interacts are separate classes within the
object-oriented model structure, and the interface
between the two should be the same regardless
of the number of phases that are present in the
fluid. Since Gibb’s phase rule only applies to the
intensive properties of the fluid, NP −1 additional
equations must be given to specify both the in-
tensive and extensive properties of the fluid. For
example, even though either pressure or tempera-
ture is sufficient to specify the intensive properties
of saturated H2O (i.e., on or within the two-phase
boundary), an additional property such as water
quality (the fraction of H2O that is vaporized)
must be given in order to specify the extensive
volume of the H2O.

The following equations allow the simulation of
both one-phase and two-phase regions. Within
the mixture, the molar concentration of H2O
is the sum of the molar concentrations of liq-
uid H2O and H2O vapor: CH2O = CH2O(l) +
CH2O(g). Water is assumed to be the only con-
densing chemical species within the mixture, so
the fraction of H2O within the gas phase is
Cg(H2O) = CH2O(g)/(1− CH2O(l)). Water qual-
ity is expressed as x = CH2O(g)/CH2O. In the
liquid/gas region, the H2O is saturated, that is,
CH2O(g) p = pl|g(T), where pl|g(T) is the satura-
tion pressure as a function of temperature, de-
fined in the Modelica Standard Library (Model-
ica library) [6] as pl|g(T) = 611.657exp(17.2799−
4102.99/(T −35.719)). From the preceding equa-

tions, CH2O(g) = 1−(pCH2O(g))/pl|g(T) in the liq-
uid/gas region.
If CH2O p> pl|g(T), then liquid is present. If p>

pl|g(T) and CH2O = 1 (i.e., the media is entirely
H2O, without any non-condensing gases present),
then the mixture is entirely liquid. The behavior
of the phases of the fluid can be summarized as:

CH2O(l) =

CH2O,
if CH2O p > pl|g(T) and CH2O = 1

1−pCH2O(g)/pl|g(T),
if CH2O p > pl|g(T) and CH2O < 1

0,
if CH2O p≤ pl|g(T)

(1)
The state variables of the media are typically

chosen to be the amounts of the chemical species
present within a control volume (e.g., expressed in
total moles and the molar concentrations of all but
one chemical species in the mixture) and temper-
ature. These variables are sufficient to specify all
the intensive and extensive properties of the fluid,
regardless of whether the fluid is in the one-phase
or two-phase region. The continuity of these vari-
ables across the discrete events generated by the
Boolean conditions in Eq. 1 helps the simulation
solver run more efficiently.
The enthalpy and entropy of the chemical

species in their pure forms at standard pressure
are calculated based on the models in the Model-
ica library, which implement the equations and
empirical data presented by McBride et al. [3].
Dynamic viscosity is also calculated based on the
models in the Modelica library. Several other
properties including relative humidity (RH), mo-
lar mass, Gibbs free energy of chemical species in
their pure form at reference pressure, and molar
volume or specific volume of the phases and en-
tire mixture are determined from thermodynam-
ics [7]. The properties of the entire mixture are
determined by a weighted average of the intensive
properties of each chemical species [7].

2.2 Interfaces

Acausal interfaces describe fluid, thermal, and
electronic interactions within the FC. Each inter-
face has an equal number of flow (through) and
property or potential (across) variables, but no
equations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 67

FluidPort The FluidPort interface describes
the flow of chemical mixtures. The flow variables
represent chemical species and enthalpy. There
are two versions of FluidPort interface. The first
version is that of the Modelica_Fluid library [5],
which uses a mass basis in order to be compat-
ible with other components such as pumps and
valves. The second version, which has been devel-
oped for the FC library, uses a mole basis so that
processes such as diffusion and chemical reactions
may be described directly. The property variables
are pressure, specific enthalpy, and the molar con-
centrations of all but one of the chemical species.
Other intensive properties of the mixture passing
through the interface are specified by the Media
library described above in Section 2.1, and the ex-
tensive properties are specified by the model of the
control volume, described below in Section 2.3.1.

HydrationPort The HydrationPort interface is
similar to the mole based version of the FluidPort
interface, but is specific to the flow of H2O as an
absorbed medium through a bulk material (e.g.,
the PEM). The HydrationPort interface has been
developed for the FC library. The flow variables
are the molar flow rate of H2O and the enthalpy
flow rate. The property variables are temperature
and hydration. In the case of the PEM, hydration
is expressed as the ratio of moles of H2O to moles
of sulfonic acid (SO−3) groups.

HeatPort The HeatPort interface describes heat
flow; the potential variable is temperature. The
HeatPort interface and the following Pin inter-
face are instantiated directly from the Modelica
library.

Pin The Pin interface describes electronic flow
or protonic flow, and the potential variable is elec-
tric potential.

2.3 Elemental Models

All of the elemental models include the applica-
ble terms of the energy balance and species bal-
ance equations. In the following equations, i is
the index of the fluid interfaces, j is the index of
the thermal interfaces, and k is the index of the
chemical species.

du
dt = i∆φ+

∑
i

ḣ→i+
∑
j

u̇→j (2)

dnk
dt = ṅk,react+

∑
i

ṅi,k (3)

The storage models (Section 2.3.1) are dynamic,
and include the storage term on the left hand
side of Eqs. 2 and 3. The process models (Sec-
tions 2.3.2 and 2.3.3) are static and do not include
the storage term. The enthalpy flow rate through
interface i is specified as a sum of the enthalpy of
the chemical species:

ḣk =
∑
k

h̄i,k ṅi,k (4)

2.3.1 Storage Models

The storage models integrate the energy and
species, flowing into or out of a control volume
over time in order to determine the present state,
according to Eqs. 2 and 3. Each storage model
has at least one time-varying state variable, which
describes the condition of the element at a given
time.

PoreVolume The PoreVolume model describes
the storage of internal energy and chemical
species. The properties are determined by the
selected media. The time-varying state variables
depend on the usage scenario, but are typically
temperature, total moles, and the volumetric con-
centrations of all but one of the chemical species.

MembraneVolume The MembraneVolume model
describes the storage of internal energy and H2O
in the PEM. The states are temperature and total
moles of H2O. The hydration of the PEM (λ) is
related to nH2O, the amount of H2O in the control
volume, by the following equation.

λ= nH2OMdryPEM/(ρdryPEM AdL·z) (5)

PortVolume The PortVolume model is instanti-
ated directly from the Modelica_Fluid library. It
is similar to a PoreVolume model, but it accounts
for the storage of fluid on a mass basis rather than
a mole basis.

Capacitor and HeatCapacitor The Capacitor
and HeatCapacitor models are instantiated di-
rectly from Modelica library to describe electrical
and thermal storage, respectively.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 68

2.3.2 Reaction Models

The reactions of the anode and cathode are mod-
eled separately. The rates of energy (in electri-
cal, chemical, and thermal forms) are balanced by
Eq. 2. The flow rates of the species (in electronic,
protonic, and chemical forms) are balanced by the
stoichiometric ratio of the reactions and Eq. 3.
The reaction models take direct advantage of the
media properties from McBride et al. [3], which
are available in the Modelica library.
The reaction models use a new, and possibly

more fundamental, form of an electrochemical rate
equation which can be contrasted with the widely-
used Butler-Volmer equation. The new form is
based on the hypothesis that the need for a sym-
metry factor in the Butler-Volmer equation is ac-
tually an artifact of the assumption of equal and
opposite biases in the forward and backward di-
rections. The traditional approach is to calcu-
late the Nernst potential and add an “activation
overpotential”. The Nernst potential is dependent
on temperature but not pressure or current, be-
cause it assumes standard pressure (p = p0) and
an open-circuit condition (i= 0). The overpoten-
tial accounts for the actual pressure and current.
It is typically negative because it decreases with
increasing current, decreasing partial pressure of
the reactants, and increasing partial pressure of
the products. The new electrochemical rate equa-
tion is simpler to implement in the Modelica lan-
guage than a Nernst potential/overpotential ap-
proach because it does not separate factors that
are actually coupled in reality.
There are two traditional methods of calculat-

ing the activation overpotential. The first method,
which is seemingly the simplest, is the Tafel equa-
tion. It combines the forward and backward cur-
rents of the reaction by assuming that the for-
ward current dominates under typical operating
conditions. This results in a singularity (a natu-
ral logarithm of zero at zero net current), which
is unfortunate because the open-circuit condition
(i(t= 0) = 0) is a typical and convenient initial
condition (IC). The Tafel equation is not accept-
able for an acausal reaction model, which certainly
must be able to simulate at open-circuit condi-
tions. In reality, a FC and its electronic load are
separate components, and the FC is not a sin-
gularity before the load is connected to it, when
i= 0.
The Butler-Volmer equation for the activation

overpotential handles the open-circuit condition
by accounting for the fact that while the net cur-
rent is zero under the open-circuit condition, there
are equal and opposite, but nonzero, diffusion
currents in the forward and backward directions.
However, the Butler-Volmer equation makes the
default assumption that the forward and back-
ward currents are driven by opposite signs of the
same bias. That bias is a combination of the Gibbs
free energy of the reactants and products, as well
as electronic and protonic energies. An “electrode
symmetry factor” is then included to account for
the fact that the forward and backward bias may
not actually be symmetric. The symmetry factor
is typically found to be approximately 0.5 for the
net reaction. However, in the present FC model,
the anode and cathode reactions must be modeled
separately since the anode and cathode catalyst
layers are separate models. During the develop-
ment of the model, it was found that the anode
symmetry factor of 0.5 produces an unrealistic an-
ode electric potential, which results in an incorrect
cell electric potential when the anode and cathode
are electrically connected in series to represent the
FC.

Therefore, the Butler-Volmer equation is mod-
ified under the premise that the power of one of
the exponential terms in the Butler-Volmer equa-
tion should be associated only with the energies
of the reactants needed for the forward direction
of the reaction. Accordingly, the power of the sec-
ond exponential term should be associated with
the energies of the reactants for the backward di-
rection of the reaction, i.e., the products of the
forward direction of the reaction. It is also real-
ized that the electric potential of the reaction is
related to the sum of an electronic energy and a
protonic energy. The electrons (e−) and protons
(H+) are either reactants or products, depending
on the reference direction of the reaction.

The exponential factors of the electrochemical
rate equation are of the form exp(g/RT), but are
typically written in the form

(
p/p0) exp

(
g0/RT

)
,

which is equivalent under the assumption of an
ideal gas. This equivalence can be shown by re-
alizing that Gibbs free energy can be defined as
g = h−T s. Enthalpy is defined via dh = T ds+
v dp, which can be reduced under the assump-
tion of an ideal gas and integrated under isother-
mal conditions to give s − s0 = −R ln

(
p/p0),

where s0 is the entropy at standard pressure (p0).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 69

Gibbs free energy can therefore be represented
as a value at standard pressure (g0 = h− T s0)
and an offset, such that g = g0 − T

(
s−s0), or

g = g0 + RT ln
(
p/p0). Therefore, exp(g/RT) =(

p/p0) exp
(
g0/RT

)
if the media behaves as an

ideal gas.
When the reaction models are formulated un-

der these premises, it is no longer necessary to
calculate a Nernst potential at all. The new elec-
trochemical rate equation results in the electrode
electric potential directly. Also, the need for two
model parameters (the symmetry factors of the
anode and cathode) is eliminated. This offers the
advantage that fewer parameters must be specified
to utilize the FC model. The new electrochemi-
cal rate equations are more robust than the Tafel
equation because the natural log of zero cannot
occur unless the media properties are miscalcu-
lated.

ORR An ORR model describes the oxygen reduc-
tion reaction (ORR) whereby oxygen is consumed
and H2O is produced: 1

2 O2 + 2H+ + 2e−→H2O.
Bockris et al. give an equation [2, Eq. 7.7] for
the forward current density of an electrochemical
reaction involving Ag+:

i′′→= F kT
h

[
n′′Ag+

]
exp

(
−∆ḡ0

RT

)
exp

(
−β∆φF

RT

)
(6)

The equation is adapted here for the ORR and
modified to a more fundamental form. It is noted
that the concentration factor should strictly in-
clude all of the reactants—not only O2 and H+,
but also e−. The concentration factor is the prod-
uct of the molar concentrations of the reactants
raised to the power of the corresponding stoichio-
metric ratios and divided by the molar volume of
the mixture. In Eq. 6, n′′Ag+ is the surface concen-
tration of Ag+. Here, it is desirable to relate the
equation to the molar concentration of the chem-
ical species and volumetric concentration of the
mixture. A coefficient, γca, is introduced to relate
the effective surface concentration of the reactants
on the electrode to the volumetric concentration
of the chemical species in the catalyst layer. This
coefficient is dependent on the geometry of the
electrode (e.g., catalyst surface area) and other
factors.
The coefficients of the energy terms in the ex-

ponential and the powers of the molar concentra-
tions are the stoichiometric ratios of the reaction,

so the coefficient of the electronic term is 2. The
voltage loss is only applied to the reaction (e− only
appears as a reactant, not as a product), so the
electrode symmetry factor (β) is removed. The
factors are reordered and regrouped to be clearer
in terms of energy.

i′′ca→=F kT
hγca v̄ [CO2]0.5 [CH+]2 [Ce−]2

· exp
(

0.5ḡO2
0 + 2ḡH+ 0−2F∆φca

RT

)
(7)

Following the same logic, the backward current
is given by the equation below, which is a depar-
ture from Eq. 7.11 of Bockris et. al [2].

i′′ca←= F kT
hγca v̄ [CH2O] exp

(
ḡH2O

0

RT

)
(8)

The net current is the forward current minus
the backward current. Unlike the strict form of
Eq. 7, CH+ and Ce− are assumed to be unity.
The model assumes that the molar concentration
of H+ is not limiting because, as noted by Wang
et al. [11], the molar concentration of H+ is high
in acidic liquid media. The model also assumes
that the molar concentration of e− is not limiting;
the voltage losses due to electronic resistance are
included separately elsewhere.

i′′ca =F kT
hγcav̄

·
[
[CO2]0.5 exp

(
0.5ḡO2

0−2F∆φca
RT

)

− [CH2O] exp
(
ḡH2O

0

RT

)]
(9)

HOR An HOR model describes the hydrogen oxi-
dation reaction (HOR) whereby H2 is consumed
and e− and H+ are produced: H2→ 2H+ + 2e−.
Following a similar derivation to that of the ORR
model:

i′′an =F kT
hγan v̄

[
exp

(2F∆φan
RT

)

− [CH2] exp
(
ḡH2

0

RT

)]
(10)

The HOR and ORR models each have only one
parameter. The values of γan and γca can be
uniquely determined by the cathode and cathode

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 70

electric potentials and the intensive properties of
the fluid at a single value of current. Experimen-
tally, it is difficult to distinguish the anode and
cathode contributions to the IR-free voltage; how-
ever, the anode overpotential is typically much
lower [1]. It may not be necessary to determine the
exact ratio between γan and γca because the goal
of the model library is to describe the overall FC
electric potential-current relationship rather than
the electric potential-current relationships of the
anode and cathode separately.

2.3.3 Transport Models

The flow process models describe the flow of en-
ergy and species through the FC, but not the stor-
age of energy or species.

PressureLoss The model of pressure loss de-
scribes advection due to a gradient in total fluid
pressure. The fluid is assumed to be uniformly
mixed at the molar concentrations Cj of the up-
stream interface. The flow rate of chemical species
i through the downstream interface j, ṅi,j , is given
by:

ṅi,j = Cj ṅj (11)

The relationship between the flow rate and pres-
sure difference depends on the fluid properties and
the flow regime (e.g., laminar or turbulent), which
are either assumed to be constant or determined
based on the operating conditions and the fluid
properties. The flow rate versus pressure loss
equations are given in the WallFriction within
the Modelica_Fluid library [5]. The Pressure-
Loss model does not affect the behavior of the FC
model significantly because the pressure difference
across the flow channels of a FC are often negligi-
ble with respect to the absolute pressure. Never-
theless, the model is included to separate the flow
channel into discrete storage volumes with varying
molar concentrations of the species.

DiffusionSurface The DiffusionSurface
model represents the surface at the boundary
between advection-dominated flows (e.g., the
flow of reactants down the flow channel due to
a gradient in pressure) and diffusion-dominated
flows (e.g., the flow of reactants through the
gas diffusion layer (GDL) due to gradients in
molar concentration). The molar concentration

of chemical species at the diffusive interface is the
average of that across the advective flow path.

TransportPorous The TransportPorous model
describes flow through a porous material due to
gradients in molar concentration and pressure.
The following equation is has been developed to
describe the flow of gas from Fick’s law [17],
Darcy’s law, and an analogy to laminar flow
through a pipe. The gas phase of the chemical
species of interest, i, is coupled in a binary man-
ner to the NS−1 other chemical species.

ṅi(g) =−DiA
∂n′′′i
∂L·z

+

NS∑
j=1
j 6=i

Cj ṅj(g)∇p/Di,j

NS∑
j=1
j 6=i

Cj/Di,j

(12)

Optionally, the advective flow of liquid water
can be added in parallel to the flow of gas. The
flow of liquid water is described according to Eq. 4
in [18]. If the flow of liquid water is included, then
the porosity available for the flow of gas is reduced
according to εvg = εv vg/(vl+ vg).
In the literature within the field of proton ex-

change membrane fuel cells (PEMFCs) [12], the
transport process is often described with a viscous
flow equation such as Darcy’s law and NS−1 rep-
etitions of an equation consisting of momentum,
Stefan-Maxwell diffusion, and Knudsen diffusion
terms. However, this approach is not rigorous in
terms of energy. Weber and Newman [14] note
that the typical modeling approach, the dusty-gas
model, can lead to a singular matrix. The tradi-
tional equations for flow through a porous mate-
rial have been modified to derive Eq. 12, which is
suitable for the energy-based Modelica formalism.
The development of Eq. 12 starts with Darcy’s

law to describe the advective flow of gases through
a porous medium over a nominal or superficial
cross-sectional area (A0) [15]:

v̇ =−κA
0

µ

∂p

∂L·z
(13)

Darcy’s law is modified to use kinematic viscosity
instead of dynamic viscosity (µ = ρν) and molar
flow rate instead of volumetric flow rate (v̇ = v̄ ṅ).
Since density is related to molar mass and molar
volume (ρ = M/v̄), the previous equation can be

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 71

rewritten as:

ṅg∇p =− κA0

Mνg

∂p

∂L·z
(14)

The equation for laminar flow in a circular pipe
is modified in a similar way:

ṅ∇p =− π d4

128Mνg

∂p

∂L·z
(15)

The following equation is obtained by substitut-
ing the definition of hydraulic diameter in terms
of the effective cross-sectional area and wetted
perimeter (d= 4Aeff/P)and recognizing that the
perimeter is the circumference of a circle (P =
2π r):

ṅ∇p =−

(
Aeff

)4

P 3 rMνg

∂p

∂L·z
(16)

Comparing Eqs. 15 and 16, the permeability can
be written as κ= (Aeff)4/(P 3 rA0). The effective
cross-sectional area for flow, Aeff , is related to
the nominal cross-sectional area by Aeff = εAA

0.
The areal porosity, εA, is related to the volumetric
porosity by (εA)1/2 = (εv)1/3, assuming that the
geometry of the pores is isotropic. This assump-
tion is consistent with the Bruggeman correction
for tortuosity which leads to Di,jeff = (εv)3/2Di,j
(Eqs. 41 and 42 in [12]). Assuming that the cross-
section of the pores is circular with radius r and
volumetric porosity εvg available for gas, then the
permeability of the medium to gas is given by
κ= r2 (εvg)8/3/8.
The total advective flow can be split into flows

of the individual chemical species by accounting
for the coupling between the chemical species.
The coupling is assumed to be binary, so the de-
velopment starts with the Stefan-Maxwell equa-
tion for binary diffusion [16]. Here, i denotes the
chemical species of interest and j denotes the other
chemical species.

∇Ci =
NS∑
j=1
j 6=i

CiCj
Di,j

(vj−vi) (17)

The concentration gradient is set to zero here
because the diffusive flow is handled separately.
The velocity of the flow is related to the molar
flow rate (v = ṅ v̄/A). Making these adjustments
and solving for the molar flow rate of chemical

species i:

ṅi(g)∇p =

NS∑
j=1
j 6=i

Cj ṅj(g)∇p/Di,j

NS∑
j=1
j 6=i

Cj/Di,j

(18)

Only NS−1 equations in the form of Eq. 18 are
unique; the NSth equation is redundant and con-
sistent. In summary, the NS+1 variables charac-
terizing the advective flow of the TransportPor-
ous model (ṅ, ṅ1,..., ṅNS) are described by Eq. 16
(with κ = r2 (εv)8/3/8), NS − 1 equations in the
form of Eq. 18, and an additional equation stat-
ing the molar flow rate (ṅ=

∑
ṅj).

The diffusive flow of each chemical species is
given by Fick’s law, stated in terms of volumet-
ric concentration of the chemical species and the
molar volume of the mixture:

ṅi∇C =−DiA
∂n′′′i
∂L·z

(19)

The advective and diffusive flow rates are added
for each chemical species to obtain the net flow
rate within the TransportPorous model, Eq. 12.

DiffusionMembrane The DiffusionMembrane
model represents the diffusion of H2O through
the PEM. The rate of diffusive flow is propor-
tional to the hydration gradient, as described
by Eq. 20 in [10]. The diffusion coefficient is
either held constant or related to PEM hydration
according to Eq. 22 in [10] and the software code
in developed by Springer [8].

ElectroOsmoticDrag The ElectroOsmotic-
Drag model describes both electro-osmotic drag
and resistance to protonic flow in the PEM. The
flow of H2O through the PEM and the voltage
loss across it are both related to the protonic
current. As described by Eq. 18 in [10], electro-
osmotic drag carries H2O through the PEM at a
rate that is proportional to protonic current. The
coefficient of proportionality depends on PEM
hydration. The difference in electric potential is
also proportional to protonic flow, as described
by Ohm’s law. The resistance to protonic flow is
either constant, described as an empirical function
of protonic current, or related to PEM hydration
according to Eq. 25 in [10]. The energy balance

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 72

within ElectroOsmoticDrag model accounts for
heating due to resistance.

MembraneSurface The MembraneSurface model
relates hydration to humidity, or the activity of
H2O, at the surface of the PEM as Springer et al.
determined empirically (Eqs. 16 and 17 in [10]).

HeatingResistor A HeatingResistor model
describes heat generation and voltage loss due to
a constant resistance.

ThermalConductor and ThermalConvection
The ThermalConductor model and Thermal-
Convection models describe heat flow and are
instantiated directly from the Modelica library.

3 Simulation Results

Figure 1 compares polarization curves with vary-
ing test conditions, specifically anode and cathode
pressure, flow plate temperature, cathodic reac-
tant flow rate, and anode and cathode RH. The
baseline scenario is shown as the solid curve in
each plot. Figure 1a shows that cell electric po-
tential increases with increased operating pressure
due to higher reactant volumetric concentration
(i.e., higher reactant partial pressure), but that
the gain decreases with increasing pressure. Fig-
ure 1b shows that the cell electric potential de-
creases as the flow plate temperatures and thus
the catalyst layer temperatures are increased, due
to the decreased change in Gibbs free energy of the
reaction (i.e., decreased Nernst potential). Fig-
ure 1c shows that electric potential increases as the
cathode reactant flow rate is increased, especially
in the high current density region, due to increased
O2 molar concentration. Figure 1d demonstrates
the net effect of two underlying consequences of
varying reactant RH. Higher RH leads to increased
hydration of the PEM and lower protonic resis-
tance in the PEM, which causes the slope of the
curve to become less negative. However, the in-
crease in RH also decreases the molar concentra-
tion of the reactants, so the limiting current den-
sity decreases. Qualitatively, the trends shown in
Figure 1 are consistent with the experimental test
results presented in the literature [9] .

4 Summary
Most previous FC models have been created with
the primary goal of matching the empirical ob-
servations of FC operation. In some cases, this
has resulted in model equations that are not rig-
orous on an energy basis. The research presented
within this paper modifies some of the traditional
FC model equations to be suitable for the acausal,
energy-based representation. Modelica is used as
a platform to resolve the differences between em-
pirical representations and first-principle relation-
ships pertaining to fuel cells.
Two areas have been emphasized in this paper:

the transport of chemical species by diffusion and
electrochemical reactions. These areas are central
to fuel cell modeling and have not previously been
explored to a full extent in Modelica. Most mod-
els in the FC literature describe diffusion via the
dusty-gas model or derivatives of it, which are em-
pirically based and may lead to singularities [14].
An alternative has been proposed which is explicit
in terms of energy balances. Most FC models also
describe the anode and cathode jointly. However,
this approach is not suitable for the FC library
because the anode and cathode catalyst layers are
separate and are connected to opposite sides of
the PEM. The proposed alternative addresses this
need by modifying the traditional Butler-Volmer
equation.

5 Nomenclature

Symbols
A Area (/m2).
C Molar concentration (/mol mol−1).
D Diffusion coefficient (/m2 s−1).
d Diameter (/m).
F Faraday’s constant (/C mol−1).
g Gibbs free energy (/J).
h Planck’s constant (/J s).
h Enthalpy (/J).
i Current (/A).
k Boltzmann’s constant (/J K−1).
L Length (/m).
M Molar mass (/kg mol−1).
N Number (/1).
n Amount (/mol).
P Perimeter (/m).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 73

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cell Polarization
Varying Outlet Pressure

Cell: 80 °C; An|Ca: H
2
|Air, 80|80 °C, 100|100 % RH, 2|3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

p
out

 = 1 atm

p
out

 = 1.5 atm

p
out

 = 2 atm

p
out

 = 3 atm

(a)

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cell Polarization
Varying Flow Plate Temperature

An|Ca: H
2
|Air, 1|1 atm, 80|80 °C, 100|100 % RH, 2|3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

T
FlowPlate

 = 60 °C

T
FlowPlate

 = 70 °C

T
FlowPlate

 = 80 °C

T
FlowPlate

 = 90 °C

(b)

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cell Polarization
Varying Cathode Flow Rate

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 100/100 % RH

Current Density / A cm−2

P
ot

en
tia

l /
 v

equivFlow
ca

 = 150 A

equivFlow
ca

 = 300 A

equivFlow
ca

 = 500 A

equivFlow
ca

 = 1000 A

(c)

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cell Polarization
Varying Reactant Humidity

Cell: 80 °C; An/Ca: H
2
/Air, 1/1 atm, 80/80 °C, 2/3 A cm−2 equiv. flow

Current Density / A cm−2

P
ot

en
tia

l /
 v

Φ
an,in

 = 25 %, Φ
ca,in

 = 25 %

Φ
an,in

 = 50 %, Φ
ca,in

 = 50 %

Φ
an,in

 = 75 %, Φ
ca,in

 = 75 %

Φ
an,in

 = 100 %, Φ
ca,in

 = 100 %

(d)

Figure 1: Polarization curves with varying (a) pressure at cathode and anode outlets, (b) temperature
of anode and cathode flow plates, (c) reactant flow rate through the cathode flow channels, and (d)
relative humidity at anode and cathode inlets.

p Pressure (/Pa).
R Universal gas constant (/J mol−1K−1).
R Resistance (/Ω).
r Radius (/m).
s Entropy (/J K−1).
T Temperature (/K).
t Time (/s).
u Internal energy or heat (/J).
v Volume (/m3).
v Velocity (/m s−1).
x Water quality (i.e., the fraction of wa-

ter that is vaporized) (/1).
β Electrode symmetry factor (i.e.,

charge transfer coefficient).

ε Porosity (fraction of free space to total
space) (/1).

γ Surface area per volume (/m−1).
κ Permeability (/m2).
λ PEM hydration

(/molH2O (molSO−3
)−1).

µ Dynamic viscosity (/Pa s).
ν Kinematic viscosity (/m2 s−1).
φ Electric potential, (/V).
ρ Density (/kg m−3).

Accents
(̄) Per amount (/mol−1).
˙() Per time (e.g., flow rate or velocity)

(/s−1).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 74

()′′ Per area (/m−2).
()′′′ Per volume (/m−3).

Subscripts

()(x) As x.
()·x Along x.
()∇x Due to the gradient in x.
()x,y Of x and y.
()x Of x.
A On an areal basis.
an The anode.
ca The cathode.
dry Without or excluding H2O.
F Degrees of freedom.
g The gas phase.
i The interface or chemical species de-

noted by i.
j The interface or chemical species de-

noted by j.
k The interface or chemical species de-

noted by k.
l The liquid phase.
P Phases.

react The reaction.
S Species.
v On a volumetric basis.
z The dimension from the anode to the

cathode (parallel to charge flow).
← In the backward direction.
→ In the forward direction.

Superscripts
+ In the positive state.
− In the negative state.
0 In the initial, nominal, or reference

state (e.g., standard pressure).
eff Effective.
mod Modified.

6 Acknowledgements

This research was supported in its initial stages
by the Office of Naval Research under grant
#N00014-04-0682 to the Hawaii Natural Energy
Institute and later by the Robert G. Shackelford
Fellowship of the Georgia Tech Research Institute.
The authors wish to acknowledge the support of
the Modelica Association and the Modelica com-
munity by the open sharing of the Modelica li-
brary and the Modelica_Fluid library. Although

it is not currently possible to offer the library de-
scribed within this paper online as open-source
code, the authors request that any interested read-
ers contact them.

References
[1] D. M. Bernardi and M. W. Verbrugge. A

mathematical model of the solid-polymer-
electrolyte fuel cell. Journal of The Electro-
chemical Society, 139(9):2477–91, 1992.

[2] J. O. M. Bockris, A. K. N. Reddy,
and M. Gamboa-Aldeco. Modern Electro-
chemistry 2A: Fundamentals of Electrodics.
Kluwer Academic/Plenum Publishers, New
York, 2nd edition, 2000.

[3] B. McBride, M. Zehe, and S. Gordon. NASA
Glenn coefficients for calculating thermody-
namic properties of individual species. NASA
report TP-2002-211556, 2002.

[4] Modelica Association. Modelica: A unified
object-oriented language for physical systems
modeling, February 2 2005.

[5] Modelica Association. Modelica Fluid Li-
brary, August 2006. v1.0 Beta 1.

[6] Modelica Association. Modelica Standard Li-
brary, March 2006. v2.2.1.

[7] M. J. Moran and H. N. Shapiro. Fundamen-
tals of Engineering Thermodynamics. John
Wiley & Sons, Inc., Hoboken, NJ, 5th edi-
tion, 2004.

[8] Private communication from T. E. Springer,
LANL. Fortran code of Springer 1991 poly-
mer electrolyte fuel cell model, 2007.

[9] T. E. Springer, M. S. Wilson, and S. Gottes-
feld. Modeling and experimental diagnostics
in polymer electrolyte fuel cells. Journal of
The Electrochemical Society, 140(12):3513–
3526, 1993.

[10] T. E. Springer, T. A. Zawodzinski, and
S. Gottesfeld. Polymer electrolyte fuel cell
model. Journal of The Electrochemical Soci-
ety, 138(8):2334–2342, 1991.

[11] J. X. Wang, T. E. Springer, P. Liu, M. Shao,
and R. R. Adzic. Hydrogen oxidation reaction

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 75

on Pt in acidic media: Adsorption isotherm
and activation free energies. Journal of Phys-
ical Chemistry C, 111(33):12425–12433, 2007.

[12] A. Z. Weber and J. Newman. Modeling trans-
port in polymer-electrolyte fuel cells. Chem-
ical Reviews, 104(10):4679 – 4726, 2004.

[13] A. Z. Weber and J. Newman. Transport
in polymer-electrolyte membranes III: Model
validation in a simple fuel-cell model. Journal
of The Electrochemical Society, 151(2):326–
339, 2004.

[14] A. Z. Weber and J. Newman. Modeling gas-
phase flow in porous media. International
Communications in Heat and Mass Transfer,
32(7):855 – 860, 2005.

[15] Wikipedia. Darcy’s law, November 2008.

[16] Wikipedia. Maxwell-Stefan-diffusion,
November 2008.

[17] Wikipedia. Fick’s law of diffusion, April 2009.

[18] Z. Zhan, J. Xiao, Y. Zhang, M. Pan, and
R. Yuan. Gas diffusion through differently
structured gas diffusion layers of PEM fuel
cells. International Journal of Hydrogen En-
ergy, 32(17):4443–4451, 2007.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 76

Dynamic Modelling of CO2-removal units for an IGCC power plant
Sindy Heil1 Christian Brunhuber2 Kilian Link2 Julia Kittel1 Bernd Meyer1

1Institute of Energy Process Engineering and Chemical Engineering

TU Bergakademie Freiberg
09596 Freiberg

Sindy.Heil@iec.tu-freiberg.de,

2Siemens AG, Energy Solutions
Freyeslebenstraße 1

91058 Erlangen

Abstract

This article describes dynamic models of the carbon
dioxide (CO2) -removal units which are coupled with
conventional models to form a complete model of an
IGCC power plant with CO2 capture.
Therefore some components of the Modelica_Fluid
1.0 library and packages of the Modelica.Media
library from Modelica 3.0 were used. Not yet avai-
lable components were developed.
The results obtained with Dymola 7.1 were com-
pared with steady state simulations calculated with
other tools (ChemCAD and Aspen Plus) and a very
good agreement was found.

Keywords: IGCC, Rectisol Wash, CO Shift, CO2-
removal

1 Introduction

The object of interest is an Integrated Gasification
Combined Cycle (IGCC) Carbon Capture & Storage
(CCS) power plant with Siemens Fuel Gasifier
Technology (SFGT). This is a climate-friendly
power plant where a gas island consisting of gasifi-
cation and a gas treatment is connected with a
Combined Cycle (gas and steam turbine) to generate
electricity.
The interactions between the several plant units are
very complex and require a dynamic analysis to
predict bottlenecks, to react to planned revisions

(e.g. load changes), unplanned outages (gasifier trip,
gas turbine trip, etc.) and to ensure the correct and
safe operation behaviour of the plant. Furthermore
the dynamic model is the basis for the development
of an optimised control system. The overall object of
the research is to raise the availability of IGCC
power plants (Figure 1) because this is inevitably
connected with the operating and therefore economic
efficiency of the plant.

Figure 1: Availability statistics for IGCC first-of-a
kind plant [1]

As illustrated in Figure 1 the availability rises over
the years of operation. The aim is to start already
with a higher availability and of course to operate the
plant with a high availability. This demands an exact
process knowledge which can be gained with
dynamic modelling.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 77 DOI: 10.3384/ecp09430021

Making use of dynamic modelling for analysing
IGCC processes gets more and more relevant.
Schoen for example used a dynamic model to control
the performance of the Buggenum IGCC [2]. The
U.S. Department of Energy’s (DOE) of the National
Energy Technology Laboratory (NETL) works on an
IGCC dynamic plant simulator for a research and
training center [3].
This contribution deals with the simplified modelling
of the transient behaviour of an IGCC power plant
with Modelica and Dymola with the focus on the gas
path of the plant.
The introduction provides a short review of the
IGCC power plant with CCS technology and the
interaction of the sub-units.
The main part of the article describes the dynamic
modelling of the CO2-removal units: CO shift and
Rectisol wash.
In the last part of the paper results of the modelled
sub-units are demonstrated and an outlook of further
challenges is given.

2 IGCC power plant

In Figure 2 the sub-units of an IGCC power plant
and their main interaction flows are shown.

Gasifier

Gas Turbine

shaft

J=1000

Water/Steam
Cycle

O2

N2

Air

Rectisol WashCO Shift

Water
Steam

Syngas

Air Separation Fuel System

GasifierGasifier

Gas Turbine

shaft

J=1000

Gas Turbine

shaft

J=1000

Water/Steam
Cycle

Water/Steam
Cycle

O2

N2

Air

Rectisol WashRectisol WashCO ShiftCO Shift

Water
Steam

Syngas

Air Separation Air Separation Fuel SystemFuel System

Figure 2: Simplified scheme of an IGCC power plant

In the gasifier the coal is gasified with oxygen (O2)
to produce a synthesis gas (syngas). The main com-
ponents of the syngas are carbon monoxide (CO) and
hydrogen (H2).
In the next step the CO of the syngas is converted in
the CO shift together with steam into CO2 and H2.
The formed CO2, sulphur compounds like hydrogen
sulphide (H2S) and carbonyl sulphide (COS) and
other impurities like nitrogen compounds are re-
moved from the syngas by means of a physical wash,
e.g. Rectisol or Selexol. In the presented contribution

the Rectisol wash is chosen which uses methanol
(CH3OH) as solvent. This physical scrubbing process
separates highly purified CO2 which allows the
application of CCS technologies.
In the fuel system the cleaned syngas is diluted with
nitrogen (N2) to produce an utilisable fuel for the gas
turbine to generate electricity.
Parts of the compressed air from the gas turbine
compressor can be routed to the air separation unit.
There the air is separated into O2 for the gasification
process and N2 as fuel diluting agent.
The gasifier und gas turbine waste heat is used to
generate steam. This steam is routed to a steam
turbine for electrical power generation.

3 Developed Models

The motivation of using Modelica for this applica-
tion is based on its multi-purposed, object-oriented
background, which allows the user an equation-
based approach. In contrast, tools like Aspen
Dynamics offer already most of the required compo-
nents and also more detailed media models, but are
not that flexible for user specific developments.
For the implementation some models from the
Modelica.Media and the Modelica_Fluid library
were used. These libraries provide components to
model thermo-hydraulic systems, but do not focus on
gas dynamic problems [4]. Consequently compo-
nents which are not yet available in the Modelica
libraries, like the shift reactors or the absorber
columns, were modelled. Further physical properties
of methanol as physical solvent of the Rectisol wash
and its mixture with CO2 or water (H2O) were de-
fined as incompressible media.
Because of the complexity of the process many
assumptions and simplifications were necessary to
ensure a simulation in real time. For example the
chemical water gas shift reaction and the sour gas
absorption are approximated by interpolation func-
tions depending on temperature. The developed
models are based on the equations obtained from
thermodynamic literature and assume equilibrium
conditions with ideal behaviour in liquid phase and
vapour phase.
Generally only the gas path is modelled and the
water / steam cycle is neglected. The gas vector
consists of the following 8 components:

N2, H2, CO, CO2, CH4, H2S, COS, H2O.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 78

3.1 CO Shift

The CO shift is an equilibrium-limited reaction. CO
reacts exothermally with steam at elevated tempera-
tures according to:

CO + H2O CO2 + H2. (∆H298 = –41 kJ/mole) (1)

Figure 3 shows a simplified process flow diagram for
this application.

Figure 3: Process flow diagram of a CO shift

In the presented example the CO shift is carried out
in two adiabatic reactors in series with intercooling.
Because of the already adequate moisture content
after the gasifier with quench there is no saturation
step necessary after the gasification island.
The heat of the exit gas from the first reactor (high
temperature CO shift, HT) is recovered as high-
pressure superheated steam. The steam produced
after the second reactor (low temperature CO shift,
LT) is recovered by further heat integration [5].
The CO concentration in the exit gas depends on the
temperature and the mixture composition of the
syngas which is provided by the gasifier.
In the first reactor the bulk of CO is converted. The
LT reactor, which is installed downstream of the HT
shift realises a CO-conversion down to parts per
million (ppm) levels at the reactor outlet.
The reactors include a catalyst bed to promote the
CO shift reaction. This catalyst is capable for the
conversion of CO in sour gas. This means it is active
in the presence of sulphur compounds. The positive
side effect of this catalyst is the simultaneously
executed COS hydrolysis with the following chemi-
cal reaction:

COS + H2O CO2 + H2S. (∆H298 = –35 kJ/mole) (2)

Down-stream of the CO shift reactors the shifted
syngas is cooled down and the condensed water is
separated and used for the intercooling.

3.1.1 CO Shift Reactor
In the reactor model the mass, component mass,
energy and momentum equations have to be con-
sidered.
The balance equations were all effected by the CO
shift and the COS hydrolysis. These chemical
reactions can be considered as instantaneous that
means that the chemical equilibrium is attained. The
reactions are modelled with the help of conversion
rates for CO and COS which are calculated by linear
equations depending on the temperature T in a pre-
defined interval as described as follow:

() .= +conversionrate T a bT (3)

The values for these linear equations were obtained
by a sensitivity analysis of a CO shift reactor in
Aspen Plus by varying the temperature in the corres-
ponding interval. With these conversion rates the
component mass balances are calculated. Based on
this knowledge the energy balance can be specified
with the exothermal heat of the CO shift and COS
hydrolysis reaction. Therefore the heat values of the
gas at the inlet and outlet are used. The energy
balance also includes the reactor mass as heat sto-
rage.
The pressure drop depends on the mass flow. For the
design case default parameters for both reactors are
given. The following relation is used [6]:

22
0

0

,=
Δ Δ

mm
p p

 (4)

where 0m is the mass flow and 0Δp the pressure
drop in the design case.
Important for the design and the dynamic behaviour
is also the space velocity, which has to be between
1,000 h–1 and 3,000 h–1 for this application [7]. In
this example the space velocity is set to 2,600 h–1.

3.1.2 Heat Exchanger
The heat exchanger is built on several heat nodes to
realise more than one heat transmission point.
Every heat node consists of two vessels called
ClosedVolume taken from the Modelica_Fluid
library. They are connected by their heat ports with a
given heat transfer coefficient. With the valves
between the heat nodes the pressure drop, given as a
constant parameter, is taken into account.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 79

Figure 4: Schematic of the heat exchanger with 5
heat nodes in Dymola

3.1.3 Cooler
The cooler is located between the CO shift and the
Rectisol wash.
In the cooler the gas is cooled down and the con-
densed water leaves the column.
To account for the temperature and moisture gradient
the column is divided into theoretical stages, where
the conservation laws are derived for each theoretical
stage. The mass balance includes the gas and the
water flows. For the water content in the gas the
saturation state is calculated. The heat of condensa-
tion is considered in the energy balance. The pres-
sure drop is assumed as constant for the complete
column.

3.1.4 Specific challenges
The process flow diagram of the complete CO shift
diagram in Dymola is shown in Figure 5.
The validation of the dynamic model is another chal-
lenge, because relevant dynamic data (T, X, p) from
existing plants is not yet available. Nevertheless,
steady state performance was validated with the help
of simulation result in Aspen Plus and ChemCAD.

The dynamic behaviour could only be validated via
plausibility check.

Figure 5: Process flow diagram of the CO shift dia-
gram in Dymola

3.2 Rectisol Wash

The Rectisol process is a physical wash process
which uses cold methanol as physical solvent. The
undesired components of the raw gas, that are pro-
duced in gasification with coal, such as CO2, H2S,
COS, HCN, NH3 and other traces are physically
absorbed by methanol. In the regeneration part these
components are desorbed by reducing the pressure of
the solvent, stripping or reboiling the solvent.
The different solubilities of the components allow a
selective removal of H2S and CO2 dependent on the
temperature. Also the solubility of the trace compo-
nents, which is much higher than those of H2S,
allows removing them separately in the prewash
stage. This gives the ability to achieve very high gas
purity with H2S concentration of typically 0.1 ppm
and CO2 concentrations in the range of 2 – 4 Vol.-%
down to few ppm [7].
In Figure 6 the process flow diagram of the Rectisol
plant in Dymola is presented. The process flow dia-
gram shows a selective two-step design. This means
that H2S is removed in the first step followed by the
CO2-removal in the second step.
The raw gas entering the plant in the prewash stage
is cooled. There trace components are removed at a
very small cold solvent rate. The gas is first chilled
by heat exchange with process off-gas and then by
refrigeration.
Thereafter, in the H2S absorber the sulphur is
removed from the gas using a relatively small flow
of CO2-rich solvent to a residual sulphur content of
below 0.1 ppm.
The CO2 is removed in a two-stage CO2 absorber
with the main methanol flow. In the lower section,
the CO2 content of the gas is reduced to about 5 %
using flash-regenerated methanol. The remaining

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 80

CO2 is removed using regenerated, cold methanol in
the upper section.
The refrigeration balance of the system is maintained
by an ammonia refrigeration plant.

Figure 6: Process flow diagram of the modelled
Rectisol plant in Dymola

For the simulation of the Rectisol plant only the gas
path is modelled. The regeneration of the methanol
solvent and the interaction with the water steam
cycle are neglected. Furthermore only the absorption
of CO2 into methanol is taken into account. There is
no transfer of H2S and other trace components con-
sidered.

3.2.1 Mixture of Methanol and CO2
For the modelling of the Rectisol plant the solvent
methanol and its mixtures with CO2 or water are
necessary. These media are not yet available in the
Modelica.Media library. Therefore they were created
as incompressible media with the help of tables. The
minimal data set needed to describe the thermody-
namic states is tables of the density ρ and the spe-

cific heat capacity pc as functions of the tempera-
ture. For these values data from the NIST Chemistry
WebBook was included [8].

For the mixture M of CO2 and methanol ideal pro-
perties were assumed. This leads to the following
equations, where the properties of the mixture
follows from the properties of the components in
respect of there mass fraction X:

3 2

3 2

1 / ,
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

CH OH CO
M

CH OH CO

X X
ρ

ρ ρ
 (5)

3 3 2 2, , , .p M CH OH p CH OH CO p COc X c X c= ⋅ + ⋅ (6)

The same relations are used for the mixture of
CH3OH and H2O needed in the prewash section.

3.2.2 Prewash
The Prewash consists of a cooler and a prewash
column. In the cooler with condensate trap a prede-
fined heat flow is released. In the prewash column a
small methanol flow cools the gas down again and is
derived together with the condensed water flow.
For the calculation of the saturated gas properties the
same equations like in the cooler are used.

3.2.3 CO2 Absorber
The raw gas enters the absorber column at the bot-
tom section and is contacted with the scrubbing
methanol introduced at the top of the column. The
methanol leaves the column at the bottom together
with the absorbed CO2.
The modelling of the absorber column is based on
the equilibrium stage model, which divides the
column into theoretical stages and calculates the
balance equations for each several stage (Figure 7).

Figure 7: Schematically illustration of in- and output
streams of a theoretical stage

2 ,CO im
,solvent im

,, ,i i gas iT p V

, 1 , 1,solvent i solvent im h+ +

, ,,solvent i solvent im h

, ,,gas i gas im h

, 1 , 1,gas i gas im h− −

theoretical
stage i

theoretical
stage 1i −

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 81

In the CO2 absorber there are two different media:
the gas and the solvent. For each medium a mass
balance is considered but only one energy balance is
implemented.
The following modelling assumptions are used:
1) Each column theoretic stage is considered as an

adiabatic system.
2) In the energy balance the wall material is re-

garded as a heat storage system and the exo-
thermic process heat of the CO2 absorption in the
polar solvent is implemented.

3) On the liquid side methanol does not vaporise
and hence does not go into the gas phase.
Against on the gas side only CO2 is transferred
into the liquid phase.

4) This solubility of CO2 in CH3OH is a function of
temperature at a partial pressure of one atmos-
phere.

5) For the gas / liquid equilibrium the ideal Henry
law is used, even though this is completely reli-
able only at low molar fraction and at moderate
pressure where no real gas behaviour is to be
considered. The Henry law can be described
with the following equation [9]:

, , ,gas i solvent iY p HK Y⋅ = ⋅ (7)

where ,gas iY is the molar fraction of the compo-

nent i in the gas, ,solvent iY the molar fraction of
the component i in the solvent, p the pressure
and HK the Henry coefficient. In this case CO2
is meant by the component i .

6) To calculate the Henry coefficient experimen-
tally investigated values [10] were interpolated
and expressed as polynomial of the temperature
T in a predefined interval:

() ².= + +HK T a bT cT (8)

7) For the pressure loss Δp only the hydrostatic
part is considered [11]. Therefore it depends
only on the solvent level

3CH OHh on the theoreti-
cal stages:

3 3
,CH OH CH OHp g hΔ = ⋅ ⋅ρ (9)

where
3CH OHρ is the density of methanol and g

the standard gravity.

3.2.4 Validation of the CO2 absorber
The steady state results of the models were validated
with calculations simulated with tools like Aspen
Plus and ChemCAD. Therefore the CO2 absorber is
connected with sources and sinks of gas or solvent to
compare the results for several cases between
Dymola, Aspen Plus and ChemCAD (Figure 8).

m

GAS_IN

GAS_OUT

m

WM_IN

WM_OUT

1

1

2

3

4

Gas_In

WM_In
Gas_Out

WM_Out

GAS-IN

WM-IN

GAS-OUT

WM-OUT

ABSORBER

Figure 8: CO2 absorber in Dymola (left), ChemCAD
(middle) and Aspen Plus (right)

For the reference case the following input values are
used.

solvent_in gas_in
[/]m kg s 568.07 225.80
[]T K 223.15 238.85
[]p bar 24.25 24.35

2
[]−NX 0 0.090626

2
[]HX − 0 0.058889

[]COX − 0 0.047220

2
[]COX − 0 0.803203

4
[]CHX − 0 0.000062

2
[]H SX − 0 0

[]COSX − 0 0

2
[]H OX − 0 0

3
[]CH OHX − 1 0

Table 1: Input values in the CO2 absorber for the
reference case

In this table m is the mass flow, T the tempera-
ture, p the pressure and X the mass fraction.

The CO2 absorber was simulated with 8 theoretical
stages and the input values listed in Table 1 in
ChemCAD, Dymola and Aspen Plus.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 82

Figure 9: Temperature profile of CO2 absorber

Figure 10: CO2 content profile in the gas of the CO2
absorber

 case 1 Reference case (Table 1)

 case 2 _ 228.85gas inT K=

 case 3 _ 425.8 /gas inm kg s=

 case 4
2

2

, _

, _

0.603203

0.290626
CO gas in

N gas in

X

X

=

=

 case 5 _ 368.0345 /solvent inm kg s=

 case 6 _ 243.15solvent inT K=

 case 7
2

2

, _

, _

0.15

0.85
CO solvent in

N solvent in

X

X

=

=

 case 8
_

_

34.35

34.25
gas in

solvent in

p bar

p bar

=

=

Table 2: Variation of the input values of the CO2
absorber

Figure 9 and Figure 10 show the absorber profiles of
the temperature and the CO2 content of the gas. The
theoretical stage 8 is the head and stage 1 is the sump
of the column. The profiles correlate very well with
each other.
As shown in Table 2 the input values were varied for
8 cases.
Figure 11 to Figure 14 show the results of comparing
the CO2 content in the outlet gas and in the solvent
and the associated temperatures of the gas and the
solvent from the simulation in Dymola with the
steady state results calculated in ChemCAD and
Aspen Plus.

CO2 in gas

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8

case

m
ol

e
fr

ac
tio

n
C

O
2

[-
]

Dymola ChemCAD Aspen Plus

Figure 11: Mole fraction of CO2 in outlet gas of CO2
absorber compared between Dymola, ChemCAD and
Aspen Plus

CO2 in solvent

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8

case

m
ol

e
fr

ac
tio

n
C

O
2

[-
]

Dymola ChemCAD Aspen Plus

Figure 12: Mole fraction of CO2 in solvent after CO2
absorber compared between Dymola, ChemCAD and
Aspen Plus

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 83

temperature gas

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8

case

de
vi

at
io

n
[%

]

Dymola-ChemCAD Dymola-AspenPlus

C

Figure 13: Deviation of temperature of the outlet gas
of CO2 absorber compared between Dymola and
ChemCAD and between Dymola and Aspen Plus

temperature solvent

0
0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8

case

de
vi

at
io

n
[%

]

Dymola-ChemCAD Dymola-AspenPlus

Figure 14: Deviation of temperature of the solvent
after CO2 absorber compared between Dymola and
ChemCAD and between Dymola and Aspen Plus

As physical property model in ChemCAD the ex-
tended Soave-Redlich-Kwong method and in Aspen
Plus the Predicted Redlich Kwong-Soave method
were used. The results obtained in the Dymola model
show similar results compared to the other simula-
tion tools.
The main differences appear in the CO2-fraction in
gas in case 1 and 2 with 3.2 mole-% between
Dymola and ChemCAD (Figure 11) and for the
temperature in gas in case 8 with a deviation of
2.4 % between Dymola and ChemCAD as well as
between Dymola and Aspen Plus (Figure 13).

4 Conclusions and Outlook

Dynamic models for the CO2 removal were pre-
sented. Because of the ambition to guarantee a com-
puting time faster than real time the resulting DAE
systems were solved by the variable time step solver
DASSL in Dymola.
The developed simulation models of the CO shift
and the Rectisol wash have proven their capability to
simulate complex power plant components.
A good agreement was observed for the steady state
results of Dymola simulations compared to Chem-
CAD and Aspen Plus calculations.
Future work will concentrate on power block
models, a model for the air separation unit and the
gasifier. At the end the overall ambition is to couple
the dynamic models with each other in order to build
a complete model of an IGCC with CO2 capture.
When all developed models have been sufficiently
validated and connected various process studies of
control concepts can be performed.

References

[1] Holt, N.: Gasification Technology Status.
Electric Power Research Institute EPRI,
California USA, 2006

[2] Schoen, P.: Dynamic Modeling and Control
of Integrated Coal Gasification Combined
Cycle Units. PhD thesis, Faculty of Me-
chanical Engineering and Marine Techno-
logy, Technical University Delft, 1993

[3] Provost, G. T.; Erbes, M. R.; Zitney, S. E.;
Phillips, J. N.; McClintock, M.; Stone, H. P.;
Turton, R.; Quintrell, M.; Marasigan, J.: Ge-
neric Process Design and Control Strategies
Used to Develop a Dynamic Model and
Training Software for an IGCC Plant with
CO2 Sequestration. International Pittsburgh
Coal Conference, Pittsburgh, USA, 2008

[4] Casella, F.; Otter, M.; Proelss, K.; Richter,
Ch.; Tummescheit, H.: The Modelica Fluid
and Media library for modeling of incom-
pressible and compressible thermo-fluid pipe
networks. Proceedings of the 5th International
Modelica Conference, Wien, 2006

[5] Haldor Topsoe: Sulphur resistant water-gas
shift/sour shift, www.topsoe.com, 2009

[6] Perez, A. A. G.: Modelling of a Gas Turbine
with Modelica. Department of Automatic
Control, Lund Institute of Technology, 2001

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 84

[7] Kohl, A.; Nielsen, R.: Gas Purification: 5th
Edition, Gulf Publishing Company, Houston,
Texas, 1997

[8] National Institute of Standards and Tech-
nology (NIST) Chemistry WebBook,
http://webbook.nist.gov/chemistry/form-
ser.html (call date: 11-08-09)

[9] Felli, V.: Appendix C: Analysis and simula-
tion of a rectisol-based acid gas purification
process. In: A cost-benefit Assessment of
Gasification-Based Biorefining in the Kraft
Pulp and Paper Industry, 2006

[10] Schroedter, F.; Melzer, W.-M.; Knapp, H.:
Investigation of phase equilibria in multi-
component mixtures consisting of propane,
carbon dioxide, water and various organic
solvents. Gas Separation and Purification,
Vol. 5, 1991

[11] Sattler, K.: Thermische Trennverfahren,
Grundlagen, Auslegung, Apparate. 3. Aufla-
ge, WILEY-VCH, Weinheim, 2001

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 85

Mixed Quantitative and Qualitative Simulation in Modelica

François E. Cellier Victorino Sanz
 ETH Zürich UNED Madrid
 Switzerland Spain
 FCellier@Inf.ETHZ.CH VSanz@DIA.UNED.ES

Abstract

This article introduces a new Modelica library, FIR-
lib, developed for the mixed quantitative and qualita-
tive simulation of physical systems. Qualitative sub-
models are built using the Fuzzy Inductive Reasoning
(FIR) paradigm.

Whereas Modelica has been designed for model-
ing physical systems from first principles, some sys-
tems do not lend themselves to this kind of model-
ing, either because they are too poorly understood
(no meta-knowledge is available yet) or because they
are so complex that capturing their behavior in a de-
tailed fashion would be a hopeless undertaking.

Use of the new library is demonstrated by means
of two examples, a simple hydraulic control system
(a textbook example) and a model of the human car-
diovascular system.

Keywords: fuzzy inductive reasoning; inductive
modeling; qualitative modeling; mixed quantitative
and qualitative simulation; cardiovascular system

1 Introduction

Modelica has been designed as an environment for
modeling physical systems from first principles in an
object-oriented fashion.

Yet, there exist systems that don’t lend them-
selves easily to this type of modeling, either because
the meta-laws governing their dynamic behavior are
not fully understood, or because these systems are
too complex to be described with complete details.

In both of these cases, we need a tool that can
capture dynamic behavior inductively, i.e., from ob-
servations, rather than deductively, i.e., from first
principles.

Typical tools that are used for such purposes in-
clude artificial neural networks and fuzzy modelers.
In this paper, we propose the use of a fuzzy model-
ing approach called Fuzzy Inductive Reasoning (FIR)
[2,5].

In FIR, observations of input/output behavior of
an unknown system are fuzzified (discretized with
fuzzy membership functions associated with each
class). A fuzzy rule base of dynamic relations be-
tween inputs and outputs is then automatically syn-
thesized. The fuzzy rule base constitutes the qualita-
tive model of the system. It is subsequently used to
infer qualitative behavior of the system in a qualita-
tive simulation step. The qualitative simulation re-
sults, so-called episodes, are then defuzzified (quan-
tified) to trajectory behavior using the information
contained in the fuzzy membership functions.

We sometimes encounter systems that are partial-
ly understood, i.e., the meta-laws describing some of
its subsystems are well-known, whereas those de-
scribing other subsystems are unknown or only in-
completely known.

In such cases, it is useful to be able to simulate
such systems using a mixed quantitative and qualita-
tive simulation environment. A (synthetic) example
model is shown in Fig.1.

Fig.1: Mixed quantitative and qualitative model

The pink boxes of Fig.1 represent quantitative sub-
systems, whereas the yellow boxes represent qualita-
tive subsystems. Quantitative signals can be con-
verted to qualitative signals (i.e., fuzzified) using the
green Recode block, whereas qualitative signals can
be converted to quantitative signals (i.e., defuzzified)
using the green Regenerate block.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 86 DOI: 10.3384/ecp09430050

2 Qualitative Variables

Qualitative variables are variables that assume qua-
litative values. Variables of a dynamical system are
functions of time. The behavior of a dynamical sys-
tem is a description of the values of its variables over
time. The behavior of quantitative variables is usual-
ly referred to as trajectory behavior, whereas the be-
havior of qualitative variables is commonly referred
to as episodical behavior. Qualitative simulation can
thus be defined as the process of inferring the epi-
sodical behavior of a qualitative dynamical system or
model.

Qualitative variables are frequently interpreted as
an ordered set without distance measure [1]. It is
correct that ‘warm’ is “larger” (warmer) than ‘cold,’
and that ‘hot’ is “larger” (warmer) than ‘warm.’ Yet,
it is not true that:

‘warm’ – ‘cold’ = ‘hot’ – ‘warm’

or, even more absurdly, that:

‘hot’ = 2 · ‘warm’ – ‘cold’

No subtraction operator is defined for qualitative
variables.

Whereas many qualitative simulation engines
treat also the independent variable, time, as a qualita-
tive variable, FIR does not. FIR simulates the beha-
vior of qualitative states as functions of a quantita-
tive time variable.

Without this feature, FIR would not be capable of
dealing with mixed quantitative and qualitative mod-
els.

3 Fuzzy Inductive Reasoning

The Fuzzy Inductive Reasoning (FIR) methodology
consists of four primary modules. The Recode mod-
ule converts (fuzzifies) quantitative variables into
qualitative variables; the Optmask module deter-
mines inductively a qualitative model relating sets of
observations of input and output behavior; the Fore-
cast module performs a qualitative simulation by
inferring the episodical (qualitative) future behavior
of a set of output variables given a set of input va-
riables and a qualitative model; and finally the Rege-
nerate module converts (defuzzifies) qualitative va-
riables into quantitative variables.

3.1 Fuzzification

Recoding denotes the process of converting a quan-
titative variable to a qualitative variable. In general,
some information is lost in the process of recoding.
Obviously, a temperature value of 97oF contains
more information than the value ‘hot.’ Fuzzy recod-
ing avoids this problem. Fig.2 shows the fuzzy re-
coding of a variable called “systolic blood pressure.”

Fig.2: Fuzzy recoding

For example, a quantitative systolic blood pres-

sure of 135.0 is recoded into a qualitative class value
of ‘normal’ with a fuzzy membership value of 0.895,
and a side value of ‘right.’ Thus, a single quantita-
tive value is recoded into a qualitative triple. Any
systolic blood pressure with a quantitative value be-
tween 100.0 and 150.0 will be recoded into the qua-
litative value ‘normal.’ The fuzzy membership func-
tion denotes the value of the bell-shaped curve
shown on Fig.2, always a value between 0.5 and 1.0,
and the side function indicates whether the quantita-
tive value is to the left or to the right of the maxi-
mum of the currently active fuzzy membership func-
tion. Obviously, the qualitative triple contains the
same information as the original quantitative varia-
ble. The quantitative value can be regenerated accu-
rately from the qualitative triple, i.e., without any
loss of information.

The shape of the fuzzy membership functions can
be chosen either Gaussian or triangular, and the
landmarks, i.e., the values of the variable to be re-
coded that separate neighboring classes from each
other, can be either user-specified, or they can be
determined by the FIR software itself using a variety
of different approaches, such as the equal partition-
ing method [8], whereby the landmarks are chosen
such that each class of the recoded variable contains
the same number of samples.

3.2 Fuzzy Modeling

A qualitative model determines a relationship be-
tween the class values of a set of input variables and
that of an output variable. FIR encodes the qualita-
tive model using a so-called optimal mask.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 87

A mask denotes a relationship between a set of
variables. For example, let us consider the following
raw data model consisting of five variables, namely
two input variables, u1 and u2, and three output va-
riables, y1, y2, and y3, that are recorded at different
instants of time:

Each column of the raw data model lists the class
values of one qualitative variable recorded at differ-
ent instants of time, and each row lists the class val-
ues of all qualitative variables recorded simulta-
neously. The raw data matrix is accompanied by a
fuzzy membership matrix and a side matrix of iden-
tical dimensions.

A mask denotes a relationship between these va-
riables. For example, the mask:

denotes the following relationship pertaining to the
five variable system:

y1(t) = f(y3(t-2t),u2(t-t),y1(t-t),u1(t))

The single positive element in the mask, always lo-
cated in the last row, denotes the position of the
model output. The negative elements denote the po-
sitions of the model inputs. The example mask has
four inputs. The sequence in which they are enume-
rated is immaterial. They are usually enumerated
from left to right and top to bottom. Thus, the mask
is simply a matrix representation of the qualitative
relationship relating model inputs to the model out-
put.

The mask must have the same number of columns
as the raw data matrix. The number of rows of the
mask is called the depth of the mask. The mask can
be used to map a dynamic relationship onto a static
relationship. To this end, the mask is shifted over
the raw data matrix. Selected inputs and outputs can
be read out from the raw data matrix and can be writ-

ten on a single row next to each other. Fig.3 illu-
strates this process.

Fig.3: Flattening dynamic relationships

After the mask has been applied to the raw data ma-
trix, the formerly dynamic episodical behavior has
become static, i.e., the relationship is now contained
within a single row:

o1(t) = f(i1(t),i2(t),i3(t),i4(t))

The resulting matrix is called input/output matrix.
Each row of the input/output matrix represents a
fuzzy rule.

How is the mask selected? A mask candidate
matrix is constructed, in which negative elements
denote positions of potential model inputs, and the
single positive element denotes the position of the
model output. A good mask candidate matrix for the
aforementioned five variable system might be:

A mask candidate matrix is an ensemble of all ac-
ceptable masks. The optimal mask selection algo-
rithm determines the best among all masks that are
compatible with the mask candidate matrix. The
mask shown before is one such mask. The optimal
mask is the one mask that maximizes the forecasting
power of the inductive reasoning process. To this
end, the mask selection algorithm optimizes a mask
quality metric that is a combination of a Shannon
entropy reduction metric (making the input/output
matrix as deterministic as possible) and an observa-
tion ratio metric (ensuring that most input/output
patterns have been observed at least five times) [5].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 88

3.3 Fuzzy Simulation

Once the optimal mask has been determined, it can
be applied to the given raw data matrix resulting in a
particular input/output matrix. Since the in-
put/output matrix contains functional relationships
within single rows, the rows of the input/output ma-
trix can now be sorted in alphanumerical order. The
result of this operation is called the behavior matrix
of the system. The behavior matrix is a finite state
machine. For each combination of input values, it
shows, which output is most likely to be observed.

Forecasting (simulation) is now a straightforward
procedure. The mask is simply shifted further down
beyond the end of the raw data matrix, future inputs
are read out from the mask, and the behavior matrix
is used to determine the future output, which can
then be copied back into the raw data matrix. In
fuzzy forecasting, it is essential that, together with
the qualitative output, also a fuzzy membership value
and a side value are forecast. Thus, fuzzy forecast-
ing predicts an entire qualitative triple, from which a
quantitative variable can be regenerated whenever
needed.

3.4 Defuzzification

Once the qualitative output episode has been deter-
mined, a quantitative trajectory can easily be con-
structed by the reverse operation of fuzzy recoding.
The class, membership, and side values are simply
recombined to produce a real-valued signal.

4 FIR Software

Originally, the FIR algorithms had been coded in
Fortran and were made available as a CTRL-C li-
brary [6]. Mixed quantitative and qualitative simula-
tions were performed in ACSL, which could invoke
the Fortran routines of the Recode, Forecast, and
Regenerate subroutines directly, i.e., the qualitative
models were constructed in CTRL-C, but mixed si-
mulations were run in ACSL [5].

When CTRL-C died, the algorithms were re-
coded in C, and CTRL-C was replaced by Matlab as
the interactive matrix manipulation environment.

There are currently two separate Matlab toolbox-
es available implementing the FIR algorithms.
SAPS-II [5] offers a command-driven interface. The
user invokes the four blocks of the FIR methodology
by writing m-files. Visual-FIR [9] offers a menu-
driven interface. Here, the user doesn’t write any
code, but selects combinations of algorithms from a

set of pull-down menus. SAPS-II is more general,
but Visual-FIR is easier and faster to use.

Both toolboxes can be used to run purely qualita-
tive simulations directly under Matlab. Yet, mixed
quantitative and qualitative simulations cannot be
run in this fashion. Thus when ACSL died, we lost
our ability to run mixed simulations.

This is where the new FIRlib fits in. The soft-
ware allows us to once again run mixed quantitative
and qualitative simulations, replacing ACSL by
Modelica.

Just like the former ACSL implementation, FIR-
lib currently offers Recode, Forecast, and Regene-
rate modules only. There is no need to offer an
Optmask module in the software, as the qualitative
model is being generated off-line. Hence also with
FIRlib, the qualitative models are being created us-
ing either SAPS-II or Visual-FIR. Future versions of
FIRlib may offer an Optmask module also for con-
venience.

FIRlib offers currently two implementations of
the FIR algorithms. In one of them (native SAPS),
the formerly C-coded algorithms were translated into
Modelica. The other (external SAPS) invokes C-
coded routines.

For small examples, there is little difference be-
tween the two versions. Yet, the cardiovascular sys-
tem model will not run efficiently in Dymola using
the native SAPS modules. The FIR algorithms oper-
ate on very large data tables that Dymola converts to
individual variables. Hence the cardiovascular sys-
tem model, when using native SAPS, generates
200,000 scalar variables, whereas only 4000 va-
riables are generated when the external SAPS mod-
ules are invoked.

5 A Simple Textbook Example

We shall demonstrate the use of FIRlib by means of
a simple position control system involving a hydrau-
lic motor with a servo-valve. The control system is
shown in Fig.4.

Fig.4: A position control system

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 89

The servo-valve and the hydraulic motor models
were composed using the hydraulic sub-library of
BondLib [3]. The hydraulic motor model is shown
in Fig.5.

Fig.5: Hydraulic motor

We want to replace the entire hydraulic part of the
model by a qualitative model. We assume that the
mechanical torque, , of the hydraulic motor is a
function of the actuator signal, u, and the angular
velocity of the motor, .

 = f(u,)

Therefore, we need to recode (fuzzify) these three
signals. This is done in Modelica using FIRlib, as
shown in Fig.6.

Fig.6: Fuzzification of three signals

The Recode block converts a real-valued signal to a
qualitative triple. The FIR connector, at the output
of the Recode block, contains three signals
representing the class, membership, and side values

of the fuzzified signal. The fuzzified signals were
immediately defuzzified (regenerated) again so that
Dymola can then be used to plot the signal and verify
that fuzzification/defuzzification were done correct-
ly. This is shown in Fig.7.

Fig.7: Torque signal, original and regenerated

The three recoded signals were then exported to Mat-
lab. In Matlab, the raw data matrix (or rather, the
three matrices containing the class, membership, and
side values) was constructed, and the SAPS-II tool-
box was used to generate the optimal mask and, from
it, the input/output matrix and the behavior matrix.

The optimal mask and the corresponding beha-
vior matrix (actually three matrices) were then re-
imported into Dymola to be used in a mixed quantit-
ative and qualitative simulation. The mixed model is
shown in Fig.8.

Fig.8: Mixed quantitative and qualitative model

The yellow FIR block represents the qualitative si-
mulation (forecasting) engine. It takes the recoded
(fuzzified) actuator and angular velocity signals and,
using table look-up and interpolation in the behavior
matrix, estimates the correct value of the torque in
the form of a qualitative signal. The green Regene-
rate block then converts the qualitative triple back to
a real-valued quantitative signal that can be used by
regular Modelica models.

Fig.9 shows the motor angle trajectories of the
original purely quantitative simulation and the mixed
quantitative and qualitative simulation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 90

Fig.9: Motor angle trajectories

The (red) motor angle trajectory computed by the
mixed simulation is a little more sluggish and a little
less stable than that of the purely quantitative simula-
tion (blue), because we didn’t sample fast enough.

6 The Cardiovascular System

The human cardiovascular system is composed of
two parts.

The hemodynamics describe the blood flow
through the heart and the blood vessels. This part is
well understood. It functions like any other hydrau-
lic system with a pump and some pipes, with valves
and containers of liquid. The hemodynamics can
thus be well described by differential equations, and
consequently, a quantitative model of the hemody-
namics is adequate.

On the other hand, we need to describe also the
control signals that operate on the hemodynamics.
Control signals determine how fast the heart beats,
how much the chambers contract, etc. The function-
ing of these nervous control signals is less well un-
derstood, and consequently, a qualitative model of
the central nervous system control of the cardiovas-
cular system may be more suitable.

6.1 Hemodynamics

The hemodynamics model has been presented at a
previous conference [4]. It is built in BondLib using
encapsulated bond graphs [3,7]. Although the bond
graphs themselves are only seen at the bottom layer
of the hierarchy, whereas all higher layers are built
using symbols that medical professionals understand,
the connectors are bond graph connectors every-
where. In order for this to work, all container mod-
els end in junctions, whereas all transporter models
end in bonds. In this way, by following the rule that
container and transporter models must always toggle,
there is no need to fully wrap [7] the bond graph
models, as was done in the hydraulic sub-library.

The heart model is shown in Fig.10.

Fig.10: Model of the human heart

The model contains four container models
representing the four heart chambers, as well as five
transporter models. Four of them represent the four
heart valves, the tricuspid and pulmonary valves car-
rying (blue) venous blood, and the mitral and aortic
valves carrying (red) arterial blood. Also included is
a model of the coronary blood vessels that are re-
sponsible for the oxygenation of the heart muscle.
The yellow sinus rhythm block calculates the trigger
impulses that lead to the contraction of the four heart
chambers. It is controlled by the heart rate control-
ler, one of the central nervous system control func-
tions of the heart. The left chambers are shown on
the right side of the graph, because this is what a
heart surgeon experiences when he or she operates
on a patient.

The heart is embedded in the thorax, shown in
Fig.11.

Fig. 11: Model of the thorax

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 91

The thorax model contains the heart and all of its
external connections. Also included are models of
the lungs and the bronchi. The tabular block at the
bottom calculates the thoracic pressure that stems
from the breathing. As the lungs expand, there is
less space available for the heart and the blood ves-
sels, and consequently, they experience an external
pressure.

The overall hemodynamics model is shown in
Fig.12.

Fig.11: Model of the hemodynamics

The hemodynamics model contains models of the
thorax, the head and arms (brain and blood vessels of
the upper extremities), the lower body (abdomen and
stomach), as well as the blood vessels of the legs.

The hemodynamics are controlled by five control
signals denoting the heart rate, the myocardiac con-
tractility, the peripheric resistance, the venous tone,
and the coronary resistance.

It is assumed that all five control signals are func-
tions of the same variable, namely the carotid sinus
blood pressure, PAC, i.e., the arterial pressure in the
brain.

6.2 Central Nervous System Control

Five separate single-input/single-output (SISO) qua-
litative FIR models are to be identified that each cal-
culate one of the five control signals as a function of
the carotid sinus blood pressure.

The data needed for the identification of the five
FIR models are here not collected from a fully quan-

titative simulation (as in the previous case), but ra-
ther, they are obtained through measurements from
real patients having a heart catheter for some reason
or other (invasive procedure). The patients gave
their consent to perform a number of so-called Val-
salvæ maneuvers [10,11,12], a breathing test that
excites the entire cardiovascular system. Data were
collected from 10 different patients, each performing
five Valsalvæ maneuvers. In the experiments de-
scribed here, we used the data of one patient only.
Four of the five Valsalvæ maneuvers (4800 data
records) were used to identify the five controller
models, and the final 1200 data records (the final
maneuver) were used for model validation.

Fig.12 shows the recorded data of the venous tone
controller signal of one patient during one Valsalvæ
maneuver.

Fig.12: Venous tone controller signal

The large and low-frequency oscillation is caused by
the breathing pattern of the Valsalvæ maneuver,
whereas the superposed small and high-frequency
oscillation is caused by the beating of the heart.

The Valsalvæ maneuver shown is the one that
was not used for model identification. Superposed
with the measurement data is the forecast obtained
by the qualitative FIR model.

The five models were identified using the SAPS-
II toolbox, and also the simulation was performed
using the same Matlab toolbox. As this is a purely
qualitative simulation, there was no need to perform
the simulation in Modelica using FIRlib.

6.3 Mixed Quantitative and Qualitative Simu-
lation of the Human Cardiovascular System

The top-level model is shown in Fig.13. The pink
box on the right-hand side represents the hemody-
namics model, whereas the green box on the left-
hand side represents the central nervous system con-
trol containing the five (yellow) qualitative FIR
models representing the five controllers.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 92

Fig.13: Cardiovascular system model

The green (Recode, Regenerate) and yellow (FIR)
blocks are those of the external SAPS sub-library,
i.e., the C-coded FIR algorithms are being used.

The model was then compiled. The translation
log is shown in Fig.14.

Fig.14: Translation log

The flattened model contained originally 4364 scalar
variables and equations. After code optimization, 22
state variables and 437 algebraic variables remained.

Fig.15 shows the simulation log.

Fig.15: Simulation log

The simulation took 14.0 seconds of real time to
complete 50 seconds of simulated time. Four times
during the simulation, one of the controllers encoun-
tered a pattern that had not been recorded in the
training database. In those cases, no prediction was
possible, and therefore, the software simply retained
the previous prediction value.

Fig.16 shows the thoracic pressure, pTh, generat-
ed by a table look-up function inside the thorax
model.

Fig.16: Thoracic pressure

The graph shows the simulated “Valsalvæ” maneuv-
er. The “patient” is not breathing during 14 seconds,
then “he” inhales sharply, holds “his” breath more or
less for another 14 seconds, then exhales sharply
again.

The resulting carotid sinus pressure, PAC, as cal-
culated by the hemodynamics model, is shown in
Fig.17.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 93

Fig.17: Carotid sinus pressure

The high-frequency oscillation is caused by the
heartbeat, calculated in the sinus rhythm box of the
heart model. The low-frequency oscillation is the
hemodynamic response to the simulated breathing
pattern.

Fig.18 shows the venous tone control signal as
calculated by the corresponding FIR model in re-
sponse to the simulated breathing pattern.

Fig.18: Venous tone control signal

7 Conclusions

In this paper, we have demonstrated how mixed qua-
litative and quantitative models can be simulated in
Modelica using the new FIRlib library. The qualita-
tive models make use of fuzzy inductive reasoning, a
non-parametric inductive approach to modeling con-
tinuous-time systems by means of fuzzy logic. The
approach was demonstrated by a small textbook ex-
ample involving a hydraulic position control system.
A model of the human cardiovascular system served
as a larger example. In that model, the hemodynam-
ics were described using quantitative models derived
from first principle, whereas the nervous central sys-
tem control functions were modeled by use of qualit-
ative FIR models.

References

[1] Babbie, E.: The Practice of Social Research,
5th Edition, Wadsworth Publishing Company,
Belmont, CA, 1989

[2] Cellier, F.E.: Continuous System Modeling.
Springer-Verlag, New York, 1991

[3] Cellier, F.E. and Nebot, A.: The Modelica
Bond Graph Library, In: Proc. 4th Interna-
tional Modelica Conference, Hamburg, Ger-
many (2005) Vol.1, 57-65

[4] Cellier, F.E. and Nebot, A.: Object-oriented
Modeling in the Service of Medicine, In:
Proc. 6th Asia Simulation Conference, Bei-
jing, China (2005) 33-40

[5] Cellier, F.E., Nebot, A., Mugica, F., and de
Albornoz, A.: Combined Qualitative/Quantit-
ative Simulation Models of Continuous-time
Processes Using Fuzzy Inductive Reasoning
Techniques. In: International Journal of
General Systems (1996) Vol. 24(1-2), 95-116

[6] Cellier, F.E. and Yandell, D.W.: SAPS-II: A
New Implementation of the Systems Ap-
proach Problem Solver, In: Intl. J. General
Systems (1987) Vol. 13(4), 307-322

[7] Cellier, F.E. and Zimmer, D.: Wrapping
Multi-bond Graphs: A Structured Approach
to Modeling Complex Multi-body Dynamics,
In: Proc. 20th European Conference on Mod-
eling and Simulation, Bonn, Germany (2006)
7-13

[8] Escobet, A., Huber, R.M., Nebot, A., and
Cellier F.E.: Enhanced Equal Frequency Par-
tition Method for the Identification of a Wa-
ter Demand System, In: Proc. AI, Simulation
and Planning in High Autonomy Systems,
Tucson, Arizona (2000) 209-215.

[9] Escobet, A., Nebot, A., and Cellier, F.E.:
Visual-FIR: A Tool for Model Identification
and Prediction of Dynamical Complex Sys-
tems, In: Simulation Modeling Practices and
Theory (2008) Vol. 16(1), 76-92

[10] Nebot, A.: Qualitative Modeling and Simula-
tion of Biomedical Systems Using Fuzzy In-
ductive Reasoning, Ph.D. Dissertation, Llen-
guatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya, Barcelona, Spain,
1994

[11] Nebot, A., Cellier, F.E., and Vallverdú, M.:
Mixed Quantitative/Qualitative Modeling
and Simulation of the Cardiovascular Sys-
tem, In: Computer Methods and Programs in
Biomedicine (1998) Vol. 55(2), 127-155

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 94

[12] Vallverdú, M.: Modelado y Simulación del
Sistema de Control Cardiovascular en Pa-
cientes con Lesiones Coronarias, Ph.D. Dis-
sertation, Institut de Cibernètica, Universitat
Politècnica de Catalunya, Barcelona, Spain,
1993

Author Biographies

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic
control in 1973, and his PhD degree
in technical sciences in 1979, all
from the Swiss Federal Institute of

Technology (ETH) Zurich. Dr. Cellier worked at the
University of Arizona as professor of Electrical and
Computer Engineering from 1984 until 2005. He
then returned to his home country of Switzerland.
Dr. Cellier's main scientific interests concern model-
ing and simulation methodologies, and the design of
advanced software systems for simulation, computer
aided modeling, and computer-aided design. Dr. Cel-
lier has authored or co-authored more than 200 tech-
nical publications, and he has edited several books.
He published a textbook on Continuous System
Modeling in 1991 and a second textbook on Conti-
nuous System Simulation in 2006, both with Sprin-
ger-Verlag, New York.

Victorino Sanz received his MS
degree in computer science in 2004
from the Universidad Politécnica de
Madrid. He is currently a Ph.D.
student in systems engineering and
automatic control at the Universi-
dad Nacional de Educación a Dis-

tancia (UNED) in Madrid. His research focuses on
the development of several Modelica libraries for
discrete-event system and hybrid system modeling
and simulation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 95

Parallel DEVS and Process-Oriented Modeling in Modelica

Victorino Sanz Alfonso Urquia Sebastian Dormido
Dpto. Informática y Automática, ETSI Informática, UNED

Juan del Rosal 16, 28040, Madrid, Spain
{vsanz,aurquia,sdormido}@dia.uned.es

Abstract

This manuscript presents a new free Modelica li-
brary, named DESLib and composed of four packages:
RandomLib, DEVSLib, SIMANLib and ARENALib.
DESLib has been designed and implemented to facili-
tate the description of discrete-event models using the
Parallel DEVS formalism (using DEVSLib), and to fa-
cilitate the process-oriented modeling of logistic sys-
tems (using SIMANLib and ARENALib). SIMAN-
Lib and ARENALib models are designed as DEVS
models, and implemented using DEVSLib, to facili-
tate its development, comprehension and maintenance.
RandomLib includes functionalities to generate ran-
dom numbers and random variates, and facilitate the
development of stochastic models. The communica-
tion mechanism used to transport information between
models in DESLib is presented. This mechanism facil-
itates the combination of DEVS and process-oriented
models to describe discrete-event systems at multiple
levels. DESLib also includes interfaces to combine
its components with other Modelica libraries, facili-
tating the composition of multi-formalism and multi-
domain hybrid models. DESLib can be downloaded
from http://www.euclides.dia.uned.es.

Keywords: discrete-event systems, hybrid model-
ing, Parallel DEVS, process-oriented modeling, ran-
dom number generation, stochastic simulation, logis-
tic model

1 Introduction

Modelica provides language constructs to describe the
trigger conditions of time and state events, and also
the actions associated to the events [1]: (1) update
the value of discrete-time variables and reinitialize
continuous-time state variables, using when clauses;
and (2) change the mathematical description of equa-
tions and assignments, using the if statement.

These features have facilitated the development of

state machine models [2, 3] and also of libraries sup-
porting different formalisms for discrete-event system
modeling. Some of these libraries are StateCharts [4],
StateGraph [5], HyAuLib [6], PetriNets [7] and Ex-
tendedPetriNets [8]. Other approach is described in
[9], in which the discrete-event system is described
using an external tool that generates the correspond-
ing Modelica code. The use of Modelica language to
describe discrete-event models of communication net-
works is presented in [10].

1.1 Parallel DEVS Formalism

The support of the Modelica language to the DEVS
(Discrete EVent System specification) formalism [11]
is an open research area. The feasibility of con-
structing basic atomic and coupled DEVS models in
Modelica was demonstrated in [12]. Another im-
plementation of this formalism was performed in the
ModelicaDEVS library [13], designed to simulate
continuous-time systems using the Quantized State
System (QSS) integration methods [14, 15].

An atomic model is the simplest component that
can be defined using Parallel DEVS (PDEVS) [16],
and can be formally described with the tuple M =
(X ,S,Y,δext ,δint ,δcon,λ , ta), where X is the set of in-
put ports and values, Y is the set of output ports and
values, S is the set of sequential states, δext , δint and
δcon are the transition functions, λ is the output func-
tion and ta is the time advance function. An atomic
model updates its state with δint every time a given
amount of time (defined by ta) is elapsed without any
external input, thus triggering an internal event. An
output can be generated, using the λ function, before
executing δint . Inputs are stored in a bag, which is a
set with possible multiple occurrences of its elements.
When any input is received, the external event is trig-
gered and the state is updated by δext , that manages the
elements in the bag. The simultaneous occurrences of
an external and an internal event trigger a confluent
event, and the state is updated by δcon.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 96 DOI: 10.3384/ecp09430104

A coupled model can be described as a composition
of other atomic or coupled models. It is specified in the
PDEVS formalism with a tuple M = (X ,Y,D,{Md |d ∈
D},EIC,EOC, IC), where X is the set of input ports
and values, Y is the set of output ports and values, D
is the set of component names, Md is the set of DEVS
components, EIC is the set of connections between in-
put ports and components, EOC is the set of connec-
tions between components and output ports and IC is
the set of internal connections between components.

1.2 Process-Oriented Modeling

According to the process-oriented “world view”, sys-
tems are described from the point of view of the en-
tities that flow through them using the available re-
sources [17]. This modeling methodology, widely
used for describing complex logistic systems, is sup-
ported by several modeling languages (e.g., GPSS/H,
SLAM II, SIMSCRIPT II.5, SIMAN, SIMULA and
SIMPL/1) and integrated environments (e.g., Arena,
AutoMod, ProModel, Witness and SIMPROCESS).

Arena [18] is a widely used process-oriented sim-
ulation environment. It includes components to de-
scribe the flowchart diagram of the system, that repre-
sents the flow of entities. That diagram includes the
processes and actions performed to the entities along
the simulation run. Other components allow to de-
scribe the characteristics of those processes and ac-
tions (such as, the organization policy of the queues,
the number of available resources, etc.). Components
in Arena are internally described by the lower-level
components of the SIMAN language [19].

Process-oriented modeling with Modelica is an at-
tractive research field. An introduction of operations
management modeling with Modelica is described in
[20], where the authors present a case study of an in-
ventory system and describe the problems encountered
when modeling these kind of systems using Modelica.
Almost no other work has been performed in this field.

2 The DESLib Modelica Library

The first objective of the research work presented
in this manuscript is to facilitate the description of
discrete-event models using the PDEVS formalism
[16] and also facilitate the connection of these models
to other hybrid models developed using other Model-
ica libraries.

The second objective of our work is to facilitate the
process-oriented modeling of logistic systems using

Figure 1: DESLib library.

Modelica and also to facilitate the connection of these
logistic system models to hybrid models developed us-
ing other Modelica libraries.

In order to achieve these two objectives, a new
Modelica library, named DESLib, has been designed
and programmed using Dymola [21]. DESLib,
which is freely available under the terms of the
Modelica License 2, can be downloaded from
http://www.euclides.dia.uned.es/.

DESLib is composed of the following four pack-
ages: RandomLib, DEVSLib, SIMANLib and
ARENALib. The general architecture of the library is
shown in Fig. 1.
• The RandomLib package includes an implemen-

tation of the CMRG random number generator,
used by Arena, and some functionalities for
random variates generation.
• The DEVSLib package facilitates the description

of discrete-event models in Modelica following
the Parallel DEVS formalism.
• The SIMANLib and ARENALib packages facil-

itate the description of process-oriented models.
The components in these packages have been
designed as atomic and coupled PDEVS models,
and implemented using DEVSLib.

DEVSLib, SIMANLib and ARENALib use the same
communication mechanism to transport information
between models. This makes all their components
compatible and can be combined to develop models
at multiple description levels. The implemented com-
munication mechanism is detailed in Section 4.1.

The organization of the manuscript is as follows. A
description of the RandomLib package is included in
Section 3. The architecture and design of the DEVS-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 97

Lib package, together with its functionalities to de-
scribe Parallel DEVS models, are described in Sec-
tion 4. The components and functionalities of the
SIMANLib and ARENALib packages are described
in Section 5. Two case studies are discussed in Sec-
tion 6: the model of a restaurant constructed using
SIMANLib and the model of an electronic factory con-
structed using ARENALib. Finally, some conclusions
are given in Section 7.

3 RandomLib

Process-oriented models are usually stochastic [22].
The RandomLib package is used in conjunction with
DEVSLib, SIMANLib and ARENALib to model
discrete-event and process-oriented stochastic models
of logistic systems.

RandomLib contains a Modelica implementation of
the Combined Multiple Recursive Generator (CMRG)
which is used in Arena [23, 24]. The implemented
random number generator (RNG) gives the possibility
of creating multiple random streams, and sub-streams,
that can be considered as independent RNGs [24]. The
generator period is close to 2191, and can be divided
into disjoint streams of length 2127. At the same time,
each stream can also be divided into 251 adjacent sub-
streams, each of length 276.

RandomLib is composed of three packages (see
Fig. 1): CMRG, Variates and Examples. The CMRG
package includes the implementation of the CMRG
uniform random number generator. Although avail-
able in C, this generator has been implemented in
Modelica in order to facilitate its use, comprehension
and reutilization in other Modelica libraries.

(a) (b)

Figure 2: Discrete and continuous probability distri-
bution functions included in RandomLib.

The Variates package includes several functions to
generate random variates from continuous and discrete
probability distributions. The included probability dis-
tribution functions are shown in Fig. 2. These func-
tions use by default the CMRG generator as source of
uniform random numbers. However, any other Mod-
elica library for uniform random number generation
can be used, redeclaring the record that represents the
generic generator, its initialization function and the
generic uniform random number generation function.

The Examples package contains several examples
of random uniform and random variates generation in
order to facilitate the use of the library. One of the
included examples is shown in Listing. 1

model VariatesSimple
"generates 5 random variates with
Expo (5) distribution"

Variates.Generator g "RNG";
Real u[5] "vector of random variates ";

algorithm
// initialization of the RngStream
when initial () then

g := Variates.initGenerator ();
end when;
when time <= 0 then

for i in 1:5 loop
// generation of variates.
(u[i],g) :=
Variates.Continuous.Exponential(g,5);

end for;
end when;

end VariatesSimple;

Listing 1: Random variates generation using Random-
Lib.

4 DEVSLib

The DEVSLib package, as shown in Fig. 1, contains
the following packages and models: the UsersGuide
that contains the documentation about the structure
and use of DEVSLib; the atomicDraft and coupled-
Draft models that are used to construct new DEVS
models; the AuxModels package that includes several
useful auxiliary models; the Examples package that
contains several examples of systems modeled using
DEVSLib and; the SRC package that includes all its
internal implementation and documentation.

DEVSLib supports the definition of models using
the PDEVS formalism. Atomic and coupled mod-
els can be constructed with DEVSLib following their
DEVS formal specification, similarly to how it is per-
formed by other DEVS tools, such as DEVSJAVA
[25], CD++ [26], or adevs [27].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 98

Figure 3: DEVSLib atomic model structure.

The structure of an atomic model in DEVSLib is
shown in Fig. 3. The transition, output and time ad-
vance functions (con, int, ext, out and ta in Fig. 3)
are described as Modelica functions. The state is de-
scribed using a Modelica record (st), and initialized
using the initst function. Any variable required to
describe the state of the model can be added to that
record. An example of new atomic model construc-
tion using DEVSLib is given in Section 4.3.

The development of coupled models with DEVS-
Lib also follows its formal specification. Using the
object-oriented modeling capabilities of Modelica,
coupled models are constructed connecting previously
developed components and including the required in-
put/output ports.

The interconnection of the components in a coupled
model may include algebraic loops. Due to the char-
acteristics of the Modelica language, these algebraic
loops are not allowed. This problem can be avoided
by redefining the behavior of the models of the loop
into one single atomic model, or breaking the loop in-
serting the breakloop model, included in DEVSLib, in
any of its connections.

4.1 DEVSLib Model Communication

Model communication in PDEVS follows a message
passing mechanism. The output function generates a
new message and sends it through an output port. The
message will be received, triggering an external event,
by the models connected to that output port. The mes-
sage may contain any kind of information, called the
“value” of the message.

The model communication mechanism in Model-
ica is based in the definition of ports, called “connec-
tors”, and connections between ports, using “connect-
equations”. Variables defined in two connected con-
nectors are either equaled, or summed up and the sum

equaled to zero.
The Modelica model communication and the DEVS

message passing mechanisms are conceptually differ-
ent. The former equals values of variables while the
latter transports information between models.

In order to allow the description of DEVS models
in Modelica, a message passing mechanism has to be
developed [28]. The development of this mechanism
has been the most challenging problem solved during
the development of the DEVSLib package. Several ap-
proaches were studied and developed, in order to im-
plement the message passing mechanism in Modelica.

The direct implementation of the message passing
mechanism in DEVSLib using Modelica connectors
was studied. The mentioned DEVS implementations
in Modelica [12, 13] use boolean variables inside the
connectors to detect external events – i.e. received
messages. However, the connectors does not allow
the simultaneous reception of messages, because their
variables can not be assigned with several values at the
same time. Also, Modelica does not allow a variable
number of objects in a model, so the message trans-
mission can not be directly implemented.

Other approaches for implementing the message
passing mechanism in DEVSLib, based in an interme-
diate storage for the transmitted messages, were stud-
ied and implemented. The first approach was to use
a text file to store the messages, so the sender writes
the message to the file and notifies it to the receiver,
that reads it. This approach allows simultaneous re-
ception of messages, because several messages can be
written to the file, but its performance and versatility
are poor. The other approach substitutes the text files
by dynamic memory space. This increases the perfor-
mance and the versatility of the mechanism, allowing
to manage different types of messages without redefin-
ing the message management operations.

The dynamic memory approach for message pass-
ing is the mechanism implemented in DEVSLib. This
approach is combined with the standard Modelica con-
nectors to provide a transparent communication mech-
anism to the user. At the end, DEVSLib models are
connected using standard Modelica connectors and
connect-equations.

4.2 Interface Models with Other Modelica
Libraries

DEVSLib includes several interface models to trans-
late messages into continuous-time signals, and vicev-
ersa. The use of these interface models allows to com-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 99

bine models developed using DEVSLib with the com-
ponents of other Modelica libraries.

There are two mechanisms used in the continuous-
to-discrete translation: the cross-functions and the
quantization. The former translates the value of a
continuous-time signal into a message every time the
signal crosses a given threshold, in one direction (up-
wards or downwards). The models “crossUP” and
“crossDOWN” implement this behavior in DEVSLib.
The quantization mechanism is implemented by the
“quantizer” model. This model generates a message
every time the value of the continuous-time signal
changes in a predefined quantum, similarly to the be-
havior of the QSS first-order method [15].

On the other hand, the discrete-to-continuous trans-
lation is performed generating a piecewise-constant
signal whose value is the value of the last message re-
ceived. The model “DICO” (DIscrete-to-COntinuous)
implements this behavior in DEVSLib.

These interface models are implemented to man-
age the standard DEVSLib message type. However,
the message type in DEVSLib can be redefined by the
user. In this case, the interface models can be adapted
to the new message type.

4.3 Model Development with DEVSLib

The development of new models using DEVSLib
requires the following steps:

• Declare the input and output ports of the model.
• Define the state variables of the model and their

initialization.
• Define the transition, output and time advance

functions.

A “bank teller” system is described in this section
as an example of model construction. In this system
the customers arrive to the bank and wait their turn in
the queue. If the teller is idle, the customer is served
immediately. Otherwise, the teller will serve the first
customer in the queue. When finished, the customer
leaves the bank and the teller serves another customer
if anyone else is waiting, or waits for a new arrival.

The model of this system is composed of two atomic
models: the customers and the teller. The customers
model represents the arrivals of new customers. The
inter-arrival time follows an exponential probability
distribution with mean 10 mins. The teller model rep-
resents the person serving customers and the queue.
The time spent by a customer with the teller follows an
exponential probability distribution with mean 8 mins.

The Parallel DEVS specification of the customers
model is the following:

M = (XM,S,YM,δint ,δext ,δcon,λ , ta)
where:

XM = /0
S = ℜ

+
0

YM = {”out”,{1}}
δint(sigma) = interArrivalTime
δext() = nothing since XM = /0
δcon() = nothing since XM = /0

model customers "Customers arrival"
replaceable Real interarrival = 1;
extends AtomicDEVS(numIn=1,numOut=1,

redeclare record State = st);
redeclare function Fint =

int(iat=interarrival);
redeclare function Fout = out;
redeclare function Fta = ta;
redeclare function initState = initst;
Interfaces.outPort outPort1;

equation
iEvent [1] = 0;
// OUTPUT PORTS
oEvent [1] = outPort1.event;
oQueue [1] = outPort1.queue;

end customers;

record st "state of the model"
Real sigma;

end st;

function initst "state initialization func."
output st out;

algorithm
// first internal transition at time = 1
out.sigma := 1;

end initst;

function int "Internal Transition Function"
input st s;
input Real iat //inter -arrival time;
output st sout;

algorithm
sout := s;
sout.sigma := iat;

end int;

function out "Output Function"
input st s;
input Integer queue[nports];
input Integer nports;
output Integer port[nports];

protected
stdEvent y;

algorithm
y.Value := 1;
// send output event with message y
sendEvent(queue[1],y);
port [1] := 1;

end out;

function ta "Time Advance Function"
input st s;
output Real sigma;

algorithm
sigma := s.sigma;

end ta;

Listing 2: DEVSLib code for the customers model of
the Bank Teller system.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 100

λ (sigma) = 1
ta(sigma) = sigma

The interArrivalTime is a continuous-time input of
the model that represents the time between customer
arrivals, similarly to the continuous-time inputs de-
scribed in the DEV&DESS formalism [11].

The implementation of the customers model using
DEVSLib is shown in Listing 2. The code has been
adapted from the atomicDraft model, and follows its
structure (see Fig. 3). The input port has been re-
moved, and the iEvent array is set to 0 because the
model will never receive a message. The state record
contains a variable that represents the interval for the
next internal transition (sigma). The model will exe-
cute its first internal transition at time 1, due to the ini-
tialization of sigma. The external and confluent tran-
sition functions (ext and con) have been removed be-
cause the model has no input ports. The internal tran-
sition function (int) sets the value of sigma with the
input “iat”, which is a continuous-time input that rep-
resents the probability distribution for the inter-arrival
times. The output function generates a new message,
that represents a new customer, and sends it through
the output port. The time advance function only re-
turns the value of sigma, set by δint .

The Parallel DEVS specification of the teller model
is the following:

M = (XM,S,YM,δint ,δext ,δcon,λ , ta)
where:
XM = {”in”,{1}}
S = {”active”,”passive”}×ℜ

+
0 ×N

YM = {”out”,{1}}
δint(phase,sigma,nqueue) ={

(”active”,PT,nqueue−1) i f nqueue > 0
(”passive”,∞,0) otherwise

δext(phase,sigma,nqueue,u,e,X) ={
(”active”,PT,nqueue) i f ”passive”
(phase,sigma− e,nqueue+1) otherwise

δcon(phase,sigma,nqueue,u,e,X) =
δext(δint(phase,sigma,nqueue),u,0,X)

λ (phase,sigma,nqueue) = 1
ta(phase,sigma,nqueue) = sigma

PT is a continuous-time input of the model that repre-
sents the service time for each customer.

The implementation of the teller model is similar
to the customers model, and also follows the struc-
ture of the atomicDraft model. The teller has one in-
put and one output ports. Its state record includes the
operational mode of the teller (phase, initialized to 1
== “idle”), the interval for the next internal transition
(sigma, initialized to infinity) and the queue (nqueue,

Figure 4: Bank teller system modeled using DEVSLib.

initialized to 0 == “empty”). Since the arrival of a new
customer does not include additional information (like
its name, age, etc.), the queue only stores the num-
ber of customers waiting. At external events, when a
new customer arrives it is either serviced (teller “idle”
with phase == 1) or waits in queue (teller “busy” with
phase == 2). The value of sigma is set with the ser-
vice time (also received as a continuous-time input) or
the rest of the service time of the customer being pro-
cessed, if the teller is “idle” or “busy” respectively. At
internal events, when the serviced customer leaves, the
teller checks the value of the queue. If any other cus-
tomer is in the queue, the teller starts its service and
sets sigma to the new service time. If no customers
are waiting, the teller becomes “idle” and waits for a
new arrival setting the sigma to infinity. The output
function generates a new message that represents the
customer leaving the bank.

The system constructed using DEVSLib is shown in
Fig. 4. It includes the code for generating the random
inter-arrival and service times, using RandomLib. The
model connected to the output of the teller only shows
the departure of the customers. The results after sim-
ulating the model during 20 time units are shown in
Fig. 5, containing the arrival, the departure and the
number of customers in queue over the simulation.
The average number of customers in queue over a long
simulation (106 time units) is shown in Fig. 6. That

Figure 5: Bank teller system simulation results.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 101

Figure 6: Average number of customers in queue from
the simulation of the bank teller system.

result tends to the analytical result (an average of 3.2
jobs in queue) of the equivalent M/M/1 queue system.

5 SIMANLib and ARENALib

SIMANLib and ARENALib support the process-
oriented modeling methodology, in a similar fashion to
SIMAN and Arena, but with limited capabilities. Sys-
tems modeled using SIMANLib and ARENALib are
composed of two parts: the flowchart diagram and the
experimental data. The flowchart diagram describes
the flow of entities through the system. It is defined by
the blocks in SIMANLib and the flowchart modules in
ARENALib. The experimental data describes the par-
ticular information of an experiment to be performed
with the system. It corresponds to the amount of avail-
able resources, the characteristics of the queues, the
statistical information to be recorded, etc. It is defined
by the elements in SIMANLib and the data modules in
ARENALib.

The structure of both packages (see Fig. 1) is sim-
ilar, and are divided into two areas: the users area
and the developers area. The users area in SIMAN-
Lib is composed of the Blocks (containing flowchart
components), Elements (containing data components),
Draft (used to construct new models) and BookExam-
ples (containing the implementation of several exam-
ples described in [19]) packages. The users area in
ARENALib is composed of the BasicProcess (contain-
ing both flowchart and data modules) and BookExam-
ples (containing the implementation of several exam-
ples described in [18]) packages. Both, SIMANLib
and ARENALib, contain a UsersGuide package that
includes a description of their characteristics, structure
and use. The developers area in both packages con-

tains the SRC package, with the internal implementa-
tion of their components and the developers documen-
tation.

The communication between flowchart components
also follows a message passing mechanism, where the
value of the messages are the entities. Entities are cre-
ated by the Create blocks or modules, and sent to the
next component. Each component performs a process
(or action) to the received entity and sends it to the
next component. Entities leave the system at Dispose
blocks or modules.

5.1 SIMANLib Components

SIMANLib reproduces several elements of the
SIMAN language [19]. The included components are
shown in Fig. 7.

Figure 7: SIMANLib components: blocks and ele-
ments.

In order to facilitate the development and main-
tenance of the SIMANLib package, the SIMANLib
blocks have been specified using the DEVS formal-
ism [29] (i.e., as atomic PDEVS models) and have
been implemented using the DEVSLib package. Also
the Resource element has been modeled as an atomic
PDEVS model, in order to manage the seize and re-
lease petitions to the resource.

5.2 ARENALib Components

ARENALib reproduces several elements of the Basic
Process panel of the Arena Simulation environment
[18]. The included components are shown in Fig. 8.

A previous implementation of the ARENALib
package was presented in [30]. That implementation,
which was directly coded in plain Modelica, was diffi-
cult to understand, maintain and modify. Arena com-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 102

Figure 8: ARENALib components: flowchart and data
modules.

ponents are developed using SIMAN constructs [18].
Analogously to SIMANLib, the components of ARE-
NALib have been reconstructed as coupled PDEVS
models, using the SIMANLib package. As an ex-
ample, the internal structure of the Process flowchart
module is shown in Fig. 9. The use of DEVS to de-
scribe SIMANLib and ARENALib constructs facili-
tates the understanding of the behavior of each library
component, the development of new models and its
implementation.

Figure 9: Internal structure of the ARENALib process
module.

5.3 Hybrid System Modeling

SIMANLib and ARENALib include models that fa-
cilitate combining a process-oriented model with a
continuous-time model. These models are: the Exter-
nal Assign block in SIMANLib and the External Pro-
cess in ARENALib (which is not present in Arena).
These models are shown in Fig. 10. Also, due to
the compatibility between ports, any model developed
using DEVSLib can be combined with SIMANLib

and ARENALib, taking into account the values of the
transmitted messages.

(a) (b)

Figure 10: Hybrid system modeling components: a)
SIMANLib External Assign; and b) ARENALib Ex-
ternal Process.

The External Assign block behaves like an Assign
block, setting the value of a variable or attribute, and
also includes two continuous-time output ports. These
ports can be used to detect the changes in the value of
the variable, and use that value in a continuous-time
model.

The External Process behaves like a normal Pro-
cess module, representing a process performed to the
entities, but the processing time (delay) is calculated
by an external continuous-time model (named “ext-
process”). Every time an entity arrives to the module,
and after seizing the resources, if needed, the External
Process changes the value of the “entityStart” port to
the reference of the received entity. The ext-process
has to detect this change as a notification to start pro-
cessing an entity. When the process is finished, the
ext-process changes the value of the “entityEnd” port
to the reference of the previously received entity. With
that change, the External Process module detects the
end of the process, identifies the entity and lets it con-
tinue through the flowchart diagram.

5.4 Model Development with SIMANLib and
ARENALib

The “bank teller” system constructed using SIMAN-
Lib and ARENALib is presented in this section. The
flowchart diagrams of both models are shown in
Fig. 11

The model constructed using SIMANLib contains
the following blocks: Create (that represents the ar-
rival of customers), Queue, Seize (that together with
the Release manages the availability of the teller), De-
lay (that represents the delay due to the service time),
Release and Dispose (that represents the departure of
customers). It also includes the following elements:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 103

(a)

(b)

Figure 11: Bank teller system modeled using:
a) SIMANLib; and b) ARENALib.

Resource (that represents the teller), EType (that rep-
resents the customers), Queue (that describes the or-
ganization of the queue) and DStat (that calculates the
statistics for the number of customers in queue).

The model constructed using ARENALib contains
the following flowchart modules: Create (that repre-
sents the arrivals of customers), Process (that rep-
resents a customer serviced by the teller) and Dis-
pose (that represents the departure of customers). The
data modules included are: Resource (representing the
teller) and Entity (representing the customers).

Both models are equivalent, but as shown in Fig. 11
the components in SIMANLib perform simpler ac-
tions and more components are required to model the
same behavior.

Both systems have been simulated for 106 time units
to study the steady-state behavior. The statistical in-
dicators are automatically calculated during the sim-
ulation run by the DStat elements. The results are
shown in Table 1, including the average number of
customers in queue and the half-width intervals cal-
culated by Arena (SIMAN and Arena obtain the same
results because in both cases the same seed is used to
initialize the RNG).

6 Case Studies

Two case studies are presented to show the function-
alities of SIMANLib and ARENALib: a restaurant
and an electronic factory. The first model is analyzed
running independent terminating simulations and the

Table 1: Bank teller system simulation results using
SIMANLib, ARENALib, Arena and SIMAN.

Model Avg. Customers
in Queue

Half-Width

SIMANLib 3.3073 -
ARENALib 3.1212 -
Arena 3.2089 0.22
SIMAN 3.2089 0.22

second one performing one long (steady-state) simu-
lation. The results are equivalent to the ones obtained
using SIMAN and Arena, respectively.

6.1 Restaurant Model

The restaurant model described in [19] has been com-
posed using SIMANLib (see Fig. 12a). Customers ar-
rive in groups from 2 to 5 persons and wait for an avail-
able table. If there are already 5 groups waiting, the
new group leaves without waiting. The restaurant has
50 tables. Each table is for two people, so several ta-
bles may be needed for each group. When seated, the
group is served and eats. At the end, the group pays
the check to the cashier and leaves. The restaurant re-
ceives customers from 5 p.m. to 9 p.m., and, after that,
waits until all the customers leave.

Table 2: Restaurant simulation results, comparing
SIMANLib and SIMAN.

Indicator (avg.) SIMANLib SIMAN
groups served 136.13 135.43
groups lost 15.83 14.00
busy tables 24.49 24.25
groups waiting 0.62 0.72
cashier util.(%) 42.51 41.94

In order to analyze the system, 30 independent sim-
ulation runs, each of 480 time units, have been per-
formed. Each run record statistics about the number of
customers served, the number of busy tables, the num-
ber of waiting customers, the number of groups that
left without entering and the utilization of the cashier.
The simulation results, comparing the SIMANLib and
SIMAN models are shown in Table 2 (average values).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 104

(a)

(b)

Figure 12: Case studies: a) restaurant modeled using SIMANLib; and b) electronic assembly system modeled
using ARENALib.

6.2 Electronic Factory Model

The electronic assembly and test system described
in [18] has been composed using ARENALib (see
Fig. 12b). Two types of electronic parts (A and B) are
received in the system, are pre-processed and sealed.
Each type has a different pre-processing and sealing
time. After that, the sealed parts are inspected. Correct
parts are shipped, and the rest need to be reworked.
After the rework process, they are inspected again and
classified into salvaged and scrapped.

The system has been simulated during 50000 time
units, in order to evaluate its steady-state behavior.
Multiple statistical indicators are automatically calcu-
lated by ARENALib. Some of these indicators (av-
erage values) are shown in Table 3 and the are com-
pared with the results obtained with Arena, including
the half-width (H-W) interval.

Table 3: Electronic factory simulation results, compar-
ing ARENALib and Arena.

Indicator (avg.) ARENALib Arena H-W
Shipped 18.650 19.774 2.273
Salvaged 89.348 81.522 8.715
Scrapped 88.564 78.125 (Insuf)
Sealer.WaitTime 0.447 0.453 0.035
Sealer.ProcessTime 2.609 2.617 (Corr)
Sealer.Utilization 0.601 0.605 0.011
Sealer.NumberInQueue 0.103 0.105 0.007
Rework.WaitTime 40.272 32.974 8.020
Rework.ProcessTime 30.033 28.452 1.823
Rework.Utilization 0.622 0.583 0.043
Rework.NumberInQueue 0.834 0.675 0.180

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 105

7 Conclusions

A new free Modelica library, named DESLib, has been
designed and programmed to facilitate the develop-
ment of discrete-event and process-oriented models.
The library is composed of four packages: Random-
Lib, DEVSLib, SIMANLib and ARENALib. DEVS-
Lib supports the development of discrete-event models
following the Parallel DEVS formalism. SIMANLib
and ARENALib facilitate the development of process-
oriented models of logistic systems, with functional-
ities similar to the SIMAN language and the Arena
simulation environment. RandomLib contains an im-
plementation of the CMRG random number generator,
used in Arena, that combined with the other packages
of DESLib facilitates the development of stochastic
discrete-event models.

The hierarchic description of components in
DESLib (SIMANLib compopnents constructed using
DESLib, and ARENALib components constructed us-
ing SIMANLib) and the use of the DEVS formalism
simplifies its understanding, maintenance, reuse and
further development.

The communication mechanism developed and in-
cluded in DESLib allows to transport structured infor-
mation between models. This mechanism can also be
easily adapted to other applications and libraries.

The description and study of stochastic discrete-
event and logistic models with Modelica is supported
by DESLib. Due to the interface models included
in the library, the combination of DESLib with other
Modelica libraries facilitates the description of com-
plex hybrid models.

References

[1] Modelica Association. Modelica - A
Unified Object-Oriented Language for
Physical Systems Modeling. Language
Specification (v. 3.1). Available at
http://www.modelica.org/documents, 2009.

[2] Mattsson S. E, Otter M, Elmqvist H. Modelica
Hybrid Modeling and Efficient Simulation. In
Proc. of the 38th IEEE Conf. on Decision and
Control, pp. 3502–3507, 1999.

[3] Otter M, Elmqvist H, Mattsson S. E. Hy-
brid Modeling in Modelica Based on the Syn-
chronous Data Flow Principle. In Proc. of the
10th IEEE Intl. Symposium on Computer Aided
Control System Design, pp. 151–157, 1999.

[4] Ferreira J, de Oliveira J. E. Modelling Hy-
brid Systems Using Statecharts and Modelica.
In Proc. of the 7th IEEE Intl. Conf. on Emerg-
ing Technologies and Factory Automation, pp.
1063–1069, 1999.

[5] Otter M, Årzén K.-E, Dressler I. State-Graph -
a Modelica Library for Hierarchical State Ma-
chines. In Proc. of the 4th Intl. Modelica Conf.,
pp. 569–578, 2005.

[6] Pulecchi T, Casella F. HyAuLib: Modelling Hy-
brid Automata in Modelica. In Proc. of the 6th

Intl. Modelica Conf., pp. 239–246, 2008.

[7] Mosterman P. J, Otter M, Elmqvist H. Modelling
Petri Nets as Local Constraint Equations for Hy-
brid Systems Using Modelica. In Proc. of the
Summer Computer Simulation Conf., pp. 314–
319, 1998.

[8] Fabricius S. M. O. Extensions to the Petri Net
Library in Modelica. ETH Zurich, Switzerland,
2001.

[9] Remelhe M. A. P. Combining Discrete Event
Models and Modelica - General Thoughts and a
Special Modeling Environment. In Proc. of the
2nd Intl. Modelica Conf., pp. 203–207, 2002.

[10] Färnqvist D, Strandemar K, Johansson K. H,
Hespanha J. P. Hybrid Modeling of Communi-
cation Networks Using Modelica. In Proc. of the
2nd Intl. Modelica Conf., pp. 209–213, 2002.

[11] Zeigler B. P, Kim T. G, Prähofer H. Theory
of Modeling and Simulation. Academic Press,
2000.

[12] Fritzson P. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-
IEEE Computer Society Pr., 2003.

[13] Beltrame T, Cellier F. E. Quantised State Sys-
tem Simulation in Dymola/Modelica Using the
DEVS Formalism. In Proc. of the 5th Intl. Mod-
elica Conf., pp. 73–82, 2006.

[14] Cellier F. E, Kofman E. Continuous System Sim-
ulation. Springer, 2006.

[15] Kofman E. Discrete Event Simulation of Hybrid
Systems. SIAM Journal on Scientific Comput-
ing, 25(5):1771–1797, 2004.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 106

[16] Chow A. C. H. Parallel DEVS: a Parallel, Hier-
archical, Modular Modeling Formalism and its
Distributed Simulator. Trans. of the Society for
Computer Simulation Intl., 13(2):55–67, 1996.

[17] Derrick E. J, Balci O, Nance R. E. A compari-
son of selected conceptual frameworks for sim-
ulation modeling. In Proc. of the 1989 Winter
Simulation Conf., pp. 711–718, 1989.

[18] Kelton W. D, Sadowski R. P, Sturrock D. T. Sim-
ulation with Arena. McGraw-Hill, 4th ed., 2007.

[19] Pegden C. D, Sadowski R. P, Shannon R.
E. Introduction to Simulation Using SIMAN.
McGraw-Hill, 1995.

[20] Mikler J, Engelson V. Simulation for Opera-
tion Management: Object Oriented Approach us-
ing Modelica. In Proc. of the 3rd Intl. Modelica
Conf., pp. 207–214, 2003.

[21] Dynasim AB. Dymola Dynamic Modeling Lab-
oratory User’s Manual. http://www.dymola.com,
2009.

[22] Law A. M. Simulation Modelling and Analysis.
McGraw-Hill, 4th ed., 2007.

[23] L’Ecuyer P. Software for Uniform Random Num-
ber Generation: Distinguishing the Good and the
Bad. In Proc. of the 33rd Conf. on Winter Simu-
lation, pp. 95–105, 2001.

[24] L’Ecuyer P, Simard R, Chen E. J, Kelton W. D.
An Object-Oriented Random-Number Package
With Many Long Streams and Substreams. Oper.
Res., 50 (6):1073–1075, 2002.

[25] Zeigler B. P, Sarjoughian H. S. Intro-
duction to DEVS Modeling & Simula-
tion With JAVA: Developing Component
Based Simulation Models. Available at
http://www.acims.arizona.edu/PUBLICATIONS/,
2003.

[26] Wainer G. CD++: A Toolkit to Develop DEVS
Models. Software: Practice and Experience,
32(13):1261–1306, 2002.

[27] Nutaro J. ADEVS - A Discrete Event Sys-
tem Simulator. Arizona Center for Integrative
Modeling & Simulation (ACIMS), Uni-
versity of Arizona, Tucson. Available at
http://www.ece.arizona.edu/˜nutaro/index.php,
1999

[28] Sanz V, Urquia A, Dormido S. Introducing Mes-
sages in Modelica for Facilitating Discrete-Event
System Modeling. In Proc. of 2nd Intl. Workshop
on Equation-Based Object-Oriented Languages
and Tools, pp. 83-93, 2008.

[29] Sanz V, Urquia A, Dormido S. DEVS Specifica-
tion and Implementation of SIMAN Blocks Us-
ing Modelica Language. In Proc. of the Winter
Simulation Conf., pp. 2374–2374, 2007.

[30] Sanz V, Urquia A, Dormido S. ARENALib: A
Modelica library for Discrete-Event System Sim-
ulation. In Proc. of the 5th Intl. Modelica Conf.,
pp. 539–548, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 107

Stream Connectors – An Extension of Modelica for Device-Oriented
Modeling of Convective Transport Phenomena
Rüdiger Franke, ABB AG, Germany, Ruediger.Franke@de.abb.com

Francesco Casella, Politecnico di Milano, Italy, Casella@elet.polimi.it
Martin Otter, DLR Institute for Robotics and Mechatronics, Germany, Martin.Otter@dlr.de

Michael Sielemann, DLR Institute for Robotics and Mechatronics, Michael.Sielemann@dlr.de
Hilding Elmqvist, Dassault Systèmes (Dynasim), Sweden, Hilding.Elmqvist@3ds.com

Sven Erik Mattson, Dassault Systèmes (Dynasim), Sweden, SvenErik.Mattsson@3ds.com
Hans Olsson, Dassault Systèmes (Dynasim), Sweden, Hans.Olsson@3ds.com

Abstract

Modelica 3.0 as well as other physical modeling lan-
guages have two basic variable types to describe the
interaction of physical components: “Potential” (or
across) variable and “flow” (or through) variable. It
is shown that with these variable types it is not pos-
sible to describe in a numerically sound way bi-
directional flow of matter. Other alternatives based
on signal flow oriented modeling have severe restric-
tions how components can be connected together.

This fundamental problem is addressed in Mode-
lica 3.1 by introducing a third type of connector vari-
able for physical systems, called stream variable,
declared with the prefix stream.

This article motivates and introduces stream vari-
ables. Examples are given for their utilization in ba-
sic fluid models.
Keywords: thermo-fluid, stream variable, convec-
tion, potential/flow variable, across/through variable

1 Introduction

Connectors and connector designs are crucial for the
modular modeling of complex physical systems. The
understanding of simulation models is generally sim-
plified if the modular model structure corresponds to
the structure of actual physical devices. Connectors
of such device-oriented models shall represent actual
ports, like flanges for fluid flow.

Modelica provides different kinds of connection
variables for the definition of connectors. Input and
output signals are used for the connection of control
blocks. Connections between physical devices are
generally treated with pairs of “potential” (or across)
and “flow” (or through) variables. Electrical systems

are a typical example, where voltage differences are
treated as potential variables and currents are treated
as flow variables.

Thermo-fluid systems deal with convective trans-
port phenomena. The two basic variable kinds in a
physical connector – potential variable and flow
variable – are not sufficient to describe in a numeri-
cally sound way the bi-directional flow of matter
with convective transport of specific quantities, such
as specific enthalpy and chemical composition. The
values of these specific quantities are determined
from the upstream side of the flow, i.e., they depend
on the flow direction. When using potential and flow
variables, the corresponding models would include
nonlinear systems of equations with Boolean un-
knowns for the flow directions and singularities
around zero flow. Such equation systems cannot be
solved reliably in general. The model formulations
can be simplified when formulating two different
balance equations for the two possible flow direc-
tions. This is not possible with potential and flow
variables though.

The requirements for a good, general-purpose ob-
ject-oriented modeling framework in this domain
are:

• single definition of one fluid connector class;
• intuitive semantics for hierarchical, device-

oriented modeling: outer connectors of a
functional unit model (e.g., a steam genera-
tor) should correspond to physical flanges of
the unit itself;

• numerical robustness at zero and reverting
flow;

• arbitrary connections between multiple fluid
connectors are possible; automatically gen-
erated connection equations represent ideal-
ized flow junctions.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 108 DOI: 10.3384/ecp09430078

No Modelica fluid library existing so far fulfills all
of these requirements. The experience made with
different approaches for the modeling of fluid sys-
tems during the last years shows that the available
kinds of connector variables are not well suited for
the description of interfaces and connections for
convective transport phenomena, such as thermo-
fluid flow.

Without restriction of generality, this article dis-
cusses the convective transport of energy. Therefore,
the following analysis is formulated in terms of spe-
cific enthalpy. Nonetheless, the principle holds for
other quantities transported via convection such as
substance concentrations as well.

2 Existing Definitions of Fluid con-
nectors

This section discusses two different approaches that
are widely used to describe the interaction of thermo-
fluid components. Other known approaches are ei-
ther similar to the discussed ones or are not valid
with respect to the connection semantics of Modelica
3.

2.1 Connection Semantics of Balanced Models

In Modelica 3.0 the concept of balanced models was
introduced [7]. This approach requires that every
model is “locally balanced”, which means that the
number of unknowns and equations must match on
every hierarchical level. It is then sufficient to check
every model locally only once, e.g., all models in a
Modelica package. Using these models (instantiating
and connecting them, redeclaring replaceable models
etc.) will then lead to a model where the total num-
ber of unknowns and the total number of equations
will match - a very important and useful property.

In [7] it is shown that this property can only hold
if the number of flow variables in a connector is
identical to the number of non-causal, non-flow vari-
ables (i.e., variables that do not have a flow, input,
output, parameter, constant prefix). Therefore,
this restriction on connectors was introduced in
Modelica 3.0 and is utilized below.

2.2 Treatment of Transported Quantities as
Signals

Focusing on the requirement for numerical robust-
ness and simplicity for a Modelica tool, transported
quantities can be communicated as signals through
connectors. This approach has been implemented
successfully in the ThermoPower library, see [2].

The basic idea is to use a pair of input/output vari-
ables for each transported intensive quantity (e.g.,
the specific enthalpy or the composition). Each of
them corresponds to a specific direction of flow (into
or out of the connector):
connector FluidPort_SignalA
 import SI = Modelica.SIunits;
 SI.Pressure p;
 flow SI.MassFlowRate m_flow;
 input SI.SpecificEnthalpy hBA;
 output SI.SpecificEnthalpy hAB;
end FluidPort_SignalA;

It is not possible to connect two connectors of this
type together, since then two input variables (hBA)
would be connected together and this is not allowed
due to block diagram semantics. It is also not possi-
ble to just remove the input/output prefixes, because
the resulting connector would violate the Modelica 3
restrictions, see section 2.1, since the number of non-
causal, non-flow variables (p, hBA, hAB) would not be
identical to the number of flow variables (m_flow).

Therefore, a second connector is needed with the
same variables but with exchanged input/output pre-
fixes:
connector FluidPort_SignalB
 import SI = Modelica.SIunits;
 SI.Pressure p;
 flow SI.MassFlowRate m_flow;
 output SI.SpecificEnthalpy hBA;
 input SI.SpecificEnthalpy hAB;
end FluidPort_SignalB;

The input variables in both connectors refer to the
value the intensive quantity would have assuming
the flow is entering the component; the output vari-
ables refer to the value that the flow would have if
going out of the component. These quantities are
always well-defined, and do not have any discontinu-
ity around zero mass flow rate.

The use of signals in physical connectors, how-
ever, complicates the device-oriented modeling of
fluid systems. Modelica signals are not intended for
physical connectors and their use restricts the con-
nection semantics. Each connection set on the same
hierarchical level must contain exactly one
FluidPort_SignalA and one FluidPort_SignalB
connector. Adaptor models need to be introduced in
all other cases.

2.3 Treatment of Transported Quantities as
Potential Variables

Focusing on the requirements for intuitive, device-
oriented connection semantics, transported quantities
can be modeled as potential variables. Previous ver-
sions of Modelica_Fluid treat specific enthalpy as
potential variable, complemented with enthalpy flow

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 109

rate as flow variable, see [4]. The connector defini-
tion reads:
connector FluidPort_Potential
 import SI = Modelica.SIunits;
 SI.Pressure p;
 flow SI.MassFlowRate m_flow;
 SI.SpecificEnthalpy h_mix;
 flow SI.EnthalpyFlowRate H_flow;
end FluidPort_Potential;

The pressure p and the mass flow rate m_flow de-
scribe the hydraulic phenomena of fluid flow. The
specific enthalpy h_mix and the enthalpy flow rate
H_flow describe the convective transport of energy.
Since no input/output prefixes are used in this con-
nector, there are no restrictions how components can
be connected together, contrary to the signal flow
approach of section 2.2.

A connection set is seen as an infinitesimally
small mixing volume and the specific enthalpy in the
connector is the mixing enthalpy for arbitrary flow
directions. Figure 1 shows an example with three
connected components.

Figure 1: Exemplary connection set with three con-
nected components and a common mixing enthalpy

Consider a connection set with n connectors. The
mixing enthalpy is defined by the mass balance

∑
=

=
nj

jm
...1

0 & (1)

and the energy balance at the infinitesimal small con-
trol volume of the connection point

∑
=

=
nj

jH
...1

0 & (2)

with

0
0

mix j
j j

outflow j j

h m
H m

h m
>⎧⎪= ⎨ ≤⎪⎩

if
if

&
& &

&
 (3)

Herein, mass flow rates im& are positive when enter-
ing models (i.e. exiting the connection set). The spe-
cific enthalpy outflowh represents the specific enthalpy
inside the component, close to the connector, for the
case of outflow.

When connecting components together, the Mod-
elica connection semantics for flow variables will
result in equations (1) and (2), since m_flow and
H_flow are flow variables. (3) needs to be imple-
mented in a component for every connector of this
component.

If the mass flow rates are unknowns, as it is usu-
ally the case, then (1)-(3) is a set of non-linear alge-
braic equations in the mass flow rates im& and the
mixing enthalpy hmix. From (3) it can be seen, that
the unknown mass flow rates enter this equation set
also as Boolean expressions 0jm >& .

In the most often occurring case of two connected
components, it is easy to compute hmix from (1)-(3):

,2 1

,1 1

0
0

outflow
mix

outflow

h m
h

h m
>⎧⎪= ⎨ ≤⎪⎩

if
if

&

&

Since usually houtflow,1 ≠ houtflow,2, the mixing enthalpy
hmix is discontinuous at zero mass flow rate.

If all mass flow rates are zero, 0jm =& , then (1)-
(3) are identically fulfilled for every value of hmix, so
these equations do not have a unique solution at this
point, which means they are singular. Note, that this
singularity is in line with the physics of the problem:
The idealized infinitesimally small mixing volume
does not have storage; therefore, its thermodynamic
state is exclusively defined by the fluid flowing
through it. If no fluid flows through the connection
set, its state is not defined and a singularity arises at
zero mass flow.

The above observations can be summarized as
follows: Non-linear equation systems might occur,
e.g., due to steady-state initialization, steady state
models, ideal mixing, or pressure drop components
directly connected together. If this is the case and if
hmix is an iteration variable of this non-linear equa-
tion system, then (1) a singularity is present when all
mass flow rates are zero, (2) hmix is usually discon-
tinuous at this singular point, and (3) the directions
of the mass flow rates, 0jm >& , are unknowns, i.e.,
the equation system consists not only of real but also
of Boolean unknowns. No numerical solver is known
that is able to compute the solution of such a non-
linear algebraic equation system in a reliable way
and it is very unlikely that this will ever be the case.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 110

This analysis shows clearly that the mixing enthalpy
hmix should not be computed and it should never be
used in a connector.

3 Stream Connectors

The goal of stream connectors is to fulfill all re-
quirements on a thermo-fluid connector regarding
intuitive device-oriented connection semantics on
one hand and numerical robustness on the other.

From the analyses in the previous section, it be-
comes obvious that, in order to meet the goal of nu-
merical robustness, the plain specific mixing en-
thalpy should not be computed. Note that the energy
balance, together with the piecewise equation given
in equation (3), consists of different branches. It can
therefore be split. Separate energy balances are the
result; each valid for a specific flow direction.

This design decision leads to two primary conse-
quences. First, the corresponding connector variables
(called “stream” variables) come in two incarnations,
one under the assumption of fluid entering the com-
ponent, the other under the assumption of fluid leav-
ing the component. The specific enthalpy under the
assumption of fluid leaving the component, outflowh , is
one of the two and has to be established via govern-
ing equations of the model. If a model has a “vol-
ume/capacity”, these equations refer to the corre-
sponding state variables of this volume. If the model
does not have a volume/capacity, the specific en-
thalpy under the assumption of fluid leaving the
component at one connector is an algebraic (instan-
taneous) function of the values of the specific en-
thalpies under the assumption of fluid entering the
component at the other connectors of this compo-
nent. This is the second consequence: Whenever the
mixing enthalpy is used in a model it is the mixing
enthalpy under the assumption of fluid flowing into
said model. We establish this quantity using a dedi-
cated built-in operator

() ()0, ≥= jmixjoutflow mhhinStream & . (4)
This is the definition of the second incarnation of the
specific mixing enthalpy on the level of a single
flange. This means, the mixing enthalpy is only
computed for the case when fluid is entering a com-
ponent, but not when fluid is leaving. From the per-
spective of the connection set, this definition leads to
n different incarnations of the specific mixing en-
thalpy (with n as number of connections in a connec-
tion set).

After motivating the concept, we will now de-
scribe it in detail. First, using stream variables, a
fluid connector is defined as follows.

connector FluidPort_Stream
 import SI = Modelica.SIunits;
 SI.Pressure p;
 flow SI.MassFlowRate m_flow;
 stream SI.SpecificEnthalpy h_outflow;
end FluidPort_Stream;

In this section, only the most important type of con-
nections is treated, where components are connected
on the same “level”, so called “inside” connections.
The special case of “outside” connections, i.e., con-
nections along a hierarchical model, is sketched in
appendix A2.

A connector containing stream variables is called
a stream connector. A stream connector must have
exactly one scalar variable with the flow prefix. The
idea is that all stream variables of this connector are
associated with this flow variable. A stream variable

• defines a quantity that is transported by a
flow through the stream connector (i.e.
large-scale motion via, e.g., m_flow);

• represents the value of the transported quan-
tity for the case of outflow through the
stream connector, i.e. m_flow < 0;

• does not lead to the generation of any con-
nection equations (for “inside” connections).

A model using a stream connector must expose the
outflow value, which is known from internal storage
or from inflow values of other connectors, independ-
ently of the flow direction. The inflow value can be
obtained by a model on demand by using the new
operator

inStream(h_outflow)

In the Modelica Language Specification 3.1 [6], the
definition for this operator is given implicitly. It is
based on the balance equation for transported quanti-
ties, see (2) and (3):

,1...

0
0 mix j

j
outflow jj n

h m
m

h=

>⎧⎪= ⋅ ⎨
⎪⎩

∑
if
else
&

& (5)

However, the common enthalpy hmix for ideal mixing
shall not be computed. Instead, for every connector i
the balance equation (5) is written under the assump-
tion that flow is only entering a component via con-
nector i (so these are “n” equations):

_ ,

,1...

, _ ,

0
0

() 1,2,...,

mix in i j
j

outflow jj n

outflow i mix in i

h m j i
m

h

h h i n
=

> =⎧⎪= ⋅ ⎨
⎪⎩

= =

∑
if or
else

inStream

&
&

 (6)

As a result, the “n” balance equations (6) compute
“n” mixing enthalpies hmix_in,i under the assumption
that flow enters the respective connector i. Similarly
to the enthalpy for ideal mixing, a singularity is pre-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 111

sent if all mass flow rates vanish: If 0jm =& then (6)
is identically fulfilled for every value of hmix_in,i. It is
therefore necessary to approximate the solution of
(6) in an open neighborhood of that point. We ne-
glect this issue for the moment and will come back to
it in the subsequent section.

As shown in appendix A1, the enthalpy for ideal
mixing for “n” connected components can be explic-
itly computed from (5) by:

∑
∑

=

=

−

−
=

nj
j

nj
jjoutflow

mix m

mh
h

...1

...1

)0,max(

)0,max(

&

&

 (7)

In a similar way, the mixing enthalpy under the as-
sumption of a flow into connector i can be explicitly
computed from (6) by:

(),

,
1... ,

1... ,

() 0

max(,0)

max(,0)

outflow i mix i

outflow j j
j n j i

j
j n j i

h h m

h m

m
= ≠

= ≠

= ≥

−

=
−

∑
∑

inStream &

&

&

 (8)

All variables needed for the expansion of the in-
Stream operator are explicitly given in a connection
set. The own outflow value h_outflowi is not consid-
ered as a connector cannot have inflow and outflow
at the same time.

Figure 2 visualizes stream variables and the de-
pendencies of the inStream operator for three con-
nected components.

Figure 2: Exemplary connection set with three con-
nected components

The expansion of the inStream operator simplifies
for some important special cases.

Figure 3: Exemplary series connection of multiple
models with stream connectors

Figure 3 shows the series connection of two volumes
via two “flow” models that neither store mass nor
energy. In this case the inStream operator reduces to
a simple propagation of two independent values.
This can be easily derived from (8) for the special
case of two connected components:

,1 ,2

,2 ,1

()

()
outflow outflow

outflow outflow

h h

h h

=

=

inStream

inStream
 (9)

These equations state that the value of the inflowing
specific enthalpy is just the value of the specific en-
thalpy from the upstream side. This result could have
been obtained also directly by inspection of a figure
of this situation. Therefore, the following relations
hold for Figure 3:

1_ 1_

2 _ 2 _

() ()

()
B a b

a b A

h h h

h h h

= =

= = =

inStream inStream

inStream
 (10)

In volume B the energy balance, with the internal
energy UB of volume B, might have the following
form which can be considerably simplified using
(10):

() 0
0

0
0

B BB
B

B B

A B
B

B B

h mdU m
h mdt

h m
m

h m

>⎧
= ⋅ ⎨ ≤⎩

>⎧
= ⋅ ⎨ ≤⎩

inStream if
if

if
if

&
&

&

&
&

&

 (11)

Note, that hA and hB are either states of the respective
volumes or can be directly computed from the states
via the media equations, which means that these
variables are “known”. The equation in (11) still
contains a relation of the unknown mass flow rate
(0Bm >&). However, this is uncritical here, because
this relation can be directly computed from the states
of the volume and from the pressure-drop equations
of the two flow models:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 112

()
()
() ()

() ()
() ()
() ()

1 1_ 1 1

2 1_ 2 1

1 1_

1 1_ 1_ 1_

2 1_ 2 _ 1_

2 2_

, ,

, ,

, () ,

, () ,

, () ,

, () ,

B b B ba ab

A b ba ab

ab B a B B

ba b b b A

ab b a b B

ba A b A A

m f p p

f p p

p h p h

p h p h

p h p h

p h p h

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

= −

= −

= =

= =

= =

= =

inStream

inStream

inStream

inStream

&

(12)

Function f1(..) is the pressure drop relation of com-
ponent flow 1 and f2(..) the respective one of compo-
nent flow 2. These functions depend basically on the
pressure difference between their ports and the up-
stream density ρ, i.e., ρba when the flow is from port
“b” to port “a” and ρab when the flow is from port
“a” to port “b” (other dependencies, e.g., from dy-
namic viscosity η, can be handled in a similar way).
Since pA, pB, hA, hB are “known” quantities from vol-
umes A and B, respectively, (12) are basically a non-
linear implicit equation to compute 1_ bp and then an

explicit equation to compute Bm& . Since f1(..) and
f2(..) are strictly increasing monotonic functions that
are at least continuous, the scalar non-linear equation
system is easy to solve. Once Bm& is computed, the
relation appearing in the energy balance of volume
B, 0Bm >& , can be calculated as well.

To summarize, the system in Figure 3 is easy to
solve numerically and only requires to solve one
(uncritical) scalar non-linear equation in one un-
known and otherwise only a series of explicit equa-
tions needs to be solved. The above analysis holds if
the medium equations are a function of pressure p
and specific enthalpy h. Other medium dependencies
are uncritical as well, as discussed in section 4.

Figure 4: Exemplary series connection of multiple
models with stream connectors and a sensor compo-
nent.

The outflow values of connectors that never provide
outflow, like absolute sensors, do not need to be con-
sidered for the expansion of inStream operators.

Such connectors are defined by using the min attrib-
ute for the flow variable, see Figure 4.

The inStream value of an unconnected connector
is defined to be equal to the outflow value.

The complete specification of stream connectors,
for inside and outside connectors is given in [6].

4 Numerical Properties

In this section, the regularization of the inStream()
operator is sketched and several other numerical
properties are analyzed.

4.1 Regularization of the inStream() Operator

As already analyzed in the preceding section, the
return value of the inStream() operator cannot be
uniquely computed if all mass flow rates are zero.
When using equation (8), even a division by zero
occurs. In [6] this issue is resolved by requiring that
the inStream() operator is appropriately approxi-
mated in an open neighborhood of vanishing mass
flow rates and that the approximation must fulfill the
following requirements:
1. inStream(houtflow,i) must be unique with respect

to all values of the flow and stream variables in
the connection set, and must have a continuous
dependency on them.

2. Every solution of the implicit equation system (6)
must fulfill (6) identically (up to the usual nu-
merical accuracy), provided the absolute value of
every flow variable in the connection set is greater
than a small value ε > 0 (1 2 ...m mε ε> >and& &

nm ε>and &). This means that the balance equa-
tion is approximated only for small mass flow
rates and otherwise is exactly fulfilled.

There are several possibilities to fulfill these re-
quirements. In Figure 5, the definition of the in-
Stream() operator is shown for the case of a three-
way mixing point before applying any approxima-
tions. The region with all mass flow rates but im&
zero or positive is left open as the value of the opera-
tor)(inStream ,ioutflowh is arbitrary by definition
here.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 113

Figure 5: Exact solution for a three-way connection

In the Modelica Language Specification [6], a rec-
ommended regularization of the inStream() operator
is given. First, let iσ be the sum of the mass flow
rates considered for applying the operator to port i.

∑
≠=

−=
ijnj

ji m
,...1

)0,max(&σ

Then, the expressions using the conventional opera-
tor max(x, 0) in equation (8) are substituted by a cus-
tom operator positiveMax(x, iσ), which is defined
such that it always returns a positive, non-zero value.

,

,
1... ,

1... ,

inStream()

positiveMax(,)

positiveMax(,)

outflow i

outflow j j i
j n j i

j i
j n j i

h

h m

m

σ

σ
= ≠

= ≠

=

⋅ −

−

∑
∑

&

&

 (13)

A suitable definition of the operator is a linear com-
bination of max(x, 0) and +ℜ∈ε along a suitably
chosen variable α .

() () () εαασ ⋅−+⋅= 10,max,xpositiveMa xx i .

The variable α is a C1 smooth step function of iσ .

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤

≤<⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

>

=

0if0

0if23

if1
2

i

i

i
ii

i

σ

εσ
ε
σ

ε
σ

εσ

σα

As a result, the value of the inStream() operator is
always well-defined and is a continuous function of
the variables entering (8). If all mass flow rates are
zero, positiveMax(…) = ε, and

,
1... ,

,

1... ,

,
1... ,

,
1... ,

inStream()

(1)

1

outflow j
j n j i

outflow i

j n j i

outflow j
j n j i

outflow j
j n j i

h
h

h

n
h

n

ε

ε

ε

ε

= ≠

= ≠

= ≠

= ≠

⋅

=

⋅

=
⋅ −

=
−

∑
∑

∑

∑

that is, the operator returns the arithmetic mean of
the stream variables (but without houtflow,i). Figure 6
shows an illustration of this regularization for the
case of a three-way mixing point. Herein, the arith-
metic mean value is shown in blue. Note that outside
of the regularization domain points remain, which
are not continuously differentiable. This is necessary
due to the second requirement to the regularization,
which states that the approximation must be exact
whenever the absolute values of all flow variables
are greater than a given small value.

Figure 6: Recommended approximation for a three-
way connection

Note, the following trivial implementation of the
positiveMax() operator is also allowed according
to [6]:

() ()εσ ,max,xpositiveMa xx i = .

In this case, the approximation is still exact when-
ever the absolute values of all flow variables are
greater than a given small value. However, in the
regularization region the operator is no longer con-
tinuously differentiable. See figure 7 for an illustra-
tion.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 114

Figure 7: Simplified approximation for a three-way
connection

4.2 Iteration Variables for Nonlinear Algebraic
Equation Systems

For the robustness of the simulation, the choice and
number of iteration variables in non-linear equation
systems are crucial. We will discuss this issue at the
example of a three-way mixing point with flow mod-
els (“detailed wall friction with laminar and turbulent
region”), see Figure 8, and in the general case.

Figure 8: Three way mixing point.

As medium, the fluid “Modelica.Media.IdealGases.-
MixtureGases.FlueGasSixComponents” is used
which is a mixture of six ideal gas substances. The
independent medium variables are pressure p, tem-
perature T and 5 independent mass fractions Xi. This
system is basically described by the following set of
equations:

()
()
()

()

1 2 3

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 2 2

1 1 _ 1

1 _ 1 1

0
, , , ,

, , , ,

, , , ,
(, , ())

, (), ()

mix ab ba ab ba

mix ab ba ab ba

mix ab ba ab ba

ab mix a inflow a

a inflow mix a a

m m m
m f p p

m f p p

m f p p
p T Xi

T T p h Xi

ρ ρ η η

ρ ρ η η

ρ ρ η η

ρ ρ

= + +

= −

= −

= −

=

=

inStream

inStream inStream

inStr

& & &

&

&

&

2 2 3 3
1

2 3

(,) (,)()
(,) (,)

...

a a
a

h max m h max mh
max m max m

ε ε
ε ε

⋅ − + ⋅ −
=

− + −
eam

& &

& &

This set of nonlinear algebraic equations can be basi-
cally solved with three iteration variables, namely
two mass flow rates and the pressure pmix in the mix-
ing point: If two mass flow rates are given, the third
mass flow rate can be computed via the mass balance
(the first equation in the set of equations above). Fur-
thermore, the inStream operators each depend on
h_outflow’s of the components attached to the mix-
ing points and can therefore be computed, once the
mass flow rates are known (e.g. h2a = inStream(h2b)
which can be, e.g., computed from the states of the
volume connected to pipe2; similarly h3a, Xi2a, Xi3a
can be computed etc., and then inStream(h1a), in-
Stream(Xi1a) etc. can be computed).

In order to compute all needed intensive quanti-
ties for the ideal gas mixture, the (unknown) tem-
perature T must be computed from pressure, specific
enthalpy and mass fractions. This requires in general
to solve one non-linear algebraic equation in one
unknown. In the Modelica.Media package, this is
performed with the algorithm of Brent [1] which is
completely reliable and very efficient1. Once the
temperature is known, densities ρ and dynamics vis-
cosities η may be computed for the wall friction cor-
relations. Also, with the pressure in the mixing point,
all pressure differences can be computed and finally
all mass flow rates via functions f1(..), f2(..), f3(..).
The 3 residual equations are then the differences be-
tween the mass flow rates given by the solver and the
ones computed from the wall friction correlations.

In the general case of a N-way mixing point, a
similar analysis shows that N-1 mass flow rates and

1 An interval is given in the medium definition, in which
the root must be present. If possible, a smaller interval is
computed by inverse quadratic interpolation (interpolating
with a quadratic polynomial through the last 3 points and
computing the zero). If this fails, bisection is used, which
always reduces the interval by a factor of 2. The inverse
quadratic interpolation method has superlinear conver-
gence. This is roughly the same convergence rate as a
globally convergent Newton method, but without the need
to compute derivatives of the non-linear function.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 115

the mixing point pressure can be used as iteration
variables for a reduced nonlinear algebraic equation
system of size N. Note, the number of iteration vari-
ables is independent of the number of substances in
the medium.

Since the iteration variables – pressure and mass
flow rates – are always continuous and in many
cases also continuously differentiable, the non-linear
algebraic equation system is well-posed and fulfills
the requirements of a non-linear algebraic equation
solver. For example, in Figure 9 , a typical simula-
tion result of the 3-way mixing point of Figure 8 is
shown, where it is clearly seen that the two iteration
variables 1()m t& and 2 ()m t& are continuous and even
continuously differentiable as function of time t.

Figure 9: Mass flow rates as iteration variables of the
three way mixing point.

The model equations need to be implemented in a
specific form, in order to get the desirable properties
from above, see section 5.2. The important point is
that a function is called to compute the independent
variables of the medium (i.e p,T,Xi in the case of the
flue gas medium above) from the potential and
streams variables of the connector (p,h,Xi) and not
vice versa.

In former Beta versions of the Modelica_Fluid li-
brary [4], as well as in the ThermoPower library [2],
the inverse correlation is used instead: In a “flow”
model component a function is present to compute
(p,h,Xi) from the medium states (p,T,Xi) via the
BaseProperties model which is present in the Mode-
lica.Media models. In such a case, a tool needs to use
the temperatures close to the connection points as
additional iteration variables. Temperatures are,
however, a very bad choice for iteration variables, if
bi-directional flow can occur, because they change
usually discontinuously when the mass flow changes
direction. For example, in Figure 10, the tempera-
tures of Figure 8 are shown that would be used as
iteration variables in such a case.

Figure 10: Temperatures as iteration variables of the
three way mixing point.

As can be clearly seen, the temperatures are discon-
tinuous and discontinuous iteration variables violate
the pre-requisite of every nonlinear algebraic solu-
tion method and a reliable solution can therefore not
be expected.

The results of the analysis above are summarized
in the following table:

Library smoothness
of iterat. var.

number of
iterat. var.

Modelica_Fluid Beta [4] discontinuous 22
ThermoPower [2] discontinuous 6
Modelica.Fluid [5] continuous 3

The above table shows some key results, when simu-
lating the three-way mixing point example from
Figure 8 with different Modelica packages with Dy-
mola 7.2 [2]:
• The Beta version of the Modelica_Fluid library

[4] uses the connectors from section 2.3 and gives
rise to a nonlinear algebraic equation system of 22
iteration variables, where many of the iteration
variables are discontinuous when mass flow rate
changes direction. So, a reliable solution is not
possible.

• The ThermoPower library [2] uses the connectors
from section 2.2. If only 1:1 connections are pre-
sent, the numerical properties of the Ther-
moPower library and of the streams concept are
similar, since a similar technique is used to propa-
gate the specific enthalpy along the connected
“flow” models. The main difference is that with
the streams concept no longer connection restric-
tions are present. If an ideally mixing component
is added to the ThermoPower library, the three-
way mixing example gives rise to a nonlinear al-
gebraic equation system of 6 iteration variables,
where 3 of them are discontinuous when mass
flow rate changes direction. So, a reliable solution
is not possible in this case. The reason is that in
the ThermoPower library the connector variables
are computed from the medium states and not vice
versa.

• The Modelica.Fluid library [5] uses the stream
connector concept of section 3. The three-way
mixing example gives rise to a nonlinear algebraic

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 116

equation system of 3 iterations variables where all
of them are continuous. So, a reliable solution is
to be expected. This demonstrates that there is a
tremendous difference in numerical reliability be-
tween the Beta version of Modelica_Fluid and the
Modelica.Fluid library released with the Modelica
Standard Library 3.1 in August 2009.

The analysis above was performed for an ideal mix-
ing point with a multi-substance medium. One might
expect that the described problems are gone if a
more detailed model with a volume is used for the
mixing point. However, during steady-state initiali-
zation and/or for a pure steady-state simulation, the
time derivatives of the dynamic states are set to zero
and again nonlinear equation systems with similar
properties are present. Again, it can be expected that
the streams-connector approach leads to equation
systems with a small number of continuous iteration
variables and can therefore be solved reliably.

Note, if a volume would be used in the connec-
tion point of the three-way mixing point, the overall
model would have 7 additional states (p, T, 5 mass
fractions Xi). If the more precise description is not
needed, one can therefore expect that the ideal mix-
ing formulation (leading to a reliably solvable
nonlinear algebraic equation system with 3 iteration
variables) could result in a more efficient simulation.

4.3 Inverse Function Annotation

The streams connector concept introduced in section
3 is very well suited for media where the potential
and stream variables in the connector (e.g., p, h, Xi)
are also used as medium states. For media with other
media states, there is the disadvantage that for every
connection a non-linear algebraic equation has to be
solved in order to compute the medium states from
the potential and streams variables of the connector.
For example, if a medium with independent variables
pressure p and temperature T was used for the exam-
ple in Figure 3, then four scalar non-linear algebraic
equations need to be solved to compute (p,T) from
(p,h) at points 1a, 1b, 2a, and 2b. This is completely
unnecessary for points 1a and 2b, since here the me-
dium states could just be propagated from the vol-
umes.

In order to more efficiently cope with such situa-
tions, in Modelica 3.1 [6], section 12.8, a new anno-
tation is introduced to define the inverses of func-
tions. For example, (p,T) media should have the fol-
lowing two basic function definitions:
function h_pT
 input Real p "pressure";
 input Real T "temperature";
 output Real h "specific enthalpy";

algorithm
 ...
end h_pT;

function T_ph
 input Real p "pressure";
 input Real h "specific enthalpy";
 output Real T "temperature";
 annotation(inverse(h = h_pT(p,T));
algorithm
 ...
end T_ph;

For a (p,T) media the specific enthalpy h is com-
puted explicitly via function h_pT(..). Additionally,
the inverse function T = T_ph(..) is needed which
will usually need to call a non-linear algebraic equa-
tion solver in order to invert function h_pT(..). In
such a case, function T_ph(..) should have the anno-
tation “inverse(h = h_pT(p,T)”. This annotation
states that the inverse of T_ph is function h_pT. The
essential requirement is that the inverse function
must have the same input/output arguments as the
direct function, but the order of the arguments may
be permuted. Especially, a variable that was declared
as “input”, is used as “output” in the inverse func-
tion.

The “inverse” annotation signals a tool that it
should use this function if possible, because it will be
more efficient than using the “direct” function. For
example, in Figure 11 two components are connected
together and stream variables are used in the connec-
tors. Let us assume that p, T1 are known variables,
since they are states of a volume.

Figure 11: Enhancing efficiency with the inverse anno-
tation when propagating media properties.

This situation is described by the following equa-
tions:

1 1

2 1

2, 2

1

(,)

()
(, ())

(,)

pT

inflow ph

ph

h h p T

h h
T T p h

T p h

=

=
=

=

inStream
inStream

Since the inverse function hpT is defined as annota-
tion in function Tph, the tool is advised to try whether
the usage of the inverse function will simplify the
equations. Indeed this is the case here: If the last
equation is replaced by the inverse function:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 117

1 1

2 1

1 2,

(,)

()
(,)

pT

pT inflow

h h p T

h h
h h p T

=

=
=

inStream

it can be detected that the same function is called
twice. In both cases, the same arguments p,h1 are
used. The second input arguments T1, T2,inflow must be
identical, in order that this can hold. Therefore, the
above equations can be simplified to:

1 1

2 1

2, 1

(,)

()
pT

inflow

h h p T

h h
T T

=

=
=

inStream

As a result, function Tph need no longer be called and
therefore one scalar nonlinear algebraic equation
computation is removed.

The above simplification rule is, e.g., available in
Dymola 7.2 [2]. In a few media of Modelica.Media
(version 3.1) the inverse annotation is already in-
cluded. It is planned to include the annotation for all
media where this makes sense in the follow-up ver-
sion of the Modelica Standard Library.

To summarize, with the inverse annotation, ap-
propriate media description and corresponding tool
support, the unnecessary scalar nonlinear algebraic
equation systems are avoided for 1:1 connections,
when using media that do not have (p,h,X) as states.

5 Examples for Basic Fluid Models

Thermo-fluid models are built from components,
each representing a control volume. A control vol-
ume is defined as a fixed region in space where one
studies the masses and energies crossing the bounda-
ries of the region. The boundaries of a control vol-
ume usually represent the physical boundaries of the
parts through which fluid flow is occurring. Often
two basic kinds of component models are distin-
guished:

• Volume models define a thermodynamic
state for a lumped medium.

• Transport or flow models serve to connect
volume models. They do not define an own
thermodynamic state. Instead they define the
transport of fluid for thermodynamic states
given at their ports.

Multiple volume and transport models can be assem-
bled to build component models hierarchically. The
following examples use the
connector FluidPort = FluidPort_Stream;

5.1 Volume model

A basic model of an ideally mixed lumped volume is
defined below.
model Volume "Lumped volume, e.g. vessel"

 replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

 parameter Integer nPorts=0
 "Number of ports";
 FluidPort[nPorts] ports;

 parameter Modelica.SIunits.Volume V

"Volume of device";
 Modelica.SIunits.Mass m
 "Mass in device";
 Modelica.SIunits.Energy U

"Inner energy in device";

 Medium.BaseProperties medium;

equation
 // Definition of port variables
 for i in 1:nPorts loop
 ports[i].p = medium.p;
 ports[i].h_outflow = medium.h;
 end for;

 // Mass and energy balance
 m = V*medium.d;
 U = m*medium.u;
 der(m) = sum(ports.m_flow);
 der(U) = ports.m_flow *

 actualStream(ports.h_outflow);
end Volume;

The volume model can be used with an arbitrary me-
dium model out of Modelica.Media. The mass bal-
ance and the energy balance sum up the contribution
of flows going through nPorts fluid ports.

Alternatively the volume model could be defined
with only one fluid port as multiple connections can
be made to it. Then, however, ideal mixing would
take place in the port outside the volume. Using
unary connections to multiple ports ensures that the
mixing takes place inside the volume. This is the
generally intended behavior for multi-way connec-
tions to a volume. Nonlinear systems of mixing
equations are avoided.

The actualStream operator used to define the en-
ergy balance is a shorthand notation for:
actualStream(port.h_outflow) ==
 if port.m_flow > 0 then
 inStream(port.h_outflow) else
 port.h_outflow;

Note that with stream variables the Boolean un-
known for the flow direction appears in the energy
balance, where the flow dependent value of the spe-
cific enthalpy is multiplied with the mass flow rate.
This is why a reverting flow, i.e. m_flow crossing

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 118

zero, does not cause jumping values in the model
equations.

5.2 Transport model

The flows are defined with transport models. A basic
model for isenthalpic flow is given below:
model IsenthalpicFlow
 "Flow model without storage of mass or
 energy, e.g. fitting or valve"

 replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

 FluidPort port_a, port_b:

 Medium.ThermodynamicState state_a
 "State at port_a if inflowing";
 Medium.ThermodynamicState state_b
 "State at port_b if inflowing";

equation
 // Medium states for inflowing fluid
 state_a = Medium.setState_phX(
 port_a.p,
 inStream(port_a.h_outflow));
 state_b = Medium.setState_phX(
 port_b.p,
 inStream(port_b.h_outflow));

 // Mass balance
 0 = port_a.m_flow + port_b.m_flow;

 // Isenthalpic energy balance
 port_a.h_outflow =
 Medium.specificEnthalpy(state_b);
 port_b.h_outflow =
 Medium.specificEnthalpy(state_a);

 // (Regularized) Momentum balance
 port_a.m_flow = f(
 port_a.p, port_b.p,
 Medium.density(state_a),
 Medium.density(state_b));
end IsenthalpicFlow;

The flow model does not define own thermodynamic
states as it has no storage of mass or energy. Instead
the mass flow rate is defined for thermodynamic
states seen through the ports for the case of inflow.
These are generally the (transformed) states defined
by connected volume models.

The flow model defines steady-state mass, energy
and momentum balances. The function f gives the
relationship between pressure drop and mass flow
rate.

The use of the ThermodynamicState records
state_a and state_b also ensures that appropriate
equation systems are generated by a Modelica tool
for medium models that do not use pressure and en-
thalpy as independent variables, such as gas models

often using pressure and temperature instead (see
section 4 above).

5.3 Sensor model

Ideal sensor models are used to pick up fluid proper-
ties, such as temperatures. They do not contribute to
the fluid flow. A basic model for a temperature sen-
sor is given below.
model TemperatureSensor
 "Ideal temperature sensor"

 replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

 FluidPort port(m_flow(min=0))
 "Port with no outflow ever";

 Modelica.Blocks.Interfaces.RealOutput T
 "Upstream temperature";

equation
 T = Medium.temperature(
 Medium.setState_phX(port.p,
 inStream(port.h_outflow));

 port.m_flow = 0;

 port.h_outflow =
 Medium.specificEnthalpy(
 Medium.setState_pTX(
 Medium.reference_p,
 Medium.reference_T))
 "Never used, but seen in plots";
end TemperatureSensor;

The mass flow rate in the port is defined to be non-
negative. This tells the translation tool that the out-
flow enthalpy defined by the sensor must not be used
in any mixing equations, as outflow does never hap-
pen; see also Figure 4 above.

6 Conclusions

So far it has not been possible to agree on a common
approach for the formulation of fluid ports. Existing
approaches have either been based on control sig-
nals, which do not allow the device-oriented model-
ing of fluid systems, or on pairs of potential/flow
variables, which lead to numerically unreliable equa-
tion systems.

The new stream variables allow the declarative
formulation of fluid ports. Stream variables define
the convective transport of specific quantities, such
as specific enthalpy or chemical composition. The
semantics is simple and can easily be supported by a
Modelica tool.

Stream connectors have been standardized in
Modelica 3.1. They are used in Modelica.Fluid. Cur-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 119

rently Dymola 7.2 [2] and SimulationX 3.2 [8] sup-
port stream connectors. Other tool vendors already
announced to support the concept, too.

The streams concept is a big step forward for
fluid modeling in Modelica. However, stream con-
nectors are not yet the ultimate solution for fluid
modeling because there are still missing features:
• The used medium has currently to be defined for

every component. It would be nicer if the me-
dium was defined at one source and the medium
definition would then be propagated through the
connection structure.

• When components are connected together, the
connection semantics ensures that the mass and
the energy balance are fulfilled exactly (in the
sense of “ideal” mixing). The momentum bal-
ance is exact in case of identical dynamic pres-
sure for each of the connected flanges. If this ap-
proximation is not sufficiently accurate, an ap-
propriate explicit junction model has to be used.
It would be useful if also the momentum balance
was automatically fulfilled when 3 or more com-
ponents are connected together. This requires in-
cluding information about the geometry of fluid
flanges into the connector description.

7 Acknowledgments

Partial financial support of ABB and of DLR for this
work within the ITEA2 project EUROSYSLIB is
highly appreciated (BMBF Förderkennzeichen:
01IS07022F).

References

[1] R.P. Brent (1973): Algorithms for Minimization
without derivatives. Prentice Hall, pp. 58-59.

[2] F. Casella, A. Leva (2003): Modelica open li-
brary for power plant simulation: design and
experimental validation. Proceedings of the
Modelica 2003 Conference, editor: P. Fritzson,
Linköping, Sweden.
www.modelica.org/events/Conference2003/papers/h08_Leva.pdf

[3] Dymola (2009). Dymola Version 7.2. Dassault
Systèmes, Lund, Sweden (Dynasim).
www.dymola.com

[4] H. Elmqvist, H. Tummescheit, M. Otter (2003):
Object-Oriented Modeling of Thermo-Fluid
Systems. Proceedings of the Modelica 2003 Con-
ference, editor: P. Fritzson, Linköping, Sweden.
www.modelica.org/events/Conference2003/papers/h40_Elmqvist_fluid.pdf

[5] R. Franke, F. Casella, M. Sielemann, K. Proelss,
M.Otter, M. Wetter (2009): Standardization of
thermo-fluid modeling in Modelica.Fluid. Pro-

ceedings of the Modelica 2009 Conference, edi-
tor: F. Casella, Como, Italy.
www.modelica.org/events/modelica2009

[6] Modelica (2009): Modelica Language
Specification, Version 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

[7] H. Olsson, M. Otter, S.E. Mattsson, H. Elmqvist
(2008): Balanced Models in Modelica 3.0 for
Increased Model Quality. Proceedings of the
Modelica 2008 Conference, editor: B. Bachmann,
Bielefeld, Germany.
www.modelica.org/events/modelica2008/Proceedings/sessions/session1a3.pdf

[8] SimulationX (2009). SimulationX Version 3.2.
ITI, Dresden, Germany.
www.simulationx.com

Appendix

A1 Determination of the Enthalpy for Ideal Mix-
ing

In previous sections a central formula is an explicit
equation to compute the ideal mixing enthalpy of an
infinitesimally small connection point. In this sec-
tion, this formula is derived. For simplicity, it is first
derived at hand of 3 model components that are con-
nected together, see Figure 2. The case for N connec-
tions follows correspondingly.

The energy and mass balance equations at the in-
finitesimally small control volume of the connection
point of the three connected components are:

1
1

,1 1

2
2

,2 2

3
3

,3 3

0
0

0

0
0

0
0

mix

outflow

mix

outflow

mix

outflow

h m
m

h m

h m
m

h m

h m
m

h m

>⎧⎪= ⋅ ⎨ ≤⎪⎩
>⎧⎪+ ⋅ ⎨ ≤⎪⎩
>⎧⎪+ ⋅ ⎨ ≤⎪⎩

if
if

if
if

if
if

&
&

&

&
&

&

&
&

&

 (1a)

3210 mmm &&& ++= (1b)

With the max(..) operator:

max(a,b) = if a > b then a else b

the balance equations above can be rewritten:

() ()
() ()
() ()

1 1 ,1

2 2 ,2

3 3 ,3

0 max ,0 max ,0

max ,0 max ,0

max ,0 max ,0

mix outflow

mix outflow

mix outflow

m h m h

m h m h

m h m h

= ⋅ − − ⋅

+ ⋅ − − ⋅

+ ⋅ − − ⋅

& &

& &

& &

 (2a)

() ()
() ()
() ()0,max0,max

0,max0,max
0,max0,max0

33

22

11

mm
mm

mm

&&

&&

&&

−−+
−−+
−−=

 (2b)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 120

Equation (2a) is solved for mixh

()
()
()

() () ()

1 ,1

2 ,2

3 ,3

1 2 3

max ,0

max ,0

max ,0

max ,0 max ,0 max ,0

outflow

outflow

outflow
mix

m h

m h

m h
h

m m m

⎛ ⎞− ⋅ +
⎜ ⎟

− ⋅ +⎜ ⎟
⎜ ⎟⎜ ⎟− ⋅⎝ ⎠=

+ +

&

&

&

& & &

Using (2b), the denominator can be changed to:

()
()
()

() () ()

1 ,1

2 ,2

3 ,3

1 2 3

max ,0

max ,0

max ,0

max ,0 max ,0 max ,0

outflow

outflow

outflow
mix

m h

m h

m h
h

m m m

⎛ ⎞− ⋅ +
⎜ ⎟

− ⋅ +⎜ ⎟
⎜ ⎟⎜ ⎟− ⋅⎝ ⎠=

− + − + −

&

&

&

& & &

This is an explicit formula to compute hmix for three
connected components. It is straightforward to gen-
eralize this formula to “n” connections:

1...

1...

max(,0)

max(,0)

j outflow j
j n

mix
j

j n

m h
h

m
=

=

− ⋅

=
−

∑
∑

&

&

A2 Stream Variables in Hierarchical Models

The discussion of stream connectors has been re-
stricted to connections on the same hierarchical level
in this paper so far. In this section the handling of
stream variables in hierarchical models is consid-
ered.

Figure 12: Exemplary fluid system with N=3 inside
connectors and M=2 outside connectors

Figure 12 shows an exemplary hierarchical fluid sys-
tem. If the inStream operator is used in one of the
models mi, i=1…N, then the contributions of the in-
side and the outside connectors of the connection set
need to be taken into account. This results in:

inStream(houtflow,i)

∑ ∑
∑

∑

+−= =

=

+−=

+−

+

−

=

Niij Mk
kj

Mk
kkoutflow

Niij
jjoutflow

mm

mh

mh

...1,1...1 ...1

...1

...1,1...1

)0,max()0,max(

)0,max(

)0,max(

&&

&

&

.

Note the opposite sign for mass flow rates in the out-
side connectors, following the sign convention for
flow variables in hierarchical models.
The models mi each explicitly define the stream vari-
ables h_outflow of their port ci. These ports are in-
side connectors in the shown connection set. There
are no explicit equations in the hierarchical model
that define the stream variables h_outflow in the out-
side connectors cq,k, k=1…M. A Modelica tool needs
to define the stream variables of outside connectors
cq by establishing one mixing equation for each
stream variable houtflow,q, q=1…M:

∑ ∑
∑

∑

= +−=

+−=

=

+−

+

−

=

Nj Mqqk
kj

Mqqk
kkoutflow

Nj
jjoutflow

qoutflfow mm

mh

mh

h

...1 ...1,1...1

...1,1...1

...1

,)0,max()0,max(

)0,max(

)0,max(

&&

&

&

This equation considers the contributions of inside
and outside connectors in the connection set as well
as the sign convention for flow variables in hierar-
chical models.
The treatment of zero flow for inside and outside
connectors is the same as the treatment of zero flow
in connections on the same hierarchical level (see
Section 4.1). m1

C

m2
C

m3
C

Cq,1

Cq,2

...

...

m1
C

m2
C

m3
C

Cq,1

Cq,2

...

...

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 121

Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Rüdiger Franke, ABB AG, Germany – Ruediger.Franke@de.abb.com,

Francesco Casella, Politecnico di Milano, Italy – Casella@elet.polimi.it,
Michael Sielemann, DLR Institute for Robotics and Mechatronics – Michael.Sielemann@dlr.de,

Katrin Proelss, TU Hamburg-Harburg, Germany – K.Proelss@tu-harburg.de,
Martin Otter, DLR Institute for Robotics and Mechatronics, Germany – Martin.Otter@dlr.de,

Michael Wetter, LBNL, USA – MWetter@lbl.gov

Abstract

This article discusses the Modelica.Fluid library that
has been included in the Modelica Standard Library
3.1. Modelica.Fluid provides interfaces and basic
components for the device-oriented modeling of one-
dimensional thermo-fluid flow in networks contain-
ing vessels, pipes, fluid machines, valves and fit-
tings.
A unique feature of Modelica.Fluid is that the com-
ponent equations and the media models as well as
pressure loss and heat transfer correlations are de-
coupled from each other. All components are imple-
mented such that they can be used for media from
the Modelica.Media library. This means that an in-
compressible or compressible medium, a single or a
multiple substance medium with one or more phases
might be used with one and the same model as long
as the modeling assumptions made hold. Further-
more, trace substances are supported.
Modeling assumptions can be configured globally in
an outer System object. This covers in particular the
initialization, uni- or bi-directional flow, and dy-
namic or steady-state formulation of mass, energy,
and momentum balance. All assumptions can be lo-
cally refined for every component.
While Modelica.Fluid contains a reasonable set of
component models, the goal of the library is not to
provide a comprehensive set of models, but rather to
provide interfaces and best practices for the treat-
ment of issues such as connector design and imple-
mentation of energy, mass and momentum balances.
Applications from various domains are presented.

Keywords: Modelica, thermo-fluid; one dimensional
fluid flow, single substance, multi substance, trace
substances

1 Introduction

Modelica.Fluid was announced together with Mode-
lica Media at the Modelica’2003 conference, after
the Modelica Association had made an attempt to
standardize the most important interfaces and to pro-
vide good solutions for the basic problems of fluid
modeling [1]. By now Modelica.Media is widely
used. Regarding Modelica.Fluid it has not been pos-
sible to meet the ambitious goal for device-oriented
modeling in realistic fluid applications so far. Still
many different fluid libraries exist, each defining its
own basics and each having its own downsides.
Based on lessons learned, the Modelica Association
has made a second attempt to standardize the basic
fluid interfaces during the last year. It turned out that
the regular Modelica connection approach with effort
and flow variables is not sufficient for device-
oriented fluid modeling. The newly introduced
stream variables [3] represent properties transported
by large-scale motion of a flow, such as specific en-
thalpy transported via convection by a mass flow.
This makes it possible that the significant amount
work that went into Modelica.Fluid finally yields
fruits; 17 persons have contributed to the develop-
ment during the last 6 years. Compared to previous
beta releases, the code was reorganized and extended
to cover the whole range from steady-state models to
dynamic energy, mass and momentum balances. The
fundamental balance equations for one-dimensional
fluid flow and heat flow have been decoupled from
the device models based on them. This not only sim-
plifies the readability and understanding, but also the
maintenance and further development of the library.

2 Library Structure and Interfaces

2.1 Library Structure

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 122 DOI: 10.3384/ecp09430077

Figure 1 shows the package structure of Mode-
lica.Fluid.

Figure 1: Library structure and interfaces of Mode-
lica.Fluid

The overall library structure is oriented on fluid de-
vices. The main packages are:

• Vessels are devices for storing fluid;

• Pipes are devices for transporting fluid;

• Machines convert between energy held in a
fluid and mechanical energy;

• Valves regulate fluid flow;

• Fittings are adaptors for the connection of
fluid components and for the regulation of
fluid flow;

• Sources define boundary conditions for fluid
models;

• Sensors are used to measure fluid properties
and flow rates.

2.2 Interfaces

The Interfaces package defines both fluid connectors
and partial base classes for the implementation of
component models. The fluid connectors utilize the
new Modelica stream variables, see [3], for the de-
clarative modeling of convective transport of heat
and substances. The fluid connector is defined as:
connector FluidPort
 replaceable package Medium;

 Medium.Pressure p;
 flow Medium.MassFlowRate m_flow;

 stream Medium.SpecificEnthalpy
 h_outflow;

 stream Medium.MassFraction
 Xi_outflow[Medium.nXi];

 stream Medium.ExtraProperty
 C_outflow[Medium.nC];
end FluidPort;

The medium characterizes the fluid passing the port.
This ensures that only ports transporting the same
fluid can be connected. Moreover, the medium de-
fines numerical ranges, nominal values and equa-
tions of state appropriate for the fluid and its applica-
tion domain at hand.

The purely hydraulic portion of fluid flow is de-
scribed with the pressure and the mass flow rate in
the port. The fluid may transport energy, modeled as
specific enthalpy. The mass fractions describe the
composition of multi-substance fluids. Extra proper-
ties can be used to model trace substances.

The library defines four different versions of the flu-
id port which all have the same semantics, but differ-
ent icons. FluidPort_a and FluidPort_b are in-
tended for fluid models with single flanges such as
pipes. FluidPorts_a and FluidPorts_b shall be
used for components with individual flanges for each
connection made to them, such as vessels.

2.3 Partial Base Classes

Base classes are used to unify the implementations of
similar models and equations. There finds two dif-
ferent kinds of base classes, which are usually com-
bined via multiple inheritance:

• Shell models define interfaces of flow de-
vices, such as fluid ports;

• Balance models define only balance equa-
tions, such as the momentum balance or heat
transfer with the environment. No connec-
tors are instantiated herein.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 123

The balance models are designed such that they can
either be used with inheritance or with replaceable
models.

A typical concrete fluid model extends from two
base classes: a shell model and a balance model; see
e.g. Fittings.SimpleGenericOrifice extending
from PartialTwoPortTransport and from Par-
tialLumpedFlow.

Replaceable models are typically used for heat trans-
fer with the environment; see e.g. Vessels.-
BaseClasses.PartialLumpedVessel conditionally
enabling a replaceable heat transfer model with the
flag use_HeatTransfer on the Assumptions tab.

2.3.1 Shell models
PartialTwoPort provides two fluid ports port_a
and port_b, which are common to many components
like pipes, machines and valves. Partial-
TwoPortTransport extends from PartialTwoPort
and additionally defines steady-state mass and sub-
stance balances for component models without stor-
age of fluid. An extending class still needs to define
the energy balance (correspondingly in steady-state),
which might, for example, be based on an isenthalpic
state transformation for fittings or a polytropic one
for machines.

2.3.2 Balance models
The balance models predefine equations for dynamic
and for steady-state simulation. Moreover the ini-
tialization and the connection to a medium model are
treated in these base classes.

The equations are formulated with variables that rep-
resent generic boundary and source terms of the cor-
responding balances. Extending classes need to de-
fine the boundary and source terms.

PartialDistributedVolume defines the mass and
the energy balance for one-dimensional distributed
flow models. The model equations are formulated for
n flow segments, which are characterized with the
variable vectors
SI.Volume[n] fluidVolumes;
SI.Mass[n] ms;
SI.Energy[n] Us;

for the volume, the mass and the internal energy of
the fluid per segment. Moreover
SI.Mass[n,Medium.nXi] mXis;
SI.Mass[n,Medium.nC] mCs;

model the substance masses and the trace substance
masses if a multi component medium is used.

The mass balance is defined as
der(ms) = mb_flows;

with mb_flows[n] a vector of n boundary and source
terms.

The energy balance is defined as
der(Us) = Hb_flows + Wb_flows + Qb_flows;

distinguishing enthalpy flow rates Hb_flows[n], me-
chanical power Wb_flows[n] and heat flow rates
Qb_flows[n] for boundary and source terms.

The substance mass balances and the trace substance
mass balances are defined as
der(mXis) = mbXi_flows;
der(mCs) = mbC_flows;

with mbXi_flows[n,Medium.nXi] and
mbC_flows[n,Medium.nC] the boundary and source
terms for mass flow rates of independent substances
and trace substances, respectively.

The separate base class PartialDistributedFlow
defines the momentums
SI.Momentum[m] Is;

for m flow segments with the balance equation
der(Is) = Ib_flows – Fs_p – Fs_fg;

using the boundary and source terms Ib_flows[m]
for flow of momentum across boundaries, the pres-
sure forces Fs_p[m], and the friction and gravity
forces Fs_fg[m].

The use of a different base class for the momentum
balance allows the flexible utilization of different
discretization schemes than for the mass and the en-
ergy balances. For instance, following the staggered
grid approach, m=n-1 momentum balances are de-
fined between n fluid volumes.

The additional base classes PartialLumpedVolume
and PartialLumpedFlow provide lumped versions of
mass, energy and momentum balances.

An interface for heat transfer with the environment is
defined in the PartialHeatTransfer model. It pre-
defines a vector of heat flows Q_flows[n] through a
vector of heatPorts[n]. Moreover PartialHeat-
Transfer provides a simple consideration of heat
losses to the ambient by using the parameter k as
coefficient of heat transfer. A concrete heat transfer
model extending from PartialHeatTransfer needs
to define Q_flows based on the thermodynamic
states, flow regime and surface areas of n flow seg-
ments.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 124

2.4 System Wide Properties

Due to common interfaces and base classes, many
models contain similar configuration parameters. It
would be tedious to open all individual configuration
dialogs in order to change the same setting in all
models. This is why Modelica.Fluid defines a Sys-
tem object providing global defaults for all compo-
nents in a fluid model.

Figure 2: Parameter dialog of the System object

Figure 2 shows the configuration of modeling as-
sumptions. The system wide default values cover:

• General parameters that define ambient pres-
sure, temperature and the force of gravity.

• Assumptions that declare dynamics options,
ranging from steady-state to dynamic with
fixed or free initial values. These assump-
tions are made per balance type. A typical
fluid model would have dynamic energy and
mass balances together with steady-state
momentum balances. Moreover the analysis
of a fluid model can be restricted to only
cover the design flow direction from port_a
to port_b.

• Initialization with common start values.

• Advanced settings to provide default values
for mass flow rates and pressure drops that
shall be considered small for the numerical
analysis of reverting flow conditions.

These system-wide settings can, however, be over-
ridden at the component level to allow, for example,
the use of steady-state and dynamic components
within the same system model.

3 Rigorous Implementation of One-
Dimensional Fluid Flow

The Pipes sub-package provides a rigorous imple-
mentation for one-dimensional thermo-fluid flow.
The governing equations of pipe flow are the mass
balance

() ()
43421321

flowsmbmsder

x
Av

t
A

_)(

∂
∂

−=
∂

∂ ρρ
,

the energy balance

44 344 21

&

43421444 3444 2143421
flowsQb

e

flowsWb

F

flowsHbUsder

Q
x
TkA

x
vF

x
pvA

x

Apuv

t
uA

___)(

)(
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

++
∂
∂

+
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂

−=
∂

∂ ρ
ρ

ρ

and the momentum balance

() ()
{ 44 344 2143421321

fgFs

F

pFsflowsIbIsder

x
zgAF

x
pA

x
Av

t
vA

2

)(

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+−
∂
∂

−
∂

∂
−=

∂
∂ ρρρ

.

Below the curly braces the names of corresponding
variables that are predefined in the base classes are
given; see Section 2.3.2.

Here t is the time and x is the independent spatial
coordinate along the direction of fluid flow. The
fluid is characterized by the density ρ, the specific
internal energy u, the temperature T, the velocity v of
the flow, and the thermal conductivity k. The flow
device is characterized by the area A perpendicular to
the direction x, the Fanning friction factor FF, and
the heat flow eQ& exchanged with the environment.
Moreover g is the constant of gravity and z is the
spatial coordinate along the gravity.

Note that the energy balance does not contain contri-
butions of the momentum. The kinetic energy of flu-
id flow is treated by the momentum balance; see [1].

Pipes.BaseClasses.PartialTwoPortFlow imple-
ments the balances. It extends from Inter-
faces.PartialDistributedVolume and applies the
finite volume approach to the discretization along the
spatial coordinate x with n flow segments. Figure 3
gives a graphical overview.

crossAreas[1] crossAreas[2:n-1] crossAreas[n]

lengths[2:n-1]

flowModel.dps_fg[1] flowModel.dps_fg[2:n-1]

m_flows[2] m_flows[3:n]m_flows[1] m_flows[n+1]

(ModelStructure av_vb, n=3)

states[2:n-1] states[n]states[1]

dimensions[1] dimensions[2:n-1] dimensions[n]

vs[2:n-1]vs[1] vs[n]

flowModel.pathLengths[1] flowModel.pathLengths[2:n-1]

lengths[1] lengths[n]

f low Model

port_a port_b

Figure 3: Overview of PartialTwoPortFlow

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 125

The replaceable flowModel defines m=n-1 momen-
tum balances. Concrete implementations of flow
models are provided in the subpackage Pipes.-
BaseClasses.FlowModels. They include laminar,
turbulent and detailed one-phase flow. The flow
models are either parameterized with pipe geome-
tries or, alternatively, with nominal flow conditions.

The overall model structure follows the staggered
grid approach with nNodes=n flow segments. Mo-
mentum balance equations are formulated for neigh-
boring flow segments. There are different choices for
the formulation of the boundary conditions at the
fluid ports, which can be configured with the pa-
rameter ModelStructure on the Advanced tab:

• av_vb: Symmetric setting with nNodes-1
momentum balances between nNodes flow
segments. The ports port_a and port_b ex-
pose the first and the last thermodynamic
state, respectively. Connecting two or more
flow devices therefore may result in high-
index DAEs for the pressures of connected
flow segments;

• a_v_b: Alternative symmetric setting with
nNodes+1 momentum balances across
nNodes flow segments. Half momentum bal-
ances are placed between port_a and the first
flow segment as well as between the last
flow segment and port_b. Connecting two or
more flow devices therefore results in alge-
braic pressures at the ports. The specification
of good start values for the port pressures is
essential for the solution of large nonlinear
equation systems;

• av_b: Unsymmetric setting with nNodes full
momentum balances, one between the n-th
volume and port_b, potential pressure state
at port_a;

• a_vb: Unsymmetric setting with nNodes full
momentum balances, one between the first
volume and port_a, potential pressure state
at port_b.

The model structure influences the equations that
result from the interconnection of multiple flow
models. The connection of models that expose
steady-state momentum balances through their ports
(model structure a_v_b) generally results in a non-
linear equation system for the connection point. The
connection of models that expose states of fluid vol-
umes with storage through their ports (model struc-
ture av_vb) results in high-index DAEs for pressure
states. Note that the states representing enthalpy or

temperature still stay separated due to the used
stream connectors.

A specific pipe flow model still needs to add the
source terms Qb_flow and Wb_flow for heat and
work exchanged with the environment. The compo-
nent model Pipes.DynamicPipe extends from Par-
tialTwoPortFlow and defines these terms.

crossAreas[1] crossAreas[2:n-1] crossAreas[n]

lengths[2:n-1]

flowModel.dps_fg[1] flowModel.dps_fg[2:n-1]

m_flows[2] m_flows[3:n]m_flows[1] m_flows[n+1]

(ModelStructure av_vb, n=3)

states[2:n-1] states[n]states[1]

dimensions[1] dimensions[2:n-1] dimensions[n]

vs[2:n-1]vs[1] vs[n]

flowModel.pathLengths[1] flowModel.pathLengths[2:n-1]

lengths[1] lengths[n]

f low Model

he...

port_a port_bport_a port_b

Figure 4: Overview of Pipes.DynamicPipe that extends
from Pipes.BaseClasses.PartialTwoPortFlow and de-
fines the terms Wb_flows and Qb_flows

Figure 4 gives an overview of Pipes.DynamicPipe.
The term Wb_flow has been implemented according
to the energy balance given above. The term
Qb_flow is defined by a replaceable wall heat trans-
fer model. Some predefined choices can be found in
Pipes.BaseClasses.HeatTransfer.

4 Treatment of Wall Friction and
Flow Reversal

In a one-dimensional model of fluid dynamics, the
wall shear stress cannot be established directly as
product of dynamic viscosity and gradient of fluid
velocity perpendicular to the fluid surface, as all
changes perpendicular to the bulk flow velocity are
not resolved in such a model. Consequently, the
transfer of momentum between the fluid and an adja-
cent surface is modeled using a lumped approach.
The pressure drop due to wall friction is a computed
as product of dynamic pressure and a loss factor ζ ,

2
vv

pt

ρ
ζ=Δ .

If a component models a domain of zero “length”
(no extension with respect to the flow direction) then
the loss factor is established directly via an appropri-
ate correlation (e.g. a valve). For pipes and other
components of finite length, the loss factor is defined

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 126

using a wall friction coefficient λ , pipe length l, and
diameter d,

d
lλζ = .

All correlations have been regularized to be continu-
ous and have a finite, non-zero, and smooth first de-
rivative. The functions are all guaranteed to be
strictly monotonic, which guarantees that a unique
inverse exists. Wherever possible, the correlations
are provided in two versions, one to calculate mass
flow as a function of pressure drop and one to com-
pute pressure drop from mass flow rate. Further-
more, most functions contain a single statement only
such that Modelica tools may inline them to avoid
function call overhead.

4.1 Pipe Wall Friction

In case of pipe models, the wall friction correlations
are provided in form of replaceable packages defined
in Pipes.BaseClasses.WallFriction. A replace-
able instance of the corresponding base class is
added to the staggered grid momentum balance in
Pipes.BaseClasses.FlowModels.PartialGene-

ricPipeFlow. Implementation details are given in
[1], regularization is discussed in [2]. Figure 5 pro-
vides a Moody chart of an exemplary pipe wall fric-
tion correlation.

Figure 5: Moody chart of correlations provided in
Pipes.BaseClasses.WallFriction

4.2 Pipe Wall Friction and Static Head

When static head is of relevant order of magnitude in
a pipe (e.g. natural circulation), properly modeling
pipe capacity is important to have a well-defined
density and therefore pressure difference due to
static head gzpsh ρ=Δ . This is supported by the

pipe models using an average of the control volume
densities to the left and the right of each momentum
balance. In some cases it is reasonable to neglect the
pipe capacity however, e.g. when the cost of the as-
sociated state variables is high. In this simplification,
each pipe segment is filled instantaneously with fluid
of the upstream density. The resulting exact solution
is not monotonic and thus not bijective if the rate of
change of elevation z along the domain has the same
sign as the rate of change of density. This is shown
in blue in figure 6 below.

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

0.104

[

]

Mass flow rate

Exact solution Mean density Regularized exact solution

Pr
es

su
re

 d
iff

er
en

ce
 d

ue
 to

 w
al

l f
ric

tio
n

an
d

st
at

ic
 h

ea
d

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

0.104

[

]

Mass flow rate

Exact solution Mean density Regularized exact solution

Pr
es

su
re

 d
iff

er
en

ce
 d

ue
 to

 w
al

l f
ric

tio
n

an
d

st
at

ic
 h

ea
d

Figure 6: Pressure difference due to wall friction and
static head over mass flow rate, non-bijective and bi-
jective case (inset)

This problem cannot be regularized using the
Fritsch-Carlson splines employed in [2]. Instead, a
modified algorithm was developed based on [5]. It is
available under Utilities.regFun3() and used to
regularize this problem.

Figure 6 illustrates the different options for this par-
ticular problem. The exact solution is shown in blue,
a simplified approach using a mean density inde-
pendent of the actual flow direction in red, and the
regularized exact version in green. Note in particular
the large difference in the necessary width of the
regularization interval required to yield a bijective
approximation.

4.3 Fittings with Non-Constant Cross Section

According to their definition, loss factors ζ estab-
lish a pressure difference in total pressure. For sev-
eral components, not only the density but also the
cross section area is identical on both ends. In this
case the dynamic pressure is constant over the com-
ponent and therefore the difference in total pressure
equals the difference in static pressure, i.e. the dif-
ference between the port pressures. Additionally to
components falling in the latter category, Mode-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 127

lica.Fluid provides component models for fittings
with cross section area changing over the device.

Herein, we discuss this type of components at the
example of an adaptor model in which the cross sec-
tion changes abruptly, Fittings.AbruptAdaptor. In
[6], two different correlations are given, one for a
sudden expansion, and a second one for a sudden
contraction, which were combined into the given
model. Similar to other wall friction correlations for
devices with changing cross section area, this type of
correlation does not refer to upstream density and
velocity. Instead, the pressure drop is defined as loss
factor times dynamic pressure at the smallest cross
section area.

Based on the definition of total pressure
22/1 vppt ρ+= and the definition of the loss fac-

tor ζ we arrive at the following equation relating
the static pressure drop and the mass flow rate.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

±
=Δ 222

2 11
2
1

bbaascasca AAA
mp

ρρρ
ζ

&

Herein, indices a and b each refer to one of the ends
of the adaptor. Index sca refers to the end with
smaller cross section area. Furthermore, the positive
sign refers to the case with positive mass flow rate.

When substituting the particular correlations men-
tioned above, the parenthesis turns out to be negative
independently of the flow direction. Therefore, the
function is not bijective and therefore cannot be in-
verted.

0

0

Mass flow rate

dp_static dp_total

0

0

Mass flow rate

dp_static dp_total

Figure 7: Pressure difference of static pressure and
total pressure for flow reversal in an adaptor

Figure 7 provides exemplary results for a particular
parametrization of the adaptor (da=0.1m, db=0.2m).
As can be seen in the illustration, the pressure drop
in static pressure is not monotone, only the pressure
drop in total pressure is.

5 Heat transfer

Due to the underlying one-dimensional approach are
temperature gradients perpendicular to the main flow
not resolved. Therefore, heat transport between the
fluid bulk flow and its environment, as for example a
pipe wall, is described by a lumped approach based
on a heat transfer coefficient k, the heat transfer area
Ah and the driving temperature difference between
bulk flow and the wall inside.

)(fluidporth TTAkQ −⋅⋅=&

The computation of the transport coefficient may
range from simple constant parameters to complex
correlations depending on fluid properties, geometry
information and flow position.

The resulting heat flow is used in the energy balance,
which looks the same for a wide range of specific
component models, while the heat transfer correla-
tion itself needs to be very flexible even at the very
top level of a component model which is ready to be
used in a larger system. For this reason the heat
transfer correlation is implemented as a replaceable
model with a defined public interface and can be
propagated across several hierarchical levels (see e.g.
Fig. 4).

Geometry parameters that are specific to a certain
correlation can be entered as a class modification at
the top level.

DistributedPipe and LumpedVessel use each their
own constraining type, based on a common model,
which are the starting points for example models in
the library as well as possible user extensions. Addi-
tional heat transfer resistances as walls and insula-
tion materials can be added in each correlation as an
option. Thermal capacitance must be covered by an
external component connected to the heat ports.

The following correlations are already implemented
in the library:

• Zero resistance for lumped and distributed
flow. The fluid temperature is then directly
exposed to the heat port, which may cause
higher index systems if a fixed temperature
boundary condition is directly connected.

• Constant heat transfer coefficient for lumped
and distributed flow: The heat transfer coef-
ficient is entered as a constant parameter in
the user interface

• Nusselt-number (Nu) based, forced convec-
tion driven heat transfer for distributed pipe
flows: The heat transfer coefficient is deter-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 128

mined from fluid flow properties according
to a correlation for laminar and turbulent
pipe flow in [7].

The last model inherits from a template class which
provides an easy to use interface for other Nu-based
correlations, which are e.g. used in heat exchangers.

All models and their corresponding interface classes
are found in their respective component category
folder, Vessels.BaseClasses.HeatTransfer and
Pipes.BaseClasses.HeatTransfer.

6 Examples

Modelica.Fluid contains a number of simple exam-
ples from various application domains. They are in-
tended for the exploration of the library and may
serve as a starting point for own developments.

6.1 PumpingSystem

This example models a supply system for drinking
water; see Figure 8. It features lumped mass and
momentum balances as well as an embedded control.

source

pi
pe

pumps

N_in [r...

reservoir

level =

2.2

userValve

sink

valveOpening

startTime=200

RelativePress...

k=2e4

controller
refer...

u

PumpRPMGen...

reservoirPres...

p_rel

PT1

P...

T=2

system

g
defaults

Figure 8: PumpingSystem example

Water is pumped from a source by a pump (fitted
with check valves) through a pipe whose outlet is
50m higher than the source, into a reservoir. The us-
ers are represented by an equivalent valve, connected
to the reservoir.

The water controller is a simple on-off controller,
regulating on the gauge pressure measured at the
base of the tower; the output of the controller is the
rotational speed of the pump, which is represented
by the output of a first-order system.

6.2 HeatingSystem

This example models a home heating system; see
Figure 9. It features a closed flow cycle and idealized
embedded controls in the pump and in the heater.

tank

level =

1

pump

valve

sensor_m_flow

m_flow

T_ambi...

T=syst...
K

w
all

G
=1.6e...

burner

Q_flow =1.6e3

system

g
defaults

heaterheater

radiatorradiator

T

sensor_T_for...

T

sensor_T_ret...

handle

startTime...

pipe
pipe

m_flow T_forw ard

T_return

tankLevel

Figure 9: HeatingSystem example

After 2000s of simulation time the handle valve fully
opens. A simple idealized control is embedded into
the respective components, so that the heating sys-
tem can be regulated with the valve: the pump con-
trols the pressure, the burner controls the tempera-
ture.

The simulation can be turned from dynamic to
steady-state or, steady-state initial conditions by se-
lecting the energy-, mass-, and momentumDynamics
under the Assumptions tab of the global system ob-
ject. The selection gets propagated to all component
models.

It is important to note that the massDynamics of the
tank is set to FixedInitial, in order to obtain sensi-
ble initial conditions for the closed flow cycle.

Also note that the heat transfer model of the tank is
enabled, in order to define a thermal insulation
against the environment. This way the steady-state
initial temperature of the tank is also defined in the
case of zero flow.

6.3 DrumBoiler

This example models the drum boiler of a power
plant; see Figure 10. It features two phase flow. The
locally defined evaporator component explicitly
models the phase change from water to steam.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 129

evaporator

evaporator

fu
rn

ac
e

sinkmassFlow Rate

m_flow
T

temperature

pressure

p

controller

PI

T=120

m

m_flow pump

-

feedback

levelSet...

k=67

k=1e6

MW2W

k=1e-5

Pa2bar

K2de...

K

limiter

uMax=500

limiter

SteamValve

system

g
defaults

q_F_Tab

offset=0

Y_Valve_Tab

offset=0

T_S

p_S

qm_S

V_l

Figure 10: DrumBoiler example

During simulation, the boiler is ramped up from
standstill to full load. The prescribed control of fuel
flow rate and steam valve position is specified in two
lookup tables.

More details about this example, including also the
calculation of an optimal start-up control, can be
found in [4].

6.4 BranchingDynamicPipes

This example models long pipes; see Figure 11. It
features dynamic momentum balances subject to
flow reversal.

system

g
defaults

bo
un

da
ry

1

pi
pe

1
pi

pe
1

pi
pe

2
pi

pe
2

pi
pe

3
pi

pe
3

pi
pe

4
pi

pe
4

boundary4
p

ramp1

duration=0

heat2

Q_flow =200...

Figure 11: BranchingDynamicPipes example

Applying the default model structure av_vb of the
DynamicPipe models, the idealized junctions are

treated as high-index DAEs. The pressure states of
connected pipes get lumped together – there is no
need to explicitly introduce junction models into the
connection points.

At simulation time 2s, the pressure of boundary4
jumps, which causes a pressure wave and flow rever-
sal.

6.5 TraceSubstances

This example models an air conditioning system
controlling the CO2 content in a room. It features
trace substances.

Figure 12: Example model for trace substances.

Figure 12 shows the example model
Fluid.Examples.TraceSubstances.RoomCO2With-

Controls. It models a room volume with a CO2
source and a fresh air supply with feedback control.
The CO2 emission rate is proportional to the room
occupancy, which is defined by a schedule. The fresh
air mass flow rate is controlled such that the room
CO2 concentration does not exceed 1000 PPM
(=1.519E-3 kg/kg). In the model, the implementation
of the feedback control normalizes the measured
CO2 concentration so that the controller tracks a set
point of one.

The fresh air supply has a CO2 concentration of 300
PPM, which corresponds to a typical CO2 concentra-
tion in the outside air. The CO2 emission from the
occupants is implemented using a mass flow source.
Depending on activity and size, the CO2 emission
rate per person is about 8.18E-6 kg/s. In the model,
this value is multiplied by the number of occupants
that is read from a time table. Notice that when mod-
eling CO2 emitted by people, we want to add CO2 to
the room, but no bulk mass flow rate. However, the
CO2 source model at the bottom of Figure 12 outputs

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 130

a non-zero air mass flow rate with some prescribed
CO2 concentration. Since the air mass flow rate as-
sociate with the CO2 source model contributes to the
volume’s energy balance, this mass flow rate needs
to be kept small. Thus, in the source model, the CO2
concentration is set to C=100 kg/kg, whereas the
output of the gain is scaled such that the mass flow
rate is m_flow = 1/100 * nPeo * 8.18E-6
kg/(s*person), where nPeo is the number of people
in the room. This results in an air mass flow rate that
is about 5 orders of magnitudes smaller than the
mass flow rate of the fresh air supply, and hence its
contribution to the volume's energy balance is negli-
gible.

7 Conclusions

Modelica.Fluid attempts to standardize the most im-
portant interfaces and to provide good solutions for
the basic problems of fluid modeling. Its design is a
collaborative effort; 17 persons have contributed to
the development during the last 6 years.

Modelica.Fluid uses stream connectors to model the
convective transport of energy and substances. It
provides rigorous implementations of mass, energy
and momentum balances for one-dimensional ther-
mo-fluid flow. Moreover the library provides a de-
tailed implementation of pipe friction.

Modelica.Fluid contains a reasonable set of simple
models of flow device, such as vessels, pipes and
pumps. The medium models are treated separately in
Modelica.Media. They are freely configurable for
each device model, covering compressible and in-
compressible single- and multi-substance media as
well as trace substances.

Several examples from various application domains
demonstrate the application of Modelica.Fluid. The
library does not attempt to provide a complete set of
device models for all of these application domains.
Application specific libraries shall base on Mode-
lica.Fluid. This simplifies model exchange and the
sharing of knowledge.

Modelica.Fluid supports dynamic and steady-state
simulations for one and the same model by specify-
ing global assumptions in a system object.

Modelica.Fluid does not yet cover multi-phase flow.
Further restrictions are seen in the connection ap-
proach that does not allow the propagation of me-
dium models and geometrical information, such as
heights and diameters, through fluid ports.

The future development of Modelica.Fluid will be
driven by its applications and by the people who
contribute.

References

[1] H. Elmqvist, H. Tummescheit, M. Otter: Ob-
ject-Oriented Modeling of Thermo-Fluid
Systems, Modelica 2003 Conference,
Linköping, November 2003.
www.modelica.org/events/Conference2003/papers/h40_Elmqvist_fluid.pdf

[2] F. Casella, M. Otter, K. Proelss, C. Richter,
H. Tummescheit: The Modelica Fluid and
Media Library for Modeling of Incompressi-
ble and Compressible Thermo-Fluid Pipe
Networks, Modelica 2006 Conference, Vi-
enna, September 2006.
www.modelica.org/events/modelica2006/Proceedings/sessions/Session6b1.pdf

[3] R. Franke, F. Casella, M. Otter,
M.Sielemann, H.Elmqvist, S.E. Mattson, H.
Olsson: Stream Connectors, Modelica 2009
Conference.

[4] R. Franke, K. Krüger, M. Rode: On-line Op-
timization of Drum Boiler Startup, Modelica
2003 Conference, Linköping, November
2003.
www.modelica.org/events/Conference2003/papers/h29_Franke.pdf

[5] M. G. Gasparo and R. Morandi: Piecewise
cubic monotone interpolation with assigned
slopes. Computing 46, pages 355-365, 1991.

[6] I.E. Idelchik: Handbook of Hydraulic Resis-
tance. Jaico Publishing House, 2005.

[7] Verein Deutscher Ingenieure (1997): VDI
Wärmeatlas. Springer Verlag, Ed. 8, 1997.

Acknowledgements

The design of the Modelica.Fluid library is a col-
laborative effort and many have contributed. The
authors like to particularily thank Jonas Eborn, Hild-
ing Elmqvist, Manuel Gräber, Carsten Heinrich, Kil-
ian Link, Christoph Richter, and Hubertus Tum-
mescheit for their valuable contributions.

Partial financial support by ABB and by DLR for
this work within the ITEA project EUROSYSLIB is
highly appreciated (BMBF Föderkennzeichen:
01IS07022F). This research was supported by the
Assistant Secretary for Energy Efficiency and Re-
newable Energy, Office of Building Technologies of
the U.S. Department of Energy, under Contract No.
DE-AC02-05CH11231.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 131

FluidDissipation for Applications - A Library
for Modelling of Heat Transfer and Pressure Loss

in Energy Systems

Thorben Vahlenkamp Stefan Wischhusen
XRG Simulation GmbH,

Harburger Schlossstraße 6-12, 21079 Hamburg
{vahlenkamp, wischhusen}@xrg-simulation.de

Abstract

The results of a free and open source MODELICA li-
brary for convective heat transfer and pressure loss
calculations of energy devices called FLUID DISSIPA-
TION will be presented based on the goals shown at the
MODELICA Conference 2008 [1]. The FLUID DISSI-
PATION library is developed within the European re-
search project EuroSysLib.

The library delivers a broad range of verified
and validated correlations describing convective heat
transfer and pressure loss of fluids in energy devices.
These correlations are numerically optimised to pro-
vide efficient and stable transient simulations. The
library also provides convective heat transfer models
and flow models of most heat transfer and pressure loss
correlations using the also free and open source MOD-
ELICA_FLUID library [2] as thermo-hydraulic frame-
work for system simulation.

Scope, implementation concept, numerical chal-
lenges, verification and validation of the FLUID DIS-
SIPATION library will be exemplarily described (e.g.
for convective heat transfer and pressure loss of two-
phase flow).

Industrial applications for thermo-hydraulic system
simulation (e.g. air distribution circuit for supplemen-
tal cooling, aircraft engine fuel feeding system) are
presented using FLUID DISSIPATION correlations im-
plemented within MODELICA_FLUID models. A de-
tailed documentation is available in the library itself.

Keywords: convective heat transfer; pressure loss;
dissipation;MODELICA_FLUID

1 Introduction

Energy conversion in any thermo-hydraulic process is
declined due to unwanted heat transfer (as a result of

temperature difference) and pressure losses (as a re-
sult of local losses due to geometry and/or frictional
losses) of a working fluid [3]. Both physical phenom-
ena increase entropy and decrease exergy of an energy
system. Therefore an amount of energy of a working
fluid to be transformed into mechanical work is dissi-
pated.

These fluid dissipation effects (e.g. pressure loss of
pipe network) have to be compensated by higher en-
ergy supply of other system components (e.g. delivery
height of pumps). A reduction of fluid dissipation ef-
fects is a way to optimise the efficiency of a thermo-
hydraulic process with a corresponding minimisation
of operation costs.

Thus modelling fluid dissipation effects are neces-
sary for thermo-hydraulic processes to evaluate exist-
ing energy systems and to find out optimising poten-
tials.

The following sections deliver insight into the open
source MODELICA library FLUID DISSIPATION:

• Library content with verified and validated cor-
relations describing the dissipation effects due to
convective heat transfer and pressure losses of
fluids used in energy devices

• Implementation of the library describing its
functional approach, numerical optimisations and
the creation of convective heat transfer and flow
models (out of MODELICA_FLUID as thermo-
hydraulic framework and the dissipation correla-
tions)

• Verification and validation of the library

– Convective heat transfer is exemplarily vali-
dated for an even gap as well as for conden-
sation and boiling of two-phase flow

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 132 DOI: 10.3384/ecp09430012

– Pressure loss is exemplarily validated for a
curved bend as well as for two-phase flow

• System simulationof an environmental control
system, a supplemental cooling system and an
aircraft engine feeding system as industrial appli-
cation

2 Library content

The FLUID DISSIPATION library consists of five major
packages shown in Fig.1.

Figure 1: Package content of the FLUID DISSIPATION

library.

The USERS GUIDE section provides a GET-
TINGSTARTED for the usage of the FluidDissipation
library and reports important changes w.r.t. previous
versions.

TheEXAMPLES package is divided into three pack-
ages. In the VERIFICATIONS package all heat transfer
and pressure loss correlations are verified or validated
with literature. In the APPLICATION package these
correlations are implemented into MODELICA_FLUID

as thermo-hydraulic framework. Examples of convec-
tive heat transfer models and flow models are pro-
vided. In the TESTCASES package these MODEL-
ICA_FLUID models are used for system simulation of
test applications (e.g. aircraft engine feeding system).

The HEAT TRANSFER section consists of 6 major
energy device packages shown in Fig.2. Each en-
ergy device package contains its corresponding corre-
lations for the convective heat transfer coefficient. Ev-
ery package can provide several correlations for this
device (best seen in the library itself). For example a
channel can be calculated with a constant wall temper-
ature or constant heat flow rate as boundary condition.

The PRESSUREL OSS section consists of 9 major
energy device packages shown in Fig.3. Each energy
device package contains its corresponding correlations
for the pressure loss coefficient. Every package can
provide several correlations for this device (best seen

Figure 2: Package content of convective heat transfer
devices in the FLUID DISSIPATION library.

in the library itself). For example a bend can be calcu-
lated with a curved or an edged turning.

Figure 3: Package content of pressure loss devices in
the FLUID DISSIPATION library.

3 Implementation of library

3.1 Functional approach

The intention of the FLUID DISSIPATION library is to
create a base library for convective heat transfer and
pressure loss calculations as dissipation effects of fluid
flow. To ensure its interoperability with other thermo-
hydraulic libraries (e.g. MODELICA_FLUID) the fol-
lowing main aspects have been realised during mod-
elling:

• Independence of thermo-hydraulic framework
(applicable with other libraries)

• Literally use of function calls

• Input and/or output arguments of function calls
are delivered by records (e.g. fluid properties, ge-
ometry parameters)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 133

Besides its interoperability this functional approach
considers the ease of use at a maximum of numerical
efficiency during system simulation. For example each
function call only needs its target variables (e.g. mass
flow rate, heat transfer coefficient or pressure loss) and
one record with all other variables as input arguments.
The intention for the future is to separate the dynamic
variables of the input record from the constant ones
(e.g. fluid properties from geometry parameters) due
to numerical reasons (see 3.2). In addition functions
using output records to monitor extra information like
a failure status shall not be used for the integration into
fluid models. These functions are best used for func-
tions calls only.

The principles of how to implement convective heat
transfer or pressure loss functions from FLUID DISSI-
PATION into other thermo-hydraulic libraries can be
done according to the following steps (here for pres-
sure loss as example).

1. Use/Create model with missing pressure loss cal-
culation (e.g. fluid interfaces for flow model)

2. Choose pressure loss function of interest

3. Choose corresponding pressure loss records

4. Build function-record construction

5. Assign record variables

This simplified implementation principle is shown in
Fig.4.

Figure 4: Principle implementation method to inte-
grate FLUID DISSIPATION functions into a thermo-
hydraulic framework.

Integration examples of dissipation functions into
MODELICA_FLUID as thermo-hydraulic framework
are explained in detail in Sec.3.3. A description can
also be found in [1] or in the GETTINGSTARTED sec-
tion of the USERS GUIDEin the FLUID DISSIPATION

library itself.

3.2 Numerical optimisation

All convective heat transfer and pressure loss functions
of the library are numerically optimised to provide ef-
ficient transient simulations. Measurement data for
dissipation correlations are adapted intocontinuous

functions. A smoothing function (see [3]) is used to
ensure continuity anddifferentiability . For example
the pressure loss of an overall fluid flow in a straight
pipe is calculated via the correlations of the laminar
and the turbulent regime with the smoothing function
in between representing the transition regime.

An additional aspect to improve computational effi-
ciency during system simulation can be toavoid nu-
merical Jacobians. Numerical Jacobians are created
in the translation process of a MODELICA simulation
tool out of an underlying equation system of a simula-
tion model, if the tool is not able to create analytical
Jacobians.

For instance the pressure loss in a flow model can be
modelled as a compressible case1 or an incompressible
case2 to avoid additionalnonlinear equations. An
analytical or numerical Jacobians is then needed, if a
compressible flow model has got a known mass flow
rate at its interfaces instead of a pressure loss. Espe-
cially in large system simulations, theavoidance of
nonlinear equations improves the performance of a
simulation system because then there is no need for a
nonlinear solver.

For pressure loss the FLUID DISSIPATION library
delivers both a compressible as well as an incompress-
ible calculation for inverse calculations w.r.t. mathe-
matical feasibility of its invertability. In an application
flow model no additional nonlinear equations are
created due to these functions if used correctly. Even
if the pressure loss functions are used in a numerically
unintended way by the user (e.g. the mass flow rate for
a flow model is unknown in an incompressible case),
all functions are able to provideanalytical Jacobians
to avoid the creation of numerical Jacobians.

3.3 Integration of library into thermo-
hydraulic framework using M ODEL -
ICA _FLUID library

Convective heat transfer models and flow models have
been created using FLUID DISSIPATION functions and
the MODELICA_FLUID library as one example for the
implementation into a thermo-hydraulic framework.
These models calculate the convective heat transfer
coefficient on the one hand and the mass flow rate or
pressure loss on the other hand only. These base mod-
els have to be enhanced if additional features like bal-
ance equations or discretisation are needed.

The actual content of MODELICA_FLUID base

1To calculate the mass flow rate out of a given pressure loss
2To calculate a pressure loss out of a given mass flow rate

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 134

models provided by FLUID DISSIPATION is shown in
Fig.5. All dissipation correlations for convective heat

Figure 5: Application models using FLUID DIS-
SIPATION correlations and MODELICA_FLUID as
thermo-hydraulic framework. Convective heat trans-
fer models are shown in the left, whereas flow mod-
els are shown in the right.

transfer and pressure loss are grouped into its corre-
sponding geometry device. For example if using a
BENDFLOWMODEL the user can easily change a pres-
sure loss calculation from an edged to a curved geom-
etry. All dissipation correlations for each geometry de-
vice can be easily exchanged by choosing an intended
application model via a drop-down menu in a param-
eter window3. After selection a corresponding record
can be edited (e.g. for setting geometry parameters).

3.3.1 Heat transfer

An implementation of convective heat transfer func-
tions into usable MODELICA_FLUID models is shown
in Fig.6. Generally heat transfer correlations are mod-
elled through replaceable heat transfer models. For ex-
ample a PLATEHEATTRANSFERMODEL can be cho-
sen to the laminar, turbulent or overall fluid flow
regime. All replaceable heat transfer calculations of
one energy device are stored separately its BASE-
CLASSESsection.

Referring to Fig.6 the calculation of the thermody-
namic state (needed for the fluid properties) has to be
calculated outside of the provided heat transfer mod-
els. Here the thermodynamic state can be assigned
through an inner model provided at the same hier-
archy as the used instance of a heat transfer model.
The convective heat transfer coefficientkc is calcu-
lated via a function call using its corresponding record
with needed input variables like geometry parameters.
The resulting heat flow ratėQf low is calculated out of
kc, heat transfer areaAkc and temperature difference
between thermal port and thermodynamic state.

3Here using Dymola from Dynasim as IDE

model P l a t e H e a t T r a n s f e r M o d e l
" A p p l i c a t i o n model f o r a p l a t e i n Mode l i ca_F lu id "

Model ica . Thermal . H e a t T r a n s f e r . I n t e r f a c e s . Hea tPo r t _a
t h e r m a l P o r t

" Thermal p o r t i n t e r f a c e ";

r e p l a c e a b l e package H e a t T r a n s f e r =
F l u i d D i s s i p a t i o n . Examples . A p p l i c a t i o n s . H e a t T r a n s f e r.

BaseC l asses . P l a t e . O v e r a l l
cons t ra inedby
F l u i d D i s s i p a t i o n . Examples . A p p l i c a t i o n s . H e a t T r a n s f e r.

BaseC l asses . P l a t e . BasePlateHT
" C h a r a c t e r i s t i c o f c o n v e c t i v e h e a t t r a n s f e r ";

outer F l u i d D i s s i p a t i o n . Examples . Tes tCases . H e a t T r a n s f e r .
S t a t e F o r H e a t T r a n s f e r s t a t e F o r H e a t T r a n s f e r" Thermodynamic

s t a t e from (m iss ing) volume ";

F l u i d D i s s i p a t i o n . Examples . A p p l i c a t i o n s . H e a t T r a n s f e r.
BaseC l asses . P l a t e . BasePlateHT . H e a t T r a n s f e r P l a t e IN"
I n p u t r e c o r d ";

equat ion
kc = H e a t T r a n s f e r . c o e f f i c i e n t O f H e a t T r a n s f e r (IN) ;
t h e r m a l P o r t . Q_flow = kc∗A_kc∗dT " Heat t r a n s f e r r a t e ";

end P l a t e H e a t T r a n s f e r M o d e l ;

Figure 6: Relevant source code for a convective
heat transfer model using FLUID DISSIPATION cor-
relations.

3.3.2 Pressure loss

An implementation of pressure loss functions using
MODELICA_FLUID is shown in Fig.7. Pressure loss
correlations are modelled through replaceable pressure
loss models. The modelling referring to Fig.7 allows

p a r t i a l model Par t i a lF l owMode l
" P a r t i a l f low model f o r bend f u n c t i o n s i n Mode l i ca_F lu id "

r e p l a c e a b l e model P r e s s u r e L o s s = FD . CurvedBend .
CurvedBendFlowModel

cons t ra inedby FD . BaseBendPL . BaseFlowModel ;
end Par t i a lF l owMode l ;

model CurvedBendFlowModel
" Curved bend : A p p l i c a t i o n f low model f o r bend f u n c t i o n "

ex tends FD . Bend . BaseBendPL . BaseFlowModel ;
FD . Bend . CurvedBend . P r e s s u r e L o s s I n p u t IN" I n p u t r e c o r d "
equat ion

m_flow = FD . Bend . CurvedBend . massFlowRate_dp (dp , IN) ;
end CurvedBendFlowModel ;

model BendFlowModel
" A p p l i c a t i o n f low model f o r bend f u n c t i o n s i n Mode l i ca_F luid "

ex tends FD . BaseBendPL . Pa r t i a lF l owMode l
(r e d e c l a r e model P r e s s u r e L o s s = Pressu reLossUsed)
" C h a r a c t e r i s t i c o f bend p r e s s u r e l o s s ";

r e p l a c e a b l e model Pressu reLossUsed = FD . BaseBendPL .
BaseFlowModel

" 1 s t : choose p r e s s u r e l o s s c a l c u l a t i o n | 2nd : e d i t r e c o r d ";
P r e s s u r e L o s s f lowModel" I n s t a n c e f o r chosen bend p r e s s u r e l o s s "

;
end BendFlowModel ;

Figure 7: Relevant source code for a flow model
using FLUID DISSIPATIONcorrelations implemented
in MODELICA_FLUID as thermo-hydraulic frame-
work.

to replace a flow model instance of each energy device
by its alternatives stored in the BASECLASSES.

The calculation of pressure loss in a flow model can
be implemented in dependence of targets. Then a com-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 135

pressible case or an incompressible case can be chosen
to adjust an optimal numerical behaviour of a simula-
tion model. Thus an inverse calculation without gener-
ating analytical Jacobians can be created automatically
if supported by the MODELICA simulation tool.

4 Verification and validation of li-
brary

All functions in the library are verified against its
based literature or validated against other literature if
available. These verifications or validations are docu-
mented in the online documentation of the library. The
validation of convective heat transfer and pressure loss
are exemplarily described for one phase and two phase
flow afterwards.

For heat transfer all functions in the library delivers
a local or mean convective heat transfer coefficient.

kc =
Nu·λ
Length

(1)

kc as convective heat transfer coefficient [W/m2·K],
λ as heat conductivity of fluid [W/m·K],
Length as characteristic length [m],
Nu as Nusselt number [−].

The Nusselt numberNu results from the actual flow
regime, fluid properties and geometry parameters.

The compressible or incompressible pressure loss
calculation uses a (total) pressure loss coefficient ac-
cording to Eq.2.

ζtot =
2·∆ptot

ρre f ·v2
re f

(2)

ζtot as pressure loss coefficient [W/m·K],
∆ptot as total pressure loss [Pa],
ρre f as reference density [kg/m3],
vre f as reference velocity [m/s].

The pressure loss coefficientζtot is defined as the
ratio of the total pressure loss between the inlet and
outlet of a device to the dynamic pressure in a refer-
ence section. The total pressure loss for overcoming
the forces of hydraulic resistance is dissipated. Thus
the state of flow undergoes a change. At adiabatic
conditions the mechanical work of a fluid flow is con-
verted into heat due to resistance forces4. However the
temperature of the fluid does not change at a constant
velocity then. The reason is that the work of expan-
sion due to pressure loss is entirely converted into the

4Total energy as sum of thermal and mechanical energy re-
mains constant.

work of overcoming the resistance forces. The heat
generated by this mechanical work is compensated by
cooling induced through this expansion.

The total pressure loss is arbitrary subdivided into
local and frictional pressure losses even though they
are physically inseparable.

∆ptot = ∆ploc + ∆pf ri (3)

∆ptot as total pressure loss [Pa],
∆ploc as local pressure loss [Pa],
∆pf ri as frictional pressure loss [Pa].

The total pressure loss can only be assumed to be
the difference in static pressures, if there is no change
in the cross sectional area of an energy devices, no
mixing or splitting occurs and geodetic pressure loss
can be neglected. Otherwise total pressures shall be
used for modelling because the pressure loss coeffi-
cient can also have negative values. For example a
negative pressure loss coefficient can occur at the mix-
ing of two fluid flows in a junction having different ve-
locities. In this case the dynamic pressure difference
of the fluid flow with the lower velocity is increased
between the section before and after mixing.

4.1 Heat transfer in an even gap

The validation of convective heat transfer for an even
gap is shown in Fig.8. The convective heat transfer co-

Figure 8: Validation for convective heat transfer of one
phase laminar fluid flow in an even gap. The Nusselt
number is shown in dependence of a dimensionless
length at different boundary conditions. Simulation re-
sults are validated againstBejan[4].

efficient has been calculated for developed and unde-
veloped fluid flow with one or two sides of the gap be-
ing isothermal. The validation is shown for the mean
Nusselt number in an even gap with isothermal walls
at a developed fluid flow. There is a good correlation
w.r.t. literature for this boundary condition.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 136

4.2 Pressure loss in a curved bend

The validation of pressure loss calculations is exem-
plarily shown for a curved bend in Fig.9.

Figure 9: Validation of one phase overall fluid flow in
a curved bend. The pressure loss coefficient is shown
in dependence of the Reynolds number with relative
curvature radii and angle of curvature of turning as pa-
rameter. Simulation results are validated againstVDI
[5].

The validation in Fig.9 comparing the pressure loss
correlations out ofIdelchik [6] with data fromVDI
[5] shows the right physical behaviour of fluid flow
through a curved bend. The results give a good pre-
diction of pressure loss in the laminar and fully de-
veloped turbulent regime. Deviations in the transition
regime are in an adequate range of uncertainty.

4.3 Two phase flow in a horizontal straight
pipe

The validation of two phase heat transfer and pressure
loss calculations is exemplarily shown for a horizontal
straight pipe. The various flow regimes during boil-
ing and condensation during two phase flow are shown
in Fig.10. For example at stratified flow a fluid is di-
vided into a separated vapour and liquid phase due to
gravity. The actual two phase flow regime during boil-
ing and condensation can be determined with known
vapour fraction and mass flux out of a flow pattern map
(e.g. fromSteiner in VDI [5]). For describing two
phase flow usually a heterogeneous or homogeneous
approach is used. These simplified approaches differ
in the calculation of the cross sectional void fraction.
The complete range of two phase flow regimes shown
in Fig.10 can be modelled with these approaches.

In thehomogeneousapproach gas and liquid phase
have the same velocity. The homogeneous void frac-

• Bubble flow

• Stratified flow

• Wavy flow

• Slug flow

• Annular flow

Figure 10: Flow regimes for two phase flow in horizon-
tal straight pipes.

tion is calculated with Eq.4.

εhom =
1

1+
(

1−ẋ
ẋ

)
·

ρg

ρl

(4)

εhom= Ag/Ag+Al as void fraction [−],
ρ as density of a phase [kg/m3],
ẋ = ṁg/ṁg+ṁl as vapour fraction [−],
A as cross sectional area of a phase [m2],
ṁg/l as mass flow rate of a phase [kg/s].

The fluid properties of the two phases are averaged
using the homogeneous approach. This approach is
best applicable for the bubble flow regime with gas
bubbles uniformly dispersed in the liquid phase.

The heterogeneousapproach describes the two
phases separately. In this case each phase can flow
with a constant but different mean velocity. The sepa-
rated phases are described with the so called slip ratio
s as ratio of gaseous and liquid phase velocity. The
heterogeneous void fraction is calculated from Eq.5.

εhet =
1

1+
(

1−ẋ
ẋ

)
·

ρg

ρl
·s

(5)

εhet as void fraction [−],
ρ as density of a phase [kg/m3],
s= vg/vl as slip ratio [−],
vg/l as velocity of a phase [m/s].

4.3.1 Heat transfer at condensation

The correlation ofShah[7] in Eq.6 is used to calculate
the convective heat transfer during condensation in a
horizontal straight pipe. InShah[7] the heat trans-
fer is assumed to take place only in the liquid phase.
Therefore this correlation is best used for the annular
flow regime, where the pipe wall is completely cov-
ered with liquid. The influence of the gaseous phase is

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 137

described by a two phase multiplier.

α2ph = αl ·

(
1+

3.8
p0.38

r
·

(
ẋ

1− ẋ

)0.76
)

(6)

α2ph as two phase heat transfer coefficient [W/m2·K],
αl as liquid heat transfer coefficient [W/m2·K],
p as actual pressure [Pa],
pc as critical pressure [Pa],
pr = p/pc as reduced pressure [−],
ẋ as vapour fraction [−].

Figure 11: Validation of the local heat transfer coeffi-
cient during condensation in a horizontal straight pipe.
The correlation ofShah[7] is validation against mea-
surement results fromDobson/Chato[8] with the re-
frigerant R134a as medium.

In Fig.11 theShah[7] correlation used for conden-
sation in two phase flow has been validated against
measurement results according toDobson/Chato[8].
The refrigerant R134a has been used at a saturation
temperature of 35◦C and a mass flux between 75 to
650 kg/m2·s. Generally these experimental data are un-
derestimated by the correlation ofShah[7]. There are
significant deviations for a small mass flux as well as
for a very high mass flux and high vapour fraction. De-
viations at a mass flux smaller than 130kg/m2·s can be
explained by having a different flow regime from the
intended annular flow regime underlying the correla-
tion of Shah[7]. For a moderate mass flux the vali-
dation shows a good prediction of the two phase heat
transfer coefficient at annular flow regime.

4.3.2 Heat transfer at boiling

The correlation ofGungor/Winterton[9] is used to cal-
culate the convective heat transfer during flow boiling
in a horizontal straight pipe. This correlation expresses
the physical effects of forced convection and nucleate
boiling via a local two phase heat transfer coefficient
(see Eq.7). The correlation can be used for subcooled
and saturated flow boiling in horizontal and vertical

straight pipes.

α2ph = E∗
·αconv + S∗ ·αnucl (7)

αconv =
0.023· [Rel · (1− ẋ)]0.8

·Pr0.4
l ·λl

dhyd
(8)

αnucl =
55· p0.12

r ·q0.67

M0.5 · (− log10(pr))
0.55 (9)

α2ph as two phase heat transfer coefficient [W/m2·K],
αconv as factor due to forced convection [W/m2·K],
αnucl as factor due to nucleate boiling [W/m2·K],
λl as liquid heat conductivity [W/m·K],
dhyd as diameter [m],
E∗ as convection enhancement factor [−],
S∗ as boiling suppression factor [−],
M as molar mass of medium [kg/mol],
pr as reduced pressure [−],
Prl as liquid Prandtl number [−],
Rel as liquid Reynolds number [−],
q as heat flux [W/m2],
ẋ as vapour fraction [−].

In Fig.12 theGungor/Winterton[9] correlation used
for flow boiling in two phase flow is validated against
measurement results according toKattan/Thome[10].
The refrigerant R134a has been used at a saturation
temperature of 4.4◦C and a mass flux between 100
to 299kg/m2·s. The deviations in validation can be ex-
plained by considering the broad range of application
for the Gungor/Winterton[9] correlation. Neverthe-
less there is an appropriate prediction of the heat trans-
fer during flow boiling (e.g. for wavy to annular flow).

Figure 12: Validation of the local heat transfer co-
efficient at flow boiling in a horizontal straight pipe.
The correlation ofGungor/Winterton[9] is validated
againstKattan/Thome[10] with R134a as medium.

4.4 Pressure loss

The pressure loss in two phase flow for a horizontal
straight pipe is calculated out of a momentum pressure

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 138

loss and a frictional pressure loss.

∆p2ph = ∆pmom︸ ︷︷ ︸
momentum

+ ∆pf ri︸ ︷︷ ︸
friction

(10)

The momentum pressure lossdue to a change of
momentum of the gaseous and liquid phase is calcu-
lated according to Eq.11.

∆pmom=

[
ṁ2

A ·

(
(1− ẋ)2

ρl · (1− ε)
+

ẋ2

ρg · ε

)]ẋoutlet

ẋinlet

(11)

∆pmom as momentum pressure loss [Pa],
ε as void fraction [−],
ρ as density of a phase [kg/m3],
ṁA as total mass flux [kg/m2·s],
ẋ as vapour fraction [−].
The momentum pressure loss is calculated by the

difference of using Eq.11 with a vapour fraction at the
outlet and the inlet of the horizontal straight pipe. The
void fraction can be described either by the homoge-
neous or heterogeneous approach (see Sec.4.3).

The frictional two phase pressure lossof a hor-
izontal straight pipe is determined by the correlation
of Friedel [11]. This correlation uses the heteroge-
neous approach for all two phase flow regimes. The
two phase pressure loss∆pf ri results from the fric-
tional pressure loss of the liquid phase∆pf ri ,l and a
two phase multiplierR. For the calculation of the liq-
uid frictional pressure loss all the mixture is assumed
to flow as liquid.

∆pf ri = ∆pf ri ,l ·R (12)

The two phase multiplier according toFriedel [11]
is calculated in Eq.13.

R = (1− ẋ)2 + ẋ2
·

ζg

ζl
·

ρl

ρg
+ 3.43· ẋ0.69 (13)

· (1− ẋ)0.24
·

(
ρl

ρg

)0.8

·

(
ηg

ηl

)0.22

·

(
1−

ηg

ηl

)0.89

·Fr−0.047
l ·We−0.033

l

ηg/l as dynamic viscosity of a phase [kg/m·s],
ρg/l as density of a phase [kg/m3],
ζg/l as Darcy friction factor of a phase [−],
Fr l as liquid Froude number [−],
R as two phase multiplier [−],
Reg/l as Reynolds number of a phase [−],
Wel as liquid Weber number [−],
ẋ as vapour fraction [−].

The Darcy friction factorζg/l for each phase is cal-
culated in dependence of the corresponding Reynolds
number in Eq.14.

ζg/l =

64
Reg/l︸ ︷︷ ︸

Reg/l ≤ 1055(
0.87· ln

(
Reg/l

1.96· ln
(
Reg/l −3.82

)
))−2

︸ ︷︷ ︸
Reg/l > 1055

(14)
In Fig.13 theFriedel [11] correlation used for two

phase pressure loss is validated against measurement
results according toSINTEF[12]. As mediumCO2 at
a saturation temperature of 10◦C and a mass flux be-
tween 200 to 400kg/m2·s has been used. Both momen-
tum and frictional pressure loss at mean fluid proper-
ties are considered.

In a technical report ofSINTEF[12] several differ-
ent pressure loss correlations are validated against ex-
perimental pressure loss data for evaporation ofCO2.
The correlation ofFriedel [11] delivers the most accu-
rate results with a mean deviation of 22%. The valida-
tion of the implemented two phase pressure loss shows
good agreement according toSINTEF[12]. Neverthe-
less the pressure loss is underestimated at a low vapour
fraction.

Figure 13: Validation of local pressure loss during
flow boiling in a horizontal straight pipe. The correla-
tion of Friedel [11] is validated against measurement
results fromSINTEF[12] with CO2 as medium.

5 Industrial applications

This section gives examples for the usage of heat trans-
fer and pressure loss correlations from FLUID DISSI-
PATION in industrial system simulation. The dissipa-
tion correlations of the library are implemented into

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 139

different thermo-hydraulic frameworks like MODEL-
ICA_FLUID .

5.1 Environmental control system

The evaluation of the dissipation correlations from
FLUID DISSIPATION is also carried out by Dassault
Aviation as partner in the EuroSysLib project. In
Fig.14 measurement data from a physical test bench
representing an evaluation version of an aircraft have
been compared to a corresponding simulation model
using FLUID DISSIPATION. There is a good agreement
for first evaluation results of subsystems from the en-
vironmental control system in Fig.14.

Figure 14: Evaluation of an environmental control sys-
tem using FLUID DISSIPATIONcarried out by Dassault
Aviation.

5.2 Supplemental cooling system

A simulation model of an indirect cooling cycle for
an air distribution circuit used for electrical equipment
cooling is shown in Fig.15. Here dissipation corre-
lations are integrated into a thermo-hydraulic library
called HYDRONICS. Liquid water is used as cooling
medium. The aim of this system is to cool different air
flows in two heat exchanger. The optimal distribution
of cold water is achieved by two control valves.

5.3 Aircraft engine feeding system

A simulation model of an aircraft engine feeding sys-
tem is shown in Fig.16. Here FLUID DISSIPATION

Figure 15: Simulation model of indirect cooling cy-
cle for an air distribution circuit used for electrical
equipment cooling. FLUID DISSIPATION correlations
are implemented in HYDRONICS as library.

is implemented into MODELICA_FLUID as thermo-
hydraulic framework. An incompressible medium is
used for the engine fuel (Jet A-1). The aim of this
system is to control distribution of fuel for aircraft en-
gines out of pressurised tanks. The simulation model
analyses the system behaviour after the opening of the
intercommunication valve in the emergency case. In
the nominal case an intercommunication valve and the
dump valve is closed. In this case the left hand pump
feeds the left engine as the right hand pump does for
the right engine. Both intercommunication valve and
dump valve are opened if fuel has to be dumped from
the aircraft in an emergency case.

6 Summary

The FLUID DISSIPATION library offers a broad range
of verified and validated convective heat transfer and
pressure loss correlations for energy system. The
library has been numerically optimised for efficient
transient simulations. All correlations are documen-
tation in detail describing its scope of usage.

MODELICA_FLUID models are provided as exam-
ples for the application into a thermo-hydraulic frame-
work.

Scope, implementation concept, numerical chal-
lenges, verification and validation of the FLUID DISSI-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 140

Figure 16: Simulation model of an aircraft en-
gine feeding system using flow models with FLUID -
DISSIPATION correlations and MODELICA_FLUID as
thermo-hydraulic framework.

PATION library has been described as well as industrial
applications of thermo-hydraulic energy systems.

FLUID DISSIPATION is free for commercial and
non-commercial applications and it can be used under
the terms of the Modelica Licence 2.

Acknowledgement
The authors like to thank Eric Thomas for his evalua-
tion results and Nina Peci for her contribution of two
phase flow correlations.

The FluidDissipation library is developed within the
European research project EuroSysLib-D funded by
German Federal Ministry of Education and Research
(promotional reference 01IS07022B). The project is
started in October 2007 and will end in March 2010.
The authors bear the sole responsibility for the content
of this publication.

References

[1] T. Vahlenkamp and S. Wischhusen. Fluiddissipa-
tion - a centralised library for modelling of heat
transfer and pressure loss. In B. Bachmann, edi-

tor, Proceedings of the 6th International Model-
ica Conference, volume 1, pages 173–178, Biele-
feld, Germany, March 2008.

[2] Casella, Francesco et al. The Modelica Fluid and
Media library for modeling of incompressible
and compressible thermo-fluid pipe networks. In
Proceedings of the 5th International Modelica
Conference, pages 631–640, Linköping, Swe-
den, 2006. The Modelica Association.

[3] S. Wischhusen. Dynamische Simulation zur
wirtschaftlichen Bewertung von komplexen En-
ergiesystemen. PhD thesis, Technische Univer-
sität Hamburg-Harburg, 2005.

[4] A Bejan and A.D. Kraus.Heat Transfer hand-
book. John Wiley & Sons, 2nd edition, 2003.

[5] VDI. VDI - Wärmeatlas: Berechnungsblätter für
den Wärmeübergang. Springer Verlag, 9th edi-
tion, 2002.

[6] I. E. Idelchik. Handbook of hydraulic resistance.
Jaico Publishing House, Mumbai, 3rd edition,
2006.

[7] M.M. Shah. A general correlation for heat trans-
fer during film condensation inside pipes.Int. J.
Heat Mass Transfer, 22:547–556, 1979.

[8] M.K. Dobson and J.C. Chato. Condensation in
smooth horizontal tubes.Journal of Heat Trans-
fer, 120:193–213, 1998.

[9] K.E. Gungor and R.H.S. Winterton. A general
correlation for flow boiling in tubes and annuli.
Int. J. Heat Mass Transfer, 29:351–358, 1986.

[10] N. Kattan and J.R. Thome. Flow boiling in hor-
izontal pipes: Part 2 - new heat transfer data
for five refrigerants. Journal of Heat Transfer,
120:148–155, 1998.

[11] L. Friedel. Improved friction pressure drop cor-
relations for horizontal and vertical two phase
pipe flow. 3R International, 18:485–491, 1979.

[12] R. Pettersen, J.; Rieberer and S.T. Munkejord.
Heat transfer and pressure drop characteristics
of evaporating carbon dioxide in microchannel
tubes. Technical report, SINTEF Energy Re-
search, 2000.

[13] D.S. Miller. Internal flow systems, volume 5th of
BHRA Fluid Engineering Series. BHRA Fluid
Engineering, 1984.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 141

Modeling Chemical Reactions in Modelica
By Use of Chemo-bonds

François E. Cellier Jürgen Greifeneder
 ETH Zürich ABB AG, Corporate Research Center

 Switzerland Germany
 FCellier@Inf.ETHZ.CH Juergen.Greifeneder@DE.ABB.Com

Abstract

This paper describes a new methodology for model-
ing and simulating chemical reaction systems using
vectors of chemo-bonds, called multi-chemo-bonds.
Chemical reactions are usually described through
mass flows alone. Yet in reality, they are convective
flows, as the reactants carry their volume and heat
with them in the reactions. Each combined
mass/volume/heat flow can be described by a che-
mo-bond. The combination of all such flows can be
described by a vector of chemo-bonds, i.e., a multi-
chemo-bond.

Keywords: object-oriented modeling of chemical
reactions; chemo-bonds; thermo-bonds; multi-
chemo-bonds; convective flows

1 Introduction

Traditionally, chemical reaction sys-
tems are described as pure mass flow
systems. There is no need to consider
the energy flows as well, as long as
the thermo-dynamical properties of
the reaction system can be ignored.
As chemical reactions are characte-
rized by capacitive storage only, i.e.,
they don’t feature inductive storage,
the mass balance and energy balance
equations are decoupled from each
other [2].

A first attempt of describing the
thermodynamics of chemical reaction
systems in a systematic way was re-
ported in [5]. Unfortunately, the pri-
mary author of that paper, Aharon
Katzir-Katchalsky, died prematurely
during an attack by Palestinians on the
airport of Tel-Aviv. After his death,
this line of research stopped for sever-
al years.

His research was continued 12 years later by a
student of one of the authors, Michael Amrhein, who
described for the first time a chemical reaction sys-
tem by means of bond graphs [1].

In the remainder of this paper, we start out with
modeling the molar flows (Section 2) and put them
together in a multi-bond representation (Section 3).
In Section 4, the corresponding volume and entropy
flows will be added to the molar flows resulting in a
chemo-bond model. Section 5 is similar to Section 3
and introduces multi-chemo-bonds. Section 6 finally
offers some conclusions.

2 The basic model

In Amrhein’s work [1], the mass flow variable,

Fig.1: Chemical reaction bond graph

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 142 DOI: 10.3384/ecp09430022

i.e., the molar flow of a reactant in a reaction, is ac-
companied by a potential variable, the chemical po-
tential, such that the product of the two variables
denotes energy flow. Amrhein’s bond graph simu-
lated simultaneously the mass flow and the mass-
energy flow through the reaction system. He mod-
eled a hydrogen-bromine reaction to be simulated
under different operating conditions. The simplest
experimental setup freezes the temperature and the
pressure, i.e., the chemical reaction is simulated un-
der isothermal and isobaric operating conditions.
Amrhein’s model is shown in Fig.1.

Amrhein developed his new modeling methodol-
ogy years before Modelica was created, and he
coded his models in the old Dymola language before
a graphical interface had become available for Dy-
mola. Hence the bond graph of Fig.1 is not a code,
but only a picture that was drawn manually to make
the code better understandable.

The CS-elements represent the (capacitive) sto-
rage of the five reactants, whereas the ChR-elements
represent the five individual step reactions. They are
connected by a network of bonds, junctions, and
transformers representing the chemical reaction net-
work.

Yet, the graph shown in Fig.1 is far from com-
plete. First, it only shows four ChR-elements, al-
though the hydrogen-bromine reaction exhibits five

Fig.2: Completed chemical reaction bond graph

individual step reactions, namely:

Reaction #4, the least important of the five step reac-
tions, was generously left out of the graph to keep
the graph planar. Second, the chemical reactors, i.e.,
the ChR-elements, require state information that is
being computed by the CS-elements. Hence there
need to be added signal paths between the CS-
elements and the ChR-elements that were also left
out for enhanced readability.

A completed graph of Amrhein’s model, now
coded in a current version of Dymola using BondLib
[4] is shown in Fig.2. The grey lines are used to
connect bonds with junctions and vice-versa, i.e.,
they represent the same energy flows as the bonds
connected to them. The blue lines represent infor-
mation flows. 0 and 1 represent junctions, and the
half-arrows represent bonds.

The model of Fig.2 can be simulated in Dymola
without any problems, and for a temperature of T =
800 K and a pressure of p = 102 kPa, we obtain the
trajectories shown in Fig.3.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 143

Initially, we start out with 0.0075 mol of H2 and Br2
each, create and consume the temporary atoms Br

and H, and after roughly 0.07 s, we end up with
0.015 mol of HBr.

Fig.3: Chemical reaction trajectories

The same results could have been obtained more eas-
ily by writing down the reaction rate equations di-
rectly, but the presented bond graph model is supe-
rior, because it represents not only the dynamics of
the mass flows through the reactions, but also the
corresponding energy flows. Each chemical bond
contains two variables, an effort , representing a
chemical potential, and a molar flow rate ,
representing the mass flow, such that:

P = ·

is the power flowing through the bond.
Hence the bond graph can also be used to com-

pute the power flows through the reaction network,
and we notice that the reaction is mildly exothermic,
as documented in Fig.4, where the entropy gain is
being shown. Roughly S = 0.06 J/K of entropy are
being generated during the reaction.

Fig.4: Entropy gain during chemical reaction

Unfortunately, the bond graph of Fig.2 is a mess, and
few researchers will be willing to go through the
agony of describing chemical reactions in this fa-
shion. Therefore in the remainder of this paper, we
shall improve on the model step by step, and create
ever better models that can be used more easily.

3 The Chemical Reaction Network

The chemical potentials, i, of the reactants are com-
puted by the CS-elements. These are then transferred
across the chemical reaction network, which com-
putes the chemical potentials of the individual step
reactions, ki. The ChR-elements use that informa-
tion to determine the molar flow rates of the step
reactions,ki, which are then transferred back across
the chemical reaction network, which computes the
molar flow rates of the reactants,i. These are then
integrated inside the CS-elements into the states, i.e.,
the number of moles, ni, which in turn are needed by
the ChR-elements to compute the flow rates. The
state vector is transferred from the CS-elements back
to the ChR-elements through separate signal paths,
i.e., outside the bond graph.

As already demonstrated in [2], the chemical
reaction network, relating reactants and step reac-
tions to each other, can be interpreted as a multi-port
transformer. Consequently, we can write:

This can also be written as:

where N is the transfer matrix for the flow rates, and
M = NT is the transfer matrix for the chemical poten-
tials.

As we can describe the chemical reaction network
using a multi-port transformer, it makes sense to ex-
tract the five CS-elements into a single CF-element,
a capacitive field. As shown in Fig.5, this CF-
element has on its left side, the five state variables,
grouped into a state vector, whereas on the right side,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 144

there is now a vector of bond connectors, each
representing one reactant.

Fig.5: Capacitive field vector bond graph

For further processing, the vector of (grey) regular
bond connectors needs to be converted to a single
(blue) multi-bond connector, as shown in Fig.6. As
the conversion element has been implemented as a
bond, we need to add a 0-junction also, in order to
comply with the rule of all of our bond graph libra-
ries that all macro elements must end in junctions,
rather than in bonds.

Fig.6: Conversion of bond vector to multi-bond

In the same way as with the five CS-Elements, we
can also stack the five ChR-elements into a single
RF-element, a resistive field, as shown in Fig.7.

Fig.7: Resistive field vector bond graph

The attentive reader might already have discovered
that the resistive field has three bond graph connec-
tors: The one at the center on the right side is a vec-
tor connector representing the five mass flows as

discussed before, whereas the bond graph connectors
on top and below the mass flow connector are single
connectors, one representing the heat flow and the
other representing the volumetric flow. Under iso-
thermal and isobaric operating conditions, these two
connectors are used to impose from the outside the
desired temperature of T = 800 K and the desired
pressure of p = 102 kPa.

Finally, the vector connector of the RF-element
also needs to be converted to a multi-bond connec-
tor, as shown in Fig.8.

Fig.8: Conversion of bond vector to multi-bond

We are now ready to model the entire chemical reac-
tion using MultiBondLib [6], a second bond graph
library designed particularly for modeling mechani-
cal systems in two and three space dimensions. Yet,
the library can also be used for any other model that
requires vectors of bonds.

The resulting model is shown in Fig.9. The chem-
ical reaction network has not been modeled graphi-
cally in this model, but rather, was represented using
a multi-port transformer (TF_H2Br2). The uncon-
nected MBG_defaults model shown at the bottom
right corner of Fig.9 represents the multi-bond world
model that sets the default dimension of all multi-
bonds to a value of five.

Fig.9: Chemical reaction modeled using multi-bonds

The simulation results obtained with this code are
exactly the same as with the model of Fig.2, as these
are truly identical models.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 145

4 Thermo-bonds and Chemo-bonds

As shown in Fig.10, an excerpt of Fig.1, each ChR-
element has three bond graph connectors, one
representing mass flow (variables and , i.e.,
chemical potential and molar flow rate), a second
representing volumetric flow (variables p and q, i.e.,
pressure and volumetric flow rate), and a third
representing heat flow (variables T and Sdot, i.e.,
temperature and entropy flow rate). Each of the
three pairs, when multiplied, represents a power flow
measured in Watts.

Fig.10: ChR-element

Although the three bonds represent different physical
phenomena, they are mathematically identical. For
this reason, it is important that bond variables are
declared as ‘Real’ in Modelica, rather than be asso-
ciated with particular measurement units. These va-
riables may inherit measurement units through the
higher layers of the model architecture, but by them-
selves, bond graph variables are neutral.

It is not possible to have mass flows without ac-
companying volume flows and heat flows, because
the masses always carry their own volume and heat
with them. The internal energy of matter of a mass
can be written as:

U = T · S – p · V + · n

with the corresponding power flow:

Udot = T · Sdot – p · q + ·

Thus, each mass flow can be interpreted as a parallel
connection of three individual power flows, one
representing the mass flow itself, a second
representing the accompanying volumetric flow, and
a third representing the heat flow.

As these three flows belong together, we have
created a third bond graph library, called Thermo-
BondLib [3] that has been designed specifically for
modeling convective flows.

Each thermo-bond represents a parallel connec-
tion of three regular bonds, one for each of the three
types of power flow. This is shown in Fig.11.

Fig.11: Composition of a thermo-bond

Since the thermo-bonds represent a specific physical
phenomenon, it made sense to associate thermo-
bonds with measurement units, i.e., whereas the reg-
ular (black) bonds of BondLib [4] and the (blue)
multi-bonds of MultiBondLib [6] are neutral, the
(red) thermo-bonds of ThermoBondLib [3] have
been associated with measurement units explicitly.

For convective flows, it was convenient to meas-
ure the mass flow, mdot, in kg/s. Consequently, the
corresponding effort variable, g, must be measured
in J/kg, such that their product is once again a power
flow measured in Watts. The effort variable of mass
flow, g, is the Gibbs potential, which sometimes is
also called specific Gibbs energy.

Notice that g has the same units as h, the specific
enthalpy, but it is not the same quantity:

h = g + T · s

where s denotes the specific entropy, i.e., the entropy
per unit mass.

Note: The Gibbs potential is still currently miss-
ing in the SIunits library of Modelica.

Since mass flows cannot occur without accompa-
nying volume and heat flows, it makes sense to in-
terpret chemical reactions as convective flows, and
replace the (black) regular bonds of Fig.2 by (red)
thermo-bonds. In this way, there will be no need any
longer to treat the thermal and volumetric flows sep-
arately from the mass flows, and the ChR-elements
will now only have one thermo-bond connector.

Unfortunately, it is inconvenient to represent
mass flows in chemical reactions as absolute mass
flows, measured in kg/s, because chemical reactions
occur in relation to the number of molecules in-
volved, and not in relation to the weight of the reac-
tants. Correspondingly, chemical mass flows are giv-
en as molar flow rates, , measured in mol/s, and
correspondingly, the associated effort variable is the
chemical potential, , measured in J/mol.

It is easy to convert between the two types of
mass flows. This is simply a transformation, as

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 146

shown in Fig.12. It would have been possible to deal
with molar flow rates using the ‘redeclare’ feature of
Modelica, but it was simpler to create yet another
bond graph library, ChemBondLib, this time featur-
ing green chemo-bonds, that are identical to the red
thermo-bonds except for the way in which the mass
flows are being represented.

Fig.12: Conversion from absolute mass flow rates to
molar flow rates

We are now ready to formulate the third version of
the chemical reaction model. This new model is
shown in Fig.13.

Fig.13: Chemical reaction modeled by chemo-bonds

The entire chemical reaction network is now shown
in green. Each of the green bonds models three pa-
rallel energy flows. As the substances, represented
through the (red) CF-elements, are modeled using
absolute masses (they are the very same CF-elements
that we had introduced in [3] before), one of the
transformers shown in Fig.12 is placed between the
(green) chemical reaction network and each of the
(red) CF-elements.

The model is much simpler than that of Fig.2, be-
cause there is no longer any need to deal with the
heat and volumetric flows separately. These flows
are now transferred across the reaction network to-
gether with the mass flows.

The CF-elements now compute the three potential
(effort) variables, T, p, and . These variables are
then transferred across the chemical reaction network
to the side of the step reactions. The ChR-elements
compute the three flow variables, Sdot, q, and .
These are transferred back across the reaction net-
work to the side of the reactants.

Each CF-element computes a partial state vector
including the three variables S, V, and
n. The partial state vectors are conca-
tenated to a complete state vector in
the St-model that transfers the state
information back to the ChR-
elements, as the reactor models re-
quire the state information to compute
the flows.

As expected, the simulation results
obtained by this third version of the
model are identical to those received
earlier.

5 Multi-chemo-bonds or
Chemo-multi-bonds ?

We can now once again eliminate the
graphical representation of the chemi-
cal reaction network and replace it by
a multi-port transformer.

To this end, we again stack the five
CF-elements, as shown in Fig.14.

On the right side, we now have a
vector of (green) chemo-bond connec-
tors, each representing three flows, a
heat flow, a volumetric flow, and a
molar mass flow. Thus, the vector
chemo-bond connector can be inter-
preted as a multi-chemo-bond connec-
tor.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 147

Fig.14: Capacitive reactant field

Fig.15 shows, how the vector of individual che-

mo-bonds gets converted to a single multi-bond.
Here, the multi-bond connector represents a vector of
length 15.

However for reasons that will become clear very
soon, it was more convenient to rearrange the se-
quence of bonds within the multi-bond in such a way
that the multi-bond contains first the five heat flows,
followed by the five volumetric flows, followed by
the five molar mass flows. Thus, the multi-bond can
be interpreted as a chemo-multi-bond connector.

Fig.15: Conversion of connectors

In the same fashion, we can also stack the five ChR-
elements, as shown in Fig.16, with the corresponding
conversion of connectors shown in Fig.17.

Fig.16: Resistive reaction field

Fig.17: Conversion of connectors

As expected, the stacked reactor model of Fig.16 is
much simpler than the corresponding stacked reactor
model of Fig.7, because the thermal and pneumatic
flows are not handled separately any longer.

The complete model (fourth version) is shown in
Fig.18.

Fig.18: Chemical reaction modeled by multi-chemo-

bonds

This time around, the transformation matrix of the
multi-port transformer is of size 15x15. Yet, it can
be composed easily from the previously introduced
N-matrix, assuming that we operate on multi-chemo-
bonds rather than chemo-multi-bonds:

The transformation matrix is a block-diagonal matrix
containing the same N-matrix three times along the
diagonal, once used to transform the heat flows, once
used to transform the volumetric flows, and once
used to transform the molar mass flows.

A comparison of the computational efficiencies
of the four models is given in Table 1.

Table 1: Comparison of computational efficiency

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 148

The first two models are indistinguishable concern-
ing their computational efficiencies. The third and
fourth model are a bit less efficient computationally.
The reason is the following. In the first two models,
we recognized that we could add up the partial en-
tropy flows and the partial volume flows and inte-
grate them together, whereas in models three and
four, each CF-element contains three separate states,
one describing the partial entropy, a second describ-
ing the partial volume, and a third describing the par-
tial mass of each of the five reactants.

6 Conclusions

In this paper, we have shown how different types of
bond graphs can be used to describe chemical reac-
tion systems.

Only a single reaction system was used for dem-
onstration, namely a hydrogen-bromine reaction si-
mulated under isothermal and isobaric operating
conditions.

Although we have been able to demonstrate that
the models become simpler as we treat chemical
reactions as convective flows, there is a yet much
more important reason for doing this, a reason that
does not become obvious from reading this paper
alone.

Amrhein simulated the same reaction system un-
der a series of different operating conditions [1,2].
He replaced the isothermal condition by an adiabatic
condition, for example, and he replaced the isobaric
condition by an isochoric condition.

It becomes clear from reading his documents that
each of his models looks slightly different, i.e., the
bond graph had to be adjusted a bit from one set of
operating conditions to another.

The reason for this inconvenience is that Amrhein
did not compute all quantities where they naturally
belong. Consequently, his models violated some of
the premises of object-oriented modeling. All of the
potential (effort) variables and all of the state va-
riables should be computed at the side of the reac-
tants, whereas all of the flow variables should be
evaluated at the side of the step reactions.

Using the convective flow approach to modeling
chemical reaction systems, it won’t be necessary any
longer to modify the bond graph from one set of op-
erating conditions to another, because all variables
are indeed being computed where they belong.

The implementation of the (red) CF-elements
used in the simulations of this paper are not yet fully
general. As we were only interested in isothermal
and isobaric operating conditions, it sufficed to set
the temperature, T, and the pressure, p, to their de-

sired values inside the CF-elements. Since both the
temperature and the pressure were assumed constant,
also the chemical potentials, i, are constant, and
consequently, also those values could be entered as
parameters.

In the general case, T, p, and i will not be con-
stant, and they will have to be computed from state
information, as already demonstrated in the general
CF-elements for air and water presented in [3].

Temperature and pressure equilibration between
different reactants can be modeled using heat ex-
change (HE) elements and pressure/volume ex-
change (PVE) elements, placed between the different
CF-elements, as demonstrated in [3].

In the special case of an isothermal operating
condition, a controlled entropy flow out of the sto-
rages (CF-elements) could then be added to the mod-
el that equals the entropy flow generated by the reac-
tion system, such that the total entropy, and thereby
also the temperature remain constant. Alternatively,
an HE-element could be added between the reaction
system and the environment that guarantees that the
temperature of the reaction system remains at the
ambient temperature.

In the special case of an isobaric operating condi-
tion, either a controlled volume flow would need to
be imposed from the outside, or alternatively, a PVE-
element could be added between the reaction system
and the environment that guarantees that the pressure
of the reaction system remains at the ambient pres-
sure.

Thus, general CF-elements can be used indepen-
dently of the operating conditions, which then are
imposed on the model by external control flows in
the same way as a chemical engineer would set up
his or her experiment in the lab.

Unfortunately, we did not have either the time or
the space in this paper to demonstrate how such a
setup would need to be modeled using the Chem-
BondLib and ThermoBondLib Modelica libraries,
and therefore, the proposed generalization will have
to be postponed to another time and another publica-
tion.

The research presented in this paper represents
only a very first step in an ongoing research effort.
Reactions among ideal gases are particularly easy to
model and simulate, and isothermal and isobaric op-
erating conditions are among the most convenient
operating conditions that may be assumed.

Much more research is needed before we can
claim that we have created a universal approach to
modeling and simulating all kinds of chemical reac-
tion systems in a truly object-oriented physically in-
spired manner.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 149

References

[1] Amrhein, M.: Bond Graph Modeling of
Chemical Reaction Dynamics. MS Thesis,
Department of Electrical and Computer En-
gineering, University of Arizona, Tucson,
AZ, 1990

[2] Cellier, F.E.: Continuous System Modeling.
Springer-Verlag, New York, 1991

[3] Cellier, F.E. and Greifeneder, J.: Thermo-
BondLib – A New Modelica Library for
Modeling Convective Flows, In: Proc. 6th In-
ternational Modelica Conference, Bielefeld,
Germany (2008) Vol.1, 163-172

[4] Cellier, F.E. and Nebot, A.: The Modelica
Bond Graph Library, In: Proc. 4th Interna-
tional Modelica Conference, Hamburg, Ger-
many (2005) Vol.1, 57-65

[5] Oster, G.F., Perelson, A.S., and Katzir-
Katchalsky A.: Network Thermodynamics:
Dynamic Modelling of Biophysical Systems,
In: Quarterly Reviews of Biophysics (1973)
Vol. 6(1), 1-134

[6] Zimmer, D. and Cellier, F.E.: The Modelica
Multi-bond Graph Library, In: Proc. 5th In-
ternational Modelica Conference, Vienna,
Austria (2006) Vol.2, 559-568

Author Biographies

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic
control in 1973, and his PhD degree
in technical sciences in 1979, all
from the Swiss Federal Institute of

Technology (ETH) Zurich. Dr. Cellier worked at the
University of Arizona as professor of Electrical and
Computer Engineering from 1984 until 2005. He
then returned to his home country of Switzerland.
Dr. Cellier's main scientific interests concern model-
ing and simulation methodologies, and the design of
advanced software systems for simulation, computer
aided modeling, and computer-aided design. Dr. Cel-
lier has authored or co-authored more than 200 tech-
nical publications, and he has edited several books.
He published a textbook on Continuous System
Modeling in 1991 and a second textbook on Conti-
nuous System Simulation in 2006, both with Sprin-
ger-Verlag, New York.

Jürgen Greifeneder received a
diploma degree in Engineering Cy-
bernetics from the University of
Stuttgart, Germany in 2002. He
then switched to the University of
Kaiserslautern, where he received a
Ph.D. in Electrical and Computer
Engineering in 2007 with a disser-

tation on the formal analysis of temporal behavior of
Networked Automation Systems (NAS) by use of
probabilistic model checking. Scientific stays at the
University of Arizona (USA), at the Ecole Normale
Supérieure de Cachan (F), and at the Universidade
de Brasília (BR) completed his education. Since
2008, Dr. Greifeneder is with the ABB Corporate
Research Center, Ladenburg, Germany, working in
the area of automation engineering with a focus on
simulation-based engineering. Dr. Greifeneder's
primary research interests concern modeling and si-
mulation methodologies.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 150

Modelica Library for Improved Spacecraft Resource Budgeting

Niccolo Cymbalist Marc-Andre Lauriault Chahé Adourian (supervisor)
Space Technologies, Canadian Space Agency

John H. Chapman Space Centre 6767 Route de l'Aéroport Saint-Hubert, QC, Canada

Abstract

The SpacecraftLib library has been developed in
Modelica for use in the domain of Systems
Engineering for space systems with a special
emphasis on modularity, usability and ease of
modification and expansion. It is a
multidisciplinary tool which combines all the
relevant subsystems. Power, command and data
handling, and mechanical models are integrated
into a single Modelica device in order to model as
completely as possible the behaviour of a physical
onboard device. We will describe the tool,
examine a case study and briefly analyze the
results of a simulation.

Keywords: spacecraft simulation; resource
budgeting; systems engineering; command
network

1. Introduction

Modeling and simulation tools in Systems
Engineering for spacecraft have the potential to
improve the efficiency of the design process. One
task in which simulation may be effectively
utilized is to assist in the generation of
requirements through improved resource
budgeting. Budgeting in this context is defined as
the process of characterizing the components
which affect an overall system parameter while
focusing on system level requirements and trade-
offs [1].
A simulation tool for use in Systems Engineering
as a whole, and specifically the resource budgeting
exercise, must meet the following requirements:

• Simple. The model must have the capability of

being rapidly and easily assembled and
modified.

• Multidisciplinary. The behaviour and
interactions of power, command and data

handling, mechanical and thermal systems and
link behaviour must be modeled together.

• Appropriate level of detail. The model must

be accurate enough to define requirements.

• Easily Customizable and Expandable. The

tool must be able to be extended for use in
more advanced stages of the design process.

Currently available spacecraft simulation tools are
generally either simple spreadsheet based models,
mission design tools (STK)[2], complex custom
built simulators or tools targeted at a specific
subsystem, such as Attitude and Orbit Control
Systems (AOCS)[3]. While these tools are all
useful in their respective domains, they do not
meet the needs of a resource budgeting tool for
spacecraft Systems Engineering.

This paper introduces a Modelica library
specifically designed for resource budgeting,
capable of expanding to a full design tool, called
SpacecraftLib. It can be used to build a ground
station and multiple spacecraft models, each
including power, payload, command and data
handling subsystems and link models. The
spacecraft models receive and react to time-tagged
commands during the simulation and interact with
commercial spacecraft modeling software for
advanced functions.

The use of this tool will allow the user to optimize
the level of complexity of the simulator at each
stage of the design process, especially in the early
stages of the design, by increasing or decreasing
the complexity of the models built using
SpacecraftLib. This will lead to a more effective
and efficient design process.

This library is implemented in Modelica because
we find it well suited to hybrid, multidisciplinary
modeling due to its modularity and ease of use.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 151 DOI: 10.3384/ecp09430037

2. The SpacecraftLib library

The SpacecraftLib library is divided into 4 main
sections, each containing components used to
model a different subsystem.

These components are easily assembled into
devices, which behave as physical onboard devices
would. They have mass and inertia, consume
power, generate data and interact with the user or
onboard computer via the command network.

• The DataBudget package includes

components for processor, data flow,
command network and communications
equipment modeling.

• The PowerBudget package includes

components used for power generation and
distribution modeling. It also includes
components used to model the power
consumption characteristics of onboard
devices.

• The Mechanical package includes a version

of the Multibody library expanded to
account for advanced gravity and magnetic
fields modeling. It includes a modified
world model, as well as reaction wheel,
extendable solar array and thruster
assemblies. It also includes controllers for
each of the assemblies.

• The OrbitalMechanics package includes an

ephemerides generator for the nine planets
and the Moon based on external ephemeris
tables.

We provide the user with an inheritable device
template with components common to all devices:
a command port and command decoder, power
consumption characteristics and a state box. To
model the behavior of a specific device, the user
may extend the device template to a new class and
add the desired components from the available
subsystem packages (see Figure 1).

Figure 1. Camera device

The devices are in turn assembled into a complete
spacecraft model which is initialized into an orbit.
The model exchanges data with the ground station,
generates and consumes power and responds to
user commands.

SpacecraftLib is complemented by ephemeris
tables and solar flux data from STK and a
commercial spacecraft modeling library called
Spacecraft Control Toolbox[4]. The latter was
converted from MATLAB to C to interface with
Modelica.

2.1 DataBudget section

SpacercraftLib provides components to model the
processor unit(s), the command network, the flow
of data between different devices and the ground
station, and the communication equipment on the
ground and onboard the spacecraft(s). The results
of the simulation allow the user to accurately
define the requirements of the command and data
handling system onboard the spacecraft and on the
ground.

2.1.1 Data flow modeling

In SpacecraftLib data is treated as a flow,
behaving such that it may be generated, deleted, or
compressed. Data modeling components include
various data links, data storage units, data sources
and sinks, and data processing units. These
components are purely conceptual, designed to
model the behavior of a data handling system
instead of modeling the actual physical
components of the system.

Data ports are flow connectors together with a
control line. Data ports may be active or passive.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 152

The active ports define the bit rates (in or out)
while the passive ports simply accept this flow.

The passive port may send back information
regarding the state of the receiving device via the
control line. This allows the active device to stop
removing (feeding) data when the receiving device
is not able to give (accept) data. Link components
are either variable bit rate links with a maximum
bit rate set by the user or links that compress or
expand the volume of data. The latter are used to
model data compression and EDAC (error
detection and correction) operations. Switch
components include on/off switches and splitters.

2.1.2 Command network modeling

The effort to maximize the usability of the tool led
to the creation of a flexible layered command bus
with ‘plug and play’ behavior. It allows for rapid
assembly or modification of a model by dropping
in a new device, naming it, and connecting it to the
bus. The command network model is portable and
has potential applications outside the field of
spacecraft engineering.

The command network contains two
complimentary levels of hierarchy. One level is
name based and one level is based on numerical
indices. The name based level roughly corresponds
to the physical location of the device to which the
command is intended for, and is set by the user.
The second level is based on numerical indices,
and is automatically generated and hidden from
the user. This level is used internally to map the
network of devices so that each ‘parent’ device
knows the location of all its ‘child’ devices and is
able to forward the command to the appropriate
device.

This combination of name and numeric based
addressing separates the user from the numerical
address system, allowing the user to specify the
command destination using only the physical
location of the device, as demonstrated in Figure 2.

Figure 2. Command syntax examples

In order to achieve ‘plug and play ’ level usability,
the Modelica code is complemented by a custom
built C library. The Modelica model (Modelica
side) and C library (C side) run concurrently
throughout the simulation. Flowchart 1 illustrates
the sequence of events in the command network
model.

Flowchart 1. Sequence of events in command
network model

The command network is composed of four
components on the Modelica side (see Figure 3),

initialization

send command

receive command

command list
imported

device name &
address mapped

devices get
numeric address

numeric address appended
to command

commands filter through
network

command body converted to
signal

command executed
at t=time tag

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 153

including the commandInput, networkNode, device
and satControls components.

Figure 3. Command network example

1. The commandInput component imports the
textual commands from the user, parses and
translates them and stores them in a buffer. It
retrieves the appropriate numerical address for
each command from the automatically generated
device list on the C side and appends it to the
command (see networkNode description, next
paragraph, for details on the address generation
mechanism). CommandInput then sends the
commands through the network in packets. The
size and frequency of the packets are defined by
the user.

2. The networkNode component is a node in the
network between different levels. It contains a user
assigned address index which is used to generate
the addresses of devices under it (at initialization)
and to filter the commands by their address indices
(when the commands are sent during the
simulation). The Modelica code automatically
generates an address at initialization by
propagating an empty array from the top to the

lower levels of the network. At each node in the
network, the empty array gets progressively
populated, recording its path through the network
from the command source (which may be either
the commandInput component or a parent device)
to each device.

3. The device component is at the receiving end of
the command network. The user assigns a name to
the device instance as a parameter. Upon
initialization, the device receives a unique
identifier (UID) from the C side and registers itself
to the list of devices by passing its name, UID,
address and parent device UID (if applicable) back
to the C side. When a device receives a command
or packet of commands, it either passes them on to
a sub-device through its internal network or feeds
the commands to the satControls component.

4. The satControls component receives the
commands, extracts the time tag, translates them to
the appropriate signals and places the commands
in a queue. When simulation time matches the
time tag the command is executed.

On the C side, there is a unique identifier generator
and the address list which contains the device
UID, address, name and parent/child relationship
with other devices. The C code and Modelica
model interface via three external C functions.

1. The registerUID function is called by the device
component to obtain a unique identifier from the C
side.

2. The registerDevice function is called by the
device component to pass its name, address, UID
and parent UID to the C side to be added to the
device list (mapped).

3. getDeviceAddress is called by the
commandInput and device components, to retrieve
the device and sub device addresses, respectively.

2.1.3 Processor modeling

The processor model is used to test sequences of
instructions in a process and to evaluate the
processing load on the CPU. The main
components are the processor model template and
the individual process blocks (see Figure 4).

The processor model template is an extendable
version of the device model, with the addition of
data ports and additional parameters to

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 154

characterize the processing power and internal
bitrates. The user may select from the available
process blocks to build a new processor model, or
implement custom process blocks. Standard
processor options are also available.

Figure 4. An example of a processor model

Each process block contains a set of instructions
which are executed in sequence when the process
block is activated. The processor block executes
the instruction by sending signals to the ‘dumb’
components in the processor, such as the data link,
compress and switch components.

2.1.4 Communications modeling

The communications modeling components
include:

• Onboard communication equipment consisting

of customizable TX and RX antennas. User
defined parameters include antenna gain,
transmission power and frequency.

• Ground station antenna, characterized by its

location in latitude and longitude, horizon
angle, gain and by the parameters affecting
attenuation.

• The link analysis block uses Princeton

Satellite functions to calculate the theoretical
maximum uplink and downlink bitrates

(Shannon limit) based on the ground station
and onboard antenna parameters and the
location of the spacecraft and ground station.

2.2 PowerBudget section

The power budget section contains the components
related to the generation, storage, distribution and
consumption of power which would be found in a
typical photovoltaic cell based power subsystem.
Customization is achieved through parameterizing
the components and through redeclaration. For
instance, the user may use one large solar array at
one average temperature or multiple smaller solar
arrays of different temperatures to account for
temperature differences across a physical solar
array.

• The solar array model is parameterized by the

number and area of solar cells, maximum
power current, maximum power voltage, array
temperature and temperature coefficients. It
generates power according to the angle of
incidence of the panel and the intensity of the
solar flux.

• The battery model takes into account the cell

capacity, maximum depth of discharge,
charge/discharge ratio, and maximum charge
and discharge rate.

• The power distribution model interacts with

the power consumption block in the device
model to provide power according to the state
of device: on, off or idle. The device has
parameters to specify the power consumption
at each state.

2.3 Mechanics section

In order to model the physical characteristics of
each device as well as the spacecraft Attitude and
Orbit Control System, the standard Modelica
Multibody world model and body model were
modified to incorporate more complex gravity and
magnetic fields, as well as gravity gradient effects
[5]. Various actuators including reaction wheels,
thrusters, torque rods and their respective
controllers are included in the Mechanics section.

2.3.1 world model

The extended world model includes the option to
use a spherical harmonics gravity model instead of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 155

point gravity. This component models the Earths
magnetic field using the International
Geomagnetic Reference Field (IGRF) and
incorporates a default spherical earth visualization
where the radius is set to the average Earth radius.
The user may customize the precision of the
gravity and magnetic field models by specifying
the number of coefficients used for the gravity and
magnetic field polynomials. The world model
detects when the spacecraft comes in contact with
the earth surface.

2.3.2 complexBody model

This model is derived from the standard body
model, modified to allow the user to account for
gravity gradient torque, if desired. The gravity
gradient calculation function is in the world model.

Figure 5. Multibody spacecraft visualization

Available actuators include reaction wheels,
thrusters and magnetic torque rods. All are
assembled from the standard Multibody library
components and the modified complexBody model.

• Reaction wheels are generally mounted on

each of the 3 axes. One spare wheel is
mounted obliquely and ready to take over in
case one of the 3 primary wheels fails. In order
to accurately model any unique reaction wheel
assembly, the user can specify the orientation
of each wheel, shape, size and density of the
rotor.

• Thrusters are modeled by exerting a frame
force on the thruster nozzle. The user specifies
the mass of the thruster assembly and the
maximum force exerted by the thruster, as
well as the position and orientation of the
thruster nozzle.

• Magnetic torque rods are modeled by exerting

a torque on the torque rod body. The
component magneticFieldSensor is used to
measure the magnitude and orientation of the
magnetic field in order to apply the
appropriate torque.

There are controller blocks for performing
operations including detumbling (stabilizing the
spacecraft into a certain attitude after separation
from the launcher, see Figure 5) and momentum
unloading (using the torque rods to decrease the
momentum which has accumulated in the reaction
wheels), as well as routine changes in attitude and
orbit.

2.4 Orbital mechanics

The orbital mechanics section includes a precise
ephemeredes model based on tables generated by
STK. It generates the position in heliocentric
equatorial coordinates for the nine planets and the
Moon by interpolating the ephemeris tables using
a Lagrange polynomial expansion.

3. Case study

To verify the behavior of SpacecraftLib , we built
a generic spacecraft (called Sat, see Figure 6) with
all the major subsystems. These include command
and data handling (C&DH), power control and
distribution unit (PCDU), Tracking, Telemetry
and Control (TTC), Attitude Control System
(ACS) and a payload consisting of 2 sensors. We
orbited the spacecraft for 2 orbits, and uploaded a
list of commands to be performed over the
duration of its short ‘mission’.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 156

Figure 6. Model of complete spacecraft ‘Sat’ and ground station

• C&DH. This subsystem is composed of 1

processor with a maximum processing power
of 100 KIPS and internal bitrate of 10 Mbps, a
science data memory unit, and an execution
memory unit.

• PCDU. This subsystem includes the power
controller and a battery, and is connected to 2
solar arrays.

• TTC. This subsystem includes a processor,
buffer memory, a transmitting antenna and a
receiving antenna.

• ACS. For this example, the attitude control
system is a dummy system to model power
consumption. Multibody components are not
used and the orbital parameters for the
duration of the simulation are imported from
STK.

The ground station is located in St Hubert,
Quebec, at the location of the Canadian Space
Agency while the spacecraft orbits at an altitude of
approximately 820 km in a near polar, circular
orbit, with an inclination of 98.7 degrees.

We entered the commands into a .txt file before
compiling the model and ran the simulation for
12000 seconds (about 2 orbits).

The commands included image capture and
compression operations, device state changes (on,
off and idle), attitude changes and data
transmission operations. The model reacted to
these commands at the appropriate times,
exhibiting behaviour which would allow us to
optimize the design.

3.1 Results and Analysis

We will examine the behaviour of the C&DH
subsystem as well as the link behaviour.

In Figure 7, the upper plot shows the amount of
data in the memory space allocated to unprocessed
science data. Each spike corresponds to an
unprocessed image entering the raw data memory,
and immediately being removed, processed and
placed in the memory allocated to processed data
(not plotted).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 157

The lower plot in Figure 7 shows the status of the
‘shutter’ on the camera sensors. At each pulse, the
‘camera’ takes an image and generates a certain
amount of data, which is passed to the raw data
memory.

In Figure 8, the upper plot shows the maximum
theoretical bitrate possible according to the
Shannon-Hartley theorem[1] and the actual
transmission bit rate. The lower plot shows the
amount of data in the TTC memory (buffer). As
soon as there is a link, the data in the TTC memory
is transmitted.

Certain facts which have an impact on the design
are immediately evident. From the upper plot in
Figure 7, we can conclude that for this operating

profile, there must be at least 350 to 400 Mb of
storage allocated to the raw data from the sensors.

From Figure 8 we see that the communications
system is not optimized for this operating profile.
At a downlink bitrate of 10 Mbps it takes only a
fraction of the available link duration to download
all the data. This is an indication that
communication equipment capable of 10 Mbps
downlink speeds is not necessary for this imaging
rate, which will have secondary and tertiary effects
on the power subsystem specifications, solar array
size, and eventually on the total mass of the
spacecraft. Moreover, the closer we get to the
Shannon limit of the channel the more we must
invest in terms of hardware and power for
advanced coding techniques.

Figure 7. Science memory level (upper), camera state (lower)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 158

Figure 8. Maximum theoretical bitrate and actual bitrate (upper), TTC buffer level (lower)

4. Conclusion

Modelica is proving to be well suited to hybrid
modeling of power, data and command systems as
applied to a generic spacecraft modeling tool for
Systems Engineering, when complemented by our
C library. It provides a flexible graphical modeling
environment that allows for fast and accurate
estimates for use in resource budgeting. The
precision of the estimates depends on the fidelity
of the subsystem models, so further improvement
of the subsystem models will allow the tool to
progress to a full design tool. Various features of
the Spacecraft Budgeting Library, notably the
command network model, are portable and may be
reused for other applications.

References:

[1] W.J. Larson, and J.R.Wertz, editors. Space
mission analysis and design. Microcosm
Press/Kluwer Academic Publishers, 1999.

[2] STK 8, Analytical Graphics, Inc.

[3] T. Pulecchi, F. Casella, M. Lovera. A
Modelica Library for Space Flight Dynamics.
In Proceedings of the 5th Modelica

Conference, Vienna, Austria, volume 1, page
107.

[4] Spacecraft Control Toolbox, Princeton
Satellite Systems, Inc.

[5] Built by Dyna Benchergui and Andre-Claude
Gendron

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 159

Modelling and simulation of a fault-tolerant electrical motor for
aerospace servovalves with Modelica

Gianpietro Di Rito Roberto Galatolo
Dipartimento di Ingegneria Aerospaziale - Università di Pisa (Italy)

Via Caruso, 8 – 56122 Pisa (Italy)
g.dirito@ing.unipi.it r.galatolo@ing.unipi.it

Abstract

The paper deals with the design and the
simulation of electro-magnetic actuators via
object-oriented modelling. The study is carried
out in the Modelica-Dymola environment, and
focuses on the quadruple-coil direct-drive motor
of a modern fly-by-wire servovalve. Starting from
basic information about material properties and
from a schematic representation of the system
geometry, the motor model is created mainly
using the components of the Modelica_Magnetic
library. The motor performances are then
characterised with reference to both the normal
operating condition (four active coils) and the
worst-case fault-tolerant condition (only two
active coils), in terms of current-to-force and
current-to-displacement curves. The Modelica
model is finally validated by comparing the
simulation results with experimental data obtained
during previous research activities. The Modelica
results are also compared with those provided by a
Matlab-Simulink model of the motor, pointing out
the advantages of the object-oriented approach for
the study of complex electro-magnetic systems.
The easy modelling of magnetic circuit networks
and the inherent simulation of magnetic material
properties allow to achieve accurate results very
efficiently, taking into account physical
phenomena that are often disregarded during
preliminary design phases, such as magnetic
saturation or magnetic flux dispersions.

Keywords: fault-tolerant aircraft systems; electro-
magnetic actuators; object-oriented modelling.

1 Introduction

The use of direct-drive servovalves, essentially
based on the use of a rare-earth magnet electrical
motor for controlling the valve spool motion,

demonstrated to be strategic for the enhancement
of the performance and the reliability of modern
fly-by-wire hydraulic actuators [1]. Actually, as a
result of the separation between the electrical and
the hydraulic section of the servovalve, fault-
tolerant actuators can be obtained with simpler
architectures, and the valve spool position control
can be designed with great flexibility [2].
A fly-by-wire actuator with direct-drive
servovalve is a complex multi-physical system,
where electrical, magnetic, electronic, hydraulic
and mechanical phenomena are strongly
connected with each other, so the modelling and
simulation can be problematic if the
designer/analyst does not have technical expertise
in all domains. At the same time, an actuator
model is required to be accurate in the early
phases of a project, well before the item is
actually constructed, especially if safety-critical
and high-performance application is concerned
(e.g. primary flight control actuators). In this
context, the object-oriented approach provided by
Modelica [3, 4] can represent a very convenient
solution for the rapid prototyping, the analysis,
and the performance characterisation of such
systems.
In the work, the model of a quadruple-coil direct-
drive motor for fly-by-wire servovalves is
developed in the Modelica-Dymola environment,
and validated with experimental data in terms of
static performances. The paper is organised into
three sections. The first one reports a brief
description of the system principle of work,
together with a simple analytical model of the
electro-magnetic section of the motor. The second
part is focused on the main features of the
Modelica model, mostly developed by using the
components of the Modelica_Magnetic library [5],
while the third section is dedicated to the model
validation. In particular, the Modelica results are
compared with both experimental data (obtained
during previous research activities) and simulation

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 160 DOI: 10.3384/ecp09430091

Centring
spring

to the
valve spool

Moving
armature

Case

Quadruple coil

results of a Matlab-Simulink model of the motor
[6], in order to point the advantages of the object-
oriented modelling for the study of complex
electro-magnetic systems.

2 System description

2.1 Motor layout

The internal architecture of the direct-drive motor
is schematically depicted in Fig. 1. The valve
spool movement is obtained by a rare-earth
magnet electrical motor with four coils operating
in a flux-summed configuration. When no current
circulates in the coils, the armature (rigidly linked
to the valve spool) is centred with respect to its
endstrokes, as in this condition the centring spring
is unloaded and the magnetic fluxes induced by
the permanent magnets provide equal and
opposite forces. When the currents are not zero,
the magnetic flux induced by the coils causes an
unbalanced armature polarisation. A magnetic
force is therefore generated, and the resulting
spool movement allows to control the actuator
hydraulic power.

Figure 1 – Motor layout and basic magnetic network.

Modelling the dynamics of a direct-drive motor is
a complex topic, since several nonlinear
phenomena are involved. First of all, the magnetic
force is a nonlinear function of both the current
and the spool position, since the polarisation
efficiency is considerably increased if the
armature approaches the endstroke. Moreover, the
effect of unavoidable system nonlinearities such
as magnetic saturation or sliding friction cannot

be neglected if the simulation is referred to the
complete range of operating conditions.

2.2 Principle of work

In order to clarify the basic working principle of
the motor, a simple analytical model of the
electro-magnetic section of the system is here
provided. The magnetic field of the motor can be
basically represented by three magnetic fluxes [7]:
the one that links the coils with the variable air
gaps (φc), and the two ones linking the left and
right magnets with the left and right variable air
gaps respectively (φml and φmr).
The resulting magnetic circuit network is shown
in Fig. 2.

Figure 2 – Simplified magnetic network of the motor.

The network is characterised by three reluctances:
two ones related to the variable air gaps (lℜ and

rℜ), and an overall equivalent reluctance that
takes into account all the soft ferrite parts, the
radial clearance, and the reluctance of the
permanent magnets (eℜ).

Assuming that all magnetic flux tubes have the
same cross-section area (A), the three reluctances
are given by Eqs. (1-3), where μ is the air
magnetic permeability, g is the motor air gap, and
x is the armature displacement from the centred
position.

Alee μ=ℜ (1)

Axgl μ)(−=ℜ (2)

Axgr μ)(+=ℜ (3)

By solving the circuit equations (Eq. (4)), the
magnetic fluxes can be obtained as functions of the
armature position and the coil current (Eqs. (5-7).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Φ
Φ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ℜ+ℜℜ−ℜ
ℜ−ℜ+ℜ
ℜℜ+ℜ

iN
m

m

c

mr

ml

rlrl

rre

lle

ϕ
ϕ
ϕ

0
0

 (4)

cϕ

iN

mlϕ mrϕ

mΦ mΦ

eℜ eℜ

lℜ rℜ

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 161

⎥
⎦

⎤
−+
−−+

−

⎢
⎣

⎡
+Φ

−+
=

iN
lgxlg

lgxgxlg

lgxlgl
A

ee

ee

m
eee

ml

)1(2
1...

...
1

1

2

2

2

μϕ
 (5)

⎥
⎦

⎤
−+
−++

+

⎢
⎣

⎡
+Φ

−+
=

iN
lgxlg

lgxgxlg

lgxlgl
A

ee

ee

m
eee

mr

)1(2
1...

...
1

1

2

2

2

μϕ
 (6)

⎥
⎦

⎤
−+
−++

+

⎢
⎣

⎡
+Φ

−+
=

iN
lgxlg

lgxlggl

lgxlg
gx

l
A

ee

eee

m
eee

c

)1(2
2...

...
1

2

2

2

μϕ
 (7)

The force provided by the motor can be then
obtained by applying the virtual work principle,
by differentiating the system magnetic co-energy
with respect to the armature position, Eqq.(8-9).

x
iN

xx
EF cmrmlmm

m ∂
∂

+
∂
+∂Φ

=
∂
∂

=
ϕϕϕ

2
)(

2
 (8)

⎥
⎦

⎤
−+

+
+

−+
++Φ

+

⎢
⎣

⎡
+

−+
Φ

=

22

22

22

2

22

2

)1(2
)1(

)1(
)1(...

...
)1(

2

ee

e

ee

eem

ee

em

e
m

lgxlg
gxlgiN

lgxlg
lgxlgiN

lgxlg
lx

gl
AF μ

(9)

As shown by Eq. (9), the magnetic force provided
by the direct-drive motor is composed of three
basic terms: the first one is exclusively due to the
permanent magnets, it depends on the armature
position and its effect can be viewed as a
diminution of the centring spring stiffness; the
second term is the most important force
contribution, it is linear with the coil currents and
it is produced by the interaction between the
magnetic fluxes induced by the currents and the
ones induced by the permanent magnets; the third
term is exclusively due to the coils, and it tends to
be important when the motor works with high
currents [7].

2.3 Main requirements for application on
aerospace servovalves

From the working principle point of view, there
are no significant differences between a single-
coil direct-drive motor and a quadruple-coil one,
but specific design requirements must be
addressed for the application on fault-tolerant
aerospace servovalves:

 Linearity: a linear relationship between the
command current and the valve
displacement must be provided by the

motor in all the operating conditions.
Nonlinear phenomena, such as magnetic
saturation, magnetic hysteresis or sliding
friction, must be kept at negligible levels,
especially in the vicinity of the “null
region” of the valve (centred motor
armature);

 Functionality in case of electrical failures:
the direct-drive motor must maintain its
functionality even after two electrical
failures, i.e. the working valve stroke must
be completely covered also in the worst-
case failure condition;

 Functionality in case of contaminated fluid:
even in the worst-case failure condition1,
the motor must have sufficient force
capability to shear a metallic chip blocked
in one of the servovalve port (chip shear
force). The cross-area of the blocked chip is
generally referred to the maximum valve
opening.

Undoubtedly, the coverage of each of the above-
mentioned requirements must be assessed through
experiments, but predictions and analyses are
necessary during the whole design development,
especially because the tests on the functionality in
case of failures are complex and expensive. For
these reasons, modelling and simulation activities
become essential, and the need of accurate system
models is evident.

3 Modelica model development

The model of the direct-drive motor has been
divided into two sections: the one related to the
permanent magnets, and the other to the quadruple
coil.

3.1 Permanent magnet section

Previous works of the authors highlighted the role
that the magnetic flux dispersion has in this type
of system [6, 7]. For this reason, the permanent
magnet section of the motor has been modelled
with the magnetic circuit network shown in Fig. 3.
The magnetic field of this motor section is
composed of six fluxes: two ones linking the
permanent magnets and the variable air gaps,

1 Depending on the application, this aspect of the
requirement could be relaxed, since extremely small
probability of occurrence are related to multiple events.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 162

Figure 3 – Permanent magnet section of the motor model.

and four flux leakages that take into account the
secondary paths of the magnetic fluxes.
The mechanical part of the model simply
represents the armature mass and the containing
case, with two ElastoGap components of the
Modelica.Mechanics.Translational library, which
simulate the left and right endstroke of the motor.
The interfaces of the resulting object-model are
two magnetic ports for the integration with the
magnetic network of the command coils, and two
mechanical flanges, to be connected with the fixed
structure of the hydraulic actuator and to the valve
spool respectively.

3.2 Quadruple-coil section

The quadruple-coil section has been modelled
taking into account of the secondary magnetic
paths related to each coil (Fig. 4), so that the
magnetic field contains four magnetic dispersion
loops.

Figure 4 – Quadruple-coil section of the motor model.

The external interfaces of the resulting component
are eight electrical pins (two ones for each of the
four command electronics) and two magnetic

ports for the integration with the magnetic
network of the permanent magnet section.

3.3 Complete model

The complete model of the direct-drive motor
(Fig. 5) is finally obtained by magnetically linking
the permanent magnets with the coils
(reproducing the actual physical relationship
between the two motor sections), and by adding a
Spring and a Stop object-models coming from the
Modelica.Mechanics.Translational library for
simulating the centring spring and the effects of
sliding friction respectively.

Figure 5 – Model of the fault-tolerant direct-drive motor.

3.4 Graphical user interface

The modelling activity led to the creation of three
Modelica object-models: linearpmmotor,
quadruplexcoil and directdrivemotor. All the
object-models have been created providing the
user with the possibility of tuning and selecting
the system parameters via dialog box (e.g.
geometrical dimensions, coil windings, coil

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 163

Figure 6 – Dialog box for the model of the permanent magnet section.

resistance, material properties, etc.).
An example is given in Fig. 6, where the graphical
user interface of the linearppmmotor object-model
is reported.

4 Simulation and validation

The Modelica model of the motor has been
developed with reference to the fault-tolerant
direct-drive motor of the servovalve of a modern
fly-by-wire actuator, which has been
experimentally characterised by the authors
during previous research activities [6]. The model
validation has been achieved by comparing the
Modelica results with the experimental data in
terms of current-to-force and current-to-
displacement curves, with reference to both the
normal operating condition (four active coils) and
the worst-case fault-tolerant condition (only two
active coils).
In this section, the results of a Matlab-Simulink
simulation of the motor [6] are also reported, in
order to highlight the advantages of the object-
oriented modelling with respect to a more
classical approach.

4.1 Current-to-force characteristics

The current-to-force characteristics of the motor
are reported in Fig. 7, where the net force (i.e.
including the centring spring effect) is plotted as a
function of the coil current for different armature

positions (centred and endstroke). The plot shown
in Fig. 7.a is referred to the normal operating
condition, while the Fig. 7.b refers to the case of
only two active coils. The net force values have
been normalized with respect to the required chip
shear force of the valve.
The most interesting considerations can be done
with reference to Fig. 7.a. The results show that
both the Modelica (MDC) and the Simulink
(SLK) models provide satisfactory results if a
working condition with centred armature is
concerned: both the direct-drive motor models
exhibits a linear behaviour, with negligible errors
with respect to experimental data. Furthermore,
both the models provide good predictions in terms
of cheap shear force capability2. On the other
hand, the MDC model is more accurate when the
armature is placed at the endstroke and high
positive currents are applied. This is because the
magnetic saturation effects are not taken into
account in the SLK model, and the magnetic force
capability of the motor is overestimated.
The analytical model proposed in section 2.2,
though simplified, can be useful for understanding
the phenomena, since the magnetic saturation of
soft ferrite parts is not taken into account as well.
Equation 7 points out that the magnetic flux

2 The chip shear force capability can be obtained from
Fig. 6 by measuring the net force provided at endstroke
(i.e. maximum cross-area of the blocked chip) when
the maximum negative current is applied.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 164

Figure 7 –Motor force characteristics with four active coils (a) and with two active coils (b).

Figure 8 –– Current-to-displacement curve with four active coils (a) and with two active coils (b).

linked to the coils at endstroke (x=±g) reaches
very high values if the magnetomotive force
related to the coils acts in the same direction of
that of the permanent magnets (i.e. maximum
positive current at x=g, and maximum negative
current at x=−g), implying the possibility of
magnetically saturating the soft ferrite parts.
Without taking into account the magnetic
saturation, the motor force at endstroke is
parabolic with respect to coil current (Eq. (9)),
and this behaviour is clearly exhibited by the SLK
model (Fig. 7.a). On the other hand, the MDC
model significantly deviates from the parabolic
behaviour for currents higher than 0.4 A,
satisfactorily reproducing the hardware response.
This is because the MDC model inherently takes

into account the magnetic properties of the motor
parts. Each reluctance of the magnetic network
(Fig. 3) is defined as a physical object,
characterised by specific geometrical and
magnetic properties (material properties can be
directly defined by the user or selected on a pre-
defined database [5]).
Concerning Fig. 7.b, where the fault-tolerant
working condition is concerned, the differences
between the models demonstrate to be minor
(magnetic saturation is not present, since the
magnetomotive force of the coils is halved), even
if the prediction errors are reduced with the MDC
model.

(a) (b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Command / Max current

Fo
rc

e
/ R

eq
ui

re
d

ch
ip

 s
he

ar
 fo

rc
e

Centred (HW)
Centred (SLK)
Centred (MDC)
Endstroke (HW)
Endstroke (SLK)
Endstroke (MDC)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Command / Max current

Fo
rc

e
/ R

eq
ui

re
d

ch
ip

 s
he

ar
 fo

rc
e

Centred (HW)
Centred (SLK)
Centred (MDC)
Endstroke (HW)
Endstroke (SLK)
Endstroke (MDC)

(a) (b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Command / Max current

A
rm

at
ur

e
po

si
tio

n
/ M

ot
or

 s
tro

ke

HW
SLK
MDC

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Command / Max current

A
rm

at
ur

e
po

si
tio

n
/ M

ot
or

 s
tro

ke

HW
SLK
MDC

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 165

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Magnetic field strength [A/m]
M

ag
ne

tic
 fl

ux
 d

en
si

ty
 [T

]

Vacoflux50
Hyperm0
Soft ferrite with tuned behaviour

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Command / Max current

Fo
rc

e
/ R

eq
ui

re
d

ch
ip

 s
he

ar
 fo

rc
e

HW
SLK
MDC (Vacoflux50)
MDC (Soft ferrite with tuned behaviour)

4.2 Current-to-displacement characteristics

Figure 8 shows the comparison between the
simulation and the experimental data in terms of
current-to-displacement curves. The results are
obtained by measuring the armature displacement
while a sinusoidal low-frequency command
current (±imax at 0.02Hz) is applied to the coils.
It can be noted that the both the models match
very well the experimental data in both the
operative conditions, even if the prediction errors
tend to increase when the armature approaches the
endstrokes.

4.3 Effects of the soft ferrite magnetic
properties on motor performances

During the development of the motor models, no
specific information about the properties of the
soft ferrite parts was available. This aspect is not
critical for the most applications, since electro-
magnetic actuators are designed to avoid magnetic
saturation and the reluctances related to the soft
ferrite parts are negligible with respect to air gaps
or rare-earth magnets. As shown in the proposed
study, this approach is not suitable for aerospace
application, since the design is basically driven by
low-weight, high-performance, safety-critical
requirements, and system nonlinearities can
become important.
Actually, the MDC results shown in Figs. 7-8
have been obtained after a specific sensitivity
analysis carried out by varying the material of the
soft ferrite parts of the motor. The activity has
been initially performed by selecting the materials
provided by the pre-defined database of the
Modelica_Magnetic library (Vacofer S2,
Permenorm 3601 K3, Hyperm0, Vacoflux50). The
effect of magnetic properties demonstrated to be
minor if the soft ferrite parts do not saturate, while
significant discrepancies from experiments have
been observed in the “saturation region” with all
the selected materials. A specific study has thus
been done to define an appropriate B-H curve of
the soft ferrite parts of the motor for obtaining a
good experimental matching.
The results of this activity are reported in Figs. 9-
10. Figure 9 shows the “tuned” B-H curve
compared with two materials of the
Modelica_Magnetic database, while Fig. 10
reports the current-to-force curves at endstroke
(four coils active) for hardware, SLK model and
two MDC models, the one using the Vacoflux50
material and the other using the “tuned” material.

The model accuracy in the saturation region
strongly depends on the transition to magnetic
saturation, which is assumed to be more abrupt for
the “tuned” material (Fig. 9).

Figure 9 – B-H curves of tested soft ferrite material.

Figure 10 – Effects of soft magnetic material on motor

force characteristics at endstroke (four active coils).

5 Conclusions

The Modelica model of a quadruple-coil direct-
drive motor for aerospace servovalves is
developed and validated with experimental data.
The model predictions demonstrated to
satisfactorily match the hardware response in
normal operating condition (four active coils) as
well as in the worst-case fault-tolerant condition
(only two active coils). The inherent simulation of
the magnetic saturation provided by the Modelica
components allows to achieve accurate results in
the whole range of operating conditions. The

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 166

results of the Modelica model are also compared
with those provided by a Simulink model of the
motor, pointing out the advantages of the object-
oriented modelling for the study of complex
electro-magnetic systems.

References

[1] Pratt R. W., “Flight control systems:
practical issues in design and
implementation”, Institution of
Engineering and Technology, Stevenage,
2000.

[2] Miller F. G., “Direct drive control valves
and their applications”, Proceedings of the
IMechE International Conference on
Aerospace Hydraulics and Systems,
London (UK), 1993, pp. 1–16.

[3] Elmqvist H., Mattsson S. E., and Otter M.,
“Modelica - the new object-oriented
modeling language”, 12th European
Simulation Multiconference (ESM'98),
Manchester (UK), pp. 1-5, 1998.

[4] Otter M., and Elmqvist H., “Modelica:
language, libraries, tools, workshop and
EU-project RealSim”, Simulation News
Europe, pp. 3-8, 2000.

[5] Bodrich T., Roschke T., “A magnetic
library for Modelica”, Proceedings of the
4th International Modelica Conference,
Hamburg (Germany), Vol. 2, pp. 559-565,
2005.

[6] Di Rito G., and Galatolo R.,
“Experimental and theoretical study of the
electrical failures in a fault-tolerant direct-
drive servovalve for primary flight
actuators”, Proceedings of the Institution
of Mechanical Engineers, Part I, Journal
of Systems and Control Engineering, v.
222, no. I8, 2008, pp. 757-769.

[7] Di Rito G., “Experimental validation of
theoretical and numerical models of a
DDV linear force motor”, Proceedings of
the 3rd FPNI-PhD Symposium, 2004, pp.
105–114.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 167

Preliminary design of electromechanical actuators with Modelica

Marc Budinger (*), Jonathan
Liscouet (*)

Yvan Lefevre(**), Julien
Fontchastagner(**) and Abde-

nour Abdelli(**)

Loig Allain(***)

Université de Toulouse, IN-
SA/UPS, Laboratoire de Génie

Mécanique de Toulouse
Toulouse, 31077, France

Université de Toulouse,
INPT/CNRS, Laboratoire Plasma
et Conversion d’Energie, Tou-

louse, 31071, France

LMS-Imagine
La Cité Internationnale

84 quai Charles de Gaulle
69006 LYON

marc.budinger@insa-
toulouse.fr

Yvan.Lefevre@laplace.univ-
tlse.fr

loig.allain@lmsintl.com

Abstract

This article deals with a methodology for a comput-
er-aided design of electromechanical actuators from
the preliminary design of components to the detail
design of the electrical motor. The developed library
of components for the simulation takes advantage of
the non-causal and object oriented characteristics of
the Modelica language. The capabilities of the Mod-
elica language and the LMS.Imagine.Lab AMESim
or Dymola Platforms are strongly used in order to
build a fully integrated process to design and size the
different component of the final actuator. The pro-
posed approach is illustrated with the sizing of a
flight control actuator.

Keywords: preliminary design, inverse simulation,
scaling laws, electromechanical actuator, brushless
motor

1 Introduction

Thanks to the development of powers electronics and
permanent magnets, electromechanical actuators are
very promising with respect to, e.g. automatic oper-
ating mode, power management, reliability, maintai-
nability. For this reason, it can be very interesting to
replace current actuators based on another technolo-
gy less promising in these fields (e.g. hydraulic) with
electromechanical actuators. A good illustration of
this tendency is the research effort towards the “more
electric aircraft” in aeronautics [1]. An electrome-
chanical actuation system is very complex to design
and to optimize, especially because of its multidis-
ciplinary characteristic [2]. This paper presents a
new methodology to help the engineer from the pre-
liminary to the detailed design of electromechanical

actuators. Modelica coded libraries used here are
especially to encompass 2 steps in the V design cycle
(Figure 1) :

• The power sizing (part 2) which aims at siz-
ing and specify the various components of
the operating system in order to meet the
specification requirements (on nominal
points or on mission profile) in terms of ef-
fort and speed (and therefore power).

• The detailed design of components (part 4),
brushless motor here, which allows the de-
signers to obtain fine sizing of components
in order to enable the fabrication and more
accurate simulations.

Needs Products

System

components

Component
detailed
design

Control
synthesis

Search for
solutions

specification

Components

requirements

Power sizing

Architectures

Components
integrations

Prototype

Performances
validations

Figure 1: V design cycle

The libraries presented in this paper are illustrated in
part 3 and 5 by the design a flight control actuator
(see Figure 2) from global specifications to the fine
sizing of the brushless motor.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 168 DOI: 10.3384/ecp09430099

Developed library for preliminary design and power sizing

Electromechanical actuators for flight control

Roller -
screw

Gearbox Brushless Power
electronics

Electrical
network

Aileron

Crank
shaft Power

electronics

Gearbox Roller -
screw

Electrical
network

Brushless
motor

Brushless motor detailed design

Figure 2: Rapid design of an electromechanical actuator for a primary flight control surface of an aircraft

2 Preliminary design library for
components specifications

2.1 – Sizing wave

As indicated in the previous part, the power sizing
aims at determining the correct size of the devices in
order to comply with the mission profile of effort
and speed. Then the general methodology can be
expressed as follows (see Figure 3):

• Based on the load and associated mission
profile, effort and speed of each component are
calculated following the entire actuation chain.

• Every component is sized such that it covers
the mission profile curve established between ef-
fort and speed and requirements on other sizing
parameters are satisfied, e.g. the RMS torque for
an electric motor.

The simulations require many parameters that are
known as “simulation parameters” (eg: Inertia,
stiffness, thermal time constant, etc). They feed di-
rectly the equations that are solved by the equation
solver.

Designers want to scan a large range of solutions
quickly without searching for these very numerous
“simulation parameters”. It is preferable for them
to work directly on a small number of “definition

parameters” that characterize the components they
use in a more technological way (e.g., Torque, speed,
speed reducing ratio, etc.).

Compo-
nent

1

Compo-
nent

2

Compo-
nent

3

Compo-
nent

4

Compo-
nent

5

Mission cycle

For example : Reducer

Figure 3: Power sizing

The simulations aim at confirming the selection of
the components and carrying out a comparison anal-
ysis between different architectures. The simulation
should allow the assessment of “sizing parameters”
(eg: RMS torque for electric motors, RMC torque for
speed reducers, etc) and of “comparison parame-
ters” (e.g., mass of the component, etc).

Traditionally, the designers look into catalogues of
manufacturing companies to get simulation parame-
ters and make comparison between solutions. It re-
quires repeated revisions of the design and of course,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 169

a lot of work. To avoid this time consuming itera-
tions, some simulation software are equipped with
large databases of full ranges of components [3-5].
For our preliminary design library, it has been de-
cided to develop models of the components on the
basis of scaling laws in order to avoid the huge tasks
of databases creation and maintenance. These trans-
parent scaling laws provide users with the relation-
ships between the definition parameters with simu-
lation, sizing and comparison parameters.

For example, these quantities are for mechanical
speed reducers (epicyclic gearing for example):

• Definition parameters: torque output, gear
ratio, desired service life;

• Simulation parameters: equivalent inertia,
efficiency, parameters necessary for evaluation
of service life;

• Comparison parameters: mass, volume;
• Sizing parameters: maximum torque and

speed during a mission cycle, equivalent
torque in fatigue.

2.2 – Inverse simulation with Modelica

The methodology described here requires the evalua-
tion of the power variables of all the components for
an imposed mission profile [6]. Traditional system
simulation software such as Simulink does not
achieve this kind of simulation using standard mod-
els and by making simple assembly of components.
The simulation language Modelica [7, 8] is non-
causal and does not impose a direction to the va-
riables. In this way, a variable can be either the input
or the output depending on the engineer needs.

2.3 – Scaling laws

The scaling laws, also called similarity laws, allow
the study of the effect of varying representative pa-
rameters of a given system. They are used in differ-
ent domains as microsystems [9], mechanics [10],
hydraulics, fluid mechanics to compare different ac-
tuator technologies [11], to adapt the dimensions of a
mock-up in fluid dynamics, to size mechanic, hy-
draulic or electric systems, to develop and rationalize
product families or to evaluate costs . This article
uses the notation proposed by M. Jufer in [12] for
scaling laws calculation. The scaling ratio of a given
parameter is calculated as

lll /'* = (1)

With l, the parameter of the component taken as ref-
erence and l’ , the parameter of the studied compo-
nent.

A homothetic scaling of all the geometrical dimen-
sions leads to link them all to their reference value

by a single ratio l*. Models are developed only for
components with a geometrical similitude. In this
way, the evolution of a volume V of a cylinder in
case of an identical evolution for all geometrical di-
mensions is

3** lV = (2)

This last result remains valid for any other geometry.
In the same way, it is possible to calculate the evolu-
tion of the mass M and rotating inertia J as function
of the dimension l:

3** lM = (3)
5** lJ = (4)

During scale change of components (e.g. motor, re-
ducer, mechanism) some constraints must remain
constant. These sizing constraints ensure an adequate
use and life time for the components. For mechanical
components, the constraints in the materials are li-
mited by the elastic or fatigue limits. The use of scal-
ing laws allows the direct determination of the simu-
lation parameters (such as inertia) and comparison
(e.g. with respect to mass) from the definition para-
meters (e.g., the torque). Thus, instead of using
heavy databases that are difficult to build, only one
reference component for each type of technology is
required.

2.4 – Operating areas and sizing laws

During the simulation, it is necessary to verify the
behavior of different components along the mission
cycle to prevent their degradation. Generally, two
types of operational limits should be distinguished.

The first limit is due to a rapid deterioration of the
component: this limit corresponds to the surface op-
erating areas which are expressed in term of energy
quantities such as effort and speed. For speed reduc-
ers, this corresponds to the material’s elastic limits,
followed by the absolute torque that the reducer can
withstand and that is limited by the maximum me-
chanical constraint that its weakest point can with-
stand. It is possible to develop models to determine
torque and speed limits with the help of scaling laws.

The second type of operational limits corresponds to
the gradual deterioration caused by damage accumu-
lations which limit a component’s service life or re-
liability. For speed reducers, this corresponds to the
material’s fatigue limits. In practice, the fatigue tor-
que and the mean speed of a reducer are calculated to
ensure the desired service life and reliability.

2.5 –Software implementation

The joint use of inverse simulation, scaling laws and
calculation of sizing quantities has been imple-
mented by the authors in a Modelica library for pre-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 170

liminary design of electromechanical actuators. Fig-
ure 1 illustrates the nature of the components that are
frequently used in electromechanical actuation sys-
tems. The assembly of these components can help to
model a large number of architectures. The next part
of the article illustrates their use.

These Modelica blocks or components were coded in
a similar way to that illustrated by the example of the
reducer in Figure 4. The parameters setting interface,
Figure 4 (a), presents parameters to be set by the us-
er. The aim of their minimal number is to facilitate
the manual use, exploration or optimization during
the preliminary design phases. The example of the
reducer requires:

• A reference of an industrial component that is a
feature of a product range or of a technology
which contains in a record all reference
parameters.

• The definition parameters, here the torque and the
gear ratio of the reducer: all the simulation
parameters and the comparison parameters are
calculated from theses quantities and from
parameters of the reference component.

• The service life of the component: the component's
reliability is calculated assuming that the mission
profile of the mission to be simulated is repeated
during the service life.

Figure 4 (b) shows the internal structure of the com-
ponent, which is representative of the notions devel-
oped previously in the article and includes:

1. A physical model, which allows inverse
simulation, making it possible to inversely
determine for each component the effort and
speed of the mission profile. It allows as well
the calculation of the characteristic dynamic
quantities of degradation or of physical
limitations.

2. Scaling laws, which calculate all the parameters
necessary for simulation on the basis of
parameters provided by the user.

3. Validation of the use of the component in the
authorized functioning area. It verifies that the
definition parameters can meet the mission
profile.

4. Calculation of the cumulated damages. It takes
into account the characteristic of fatigue.

5. Reliability calculation for the duration (number
of hours) specified in the user interface. It
allows the user to size the component
accordingly to a given reliability.

6. Calculation of continuous quantities that are
equivalent to the mission profile for a typical
reliability of 90%. It helps the user to specify

the sizing quantities adapted to the mission
profile.

(a)

(b)

(2)

(1)

(3)

(4)

(5)
(6)

Figure 4: Parameters setting interface and inside struc-
ture of a component

3 Preliminary design of an aileron
actuator

3.1 –Case study presentation

For this case study, an electromechanical actuator
equivalent to the current hydraulic one is developed.
In this way, the kinematics of the aileron and its ac-
tuator remains identical (i.e., use of a crank shaft and
pivots and actuator stroke of 4 cm). In the current
configuration, two actuators are connected in parallel
to the load in an active-damping mode, where one
acts on the aileron and the other is damping. Howev-
er, for simplification purposes the de-clutching and
damping aspects are not addressed in this study.

In order to give a frame to the design, the choice
of the reduction ratios of the roller-screw and speed
reducer is driven by an imposed electrical motor
speed. First, the pitch of the roller-screw is mini-
mized (5 mm/rev), thus the mass of the speed reduc-
er is minimized. The observation of manufacturer
catalogues [13] shows that 10 000 rpm corresponds
to the maximum speed of the motors characterized
by the max power required by the application (~110
W). Accordingly, the speed reducer ratio is adjusted

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 171

to match a motor speed of 10 000 rpm, in order to
minimize the motor output torque and thus its mass.
The model of the load used for this study consists of
an equivalent aileron moment of inertia of 1 kgm2,
with a crankshaft of 45 mm. The effort from the an-
tagonist hydraulic actuator is caused by the relatively
low windage friction (about 107 N/(m/s)²) and iner-
tia of the hydraulic cylinder. It does not impact the
power sizing notably and is therefore neglected. In
the same way, the low frictions in the pivots of the
load kinematics are not taken into account. Finally,
the aerodynamic efforts are given along with the
mission profile as a function of time.

On the one hand, the mechanical components are
sized with respect to the maximum effort and speed,
as well as the fatigue cumulated over their specified
lifetime. On the other hand, the motor is sized with
respect to the maximum effort and speed, as well as
thermal constraints (e.g., temperature, RMS torque).
As a consequence, two mission profiles are used for
sizing: One representative of maximum effort and
speed and another representative of the thermal con-
straints. Figure 5 illustrates these two mission pro-
files propagated at the actuator output (pivot between
the actuator and crank shaft) in the force-speed pow-
er plan.

-100 -50 0 50 100
-10

0

10

20

30

40

50

60

70

80

90

100

no
rm

. o
up

ut
 fo

rc
e

(%
)

norm. output speed (%)

Mission profile - Maximum effort and speed Mission profile - Thermal constraint

Figure 5: Mechanical (blue) and thermal (red)
aileron mission profiles at the actuator output.

3.2 –Results

The results obtained by following the sizing method-
ology described previously are collected in the table
of Figure 6. From these results, it is possible to carry
out a mass and integration analysis efficiently. In this
way the total mass of the actuator is the sum of the
component masses returned by the different compo-
nents models. Figure 6 also includes the component
references used by the scaling laws, as well as off-
the-shelf components the closest to the scaled ones.
It appears clearly that despite the references are often
far away from the scaled components (e.g., the
nominal torque of the speed reducer reference is
more than twenty times that of the scaled one) the
scaling laws lead to existing off-the-shelf products
accurately.

The comparison between the scaled and off-the-
shelf actuators illustrates the accuracy of the devel-
oped approach. One can notice that the off-the-shelf
actuator is a little heavier than the scaled one (-23%).
This difference of mass is mainly due to the fact that
when there is no off-the-shelf component matching
exactly the scaled one, then the next bigger compo-
nent is selected. In the same way, the chosen reducer
has a maximum reduction ratio lower than for the
scaled one. As a consequence, the electric motor has
a more important RMS torque and is bigger. From
the dimensions listed, the actuator geometry can be
represented within the wing profile to verify its inte-
grability as shown in Figure 6. The maximum length
of the actuator is given by the distance between the
pivots 1 and 2. Figure 6 shows that mounting all the
components in-line does not allow the actuator to fit
within these two pivots. A solution consists in
mounting the brushless motor and the reducer along-
side the roller screw thanks to spur-gears imple-
mented between the reducer output and the roller-
screw input.

In order to take advantage of the developed actua-
tor model, further design explorations could be car-
ried out : effect of varying the length of the crank
shaft, evaluating the influence of the actuator life-
time, assessing the interest of an active/active con-
figuration to reduce the mission duty ...

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 172

End-bearing

Screw

NutEpicyclic
reducer

Brushless
motor

Wing profile

Pivot 3

Pivot 2
Aileron
profile

Crank shaft

Min position
angle Horizontal

position

Max position
angle

 Brushless motor Speed reducer
(epicyclical)

Roller screw
(stroke = 40 mm)

Reference MAXON EC-60-
167131,

RMS torque = 0.83
Nm.

Diameter = 6 cm,
length = 12.9 cm,
mass = 2.45 kg.

REDEX-ANDANTEX
SRP1,

nominal torque = 370
Nm,

reduction ratio = 7.

Diameter = 17 cm,
length = 18 cm,
mass = 13.8 kg.

SKF TRK 44 (roller-
screw),

SKF BLRU 4 (end-
bearing),

nominal forces = 86.9 kN.

External diameter = 8.6
cm,

total length = 30 cm,
total mass = 11.4 kg.

Scaled RMS torque* = 0.23
Nm.

Diameter = 4 cm,
length = 9 cm,
mass = 0.8 kg.

Nominal torque* = 17
Nm,

reduction ratio = 71.

Diameter = 6.4 cm,
length = 7.8 cm,
mass = 0.8 kg.

Nominal force** = 26
kN,

pitch = 5 mm/rev.

ext diameter = 4.7 cm,
total length = 14.2 cm,

total mass = 1.5 kg.

Actuator
mass

= 3.1 kg.

Off-the-
shelf

MAXON EC-45-
136212,

RMS torque = 0.28
Nm

Diameter = 4.5 cm,
length = 10.1 cm,
mass = 1.1 kg.

NEUGART PLE 60,
nominal torque = 18 Nm,

reduction ratio = 64.

Diameter = 6.3 cm,
length = 11.8 cm,

mass = 1.1 kg.

SKF TRK 21 (roller-
screw),

rated force = 27.85 kN,
pitch = 5 mm/rev.

SKF BLRU 2 (end-
bearing),

rated force = 27.9 kN.

ext diameter = 4.9 cm,
total length = 16.2 cm,

total mass = 1.8 kg.

Actuator
mass

 = 4 kg.

 * sized with respect to the maximum effort to transmit. ** sized with respect to lifetime (fatigue or thermal constraint).

Figure 6: Actuator sizing for a crank shaft length of 45 mm, a component lifetime of 48 000 hours and a
active/damping configuration (baseline).

4 Electrical motor design

4.1 Electrical actuator design

The design of an electrical actuator can be underta-
ken as a step-by-step procedure. It starts with the
application requirements that are determine by the
previous preliminary design. Then the type of the
electrical actuator, that can meet the requirements,
has to be chosen. Knowing the type of actuator, its
sizes must be determined. This can be achieved by
means of a sizing model.

Symbol (Unit) Name of quantities

Tn (N.m) Nominal torque

Ωn (rad.s-1) Nominal speed

Vn (V) Supply voltage rms value

Table I: The main requirements

To illustrate this design procedure, a tool to help en-
gineers to size a permanent magnet brushless dc mo-
tor has been developed. This tool is based on analyti-
cal models of permanent magnet motor as those pro-
posed in [14][15][16][17]. Analysis of these mod-
els show that the sizes of the motor can be obtained

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 173

from only three main requirements among all those
obtained from the preliminary design: the nominal
torque, the nominal speed and the rms value of the
electrical network supplying voltage (Table I). A
man of the art approach is then applied to help the
users to make different choices. The first choices that
the user has to make concern the design choices such
as the motor form factor, which is the ratio of the
bore diameter to its length, or the mean value of the
magnetic field in the gap of the motor (Table II).
Symbol (Unit) Name

λ Form factor: the ratio of the bore
diameter D (m) to the length of the
motor L (m)

AJ (A2.m-3) Product of the electric loading A
to current density J

BA (N.m-2) Airgap shear stress: product of the
airgap flux density B (T) to the
electric loading A

J (A.m-2) Current density

Table II: General design choice

Expert helps are given to users to make these choices
straight forward for him. For instance, if the user
wants a rather long motor, he chooses a form factor
less than one.
Name Typical values

Form factor Long motor (<1), squared motor
(=1), flat motor (>1)

Product AJ Cooled by natural convection about
1010 A2m-3,

Cooled by air forced convection
about 1011 A2m-3

Cooled by liquid forced convection
> 1012 A2m-3

Airgap shear-
stress (Nm-2)

Cooled by natural convection and
totally enclosed motor: 3500 –
7000;

High performance motor magne-
tized by rare earth or NdFeB mag-
nets: 7000 – 21000;

Liquid cooled motor: 70000 –
105000

Current density
(Am-2)

Totally enclosed motor and cooled
by natural convection: < 5 106;

Cooled by air forced convection: 5
- 10 106;

Liquid cooled motor: 10 – 50 106

Table III: Example of extpert help for the design choice

From the torque requirement (Table I) and the choice
of the quantities in Table II, the bore diameter and
the length of the motor can be calculated:

λ

D
L

BA4

λTn
2.D 3 ==

π
 (5)

Six other choices must be made by the users.
Among them are the choices of the permanent mag-
net and of the magnetic material [18] [19]. The
choice of magnetic material for instance is deter-
mined by the desired mean values of the magnetic
flux density in the magnetic circuit of the motor: the
teeth and the yokes of the motor[15][16].
This man of the art approach is done in Modelica by
the use of Blocks, modeling the different choices of
the users, and connected to each other. In each
Block, the equation section allows by reversing the
direct analytical sizing model to determine the ap-
propriate geometrical parameter of the motor. For
instance, the expression of the torque in the direct
model is reverse in the ‘Block Design_Choice’ to
compute the diameter bore and the length of the mo-
tor (5). So, these Blocks, modeling the requirements
and the choices made by the user, determine the
geometrical, physical and structural parameters of
the motor. The table IV gives the list of the parame-
ters that can be computed at this stage:
Symbol (Unit) Names of the calculated

quantities

D (m) Bore diameter

L(m) Stack length

Egap (m) Airgap thickness

Eai (m) Magnet thickness

Ecs (m) Stator yoke thickness

Ecr (m) Rotor yoke thickness

Ns Turn number of each phase

Ws (m) Slot with

Ds (m) Slot depth

Nenc Number of slots

Table IV: The main quantities calculated

In a second part, these blocks are connected to two
more Blocks. The first calculates the masses, the vo-
lumes and the inertia of the rotor and the second the
different losses in the motor such as the winding
losses [18] [16].

4.2 Electrical actuator model library

In a last Block the electrical parameters of the motor
such as the no-load flux, the cyclic inductance and
the resistance of each phase. This ‘Block Electric-
al_Parameters' can be connected to a Modelica user
model that simulates the dynamic behavior of the
motor. In order to help the user to make this kind of
Modelica model a library based on lumped parame-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 174

ters model of electrical motors has been developed
[20]. In this model the motor can have non-
sinusoidal wave forms. With this library a user can
simulate a variable speed motor fed by a PWM con-
trolled voltage. Examples of simulation results are
shown on figure 6 and figure 7. These results are
obtained from a Modelica program that runs in an
AMESIM environment.

Figure 7: Simulation of trapezoidal speed cycle operation
of a motor under design: reference speed and rotor speed

Figure 8: Simulation of trapezoidal speed cycle operation
of a motor under design: reference current and current in a
phase of the motor.

5 Detailed design of an aileron brush-
less motor

In this last section, the detailed sizing of a permanent
magnet that meets of the requirements of the scaled
motor presented in figure 6 is undertaken. The re-
quirements of the projected motor are the following:
nominal torque (Tn=0.23 N.m), nominal speed
(Nn=10000 rev/mn), DC supply (U=48 V). The so-
lution is inspired by the Maxon motor (EC45-136-
212). The following general design choices have

been made: product AJ of 2.1011 A2m-3, form factor l
of : 0.4;

The chosen AJ product is very high. This value has
been determined after many tries with the step by
step procedure described in section 4. We are trying
to find a set of dimensions that suits the structure of
a slotless motor as suggested by the Maxon motor
solution (Figure 6). This AJ product has been chosen
with a very low airgap flux density (0.1 T) in order
to be able to put the winding between the stator yoke
and the magnet. Besides these choice, a shear stress
of one thousand N.m-2 is adopted which is very low
according to the experts typical value of Table III.
Again these values are obtained after running many
times our sizing procedure. With the sizing proce-
dure proposed, we find a motor whose main parame-
ters are reported on table V.

Value of some
chosen and
calculated pa-
rameters

Name Status (chosen or
calculated)

p=1 Number of pole
pairs

chosen

q=3 Number of
phases

chosen

β =0.667 Rate of pole arc chosen

D = 0.019 m Bore diameter calculated

L = 0.097 m Stack length calculated

g =0.97 mm Airgap length calculated

Ns = 38 Number of turns calculated

I = 6. 49 A Current calculated

D2 = 0.045 m Diameter calculated

Pj = 71 W Joule loss calculated

RLL = 1.68 W Resistance phase
to phase

calculated

LLL = 0.131 H Inductance phase
to phase

calculated

η = 0.77 Efficiency calculated

M = 0.41 kg Mass of active
materials (iron,
magnet, copper)

calculated

Table V: Main parameters of the sized motor

The main drawback of this motor is that the stack
length is already greater than the required length on
figure 6. The mass is half of the required mass, but it
includes only active materials. The resistance is very
high and the efficiency is relatively low. Except the
length, all the parameters fit the requirement and are
in accordance of the motor proposed by Maxon.

Table V shows that the scaled motor defined in Fig-
ure 6 can be found. This last section show what can

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 175

be obtained from the detailed sizing procedure. One
of the use of this procedure is the training of future
motor designers. Such a procedure will give them the
‘physical sense’ that helps to design a motor.

6 Conclusions

The approach presented in this paper aims at improv-
ing the preliminary design and detailed design on the
basis of an efficient sizing and rapid virtual prototyp-
ing.

For the preliminary sizing the keystone of this pro-
posed approach is a uniform modelling of the com-
ponents based on scaling laws that allows having a
limited number of input parameters. Using scaling
laws developed from the main physical constraints of
the components makes the sizing representative of
the state-of-the-art of technology. Moreover, it does
not require a database or a large amount of data that
are cumbersome to build and to maintain, but single
component references only. The example has shown
how the use of the developed library allows a fast
modelling which can be useful for an exploration of
different design configurations (active/damping, ac-
tive/active) and design parameters (crank shaft
length and lifetime) and thus supports well taking
technical decisions early in the preliminary design by
providing a rich insight into the design problematic
in an efficient way.

For the detailed design of brushless motors, the man
of the art approach presented in this paper to design
an electromechanical actuator can be very useful to
design quickly a motor ‘by hand’. The user controls
at each step the effect of his choices on the perfor-
mances of the motor. The example treated shows that
it can be used to find non obvious solution with the
help of a preliminary design method based of scaled
laws. The results of this preliminary design forced to
attempt non obvious choices different from those
given by experts guide.

References

[1] T. Ford, “More-electric aircraft,” Emerald, vol.
77, 2005.

[2] F. Roos, “Towards a methodology for inte-grated
design of mechatronic servo systems,” Text, KTH, Ma-
chine Design, 2007.

[3] Linear Motioneering, Danaher Motion, .

[4] ServoSoft, ControlEng, .

[5] Cymex - Alpha, WITTENSTEIN formerly alpha
gear drives, .

[6] Jardin, Audrey, Marquis-Favre, Wilfrid,
Thomasset, Daniel, Guillemard, Franck, et Lorenz, Fran-
cis, “ Study of a Sizing Methodology and a Modelica
Code Generator for the Bond Graph Tool MS1,” Univer-
sity of Applied Sciences, Bielefeld, Germany: 2008, pp.
125-134.

[7] P. Fritzson et V. Engelson, “Modelica — A uni-
fied object-oriented language for system model-ing and
simulation,” ECOOP’98 — Object-Oriented Program-
ming, 1998, pp. 67-90.

[8] H. Elmqvist, D. Ab, S.E. Mattsson, et M. Ot-ter,
“Modelica: The new object-oriented modeling language,”
presented at The 12th European Simu-lation Multiconfer-
ence,” In Proceedings of The 12th European Simulation
Multiconference, 1998, pp. 127--131.

[9] P. Minotti et A. Ferreira, Les micromachines ,
Paris: Hermès, 1998.

[10] G. Spinnler, Conception des machines : principes
et applications. 3, Dimensionnement , Lausanne: Presses
polytechniques et universitaires romandes, Paris, 2005.

[11] B. Multon, H. Ben Ahmed, M. Ruellan, et G.
Robin, “Comparaison du couple massique de di-verses
architectures de machines tournantes syn-chrones à ai-
mants,” Société de l'Electricité, de l'Electronique et des
Technologies de l'Information et de la Communication
(SEE), Paris, FRANCE (1995) (Revue), 2006, pp. 85-93.

[12] M. Jufer, Traite d'électricité vol9 :transducteurs,
Presses Polytechniques et Universi-taires Romandes
(PPUR), 1998.

[13] "Brushless DC Motors," On line ed, Maxon, Ed.,
2009, http://www.maxonmotor.com/.

[14] Gordon R. Slemon and Xian Liu, “Modeling and
Design Optimization of Permanent Magnet Motors”, Elec-
tric Machines and Power Systems, 20:71-92, 1992.

 [15] J. R. Hendershot Jr and T. J. E. Miller, “De-sign
of Brushless Permanent Magnet Motors”, Monographs in
Electrical Engineering No. 37, Magma Physics Publishing
and Clarendon Press, Oxford, 1994.

[16] Jacek F. Gieras and Mitchell Wing, “Permanent
Magnet Motor Technology, Design and Applications”,
Second Edition, Revised and Expanded, Marcel Dekker
Inc., 2002.

[17] E. Fitan, F. Messine, and B. Nogarede, “A gen-
eral analytical model of electrical permanent magnet ma-
chine dedicated to optimal design”, COMPEL, 22(4)
:1037–1050, 2003.

[18] Gordon R. Slemon and Xian Liu, “Core Losses In
Permanent Magnet Motors”, IEEE Transaction on Mag-
netics, vol. 26, No. 5, 1653-1655, September 1990.

[19] T. J. E. Miller, “Brushless Permanent-Magnet and
Reluctance Motor Drives”, Monographs in Electrical En-
gineering No. 21, Clarendon Press, Oxford, 1989.

[20] T. Sebastian and G. R. Slemon. Transient modelling
and performance of variable speed permanent magnet mo-
tors, IEEE Transaction on Magnetics, IA-25(1) :101–107,
1989.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 176

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 177

HIL Simulation of Aircraft
Thrust Reverser Hydraulic System in Modelica

Zhao Jianjun1 Li Ziqiang1 Ding Jianwan1 Chen Liping1 Wang Qifu1
Lu Qing2 WangHongxin2 Wu Shuang2

1: CAD Centre, Mechanical School, Huazhong Univ. Sci.& Tech. Wuhan, Hubei, China, 430074
2: Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corp. of China Ltd.,

Shanghai, 200436
{jjzhao168, willhave, jwdingwh, chenliping.ty}@gmail.com wangqf@hust.edu.cn

lq70300@126.com whongxin@sina.com wushuanga@sohu.com

Abstract

This article describes a solution to create a hardware-
in-the-loop (HIL) simulation system of civil aircraft
thrust reverser with Modelica-based simulation plat-
form -- MWorks in Windows system. The HIL sys-
tem uses simulation platform “MWorks” to model
and simulate the thrust reverser hydraulic system,
and takes hardware -- PLC’s output signals as the
inputs of the simulation. Modeling module, commu-
nication module, solving module, animation module
and HIL control module are included in the simula-
tion platform, whose key technology and implemen-
tation details are specified. The HIL system has been
successfully applied to the simulation of ARJ21 air-
craft thrust reverser hydraulic system. It can simulate
the hydraulic system in normal status, fault status as
well as other working conditions to verify control
logic and evaluate key performance of the system,
thereby helping to reduce the cost of experiments
and to optimize the design of the system.
Keywords: Aircraft thrust reverser hydraulic system,
real-time simulation, HIL, Modelica

1 Introduction

Thrust reverser [1] as a part of aircraft engine, is air-
craft landing deceleration device, which can effec-
tively shorten the distance of taxiing. Thrust reverser
is a typical complex physical system, involving me-
chanical, electronic, hydraulic, control and other
domains. In order to verify thrust reverser’s control
logic, we could carry out ground experiment and
flight experiment with real pieces of the thrust re-
verser, but this approach has high cost and poor se-
curity, and it is limited to different natural conditions.
Moreover, with this approach, the test for extreme
condition is very difficult.

Modelica-based HIL simulation system can resolve
above-mentioned problems. Firstly, Modelica [2, 3]
is a freely available, object-oriented language for
modeling of large, complex, and heterogeneous
physical systems. It is suited for multi-domain mod-
eling. Models in Modelica are mathematically de-
scribed by differential, algebraic and discrete equa-
tions. In Modelica we can model the entire thrust
reverser, which involves mechanical, electronic, hy-
draulic and control domains. Secondly, HIL system
uses both real logic control components and thrust
reverser model to implement the simulation. This
HIL system can verify the control logic in a variety
of working conditions, and its cost is very low.
Moreover, with this system, there is no need to con-
sider the security.

This article introduces a solution to create an HIL
simulation system of thrust reverser with Modelica-
based simulation platform – MWorks [4] in common
computer with Windows operating system. It use as
an example the aircraft thrust reverser of Advanced
Regional Jet for the 21st Century (ARJ21) which is
designed and manufactured by Commercial Aircraft
Corp. of China, Ltd. (COMAC). At first, it intro-
duces the overall frame of the HIL simulation system,
and then specifies several key modules of the simula-
tion platform, which are modules of modeling, solv-
ing, communication, animation and HIL control, and
finally demonstrates a successful application of this
system in ARJ21 thrust reverser simulation.

2 System Overview

Generally, HIL simulation system is composed of
host PC running on Windows operating system and
target machine running on real-time operating sys-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 178 DOI: 10.3384/ecp09430040

tem. This kind of system has high real-time capabil-
ity, but is very expensive.

ARJ21 aircraft thrust reverser is driven by a hydrau-
lic system, which is mainly controlled by six elec-
tromagnetic hydraulic valves, whose states all de-
pend on the thrust reverser control switch. In the si-
mulation, PLC as the thrust reverser controller gen-
erates 6 hydraulic valve control signals according to
the state of the thrust reverser control switch and
feedback signal from simulation platform. And the
feedback signal will be only used for fault trigger.
Therefore，the simulation does not need very high
real-time capability.

The HIL simulation system, discussed in this article,
does not need expensive "true" real-time system. It
can run on general computer with Windows operat-
ing system and the sampling frequency can achieve
50Hz, which is enough for the requirements of the
thrust reverser simulation.

In Figure 1 the system overview is shown. The HIL
simulation system is implemented based on PLC and
simulation platform “MWorks”, which consists of
five software modules -- modeling module, solving
module, communication module, animation module
and HIL control module.

Figure 1: System overview

The PLC, used as the hardware part in the HIL sys-
tem, receives electrical signal of control switch as
well as simulation feedback signal, and sends control
signal to the simulation platform after logic opera-
tion.

MWorks, a Modelica-based integrated development
environment, is used as modeling and simulation
platform for the HIL simulation system. The thrust
reverser is the simulated object, which is modeled in
Modelica. According to the model, the solving mod-
ule generates the solver, which is responsible for
real-time calculation. The communication module is
responsible for real-time data exchange between si-
mulation platform and the PLC. The animation mod-
ule receives the result data from the solving module
and drives 3D animation. The HIL control module,
whose panel is shown in Figure 2, is responsible for
starting and terminating the simulation, setting simu-
lation parameters, displaying key data as well as
communicating with other modules.

Figure 2: HIL Simulation System

The simulation process is as follows:

1) After analyzing the thrust reverser system, com-

ponent models and system models are created in
Modelica.

2) After setting simulation parameters with the panel

of the HIL control module, the simulation begins:
the HIL control module translates the model, and
then the solving module generates a solver, which
will be called in a new process.

3) The communication module is called by the HIL

control module to receive control signals from
PLC. After translating, these signals will be dis-
played on the panel, and sent to the solver process.

4) The solver process receives control signal and

calculates in every cycle. When the calculation
finishes, the solver sends the results to the HIL
control module, and wait until the next cycle.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 179

5) The HIL control module receives the results from
the solver process and displays them on the panel
of the HIL control module, and delivers them to
the animation module to drive real-time anima-
tion. At the same time, the HIL control module
calls the communication module to send the re-
sults as feedback signal to PLC.

6) PLC uses the feedback signals and the state of

control switch as input, and after logic operation,
sends the control signal to the simulation platform.

7) Repeat the cycle from Step 3 until the termination

of the simulation.

3 Key Technologies

3.1 Modeling

After analyzing ARJ21 aircraft thrust reverser hy-
draulic systems, we developed an exclusive hydrau-
lic library: Hydrau_Comac, which is based on Hy-
LibLight hydraulic library. Hydrau_Comac library
provides ARJ21 thrust reverser hydraulic compo-
nents and auxiliary library, such as Isolation Control
Valve (ICV), Cowl Lock (CL), Directional Control
Valve (DCV), hydraulic actuator, pipe, loads，and
characteristics of fluid. These models are constructed
according to their physical equations with their pa-
rameters calibrated by test results if necessary. To
satisfy the requirements of the real-time capability,
Hydrau_Comac library also provides simplified real-
time component models. The structure of Hy-
drau_Comac library is shown in Figure 3.

Figure 3: Structure of Hydrau_Comac library

Based on HyLibLight library and Hydrau_Comac
library, we modeled ARJ21 thrust reverser hydraulic
system, provided simplified system model (Figure 4)
for real-time HIL simulation, as well as detailed sys-
tem model (Figure 5) for off-line simulation.

Figure 4: Real-Time System Model for Thrust Re-

verser

Figure 5: Off-line System Model with Pipes

3.2 Solving

Model solving in HIL simulation is different from in
off-line simulation. The solving in HIL simulation
needs to not only exchange data with external hard-
ware, but also guarantee the synchronicity between
physical time in real world and logic time in simula-
tion.

In order to identify input and output data, we used
“input” prefix and “output” prefix to modify input
variables and output variables, thus we can ensure
the order of the calculation -- from the input vari-
ables to output variables. Besides, according to
Modelica specification, input variables and output
variables are not only used for external communica-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 180

tion, therefore external exchange data needs to be
recorded in configuration file.

According to the records in configuration file, the
solving module associates input/output variables
with shared memory. The solver module reads input
data from shared memory, and writes output data
into there. The HIL control module writes input data
coming from PLC into sharing memory, and reads
output data from there.

The flow chart of real-time solving is shown in fig-
ure 6. In every sampling cycle, the solving module
gets the input variables from sharing memory, and
checks if their value changes, if changes, it means
that there is changes in the outside world, which re-
sults in an event, so that the solving module need to
do event iteration. Then the solving module calcu-
lates, and writes required output data into shared
memory.

Figure 6: Flow Chart of Real-time Solving

We use timer to implement the synchronicity. By
calling QueryPerformanceFrequency() function, we
can obtain machine internal timer’s clock frequency,
and by calling QueryPerformanceCounter() function
at two time points, we can get a count. With the fre-
quency and the count, we can know the precise time
between that two time points. With this method, we
can know the time spent in one cycle, and the time is
called physical cycle time, which is a variable. The
next cycle begins when the physical cycle time is
longer than sampling period. The timing error of this
method is less than 1ms.

In every cycle, the solving module checks whether
the time spent on calculating is longer than the sam-
pling period. If the calculation overruns the sampling
period, but not more than the acceptable time, the
module will report a warning. And if the calculation
overruns the acceptable time, the module will report
an error and quit. Therefore, in order to achieve high
real-time capability, the simulation system needs to
run on high-performance computer to ensure the
speed of solving.

3.3 Communication

In HIL simulation, how to communicate between
simulation platform and PLC and how to guarantee
the precise communication frequency are key factor
to real-time capability.

By using the communication module, simulation
platform communicates with PLC through RS232
serial port . Communication parameters are as fol-
lows: 57.6kbps transmission rate, 8-bit data bit, 1-bit
stop bit, no parity, and fixed word length data frame.
The data transmitted from simulation platform to
PLC will be converted to standard data frame ac-
cording to the protocol. After receiving, the PLC will
translate those data frames to retrieve the content.

The communication module calls Windows API
function to carry out serial port communication: call-
ing CreateFile() function to open the serial port, Wri-
teFile() function to write data to the serial port,
ReadFile() function to read data from serial port.

PLC uses high-speed serial port communication
module CP341 to implement communication. FB7
function block of CP341 are responsible for receiv-
ing data from simulation platform, and FB8 function
block of CP341 are responsible for sending data to
simulation platform.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 181

By using timer, the frequency of serial port commu-
nication can be controlled. Serial port communica-
tion frequency is the same as the sampling frequency.
PLC uses its internal timer, whose minimum timing
interval can be 10ms. Since the PLC is circuit work-
ing, so the precision of timing depends on the opera-
tional cycle of PLC control program. Under normal
circumstances, the operational cycle of PLC control
program can be less than 1ms, and the precision can
achieve 1ms. The communication module, based on
Windows operating system, uses multimedia timer
“timeSetEvent()” for timing control, and implements
serial port reading and writing operation in callback
function, the precision can also achieve 1ms.

3.4 Animation

Generally, the implementation of Modelica multi-
body animation has 3 steps: firstly, the solver calcu-
lates the model to generate result data, which then
will be used to form animation data; secondly, geo-
metric models are created; thirdly, the geometric
models are driven by the animation data and dis-
played on the screen.

For the real-time simulation, we need to fresh the
animation data in every cycle, but it takes so long to
fresh the data that the animation cannot satisfy real-
time requirements. Fortunately, the thrust reverser
has only one motion freedom, that is, the actuation
can move back and forth. Therefore, we can create
off-line animation at first, and then use the variable
of actuator deployed length to control the display of
that off-line animation, thus the synchronicity of the
animation can be guaranteed.

Specific process is as follows: Firstly, establish the
multi-body kinematic model of the thrust reverser,
and execute off-line simulation to generate simula-
tion results document; secondly, read the simulation
results document to create 3D animation; thirdly,
establish one to one mapping relationship between
the variable of actuator deployed length and the off-
line animation frames; finally, carry out the real-time
simulation, obtain the value of that variable, and use
it to drive the animation.

4 Application

This HIL simulation system has been successfully
applied to the simulation of ARJ21 aircraft thrust
reverser hydraulic system. The simulation platform
UI is shown in Figure 7.

Logic control hardware part is implemented with
Siemens S7-300 series PLC, which includes power
supply module, CPU module, discrete input module,
discrete output module, analog input module, analog
output module, serial port communication module
and touch panel. PLC control program is developed
with STEP7, and touch screen interface (Figure 7) is
developed with Flexcible2005. PLC takes the thrust
reverser control switch or the data from the touch
screen as input signal, after some logic operation, it
sends the output data as control signal to simulation
platform.

Figure 7: Touch Panel of PLC

MWorks runs on general computer with Windows
operating system. our computer with simulation plat-
form MWorks is a Dell desktop with Intel Core2
2.8G CPU, 2G RAM, ATI 3450HD graphics card
and 19-inch liquid crystal display. In this configura-
tion, the real-time simulation cycle of ARJ21 thrust
reverser hydraulic system can achieve 20ms.

The result data and curves generated by this HIL si-
mulation system are basically in agreement with the
tests, the difference is acceptable. (Table 1, Figure 8,
Figure 9).

Table 1: Deploying Time and Stowing Time of Ac-

tuator

 Deploying
Time (s)

Stowing
Time(s)

Experiment 1.08 2.68
Simulation 1.04 2.66

Error 3.7% 0.7%

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 182

Figure 8: Experimental Curves of Pressure of The

Actuator

Figure 9: Simulation Curves of Pressure of The Ac-

tuator

This HIL simulation system has simple structure and
low cost. Through the simulation of ARJ21 aircraft
thrust reverser hydraulic system, we can verify the
control logic in various working conditions, evaluate
key performance of the system, so that the number
and cost of the tests can be reduced, and the optimi-
zation of the design of ARJ21 aircraft hydraulic sys-
tem and tests can be provided with basis.

5 Conclusions

This article demonstrates a Modelica-based HIL si-
mulation solution exclusively developed for aircraft
thrust reverser hydraulic system. The HIL simulation
system, running on general computer with Windows
operating system, communicates with external hard-
ware through serial port. The cost of this HIL simu-
lation system is very low, and its sampling period
can be up to 20ms, so it’s especially useful for those
situations where very high real-time capability is not
required.

The prototype application of the simulation of
ARJ21 thrust reverser shows that this HIL simulation
system, which uses Modelica language to model air-
craft thrust reverser hydraulic system and connects

with PLC control system, can greatly increase the
efficiency of tests, and reduce the number and the
cost of tests.

The future work is to enhance the real-time capabil-
ity of the simulation with general Windows com-
puter, as well as to use MWorks to generate target
code, which can be used in real-time system.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (Grant No.60704019
and Grant No.60874064).

Special thanks to Medelon Corporation for author-
ized use of HyLibLight library.

Acronyms

ARJ21: Advanced Regional Jet for the 21st Century
COMAC: Commercial Aircraft Corp. of China, Ltd.
CL: Cowl Lock
ICV: Isolation Control Valve
DCV: Directional Control Valve
PLC: Programmable Logic Controller
HIL: Hardware-in-the-Loop

References

[1] Robert A Jones, Thrust reverser. US4373328,
1983,2.

[2] Peter Fritzson, Engelson Vadim. Modelica a
unified object oriented language for system
modeling and simulation[A]. Proceedings of
the 12th European Conference on Object ori-
ented Programming[C]. 1998, 67 - 90.

[3] Peter Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Piscataway, NJ: IEEE Press, 2004.

[4] FAN-LI Zhou, LI-PING Chen, YI-ZHONG
Wu, JIAN-WAN Ding, JIAN-JUN Zhao,
YUN-QING Zhang, MWorks: a Modern IDE
for Modeling and Simulation of Multi-
domain Physical Systems Based on Modelica,
Proceedings of the 5th International Mode-
lica Conference, Volume 2, 725-732, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 183

An OpenModelica Java External Function Interface
Supporting MetaProgramming

Martin Sjölund, Peter Fritzson
PELAB Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{marsj, petfr}@ida.liu.se

Abstract

A complete Java interface to OpenModelica has been
created, supporting both standard Modelica and the
metamodeling extensions in MetaModelica. It is bidi-
rectional, and capable of passing both standard Mod-
elica data types, as well as abstract syntax trees and
list structures to and from Java and process them in
either Java or the OpenModelica Compiler. It cur-
rently uses the existing CORBA interface as well as
JNI for standard Modelica. It is also capable of au-
tomatically generating the Java classes correspond-
ing to MetaModelica code. This interface opens up
increased possibilities for tool integration between
OpenModelica and Java-based tools, since for exam-
ple models or model fragments can be extracted from
OpenModelica, processed in a Java tool, and put back
into the main model representation in OpenModelica.

Keywords: Java, OpenModelica, MetaModelica,
external function, abstract syntax

1 Introduction

The main goal of this work is to create a Java inter-
face that can be used to call Modelica functions and
evaluate Modelica expressions as described in [4] and
[2]. More importantly, it should be possible to use the
interface to analyze the abstract syntax tree of Open-
Modelica from a Java application and create a Java
mapping of the code loaded in OpenModelica. To
make this possible, the OpenModelica compiler is cur-
rently being extended to support uniontypes needed
for abstract syntax tree representation. At the time
of this writing, most aspects of the OpenModelica ab-
stract syntax tree support are operational. An addi-
tional goal is calling Java methods as external Model-
ica functions, analogous to external C Modelica func-
tions. An external Java interface has not previously
been available for OpenModelica. Compared to previ-

ous work in Modelica-Java interfaces [6] [5], based on
Dymola, this interface also supports the MetaModelica
[3] extensions, giving increased possibilities for model
manipulation and tool integration.

2 Motivation

External Java functions can be used either as regu-
lar Modelica functions, calculating values for models.
They could also be used for displaying graphs when
simulating models. External Java functions could also
be used for MetaProgramming (using MetaModelica
types). The external Java interface could be used in-
ternally in the OpenModelica Compiler to write func-
tions that can walk any given AST (e.g. to create a
String representation of any uniontype tree). It is
also possible to use the AST together with tools like
StringTemplate[9] to transform the AST to e.g. C code
or XML. External functions could also perform opera-
tions on the AST that are slow in MetaModelica (such
as appending to a list or modifying elements without
copying parts of the list). However, do note that con-
verting an AST to Java and back is a costly operation
and that using external C functions or using a better
algorithm might be preferred in this case. An advan-
tage compared to external C MetaModelica functions
is that the Java functions are less prone to changes due
to changes in Modelica code. If the order of records in
a uniontype changes, the constants used to create the
uniontype record also changes. OMC does not pro-
duce header files containing these constants. External
C functions need these constants, while Java functions
do not. It is also easier to access the data that Meta-
Modelica structures contain using external Java func-
tions than external C functions because standard Java
classes are used as opposed to data pointers.

For communication from Java to OpenModelica, the
scenarios are different. Either you have some Meta-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 184 DOI: 10.3384/ecp09430121

Modelica code that does a transformation, but you
have the data accessible in Java and you want to ma-
nipulate the result in Java. The interface allows you
to either construct the corresponding Modelica data
structure using Java classes, or to simply send a String.
In both cases you receive a Java class corresponding to
the Modelica data. The Java interface is also an Inter-
active Modelica session. This means you can do more
manipulations and even call the OpenModelica API.
As such you can access the Absyn AST for the cur-
rently loaded Modelica files, and manipulate them in
Java. The existing API sends strings back and forth.
With new API calls, it would be possible to send the
actual AST and access it as an AST in the Java-based
code.

By analyzing the code loaded in OpenModelica
and creating a Java mapping of the loaded datatypes,
you bring the programmer of a Java-based Mod-
elica tool the ability to do some more extensive
type checking in Java code. Instead of accessing
fields by string and explicit type casting, (Modelica-
Integer)record.get("fieldA")), it is possible to
use record.get_fieldA() instead.

3 Mapping of Datatypes

In order to introduce some compatibility between the
Dymola and OpenModelica implementations of exter-
nal Java functions, it makes sense to declare them in
the same way (’Package.Class.StaticMethod’).
The mappings between datatypes will not be the same
because we’ll use the same mapping when Java is the
calling language as opposed to the Dymola version.
By doing it this way you get a consistent interface that

Table 1: OMC Mapping of Java Datatypes

Modelica External Java
Real ModelicaReal
Integer ModelicaInteger
Boolean ModelicaBoolean
String ModelicaString
Record ModelicaRecord
Uniontype IModelicaRecord
List<T> ModelicaArray<T>
Tuple<T1,T2> ModelicaTuple
Option<T> ModelicaOption<T>
T[:] ModelicaArray<T>

can also be naturally extended for MetaModelica types

(ModelicaTuple, ModelicaOption). Because the
full MetaModelica mapping (Table 1) uses Modelica-
specific classes for all datatypes, it can’t be used to
call e.g. the Java method Integer.parseInt since it
uses Java String and int. By annotating your ex-
ternal Java function declaration using annotation(
JavaMapping = "simple"), an alternative mapping
(Table 2) will be used. This mapping only supports the

Table 2: OMC Simple Mapping of Java Datatypes

Modelica External Java
Real double
Integer int
Boolean bool
String String

most basic Modelica types and only one output value,
but it can be used to call standard Java functions. This
is a subset of the functionality that Dymola has, which
also supports arrays, records and output variables that
are not the return value of an external function call.

If the ModelicaRecord datatype is represented by
a java.util.Map from String to ModelicaObject,
it follows that it can contain any datatype we use in
OMC1. By using a LinkedHashMap the field keys are
in the same order as they are in Modelica2. One ad-
vantage of this solution is that the Java mapping of a
record does not depend on creating a Java class be-
fore the program is executed. The disadvantage is that
you need to check that you received the correct record
type, and then get the fields using the method Model-
icaObject get(String key). This is equivalent to
performing type checking during runtime. For those
who want functions to perform said typecasting, see
Section 5.3 for a method that creates Java class defini-
tions from Modelica code.

4 Calling Java External Functions
from Modelica

When using external C functions, OMC translates a
Modelica file (Listing 1) to a C file (Listing 2). First of
all, OpenModelica copies all input variables before the
external call is made since arrays (as well as variables

1The interface ModelicaObject includes MetaModelica con-
structs. Naming it (Meta)ModelicaObject would be more appro-
priate, but it isn’t a valid identifier in Java.

2The Modelica standard enforces a strict field ordering because
it is relevant for example in external C functions.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 185

for Fortran functions) are passed by reference. Then
the external call is performed and the output is copied
into the return struct (since Modelica supports mul-
tiple output values).

Listing 1: exampleC.mo
f u n c t i o n logC

input Real x ;
output Real y ;

e x t e r n a l "C" y = l o g (x) ;
end logC ;

Listing 2: logC.c
l o g C _ r e t t y p e _logC (m o d e l i c a _ r e a l x)
{

l o g C _ r e t t y p e o u t ;
double x _ e x t ;
double y _ e x t ;
x _ e x t = (double) x ;
y _ e x t = l o g (x _ e x t) ;
o u t . t a r g 1 = (m o d e l i c a _ r e a l) y _ e x t ;
re turn o u t ;

}

When using external Java functions, OMC should
generate a C file that is similar to the ones generated by
external C functions. External Java calls translated the
variables to Java objects, and fetch the correct method
from the JVM through the Java Native Interface (JNI).
The flow of data in Figure 2 is explained in detail be-
low. Before the call, each argument is translated to
a JNI jobject (i.e. a C pointer to a Java class) and
then after copying the result back to the respective C
variable. This ensures that the code works in the same
way as external C (and thus the “correct” Modelica be-
haviour). Compare the C file for external C (Listing 2)
to the one for external Java (Listing 4, generated by the
Modelica code in Listing 3). The Java code is essen-
tially the same with the difference being that instead
of one line of code for an external call, it is 17 lines of
code to set up the Java call properly.

Listing 3: exampleJava.mo
f u n c t i o n l o g J a v a

input Real x ;
output Real y ;

e x t e r n a l " Java "
y = ’ j a v a . l a n g . M a t h . l o g ’ (x)
a n n o t a t i o n (

JavaMapping=" s i m p l e "
) ;

end l o g J a v a ;

Listing 4: logJava.c
l o g J a v a _ r e t t y p e _ l o g J a v a (m o d e l i c a _ r e a l

x)

{
l o g J a v a _ r e t t y p e o u t ;
double x _ e x t ;
double y _ e x t ;
JNIEnv∗ __env = NULL;
j c l a s s _ _ c l s = NULL;
jmethodID __mid = NULL;
j d o u b l e x _ e x t _ j a v a ;
j d o u b l e y _ e x t _ j a v a ;
x _ e x t = (double) x ;
__env = g e t J a v a E n v () ;
x _ e x t _ j a v a = x _ e x t ;
_ _ c l s = (∗ __env)−>F i n d C l a s s (__env , "

j a v a / l a n g / Math ") ;
CHECK_FOR_JAVA_EXCEPTION(__env) ;
__mid = (∗ __env)−>G e t S t a t i c M e t h o d I D (

__env , _ _ c l s , " l o g " , " (D)D") ;
CHECK_FOR_JAVA_EXCEPTION(__env) ;
y _ e x t _ j a v a = (∗ __env)−>

C a l l S t a t i c D o u b l e M e t h o d (__env ,
_ _ c l s , __mid , x _ e x t _ j a v a) ;

CHECK_FOR_JAVA_EXCEPTION(__env) ;
y _ e x t = y _ e x t _ j a v a ;
(∗ __env)−>D e l e t e L o c a l R e f (__env , _ _ c l s

) ;
o u t . t a r g 1 = (m o d e l i c a _ r e a l) y _ e x t ;
re turn o u t ;

}

5 Calling Modelica Functions from
Java

OpenModelica communicates with other tools through
sockets or CORBA using its Interactive module. The
Java interface can do the same, just as the Eclipse plu-
gin (MDT) does. Figure 1 shows the existing Java-
OpenModelica communication using CORBA. The
OMCProxy class does not only communicate with
OMC using CORBA. It also starts OMC in server
mode if it can’t find a server to communicate with.

Figure 1: CORBA Communication

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 186

Figure 2: External Java Call (Data Flow)

Figure 3: Interactive Java Session (data flow)

The marked nodes in Figure 3 are what have been
added on top of OMCProxy. SmartProxy only glues
OMCProxy and OMCorbaParser together, so the user
doesn’t need to be aware that those classes exist.
The CORBA interface is an untyped string-to-string
function which means you can send {1,2.0,3} even
though the Modelica standard disallows mixed types
in arrays [4] [7].

Listing 5 contains an example of an interactive
OpenModelica session. The user tells OMC to add a
record definition to the AST, and then calls the record
constructor. The result is a record.

Listing 5: Interactive OMC Session

>> r e c o r d ABC I n t e g e r a ; I n t e g e r b ;
I n t e g e r c ; end ABC;

{ABC}
>> ABC(1 , 2 , 3)
r e c o r d ABC

a = 1 ,
b = 2 ,
c = 3

end ABC;

5.1 Mapping Textual Representations of
MetaModelica Constructs to Java

All Modelica objects implement the dummy Java in-
terface ModelicaObject, which helps tagging any
Modelica data. Table 1 contained the mappings from
Modelica types to Java types. The problem with
the CORBA interface is that the textual representa-
tions are ambiguous. {1,2,3} can represent either
a MetaModelica list or a Modelica array. (1,2,3)
can represent either a MetaModelica tuple or multi-
ple function output values. This implementation will
treat both cases in the same way. {1,2,3} is rep-
resented by ModelicaArray while (1,2,3) is rep-
resented by ModelicaTuple. Both of these classes
extend java.util.Vector (which supports both ran-
dom access and implements the List interface).

5.2 Parsing CORBA Output

In order to create a reasonably efficient and maintain-
able parser ANTLRv3 [8] is used to parse the results
from the Interactive interface. ANTLRv2 has been
used in other parts of OpenModelica with good results,
so the choice of parser was quite easy.

What you end up with at this point is an interface
that can call Modelica functions, pass Modelica struc-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 187

tures and cast the results to the expected type.
This parser translates strings parsed over the Open-

Modelica interactive interface to the basic Java classes.
For example, records are translated to a “generic”
record that uses the map interface instead of access-
ing fields more or less directly). This means you have
to write wrapper classes if you want to access these
fields without typing lots of code.

When sending an expression from Java to Open-
Modelica you get back a Java ModelicaObject. But
if you already know the return type, you don’t want to
create a lot of code just to cast that object to the ex-
pected class. For this reason the Java call sendModel-
icaExpression (and related functions, see Figure 4)
can take a Java Class<ModelicaObject> and after
it has parsed the returned data, the function will at-
tempt to cast the object to the expected class. Should

Figure 4: CORBA Communication Proxies

the cast fail, it will also try to construct a new object
of the return type using the object as the argument.
Thus, all classes implementing ModelicaObject have
a constructor taking a single ModelicaObject (where
it will determine if the object is indeed a supertype
of the expected type). This is because any record is
parsed as a generic ModelicaRecord rather than e.g.
ExpressionRecord. The ExpressionRecord con-
structor should analyze the ModelicaObject and de-
termine if it is indeed a ModelicaRecord with the cor-
rect record name, field names and data types in the
fields. The process of creating this class can be done
automatically, see Section 5.3 for details on the imple-
mentation.

5.3 Translating MetaModelica Definitions to
Java Classes

Since it would be nice to translate MetaModelica AST
definitions to Java AST definitions, in the form of
a Java JAR file, a second parser was created. This

parser is to be used prior to the application develop-
ment since it tells OMC to load a number of Mod-
elica files and return an AST containing type defini-
tions, functions, uniontypes and records of the files.
Extracting the AST is done by a new API call, get-
Definitions, in the OpenModelica compiler Interac-
tive module, Interactive.mo. The output of the call
is a tree in textual prefix notation, similar to LISP syn-
tax. It contains a partial extraction of the syntax tree
from the Absyn module. Note that the OpenModelica
Interactive module uses the Absyn.Program AST and
not the lowered intermediate tree SCode.Program or
DAE ASTs. Because the AST may contain errors (type
checking, syntax, etc), you may get some cryptic error
messages in programs containing errors in for example
unused functions since RML only compiles referenced
functions. The textual extraction format is as follows
(Modelica code to textual format to Java code):

5.3.1 Packages

Modelica packages are used to place its parts in its
corresponding Java packages.

Modelica: package myPackage; ...
end myPackage;

Intermediate: (package myPackage ...)

5.3.2 Type aliasing

In the example below, all occurrences of myInt will
eventually be replaced by ModelicaInteger. The
reason is that Java does not support type aliasing.

Modelica: type myInt = Integer

Intermediate: (type myInt Integer)

Java: ModelicaInteger

5.3.3 Records

Records are transformed into Java classes extending
ModelicaRecord. The class has set and get functions
for each field in the record. Fields of any extended
records are looked up. The Java class will not inherit
from a base record class because multiple inheritance
is disallowed.

Listing 6: Modelica Record
record abc

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 188

e x t e n d s ab ;
I n t e g e r c ;

end abc ;

Intermediate: (record abc (extends ab) (In-
teger c))

Java: class abc extends ModelicaRecord ...

5.3.4 Replaceable Types

Replaceable types are handled using Java generics.

Modelica: replaceable type T subtypeof Any

Intermediate: (replaceable type T)

Java: <T extends ModelicaObject>

5.3.5 Uniontypes

Uniontypes are tagged using interfaces.

Listing 7: MetaModelica Uniontype
uniontype u t

record ab
I n t e g e r a ; I n t e g e r b ;

end ab ;
record bc

I n t e g e r b ; I n t e g e r c ;
end bc ;

end u t ;

Intermediate: (uniontype ut) (metarecord ab
0 ut (Integer a) (Integer b)) (metarecord bc
1 ut (Integer b) (Integer c))

Listing 8: MetaModelica Uniontype (Java)
i n t e r f a c e u t ex tends I Mod e l i c aRec o rd {
}
c l a s s ab ex tends Model icaRecord

implements u t {
. . .

}
c l a s s bc ex tends Model icaRecord

implements u t {
. . .

}

5.3.6 Functions

Functions are translated to classes extending Modeli-
caFunction. The method call performs the actual
function call over the CORBA interface. Functions
with multiple return values have two call methods, one

that returns a ModelicaTuple and one that performs a
call-by-reference.

Listing 9: Modelica Function
f u n c t i o n add

input I n t e g e r l h s ;
input I n t e g e r r h s ;
output I n t e g e r o u t ;

a lgor i thm
o u t := l h s + r h s ;

end add ;

Intermediate: (function abc (input Integer
lhs) (input Integer rhs) (output Integer
out))

Listing 10: Modelica Function (Java)
c l a s s add ex tends M o d e l i c a F u n c t i o n {

. . .
M o d e l i c a I n t e g e r c a l l (M o d e l i c a I n t e g e r

l h s , M o d e l i c a I n t e g e r r h s) {
. . .

}
}

5.3.7 Partial Functions

Partial functions are undefined function pointers (can
also be seen as as types). The Java implementation is
essentially an identifier (it discards the in/output).

Listing 11: MetaModelica Partial Function
p a r t i a l f u n c t i o n addFn

input I n t e g e r l h s ;
input I n t e g e r r h s ;
output I n t e g e r o u t ;

end addFn ;

Intermediate: (partial function addFn)

Java: new ModelicaFunctionRefer-
ence("addFn")

5.4 Translating Two Modelica Functions to
Java Classes

The number of steps required to translate a Modelica
file into a JAR-file containing all of the definitions is
quite large. Figure 5 shows the flow of data and the
steps are explained through a simple example. The
Modelica code in Listing 12 will be used as the ex-
ample for the translation from Modelica code to Java
classes.

Listing 12: Modelica source to be translated to Java
package Simple

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 189

Figure 5: DefinitionsCreator data flow

f u n c t i o n AddOne
input I n t e g e r i ;
output Real o u t ;
I n t e g e r one = 1 ;

a lgor i thm
o u t := i +one ;

end AddOne ;

f u n c t i o n AddTwo
input I n t e g e r i ;
output I n t e g e r ou t1 ;
output I n t e g e r ou t2 ;

a lgor i thm
ou t1 := i +1;
ou t2 := i +2;

end AddTwo ;
end Simple ;

The process starts when you invoke Definition-
sCreator. Listing 13 shows how to create ˜/exam-
ples/simple.jar (with package prefix org.open-
modelica.example) from ˜/examples/Simple.mo.
The inner workings of the class are described below.

Listing 13: Invoking DefinitionsCreator
$ j a v a −c l a s s p a t h $OPENMODELICAHOME/

s h a r e / j a v a / a n t l r −3 . 1 . 3 :
$OPENMODELICAHOME/ s h a r e / j a v a /
m o d e l i c a _ j a v a . j a r o rg . openmode l i ca .
c o r b a . p a r s e r . D e f i n i t i o n s C r e a t o r ~ /
examples / s i m p l e . j a r o rg . openmode l i ca
. example ~ / examples Simple . mo

The string representation of the definitions in the
AST returned by OMC is:

Listing 14: getDefinitions String corresponding to the
Modelica functions

(package Simple
(f u n c t i o n AddOne

(i n p u t I n t e g e r i)
(o u t p u t Rea l o u t))

(f u n c t i o n AddTwo
(i n p u t I n t e g e r i)
(o u t p u t I n t e g e r ou t1)
(o u t p u t I n t e g e r ou t2))

)

By using the OMCorbaDefinitions ANTLRv3 gram-
mar [8] and StringTemplate templates [9], Java source
files (Listings 15 and 16) corresponding to the defini-
tions are created.

Listing 15: Corresponding Java source for AddOne

p u b l i c c l a s s AddOne ex tends
M o d e l i c a F u n c t i o n {

p u b l i c AddOne (Smar tProxy proxy) {
super (" AddOne " , proxy) ;

}
p u b l i c Mode l i caRea l c a l l (

M o d e l i c a I n t e g e r i) throws
P a r s e E x c e p t i o n , C o n n e c t E x c e p t i o n

{
re turn proxy . c a l l M o d e l i c a F u n c t i o n ("

Simple . AddOne " , Mode l i caRea l .
c l a s s , i) ;

}
}

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 190

Listing 16: Corresponding Java source for AddTwo
p u b l i c c l a s s AddTwo ex tends

M o d e l i c a F u n c t i o n {
p u b l i c AddTwo (Smar tProxy proxy) {

super ("AddTwo" , proxy) ;
}
p u b l i c Mode l i caTup le c a l l (

M o d e l i c a I n t e g e r i) throws
P a r s e E x c e p t i o n , C o n n e c t E x c e p t i o n

{
re turn proxy . c a l l M o d e l i c a F u n c t i o n ("

Simple . AddTwo" , Mode l i caTup le .
c l a s s , i) ;

}
p u b l i c vo id c a l l (M o d e l i c a I n t e g e r i ,

M o d e l i c a I n t e g e r out1 ,
M o d e l i c a I n t e g e r ou t2) throws
P a r s e E x c e p t i o n , C o n n e c t E x c e p t i o n

{
Mode l i caTup le _ _ t u p l e = proxy .

c a l l M o d e l i c a F u n c t i o n (" Simple .
AddTwo" , Mode l i caTup le . c l a s s , i)
;

j a v a . u t i l . I t e r a t o r < Mode l i caOb jec t >
_ _ i = _ _ t u p l e . i t e r a t o r () ;

i f (ou t1 != n u l l) ou t1 . s e t O b j e c t (
_ _ i . n e x t ()) ; e l s e _ _ i . n e x t () ;

i f (ou t2 != n u l l) ou t2 . s e t O b j e c t (
_ _ i . n e x t ()) ; e l s e _ _ i . n e x t () ;

}
}

The Java files are compiled using javac, the
Java Compiler. They are then archived using the
java.util.jar class. Because StringTemplate is
used, the code could potentially be re-targeted in or-
der to create for example C# definitions, but the Java
compilation and JAR steps would need to be replaced
with functions that could handle C#.

6 Limitations

The implementation requires access to the Open-
Modelica CORBA interface or external functions gen-
erated by OpenModelica. As such, OpenModelica
needs to be fully bootstrapped before the interface can
be used internally in OpenModelica. At the moment,
it can be used for simple Modelica/MetaModelica pro-
grams.

Java is quite limited when it comes to generics.
Generics in Java is just something that helps the pro-
grammer do static type checking. In running code,
Java has no concept of generic types and is totally
unchecked. This is one of the reasons why Modelica-
Tuple is untyped in Java.

7 Related Work

Dymola has the capability to call Modelica functions
and the Dymola API from external Java functions
[5]. Their approach was to use a single entry-point
(com.dynasim.dymola.interpretMainStatic). This is
probably a bit faster than passing and parsing strings,
and would have been possible to accomplish in Open-
Modelica as well. The OpenModelica CORBA inter-
face is more akin to the Dymola external interface de-
scribed in [6]. It also uses strings to communicate with
applications, but can construct some native types for
example when communicating from Modelica to Mat-
lab.

8 Future

The OpenModelica compiler is currently being ex-
tended to support the datatypes introduced in Meta-
Modelica needed to represent and communicate ab-
stract syntax trees. Another planned extension is to
replace the current text-based CORBA interface with
a directly linked version, giving higher performance.

As work progresses, support for new datatypes
needs to be added in the Interactive module since the
CORBA interface depends on this module being up-
dated. Most of the work so far has been limited to
compiling code using these datatypes (e.g. the union-
type implementation [1]).

9 Conclusions

A complete bidirectional Java interface to Open-
Modelica including support of the MetaModelica lan-
guage extensions has been created. It is capable of
passing basic and structured data types including syn-
tax trees to and from Java and process them in either
Java or the OpenModelica Compiler. It uses the exist-
ing CORBA interface and is capable of automatically
generating the Java classes corresponding to Meta-
Modelica code. This new interface opens up new pos-
sibilities for tool integration and model manipulation.

References

[1] Björklén S. Extending Modelica with High-
Level Data Structures: Design and Implemen-
tation in OpenModelica. Linköping, Sweden:
Master’s thesis, Department of Computer and In-
formation Science, Linköping University, 2008.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 191

[2] Fritzson P. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1, 940
pages. Wiley-IEEE Press, 2004.

[3] Fritzson P. MetaModelica Programming Guide,
June 2007 draft. http://openmodelica.org/.

[4] Modelica Association. The Modelica Language
Specification Version 3.0, September 2007.
http://www.modelica.org/.

[5] López J.D., Olsson H. Dymola interface to Java -
A Case Study: Distributed Simulations. In: Pro-
ceedings of the 5th International Modelica Con-
ference, Vienna, Austria, 4-5 September 2006.

[6] Olsson H. External Interface to Modelica in
Dymola. Proceedings of the 4th International
Modelica Conference, Hamburg, Germany, 7-8
March 2005.

[7] OpenModelica. OpenModelica System Docu-
mentation, January 2009.
http://openmodelica.org/.

[8] Parr T. ANTLR Parser Generator.
http://antlr.org/.

[9] Parr T. StringTemplate Template Engine.
http://stringtemplate.org/.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 192

Towards a Text Generation Template Language for Modelica
Peter Fritzson*, Pavol Privitzer+, Martin Sjölund*, Adrian Pop*

+Institute of Pathological Physiology, First Faculty of Medicine, University in Prague
*PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
pavol.privitzer@if1.cuni.cz, {petfr, marsj,adrpo}@ida.liu.se

Abstract
The uses, needs, and requirements of a text generation
template language for Modelica are discussed. A tem-
plate language may allow more concise and readable
programming of the generation of textual models, pro-
gram code, or documents, from a structured model rep-
resentation such as abstract syntax trees (AST). Appli-
cations can be found in generating simulation code in
other programming languages from models, generation
of specialized models for various applications, genera-
tion of documentation, web pages, etc. We present sev-
eral template language designs and some usage exam-
ples, both C code generation and Modelica model gen-
eration. Implementation is done in the OpenModelica
environment. Two designs are currently operational.

Keywords: template language, unparsing, pretty print-
ing, code generation, Modelica.

1 Introduction
Traditionally, models in a modeling language such as
Modelica are primarily used for simulation. However,
the modeling community needs not only tools for simu-
lation but also languages and tools to create, query,
manipulate, and compose equation-based models. Ex-
amples are parallelization of models, optimization of
models, checking and configuration of models, genera-
tion of program code, documentation and web pages
from models.

If all this functionality is added to the model com-
piler, it tends to become large and complex.

An alternative idea that already to some extent has
been explored in MetaModelica [9][21] is to add exten-
sibility features to the modeling language. For example,
a model package could contain model analysis and
translation features that therefore are not needed in the
model compiler. An example is a PDEs discretization
scheme that could be expressed in the modeling lan-
guage itself as part of a PDE package instead of being
added internally to the model compiler.

Such transformation and analysis operations typi-
cally operate on abstract syntax tree (AST) representa-
tions of the model. Therefore the model needs to be
converted to tree form by parsing before transforma-
tion, and later be converted back into text by the proc-
ess of unparsing, also called pretty printing.

The MetaModelica work is primarily focused on
mechanisms for mapping/transforming models as struc-
tured data (AST) into structured data (AST), which is
needed in advanced symbolic transformations and
compilers.

However, there is an important subclass of prob-
lems mapping structured data (AST) representations of
models into text. Unparsing is one example. Generation
of simulation code in C or some other language from a
flattened model representation is another example. Yet
another use case is model or document generation
based on text templates where only (small) parts of the
target text needs to be replaced.

We believe that providing a template language for
Modelica may fulfill a need for an easier-to-use ap-
proach to a class of applications in model transforma-
tion based on conversion of structure into text. Particu-
larly, we want to develop an operational template lan-
guage that enables to retarget OpenModelica compiler
simply by specifying a package of templates for the
new target language.

1.1 Structure of the Paper

Section 2 tries to define the notion of template lan-
guage, whereas Section 3 gives more detailed language
design requirements, uses, motivation, and design prin-
ciples. Section 4 shows an example of a very concise
template language, its uses, and lessons learned. Sec-
tion 5 presents model-view-controller separation which
has important implications for the design. Section 6
presents a small interpreted template language proto-
type.

Section 8 briefly discusses applications in code gen-
eration from the OpenModelica compiler, whereas Sec-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 193 DOI: 10.3384/ecp09430124

tion 9 presents related work, followed by conclusions
in Section 10.

2 What is a Template Language?
In this section we try to be more precise regarding what
is meant by the notion of template language.

2.1 Template Language

Definition 1. Template Language. A template lan-
guage is a language for specifying the transformation of
structured data into a textual target data representation,
by the use of a parameterized object “the template“ and
constructs for specifying the template and the passing
of actual parameters into the template.

One could generalize the notion of template lan-
guage to cover target language representations that are
not textual. However, in the following we only concern
ourselves with textual template languages.

Definition 2. Template. A template is a function from
a set of attributes/parameters to a textual data structure.

A template can also be viewed as a text string with
holes in it. The holes are filled by evaluating expres-
sions that are converted to text when evaluating the
template body. More formally, we can use the defini-
tion from [17] (slightly adapted):

A template is a function that maps a set of attributes
to a textual data structure. It can be specified via an
alternating list of text strings, ti, and expressions, ei,
that are functions of attributes ai:

F(a1, a2, ..., am) ::= t0 e0...ti ei ti+1...tn en tn+1

where ti may be the empty string and ei is restricted
computationally and syntactically to enforce strict
model-view separation, see Section 5 and [18]. The ei
are distinguished from the surrounding text strings by
bracket symbols. Some design alternatives are angle
brackets <...>, dollar sign $...$, combined <$...$>.
Evaluating a template involves traversing and concate-
nating all ti and ei expression results.

Definition 3. Textual Data Structure. A textual data
structure has text data such as strings of characters as
leaf elements. Examples of textual data are: a string, a
list (or nested list structure) of strings, an array of
strings, or a text file containing a single (large) string.
A textual data structure should efficiently be able to
convert (flattened) into a string or text file.

2.2 Unparser Specification Language

Definition 4. Unparser Specification Language. A
special case of template language which is tailored to
specifying unparsers, i.e., programs that transform an

abstract syntax (AST) program/model representation
into nicely indented program/model text.

Example: The unparser specification language in the
DICE system [3] was used to specify unparsers for the
Pascal and Ada programming languages. The unparser
specification was integrated with the abstract syntax
tree specification, to which it referred. See also the ex-
ample in Section 4.

3 Requirements and Motivation
What are our requirements on a template language for
Modelica? Why don't use an existing template lan-
guage, e.g. one of those mentioned in Section 9. In fact,
do we need a template language extension at all? Why
not just program this presumable rather “simple“ task
of converting structure into text by hand in an ordinary
programming language? In the following we briefly
discuss these issues.

• Need for a template language? Conversion of struc-
ture into text has of course been programmed many
times by hand in a multitude of programming lan-
guages. For example, the unparser and the C code
generator in the current OpenModelica compiler are
hand implemented in MetaModelica. An advantage
is usually good performance.
 However, the disadvantages include the lack of
extensibility and modeling capability mentioned in
Section 1. Another problem is that the code easily
gets cluttered by a mix of (conditional) print state-
ments and program logic. A third problem is reuse.
For example, when generating target code in similar
languages C, C#, or Java, large parts of the output is
almost the same. It would be nice to re-use the
common core of the code, instead of (as now) need
to develop three versions with slight differences

• Performance needs. There are different performance
needs depending on application. A template lan-
guage that is mainly used for generation of html
pages may need more flexibility in the order of text
generation (lazy evaluation), whereas a language
used to specify a code generation from AST needs
higher performance. Compilation should not take
too long even when you compile a hundred thou-
sand lines of models represented as a million AST
nodes.

• Intended users. Are the intended users just a few
compiler specialists, or a larger group including
modeling language users who wants easy-to-use
tool extensibility?

• Re-implement/re-use an existing template language?
Why not re-implement (or re-use) an existing tem-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 194

plate language such as for example ST [17] for
StringTemplate? This choice depends on the charac-
ter of the existing language and its implementation,
efficiency, and complexity of tool integration.

3.1 Language Design Principles

The following are language design principles [12]:

• Conceptual clarity. The language concepts are well
defined.

• Orthogonality. The language constructs are “inde-
pendent“ and can be combined without restrictions.

• Readability. Programs in the language are “easy“ to
read for most developers.

• Conciseness. The resulting program is very short.
• Expressive Power. The language has powerful pro-

gramming constructs.
• Simplicity. Few and easily understood constructs.
• Generality. Few general constructs instead of many

special purpose constructs.

Some of these principles are in conflict. Conciseness
makes it quick to write but often harder to read, not as
easy to use, sometimes less general. Expressive power
often conflicts with simplicity.

3.2 Language Embedding
or Domain Specific Language?

Should the template language be a completely new lan-
guage or should it be embedded into an existing lan-
guage as a small extension to that language?

A language that addresses a specific problem do-
main is called domain specific language (DSL). DSLs
can be categorized as internal or external [4][5].

Internal DSLs are particular ways of using a host
language in a domain-specific way. This approach is
used, e.g., for the pretty printer library in Haskell where
document layouts are described using a set of opera-
tors/functions in a language-like way [23].

External DSLs have their own custom syntax and a
separate parser is needed to process them. As an exam-
ple, StringTemplate [18][17] is an external DSL and is
provided for three different host languages: Java, C#
and Python.

If you only need the template language for simple
tasks, or tasks that do not require high performance and
tight communication with the host language, a separate
language might be the right choice. A small language
may be quicker learn and focused on a specific task.

On the other hand, embedding into the host lan-
guage makes it possible to re-use many facilities such
as: efficient compilation, inheritance and specialization
of templates, reuse of common programming con-
structs, existing development environment, etc., which

otherwise need to be (partly) re-developed. A disadvan-
tage is that the host language grows if the extension
cannot be well separated from the host language.

Proliferation of DSLs might also be a problem. For
example, consider a large application with extensive
usage of, say, twenty different DSLs that may have
incompatible and different semantics for language con-
structs with similar syntax. This might lead to a main-
tenance nightmare.

Also, what is exactly domain specific in a text tem-
plate language? The answer is probably only the han-
dling of the template text string with holes in it, switch-
ing between text mode and attribute expressions, and
implicit concatenation of elements. All the rest, e.g.,
expression evaluation, function call, function defini-
tion, control structures, etc., can be essentially the same
as in a general purpose language.

The design trade-offs in this matter are not easy and
the authors of this paper do not (yet) completely agree
on all choices. Therefore, in this paper we partly ex-
plore several design choices for a template language for
Modelica.

4 A Concise Template Language
To make the basic ideas of a template language more
concrete, we first present a very concise template lan-
guage [4] which is primarily an unparser specification
language. It has been used to specify unparsers for Pas-
cal, Ada, and Modelica. Specifications are very com-
pact. Implementation is simple and efficient.

We will use the following simple Modelica code
example to illustrate this template language:
while x<20 loop
 x := x+y*2;
end while;

This code needs the abstract syntax tree nodes for its
internal representation, specified as follows including
small template language unparsing strings.

There are two statements nodes types: ASSIGN and
WHILE. ASSIGN has two children,. lhs of type PVAR
and rhs of type EXPR.

A typical assignment looks like "variable :=

expression". The unparsing specification "@1 :=
@2" means: @ signals a command that the next charac-
ter has special interpretation. @1 means: unparse the
first child node. The following characters in the string "
:= " are just output as they are. The next command:
@2 means: unparse the second child of the ASSIGN
node.

// Statement nodes STM
ASSIGN : (lhs: PVAR;
 rhs: EXPR) : "@1 := @2";

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 195

WHILE : (condition: EXPR;
 statements: STM_LIST) : "while
@1 loop @+@n @2;@n@q@-@nend while;@n"

WHILE

LESS

VARIABLE

x

ICONST

20

ASSIGN

VARIABLE

x VARIABLE

x

PLUS

VARIABLE

y

TIMES

ICONST

2

condition statements

lhs rhs

lhs rhs

lhs rhs

lhs rhs

name value

value

name

name

name

Figure 1. Abstract syntax tree of the while loop.

The template string for while has statements as a
statement list. The semicolon ; and new line @n be-
tween @2 and @q (for quit) are emitted between each
list item. @+ and @- increase/decrease indentation level.

// Expression nodes EXPR
PLUS : (lhs:EXPR; rhs: EXPR) :
 "@1+@2" LPRIO 4;
TIMES : (lhs:EXPR; rhs: EXPR) :
 "@1*@2" LPRIO 5;
LESS : (lhs:EXPR; rhs: EXPR) :
 "@1<@2" BPRIO 3;
VARIABLE : (name: STRING) : "@1";
ICONST : (value: INTEGER): "@1";

The expression nodes also specify associativity and
priority. The latter controls whether parentheses should
be emitted. LPRIO 4 means left associative, priority 4.

4.1 Usage Experience

The full abstract syntax and unparsing specification for
Pascal is only 4 pages, and not that hard to write. The
full Ada specification is 9 pages, still quite reasonable
for a big language. Fifteen years later, such a specifica-
tion was also developed for Modelica 1.2.

This became more complicated than the one for
Ada. Also, maintenance became an issue, especially for
other people than the original specification developer.
People found the extremely concise unparsing template
strings very hard to read and debug. Eventually we de-
cided to rewrite the unparser into normal programming
language code (mix of print statements and standard
code). Not as elegant, but easier to maintain. Thus,
conciseness made specifications short to write, but too
hard to read and use/maintain. Another option could
have been to redesign the language, e.g. introducing
names instead of positions, but there was no time.

5 Model View Controller Separation
A strong design principle argued to especially relevant
for template languages is model-view-controller separa-
tion [16]. First we define these terms in the context of a
template language:

• Model – the data structure, e.g. an AST, to be con-
verted to text according to the view.

• Controller – the piece of software that controls the
application of the view to the model, e.g. a tree tra-
versal algorithm applying the templates to the tree
nodes.

• View – the mapping from attributes to text, i.e., the
actual templates in a template language.

The value of this principle is strongly argued in [16],
according to experience with the ST functional tem-
plate language [17] in the StringTemplate system. Such
separation gives more flexibility (multiple views), eas-
ier maintainability, better reuse, more ease-of-use, etc.

It is argued that the template language should be
kept simple, program computation logic should not be
too much intertwined with emitting text. If complex
computation needs to be done, it should instead be done
on the model (in our case the AST).

Our template language design has been strongly in-
fluenced by this principle.

6 A First Template Language for
Modelica

A template language maps model items to text attrib-
utes (sometimes through intermediate stages). The at-
tributes are referred to by named references in the tem-
plates. During template evaluation, the named refer-
ences are replaced by the text values of these attributes.
Thus, a template usually contains two items: a text with
named placeholders, and a mapping from attribute
names to text values, i.e. a dictionary.

In an advanced implementation (Section 7) the dic-
tionary part can be left out if the template compiler is
able to automatically map variable names to string val-
ues without an intermediary dictionary data structure.

In the rest of this section we present a first design of
a simple template language based on the language em-
bedding idea, together with some examples.

6.1 Text Output with a String Function

As previously mentioned in Section 2.1, a template is a
function from structured data, e.g. record structures or
abstract syntax trees, to a textual data structure, where
the text can be returned as a string or output to a file.

Starting with a small code example:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 196

while x < 20 loop ... end while;

This can be represented as an abstract syntax tree ac-
cording to Section 7.3 Section 6.4, from which we have
extracted two definitions:
uniontype Statement "Algorithmic stmts"
 record WHILE "While statement"
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

uniontype Exp "Expressions"
 record BINARY "Binary operator"
 Exp lhs;
 Operator op;
 Exp rhs;
 end BINARY;
end Exp;

type AST = Statement; "Current AST type"

We would like to produce the following output from
the example abstract syntax tree (AST):

The expression loops while x < 20.

Below we show three variants of Modelica functions
producing this output, where the third one is based on
the Modelica template language. Here we assume that
an intermediary dictionary is not needed.

6.1.1 Function Returning a String

This function converts the AST example into a string
by concatenating string pieces and using the built-in
Modelica 3.1 String function to convert any record to
a string. A locally defined String function can be de-
fined within each record type definition (not shown
here)
function mkString
 input AST whileStm;
 output String out :=
 "The expression loops while " + String(
 whileStm.condition.lhs.name) +
 " < " + String(
 whileStm.condition.rhs.value) + ".";
end mkString;

6.1.2 Function with File Output

If we instead would like to output to a file without first
concatenating strings, it might appear as follows:
function emitString
 input AST whileStm;
 input FILE file;
algorithm
 print(file,
 "The expression loops while ");
 print(file, String(
 whileStm.condition.lhs.name));
 print(file, " < ");
 print(file,

 String(whileStm.condition.rhs.value));
 print(file, ".");
end emitString;

6.1.3 Function Based on a Template

The following function uses the Modelica template
language syntax defined in Section 6.3. The idea is to
automatically generate the string function in Section
6.1.1 or the file output function in Section 6.1.2.

The escape-code << on a single line signals the start
of the template section, and >> on a single line ends it.
Text (excluding the first and last single lines) is just
used verbatim. Pieces of text are automatically con-
catenated or output to a file. The escape-code <$ sig-
nals the beginning of some piece of Modelica code that
should be automatically converted to a string, and $>
ends it.
function templString
 input AST whileStm;
<<
The expression loops while
<$whileStm.condition.lhs.name$> <
<$whileStm.condition.rhs.value$>.
>>
end templString;

One can also let all template functions inherit common
characteristics from a common base function, e.g.:
function templString
 extends TemplateFunction;
<<
...
>>
end templString;

6.1.4 Benefits of Template Functions

The main benefit of the text template approach is that
the string conversion, concatenation, and file output
code can be generated automatically instead of hand
implemented, which increases readability and model-
view-controller separation.

Another benefit supported by some template en-
gines (e.g., StringTemplate [17]) is lazy evaluation – all
the data structure pieces need not be evaluated in the
order they are referred to in the template; instead
evaluation is automatically delayed if needed, until the
final result is output.

6.2 The Simple Template Language Dictionary

The simple template language dictionary used for
lookup in the following small examples is defined be-
low via the DictItemList constant, with a simple
mapping from key to object. The number of datatypes
that the dictionary can hold is very limited compared to
more advanced template engines. The idea is that eve-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 197

rything in the model is a Boolean, a string, a collection
of strings, or a nested dictionary (to allow recursive
datatypes). First we define the dictionary data types
needed:
uniontype Dict

 record ENABLED
 end ENABLED;

 record STRING LIST
 list<String> strings;
 end STRING LIST;

 record STRING
 String string;
 end STRING;

 record DICTIONARY
 DictItemList dict;
 end DICTIONARY;

 record DICTIONARY LIST
 list<DictItemList> dict;
 end DICTIONARY LIST;
end Dict;

record DictItem
 String key;
 Dict dict;
end DictItem;

type DictItemList = list<DictItem>;

Then we define a sample dictionary to be used in some
of our examples:
constant DictItemList sampleDict = {
 DictItem("EnableText", ENABLED()),

 DictItem("People", DICTIONARY_LIST({
 DICTIONARY({
 DictItem("Name", STRING("Adam")),
 DictItem("Fruits", STRING_LIST(
 {"Orange "})
 }),
 DICTIONARY({
 DictItem("Name", STRING("Bertil")),
 DictItem("Fruits", STRING_LIST(
 {"Apple", "Banana", "Orange "})
 })
 }),

 DictItem("WHILE", ENABLED()),

 DictItem("condition",
 DICTIONARY({
 DictItem("lhs", DICTIONARY({
 DictItem("VARIABLE", ENABLED()),
 DictItem("name",STRING("x"))
 })),
 DictItem("rhs", DICTIONARY({
 DictItem("ICONST", ENABLED()),
 DictItem("value",STRING("20"))
 }))
 }))
};

6.3 Template Syntax

Below are the constructs used in the simple template
language. Each construct contains the identifier used in
the compiled template, as well as the character se-
quence used to construct it.

Note: This is a preliminary, rather cryptic syntax
that was quick to implement by an interpreter. Below
are also some examples of more readable Modelica
syntax are shown for certain constructs.

A key is a string that does not contain any charac-
ters using $, or ", and does not start with #,!,=,^, or _. It
is used for lookup of attributes from the dictionary en-
vironment. The dictionary environment is a simple
linked environment where the current scope has the
highest priority.

In the Modelica-syntax variant, <$ $> are used to
contain Modelica code and/or attribute names.

FOR_EACH loops and RECURSION both change the
dictionary environment. If the key contains dots, they
are used for nested lookup.

Only items of the type DICTIONARY can be ac-
cessed recursively, but the last element can be of any
type (e.g. DICT1.DICT2.DICT3.key).

6.3.1 Lookup of a Key Value

If lookup(dict,key) returns a string, this becomes
the output.

Template syntax:
key

Modelica-like template syntax:
<key>

or a variant with explicit Modelica lookup syntax that
can be used inside Modelica code context:
keyValue(dict,"key")

Example template:
The expression loops while
$condition.lhs.name$ <
$condition.rhs.value$.

Modelica-like example template:
The expression loops while
<$condition.lhs.name$> <
<$condition.rhs.value$>.

Example output:
The expression loops while x < 20.

6.3.2 Checking non-empty Attribute Values

If lookup(dict,key) returns any non-empty value
(empty strings and lists are empty values), run body.
The general syntax also includes elseif and else clauses.

Template syntax::
$=key$body$/=

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 198

Modelica-like template syntax (where [] means 0 or 1
times, {} means 0 or >= 1 times):
<$if key then$>body{<$elseif$>body}
[<$else$>body] <$end if$>

Abstract syntax:
COND(cond_bodies={(key,true,body)},else_bo
dy={})

Example template:
$=WHILE$This is a while expression.$/=

Modelica-like example template:
<$if WHILE then$>This is a while
expression.<$end if$>

Example output:
This is a while expression.

6.3.3 Checking for Empty Attribute Value

Checking for empty attribute values. The opposite of
checking nonempty values.

Template syntax::
$!key$body$/!

Modelica-like template syntax (where [] means 0 or 1
times, {} means 0 or >= 1 times):
<$if not key$>
body {<$elseif$> body} [<$else$> body]

Abstract syntax:
COND(cond_bodies={(key,false,body)},else_b
ody={})

Example template:
$!ASSIGN$This is not an assignment.$/!

Modelica-like example template:
<$if not ASSIGN then$>This is not an
assignment.<$end if$>

Example output:
This is not an assignment.

6.3.4 For Each Iteration

Use lookup(dict,key) to fetch a STRING_LIST,
DICTIONARY or DICTIONARY_LIST value, then iterate
over the elements in the fetched item. Iterating over
DICTIONARY and DICTIONARY_LIST modifies the
dictionary environment (it adds the dictionary to the
top-most dictionary in use). The (optional) separator is
inserted verbatim between the result of each iteration.

In the Modelica syntax case, an ordinary array itera-
tor {} is used to collect the results of the iterations, and
the insertSep function to insert separator strings be-
tween the items.

Template syntax:
$#key[#sep]$body$/#

Modelica-like template syntax without separators:

<${$>body<$for this in <$key$>}$>

Modelica-like template syntax with separators:
<$insertSep({$>body<$ for this in
<key>}, sep="...")$>

Abstract syntax:
FOR_EACH(...)

There is an example in the next section.

6.3.5 Current Item Value in Iterations

Only valid when looping over a STRING_LIST value.
Outputs the current value item string.

Template syntax:
$this$

Modelica-like template syntax:
<$this$>

Abstract syntax:
CURRENT_VALUE(...)

Example template with nested for each (first key is
People, retrieving a dictionary list where each person
dictionary has a key Name with string value and another
key Fruits with string list value:

$#People$$Name$ has the following
fruits:\n
$#Fruits#, $$this$$/#\n
$/#

Modelica-like example template:
<${$><$Name$> has the following fruits:\n
<$insertSep($><$Fruits$><$, sep=", ")$>
<$for person in People}$>

Modelica-like example template with explicit key-
Value calls:
<${keyValue(person,"Name")$> has the
following fruits:\n
<$ insertSep(keyValue(person,"Fruits"),
sep=", ") for person in People}$>

Output:
Adam has the following fruits:
Orange
Bertil has the following fruits:
Apple, Banana, Orange

6.3.6 Recursion

Use lookup(dict,key) to fetch a DICTIONARY or
DICTIONARY LIST value. It will then use the current
scope (from FOR EACH or the global scope) to iterate
over the elements from the DICTIONARY LIST as the
new top of the dictionary environment. The current
auto-indentation depth is concatenated to the indent.

Note: the special construct for recursion on the cur-
rent template is unnecessary in the Modelica syntax
case, since you can just call the template with the same
name. Calling templates is shown in Section 6.3.8.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 199

Template syntax:
$^key[#indent]$body$/^

Modelica-like template syntax, where each subtemplate
to be called would need to be explicitly named:
<$subtemplate()$>

Abstract syntax:
RECURSION(...)

6.3.7 Increasing Indentation

Opens up a new scope and adds indent to the indenta-
tion level.

Template syntax:
$_indent$body$/_

Abstract syntax:
ADD_INDENTATION(...)

Example template, where we use * instead of space to
be more visible as indentation whitespace:
$_***$$=EnableText$\n
Listing all the people:\n
$^People#......$
$/=
$!EnableText$$Name$\n
$/!$/_

Output:
***Listing all the people:
***Adam
***......Bertil
***......

6.3.8 Calling a Pre-Compiled Template

When compiling a template, you also send the engine a
list of keys mapped to pre-compiled templates. Calling
a template opens up a new scope.

Template syntax:
$:subtemplate$:

Modelica-like template syntax:
<$subtemplate()$>

Abstract syntax:
INCLUDE(...)

Example template:
$:AddIndentationExample$$:CurrentValueExam
ple$

Modelica like example template:
<$AddIndentationExample()$>
<$CurrentValueExample()$>

Output:
 Listing all the people:
 Adam
 Bertil
 Adam has the following fruits:
Orange
Bertil has the following fruits:
Apple, Banana, Orange

6.4 Generating C Code from a While Loop

We return to the while loop example shown previously
in Section 4, to be represented as an AST:

while x<20 loop
 x := x+y*2;
end while;

The abstract syntax types can be found in Section 7.3.

6.4.1 Small Template Language Example

Templates for emitting C code from the AST of a while
loop:

$=WHILE$\n
while ($#condition$$:Exp$$/#) {
$^statements# $\n
}
$/=
$=ASSIGN$
\n$lhs.name$ = $#rhs$$:Exp$$/#;
$/=

$=BINARY$
(lhs $#op$$:op$$/# rhs)
$/=
$=ICONST$ $=PLUS$ $=TIMES$ $=LESS$
$value$ + * <
$/= $/= $/= $/=
$=VARIABLE$
$name$
$/=

7 Susan – A Compiled Template
Language for Modelica

The template language shown in Section 6 (the concise
cryptic syntax variant) was implemented as an inter-
preted external DSL that has both advantages and dis-
advantages. First the advantages:

• Strictly adheres to the model-view-controller sepa-
ration as in [16].

• The language is small, and does not perform com-
putation on the model, as advocated in [17].

• Simple to implement and modular.

There are also disadvantages:

• The non-Modelica syntax is cryptic, hard to read.
• Interpretation does not give enough performance.

As the next step we have developed an improved tem-
plate language design and implementation called
Susan, with the following main advantages:

• Presumable increased readability
• Compiled to gain maximum performance
• MVC separation is enforced in a more suitable way

in context of MetaModelica as the host language

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 200

• The language is mature enough to provide a com-
plete vehicle for target code generator specifications
in the OpenModelica compiler (OMC) environment.

• The syntax and semantics complies with the Meta-
Modelica type system for textual templates

To summarize, this is a functional, strongly typed, ex-
pression oriented template language.

7.1 MVC and Control

Susan’s design is strongly influenced by the String-
Template’s (ST) [17] language, briefly described in
Section 9.3, and below.

ST’s control logic, i.e., conditional inclusion of
template parts, is restricted to querying attributes only
for their presence/absence or true/false values. This is
designed to strictly prevent entanglement of Model and
View (MVC). It is primarily obeying the rules “the
view cannot make data type assumptions“ and “the
view cannot compare dependent data values“ [16].

Before an ST template can be rendered to text the
attribute values must be transferred to it completely. It
is then the work of the Controller to bridge the gap
from the Model to the template, e.g. extract data from a
database, call some business logic on the Model or
walk over an AST, and then transfer the proper values
as template attributes.

Susan also transfers data from the Model to the
template View, but integrates more control into the
View in terms the match construct (Section 7.9).

7.2 Strongly Typed Templates

MetaModelica extends the Modelica type system with
union types to facilitate construction of tree-like data
structures, in particular Abstract Syntax Trees (ASTs)
for efficient modeling of languages.

In our early interpreted template language design
we have been using a simple template dictionary (Sec-
tion 6.2) as an analogy to ST’s object model. While
general and simple the creation and dynamic lookup
implies a certain performance loss.

In order to increase efficiency, we need to avoid the
dictionary. As a consequence, templates should be able
to directly access MetaModelica data structures. This
lead us to strongly typed templates with read-only se-
mantics, with some more control included.

Making templates strongly typed has advantages
like generating more efficient code, and avoiding errors
that otherwise might occur in applications if only dy-
namic typing would be used.

7.3 Template Package Type Views

Templates in the Susan language are grouped in pack-
ages. Each template package can import one or more
type views, i.e., sets of AST type definitions. Each type
view uses MetaModelica syntax and resides in a sepa-
rate file. Here we will use a type view that can model
the while loop example from Section 4:
package OriginalPackageName

uniontype Statement "Algorithmic stmts"
 record ASSIGN "An assignment stmt"
 Exp lhs; Exp rhs;
 end ASSIGN;

 record WHILE "A while statement"
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

uniontype Exp "Expression nodes"
 record ICONST "Integer constant value"
 Integer value;
 end ICONST;

 record VARIABLE "Variable reference"
 String name;
 end VARIABLE;

 record BINARY "Binary ops"
 Exp lhs; Operator op; Exp rhs;
 end BINARY;
end Exp;

uniontype Operator
 record PLUS end PLUS;
 record TIMES end TIMES;
 record LESS end LESS;

 end Operator;

end OriginalPackageName;

The OriginalPackageName is the name of the origi-
nal MetaModelica package where types included in the
type view are fully defined. A type view can use types
from several packages. It usually specifies a subset of
the original types defined in several packages and from
these types suitable parts can be selected. For example,
there can be additional union tags in the Statement
type, but only those two specified can be used by tem-
plates that use this view. Similarly, more record fields
can be originally defined in the ASSIGN record but only
lhs and rhs can be read inside the template package
with the view imported.

AST type view files can be shared across different
target languages as a kind of type interface to the com-
piler generated output ASTs (e.g., simulation code
ASTs). It is also an essential feature to support scenar-
ios where users are not allowed to see all original types
(e.g., a commercial Modelica compiler) but still can see

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 201

and use the intended subset to extend the code genera-
tor.

In addition to type views, templates automatically
understand all MetaModelica built-in types: String,
Boolean, Integer, Real, list, Option, tuple, and
Array types.

7.4 Template Definition

A template definition in Susan has a C-like function
signature with a name and formal typed arguments,
instead of a Modelica-like signature as in the design of
Section 6 The body is a single template expression
without explicit delimiters:
templ-name(Type1 n1, Type2 n2, ...) ::=
 template-expression

A template’s textual output is the result of the template
expression evaluated with the actual parameter values
in its scope. All parameters are input and read-only; in
general, all values bound to names are read-only inside
template expressions.

Unlike ST, which uses dynamic scoping of attrib-
utes, this language uses lexical scoping. After the sym-
bol ::=, a new lexical scope is created for template
parameters that are only accessible by their names in-
side the scope. Nested lexical scopes can also be cre-
ated by other constructs, e.g. in map expressions.

ST uses the concept of an implicitly available de-
fault attribute, named it, to decrease the verbosity in
some common expression forms. This concept has been
adapted for Susan as an implicitly available variable.

In the following sections we provide short descrip-
tions of the five kinds of Susan’s expressions:

Textual template expressions, named value refer-
ences, template calls, match and conditional expres-
sions, and map expressions.

7.5 Textual Template Expressions

A fundamental concept used for textual template ex-
pressions is a ”text with holes in it”. An example is

'Dear Mr. <name>.'

When the expression is rendered to text, the value of
the name parameter is filled into <...> angle-
bracketed marked hole and the brackets are discarded.

We have chosen single quotes, unlike ST, because
we wanted double quotes to be reserved for string con-
stants, thus

 "Dear Mrs. <nice>"

is a constant textual template expression precisely fol-
lowing Modelica string syntax without any holes, and it
respects ordinary escape characters like "\n" or "\t"
for new line and tab characters.

To support readability (or verbatimness) of tem-
plates to the maximum extent, the <<...>> delimiting
pair can be also used for longer templates with holes as
follows, where there is a rule that a new line right after
the opening delimiter and a new line right before the
closing delimiter are ignored:

<<
Hi '<name>',
today is <dayName>.
>>

There is an equivalent to <<...>> for longer constant
texts, the %X...X% verbatim string delimiting pair,
where the X can be an arbitrary character where pairs of
() [] {} are respected like

%(
\\ (Really) '<verbatim>' "text\n"
)%

or like

%*Some shining <*> is over there!*%

Everything inside the %X...X% is taken verbatim with
complete lack of escapes.

We have provided the basis for the text part of the
language, e.g. used in this complete template example:
hello(String person) ::= <<
Hello <person>!
>>

7.6 Named Value References

In the previous section, named value references were
already used in the examples. A value can be referred
by name when it is in the scope of the expression.

 Automatic to-string conversion applies for all
primitive MetaModelica types (String, Integer,
Real, Boolean) and for all generic types of primitive
types except of tuple types, i.e., list, Option and
Array. Examples of automatic to-string conversion:

templ1(Integer i, Real r, Boolean b)::=
 'Is that <i> = <r>?'

templ2(list<String> names,
 Option<Integer> optId) ::=
 'allNames<optId> = "<names>";'

templ3(String hello) ::= hello

Option typed values are output conditionally when
they hold a value (the value of SOME). List types are
output in sequence, i.e., effectively the concatenation of
the string equivalents of their elements. These to-string
conversion rules are elaborated recursively, that is, also
a value of type list<Option<Integer>> is auto-
matically to-string convertible.

For list and Array typed values a separator op-
tion can be specified right after the value name, like:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 202

nameList(list<String> names) ::=
 'Names are: <names ", ">.'

There are more possible options for multi-valued ex-
pressions tailored for structuring the output text prop-
erly, see Section 7.11.

7.7 Template Calls

Templates can be called from other templates. Recur-
sive calling of templates is allowed, too. The syntax is:

templ-name(arg1, arg2, …, argn)

where templ-name is the name of the called template,
argi are actual parameter expressions, and n can be 0
or more. Parameters are strongly typed with automatic
to-string conversion when applicable. Usually actual
parameters are named value references or other tem-
plate expressions, but literal constants of Integer,
Real and Boolean types can also be used (it is a sort
of restriction to be able to create only non-structured
constant values). Some examples:
sayN(String msg, Integer n) ::=
 'Say "<msg>" <n> times.'

say3(String msg) ::= sayN(msg,3)

whatToSay(String word) ::= <<
What to say?
<say3('Susan is <word>!')>
>>

7.8 Iterative Map Template Expressions

The map template expression is used to iterate over
lists (or a scalar). It is conceptually similar to map
functions heavily used in functional languages instead
of imperative constructs like for-loops.

There are several possible design choices of syntax
for this construct. The current choice (inspired by ST)
is to use the colon (:) as a map operator:
value-expr of elem-pattern : templ-expr

However, : can be a bit cryptic and hard to see embed-
ded in code. Other possibilities could be:

map(templ-expr, value-expr, elem-pattern)

or the Modelica iterative expression (without pattern):
templ-expr(x) for x in value-expr

The above means: "Map element(s) of the value-
expr that matches elem-pattern using templ-
expr; Concatenate results if they are multiple."

The redesigned part compared to ST is the of key-
word that is a shortcut of meaning close to ”consists of
element(s) like”. The colon ":" then creates a new
nested scope for template invocation in an element-

wise manner. If the value-expr is a scalar value it is
treated as a single element.

Value-expr is usually a named value reference,
but can be an external or intrinsic function call (see
Section Error! Reference source not found.).

Elem-pattern is most often a single name value
binding or a tuple pattern matching expression, but the
same syntax and semantics applies here as for the pat-
tern matching case rules in match-expressions. This, it
can work as a filter for elements to be mapped, see the
next section for more about patterns.

Templ-expr can be any valid template expression.
For example,
gentlemen(list<String> names) ::= <<
Hello<names of name: ', Mr. <name>'>!
>>

pairList(
 list<tuple<String,Integer>> pairs
) ::= <<
Pairs:<pairs of (s,i):'(<i>,<s>)'", ">.
>>

where name binds each element value of names list to
be used in the provided textual template after the ":"
and the pairList template binds the two values of the
pairs input parameter to map them with the textual
template. The ", " is the optional separator string that
is used as a delimiter when concatenating the mapping
results.

Map expressions can be used also for scalar typed
values, most useful for tuple types, like
firstSI(tuple<String,Integer> pair) ::=
 pair of (s,_) : s

The implicit variable it is always implied after the ":",
semantically as the "of ..." clause is always rewrit-
ten to "of it as elem-pattern". The "of ..."
clause is then optional with the meaning "of it".
Combining this with implicit referencing of it when
omitting the parameter on a single parameter template
call, the intention of the map expression is most suc-
cinct, for example:
intDecl(String varName) ::=
 'int <varName>;'

intDecls(list<String> varNames) ::= <<
/* integer local variables */
<varNames : intDef() \n>
>>

However, when the mapping template has more pa-
rameters, all of them must be explicit; while the im-
plicit value can still be referred by the name 'it'.

And again, we have specified an optional separator
to new line in the form of unquoted escaped string \n.
There are more options that are useful in various for-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 203

matting scenarios, see Section 7.11 for their special
syntax and semantics.

7.9 Match-Expressions

For example, consider the union type Statement from
the type definition in Section 7.3. To read record values
for an input value of the type in MetaModelica we
might use a match-expression with positional pattern
matching case rules like these (only fragments):
function statement
 input Statement inStatement;
...
match inStatement
 local
 Exp lhs, rhs;
 list<Statement> stmts;
case ASSIGN(lhs,rhs)
//lhs and rhs bound to respective values
 then ...;
case WHILE(stmts) equation
//stmts has value of statements here
...

Templates are supposed only to have read access to
data structure (e.g. AST) attributes, making the usual
local variable definitions unnecessary

The match-expression in the Susan language has the
syntax:
[match value-expr]opt
 case pattern-expr then template-expr
 case pattern-expr2 then template-expr2
 ...

Value-expr is usually a named value reference, but
can also be an external or intrinsic function call.

The match... clause is optional, assumed to have
the form match it when omitted. Each case opens a
scope after then, with the record field names of the
matched record node visible, e.g. lhs and rhs in the
ASSIGN node. The statement function as a template:
statement(Statement stmt) ::=
 match stmt
 case ASSIGN then

//lhs and rhs visible in the immediate scope
 …
 case w as WHILE then

 //w.statements visible while w not hidden
...

7.10 Conditional Expressions

Conditional expressions (or if-expressions) can be con-
sidered as syntactic variants of match-expressions. The
general syntax is:
if cond-expr then template-expr
[else template-expr2]opt

where if cond-expr can be only have two forms:
if [not]opt value-expr …

if value-expr is [not]opt pattern-expr …

The first form is intended to query values for their zero-
like values, enumerated by type:
Boolean false/true
Integer and Real 0/non-0,
String, list and Array empty/non-empty
Option NONE/SOME.

The second form uses pattern matching and is, for the
case without not, semantically equivalent to:
match value-expr
 case pattern-expr then template-expr
 case _ /*the rest*/then template-expr2

For the case with not, the expressions after then are
switched (unlike the patterns).

For all forms, when the else branch is not specified
it is assumed to be the empty string.

7.11 Automatic Indentation and Options

Well indented documents and code are much easier to
read than non-indented. Indentation levels are auto-
matically and recursively tracked. For example,
lines2(list<String> lines) ::= <<
 <lines \n>
>>

lines4(list<String> lines) ::= <<
 <lines2(lines)>
>>

Giving a list of strings to the lines2 template, all the
strings are concatenated using new line as delimiter and
indented by 2 spaces. Giving the same list to lines4
template, the indentation becomes 4 spaces.

There is a set of (template) expression options that
can be specified with following syntax:
<templ-expr sep; opt1=val1; opt2; ...>

We have already used the separator option in its short
form. A separator option is applicable for all multi-
result expressions (e.g., map expressions). It has also a
named option equivalent (a fragment):
<lines; separator=\n>

Expression options can be specified only in the direct
lexical context of <...> or (…). The latter is in-
tended for expressions that occur in the top-most or a
nested lexical context (e.g., after the then keyword),
for example (fragments),
... ::= (lines \n)
... then (exps : exp(); separator=";\n")

In the above examples, the indentation is also applied
after any new line embedded in the strings. Sometimes
such behavior is not desirable.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 204

There are four indentation controlling options: an-
chor, absIndent, relIndent and indent. They set integer
values defaulting to 0 when unspecified. While active,
their semantics says: ”apply my behavior when output-
ting the first non-space character after a new line”. Spe-
cifically, anchor means ”indent relative to where I
started“, absIndent means ”indent absolutely“, relIn-
dent means ”indent relative to actual indent“ and indent
means ”break the rule, put my indent immediately and
behave like relIndent”.

There are even more options, in addition to separa-
tor , where the most notable are wrap and align.

Combining indentation controlling options with
wrapping/aligning options, most formatting scenarios
can be addressed.

7.12 The While Example Using Susan

We have now prepared the ground for the complete
while-loop example. Given these templates
statement(Statement stmt) ::=
 match stmt
 case ASSIGN then <<
<exp(lhs)> = <exp(rhs)>;
 >>
 case WHILE then <<
while(<exp(condition)>) {
 <statements : statement() \n>
}
 >>

exp(Exp e1) ::=
 match e1
 case ICONST then value
 case VARIABLE then name
 case BINARY then
 '(<exp(lhs)> <oper(op)> <exp(rhs)>)'

oper(Operator) ::=
 case PLUS then "+"
 case TIMES then "*"
 case LESS then "<"

The oper() template uses the short form of the match.
Being fed this ASTvalue of type Statement:

WHILE(
 BINARY(VARIABLE("x"),LESS(),ICONST(20)),
{ASSIGN(VARIABLE("x"),
 BINARY(VARIABLE("x"),
 PLUS(), BINARY(VARIABLE("y"),
 TIMES(),ICONST(2))))})

the statement() template will generate this text

while((x < 20)) {
 x = (x + (y * 2));
}

7.13 The Susan Compiler

The Susan compiler translates source code in the Susan
language into the MetaModelica language. The first

prototype of the compiler was fully implemented in
MetaModelica. Then, its own code generator was re-
implemented using the Susan language.

8 Applications in Code Generation
The current code generation in OpenModelica 1.4.5 is
hand implemented and transforms the DAELow AST
into a list of strings which later is concatenated into the
generated code. The only target language is C.

The new template-based code generation brings
several advantages:

• Separation of concerns – developing a new code ge-
nerator is much simpler.

• New target languages (e.g., generating Java code)
can be added more easily to the code generator.

• Also end-users (modelers) can develop code genera-
tors, specified by template-based models, that can
be dynamically linked into the compiler.

Figure 2. Usage of template-based code generators for
producing target code in different languages.

9 Related Work
Template engines and languages can be used to gener-
ate code, documentation or web pages. Most of them
claim to use a Model-View-Controller concept (MVC),

DAELow

SimCode

TemplateEngine

Generated Code

Language1

Language2

LanguageN

Runtime Language1

Runtime Language2

Runtime LanguageN

Linking

Executable

data structures for representing
solved equation code

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 205

even though many violate some of the MVC principles.
Many tools are based on Java and thus need to be fed
XML data or Java classes.

9.1 Ctemplate from Google

Ctemplate [11] is a C++-based template engine that is
less complex than most of the Java-based alternatives.
The input is a basic dictionary structure. An example of
a ctemplate template:

Hello {{NAME}},
You have just won ${{VALUE}} !
{{#IN_CA}}${{TAXED_VALUE}} after taxes.{{/
IN_CA}}

The code to use this template is rather complex [22].

9.2 Apache Velocity

Velocity [2] is a Java-based tool that generates output
using templates. It is mainly used to serve webpages,
SQL and PostScript but can also be used for code gen-
eration].

The data consists of Java classes that are fed to the
engine. Velocity applies the classes to the template us-
ing directives like if-else, foreach (for iterable classes
like lists) and can set/get its own variables inside the
template. An example Velocity template:
class Structure [
#foreach($var in $list)
 public $var.type.name $var.name ;
#end
}

9.3 StringTemplate

StringTemplate [18] with the ST language [17] is a
template engine tightly integrated with ANTLR [1],
including language bindings for Java, C++, and Python.
It has been designed [16] to strictly enforce the MVC
concept, and is mostly used for generation of web
pages.

According to the main author, Terrence Parr [17]
only four basic template constructs are needed:

• Attribute reference, $name$ or <name>.
• Conditional template inclusion based on pres-

ence/absence of an attribute, $if(flag)$text$endif$.
• Recursive template references.
• Template application to a multi-valued attribute

(e.g. names) similar to lambda functions and LISPs
map operator, $names: templToApply()$.

The template language, called ST, is actually a func-
tional language. A template example follows:

("Hello, $name$\n" +
 "While you were gone $names;
 separator=\", \"$

 called you.",
 DefaultTemplateLexer.class);

Use of the template:
import org.antlr.stringtemplate.*;
import org.antlr.stringtemplate.language.*;

class sttest {
public static void main (String [] args) {
 StringTemplate hello= new StringTemplate
 ("Hello, $name$\n" +
 "While you were gone $names;
 separator=\", \"$
 called you.",
 DefaultTemplateLexer.class);
 hello.setAttribute("name","General");
 String [] names = {"Alpha", "Bravo",
 "Charlie" };
 hello.setAttribute("names", names);
 System.out.println(hello.toString());
} }

Output:

Hello, General
While you were gone Alpha, Bravo, Charlie
called you.

9.4 Structured Representation Approaches

Invasive software composition [3] is somewhat related
to template languages. Programs are decorated with
hooks that can be replaced during composition. Opera-
tions are typically on abstract syntax instead of strings.

10 Conclusions
The uses, needs, and requirements of text generation
template language for Modelica have been discussed.

Several template language designs and some usage
examples and experience have been presented, both C
code generation and Modelica model generation. There
are difficult tradeoffs between different language de-
sign options regarding properties like generality, con-
ciseness, consistency, efficiency, etc.

Three Modelica-related designs have been created.
The first presented design is embedded in MetaMode-
lica has not yet been implemented due to lack of re-
sources. The second is a simple interpreted template
language (as an external DSL) which was implemented
and tried early on. The third (Susan) is a recently im-
plemented compiled template language. It is efficient
since it is compiled to MetaModelica. The language has
several nice features and has already been used for its
compilation to MetaModelica. However, some design
remains and there is still discussion among the authors
regarding the right syntax and semantics in some cases.
The language looks very promising as a powerful tool
for specifying code generation and similar tasks.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 206

10.1 Future Work

The next mile-stone is to re-implement the code gen-
erator of the OpenModelica compiler using the Susan
language, for at least two target languages (C/C++, C#
and perhaps Java). This will further refine the design
and implementation. Moreover, good tooling is impor-
tant also for template languages. As a start, keyword
coloring will soon be available in the OpenModelica
MDT (Modelica Development Tooling) environment.

11 Acknowledgements
This work has been supported by Vinnova in the
ITEA2 OPENPROD project, by the Swedish Research
Council (VR), by the Czech National Research Pro-
gramme, project No.2C06031, "e-Golem", and by
Creative Connections s.r.o., Czech Republic. The Open
Source Modelica Consortium supports the OpenMode-
lica work. Peter Aronsson from MathCore Engineering
AB gave useful feedback during the design.

References
[1] ANTLR. http://www.antlr.org. Access Nov 2007.

[2] Apache Software Foundation. Velocity Users
Guide, 2008.: http://velocity.apache.org/engine/
releases/velocity-1.6.1/user-guide.html. Jan 2009.

[3] Uwe Assmann. Invasive Software Composition.
ISBN 3540443851, 9783540443858, 334 pages.
Springer Verlag, 2003.

[4] Martin Fowler: Domain Specific Language
http://www.martinfowler.com/bliki/ DomainSpeci
ficLanguage.html.

[5] Martin Fowler. Domain Specific Languages
http://martinfowler.com/dslwip/

[6] Peter Fritzson. Towards a Distributed Program-
ming Environment based on Incremental Compi-
lation. PhD thesis no 109, Linköping University,
April 13, 1984.

[7] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Environ-
ment. Simulation News Europe, 44/45, Dec 2005.
http://www.openmodelica.org

[8] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[9] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proc. of the 4th International Modelica Confer-
ence, Hamburg, Germany, March 7-8, 2005.

[10] Peter Fritzson, Adrian Pop, Kristoffer Norling,
and Mikael Blom. Comment- and Indentation
Preserving Refactoring and Unparsing for Mode-
lica. In Proc. 6th Int. Modelica Conf. (Mode-
lica'2008), Bielefeld, Germany, March.3-4, 2008.

[11] Google. ctemplate, 2008. http://code.google.com
/p/google-ctemplate/. Accessed 2009.

[12] Kenneth C. Louden. Programming Languages,
Principles and Practice. ISBN 0-534-95341-7,
Thomson Brooks/Cole, 2003.

[13] Modelica Association. The Modelica Language
Specification Version 3.0, September 2007.
http://www.modelica.org.

[14] Martin Mikelsons. Prettyprinting in an interactive
programming environment. In Proc. of ACM
SIGPLAN SIGOA symposium on Text manipula-
tion. Portland, Oregon, 1981.

[15] Eclipse website. http://www.eclipse.org. Refer-
enced Nov 2007.

[16] Terence Parr. Enforcing Strict Model-View Sepa-
ration in Template Engines. http://www. string-
template .org,. May 2004. Accessed May 2009.

[17] Terence Parr. [DRAFT] A Functional Language
For Generating Structured Text.
http://www.stringtemplate.org. May 2006. Ac-
cessed May 2009.

[18] Terence Parr. StringTemplate documentation.
http://www.stringtemplate.org. Access May 2009.

[19] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, , March 7-8, 2005.

[20] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, and David Akhvlediani. OpenMode-
lica Development Environment with Eclipse Inte-
gration for Browsing, Modeling, and Debugging.
In Proc 5th International Modelica Conf. (Mode-
lica'2006), Vienna, Austria, Sept. 4-5, 2006.

[21] Adrian Pop. Integrated Model-Driven Develop-
ment Environments for Equation-Based Object-
Oriented Languages. www.ep.liu.se. PhD Thesis
No. 1183, June 5, 2008.

[22] Martin Sjölund. Bidirectional External Function
Interface Between Modelica/MetaModelica and
Java. Master Thesis. Linköping Univ, Aug. 2009.

[23] Philip Wadler. A Prettier Printer. Journal of
Functional Programming,1998, pp 223-244.
Draft version
:homepages.inf.ed.ac.uk/wadler/papers /pret-
tier/prettier.pdf Implementation PPrint by Daan
Leijen

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 207

Higher-Order Non-Causal Modelling and Simulation of
Structurally Dynamic Systems

George Giorgidze Henrik Nilsson

Functional Programming Laboratory
School of Computer Science

University of Nottingham
United Kingdom

{ggg,nhn}@cs.nott.ac.uk

Abstract
This paper explores a novel approach to the implementation
of non-causal modelling and simulation languages support-
ing highly structurally dynamic systems. One reason the
support for structural dynamics is limited in present main-
stream non-causal modelling and simulation languages is
that they are designed and implemented on the assumption
that symbolic processing of models and ultimately compila-
tion of simulation code takes place prior to simulation. We
seek to lift that restriction, without sacrificing efficiency,
by exploiting just-in-time (JIT) compilation to allow new
simulation code, reflecting structural changes, to be gener-
ated as the simulation progresses. Our work is carried out
in a framework called Functional Hybrid Modelling that
supports higher-order modelling, as higher-order modelling
lends itself naturally to expressing structural dynamism.
However, the central ideas of the paper should be of general
interest in the area of structural dynamism. The paper pro-
vides an in-depth description of the implementation tech-
niques we have developed as well as a performance evalua-
tion.

Keywords: Non-causal Modelling and Simulation, Struc-
turally Dynamic Systems, Functional Programming, Just-
In-Time Compilation, Symbolic/Numerical Methods

1 Introduction
When developing dynamic models of physical systems, it
is often desirable to model major changes in system be-
haviour by changing the differential algebraic equations
(DAEs) that describe the dynamics of the system. These
major changes can be due to the modelled system itself ex-
hibiting structural changes, due to a need to change to sim-
plified models of parts of a system for periods of time, and
so on [12]. Models whose equational description change
over time are called structurally dynamic, and each struc-
tural configuration is known as a mode of operation. Struc-

turally dynamic systems are an example of the more general
notion of hybrid systems, systems that exhibit both contin-
uous and discrete behaviour.

Unfortunately, the support offered by current modelling
languages for expressing structurally dynamic systems (as
well as hybrid systems in general) is somewhat limited
[13, 20, 22]. This is true in particular for non-causal mod-
elling languages, which is the class of modelling languages
with which we are concerned in this paper. There are a num-
ber of reasons for this limited support, many of them re-
lated to the technical difficulties of simulating structurally
dynamic models, such as identifying suitable state variables
for different modes and proper transfer of the state between
modes [12, 13].

However, there is also one less fundamental reason,
namely the common assumption that most or all process-
ing to put a model into a form suitable for simulation
will take place prior to simulation [18, 21]. By enforc-
ing this assumption in the design of a modelling language,
its implementation can be simplified as there is no need
for simulation-time support for handling structural changes.
For instance, a compiler can typically generate static simu-
lation code (often just sequences of assignment statements)
with little or no need for dynamic memory management.
This results in good performance. But the limitations are
also obvious: for example, the number of modes must be
modest as, in general, separate code must be generated for
each mode. This rules out supporting highly structurally dy-
namic systems: systems where the number of modes is too
large to make explicit enumeration feasible, or even a priori
unbounded.

There are a number of efforts to design and implement
modelling and simulation languages with improved support
for structural dynamics. Examples include HYBRSIM [14],
MOSILAB [19], and Sol [22]. Of these, Sol is likely the
most flexible. However, thus far, implementations have ei-
ther been interpreted (HYBRSIM and Sol), or the language
has been restricted so as to limit the number of modes to
make it feasible to compile code for all modes prior to sim-
ulation (MOSILAB).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 208 DOI: 10.3384/ecp09430137

This paper contributes towards the design and implemen-
tation of modelling and simulation languages by demon-
strating support both for modelling of highly structurally
dynamic systems and for compilation of simulation code
for efficiency. We present a prototype implementation of a
non-causal language allowing arbitrary structural changes
during simulation. Central to this capability, and the focus
of this paper, is that the equations that describe the cur-
rent operating mode are compiled into simulation code at
each structural change using a code-generation framework
supporting just-in-time (JIT) compilation: the Low Level
Virtual Machine (LLVM) [7]. We describe the compilation
process as well as the necessary supporting run-time ma-
chinery, and we provide small but detailed benchmarks that
demonstrate that the generated simulation code is fairly ef-
ficient and that the overhead of the processing of structural
changes is not unreasonable, particularly not for an early
prototype. As far as we know, this is the first time JIT com-
pilation has been used for dynamic compilation of simu-
lation code to enable efficient simulation of highly struc-
turally dynamic models in the context of non-causal mod-
elling. The implementation is available on-line1 under the
open source BSD license.

This work has been carried out in the context of our re-
search on Functional Hybrid Modelling (FHM) [17, 18],
a novel approach to purely declarative languages for non-
causal, hybrid modelling and simulation. A central aspect of
FHM is that models are first-class entities. This means they
can be manipulated programmatically (past as arguments
to functions, returned as results of functions, etc.), just like
any other type of value such as integers or Booleans. This
is called higher-order modelling [3].2

Higher-order modelling, with just a minimum of addi-
tional language constructs, lends itself very well to express-
ing highly structurally dynamic systems: all that is needed
is the means to allow new model fragments to be computed
not only before simulation starts, but also during simula-
tion, at events, and to be integrated into the simulated sys-
tem at those points. This is the approach taken by FHM. In-
deed, the ease by which higher-order modelling can express
structural dynamics was partly what motivated our research
into FHM in the first place [17].

However, at its core, this paper is concerned with tech-
niques for implementing languages supporting modelling of
highly structurally dynamic systems, and we would thus
like to emphasise that the ideas and results presented in
this paper are not limited to the setting of FHM, but are,
on the whole, applicable to modelling and simulation lan-
guages supporting structurally dynamic systems in general.
We would also like to reiterate that the focus of this pa-
per is squarely on the mechanics of integrating dynamic
code generation into the implementation of a non-causal
modelling language: many of the other technical problems
briefly mentioned above remain to be solved.

1http://cs.nott.ac.uk/˜ggg/
2As it is reminiscent of higher-order functions. A function is higher-

order if some of its arguments or result is function-valued. Not to be con-
fused with other meanings of higher-order.

The rest of this paper is organised as follows. Section 2
provides background on FHM and LLVM. FHM is intro-
duced by means of an example that is also used in the re-
mainder of the paper, so we recommend that all readers,
even if already familiar with FHM, take at least a quick
look at this section. Section 3 explains how our language
is implemented, with a particular emphasis on the methods
we use to support highly structurally dynamic systems. The
performance of our prototype implementation is evaluated
in Section 4. Related work is discussed in Section 5. Finally,
Section 6 considers future work and conclusions are given
in Section 7.

2 Background

2.1 Functional Hybrid Modelling
In the following, we give a brief overview of Functional Hy-
brid Modelling (FHM) to explain the notation used in the
rest of the paper and to provide some general background.
In particular, we introduce Hydra, the FHM language we
are currently working on. For details, see earlier papers on
FHM [17, 18]. However, we again remind the reader that
in the present context, FHM and Hydra should mostly be
seen as a particular syntax that is convenient for express-
ing structurally dynamic systems; neither is central to the
contributions of this paper.

With FHM, we seek to develop a small but expressive,
purely declarative, non-causal and hybrid modelling lan-
guage. A key motivation is to develop simple and clear se-
mantical foundations for this class of modelling languages,
with a view to paving the way for improvements such as
more flexible support for hybrid modelling and type sys-
tems exploiting domain knowledge in new ways [15].

Our hypothesis is that the aims of FHM can be realised by
identifying the core semantical concepts of non-causal and
hybrid modelling and embedding these as first-class entities
in a declarative host language. This achieves a separation of
concerns that we believe is both sound and expedient, as it
highlights similarities and differences with other classes of
languages and allows us to focus our research on what is
specific to non-causal, hybrid modelling languages.

2.2 Signal Relations
FHM was inspired by Functional Reactive Programming
(FRP) [4] and then in particular Yampa [16]. FRP is an
approach to reactive programming that in many ways can
be seen as causal modelling. It is realised by enriching a
functional language with a first-class notion of functions
operating on signals, signal functions, where a signal is
a time-varying value. In other words, signal functions are
very much like “blocks” in a causal modelling language like
Simulink, except having first-class status, which means that
ordinary functions can operate on signal functions achiev-
ing what in many modelling languages would be consid-
ered meta-modelling capabilities. In particular, new sig-
nal functions can be computed as a system is running and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 209

then “switched in” to become part of that system, allowing
highly structurally dynamic systems to be modelled [16].

What distinguishes non-causal from causal modelling
languages is that models are described in terms of undi-
rected equations over time-varying entities. In other words,
relations on signals as opposed to functions on signals. The
essence of FHM is thus the addition of first-class relations
on signals, signal relations, to a functional language.

There are consequently two levels to FHM: the func-
tional level, concerned with defining ordinary functions
operating on time-invariant values, and the signal level,
concerned with the definition of relations between signals
(time-varying values), and, indirectly, the definition of the
signals themselves as solutions satisfying the constraints
imposed by the signal relations. The definitions at the sig-
nal level may freely refer to entities defined at the functional
level, which is crucial in the following. Also, defined signal
relations are ordinary time-invariant values at the functional
level (first-class entities). Signals, on the other hand, are not
first-class entities at the functional level. However, as dis-
cussed in the following, instantaneous values of signals can
be propagated back to the functional level allowing e.g. the
future system structure to depend on signal values at dis-
crete points in time.

For those familiar with languages like Modelica, note that
a signal relation has many similarities to a class: fundamen-
tally a signal relation is just an encapsulated set of equations
that constrain a number of signal variables. Also like a class,
signal relations can be instantiated, creating copies of the
encapsulated equations imposing their constraints on some
variables in the current context. This is called signal relation
application. Unlike Modelica, there is no class hierarchy
and thus no inheritance, so the only way to reuse equations
is by signal relation application. On the other hand, signal
relations are first class entities, giving a lot of additional ex-
pressive power, whereas classes are not.

2.3 Hydra by Example: The Breaking Pen-
dulum

Let us illustrate the key aspects of FHM and Hydra through
an example. As this paper is concerned with structural dy-
namism, we chose a variation of a breaking pendulum [11,
pp. 31–33] as it is representative yet small. The pendulum
is modelled as a point mass m at the end of a rigid, mass-
less rod, subject to gravity m~g; see Figure 1. Additionally,
the rod could break at some point in time, causing the mass
to fall freely. The breaking of the pendulum causes a sig-
nificant change in the structure of the system, so much that
languages like Modelica do not support non-causal simula-
tion of a pendulum that breaks during simulation [18].

We start by modelling a free-falling body in Hydra. Let
us begin by defining some type abbreviations and con-
stants for convenience. Hydra is implemented as an em-
bedding in Haskell [5], the host language. The functional
level discussed above is thus provided by Haskell, saving
us the work of implementing a functional language from
scratch. Type abbreviations and constants are ordinary time-

m

m~g

ϕ

l

Figure 1: A pendulum subject to gravity.

invariant definitions and defined at the functional level; i.e.,
directly in Haskell. We define the position and velocity to
be pairs of reals, and the state of a body in motion to be
given by its position and velocity. An entity of type Body is
thus an aggregate of four real-valued fields. We also define
the gravitational acceleration g to a suitable value:

type Position = (Double,Double)
type Velocity = (Double,Double)
type Body = (Position,Velocity)
g :: Double
g = 9.81

A model of a free-falling body is a signal relation
parametrised on the initial state of the body. In Hydra,
exploiting that signal-relations are first-class entities, a
parametrised signal relation is just a function that computes
the appropriate signal relation from the parameters and re-
turns this computed signal relation as its result. This is thus
an example of higher-order modelling. In our case, we ob-
tain a function that computes a signal relation constraining a
variable of type Body (or rather, its four real-valued fields)
given an initial value of the state, also of type Body (→ is
the type former for functions in Haskell):

freeFall :: Body → SR Body

The function freeFall is defined by pattern matching on
its one argument of type Body , binding (functional-level)
variables x0 , y0 , vx0 , and vy0 to the initial position and
velocity:

freeFall ((x0 , y0), (vx0 , vy0)) = . . .

The bound variables scope over the body of the function,
here indicated by an ellipsis.

Note that the Haskell syntax for function application is
simply juxtapositioning; e.g., f 1 denotes the application of
the function f to the argument 1, g 2 3 the application of the
function g to the two arguments 2 and 3, and so on. Paren-
theses are not part of the syntax of function application as
such, although they are used for grouping and, as here, to
denote tuples. The syntax of function definition mirrors the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 210

syntax of function application. The function freeFall is thus
syntactically a function of a single argument: a pair of pairs
of reals.

The body of freeFall defines the parametrised signal re-
lation. To do this, we need to work at the signal level.
The Hydra embedding is achieved through quasiquoting,
a Haskell extension provided by the Glasgow Haskell
Compiler (GHC) [10]. Quasiquoting allows custom syn-
tax to be realised by arranging for source text delimited by
quasiquotes to be passed to a custom-written function that
parses the text and translates it into abstract syntax of the
host language. In GHC, this is done prior to type checking.
Quasiquoting is thus rather similar to what can be achieved
through a pre-processor, except more tightly integrated with
the compiler and less work to implement. The Hydra open-
ing quasiquote is [$hydra|, and the closing quote is |]. Be-
tween them, we have signal-level definitions expressed in
our custom syntax. The complete definition of freeFall is
as follows:

freeFall ((x0 , y0), (vx0 , vy0)) = [$hydra|
sigrel ((x , y), (vx , vy)) where

init (x , y) = ($x0$, $y0$)
init (vx , vy) = ($vx0$, $vy0$)
(der x , der y) = (vx , vy)
(der vx , der vy) = (0,− $ g$)

|]

The keyword sigrel starts the definition of a signal rela-
tion. It is followed by a pattern that introduces signal vari-
ables giving local names to the signals that are going to be
constrained by the signal relation. This pattern thus speci-
fies the interface of a signal relation, similarly to how func-
tion arguments specify the interface of a function. After the
keyword where follow the equations that define the rela-
tion. These equations may introduce additional signal vari-
ables as needed. Equations marked by the keyword init are
initialisation equations used to specify initial conditions.

To refer to functional-level entities at the signal level, in-
side the quasiquotes, such references need to be antiquoted
by enclosing them between $-signs. Arbitrary Haskell ex-
pressions, using any functional-level variable in scope out-
side the quasiquoted block, are allowed between the an-
tiquotes. However, none of the signal-level variables are in
scope in antiquoted code. The abstract syntax for each an-
tiquoted Haskell expressions is then spliced in at the point
of the antiquote. For example, note how the functional-
level parameters defining the initial position and velocity
(x0 , y0 , vx0 , vy0) are referenced in the initialisation equa-
tions. A signal relation may thus depend on functional-level
values, thus making it parametrised. As we will see, these
values can be any kind of functional-level values, includ-
ing signal relations, thus achieving higher-order modelling
without further ado.

Of course, the quasiquotes and antiquotes are just an arti-
fact of our specific approach to implementing Hydra. A less
“noisy” syntax would certainly be possible (with some im-
plementation effort). However, the explicit quoting makes
the distinction between the functional level and the signal

level manifest, which is helpful at least for explanatory pur-
poses.

Readers who are familiar with Modelica might find it il-
luminating to compare the Hydra model above with a Mod-
elica version. To facilitate comparison, we have kept the
Modelica version as close as possible to the Hydra version,
rather than trying to provide the “most natural” Modelica
model:

model FreeFall
parameter Real x0, y0, vx0, vy0;
Real x(start=x0), y(start=y0);
Real vx(start=vx0), vy(start=vy0);

equation
der(x) = vx;
der(y) = vy;
der(vx) = 0;
der(vy) = -g;

end FreeFall;

Here, g is assumed to be a constant defined elsewhere.
Note how Modelica parameters, that denote entities that re-
main constant during continuous integration, correspond to
functional-level variables in Hydra, while Modelica vari-
ables that change during continuous integration correspond
to signal-level Hydra variables. A difference, though, is
that Modelica parameters can only change at the very start
of a simulation, while Hydra functional-level variables can
change at every event occurrence.

In a completely analogous way to the free-falling mass,
we define a parametrised signal relation that models the
pendulum in its unbroken mode. The parameters are the
length of the rod l and the initial angle of deviation phi0 :

pendulum :: Double → Double → SR Body
pendulum l phi0 = [$hydra|

sigrel ((x , y), (vx , vy)) where
init phi = $phi0 $
init der phi = 0
init vx = 0
init vy = 0
(x , y) = ($l $ ∗sin phi ,− $ l $ ∗cos phi)
(vx , vy) = (der x , der y)
der (der phi) + ($g $ / $ l$) ∗ sin phi = 0

|]

Again, for comparison, we give a Modelica version:

model Pendulum
parameter Real l, phi0;
Real x, y, vx, vy;
Real phi(start=phi0), phid;

equation
x = l * sin(phi);
y = -l * cos(phi);
vx = der(x);
vy = der(y);
phid = der(phi);
der(phid) + (g/l) * sin(phi) = 0;

end Pendulum;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 211

We proceed to extend the above definition into a signal
relation that also provides an event signal defining when
the pendulum is to break. An event signal is a signal that
is only defined at discrete points in time, events. In this
case, an event is generated at a specified point in time, and
the value of the event signal is the state (position and ve-
locity) of the pendulum at that point. Note how the new
signal relation is defined by extending the previous one.
The parametrised signal relation pendulum is applied to the
length of the pendulum and the initial angle of deviation at
the functional level (within antiquotes), thus computing a
signal relation. This relation is then applied at the signal
level, through signal relation application (the operator �),
instantiating the equations of pendulum in the context of
breakingPendulum and thus effectively extending the def-
inition of pendulum:

breakingPendulum :: Double → Double → Double
→ SR (Body ,E Body)

breakingPendulum t l phi0 = [$hydra|
sigrel (((x , y), (vx , vy)),

event e@((,), (,))) where
$ pendulum l phi0 $ � ((x , y), (vx , vy))
event e = ((x , y), (vx , vy)) when time = $t $

|]

The process of unfolding signal relation applications is
called flattening and is in many ways similar to the trans-
formation of hierarchical models in languages like Model-
ica into a flat system of equations, a process usually also re-
ferred to as flattening. Unfolding signal relation application
in Hydra is straightforward: the actual arguments (signal-
valued expressions) to the right of the signal relation appli-
cation operator � are simply substituted for the correspond-
ing formal arguments (signal variables) in the body of the
signal relation to the left of �. The only real issue is that
name capture, accidental clashes of variable names3, must
be avoided by an appropriate renaming strategy.

Finally, we simulate the actual breaking of the pendulum
by switching from the pendulum equations to the free fall
equations at the point where the event is generated. This is
accomplished by the switch-combinator4 with the follow-
ing type signature:

switch :: SR (a,E b)→ (b → SR a)→ SR a

The as and bs in the above type signature are polymorphic
type variables that can be instantiated to any specific type.
For example, a would be a pair of reals for a binary signal
relation.

The switch-combinator is another example of higher-
order modelling: it takes two signal relations as arguments
(one plain signal relation and one parametrised signal rela-
tion; i.e. a function returning a signal relation) and com-
bines them into a new signal relation that initially im-
poses constraints according to the first relation, and after

3For example, a local variable in a signal relation body having the same
name as a variable in one of the actual arguments.

4A combinator is a function without free variables. Functions whose
main purpose is to combine functions into new functions, are often referred
to as combinators to emphasise this purpose.

the switch according to the second relation. Again, this is in
many ways just syntax that happens to fit well in our FHM
setting. One could envision alternative ways of expressing
switching from one set of equations to another, such as con-
ditionals where each branch give one set of equations.

In more detail, the switch-combinator expects an event
signal output from its first signal relation argument. The
first time this event signal is defined, the switch combinator
applies its second argument (the parameterised signal rela-
tion) to the value of the event signal at this point, computing
a new signal relation of the same type as the first signal re-
lation argument, and then replacing the equations from the
first signal relation with those of the newly computed signal
relation:

mainSR :: SR Body
mainSR = switch (breakingPendulum 10 1 (pi / 4))

freeFall

Note that the switching event carries the state of the pen-
dulum at the breaking point as a value of type Body . This
value is passed to freeFall , resulting in a model of the free-
falling mass that is initialised in a way that ensures that the
position and velocity of the mass become continuous sig-
nals.

2.4 The Low Level Virtual Machine

The Low Level Virtual Machine (LLVM) [7] is a language-
independent, portable, optimising, compiler back-end. As
its name suggests, it provides a compiler with a virtual ma-
chine target and takes care of translating the LLVM code
into code for any specific, concrete, architecture supported
by the LLVM. There are a number of backends with capa-
bilities similar to LLVM that we could have used instead.
However, LLVM is rather typical, so the following discus-
sion, while centred around LLVM, is mostly relevant also
for other similar backends.

The LLVM has been very carefully engineered to on
the one hand be sufficiently high-level to be truly portable
across different architectures, shielding the the compiler
from the low-level details of the ultimate target. In that
sense, it is a principled alternative to using a language like C
as a compiler target for portability. Also, this makes it pos-
sible to support generic, target-independent optimisations at
the LLVM level, saving the compiler writer from the burden
of implementing many standard optimisations from scratch.
On the other hand, LLVM has also been engineered to be
sufficiently low-level to not get in the way of generating
high-performance code, and to not make any assumptions
about the source language. Taken together, this means that
the LLVM it is an ideal target for compilers for a wide range
of different languages.

The LLVM is thus rather unlike what probably is the most
common virtual machine, the Java Virtual Machine (JVM).
The JVM is very Java-centric, making it a poor fit for any
language which isn’t similar to Java. Also the JVM is funda-
mentally a byte-code interpreter, which incurs performance

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 212

penalties, even if just-in-time (JIT) compilation often is em-
ployed to speed up the interpretation. LLVM code, on the
other hand, is designed to be compiled into code for the ul-
timate target architecture.

That said, the LLVM, like the JVM, does support adding
in new code dynamically to running applications. The
LLVM achieves this through JIT compilation. An applica-
tion that needs to invoke code that is generated dynamically
is linked with the LLVM JIT compiler. The code generator
of the JIT compiler is the same as in LLVM static com-
piler [9]. The LLVM code generator has been shown to out-
perform the code generator of GNU Compilers Collection
(GCC) in a number of benchmarks, both in speed of code
generation and execution of generated code [8].

The JIT compiler can be invoked through the provided
API whenever a piece of new code needs compiling. The
JIT compiler will return a handle to the generated code. This
can then be called, just like any statically compiled func-
tion, and equally efficient. It is also possible to dispose of
dynamically generated code that is no longer needed. The
LLVM JIT capabilities turned out to be a very good fit for
supporting structurally dynamic simulation, as will be dis-
cussed in the following.

3 Simulation
In this section we describe how simulation is performed in
Hydra. The process is illustrated in Figure 2 and is con-
ceptually divided into four stages. In the first stage, a sig-
nal relation is flattened and subsequently transformed into a
mathematical representation suitable for numerical simula-
tion. In the second stage, this representation is just-in-time
compiled into efficient machine code. In the third stage, the
compiled code is passed to a numerical solver that simulates
the system until the end of simulation or an event occur-
rence. In the fourth stage, in the case of an event occurrence,
the event is analysed, a corresponding new signal relation is
computed and the process is repeated from the first stage.
In the following, each stage is described in more detail.

3.1 Symbolic Processing
As a first step, all signal variables are renamed to give them
distinct names. This is to simplify the process of flattening,
signal relation application unfolding (see section 2.3). All
event variables are also given distinct names to allow the
event handler to identify a corresponding event variable in
the original unflattened signal relation at the moment of an
event occurrence (see section 3.4). Having carried out this
preparatory renaming step, all signal relation applications
are unfolded until the signal relation is completely flattened.

Further symbolic processing is then performed to trans-
form the flattened signal relation into a form that is suitable
for numerical simulation. In particular, derivatives of com-
pound signal expressions are computed symbolically. In the
case of higher-order derivatives, extra variables and equa-
tions are introduced to ensure that all derivatives in the flat-
tened system are first order. While the numerical solver used

S
y
m

b
ol

ic

P
ro

ce
ss

in
g

C
om

p
il
at

io
n

Ju
st

-I
n
-T

im
e

S
im

u
la

ti
on

N
u
m

er
ic

al

H
an

d
li
n
g

E
ve

n
t

Signal Relation

IDAd ~x0
dt ~x0 ~y0

Event

Simulation Result

Signal Relation
Flattened

i(d~x
dt , ~x, ~y, t) f(d~x

dt , ~x, ~y, t) e(d~x
dt , ~x, ~y, t)

LLVM
Code

LLVM
Code

LLVM
Code

Machine
Code

Machine
Code

Machine
Code

KINSOL

Figure 2: Simulation run-time system of Hydra

in the current implementation handles higher-index systems
of equations, it is desirable to perform index reduction sym-
bolically at this stage as well [1, 23]. Hydra does not yet do
this, but we intend to implement symbolic index reduction
in the future.

Finally, the following equations are generated at the end
of the stage of symbolic processing:

i(
d~x

dt
, ~x, ~y, t) = 0, t = t0 (1)

f(
d~x

dt
, ~x, ~y, t) = 0 (2)

e(
d~x

dt
, ~x, ~y, t) = 0 (3)

Here, ~x is a vector of differential variables, ~y is a vector
of algebraic variables, t is time, and t0 is the starting time
for the current set of equations. Equation 1 determines the
initial conditions for Equation 2 (i.e., the values of d~x

dt ,~x

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 213

and ~y at time t0). Equation 2 is the main DAE of the system
that needs to be integrated in time starting from the initial
conditions. Equation 3 specifies the event conditions.

3.2 Just-in-time Compilation

The generated equations are implicitly formulated ones: the
mathematical representation of non-causal signal relations.
In general, it is not possible to transform these implicit
equations into explicit ones; i.e., to completely causalise
them [1]. Consequently, a system of implicit equations
needs to be solved at the start of the simulation of each
structural configuration mode and at every integration step.
For example, a numerical solution of an implicitly formu-
lated DAE (Equation 2) involves execution of the function
f , a number of times (sometimes hundreds or more at each
integration step), with varying arguments, until it converges
to zero. The number of executions of f depends on various
factors including the required precision, the initial guess,
the degree of non-linearity of the DAE, etc.

To enable efficient simulation, it is important to compile
the functions i, f , and e to a representation that can be ex-
ecuted efficiently. In addition, as Hydra allows the equa-
tions to change completely during simulation, it follows that
compilation cannot be performed only before the simulation
starts, but has to be performed during the simulation as well,
whenever the equations change.

The simulation run-time system of Hydra supports JIT
machine code generation using the compiler infrastructure
provided by LLVM. The functions i, f and e are compiled
into LLVM instructions that in turn are compiled by the
LLVM JIT compiler into machine code for the processor
architecture the simulation is running on. As noted above,
the process of JIT compilation is triggered by the simula-
tion run-time system at every discrete event that changes
the equations of the system. The generated machine code is
then passed to the numerical solver.

3.3 Numerical Simulation

The numerical suite used in the current implementation of
Hydra is called SUNDIALS [6]. The following components
of SUNDIALS are used:

• KINSOL: nonlinear algebraic equation systems solver

• IDA: differential algebraic equation systems solver

The code for the function i is passed to KINSOL that
numerically solves the system and returns initial values (at
time t0) of d~xdt ,~x and ~y. These vectors together with the code
for the functions f and e are passed to IDA that proceeds to
solve the DAE by numerical integration. This continues un-
til either the simulation is complete or until one of the events
defined by the function e occurs. Precise event detection fa-
cilities are provided by IDA.

3.4 Event Handling
At the moment of an event occurrence, the numerical sim-
ulator terminates and presents the following information to
an event handler:

• Name of the event signal variable for which an event
occurrence has been detected

• Time te of the event occurrence

• Instantaneous values of the signal variables (i.e., val-
ues of d~xdt , ~x and ~y at time te)

In the case of the breaking pendulum model, the name of
the detected event signal variable is e . In addition, te = 10,
x ≈ 0.21, y ≈ −0.98, vx ≈ 2.25 and vy ≈ 0.49. Here, x ,
y , vx and vy are the signal variables that are constrained by
the pendulum signal relation.

Next, the event handler traverses the original unflattened
signal relation and finds the event value expression (i.e., a
signal-level expression) that corresponds to the aforemen-
tioned event signal variable. In the case of the breaking
pendulum model, the expression is ((x , y), (vx , vy)). This
expression is evaluated by substituting the instantaneous
values of the corresponding signals for the variables. In
the case of the breaking pendulum model, the computed
value is ((0.21,−0.98), (2.25, 0.49)). However, note that
this now is a functional-level expression. This is the only
place in Hydra where instantaneous values of signals are
passed back to the functional level.

As a final step, the event handler applies the second
argument of the switch combinator (i.e., the function to
compute the new signal relation to switch into) to the
functional-level event value. In the case of the break-
ing pendulum model, the function freeFall is applied to
((0.21,−0.98), (2.25, 0.49)).

The result of this application is a new signal relation. The
simulation process continues from the first stage of sym-
bolic processing and onwards by discarding the old sig-
nal relation and simulating the new one. In the case of the
breaking pendulum model, the pendulum signal relation is
discarded together with the machine code that was gener-
ated for it by the LLVM JIT compiler.

In the current implementation, the new signal relation is
flattened and new equations generated without reusing old
ones from previous modes. In other words, events are not
treated locally. In addition, the state of the whole system
needs to be transferred for global and explicit reinitialisa-
tion of the entire system at every event using a top level
switch, like in the breaking pendulum example. We hope to
address these issues in the future: see Section 6.

4 Performance
In this section we provide an initial performance evaluation
of the current prototype implementation of Hydra. We are
mainly concerned with the overheads of mode switching
(computing new structural configurations at events, sym-
bolic processing of the equations, and JIT compilation) and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 214

how this scales when the size of the models grow in order
to establish the feasibility of our approach. The time spent
on numerical simulation is of less interest at this point: as
we are using standard numerical solvers, and as our model
equations are compiled down to native code with efficiency
on par with statically generated code (see section 2.4),
this aspect of the overall performance should be roughly
similar to what can be obtained from other compilation-
based modelling and simulation language implementations.
For this reason, and because other compilation-based, non-
causal modelling and simulation language implementations
do not carry out dynamic reconfiguration, we do not com-
pare the performance to other simulation software. The re-
sults would not be very meaningful.

The evaluation setup is as follows. The numerical simula-
tor integrates the system using variable-step, variable-order
BDF (Backward Differentiation Formula) solver [1]. Abso-
lute and relative tolerances for numerical solution are set to
10−6 and trajectories are printed out at every point where
t = 10−3 ∗ k, k ε N. For static compilation and JIT com-
pilation we use GHC 6.10.4 and LLVM 2.5 respectively.
Simulations are performed on a 2.0 GHz x86-64 Intel R©
CoreTM2 CPU. However, presently, we do not exploit any
parallelism, running everything on a single core.

Let us first consider the model of the breaking pendu-
lum from Section 2.3. We simulate it over the time interval
t ε [0, 20], letting the pendulum break at t = 10. Table 1
shows the amount of time spent simulating each mode of
the system, and within that how much time that is spent
on each of the four conceptual simulation process stages
(see Section 3). As can be seen, most time (80–90 %) is
spent on numerical simulation, meaning the overheads of
our dynamic code generation approach was small in this
case. Also, in absolute terms, it can be seen that the amount
of time spent on symbolic processing, JIT compilation, and
event handling was small, just fractions of a second.

Pendulum Free Fall
t ε [0, 10) t ε [10, 20]
CPU Time CPU Time
s % s %

Symbolic
Processing

0.0001 0.2 0.0000 0.0

JIT
Compilation

0.0110 18.0 0.0077 9.1

Numerical
Simulation

0.0500 81.8 0.0767 90.9

Event
Handling

0.0000 0.0 - -

Total 0.0611 100.0 0.0844 100.0

Table 1: Time profile of the breaking pendulum simulation

However, the breaking pendulum example is obviously
very small (just a handful of equations), and it only needs
to be translated to simulation code twice: at simulation start
and when the pendulum breaks. To get an idea of how the
performance of the prototype implementation scales with
an increasing number of equations, we constructed a hy-
brid model of an RLC circuit (i.e., a circuit consisting of
resistors, inductors and capacitors) with dynamic structure.
In the first mode the circuit contains 200 components, de-
scribed by 1000 equations in total (5 equations for each

component). Every time t = 10 ∗ k, where k ε N, the num-
ber of circuit components is increased by 200 (and thus the
number of equations by 1000) by switching the additional
components into the circuit.

200 Components 400 Components 600 Components
1000 Equations 2000 Equations 3000 Equations
t ε [0, 10) t ε [10, 20) t ε [20, 30)
CPU Time CPU Time CPU Time
s % s % s %

Symbolic
Processing

0.063 0.6 0.147 0.6 0.236 0.5

JIT
Compilation

1.057 10.2 2.120 8.3 3.213 6.6

Numerical
Simulation

9.273 89.2 23.228 91.1 45.140 92.9

Event
Handling

0.004 0.0 0.006 0.0 0.008 0.0

Total 10.397 100.0 25.501 100.0 48.598 100.0

Table 2: Time profile of structurally dynamic RLC circuit
simulation, part I

800 Components 1000 Components 1200 Components
4000 Equations 5000 Equations 6000 Equations
t ε [30, 40) t ε [40, 50) t ε [50, 60]
CPU Time CPU Time CPU Time
s % s % s %

Symbolic
Processing

0.328 0.4 0.439 0.4 0.534 0.3

JIT
Compilation

4.506 4.9 5.660 5.1 6.840 4.3

Numerical
Simulation

86.471 94.7 105.066 94.5 152.250 95.4

Event
Handling

0.011 0.0 0.015 0.0 - -

Total 91.317 100.0 111.179 100.0 159.624 100.0

Table 3: Time profile of structurally dynamic RLC circuit
simulation, part II

Tables 2 and 3 show the amount of time spent in each
mode of the system and in each conceptual stage of simu-
lation of the structurally dynamic RLC circuit. In absolute
terms, it is evident that the extra time spent on the mode
switches becomes significant as the system grows. How-
ever, in relative terms, the overheads of our dynamic code
generation approach remains low at about 10 % or less of
the overall simulation time.

While JIT compilation remains the dominating part of the
time spent at mode switches, Figure 3 demonstrates that the
performance of the JIT compiler scales well. In particular,
compilation time increases roughly linearly in the number
of equations. In addition, it should be noted that the time
spent on symbolic processing and event handling remains
encouragingly modest (both in relative and absolute terms)
and grows slowly as model complexity increases. There are
also many opportunities for further performance improve-
ments: see Section 6 for some possibilities.

Our approach offers new functionality in that it allows
non-causal modelling and simulation of structurally dy-
namic systems that simply cannot be handled by static ap-
proaches. Thus, when evaluating the feasibility of our ap-
proach, one should weigh the overheads against the limi-
tation and inconvenience of not being able to model such
systems non-causally.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 215

0

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000

CPU
Time

(s)

Number of Equations

Symbolic Processing

b b b b b b

b
JIT Compilation

?

?

?

?

?

??
Event Handling

r r r r r

r

Figure 3: Plot demonstrating how CPU time spent on mode
switches grows as number of equations increase in struc-
turally dynamic RLC circuit simulation

5 Related Work

5.1 Sol

Sol is a Modelica-like language [21, 22]. It introduces lan-
guage constructs that enable the description of systems
where objects are dynamically created and deleted, thus
aiming at supporting modelling of highly structurally dy-
namic systems. So far, the research emphasis has been on
the design of the language itself along with support for in-
cremental dynamic recausalisation and dynamic handling
of structural singularities. An interpreter is used for sim-
ulation. The work on Sol is thus complementary to ours:
techniques for dynamic compilation would be of interest
in the context of Sol to enable it to target high-end sim-
ulation tasks; conversely, algorithms for incremental re-
causalisation is of interest to us to minimise the amount of
work needed to regenerate simulation code after structural
changes (see Section 6).

5.2 MOSILAB

MOSILAB is an extension of the Modelica language that
supports the description of structural changes using object-
oriented statecharts [19]. This enables modelling of struc-
turally dynamic systems. It is a compiled implementation.
However, the statechart approach implies that all structural
modes must be explicitly specified in advance, meaning
that MOSILAB does not support highly structurally dy-
namic systems. Even so, if the number of possible config-
urations is large (perhaps generated mechanically by meta-
modelling), techniques like those we have investigated here
might be of interest also in the implementation of MOSI-
LAB.

5.3 Modelling Kernel Language

Broman [2, 3] is developing the Modelling Kernel Lan-
guage (MKL) that is intended to be a core language for
non-causal modelling languages such as Modelica. Broman
takes a functional approach to non-causal modelling, simi-
lar to the FHM approach [17, 18]. One of the main goals of
MKL is to provide a formal semantics of the core language.
Currently, this semantics is based on an untyped, effectful
λ-calculus.

Similarly to Hydra, MKL provides a λ-abstraction for
defining functions and an abstraction similar to sigrel for
defining non-causal models. Both functions and non-causal
models are first-class entities in MKL, enabling higher-
order, non-causal modelling. The similarity of the basic ab-
stractions in Hydra and MKL leads to a similar style of
modelling in both languages.

Thus far, the work on MKL has not specifically consid-
ered support for structural dynamics, meaning that its ex-
pressive power in that respect is similar to current main-
stream, non-causal modelling and simulation languages like
Modelica. However, given the similarities between MKL
and FHM/Hydra, MKL should be a good setting for ex-
ploring support for structural dynamics, which ultimately
could carry over to better support for structural dynamics
for any higher-level language that has a semantics defined
by translation into MKL. Again, the implementation tech-
niques discussed in this paper should be of interest in such
a setting.

6 Future Work
In the current implementation of Hydra, a new flat system of
equations is generated at each mode switch without reusing
the equations of the previous mode. It would be interesting
to identify exactly what has changed at each mode switch,
thus allowing reuse of the equations from the previous mode
as much as possible. We hope to benefit from Zimmer’s
related work on incremental symbolic processing methods
for structurally dynamic, non-causal simulation [22, 23]. In
particular, information about the equations that remain un-
changed during the mode switches provides opportunities
for the JIT compiler to reuse the machine code from the
previous mode, thus reducing the burden on the JIT com-
piler and consequently the compilation time during mode
switches.

We are considering approaches for further performance
improvements by taking advantage of multi-core hardware.
In principle, the functions i, f and e (see Figure 2) could be
JIT compiled in parallel, which should give a respectable
speedup on a two-core system. The functions could also
be broken down into smaller functions, each independently
compilable, thus potentially keeping a fair number of cores
busy simultaneously.

Another, or possibly complementary, idea, is a mixed in-
terpreter and JIT compiler approach. Numerical simulation
would start directly after the symbolic processing stage by
interpreting the simulation code. At the same time, a JIT

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 216

compilation process would be forked in the background.
This seems particularly easy in the context of LLVM as it
provides both an interpreter and JIT compiler for LLVM
code. Numerical simulation would initially progress with
an extra interpretive overhead. However once the JIT com-
pilation process is finished, the interpreter would be substi-
tuted by the JIT compiled code. On multi-core hardware,
this may lead to significant performance improvements by
decreasing the delays during the mode switches and im-
proving overall simulation time.

In the current version of Hydra, transfer of system state
between modes and reinitialisation has to be coded explic-
itly at every switch for the entire system. This quickly be-
comes infeasible as models grow. Better language support
for declaratively specifying implicit state transfer for un-
changing parts of a system is thus something that we intend
to look into.

7 Conclusions
This paper presents a novel approach to the implementation
of non-causal modelling and simulation languages. It allows
symbolic processing and code generation to be carried out
as the model undergoes structural changes during the sim-
ulation, thus enabling non-causal modelling and simulation
of highly structurally dynamic systems. Our approach pro-
vides an efficient alternative to interpreted implementations
of structurally dynamic modelling languages and, at the
same time, lifts the restrictions that are associated with pre-
simulation compilation of non-causal modelling languages.

Our work is carried out in the framework of Functional
Hybrid Modelling (FHM) because, by supporting higher-
order modelling, this provides expressive language features
for describing structurally dynamic systems. However, our
implementation approach can be applied to other modelling
languages that aim to support structural dynamism.

Acknowledgements. This work was supported by EP-
SRC grant EP/D064554/1. We would like to thank the
anonymous reviewers for their thorough and constructive
feedback that helped improve the paper.

References
[1] Kathryn Eleda Brenan, Stephen La Vern Campbell,

and Linda Ruth Petzold. Numerical solution of initial-
value problems in differential-algebraic equations.
SIAM, Philadelphia, 1996.

[2] David Broman. Flow Lambda Calculus for declarative
physical connection semantics. Technical Reports in
Computer and Information Science 1, Linköping Uni-
versity Electronic Press, 2007.

[3] David Broman and Peter Fritzson. Higher-order
acausal models. In Peter Fritzson, François Cellier,
and David Broman, editors, Proceedings of the 2nd

International Workshop on Equation-Based Object-
Oriented Languages and Tools (EOOLT), number 29
in Linköping Electronic Conference Proceedings,
pages 59–69, Paphos, Cyprus, 2008. Linköping Uni-
versity Electronic Press.

[4] Conal Elliott and Paul Hudak. Functional reactive an-
imation. In Proceedings of ICFP’97: International
Conference on Functional Programming, pages 163–
173, June 1997.

[5] George Giorgidze and Henrik Nilsson. Embedding a
functional hybrid modelling language in Haskell. In
Refereed Proceedings of the 20th International Sym-
posium on the Implementation and Application of
Functional Languages (IFL ’08), University of Hert-
fordshire, Hatfield, UK, September 2008. To Appear.

[6] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant,
Steven L. Lee, Radu Serban, Dan E. Shumaker, and
Carol S. Woodward. Sundials: Suite of nonlinear and
differential/algebraic equation solvers. ACM Trans.
Math. Softw., 31(3):363–396, 2005.

[7] Chris Lattner. LLVM: An Infrastructure for
Multi-Stage Optimization. Master’s thesis, Com-
puter Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.org.

[8] Chris Lattner. Introduction to the llvm compiler
system. In Proceedings of International Workshop
on Advanced Computing and Analysis Techniques in
Physics Research, Erice, Sicily, Italy, 2008.

[9] Chris Lattner and Vikram Adve. The LLVM Compiler
Framework and Infrastructure Tutorial. In LCPC’04
Mini Workshop on Compiler Research Infrastructures,
West Lafayette, Indiana, Sep 2004.

[10] Geoffrey Mainland. Why it’s nice to be quoted:
quasiquoting for haskell. In Haskell ’07: Proceedings
of the ACM SIGPLAN workshop on Haskell workshop,
pages 73–82, New York, NY, USA, 2007. ACM.

[11] The Modelica Association. Modelica – A Unified
Object-Oriented Language for Physical Systems Mod-
eling: Tutorial version 1.4, December 2000.

[12] Pieter J. Mosterman. Hybrid Dynamic Systems: A
Hybrid Bond Graph Modeling Paradigm and its Ap-
plication in Diagnosis. PhD thesis, Graduate School
of Vanderbilt University, Nashville, Tennessee, May
1997.

[13] Pieter J. Mosterman. An overview of hybrid simula-
tion phenomena and their support by simulation pack-
ages. In HSCC ’99: Proceedings of the Second In-
ternational Workshop on Hybrid Systems, pages 165–
177, London, UK, 1999. Springer-Verlag.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 217

[14] Pieter J. Mosterman, Gautam Biswas, and Martin Ot-
ter. Simulation of discontinuities in physical system
models based on conservation principles. In Proceed-
ings of SCS Summer Conference 1998, pages 320–
325, July 1998.

[15] Henrik Nilsson. Type-based structural analysis for
modular systems of equations. In Peter Fritzson,
François Cellier, and David Broman, editors, Proceed-
ings of the 2nd International Workshop on Equation-
Based Object-Oriented Languages and Tools, num-
ber 29 in Linköping Electronic Conference Pro-
ceedings, pages 71–81, Paphos, Cyprus, July 2008.
Linköping University Electronic Press.

[16] Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In Pro-
ceedings of the 2002 ACM SIGPLAN Haskell Work-
shop (Haskell’02), pages 51–64, Pittsburgh, Pennsyl-
vania, USA, October 2002. ACM Press.

[17] Henrik Nilsson, John Peterson, and Paul Hudak. Func-
tional hybrid modeling. In Proceedings of PADL’03:
5th International Workshop on Practical Aspects
of Declarative Languages, volume 2562 of Lecture
Notes in Computer Science, pages 376–390, New Or-
leans, Lousiana, USA, January 2003. Springer-Verlag.

[18] Henrik Nilsson, John Peterson, and Paul Hudak. Func-
tional hybrid modeling from an object-oriented per-
spective. In Peter Fritzson, François Cellier, and
Christoph Nytsch-Geusen, editors, Proceedings of
the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Linköping Electronic Conference
Proceedings, pages 71–87, Berlin, Germany, 2007.
Linköping University Electronic Press.

[19] Christoph Nytsch-Geusen, Thilo Ernst, André Nord-
wig, Peter Schwarz, Peter Schneider, Matthias Vet-
ter, Christof Wittwer, Thierry Nouidui, Andreas Holm,
Jürgen Leopold, Gerhard Schmidt, Alexander Mattes,
and Ulrich Doll. MOSILAB: Development of a mod-
elica based generic simulation tool supporting model
structural dynamics. In Proceedings of the 4th Inter-
national Modelica Conference, pages 527–535, Ham-
burg, Germany, 2005.

[20] Günther Zauner, Daniel Leitner, and Felix Breite-
necker. Modelling structural-dynamics systems in
Modelica/Dymola, Modelica/MOSILAB, and Any-
Logic. In Peter Fritzson, François Cellier, and
Christoph Nytsch-Geusen, editors, Proceedings of
the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Linköping Electronic Conference Pro-
ceedings, pages 99–110, Berlin, Germany, 2007.
Linköping University Electronic Press.

[21] Dirk Zimmer. Enhancing Modelica towards variable
structure systems. In Peter Fritzson, François Cellier,

and Christoph Nytsch-Geusen, editors, Proceedings
of the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Linköping Electronic Conference
Proceedings, pages 61–70, Berlin, Germany, 2007.
Linköping University Electronic Press.

[22] Dirk Zimmer. Introducing Sol: A general methodol-
ogy for equation-based modeling of variable-structure
systems. In Proceedings of the 6th International Mod-
elica Conference, pages 47–56, Bielefeld, Germany,
2008.

[23] Dirk Zimmer. An application of Sol on variable-
structure systems with higher index. In Proceedings
of the 7th International Modelica Conference, Como,
Italy, 2009.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 218

Operator Overloading in Modelica 3.1

Hans Olsson1, Martin Otter2, Hilding Elmqvist1, Dag Brück1,
1Dassault Systèmes, Lund, Sweden (Dynasim)

2German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany
Hans.Olsson@3ds.com, Martin.Otter@DLR.de,

Hilding.Elmqvist@3ds.com, Dag.Bruck@3ds.com

Abstract
The constructor and operator overloading introduced
in Modelica 3.1 is discussed. The goal is that ele-
mentary operators like “+” or “*” can be overloaded
for records. This makes it possible to define and use,
in a convenient way, complex numbers, polynomials,
transfer functions, state space systems, etc. The cho-
sen approach is different to other languages: (a) Only
scalar operations need to be overloaded. Array op-
erations are then automatically available, so the
growth of the number of overloaded functions is
avoided. (b) Automatic type casts between different
data types is performed using overloaded constructor
functions. Again this reduces the number of over-
loaded functions. (c) The approach is conservative
and only allows overloading if no ambiguity is
present, in order to not introduce pitfalls into the lan-
guage. This is reached by basing the overloading on
disjoint sets of matching functions and not on a
priority match.

Keywords: overloading, automatic overloading of
arrays, overloading without ambiguities.

1 Introduction
Operator overloading is a well known concept in
computer science and is available in languages such
as Ada (ANSI 1983), C++ (ISO 1998), C#, Mathe-
matica, Matlab and Python. In 2002-2005 the Mod-
elica Association has worked on operator overload-
ing for the Modelica language and several different
versions have been designed by different people,
especially to avoid some of the known problems of
overloading from other languages. The work was
then suspended for some years to concentrate on the
improved safety in Modelica 3.0. Work has restarted
in 2008: Based on a prototype implementation in

Dymola and by applying this prototype to the Beta
version of the Modelica_LinearSystems2 library
(Baur et. al. 2009), the 7th design version from 2005
was revised considerably and finally resulted in a
version that has been included in Modelica 3.1
(Modelica 2009).

The overloading introduced in Modelica 3.1 is
seen as a first step and more features might be intro-
duced later, based on the gained experience. The de-
sign is conservative and restrictive in order to reduce
the probability to introduce pitfalls in the language.
For example, ambiguities are not allowed. This is
opposed to other languages where ambiguities are
often resolved by priorities in function matches. An
important, new feature is that it usually suffices to
overload scalar operations and that array operations
are automatically mapped to the overloaded scalar
operations. The benefit is that explosive growth of
the number of overloaded functions to define all
possible combinations of data types and number of
array dimensions is avoided.

2 Example with Complex numbers
The basic properties of operator overloading in
Modelica 3.1 shall first be demonstrated by an ex-
ample to introduce a user-defined data type Com-
plex. In section 3, the formal rules are defined and
design considerations are explained.

Assume a record “Complex” with overloaded
scalar operators is available (see below). When using
this definition in an interactive environment, e.g., in
a Modelica script file that is executed by Dymola
(Dymola 2009), then in the command window of
Dymola the output as shown in the right part of Fig-
ure 1 appears.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 219 DOI: 10.3384/ecp09430100

From this example it can be seen that the user de-
fined Complex type can hardly be distinguished from
a built-in type like Real. In particular, standard array
operations can be applied on Complex, although only
the scalar operations are overloaded. Also type casts
from Real or Integer to Complex are automatically
performed, for example in “a = 2 + 3*j” where 2 is
added to the Complex expression “3*j”).

The “essential” difference to a built-in type is the
name look-up: If a variable is declared as “Real a”,
then it is first determined whether “Real” is a built-in
type before performing another lookup. If a variable
is declared as “Complex c”, then “Complex” is
searched hierarchically from the current scope up to
the global scope. For example, if a user introduces an
own “Complex” type in the local scope, then this
type is used and not the one from the global scope.

For the example above, the following definitions
are needed:

record Complex
 Real re "Real part";
 Real im "Imaginary part";

 function j
 output Complex result;
 algorithm
 result := Complex(0,1);
 end j;

 operator ′constructor′
 function fromReal
 input Real re;
 input Real im=0;
 output Complex result;
 algorithm
 result = Complex(re=re,im=im);
 end fromReal;

 end ′constructor′;

 operator ′+′
 function add
 input Complex c1;
 input Complex c2;
 output Complex result;
 algorithm
 result := Complex(c1.re + c2.re,
 c1.im + c2.im);
 end add;
 end ′+′;

 operator ′-′
 function negate
 input Complex c;
 output Complex result;
 algorithm
 result := Complex(- c2.re,
 - c2.im);
 end negate;

 function subtract
 input Complex c1;
 input Complex c2;
 output Complex result;
 algorithm
 result := Complex(c1.re - c2.re,
 c1.im - c2.im);
 end subtract;
 end ′-′;

 // also: ′*′, ′/′, ′^′, ′==′, ′<>′

 operator ′String′
 function toString
 input Complex c;
 input String name="j";
 output String s;
 algorithm

 s := String(c.re);
 if c.im <> 0 then
 s := if c.im > 0 then
 s + " + "
 else
 s + " - ";
 s := s + String(abs(c.im))
 + name;
 end if;
 end toString;
 end ′String′;
end Complex;

function eigenValues
 input Real A [:,:];
 output Complex ev[size(A, 1)];
 import Modelica.Math.Matrices;
protected
 Integer nx=size(A, 1);
 Real evr[nx,2];
 Integer i;
algorithm
 evr := Matrices.eigenValues(A);
 for i in 1:nx loop
 ev[i] := Complex(evr[i, 1],
 evr[i, 2]);
 end for;
end eigenValues;

Script file Output window of Dymola
// Scalar operations
j = Complex.j();
a = 2 + 3*j
b = a + 4
c = -b*(a + 2*b)/(a+4)
c

// Complex arrays
A = [2,-3; 4,5]
Complex.eigenValues(A)

B = [1+2*j, 3+4*j;
 3-2*j, 2-4*j]
x = {2+3*j, 1+2*j}
B*x

Figure 1: Using the overloaded Complex data type in
a script file (left) and the output in the command win-
dow of Dymola 7.3 (right).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 220

As can be seen, operator overloading is defined for
functions that are defined in a record. The record
definition holds a data structure in the usual way
(here: two Real variables). Operators are defined in a
record with the new construct

operator <name>
 …
end <name>

where <name> is the operator to be overloaded en-
closed in apostrophes. This has the advantage that a
valid, unique Modelica name is used which is very
close to the operator that shall be overloaded.

Inside an “operator”, one or more Modelica func-
tions are defined. There are no particular require-
ments for these functions with the exception that
every function must have exactly one output argu-
ment and that the number of arguments without a
default value must be identical to the number of ar-
guments required from the respective operator (e.g.,
function “add” inside operator ′+′ must have exactly
two arguments without a default value. If there are
more arguments, all must have a default value.

The special operator ′constructor′ serves two pur-
poses: First it gives different record constructors to
provide various ways to generate an instance of the
record. Second it is used to define automatic type
casts. Examples:

// Default record constructor:
c1 = Complex(1,2); // c1 = 1+2*j;

// Overloaded constructor "fromReal":
c2 = Complex(3); // c2 = 3+0*j;

// Automatic type cast due to "fromReal":
c3 = c1 + 5; // c3 = 6+2*j;

No overloaded operator is defined to add a Complex
to a Real. However, a constructor is defined to gen-
erate a Complex number from the literal “5” and
then there is an overloaded operator to add two
Complex numbers.

3 Rules for Overloading
In this section the rules for the operator overloading
are stated and design decisions are discussed.

3.1 Overloaded operators

A Modelica record can define the behavior for op-
erations such as constructing, adding, multiplying
etc. This is done using the specialized class opera-
tor (a restricted class similar to package) comprised
of functions implementing different variants of the
operation for the record class in which the respective
operator definition resides. The overloading is de-

fined in such a way that ambiguities are not allowed
and give an error. Furthermore, it is sufficient to de-
fine overloading for scalars. Overloaded array opera-
tions are automatically deduced from the overloaded
scalar operations, if an appropriately overloaded
function for arrays is not present. The operator
keyword is followed by the name of the operation
which can be one of:

′constructor′, ′+′, ′-′ (includes both sub-
traction and negation), ′*′, ′/′, ′^′, ′==′,
′<>′, ′>′, ′<′, ′>=′, ′<=′, ′and′,
′or′, ′not′, ′String′.

The functions defined in the operator-class in the
record must take at least one argument of this record
type as input, except for the constructor-functions
which instead must return one component of the
record type. All of the functions shall return exactly
one output.

The record may also contain additional functions,
packages of functions, and declarations of compo-
nents of the record. To avoid problems with slicing,
it is not legal to extend from a record with operators.

The precedence and associativity of the over-
loaded operators is identical to built-in operators
(e.g. ′*′ has always higher precedence as ′+′). De-
finition of new operator symbols is not allowed.
These restrictions simplify specification and imple-
mentation, and improve translation speed.

Only overloading of the most important operators
is defined. In the future, this list might be extended,
but the goal is to first get experience with a mini-
mum set of overloaded operators.

3.2 Matching Functions

All functions defined inside the operator class
must return one output and may include functions
with optional arguments, i.e. functions of the form

function f
 input A1 u1;
 …
 input Am um = am;
 …
 input An un;
 output B y;
algorithm
 …
end f;

The vector P below indicates whether argument m of
f has a default value (true for default value, false
otherwise). A call f(a1, a2,…, ak, b1 = w1 ,…, bp= wp)
with distinct names bj is a valid match for the func-
tion f, provided (treating Integer and Real as the
same type)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 221

 Ai = typeOf(ai) for 1 ≤ i ≤ k,

 the names bj = uQj, Qj > k, AQj = typeOf(wi)
for 1 ≤ j ≤ p, and

 if the union of {i: 1 ≤ i ≤ k }, {Qj: 1 ≤ j ≤ p}, and
{m: Pm true and 1 ≤ m ≤ n } is the set
{i: 1 ≤ i ≤ n}.

This corresponds to the normal treatment of a func-
tion call with named arguments, requiring that all
inputs have some value given by a positional argu-
ment, named argument, or a default value (and that
positional and named arguments do not overlap).
Note that this only defines a valid call, but does not
explicitly define the set of domains.

3.3 Overloaded constructors and operators

As defined in detail in the Modelica language speci-
fication (Modelica 2009), using an operator (such as
‘+’) goes through a number of steps where a set of
functions is found, and if one of them is a matching
function it is used; multiple matches are seen as an
error.

Array operations are defined in terms of the sca-
lar operation, for multiplication assuming that the
scalar element form a non-commutative ring that
does not necessarily have a multiplicative identity
(since the definition in the specification implicitly
assumes that addition is associative and commuta-
tive); the operations vector*vector and vector*matrix
are explicitly excluded, since there are cases where
this does not give the “natural” interpretation, e.g.,
for complex vectors. For the future it will be possible
to extend operations with complex conjugate (allow-
ing a clean definition of vector*vector) and zero (al-
lowing e.g. matrix multiplication with zero inner di-
mensions); without invalidating existing models.

The precise rules for binary operations will be
now presented to show the flavor of the definition:

Let op denote a binary operator like ’+’and con-
sider an expression a op b where a is of type A and b
is of type B. An example is “2.0 + j”, where “2.0” is
of type Real and “j” is of type “Complex.

1. If A and B are basic types or arrays of such, then
the corresponding built-in operation is performed
(e.g., for “2 + 3”, the built-in operation for two
Integer numbers is performed).

2. Otherwise, if there exists exactly one function f

in the union of A.op and B.op such that f(a,b) is
a valid match for the function f , then a op b is
evaluated using this function. It is an error, if
multiple functions match. If A is not a record
type, A.op is seen as the empty set, and similarly

for B. Note, Having a union of the operators en-
sures that if A and B are the same, each function
only appears once. In our example, “2.0 + j” has
only a match in the Complex record after con-
verting 2.0 to Complex: Complex.’+’ and there-
fore a matching function was found.

3. Otherwise, consider the set given by f in A.op
and a record type C (different from B) with a
constructor, g, such that C.′constructor′.g(b) is a
valid match, and f(a, C.′constructor′.g(b)) is a va-

lid match; and another set given by f in B.op
and a record type D (different from A) with a
constructor, h, such that D.′constructor′.h(a) is a
valid match and f(D.′constructor′.h(a), b) is a va-
lid match. If the sum of the sizes of these sets is
one this gives the unique match. If the sum of the
sizes is larger than one there is an ambiguity
which is an error.
 Informally, this means: If there is no direct
match of “a op b”, then it is tried to find a direct
match by automatic type casts of “a” or “b”, by
converting either “a” or “b” to the needed type
using an appropriate constructor function from
one of the record types used as arguments of the
overloaded “op” functions. Example using the
Complex-definition from above:
Real a;
Complex b;
Complex c = a+b;
// interpreted as:
Complex.’+’(
Complex.’constructor’.fromReal(a),b);

4. If A or B is an array type, then the expression is
conceptually evaluated according to the rules for
arrays (Modelica 2009, section 10.6). The result-
ing scalar operations are then treated with 1-3.
Example:
Complex A[2,2], x[2];
Complex b[2] = A*x;
// interpreted as:
b[1] = A[1,1]*x[1] + A[1,2]*x[2];
b[2] = A[2,1]*x[2] + A[2,2]*x[2];
// The scalar operations can now be
// treated with the rules for scalar
// operations

5. Otherwise the expression is erroneous.

3.4 Syntactical simplification

In many cases there is only one function in the op-
erator; either because only one makes sense or be-
cause another is not yet added. This is handled by
stating that

operator function '*'
 …
end '*';

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 222

is treated in the same way as

operator '*'
 function multiply
 …
 end multiply
end '*';

The advantage of the shorter form is that it reads nic-
er, and avoids introducing an arbitrary name of a
function.

However, by stating that they are equivalent, no
loss of functionality is introduced; and one can al-
ways later add additional overloaded variants in a
safe way.

4 Design and future considerations
The overall design is intended as a first step, and in-
tended to allow future extensions in a backward
compatible way.

4.1 Operator as a “semi-package” in record

In the current design an operator defines a hierar-
chical level; grouping together the variants.

The alternative of having multiple overloaded
functions with identical names and different signa-
tures (as in C++) was considered; but rejected for
several reasons including the fact that it would no
longer be possible to uniquely reference a function
by name. However, the syntactic simplification in-
troduced avoids redundant levels.

Another alternative would be to have the opera-
tors defined in the enclosing scope of the record -
similarly to Ada. This would have required a modifi-
cation of the function call lookup to include some
form of argument-dependent name lookup (“Koenig
lookup”) as in C++ (ISO 1998, Section 3.4.2). This
would be complex to implement, and possibly influ-
ence existing function calls (note that in Modelica
function calls normally use hierarchical names in
contrast to many other languages). Furthermore it
was found that it often leads to a two-step hierarchy
where a record ‘complex’ was defined in a package
‘complexPackage’ merely containing the record and
its operations (cf. “header files”); and this was not
deemed attractive.

One of the drawbacks of this design is that new
operations on existing types cannot be added without
modification of classes, which may not be possible
for protection or licensing reasons.

Stroustrup (1994, Chapter 11) describes several
related design issues and tradeoffs for C++.

4.2 Symmetric

Binary operators are defined so that operations can
either be found in left or right operands. This is
needed in order to handle combinations with built-in
types in a clean way.

4.3 Few priority levels

For function matching there are only a few levels
defined; whereas, e.g. C++ has a much more detailed
set of priorities between functions in order to handle
type conversions and many arguments for general
functions.

A number of such detailed rules were considered
in the Modelica design group, but due to limited re-
sources they could not be investigated. Thus such
cases currently lead to ambiguities, these cases could
in the future be disambiguated with more detailed
rules – but the intent is that everything that is cur-
rently unambiguous will stay that way.

4.4 Fewer operators

It is common to define only a few operators and de-
fine others in terms of these. This is here done for
array operations, but not for e.g. relational operators
(usually everything is defined in terms of ‘<’ and/or
‘==’). It was not clear how common overloaded rela-
tional operators will be in Modelica and for what
purpose, and thus this was deemed as an issue that
will be handled in the future.

An important consideration is whether relational
operators will be used for general routines such as
sorting as in the Standard Template Library of C++
(where ‘<’ is more used as a sorting order than a ma-
thematical total order); or for more general mathe-
matical routines, e.g. computations for IEEE floating
numbers including NaN where such rules do not
hold.

4.5 Zero values and complex numbers

As indicated above matrix multiplication is currently
undefined if the inner dimension is zero. A simple
solution would be to introduce an operator ‘zero’
having no inputs and returning the additional identity
of the class. An important consideration will be
whether this operator should be required for matrix
multiplication in general; and whether it should be
used for other purposes.

Similarly vector*vector could be defined if there
existed an operator ‘conjugate’ in the class.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 223

4.6 Hierarchy of conversions

In the future it might be necessary to add another
‘constructor’-operator containing only explicit con-
structors – i.e. constructors that, as in C++, only will
be called if the constructor is explicitly invoked and
not for implicit conversions.

Without this care must be taken when designing
multiple records such that conversions form an or-
dered hierarchy.

At one point in the design it was considered to
have conversions in both directions and instead in-
troduce additional operators to disambiguate calls;
e.g. have Complex and ComplexPolar that both can
be converted automatically from the other one and
instead define operations such as addition to disam-
biguate the results:

record Complex
 …
 operator '+'
 function addComplex
 input Complex a;
 input Complex b;
 output Complex c;
 …
 function addPolar "Example only"
 input Complex a;
 input ComplexPolar b;
 output Complex c;
 …

end Complex;

The problem with this approach is that c+2 is ambi-
guous since it is not clear if 2 should be converted to
polar or Cartesian form before being added. It would
be possible to handle this by having an additional
operation for addition with Real; but it was deemed
that the resulting number of functions grew too much
and a cleaner design was to remove addPolar.

5 Conclusion
Modelica 3.1 was released in May 2009. The opera-
tor overloading as introduced in this new version was
discussed and examples are given to demonstrate the
usage. The introduced operator overloading is seen
as a first step, to gain experience with it in Modelica.
Especially, it is clear that function overloading is
missing and has to be introduced.

With respect to other languages, the design is re-
strictive, but has the advantage that it usually suffic-
es to define overloaded scalar operations between the
same types. Array operations and operations between
different types can then be automatically deduced by
a Modelica tool.

6 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA project EUROSYSLIB
(http://www.itea2.org/public/project_leaflets/EURO
SYSLIB_profile_oct-07.pdf) is highly appreciated.

Furthermore, we would like to thank Marcus
Baur (DLR) for fruitful discussions.

References
ANSI (1983): Ada Language Reference Manual. AN-

SI/MIL-STD 1815A.

Baur M., Otter M., and Thiele B. (2009): Modelica Li-
braries for Analysis and Design of Linear Con-
trol Systems. In F. Casella (editor): Proc. of the 7th

Int. Modelica Conference, Como, Italy.
www.modelica.org/events/modelica2009

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
www.dymola.com.

ISO (1998): International Standard, Programming
Languages – C++. ISO/IEC 14882:1998.

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Stroustrup B. (1994): The Design and Evolution of C++.
Addison-Wesley.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 224

An Application of Sol on

Variable-Structure Systems with Higher Index

Dirk Zimmer

Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland

dzimmer@inf.ethz.ch

Abstract

This case study presents the model of an ideal trebuchet.

Following the object-oriented modeling paradigm of

Modelica, the trebuchet is composed out of ideal elements

that belong to a planar mechanical library. The corre-

sponding system of DAEs has index 3. During simulation,

the model undergoes also various structural changes that

manipulate the number of continuous-time state variables.

Furthermore, elastic and inelastic collisions need to be

modeled by force impulses. The model is provided in Sol,

a derivative language of Modelica, specially designed for

research in variables structure systems. Keywords: Vari-

able-Structure Systems; Index Reduction; Multi-Body Dy-

namics.

1 The Trebuchet

The Trebuchet is an old catapult weapon developed

in the Middle Ages. It is known for its long range

and its high precision. Figure 1 depicts a trebuchet

and thereby presents its functionality. Technically, it

is a double pendulum propelling a projectile in a

sling. The rope of the sling is released on a prede-

termined angle γ when the projectile is about to over-

take the lever arm.

Let us state a few assumptions for the model:

• All mechanics are planar. The positional states

of any object are therefore restricted to x, y and

the orientation angle φ.

• All elements are rigid.

• The sling’s rope is ideal and weightless. It exhib-

its an inelastic impulse when being stretched to

maximum length

• The revolute joint of the counterweight is limited

to a certain angle β (in order to prevent too

heavy back-swinging after the projectile’s re-

lease). It also exhibits an inelastic impulse when

reaching its limit.

• Air resistance or friction is neglected.

Whereas these idealizations simplify the parameteri-

zation of the model to a great extent, they pose seri-

ous difficulties for a general simulation environment.

Such models, although being fairly simple, can nei-

ther be modeled nor simulated with Modelica yet. At

least not in a truly object-oriented manner. Hence the

trebuchet represents a suitable example for the

framework of Sol that aims to enable the future han-

dling of variable-structure systems within an object-

oriented modeling paradigm.

 source: wikimedia commons, modified by author

Figure 1: Functionality and specification of a trebuchet

Mass of projectile: 30kg β:200°

Mass at lever arm: 100kg γ: 150°

Counterweight: 10t

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 225 DOI: 10.3384/ecp09430026

2 Object-oriented Composition

Sol has been introduced at the Modelica Conference

2008 [9, 10]. It is a derivative language of Modelica,

specially designed for research purposes in the field

of variable-structure systems. Thus, Sol enables the

creation and removal of equations or even complete

objects anytime during the simulation. To this end,

the modeler describes the system in a constructive

way, where the structural changes are expressed by

conditionalized declarations. These conditional parts

can than get activated and deactivated of during run-

time. The incentive for this project is to gain knowl-

edge in language design and processing techniques

that we think will be essential for Modelica’s future

development.

A simple planar mechanical library has been devel-

oped in Sol. It has been extended by equations for

mechanical impulses in order to make discrete veloc-

ity changes possible. From this library we need the

following components:

- 1x fixation - 3x fixed translation

- 1x revolute joint - 1x limited revolute joint

- 2x bodies with mass - 1x ideal rope with mass

These components are connected as depicted in fig-

ure 2. Although the model diagram follows the ico-

nographic of the MultiBody library [4], it serves il-

lustration purposes only, since the modeling in Sol is

still purely textual.

m=100

rodMass

m=10e3

w eight

a b

r={-10,0}

rod1
a b

r={2,5,0}

rod2

fi
x

e
d

r=
{0

,8
}

a
b

re
v
o

lu
te

a
b

r=
{0

,-3
}

ro
d
3

m=30

tornBody

a b

limitedRev

Figure 2: Model diagram of the trebuchet

The total model contains from 246 to 256 variables,

depending on the current state of the model. The cor-

responding systems of DAE have the perturbation

index 3. They need to be differentiated twice and

there remain linear systems of equation to be solved.

The resulting object-oriented decomposition resem-

bles typical examples from the Modelica domain but

it is significantly more demanding since a structural

change in any component may affect the total sys-

tem.

model LimitedRevolute

 extends Interfaces.TwoFrames;

interface:

 parameter Real phi_start;

 parameter Real w_start;

 parameter Real l;

implementation:

 static Boolean contact;

 static Boolean fixated;

 static Boolean toFixate;

 static Boolean toRelease;

 static Real phi_a;

 static Real phi;

 static Real Wm;

 static Real We;

 if initial then

 fixated << false;

 toFixate << false;

 toRelease << false;

 phi_a << phi_start;

 We << w_start;

 end;

 when toFixate then

 toRelease << false;

 fixated << true;

 else when toRelease then

 toFixate << false;

 fixated << false;

 end;

 if fixated then

 phi = l;

 Wm = 0;

 contact << false;

 when fb.t < 0 then

 toRelease << true;

 phi_a << l;

 end;

 else then

 contact << (phi > l);

 static Real w;

 static Real Wa;

 w = der(x=phi, start << phi_a);

 when contact then

 w = 0;

 Wm = 0.5*Wa;

 We << w;

 toFixate << true;

 else then

 when fa.contactIn or fb.contactIn then

 w = 2*Wm - Wa;

 We << w;

 else then

 static Real z;

 z = der(x=w, start << We);

 Wa << w;

 end;

 fb.M = 0;

 end;

 fb.t = 0;

 end;

 fa.phi + phi = fb.phi;

 fa.t + fb.t = 0;

 fa.Wm + Wm = fb.Wm;

 fa.M + fb.M = 0;

 fa.x = fb.x; fa.y = fb.y;

 fa.fx + fb.fx = 0; fa.fy + fb.fy = 0;

 fa.Vmx = fb.Vmx; fa.Vmy = fb.Vmy;

 fa.Px + fb.Px = 0; fa.Py + fb.Py = 0;

 fa.contactOut << contact or fb.contactIn;

 fb.contactOut << contact or fa.contactIn;

end LimitedRevolute;

Figure 3: The model of a limited revolute joint.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 226

3 Example component

Whereas the top-model can be neatly decomposed

into general applicable components, the modeling of

these components requires a skilled modeler. To at-

tain a better understanding, let us take a look at the

modeling code of one of the components that triggers

a structural change: The limited revolute joint. The

corresponding code is presented in figure 3.

Since Sol is very similar to Modelica the code shall

be roughly understandable without further introduc-

tion. Let us go into the details.

An elbow is one possible representation of a limited

revolute joint. The model has two major modes: free

or fixated. The mode free is equivalent to a normal

revolute joint whereas the model equals a fixed ori-

entation in the fixated mode. Since the transition be-

tween these two states causes a discrete change in

velocity, it involves an inelastic impulse on the rig-

idly connected components. Furthermore impulses

from other components (as for instance the ideal

rope) need to be handled as well in this component.

 The different modes and their transitions are pre-

sented in the graph of figure 4, where the continu-

ous-time modes are depicted as round boxes and the

rectangular boxes denote discrete intermediate

modes. The transitions are represented by arrows and

their labels denote the event that triggers the transi-

tion. Those without a label are triggered immedi-

ately.

angle

exceeds

limit

external

impulse
fixatedfree

inelastic

impulse

torque becomes

negatve

contact signal

triggers

Figure 4: Mode-transition graph of the limited revolute

In the modeling code, the two continuous modes are

expressed by the Boolean variable fixated and are

modeled by an if-statement. We recognize that the

first branch represents the fixated mode and does not

contain any derivatives whereas the second branch

(for the free mode) usually defines two derivatives.

Hence, the free mode defines two potential state-

variables: the position phi and the corresponding

velocity w. A switch between the two modes is there-

fore expected to change the number of total state-

variables.

The number of continuous-time state variables is

also affected by the mechanical impulses. These im-

pulse events are modeled by when-branches that re-

act to a contact signal that may be emitted by other

components. In order to understand how the model

interacts with other components let us take a look at

variables of the connecting interface:

Continuous potential variables:

 x y phi: the positional states:

Continuous flow variables:

 fx fy t: forces and torque

Discrete potential variables:

 Vmx Vmy Wm: mean velocities during impulse.

Discrete flow variables

 Px Py M: force impulses and angular momentum.

Control signals:

 contactIn: ingoing contact signal

 contactOut: outgoing contact signal

This connector design is very similar to the one that

has already been applied in the Modelica MultiBon-

dLib [11]. It owns a separate set of variables for the

continuous and discrete domain. The Boolean con-

trol signals are used to trigger and synchronize the

events.

Any component model will have to relate these inter-

face variables. For the limited revolute, the equations

that relate the variables of the translational domain

are trivial and are placed at the end of the model’s

main section.

Nevertheless, the equations for the impulse event

require further explanation. A force impulse P, or

angular momentum M respectively, causes a dis-

crete change in the corresponding velocity. This

change is best described by the mean velocity during

the impulse. Let Wa be the angular velocity before

the impulse and We the velocity after the impulse,

then Wm is defined as the mean (Wa+We)/2. Please

note that the product of the corresponding interface

variables (e.g. M*Wm) represents the amount of work

that is transmitted during the impulse.

Using these variables, the impulse behavior can be

properly described: For any mass element, the equa-

tion

M = 2*I*(Wm-Wa)

holds. An inelastic impulse can be modeled by stat-

ing:

Wm = 0.5*Wa

Mostly and also in this example, these and other im-

pulse equations form a linear system of equations

that is distributed over several components. Hence

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 227

they need to be activated synchronously. To this end,

the Boolean contact signals are required to synchro-

nize the impulse events in different components.

This is illustrated by the event for an external im-

pulse (see figure 5). Before the event the velocity is

stored by the auxiliary variable Wa. At the event, the

differential equation is removed since the velocity is

now determined by the impulse equation w = 2*Wm

- Wa. This new velocity is also stored in the auxil-

iary variable We that is needed after the event when

the differential equation gets reestablished and We is

suggested as (re-)start value for the time integration.

 when fa.contactIn or fb.contactIn then

 w = 2*Wm - Wa;

 We << w;
 1

 else then

 static Real z;

 z = der(x=w, start << We);

 Wa << w;

 end;

Figure 5: Excerpt from figure 3.

In the example of the trebuchet, this event is syn-

chronously triggered with corresponding events from

all body components and the other revolute joint.

During the contact event, the number of continuous-

time states is reduced.

The transition from the free mode to the fixated

mode by the inelastic impulse is modeled in a similar

manner. The trigger for this transition is a contact

signal that becomes true when the angle phi ex-

ceeds the parameterized limit l. The contact signal is

transmitted to the connected components in order to

synchronize the following event. At this event, the

continuous-time equations are replaced by the equa-

tions for an inelastic impulse and the variable

toFixate is set to true. This causes a subsequent

event that changes the continuous-time mode.

The reverse transition is modeled in accordance, but

here a force impulse is not required. The established

fixation is released when the torque acts in the oppo-

site direction: t < 0.

4 Further components

Let us put aside the model of the limited revolute.

From the remaining 8 components of the trebuchet

model, there are two more components that exhibit

1
 The symbol << represents a casual transmission - a

statement that is similar to an assignment. Once applied,

the variable on the left-hand side retains its value and re-

mains determined until it gets re-determined by another

causal transmission.

structural changes. These are the standard revolute

joint and the torn body.

The standard revolute joint is significantly simpler

than its limited counterpart. It does not own multiple

modes for the continuous-time simulation. Just an

intermediate mode is required for the impulse han-

dling. This influences the number of continuous-time

state variables during the impulse. Typically the an-

gular velocity of the revolute joint represents a state

variable but during the impulse it is discretely deter-

mined.

The component for the torn body is more interesting.

It owns 3 continuous-time modes with different con-

tinuous-time state variables:

1. The body is at rest as long as the rope has not

been stretched.

State-Variables: { }

2. The body represents a pendulum as long as the

release angle γ has not been reached.

State-Variables: { φ, ω }

3. The body is free.

State-Variables: {x, y, φ, vx, vy, ω}

Furthermore, the transition between mode 1 and 2

has to be modeled by an inelastic impulse acting in

rope direction. Another intermediate mode is re-

quired for the handling of external impulses. Figure

6 represents the corresponding transition diagram.

Figure 6: Mode-transitions graph of the torn body

In this way, the modeling of structural changes has

been distributed on 3 of the 9 components. The ob-

ject-oriented paradigm favors such a distribution.

The modeling on the local level is not only easier to

achieve than a complete description of the system,

but also the resulting components represents mean-

ingful entities by themselves and become usable in a

generic fashion.

The modes of the total system, the trebuchet, result

from the combination of its component’s local mod-

es during the simulation of the system. To get a bet-

ter understanding, let us look at the simulation of the

trebuchet.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 228

0 0.5 1 1.5
-15

-10

-5

0

5

10

15

20

25

t[s]

x
[m

]

0 0.5 1 1.5
-10

0

10

20

30

40

t[s]
y
[m

]
-10 0 10 20

0

5

10

15

20

25

30

35

40

x[m]

y
[m

]

Figure 7: Trajectory of the projectile.

5 Simulation

Figure 7 presents the result of the simulation for the

first 1.5 seconds. The model was simulated with Sol-

sim, a console application that represents an inter-

preter of the Sol language. The main processing loop

of the interpreter contains 3 stages:

• Instantiation and flattening

• Dynamic causalization

• Evaluation

In a classic Modelica translator these stages are exe-

cuted once in sequential order. In Solsim, they form

a loop (see also figure 9) and hence all these three

stages can be repeated several times. Thus, the inter-

preter is able to handle almost arbitrary structural

changes. All these stages are thereby programmed in

way that they try to preserve the existing structure

and prevent unnecessary perturbations. Further ex-

planations can be found in [9] and in section 6.

In contrast to the elaborate processing techniques,

the numerical algorithms that are included in Solsim

are still on a very rudimentary level. Thus, an ex-

plicit Euler integration has been applied with a fixed

step size of 1ms. In spite of this tiny step size and

consequently the high number of iterations, Solsim

was still able to parse, to setup and to simulate the

whole system roughly within one second on common

personal computer.

Let us take a look at the various structural changes

that occur during the first two seconds of the simula-

tion. Figure 8 presents an overview for the continu-

ous-time modes and their corresponding state vari-

ables. The diagram presents the continuous-time

modes for the torn body and the limited revolute

with their corresponding state variables.

The transition between these modes may involve

force impulses that require an intermediate mode.

Such intermediate modes are depicted by a vertical

line in the diagram.

The combination of modes of the components forms

the modes of the complete system. In total there oc-

cur 5 modes where only 2 of them are equivalent.

Furthermore, there are 2 intermediate modes for the

inelastic impulses.

Figure 8: Timetable of the structural changes

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 229

In addition to the state variables that are listed in fig-

ure 8, there are two more state variables, namely the

angle and angular velocity of the non-limited revo-

lute joint. This holds with exception of the interme-

diate modes. Here, the velocities are disabled as state

variables. Hence the number of continuous-time state

variables in total varies from 2 to 10.

We recognize that the handling of these structural

changes is a demanding problem. It contains a num-

ber of sub-tasks that need to be implemented by the

simulation environment. Let us therefore review the

principal processing steps and how they are affected

by the variability in structure. We then continue with

the integration of these tasks in the dynamic frame-

work of Sol.

5.1 Event handling

Structural changes represent discrete events. The

modeling of mechanical impulses requires that such

events can be synchronized. On the other hand, the

simulation environment must enable that several dis-

crete events can be scheduled in a sequential order

without any time advancement.

For this purpose, Solsim has implemented an event

heap that is independent from the time integration.

Time can only advance if the event heap is empty for

the current time-frame. Preceding valuable contribu-

tion in this area are [2] and [5].

5.2 Sate Selection

The selection of feasible state variables is crucial for

the time-integration of mechanical systems. Like

Modelica, Sol also offers an option to prioritize po-

tential state variables. The modeler can indicate pre-

ferred states and thereby support the simulation envi-

ronment in its selection.

With respect to variable-structure systems, such a

mechanism is especially important since a complete

a priori analysis of the system might not be available

or affordable in a dynamic framework.

5.3 Index reduction

In order to reduce the differential index of the DAE-

system, symbolic differentiation has to be applied.

Which parts that have to be differentiated depends on

the current structure of the system. For instance,

some equations of the torn body require differentia-

tion while being in mode 2. After the transition to

mode 3, no differentiations for this component are

required anymore. Thus, Solsim keeps track of the

required derivatives during the simulation.

The standard procedure for index reduction is known

as Pantelides [6] algorithm. This algorithm presumes

all potential state variables to be known and differen-

tiates the occurring constraint equations.

This procedure is unfortunately inadequate for vari-

able-structure systems. Therefore a different ap-

proach is implemented in Solsim: State variables are

assumed a priori as unknown and the subsequent

state selection is then integrated in the standard

causalization procedure.

5.4 Tearing

For computational reasons, a transformation of the

system into block-lower-triangular (BLT) form is

aspired. The Dulmage-Mendelson permutation [7] is

the most well known algorithm for this task, whose

central part is the strong component analysis of the

Tarjan algorithm [8]. This step identifies the blocks

of the BLT. In a subsequent step, tearing variables

may be chosen for the blocks that enable the applica-

tion of iterative solvers.

Such a multi-step algorithm is not suited for a dy-

namic framework as Sol. Hence Solsim applies the

tearing directly on the complete system and identi-

fies the resulting blocks by the corresponding residu-

als. The block decomposition is therefore not neces-

sarily optimal but mostly still adequate.

Simple heuristics are applied for the selection of

tearing variables. Furthermore the modeler has the

option to indicate suitable choices for tearing. For

solving the corresponding equation system, Solsim

applies a simple iterative solver.

6 Dynamic DAE Processing

Figure 9 presents the main processing scheme of the

Solsim interpreter. Its centerpiece is the loop that

consists in instantiation, dynamic causalization and

evaluation. The evaluation of the system can be trig-

gered by the algorithm for time integration or by the

event handler. The evaluation of certain statements

(e.g. an if-statement), may then involve the creation

or removal of certain components and their corre-

sponding equations. These changes need then to be

dynamically handled by the processor for differen-

tial-algebraic equations.

Essentially, it is this dynamic DAE-processor (DDP)

that defines Solsim’s capabilities and enables the

proper and efficient handling of even severe struc-

tural changes. The DDP takes the changes in the set

of equations as input and generates a causality graph

as output.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 230

Figure 9: Processing scheme of Sol

The causality graph G(E,V) is a directed acyclic

graph where the vertices V correspond to the equa-

tions. The edges E are formed by those pairs of equa-

tions (s1, s2) where v is a variable of s2 and deter-

mined by s1.

Since the causality graph is an acyclic graph, it gives

rise to a partial order on its vertices and can thus be

used to schedule the set of causalized equations into

an appropriate order for evaluation. The causality

graph thereby enables the complete or partial update

of a system and brings the system in a form that is

suitable for numerical ODE solvers.

Any change in the set of equations will yield to an

update of the causality-graph. The new equations

need to be causalized and integrated into the graph.

In the worst case, the exchange of a single equation

will require the update of the whole system. Most

changes, however, only affect parts of the system. In

order to handle all these cases in an efficient manner,

the dynamic DAE processor is strongly optimistic

and tries to preserve the existing graph structure as

much as possible.

The DDP essentially represents a set of update rules

and graph-algorithms that trace each change in the

set of equations and keep track of the current causal-

ization. This has a profound impact on the handling

of the tasks that have been outlined in section 5.2 to

5.4 (state selection, tearing, and differentiation).

Furthermore, the reverse counterparts of these tasks

must be concerned too. The determination of a tear-

ing variable can become obsolete and the tearing

needs to be undone. The situation is similar for vari-

ables that have been selected as state variables. Also

the time-derivative of a variable may not be required

anymore if a change in set of equations occurs and

shall therefore be eliminated.

In the DDP, the handling of all these tasks is not pur-

sued by individual algorithms anymore. Instead, the

corresponding processes are formulated as a closely

interlinked set of update and downdate rules. This

results in a rather complicated processing mechanism

that is concerned with a good number of details. Un-

fortunately, this prevents any simple presentation of

the DDP’s functionality and hence it goes beyond the

extent of this paper. For this reason, we aspire a jour-

nal publication in multiple parts and hope to publish

it soon.

We can, however, outline the major principle of the

DDP. In the first place, the DDP retains the causality

graph as much as possible. To this end, equations

remain potentially causalized, even if they lost their

‘causal root’.

For any new equation, the DDP attempts its integra-

tion into the existing causality graph. This may lead

to premature or speculative causalizations. In conse-

quence, residuals may yield from overdetermined

equations.

Whenever a residual is generated, their correspon-

dent sources of overdetermination are examined.

Based on this analysis, an appropriate action is taken

in order to eliminate the overdetermination. This ac-

tion is distinct from case to case. It can represent the

undoing of former causalizations or state selections

but also the extraction of an algebraic loop. In this

way, the DDP enables the treatment of DAEs that

result from variable-structure systems in an efficient

manner.

7 Conclusions

The current framework of Sol represents a feasible

solution for the modeling and simulation of variable-

structure systems, although being rudimentary in

many aspects. The example of the trebuchet demon-

strates that the object-oriented modeling paradigm of

Modelica can be successfully extended to variable-

structure systems of higher index. The modeling of

certain subparts can be quite demanding but the re-

sulting components are fairly generic in their usage.

The Sol language by itself is even simpler than Mod-

elica and hence major additions to the Modelica lan-

guage would not be required (like state charts as in

[3]). The power and expressiveness of Sol originates

from the generalizations of successful Modelica con-

cepts and not from the introduction of new para-

digms.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 231

These generalizations though, require new methods

for the processing of such a model. This is a chal-

lenging task that demands new solutions for many

major stages in the classic processing scheme. The

simulator Solsim meets these requirements now to a

sufficient extent.

Since Solsim is an interpreter it represents computa-

tional overkill for many specific applications and

thus cannot be applied yet for computationally very

demanding applications. Instead, it represents a truly

general framework that can be applied to a broad

range of models from various domains. We think

that this approach is more promising in the long

term, since specializations can still be implemented

when necessary.

For instance, there is a sub-class of Sol models that

is decomposable into a reasonably constrained num-

ber of modes. The trebuchet belongs to this sub-

class. For such models, code corresponding to each

mode can be compiled in advance and then be exe-

cuted. There would be no principal problem in de-

tecting members of this sub-class and alter the trans-

lation accordingly. For other cases, a just-in-time

compilation may be desired. Corresponding solutions

are meanwhile developed in the framework of Hydra

[1].

Both the language Sol and the corresponding soft-

ware Solsim need further extensions, refinement and

optimization. But most of our future effort is planned

for the completion of the whole framework. The Sol

project shall be made openly accessible in a well-

documented state. We thereby hope to establish a

promising field for future research that lets us and

other researchers elaborate new modeling and proc-

essing techniques.

Acknowledgments

I would like to thank Prof. Dr. François E. Cellier for his

helpful advice and support. This research project is spon-

sored by the Swiss National Science Foundation (SNF

Project No. 200021-117619/1).

References

[1] Giorgidze, G., H. Nilsson: Higher-Order Non-

Causal Modelling and Simulation of Structurally

Dynamic Systems. In: Proc. 7th International

Modelica Conference, Como, Italy (2009)

[2] Nikoukhah, R., S. Furic: Synchronous and asyn-

chronous events in Modelica: proposal for an im-

proved hybrid model. In: Proc. 6th International

Modelica Conference (2008) Bielefeld, Germany,

Vol.2, 677-690.

[3] Nytsch-Geusen, C., et al.: Advanced modeling

and simulation techniques in MOSILAB: A sys-

tem development case study. In: Proceedings of

the Fifth International Modelica Conference, Vi-

enna, Austria (2006) Vol. 1, 63-71.

[4] Otter, M., H. Elmqvist and S.E. Mattsson: The

New Modelica MultiBody Library. In: Proc. 3rd

International Modelica Conference, Linköping,

Sweden (2003), 311-330.

[5] Otter, M., H. Elmqvist and S.E. Mattsson: Hybrid

Modeling in Modelica Based on the Synchronous

Data Flow Principle. In: Proc. IEEE International

Symposium on Computer Aided Control System

Design, (1999) Hawaii, 151-157.

[6] Pantelides, C.: The Consistent Initialization of

Differential-Algebraic Systems. In: SIAM J. Sci.

and Stat. Comput. (1988) Vol 9, No. 2, 213-231.

[7] Pothen, A., Chin-Ju Fan: Computing the Block

Triangular Form of a Sparse Matrix. In: ACM

Transactions on Mathematical Software (1990)

Vol 16, No. 4 303-324.

[8] Tarjan, R.: Depth-first search and linear graph al-

gorithms. In: SIAM Journal on Computing.

(1972) Bd. 1, No. 2, 146-160.

[9] Zimmer, D.: Introducing Sol: A General Meth-

odology for Equation-Based Modeling of Vari-

able-Structure Systems In: Proc. 6th International

Modelica Conference, Bielefeld, Germany,

(2008) Vol.1, 47-56

[10] Zimmer, D.: Enhancing Modelica towards vari-

able structure systems. In: Proceedings of the 1st

International Workshop on Equation-Based Ob-

ject-Oriented Languages and Tools (EOOLT),

Berlin, Germany (2007) 61-70

[11] Zimmer, D. and F.E. Cellier: The Modelica

Multi-bond Graph Library, Proc. 5th Interna-

tional Modelica Conference, Vienna, Austria

(2006) Vol.2, 559-568.

Biography

Dirk Zimmer received his MS degree

in computer science from the Swiss

Federal Institute of Technology (ETH)

Zurich in 2006. He gained additional

experience in Modelica and in the field

of modeling mechanical systems during

an internship at the German Aerospace

Center DLR 2005. Dirk Zimmer is

currently pursuing a PhD degree with a

dissertation related to computer simulation and modeling

under the guidance of Profs. François E. Cellier and Wal-

ter Gander. His current research interests focus on the

simulation and modeling of physical systems with a dy-

namically changing structure.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 232

Initial Value Calculation for DAE with Higher Index

Andreas Uhlig, Torsten Blochwitz, Uwe Schnabel, Tobias Nähring

ITI GmbH

Webergasse 1, 01067 Dresden, Germany

{Uhlig, Blochwitz, Schnabel, Naehring} @iti.de

Abstract

The solution of Differential-Algebraic Equations

(DAEs) requires the calculation of initial values at

the beginning of the simulation as well as after dis-

continuities. An approach is described that allows

consistent initial value calculation (IVC) for higher

index DAE with structural changes. To consider

rigid impacts integral equations for the conservation

of momentum are automatically generated. The

method includes handling of fixed initial values and

the observance of feasible regions.

Keywords: Initial Value Calculation, DAE, Index

calculation, Impulsive Distribution

1 Introduction

A great variety of physical-technical systems can

be expressed and modeled by Differential Algebraic

Equations (DAEs). System simulation tools, espe-

cially Modelica simulators, have to solve DAEs of

various structures. The general form of DAEs is

written as

() 0,, =txxF & (1)

with the vector of state variables
n

x R∈ , the

vector of the time derivatives x& and the time t. The

integration procedure requires dim (F) = n (but it

system does not necessarily depend on all compo-

nents of x& , see example 1). The first task for the

time domain simulation is to find a consistent initial

value at the start time 0t , i.e., a point 0x for which a

solution curve ()tx of (1) with () 00 xtx = exists. If

the Jacobian matrix of partial derivatives xF &∂∂ is

regular everywhere then (1) defines an implicit sys-

tem of Ordinary Differential Equations (ODE). With

ODE any vector of initial values 0x is consistent

since (1) can locally be resolved for x& . The situation

is different in the case of DAE since xF &∂∂ can be

singular. The system has algebraic constraints if

n
x R∈ exist for which there is no algebraic solution

of (1) for the unknown x& . Additionally, the system

has hidden constraints if there are algebraic solu-

tions xx &, of (1) for which x is not a consistent ini-

tial value, i.e., x& is not the time-derivative of any

solution curve.

Example 1: Consider the system

121 , xxtx &== (2)

At 0tt = a vector
2

R∈x must fulfill the equation

01 tx = to correspond to an algebraic solution of (2).

Therefore, the first equation imposes an algebraic

constraint. Not all algebraic solutions are consistent

initial values since regarding 1x& as the time-

derivative of 1x further restricts x by

112 === txx && . Therefore, the second equation

of (2) constitutes a hidden constraint.

In complex systems user often cannot determine

consistent initial values for each of the variables be-

cause some of them must meet algebraic and hidden

constraints. On the other hand he must insist on (i.e.

fix) the initial values of certain variables. In this

situation tools provide support by allowing fixed and

not fixed values, the latter being used as guesses for

the initial value calculation (IVC) executed by the

software. The determination of initial values is

treated in [1], [5], and [7]. However, the initial val-

ues have to be calculated not only at the beginning

0tt = but also after discontinuities ([6]). Now the

values at/before the discontinuity play the role of the

initial values. Again one has to distinguish, which of

these values are fixed and which may change. In this

paper we consider an approach that determines con-

sistent initial values from this input.

Figure 1 gives an overview about the main steps

of simulation. Before a Modelica model is treated by

a numerical solver symbolic simplifications and

transformations are carried out (second block in

Figure 1). During this process symbolic index reduc-

tion is applied in order to transform the system into

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 233 DOI: 10.3384/ecp09430122

an ODE or at least into a DAE with index 1 (see [1]).

Here we refer to the differentiation index that de-

scribes how many times a DAE must be differenti-

ated until - after some transformation - an ODE is

obtained. The symbolic index reduction carries out

these differentiations as far as possible. If it leads to

a system without hidden constraints the remaining

algebraic constraints can be solved within implicit

blocks and so the system can be handled by standard

ODE solvers. In this case the computation of consis-

tent initial values is straightforward.

After the symbolic analysis of the model the nu-

merical time-domain simulation starts (third block in

Figure 1). It includes handling of discrete-time

events through event iterations and time-continuous

integration of the DAE-system (1). Time-discrete

events are triggered when inequalities change their

logical value depending on DAE-states and/or time.

Discrete variables and equations describe the behav-

iour of the system at such events. A change of the

time-discrete state may modify the DAE-system (1).

As explained below, that calls for a numerical index

reduction and a calculation of new consistent initial

values. Time-discrete and time-continuous states

influence each other. An event iteration takes place

until the time-discrete state of the system is stabi-

lized. After that the simulation continues with the

time-integration of the DAE.

Figure 1: Course of simulation flow

There are situations where the symbolic index re-

duction cannot differentiate certain equations ana-

lytically and some hidden constraints remain in the

system for the numerical time-domain simulation.

The most important cases are the following:

• External Functions do not provide symbolic

expressions for equations or even their de-

rivatives.

• If the system contains structural changes

(that may happen through conditional equa-

tions in Modelica as explained in Example

2) the solver is faced with several branches

having different indexes. Here symbolic in-

dex reduction does not solve the problem. To

guarantee a low index all combinations of

valid branches would have to be considered

separately. In the worst case the analytical

effort of regarding all branches increases ex-

ponentially. This is not practicable for large

models.

Example 2: Consider the system with the single

conditional equation

1 = if 5.0<t then x else x& .

For t<0.5 the first branch is active and the differen-

tiation index is 1. After that the second branch causes

differentiation index 0. The symbolic index reduc-

tion does not distinguish between the two branches

and wrongly deduces that the equation depends al-

ways on both variables x and x& and the system is

classified as to be of index 0. Therefore, the equation

is not symbolically differentiated but the IVC cannot

compute x& at 0=t without differentiation of the

equation.

If the symbolic index reduction cannot free the

system from hidden constraints it has to be supple-

mented by numerical index reduction. For this end it

is necessary to calculate derivatives numerically.

In such cases ODE solvers cannot be applied di-

rectly for the simulation of the system.

Beyond this, there are more challenges. With im-

pact events in mechanical models (see section 3)

conservation of momentum is expected. Since the

respective equations are normally not part of the

model, they have to be deduced numerically from the

equations of motion and considered during re-

initialization after such events.

Even after index reduction some algebraic equa-

tions may remain. Furthermore, higher derivative

variables often occur nonlinear. For both reasons the

solution of a nonlinear system is required for the

IVC and considered briefly in this paper.

Input Model

Symbolic Analysis

..., Symbolic Index Reduction, ...

Numerical Time-Domain Simulation

Event Iteration

(Start/Stop/Time-/State Events)

Time-Continuous Integration

Intercepted by inequalities becom-

ing true or false

Eval. Time-Discrete Equations

Numerical Index Reduction

Calc. Consistent Initial Values

Stop

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 234

At last, we discuss approaches to meet inequality

constraints, that might be defined for some states ix .

2 Numerical Index Reduction

For the description of the numerical index reduction

we assume that (1) is the active set of DAE-

equations after a step of the event iteration at

time dtt = . As explained in section 1 the system

may still have hidden constraints. To transform these

for the IVC into algebraic constraints the numerical

index reduction supplements the original system with

time-difference quotients of selected equations

from (1). Thereby, the values of x and x& after the

event time dt are expressed as the result of one or

two steps of the Euler-forward method.

2.1 Index Calculation

The index calculation is the first part of the numeri-

cal index reduction. It determines which equa-

tions iF and which states jx have to be differenti-

ated how many times. The algorithm can be divided

into two steps:

1
st
: assignment of equations to variables

2
nd

: determination of the number of necessary differ-

entiations.

Assignment of equations to variables:
Roughly spoken the equations are assigned to vari-

ables (or their time derivatives) which ‘can be calcu-

lated from their equations’. The best assignment is

found with the help of the following discrete optimi-

zation procedure:

Every assignment of equations to variables can be

described by a permutation σ of the numbers 1 to

n . Here, () ij =σ means that iF is assigned to jx .

We denote the set of all such permutations

as ()nPerm .

From the current numerical Jacobian matrices

xF ∂∂ / and xF &∂∂ / a cost matrix C is composed:

=∂∂∧≠∂∂−−

≠∂∂−−

=

else0

0/0/ if1

0/ if2

: jiji

ji

ij xFxFn

xFn

C &

&

An entry ijC causes rather high costs if iF does not

depend on jx . Otherwise, the caused costs are lower

for iF depending on the time derivative of jx than

only depending on jx .

The σ that minimizes the overall costs ()∑
=

n

j

jjC
1

,σ is

the chosen best assignment of equations to variables.

For the minimization one can apply the algorithm

from [3].

Determination of the number of necessary differ-

entiations:

The number of necessary differentiations of equa-

tions is determined by an iterative procedure. How

the equation iF of the original system depends on

the variables jx is determined the numerical Jaco-

bian and stored in the dependency matrix

∞−

=∂∂∧≠∂∂

≠∂∂

=

else

0/0/ if0

0/ if1

:0

jiji

ji

ij xFxF

xF

D &

&

for nji ,...,1, = . Starting from
0D a sequence of

dependency matrices
kD for derived systems with

differentiated equations is generated.

In the following we list the algorithm in ‘quasi-

Modelica’ formulation:

;0:=k // Iteration index.

//
0D already defined above.

while true loop

for j in n:1 loop

// Determine the highest derivative of jx that

// explicitly occurs within the current system:

== niDd k

ji

k

j
,...,1|max:

,

end for;

for j in n:1 loop

if () −∞>k

jjD ,σ then // jx in eq. ()jσ ?

// Differentiate the ()jσ -th equation:

for i in 1:n loop

() () ()
k

jj

k

j

k

ij

k

ij DdDD ,,

1

, : σσσ −+=+
;

end for;

end if;

end for;

// Stop if no further differentiations were needed:

if
kk DD ==+1

 then break; end if;

;1: += kk

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 235

CT

T

end while;

If () −∞>0

, jiDσ then in each iteration the matrix en-

try () −∞>k

jiD ,σ stands for the order of the highest

time-derivative
()k

ji
D
jx),(σ present in the

() ()
0

,,
:

ii
k

ii
DDd

σσ
−= times differentiated equa-

tion ()
()d

i
F
σ

. So, at the end of the algorithm one can

read off the number of needed differentiations of

equations and variables.

The algorithm ensures that the highest derivatives of

the variables occur in the highest derivatives of their

assigned equations if this is possible at all.

It determines the needed additional equations and

variables for the re-formulated index-reduced DAE

system.

The advantage of the above algorithm over the

algorithm of Pantelides [1] is that it also handles sin-

gular systems.

2.2 Numerical Differentiation of Equations

The index calculation from section 2.1 tells us

which equations of system (1) at dtt = have to be

numerically differentiated for index reduction and if

so, how many times. Only first and second order in-

formation is numerically generated. So, three is the

highest differentiation index that can be handled by

the solver itself.

If equation iF is marked for differentiation the

overall system is supplemented by the equation

() ()
.

,,,,
0

dt

dtxxiFdtdtxdtxxdtxiF &&&&& −+⋅+⋅+
=

If second order information is needed the result of

two Euler-forward steps is added, too:

()] ()dtdtxxiF

dtdtxdtxdtx

xdtxdtxiF

2,,

2,22

,220

&

&&&&&&

&&&

−

−

+⋅+⋅+

 ⋅+⋅+=

Here, the quantities in these equations have the

following meaning:
x … value of the state variable at dt

x& , x&& , x&&& … 1
st
, 2

nd
, and 3

rd
 derivatives at dt

dt … step size, automatically selected

by the initial value solver

3 Conservation of Momentum

3.1 Motivation

To motivate the necessity of integral equations in

simulation we shortly consider the equations of two

centrally colliding soft elastic bodies which are only

under the influence of the contact force CF . The

equations of motion of the two bodies are

.,

,,

22C22

11C11

vxFvm

vxFvm

=−=

==

&&

&&
 (3)

And the behavioral description of the contact

force is

() .0elsethenif 1221C xxkxxF −>= (4)

Here, we implicitly assume that body 1 with mass

1m approaches with some start velocity 10v from

the left hand side ()21 xx < while body 2 with

mass 2m from the right hand side with some start

velocity 1020 vv < .

Figure 2: Displacement 21 xx − and difference velocity

21 vv − of the two masses for N/m104=k (green) and

N/m106=k (red)

Figure 2 shows the displacement and the differ-

ence velocity for two different values of the contact

stiffness. The higher the stiffness the shorter the im-

pact time CT and the maximal deformation becomes

smaller. Furthermore, the difference velocity 21 vv −

changes sign within the contact phase.

CT

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 236

In many practical situations the contact stiff-

ness is very high such that the contact time span and

the maximal deformation are relatively small com-

pared to the time- and distance scale ,resp., of the

interesting processes to be modeled. If, under these

circumstances, the soft impact model (3), (4) is used,

the solver is forced to reduce the computation time

step size just for capturing the fast contact phase.

This can be avoided by modeling the contact phase

as one discrete impact event where the sign of the

difference velocity changes, i.e., conceptually:

() () () ()();00:00

thenat when

2121

21

−−−−=+−+

=>

dddd

d

tvtvtvtv

ttxx

With the jump in the difference velocity

21 vv − also (at least one of) the velocities

1v or 2v must jump and they are no longer differen-

tiable in the classical sense.

In those events the IVC algorithm reformulates

the equations of motion (3) depending on 1v& and 2v&

as integral equations:

() ()()

() ()()

() ()()

() ()() C222

C22
0

C111

C11
0

ˆ00

lim0

ˆ00

lim0

Ftvtvm

dttFtvm

Ftvtvm

dttFtvm

dd

t

t

dd

t

t
dd

d

d

d

d

+−−+=

+=

−−−+=

−=

∫

∫

+

−→

+

−→

ε

εε

ε

εε

&

&

Thereby, the new integral quantity CF̂ is auto-

matically added by the solver.

One may even give the generated equations

physical meaning. The new equations reflect the bal-

ance of momentum and CF̂ stands for the impulse

exchanged by the colliding bodies at the time of im-

pact.

In the context of impulsive distributions as intro-

duced in [4] the force CF is a linear combination

() () ()
dttFtFtF −⋅+= δCCC

ˆ

of a regular signal CF and a Dirac-delta distribution

shifted to the time of impact dt and weighted by the

integral quantity CF̂ .

The introductory example is very simple. In prac-

tice, the simulator must be able to generate the im-

pulse equations for much more complicated models.

Special challenges are simultaneous state changes in

multiple impact and end-stop elements, nonlinear

transformations between masses and contact ele-

ments as well as rigid friction elements parallel to

contact elements.

Figure 3 shows a SimulationX model combining

all those aspects. It is a swinging pendulum (yellow)

bumping against a vertically guided plate (blue)

which initially lies on some end stop (gray). The

nonlinear transformation of the angular position into

the height of the nose of the pendulum and the fric-

tion of the vertical guide of the body are taken into

account.

Figure 3: 3D-animation (top, multiple frames are shown),

model structure (left), and results (right) of the swinging

pendulum

3.2 Generation of Equations

In the transient simulation conservation of mo-

mentum is guaranteed by the equations of motion

and the relation av =& . In the IVC at an ideal impact

this relationship is not directly used, therefore con-

servation of momentum must be ensured by addi-

tional conditions. For this purpose we integrate the

equations of motion numerically and the Dirac-

impulse in forces and accelerations resulting from

the impact can be treated.

The solver needs model input to identify the im-

pact source in the system (e.g., the contact force CF

in the example from section 3.1) and the jumping

variables that determine indirectly the integral value

of the impulsive variables for description of the im-

pact (e.g., the jumping velocity difference 21 vv − in

the example). At present, this is done by a flag set by

a function SetImpact and by an attribute notFixed,

respectively. By evaluation of the dependencies of

the system the IVC algorithm can determine the

equations for which integrals are to be added:

Let D be the dependency matrix of the numeri-

cally index reduced order-one system in the current

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 237

discrete state (see section 2.1). We define the de-

pendency matrix D with rows (corresponding to

equations) permuted into the order of the assigned

variables: () jiji DD ,, : σ= . We define the vector
0

b

of initial lower bounds for the impulse order. The

indexes j that correspond to variables marked with

setImpact get the lower bound 0:=jb . For the other

variables the bounds are initially set to −∞=:jb .

The impulse order is found by iteratively adapting

the lower bounds of variables ix to the impulse or-

der of the other variables and derivatives in the as-

signed equation ()iFσ . This can be expressed as fol-

lowing iterative assignment

()())(,onesrowmax:1 DdiagDbnnb kk −+⋅=+

to be run for ,...1,0=k until the impulse or-

der
k

bI =: with
kk

bb ==+1
 is found.

The approach can handle even multiple impacts at

the same time instance.

After the impulse order of all variables (and as-

signed equations) has been determined the integrals

of equations () 0... =IF with impulse order 0 are

generated by the solver (currently, only equations up

to impulse order 0 are handled). For the discussion

we repartition the set of states and time-derivatives

xx &, into regular variables Rv and impulsive vari-

ables Iv . Locally, at dtt = the regular variables are

piecewise continuous while the impulsive variables

are linear combinations

() () ()dIII ttvtvtv −+= δˆ

of a regular part Iv and an impulsive part with the

integral value Iv̂ . For time derivatives kx& that are

components of Iv the integral value x̂& is deter-

mined by the jump height

()()

() ()()00

ˆˆ 0

0

−−+=

−+= ∫
+

−

dkdk

t

t dkkk

txtx

dtttxxx
d

d

δ&&&

of the corresponding state kx at dt . Here, the vari-

able right limit ()0+dk tx is the unknown in the

supplemented system of equations. For the other

purely algebraic components of Iv the integral

quantities Iv̂ are additional unknowns.

One precondition for the system is that all equa-

tions depend at most quasi-linearly on impulsive

variables, i.e., the partial system of these equations is

representable as

() () () 0,,... =+⋅≡ tvFvtvAF RRIRI (5)

with a matrix function A and a function RF both

only depending on the regular variables. It is as-

sumed that A depends continuously on its argu-

ments. For RF only integrability and boundedness is

required.

()(() ()()

()) 0,

ˆ,lim
0

=⋅+

+−+⋅∫
+

−→

dttvF

ttvtvtvA

RR

dIIR

t

t

d

d

δ
ε

εε

For brevity we do not note the time dependence

of all variables explicitly.

Since the integrand of the partial integral

()(() ()) 0,,lim
0

=⋅+⋅∫
+

−→

ε

εε

d

d

t

t RRIR dttvFtvtvA

is bounded its integral vanishes identically for the

limit 0→ε and only

() () 0ˆ,lim
0

=−⋅∫
+

−→

ε

εε
δ

d

d

t

t dIR dtttvtvA (6)

remains to be considered. If Rv is continuous one

directly obtains from the shifting-property of the

Dirac-delta distribution the equation

()() 0ˆ, =IddR vttvA .

Things become more complicated when Rv is dis-

continuous at dtt = . That happens with transla-

tional-rotational transmissions as in Figure 3.

This case is not directly covered by distribution

theory for the following reason. Let RR →:g be

jumping at 0 and otherwise continuous and let εδ be

a family of
1

L -approximations of the Dirac-delta

distribution. Then the limit

() ()∫
∞

∞−→
dtttg ε

ε
δ

0
lim

depends on the actual sequence of Dirac-

approximations. Symmetric approxima-

tions () ()tt −= εε δδ lead to

() () () 2/lim
0

−+
∞

∞−→
+=∫ ggdtttg ε

ε
δ .

with ()ε
ε

±=
→

± gg
0

lim: . The left- and right-hand

approximations
+
εδ and

−
εδ with 0)(=±

tεδ at

0≥t and 0≤t , resp., lead to

() () ±
∞

∞−

±

→
=∫ gdtttg ε

ε
δ

0
lim .

As we show in the following, the symmetric ap-

proximation often matches the symbolic integration

better.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 238

Let g be sufficiently smooth. In constraint equa-

tions there are often additive terms of the

form ()() ()txtxg ii &' with some state variable ix . For

smooth ix the term has the anti-derivative ()()txg i .

Therefore, one expects the ‘symbolical integral’ to

be

()() () () ()∫
+

− −+ −==
0

0
':

d

d

t

t iiiiS xgxgdttxtxgI &

even if the state ix jumps at dt . Expressing the in-

tegral with the help of the symmetric Dirac approxi-

mation one gets the ‘numerical integral’

()() () () ()()

() ()() ()−+−+

+

−
−+

−⋅+=

−−+= ∫
iiii

t

t
diiiiN

xxxgxg

dtttxxtxtxgI
d

d

''

':

2
1

0

0
δ

where ix is the continuous part of ix . Taylor series

expansion of both integrals NI and SI for

−+ −=∆ iii xxx : at () 2/:m −+ += iii xxx gives

()

 ∆+∆⋅

3
m' iii xOxxg . Therefore, both inte-

grals are equal up to order two. For the correspond-

ing limit of the one-sided Dirac approximation the

numerical integrals match the symbolical integral

only up to order one.

The foregoing remarks motivate that for the inte-

gral equation (6) with jumping signals Rv the result

() ()() 0ˆ,,
2

1 =+ +− IdRdR vtvAtvA (7)

of the symmetric Dirac approximation should be

used. Actually, we implemented

()() 0ˆ,
2

1 =+ +− IdRR vtvvA (8)

which is a second order approximation of (7) in the

jump height −+ − RR vv at the mid-

point ()−+ += RRR vvv
2

1
m : . As we have seen

above the change is not crucial for the approximation

and the implementation (8) leads to less function

evaluations than (7).

DAE-systems with impacts result from structural

changes. So the matrix A in the left-hand side of (5)

cannot be easily identified through the symbolic

analysis in advance. The integral equations (8) must

be composed by evaluations of the original left-hand

sides IF at appropriate arguments. One way to rep-

resent the additional integral equations is:

() () 0,0,,ˆ, mm =− dRIdIRI tvFtvvF .

Hereby (as already mentioned above), the mRv are

the mean values ()−+ += RRR vvv
2

1
m : of the left

and the right limits of the regular variables at dt .

For continuous variables kRv , (e.g., non-jumping

states with derivatives) kRkRkR vvv ,,m, −+ == . For

the other variables kRv , the right limits kRv ,+ are

unknowns in the extended system of equations (see

section 4).

Example 3 (Conservation of Momentum):

Given are two end stops and three masses

m1 = 1 kg Stop 1 m2 = 1kg Stop 2 m3 = 1 kg

The two end stops should have an impact at the same

time with the impact coefficient 1ci and 2ci . Then

the DAE for the impact is

() ()()
() ()()

332

2221

111

32232

21121

0

0

0

000

000

xmF

FxmF

Fxm

txtxcixx

txtxcixx

dd

dd

&&

&&

&&

&&&&

&&&&

+−=

++−=

+=

−−−+−=

−−−+−=

Here the velocities 1x& , 2x& , and 3x& have a jump and

the accelerations 1x&& , 2x&& , and 3x&& , and the forces of

the end stops 1F and 2F are infinite. The numerical

index reduction supplements the system with the dif-

ference quotients of the first two equations:

() ()(
() ()()

() ()()())

21

21121

211

2211

00

00

0

xx

dttxtxcixx

txtxci

xdtxxdtx

dd

dd

&&&&

&&&&

&&

&&&&&&

−=

−−−+−−

−−−−+

+⋅+−⋅+=

and

() ()(
() ()()

() ()()())

32

32232

322

3322

00

00

0

xx

dttxtxcixx

txtxci

xdtxxdtx

dd

dd

&&&&

&&&&

&&

&&&&&&

−=

−−−+−−

−−−−+

+⋅+−⋅+=

.

Furthermore, the following integral equations are

added to handle the velocity jumps in the end stops:

() ()()00ˆ0 111111 −−−−+= dd tFtxmFxm && ,

()()0ˆˆ0 22212221 −++−−++−= dtFxmFFxmF &&

and

() ()()00ˆ0 332332 −+−−−+−= dd txmtFxmF &&

From this we get the 10 unknowns: the velocities 1x& ,

2x& , and 3x& , the accelerations 1x&& , 2x&& , and 3x&& , the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 239

forces of the end stops 1F and 2F and their integrals

()0ˆ
11 −− dtFF and ()0ˆ

22 −− dtFF .

Figure 4: Simulation results for the displacements (top)

and velocities (bottom) of the masses

Here it is 6.021 == cici . Other independent choices

of 1ci and 2ci in the interval []1;0 are possible. This

shows that multiple impacts at the same time instant

can be handled.

4 Fixed Initial Values

For 0tt = it can be setup externally (Modelica at-

tribute) which initial values of x and x& are to be

treated as fixed. Then they are not variables for the

IVC. Moreover, there are rules for the solver to indi-

cate and treat certain states as fixed or not fixed. Of-

ten a user would like to see the guesses for the not

fixed variables as preferred results of the IVC at

0tt = . Therefore, in a first attempt the IVC algo-

rithm can fix those ODE states which are not re-

quired for other fixations and initial equations. Only

if this was not successful these experimentally fixed

variables are released again.

The more interesting situation is after a disconti-

nuity. Here a state jx (same conditions hold for

derivatives jx&) is treated as fixed if

(i) it is specified as fixed externally or equation

(1) depends on a higher derivative (which

also can be a state or even dummy derivative;

see [2]) and

(ii) the state is continuous and

(iii) the state is not externally defined as not fixed.

Clause (ii) is applied because variables with a dis-

continuity or infinite value (see section 3) cannot be

treated as fixed.

If a higher derivative occurs in (1), that is not in-

finite, the state itself is continuous. Therefore, the

second part of clause (i) fixes it. This also applies if

the higher derivative is a dummy (see [2]), since in

reality the relationship exists.

5 Solving the System of Equations

The final system of equations is solved by a New-

ton method. In the situations described in sections 2

and 3 additional equations and sometimes also vari-

ables are appended to (1). On the other hand, due to

fixation of variables in the previous section such

variables are omitted. Thus, as a rule the system of

equation has rectangular shape.

Under-determined Systems: With an infinite

number of solutions we can work with the minimum-

norm solution, i.e.

{ }ressJacs −=∗:min
2

.

This does not need to be critical, e.g. when deriva-

tives of certain states are not calculated in the course

of IVC since they are used nowhere, as shown in the

example below.

Example 4:

Let velocity iv be a state. Its derivative iv& is the

acceleration ia . ia is a state too, if it is a dummy-

derivative, i.e. there is no equation ii av =& . In the

system of equation the derivative of iv is always

expressed by ia . Thus iv& does not occur in the sys-

tem of equation and hence cannot be calculated in

the IVC.

Even over-determined systems, if correctly mod-

eled can be solved after a discontinuity (Example 5).

Example 5:

Consider two masses linked by a mechanical con-

straint.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 240

Equation before index reduction:

21

2211

1

0

xx

xmxm

=

+= &&&&

Index reduction adds 1. and 2. derivatives:

212121

2121

20

0

xxxxxx

xxxx

&&&&&&

&&

++=

+=

If there is (caused by others parts of a model) a dis-

continuity at dt then all of the states

()dtx1 , ()dtx2 , ()dtx1
& , ()dtx2

& are fixed, i.e. keep

the value of ()0−dt . ()dtx1
&& and ()dtx2

&& are vari-

able. The system has 4 equations and 2 variables.

() ()
() ()
() () () ()
() () () ()

() ()dd

dddd

dddd

dd

dd

txtx

txtxtxtx

txtxtxtx

txtx

txmtxm

21

2121

2121

21

2211

0

00200

00000

001

0

&&

&&&&

&&

&&&&

−+

+−−+−=

−−+−−=

−−=

+=

The second and the third equation are not

changed at the discontinuity. So initial values for 1x&&

and 2x&& can be determined from the first and fourth

equation. Like in this example the surplus equations

are often satisfied automatically. Thus, even a rec-

tangular system can have a solution.

6 Ensuring the Feasible Region

Derived from real world conditions inequality

constraints, especially lower and upper bounds, may

be attached to the variables of a DAE:

Minii xx ,> and Maxii xx ,<

(If equality shall be included (e.g. Minii xx ,≥) we

use the relation ScaleFacabsTolxx Minii *, −> ,

with suitable constants.)

Our first choice – if possible - is to make use of

the kernel of the system matrix. If the originally cal-

culated correction s would lead to

Mini

new

i xx ,≤ or
Maxi

new

i xx ,≥ with

i

old

i

new

i sxx += and Maxi

old

iMini xxx ,, <<

then we determine a Newton update
Ns parallel to

the border of the feasible region. We set 0=N

is and

calculate the rest of
N

s from

minimum norm solution + kernel vector * factor

Figure 5: Newton update parallel to border of feasible

region

If this approach is not applicable (no kernel) a

damping factor α with 10 << α shall decrease the

update vector ss
N ⋅= α , such that for a given λ

with 10 << λ

()

() .1

1

,,

,,

Maxi
old
iMaxi

i
old
i

old
iMiniMini

xxx

sxxxx

<∗+∗−≤

∗+≤∗+∗−<

λλ

αλλ

7 Conclusions

The solution of DAEs requires the calculation of

initial values at the beginning of the simulation as

well as after discontinuities. In this paper some

measures for special situations were described. First,

we can, e.g. in the case of external functions and

structural changes, execute the necessary differentia-

tion of certain equations numerically. Second, in or-

der to enable ideal components additional equations

for initial values were developed. Hereby the conser-

vation of momentum for impacts was ensured. This

approach includes assumptions, which are fulfilled in

many applications. In the current implementation,

the model needs to be annotated with a SetImpact

flag. The authors propose to include a suitable de-

scription of impulsive distributions (including impul-

sive jumps) in the Modelica specification.

Even if the resulting system of equations is not

regular, the IVC can find a solution. At last we men-

tioned how fixed and non-fixed initial values and

feasible region for the variables in the IVC are man-

aged.

Modified

Newton-

update

Kernel vector

Least square

solution

Border

m1 = 1 kg m2 = 1 kg 1 = x1 * x2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 241

References

[1] Pantelides C.C.: The Consistent Initialization

of Differential-Algebraic Systems. SIAM J.

SCI. Stat. Comput., Vol. 9, No. 2, pp. 213-

231, March 1988.

[2] Mattsson S.E. and Söderlind G.: Index reduc-

tion in differential-algebraic equations using

dummy derivatives. SIAM Journal on Scien-

tific Computing, Vol. 14, No. 3, pp. 677-692,

May 1993.

[3] Jonker R. and Volgenant A.: A Shortest

Augmenting Path Algorithm for Dense and

Sparse Linear Assignment Problems. Com-

puting, Vol. 38, pp. 325-340, 1987.

[4] Kunkel P. and Mehrmann V.: Differential -

Algebraic Equations. European Mathematical

Society Publishing House, Zürich, 2006.

[5] Bauer I.: Numerische Verfahren zur Lösung

von Anfangswertaufgaben und zur Generie-

rung von ersten und zweiten Ableitungen mit

Anwendungen bei Optimierungsaufgaben in

Chemie und Verfahrenstechnik. Dissertation,

Interdisziplinäres Zentrum für Wissenschaft-

liches Rechnen (IWR) der Universität Hei-

delberg, 1999.

[6] Wunderlich L.: Analysis and Numerical So-

lution of Structured and Switched Differen-

tial-Algebraic Systems, PhD Thesis, TU Ber-

lin, 2008.

[7] Li S., Petzold L. R.: Design of New DASPK

for Sensitivity Analysis, Technical Report:

TRCS99-28, 1999.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 242

An XML Representation of DAE Systems
Obtained from Modelica Models

Francesco Casellaa Filippo Donidaa Johan Åkessonb,c

aDipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 35/5, 20133 Milano, Italy

bDepartment of Automatic Control, Lund University, Lund, Sweden
cModelon AB, Sweden

Abstract

This contribution outlines an XML format for repre-
sentation of flat Modelica models. The purpose is to
offer a standardized model exchange format which is
based on the DAE formalism and which is neutral with
respect to model usage. Many usages of models go
beyond what can be obtained from an execution inter-
face offering evaluation of the model equations. Sev-
eral such usages arise in the area of control engineer-
ing, where Linear Fractional Transformations (LFTs),
derivation of robotic controllers, optimization, and real
time code generation are some examples. The choice
of XML is motivated by its defacto standard status
and the availability of free and efficient tools. Also,
the XSLT language enables specification of transfor-
mation of the XML model representation into other
formats.

Keywords: DAE representation; XML standard;
modeling

1 Introduction

The Modelica language allows to build complex mod-
els of physical systems, described by differential-
algebraic equations (DAE). These models can be used
for different purposes: simulation, analysis, optimiza-
tion, model transformation, control system synthesis,
real-time applications and so forth. Each one of these
activities involves a specific handling of the corre-
sponding differential algebraic equations, by both nu-
merical and symbolic algorithms. Moreover, special-
ized software tools which implement these algorithm
may already exist, and only require the equations of
the model to be input in a suitable way.

The goal of this paper is to define an XML-
based representation of the DAEs of Modelica mod-
els, which can then be easily transformed into the in-

put of such tools, e.g. by means of XSLT transfor-
mations. On one hand, this representation must be as
close as possible to the mathematical equations, there-
fore without any aggregation, inheritance, and com-
plex data structures left. On the other hand, it must
be as general as possible with respect to the possible
usage of the equations, which should not be limited to
simulation.

This representation could then be used as a standard
interface between the front-end of any Modelica com-
piler, and any possible back-end for simulation, opti-
mization, analysis, etc.

In addition, the XML representation could also be
very useful for treating other information concerning
the model, for example using an XML schema (DTD
or XSD) for representing the simulation results, or
the parameter settings. In those cases, using a well-
accepted standard will result in great benefits in terms
of interoperability for a very wide spectrum of appli-
cations.

The paper is structured as follows: in Section 2, the
abstract structure of the DAE representation is infor-
mally described, motivating the structure of the formal
XML schema definition. Section 3 discusses some of
the possible usages of such a representation. Section
4 briefly describes test implementations in the Open-
Modelica and JModelica.org compilers, while Section
5 ends the paper with concluding remarks and future
perspectives.

2 Abstract representation of the DAE
system

To the best of the authors’ knowledge, the optimum
representation for defining a DAE system should be as
close as possible to the mathematical definition. Pro-
vided that a DAE system consists of a system of dif-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 243 DOI: 10.3384/ecp09430073

ferential algebraic equations, it can be expressed as:

f (ẋ,x,y,u,v, t, p) = 0 (1)

where ẋ is the derivative of state, x is the states, y are
the outputs, u are the inputs, v are the algebraic vari-
ables, t is the time and p is the set of the parameters.

For the rest of this paper, we assume that the DAEs
(1) describing the model have index 1. This restric-
tion is necessary to give to the x variables the meaning
of states, i.e., variables whose initial values can be ar-
bitrarily selected. Most applications for DAE models
(and all the applications discussed in this paper) re-
quire an index-1 DAE as input, so it is reasonable to
discuss a representation limited to this class of equa-
tions. In case the equations of the original Modelica
model have higher index, such DAEs can be obtained
by symbolic index reduction, which is an available fea-
ture in most Modelica tools, so this is not a drastic lim-
itation to the range of applicable models. In this case,
however, we must assume that the index reduction pro-
cedure gives a fixed selection of states.

Even though the representation provided in equation
1 is very general, and is very appreciable for viewing
the problem as one could see it written on paper, it
cannot be directly used for inter-tools exchange in an
efficient way.

The main idea is then to provide a standardized
mathematical representation of the DAE system that
relies on standard technology and is application-
oriented. This justifies the adoption of the XML stan-
dard as the base framework. It can be noted that while
XML is generally not suited for manual inspection, an
XSLT transformation translating an XML description
into, e.g., a flat Modelica representation is easily de-
fined.

As an additional requirement, we must consider that
the DAE systems we are dealing with are derived from
the Modelica models. Even if this can be seen as a
restriction, this is not, since the Modelica language
specification interprets a superset of the problems that
are object of this paper, providing a textual definition
to describe the physical systems, concerning also the
variables types and the expressions operators defini-
tions.

Previous efforts have been registered to define stan-
dard XML-based representations of Modelica mod-
els, including [14, 15]. A standard representation of
process engineering models is described in [2] and a
standard for Modelica-derived simulation models is
presented in [11]. In addition, a standard represen-
tation for API implementation for Modelica is given

in [16], and standard representation for simulation li-
braries [9]. A recent initiative is the Functional Model
Interface (FMI)1, [6], which is aimed at creating a
standard for a Modelica execution API.

The aim of this work is to take advantage from all
this studies and try to define a simple and general rep-
resentation which is not tailored for a particular us-
age, but rather aims at covering the largest possible
problems that can be formulated starting from a Mod-
elica model. Particular care has been exercised in or-
der to define concepts and structures which are general
enough to be usable in different contexts.

In the remainder of this section, the different parts
of the proposed XML representation will be described.

2.1 Variables

The Variables entity corresponds to the set of
scalar variables (real, integer, boolean) that are present
in the equations of the DAE. In particular, taking into
account the continuous-time representation (1), five
types of variables are needed:

∙ Time-invariant, i.e., the constants and the param-
eters.

∙ Input variables, conceptually given from the out-
side.

∙ Algebraic variables corresponding to algebraic
equations in the matching algorithm. This cat-
egory also includes dummy derivatives obtained
after index reduction. This set of variables could
also be identified as the set of the time-variant
variables not contained in the set of states or in-
puts.

∙ State variables.

∙ Derivatives of state variables.

As one could easily imagine, some constraints are
present on the variables set. Firstly, a one-to-one re-
lationship is defined between the set of the state vari-
ables and the set of derivatives. Secondly, the outputs
are a subset of the state and algebraic variables, in the
sense that the state and algebraic variables might also
be marked as output variables, i.e., have an output at-
tribute.

Associated with a variable is also a set of attributes,
corresponding to the attributes specified by the Model-
ica language. These include the start attribute, min and

1The work on FMI is done within the ITEA2 project MOD-
ELISAR.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 244

max, unit, nominal etc. These attributes are essential
to include in a model specification format since they
provide information about, for example, start values of
variables, model validity regions and unit information.

Note that string parameters could also be consid-
ered, with constant binding to constant literal strings.
The string binding equations will not be considered in
the equation sets, because are irrelevant from a mathe-
matical point of view.

2.2 Expressions

Expressions represent all the mathematical ex-
pression of the system and can be formed by aggre-
gating identifiers and literals through:

∙ Unary operators. This class contains all the math-
ematical functions that require only one argument
as input. Possible examples are the trigonomet-
ric functions (sin, cos, tan, asin, acos,
atan), the hyperbolic functions (sinh, cosh,
tanh), the exponential functions (exp), the log-
arithmic functions (log, log10), and the square
root function (sqrt).

∙ Binary operators. This set contains all the alge-
braic operators like +, *, -, /, the factor function
ˆ, and the atan2 function.

∙ Function calls referring to user-defined functions.

XML encoding of expressions is straightforward
by introducing elements corresponding to an abstract
grammar specification used in a compiler. This ap-
proach renders the DAE XML representation format to
provide abstract syntax trees (ASTs) for expressions,
which simplifies the development of XSLT transfor-
mations. Also, translating this representation into
other formats for representing mathematical expres-
sions, e.g., MathML, [5], would be trivial.

2.3 Functions

A Function is conceptually equivalent to an algo-
rithm, i.e. a part of a procedural code and, in this sense
has:

∙ Input variables (possibly with default values)

∙ Output variables

∙ Protected variables (i.e. variables visible only
within the function)

∙ An algorithm to compute outputs from inputs,
possibly using protected variables.

The DAE representation contains only scalar vari-
ables. If any vector or array variable is present
within the original object oriented model, it is flat-
tened to their fundamental scalar elements by the com-
piler before producing the XML. This is also the case
for the other data structures (e.g. records) and for
the functions. In particular, functions returning vec-
tors or records are split into separate scalar func-
tions, each one corresponding to the computation of
a single scalar element of the outputs. For example,
(x,y)=f(u,v) is converted to the scalar equations:

1 x1 = f1(u1,u2,v1,v2)

2 x2 = f2(u1,u2,v1,v2)

3 y1 = f3(u1,u2,v1,v2)

4 y2 = f4(u1,u2,v1,v2)

where each function fj() is defined in Modelica as
the original function f(), save that all outputs except
the j-th are declared as protected variables instead of
outputs. The fj() functions should retain a refer-
ence to the original function f(), allowing an effi-
cient computation scheme, where required. As an ex-
ample, a simulation applications might cache the re-
sults of calling f(u,v) when encountering the first
call to any fj(u,v), and then use this to get the re-
sults of the other scalar functions calls with the same
arguments, without re-executing the algorithm.

If the compiler performs function in-lining before
generating the XML representation, the corresponding
function calls disappear from the model; on the other
hand, sophisticated in-lining of non-trivial functions
could be performed by a post-processing tool, whose
input is the XML code. The subject of in-lining is thus
completely transparent and orthogonal to the DAE rep-
resentation discussed here.

The algorithm in a function is formulated by an im-
perative language equivalent to Modelica algorithms,
expressed as an XML translation of the corresponding
abstract syntax tree.

The abstract syntax tree representation for func-
tions is conceptually a superset of the Expression
entity defined in subsection 2.2. More pre-
cisely, it is necessary to add three main classes
of entities. Firstly, the program flow constructs
(such as the if-then-else, the for-loop, the
while-loop and others) are necessary. Secondly,
there are some Modelica-specific constructs, e.g.,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 245

sample() and initial(). Finally, the basic op-
erators provided by a majority of programming lan-
guages, i.e., the boolean relation operators including
<, <=, ==, <>, > and >=, and finally type conversion
primitives such as floor and edge.

Again, XML elements are conveniently introduced
to represent functions and related quantities. The ad-
vantages of having such kind of abstract representa-
tion are evident, for example, it can be easily converted
to any imperative programming language (C, Matlab,
Mathematica, Maxima, Maple, Scilab, Python, Java,
etc) by means of XSLT transformations.

2.4 Equations

In many cases, a Modelica model includes parameters
depending on other parameters. For simulation, it is
necessary to solve the corresponding equations numer-
ically at initialization. The numerical values can then
be used for dynamic simulation. For other purposes,
it may be necessary to keep some of these relation-
ships in the model. For instance, in optimization prob-
lems there may be a free parameter p1 and another
parameter p2 = f(p1). In this case, the parameter
p2 cannot be computed before the optimization pro-
cedure starts, but rather, the relationship needs to be
included amongst the constraints in the optimization.
When building LFT representations, p1 might be an
uncertain parameter, while f() might be well known;
in this case, one wants to keep the dependency of p2
from p1 in the dynamic model.

When dealing with simulation problems, equations
for parameters are conceptually part of the initializa-
tion section. However, they may play a special role in
non-simulation problems, in particular when they all
have fixed = true. In the case of LFT transformations
there are no initial equations, but it is still necessary to
consider the relationships between uncertain parame-
ters and all other parameters when formulating the un-
certain dynamic equations.

In fact, there is a whole class of problems for which
the initial equations are irrelevant. As a first example,
consider the LFT representation of an uncertain dy-
namical system. This system only involve the dynamic
equations, and the initial values of the states are not
required for the transformation. Also, when dealing
with the derivation of inverse kinematics, computed
torque and inverse dynamics in robot models, the re-
sulting problems are purely algebraic: there are no ini-
tial equations involved once the appropriate BLT has
been performed and the irrelevant parts of the model
have been discarded.

However, there are still many problems where the
values of initial states are an essential part of the prob-
lem. The initial variable values are generally not
known, but need to be solved from the initial equa-
tions. There are also problems where additional initial
equations are required to determine the values of some
parameters (set with fixed=false). An additional exam-
ple is given by the so-called trimming problems, where
the values of the inputs are determined by prescribing
certain steady values for the outputs.

Therefore, three separate sets of equations need be
defined:

1. Dynamic equations. This set is composed of
equations specified in equation sections and bind-
ing equations for variables. These equations are
matched to algebraic variables (algebraic equa-
tions) and to state derivatives (differential equa-
tions). Each equation is given in residual form
<expression> = 0.

2. Binding equations for parameters with
fixed=true. These equations are matched to
fixed=true parameters. The equations are in the
form <parameter> = <expression>, and can be
solved through assignments. The latter statement
follows since it is illegal to define models with
cyclic dependencies between parameters in
Modelica.

3. Initial equations. This set is composed of equa-
tion given in initial equation sections and binding
expressions for variables with fixed=true. These
equations are matched to state variables, param-
eters with fixed=false, and possibly to inputs, if
there are any (see example below). The initial
equations should be in the form expression = 0.

model M
input Real u;
output Real y;
Real x;

equation
der(x) = -x + u;
y = 4*x;

initial equation
der(x) = 0; // Implies x(0) = u(0)
y = 4; // This equation determines

// x(0) = 1, and therefore
// u(0) = 1;

end M;

Depending on the application, these three sets can
be used in different ways, as will be discussed in Sec-
tion 3.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 246

2.5 Additional information

As introduced above, the range of applications that
could directly use as input an XML DAE represen-
tation or any ad hoc description (derived from the
more general one through XSLT transformation) is ex-
tremely variegated [3]. The common aspect is that
the majority of tools for these usages require an in-
dex 1 DAE, as described in this section. Other in-
formation could be available from the Modelica tool,
which could be relevant for some applications. For
instance, information about the BLT structure of the
dynamic simulation problem (compute the derivatives
and algebraic variables, given the inputs, states, pa-
rameters, and time) could also be included, as well as
information about the index reduction process in case
the DAEs are the result of some index reduction algo-
rithm such as [12]. This is however beyond the scope
of the present paper.

3 Application examples

3.1 Simulation

The simulation tools are generally following the same
approach. Firstly, the parameters and constants within
each equation are numerically evaluated, by solving
all the three equation sections together to determine
the initial values of everything. After that, the numer-
ical values of parameters are fixed, and the dynamic
equations are used to compute derivatives and alge-
braic variables at each time step in an integration algo-
rithm. This is also the case when considering the par-
allel simulation problem. Functions are the “linked”
as external functions if any function calls is present
for the state derivative computation.

3.2 LFT Transformation

LFT is a widely used model description formalism
in modern control and system identification theory,
in which uncertain parameters and non-linearities are
“pulled out” from the system, resulting in the feedback
connection between a linear, time-invariant model
and blocks representing the uncertain and/or nonlin-
ear parts. The procedure for obtaining an LFT repre-
sentation from Modelica models is fully described in
[4] and is only briefly summarized here. Assuming an
ODE system, the values of the parameters are given
by the binding equations, which specify the value of
each parameter either by a numerical value, or as a
function of other parameters. At each time instant,

the values of states and inputs are known; the numeri-
cal values of the parameters are not known explicitly,
but they can be considered as known, given the bind-
ing equations. The goal is now to compute the state
derivatives ẋ and the algebraic variables v. To this
end, the equations and the variables of the problem can
be re-ordered so that the incidence matrix (equations
on the rows, unknowns on the columns) is brought in
Block-Lower-Triangular (BLT) form. This task is ac-
complished by using the well-known Tarjan algorithm
[7], applied to the equations-variables bipartite graph,
which is equivalent to the incidence matrix of the sys-
tem. The strongly connected components of the graph
correspond to the blocks on the diagonal, and a par-
tial ordering among equations can be deduced from
the graph after the algorithm has terminated. After re-
ordering, the system can be formulated as

Φ(x,u,Ξ, p0) = 0, (2)

where Φ(⋅) is the set of re-ordered equation residuals
and Ξ is the re-ordered set of the system unknowns
(i.e., all the elements of vectors ẋ and v). By defining
Φ j(⋅) as the j-th sub-set of equations corresponding to
one block of the BLT form, Ξ j as the corresponding
sub-set of unknown variables, and q as the number of
blocks on the diagonal of the BLT incidence matrix,
the re-ordered system equations (2) can be formulated
as

Φ1(x,u,Ξ1, p0) = 0 (3)

Φ2(x,u,Ξ1,Ξ2, p0) = 0 (4)

... (5)

Φq(x,u,Ξ1, ...,Ξq−1,Ξq, p0) = 0. (6)

The system expressed in the form (3)-(6) can be exe-
cuted within a suitable environment, which supports
the symbolic manipulation of LFTs. Summing up,
in the case of LFTs, the binding equations for pa-
rameters are solved by keeping the uncertain parame-
ters as symbolic objects, and the resulting expressions
are symbolically substituted in the dynamic equations;
then, the relationship between the states and the inputs
on one hand and the derivatives and the outputs on the
other hand, is transformed into an LFT.

3.3 Derivation of robotic controllers

The design of controllers for robotic systems with N
degrees of freedom usually starts with the equations of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 247

motion obtained from the Euler-Lagrange equations:

B(q)q̈+H(q, q̇)q̇+E(q) = τ (7)

yp = K(q) (8)

yv =
∂K
∂q

q̇, (9)

where q is the N-element vector of Lagrangian coordi-
nates, which usually correspond to the rotation angles
of the actuator motors, q̇ is the vector of the corre-
sponding generalized velocities, yp is the vector of the
Cartesian positions of selected points of the robot, τ

is the vector of generalized applied forces correspond-
ing to each degree of freedom (the torques applied by
the actuators), B(q) is the inertia matrix, H(q, q̇) is the
matrix corresponding to the centripetal, Coriolis, and
viscous friction forces, E(q) accounts for the effects
of the gravitational field.

The classical approach to write (7) requires to com-
pute the so-called direct kinematics, i.e. how the val-
ues of q and q̇ translate into the position and motion of
the robot’s links, then to compute the Lagrange func-
tion, i.e. the difference between kinetic and potential
energy, and apply the Euler-Lagrange equations. This
can be done manually, or using one of the specialized
tools available for this task.

With an object-oriented approach the original model
is usually an index-3 DAE. This model is then brought
into index-1 form

F(x, ẋ,y,u) = 0 (10)

where

x =
[

xp

xv

]
=

[
q
q̇

]
, y =

[
yp

yv

]
, u = τ, (11)

by means of connection tree analysis, change of state
variables, and index reduction algorithms; this model
is mathematically equivalent to the Lagrange model
(7)-(9). Currently available Modelica tools solve the
simulation problem by producing an efficient proce-
dure to solve it for ẋ and y given x and u. This pro-
cedure effectively brings the system into state-space
form, which can then be linked to any ODE/DAE
solver. In fact, there are other things that can be done
with the model (10), which are very useful for the de-
sign of control system.

Robot trajectories are originally defined in Carte-
sian space as functions of time y0

p(t). Obtaining the
corresponding reference trajectories in Lagrangian co-
ordinates for the low-level robot joint controllers re-
quires solving the problem to obtain the the so-called

inverse kinematics:

q0(t) = K−1(yp) (12)

q̇0(t) =
(

∂K
∂q

)−1

yv; (13)

the Jacobian of K(q) is also needed to numerically in-
vert (8). Furthermore, two interesting approaches to
model-based robot control are based on the direct use
of (7): the pre-computed torque approach and the in-
verse dynamics approach.

The pre-computed torque approach is a feed-
forward compensation scheme, which requires to
solve (7) backwards, i.e. compute the (theoretical)
torque required to follow the reference trajectory:

τ = B(q0)q̈0 +H(q0, q̇0)q̇0 +E(q0), (14)

and then feed it directly to the actuators; some decen-
tralized feedback action is also included to deal with
uncertainties and disturbance.

The inverse dynamics approach is a feedback com-
pensation scheme, that uses the model in order to
transform the non-linear control problem into a linear
problem with constant coefficients. Using this method,
a virtual input variable v is defined which satisfies

τ = B(q0)v+H(q, q̇)q̇+E(q). (15)

Since the inertia matrix B is assumed to be structurally
non-singular, it is always possible to solve (15) for
v(t), given the generalized velocities q(t) and q̇(t), that
are sensor outputs. Using this virtual input, the robot
dynamics (7) can then be formulated as a set of double
integrators:

q̈ = v (16)

For the robotic applications, the parameter binding
equations are solved numerically; their numerical val-
ues are then substituted into the dynamic equations.
Depending on the specific robotic problem: direct
kinematic, inverse kinematic, pre-computed torques or
inverse dynamics approach, these equations (or a part
of these) are then solved.

3.4 Optimization

The needs for solving optimization problems based on
Modelica models usually goes beyond what is typi-
cally offered by a simulation oriented execution API,
see [1]. In some cases, the initial conditions are free
variables in the optimization, which implies that the
initial equations must be explicitly available. The
same situation holds for dependent parameters since

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 248

such a parameter may be dependent on another pa-
rameter which is free in the optimization. In addition,
quantities derived from the model equations such as
first and second order derivatives and sparsity patterns
may be required by numerical algorithms.

The availability of a standardized XML-based
model exchange format is useful in an optimization
context since it enables transformation of a model into
various formats suitable for different algorithms. Also,
having access to expression syntax trees is useful for
deriving derivatives, e.g., by means of automatic dif-
ferentiation. It is worth noticing, however, that in order
to completely specify an optimization problem, quan-
tities such as cost function and constraints must also be
taken into account. This is not part of the specification
proposed in this paper. For a discussion on representa-
tion of optimization problems derived from Modelica
models and Optimica specifications, see [10].

3.5 Real time code generation

Real time code could be directly generated by in-lining
the discretization method within the equations of the
XML file (e.g., forward or backward Euler), thus ob-
taining the core of the real time code. This could also
be directly obtained from the XML formulation of the
DAEs through the usage of an XSLT transformation
if no symbolic manipulation is required. The simu-
lation problem is then formulated by solving the dy-
namic equations for the next states and for the alge-
braic variables and then bringing it into BLT form.

If all the equations in the BLT form are linear, or
can at least be solved explicitly in symbolic form, then
it is straightforward to generate simulation code with
fixed execution time. Otherwise, if there are implicit
nonlinear equations, iterative solvers will be needed
and there might be convergence problem that require
proper handling.

4 Test implementations

There are two prototype implementations available.
The implementation of the XML module within the
OpenModelica compiler started the past year and is
now included in the latest release of the compiler. This
functionality allows dumping of a flattened Modelica
model after performing the index reduction (if neces-
sary), the BLT transformation and the matching algo-
rithm. The API method provided by the OpenMod-
elica compiler offers the possibility to specify several
inputs parameters, such as if to add or not the informa-

tion for solving the system, and if to dump the equa-
tions as residuals or add MathML representation for all
the equations. This XML schema is available at [8].

The JModelica.org platform currently supports gen-
eration of variable meta data, as described in Sec-
tion 2.1, in XML format, see [13, 10]. It is intended
that this functionality is extended to include also equa-
tions an functions as well as cost functions and con-
straints for optimization.

As for the actual specification of a DAE XML
schema, the objective is to build on what is done in
the FMI initiative concerning model meta data and to
merge this with the existing schema [8].

5 Conclusions and future perspec-
tives

In this paper, we have outlined an XML represen-
tation of DAEs. This will allow easy coupling of
Modelica compiler front-ends with diverse applica-
tion back-ends that require the system equations as
inputs. This format is not limited to Modelica mod-
els, but could be used as a lingua franca to repre-
sent continuous-time dynamical systems originally de-
scribed with other modelling languages, such as, e.g.,
gPROMS or VHDL-AMS. This would allow devel-
opers of application back-ends (e.g. for optimal con-
troller generation) to support multiple modelling plat-
form easily.

The proposed format does not support all features
of Modelica. Notably, description of hybrid constructs
are lacking. However, there is a number of interesting
applications where this is not needed, as demonstrated
by the examples outlined in this paper.

The XML description format outlined in this pa-
per might be extended in several respects. First of
all, support for discontinuous expressions (e.g. if-
expressions) could be added, possibly by including an
explicit representation of the root functions that many
tools need in order to handle discontinuities properly.
In order to support hybrid models, it would also be
necessary to introduce the concepts of discrete vari-
ables, discrete equations (those within when state-
ments), time events and state events. Another exten-
sion might be to support variables declared as vectors
and array equations, without reducing all equations to
their scalar form; this might be useful for sophisticated
symbolic processing at the vector level. Support of
index-1 models with dynamic sets of states (such as
those resulting from the dummy derivative algorithm
[12] in some cases) might be added, as well as support

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 249

for the description of higher index models. Finally,
it would be interesting to investigate how this kind of
formalism could be employed to describe sub-models
that could then be aggregated at a higher level, by in-
troducing some kind of connector concept; this might
allow some form of separate compilation strategy, at
least for a certain class of problems that do not lead to
higher index DAEs when connecting the submodels.

References

[1] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[2] Christian H. Bischof, H. Martin Bücker, Wolf-
gang Marquardt, Monika Petera, and Jutta Wyes.
Transforming equation-based models in process
engineering. In H. M. Bücker, G. Corliss, P. Hov-
land, U. Naumann, and B. Norris, editors, Au-
tomatic Differentiation: Applications, Theory,
and Implementations, Lecture Notes in Compu-
tational Science and Engineering, pages 189–
198. Springer, 2005.

[3] F. Casella, F. Donida, and M. Lovera. Beyond
simulation: Computer aided control system de-
sign using equation-based object oriented mod-
elling for the next decade. In 2nd International
Workshop on Equation-Based Object-Oriented
Languages and Tools, July, 8 2008.

[4] F. Casella, F. Donida, and M. Lovera. Automatic
generation of lfts from object-oriented non-linear
models with uncertain parameters. In 6th Vienna
International Conference on Mathematical Mod-
eling, February, 11-13 2009.

[5] D. Suliman D. Draheim, W. Neun. Searching and
classifing equations on the web, zib report 04-
22. Technical report, Konrad-Zuse-Zentrum für
Informationstechnik, Berlin, 2004.

[6] DLR, Dynasim, ITI and QTronic. The functional
model interface. Draft.

[7] I. S. Duff and J. K. Reid. An implementation of
Tarjan’s algorithm for the block triangularization
of a matrix. ACM Transactions on Mathematical
Software, 4(2):137–147, 1978.

[8] Filippo Donida. DAE XSD schema, 2009.
http://home.dei.polimi.it/

donida/Projects/AutoEdit/Images/
DAE.xsd.

[9] P. A. Fishwick. Using xml for simulation model-
ing. In Winter simulation conference, December,
8-11 2002.

[10] J. Åkesson, T. Bergdahl, M. Gäfvert, and
H. Tummescheit. The JModelica.org Open
Source Platform. In 7th International Modelica
Conference 2009. Modelica Association, 2009.

[11] J. Larsson. A framework for simultion-
independent simulation models. Simulation,
82(9):563–379, 2006.

[12] S. E. Mattsson and G. Söderlind. Index reduction
in differential-algebraic equations using dummy
derivatives. SIAM Journal on Scientific Comput-
ing, 14(3):677–692, 1993.

[13] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[14] A. Pop and P. Fritzson. Modelicaxml: A model-
ica xml representation with applications. In 3rd
Modelica conference, November, 3-4 2003.

[15] U. Reisenbichler, H. Kapeller, A. Haumer,
C. Kral, F. Pirker, and G. Pascoli. If we only had
used xml... In 5th Modelica conference, Septem-
ber, 4-5 2006.

[16] M. Tiller. Implementation of a generic data re-
trieval api for modelica. In 4th Modelica confer-
ence, March, 7-8 2005.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 250

Parallel Simulation of Equation-based Object-Oriented Models with
Quantized State Systems on a GPU

Martina Maggio ∗ ‡, Kristian Stavåker † , Filippo Donida ∗ , Francesco Casella ∗ , Peter Fritzson †

Abstract

This work focuses on the use of parallel hardware
to improve the simulation speed of equation-based
object-oriented Modelica models. With this intention,
a method has been developed that allows for the trans-
lation of a restricted class of Modelica models to par-
allel simulation code, targeted for the Nvidia Tesla
architecture and based on the Quantized State Sys-
tems (QSS) simulation algorithm. The OpenModel-
ica Compiler (OMC) has been extended with a new
back-end module for automatic generation of the sim-
ulation code that uses the CUDA extensions to the
C language to be executable with a General Purpose
Graphic Processing Unit (GPGPU). Preliminary per-
formance measurments of a small example model have
been done on the Tesla architecture.

Keywords: Parallel Simulation, QSS algorithm,
CUDA architecture, OpenModelica compiler, GPGPU

1 Introduction

Recent increases in the continuing growth of comput-
ing power predicted by Moore’s law are mainly due
to increased parallelism, rather than to increased clock
frequency [16]. A challenge in the field of dynamic
system simulation is to exploit this trend, reducing
computation time via the use of parallel architectures
[3, 12, 13].

Traditionally the majority of the parallel program-
ming techniques are based on multi-CPU architec-
tures. Recently, parallel execution of general purpose
code has become cheaply available through the use of
Graphic Processing Units (GPUs) that allows for gen-
eral code execution, also known as General Purpose
Graphic Processing Units (GPGPUs). The use of this

∗Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

†PELAB - Programming Environment Lab, Dept. Computer
Science Linköping University, S-581 83 Linköping, Sweden

‡Corresponding author email: maggio@elet.polimi.it

particular hardware has been widely encouraged in re-
cent years; in fact many applications have been devel-
oped, see for example [4, 10, 15].

The aim of this work is two-fold; as a first point
the possibility of parallelization of the QSS algorithm
per se together with the chosen architecture is investi-
gated, while, as a second step, the parallel performance
of the QSS integration method via automatically gen-
erated CUDA code is studied and some test are con-
ducted to evaluate the chosen approach.

Since the Modelica language is used to describe
many different classes of systems, in this work the test
models have been restricted only to a subset:

• continuous time, time-invariant systems (with no
events),

• index-1 DAE (if the index is greater than 1 the
index reduction algorithm should be used before
processing the model),

• initial values of states and values of parameters
known at compile time, and inserted into the gen-
erated code as numbers,

• no implicit systems of nonlinear equations to be
solved numerically.

The QSS integration method is a Discrete Event
System (DEVS) method that was introduced in [5, 8],
where the author suggested that it could be suitable
for parallel execution. However, to the best of the au-
thors’ knowledge, no attempts have previously been
made to deeply investigate the possibility of parallel
implementations. In this work, a general discussion
on the parallel QSS algorithm is done and a possible
implementation for a particular shared-memory paral-
lel architecture is presented.

The generated code, in fact, has been targeted for
the Nvidia Tesla architecture, that “is useful to man-
age general purpose computation” [2]. To obtain speed
improvement through fine-grained parallelism, the C
language extension CUDA has been used, taking low
level implementation details into account.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 251 DOI: 10.3384/ecp09430032

This work is structured as follows. Section 2 de-
scribes the parallel architecture chosen to test the ap-
proach, highlighting the advantages and the disadvan-
tages of the particular hardware. In section 3 the subset
of the Modelica models targeted for the automatic gen-
eration of CUDA code is defined. The implementation
of the parallel simulation through the available lan-
guage and the strategies used to parallelize the Quan-
tized State Systems simulation algorithm are treated in
section 4. Section 5 describes the changes applied to
the OpenModelica compiler to enable the code genera-
tion. Experimental results from model simulations are
described in section 6 while in section 7 the conclu-
sions of this work are explained and some proposals
for future developments are sketched.

2 Parallelism with a Graphic Card

CUDA stands for Compute Unified Device Architec-
ture, it is a C language extension developed by Nvidia
with the intention of making it possible to exploit the
massive parallelism found in GPUs for general pur-
pose computing. Beyond the large number of comput-
ing cores available with the GPU architecture, the most
interesting advantage is the presence of fast threads
and a fast shared memory region, that leads to im-
proved performance in memory writes and readbacks
to and from the GPU.

On the other hand there are also some strong lim-
itations: first of all, the language is a recursion-free,
function-pointer-free subset of the C language, plus
some simple extensions for managing the parallelism
and allowing a single process run spread across mul-
tiple disjoint memory spaces. The memory manage-
ment has to be taken in serious consideration, since
there are strong limitations on the available address
space. The bus bandwidth and the latency between
the CPU and the GPU may be a bottleneck. More-
over, threads should be run in groups of at least 32
for best performance, with the total number of threads
numbering in the thousands. Branches in the program
code do not impact the performance significantly, pro-
vided that each of 32 threads (in a group) takes the
same execution path. The SIMD (single instruction,
multiple data) execution model of all thread in a group
becomes a significant limitation for every inherently
divergent task, in fact when taking a diverging branch
the code execution will be significantly slowed down
since each different code variant has to be executed in
sequence.

The SIMT (single instruction, multiple thread) ar-

chitecture inserts a new element in the Flynn taxon-
omy [6], since the groups of threads execute the same
code among the core components in a single cluster
and not among all the processing units as in the clas-
sical SIMD method; in fact MIMD parallelism can be
achieved with a careful allocation of the threads to the
clusters. Nonetheless, the parallelism exploitation is
not trivial since the code needs to be designed ad hoc
for the specific hardware to limit diverging branches.
Specifically, the objective is to make threads run as
long as possible over the same portion of the code.
This is somehow in contrast with the concept of “par-
allel architecture” where every processing component
can perform different operations, on the same or on
different data. As stated, some code portions should be
processed with a MIMD (multiple instruction, multi-
ple data) method and CUDA partially allows it through
the thread distribution to the available multiprocessors.

In the following, the architecture is described in de-
tail; each graphic card is made up of common core
components. The Tesla architecture, see figure 1, is
based on a scalable processor array (SPA), with a cer-
tain number of streaming-processor (SP) cores. These
SP cores are organized in sets of streaming multipro-
cessors (SMs) and in processor clusters (TPCs), i.e.,
independent processing units.

Figure 1: The Nvidia Tesla architecture.

The graphic unit interface communicates with the
host processor, replying to commands, fetching data
from system memory, checking command consistency,
and performing context switching. The work distribu-
tion units forward the input assembler’s output stream
to the array of processors. The processor array exe-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 252

cutes thread programs and provides thread control and
management. The number of clusters determines the
processing performance and scales from one proces-
sor cluster in a small graphic card to twenty or more in
high-level hardware.

The streaming multiprocessors consist of eight
streaming-processor cores, a multi threaded instruc-
tion fetch and issue unit, an instruction cache, a read-
only constant cache, and some shared memory. The
shared memory holds input buffers or shared data
for parallel computing. A low-latency interconnect
network between the streaming-processors and the
shared-memory banks provides shared memory ac-
cess.

In this work we are using two different graphic
cards, the more powerful one is the Nvidia Tesla
C1060, which features 240 stream processors orga-
nized in 30 clusters of 8 SIMD processors, supports
single and double precision, has 4 GB of memory and
a memory bandwidth of 102 GB/s. According to the
specification [2] this hardware has a “Compute Capa-
bility 1.3”, this means that the maximum number of
threads per block is 512, the maximum number of ac-
tive blocks per multiprocessor is 8 and each multipro-
cessor is composed of eight processors, so that a mul-
tiprocessor is able to process the 32 threads of a warp
in four clock cycles. It also supports some features like
warp voting, that are not used in this work.

The results obtained are compared with data ob-
tained from an Nvidia GeForce 8600, which has just 32
stream processors, organized in 4 clusters, only sup-
ports single precision, has 512 MB of memory and a
memory bandwidth of 57.6 GB/s. Its “Compute Capa-
bility” is just 1.1; this means that this hardware does
not support double precision and has not the additional
features of the previous. In order to compare the be-
haviour with different numbers of clusters, single pre-
cision numbers are used for both tests.

The memory management instructions access three
read/write memory spaces:

• local memory for per-thread, private, temporary
data (implemented in external DRAM);

• shared memory for low-latency access to data
shared by cooperating threads in the same SM;

• global memory for data shared by all threads of a
computing application (implemented in external
DRAM).

A more detailed survey of the architecture features can
be found in [11].

In order to exploit parallelism with the CUDA ar-
chitecture, a programmer has to write a serial program
that calls parallel kernels, which can be simple func-
tions or full programs. The CUDA program executes
serial code on the CPU and executes parallel kernels
across a set of parallel threads on the GPU. The pro-
grammer has to organize these threads into a hierarchy
of thread blocks in order to obtain SIMD, SIMT and
MIMD parallelism. In fact, when a CUDA program on
the host CPU invokes a kernel parallel execution, the
thread blocks are enumerated and distributed to free
multiprocessors on the device. The threads of a thread
block execute concurrently on one multiprocessor. As
thread blocks terminate, new blocks are launched on
the vacated multiprocessors. Figure 2 shows the exe-
cution flow of the code.

3 A Restricted set of Models: the
Parallelizable Modelica Models

Even if the long term goal is to be able to automati-
cally generate parallel code for every possible Model-
ica model, in this work the study is restricted to a sub-
set of purely continuous-time, time-invariant systems
with time-varying external inputs.

This subclass of systems can be brought into stan-
dard form by applying index reduction and BLT algo-
rithms, thereby generating code corresponding to:{

ẋ = f (x,u)
y = g(x,u)

(1)

In order to simulate the system (1) it is necessary
to implement functions for calculating the derivative
of each state variable, as well as the output variables.
This should be done within the graphic card kernel
space. A function for the thread management is also
needed: this function should be able to start a new
thread and assign it to one of the core components pre-
serving the load balance. For the current implementa-
tion, the load balance could be improved considering
for example the estimated load of each new thread.

In addition some structural information about the
mathematical representation of the model is required,
i.e., the number of the state variable of the index re-
duced model and the number of outputs. It is also im-
portant to stress that the output computation should be
executed within the card kernel space, thus resulting in
a minimal overhead.

Another important aspect for simulation of the
model is the QSS integration step. In this work we
used a constant quantization step, unchanged for all

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 253

Figure 2: Execution flow example; the host machine asks the graphic device to compute the parallel execution
of some CUDA threads, divided in blocks and assigned to the clusters of multiprocessors. After all thread
terminations the control is returned to the host which can run the next instruction.

the state variables (for more detail see section 4) but a
different quantization step can be used for each state
variable, with minor modification to the code. Finally,
input variables should be known a priori for the cor-
rect QSS algorithm execution. The input signals are
pre-processed to compute the QSS inputs, expressed
as piecewise constant trajectories.

4 Quantized State System Simulation
and Parallelism

The QSS algorithm is a method to solve ODE systems;
there are different ODE solvers, varying in approxi-
mation orders or in time slicing (i.e., how often they
compute new state values). Moreover, there are ex-
plicit and implicit algorithms to compute the values
of the state variables at the next discrete time instant,
given current and past state and derivative informa-
tion. Rather than making use of the concept of time
slicing to reduce a continuous-time problem to an (in
some way equivalent) discrete-time problem, the QSS
method employs the concept of state quantization for
the same purpose.

Given the current value of a state variable, xi = Qi ∈
Xi where Xi is an ordered increasing set of discrete
values that the state variable may assume; the QSS
algorithm calculates when is the earliest time instant
at which this state variable shall reach either the next
higher or the next lower discrete level in the set.

The algorithm transforms a continuous time system
in a Discrete Event System (DEVS) [18, 17]. The
QSS algorithm has been studied in depth, and it has
been proved by mathematical theorems that a limited
boundary error exists when transforming a continuous

time system into a DEVS one, i.e.:

ẋ = f (x,u)−→ ẋ = f (q,u) (2)

where the state vector x becomes a “quantized state
vector” q where state values are in the correspond-
ing set. The quantized state vector is a vector of dis-
cretized states where each state varies according to an
hysteretic quantization function [8]. Suppose u are de-
scribed by a piecewise constant trajectories (i.e., are
described by events that at a certain time makes the
value of ui change from ui old to ui new).

Simulate a system with the QSS algorithm means
applying a variable-step techniques. The algorithm
adjusts the time instant at which the state variable is
re-evaluated to the speed of change of that state vari-
able, and it is naturally asynchronous. This means that
different state variables update their state values sepa-
rately and independently of each other at different in-
stants of time.

Figure 3: The scheme of a QSS model.

Specifically, the QSS algorithm consists in the cre-
ation of a coupled DEVS model, similar to the one

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 254

in figure 3, where each state variable has an associ-
ated DEVS subsystem and the subsystem interconnec-
tion is based on the dependency between state vari-
ables and derivative equations. The events of the
DEVS model are fired when the hysteretic quantiza-
tion threshold are reached. The simulation therefore
consists of three different steps:

• Search the DEVS subsystem that is the next to
perform an internal transition, according to its
internal time and to the derivative value. Sup-
pose that the event time is tnext and the associated
state variable is xi. If tnext > tinputevent than set
tnext = tinputevent and perform the input change.

• Advance the simulation time from current time to
tnext and execute the internal transition function
of the model associated to xi or the input change
associated to ui.

• Propagate the new output event produced by the
transition to the connected state variable DEVS
models.

This approach is very interesting for parallel sim-
ulation since “due to the asynchronous behavior, the
DEVS models can be implemented in parallel in a very
easy and efficient way” [8]. As noticed, the QSS al-
gorithm is naturally keen to be parallelized, because
of the possibility to separately compute the derivatives
state variables and the time events schedule; however
some considerations are indeed.

The interested reader can refer to [9] for a detailed
treatment on the matter, however, for the purposes of
this work, the QSS integration method can be briefly
described as follows.

For the first step, assume that the initial values of
the state variables are known, the derivative of the state
variables are computed using the model equations; this
part of the code advantages from the MIMD execu-
tion model. After that calculation, the time of the new
event is calculated; this code section exploits com-
pletely SIMD parallelism because all the computing
threads execute the same code on different data por-
tion. The second step consists in the time advance, a
new event is registered if the values of one of the inputs
changes or if one of the bounds of the quantized state
function is reached. To verify the second possibility
the minimum time advance for the state variable vec-
tor is taken into account. When an event occurs, each
value of the state variables is re-computed, according
to the new values of the inputs and/or the state vari-
ables and the quantized integrators are updated. Here

the SIMD parallelism is exploited as well as in the pre-
vious part, due to the same reason (the same code ex-
ecutes on different data element). The last algorithm
step does not need further explaination within the cho-
sen architecture due to the fact that data are saved in
the shared memory without need for propagation.

As shown, the specific architecture cannot be ne-
glected when trying to asses the parallelization perfor-
mance. A very careful analysis is needed to exploit the
architecture dependent features. The first difference to
be considered is the one between a message passing
and a shared memory architecture. In [7] the authors
make a comparison between these different architec-
ture models.

For our application a message passing architecture
would be interesting, but has some limitations. Each
processor can manage a single or a group of DEVS
subsystems, receiving events from the connected one.
This is not particularly flexible, in fact, while the num-
ber of processors is fixed, the number of subsystems
depends on the particular model. The grouping itself
should be performed according to subsystems connec-
tion; in order to minimize the number of exchanged
messages.

A shared memory architecture, as the Nvidia Tesla
is, is more flexible but much attention has to be given
to the algorithm definition. Since the Nvidia TESLA
architecture requires all the computing cores in the
same group to compute the same instruction at the
same time, good performance can be achieved via the
definition of a state vector array. Each derivative state
value is calculated within a separate thread.

In this case the code to compute such values is
different for each state variable, therefore the SIMD
model is not performing well. A MIMD-fashion code
should be produced. The speed-up is limited from
the number of clusters present in the architecture, the
execution is in fact parallel for each group of clus-
ters. When all threads finish, the derivative values have
been calculated and the threads execute the same por-
tion of code (therefore speeding up) to calculate the
next time event for each variable. This part of the code
should gain an advantage from the SIMD model as
every thread execute the same code on different data
portion (i.e., following the single instruction, multiple
data technique). After doing that the next time event
of the QSS simulation is determined and processed.

In summary, for the particular architecture and pro-
gramming technique, the derivative calculation part of
the code is not completely parallel, while the system
advance part takes full advantage of the hardware pos-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 255

sibilities.

5 Extracting the Model from Model-
ica Code

The OpenModelica Compiler (OMC) [1] is an open
source compiler and development environment for the
Modelica language that can be used for, among other
things, research in language technology and code gen-
eration. In this work we have extended the back-end
of the compiler with a new module GPUpar that gen-
erates simulation code according to the specifications
given in this paper. This module can be turned on
and off with a compiler flag. If this module is in-
structed to run it will take the equation system right
after the matching and index reduction phases and gen-
erate CUDA C-code.

5.1 Overview

A brief overview of the interesting internal call chain
in the compiler can be seen in figure 4.

Figure 4: Internal call chain in the OpenModelica
compiler to obtain parallel CUDA code.

The flattening phase takes the abstract syntax repre-
sentation of the initial code and instantiates it (flatten-
ing, type checking, etc.) and the result is a list of so-
called DAE elements. Here we are only interested in
DAE elements that are equations. The list of DAE el-
ements/equations is then transformed into a more suit-
able form called DAELow by DAELow.lower. The

DAELow form contains the equations as well as all
the variables and parameters. After this sorting, in-
dex reduction, strong component gathering, etc. is
performed. The resulting data structures - BLT Ma-
trix, strong components, DAELow form, etc. - are
then passed into our new GPUpar module (in the nor-
mal case with serial simulation code we would call the
module Simcodegen instead at this point).

5.2 GPUpar Module

In this module different kernel and header files are
generated in succession. In order to generate the
model-specific files, some data have to be computed
from the DAELow form. The most important things
to consider are:

• A derivative function which contains the algo-
rithm for the time derivative computation is gen-
erated in the CUDA C-code for each state vari-
able. If the time derivative calculation relies on
other equations, they are also added to the deriva-
tive function.

• An output function for computing the output val-
ues is generated in the CUDA C-code for each
output variable. As for the derivative function,
each of them can also contain other equations if
necessary.

• Initial variable (and parameter) values must be
gathered from the list of variables in the DAELow
form.

The additional equations necessary for the single
derivative/output functions, where present, form a
subtree having the main equation as the root node.
An existing function (DAELow.markStateEquations)
was slightly modified to handle with this problem. All
the equations are also brought into solved form (ex-
plicit form) by calling Exp.solve and the equations
are sorted by using information obtained in the sorting
phase (which was run before GPUpar was called). The
initial values are gathered in a rather straight-forward
manner by traversing the list of variables. Finally, in
the generated code some of the variables are stored in
different arrays: xd (derivatives), x (state variables), y
(output variables), u (input variables) and p (parame-
ters). At the beginning of the GPUpar module an en-
vironment is created that contains a mapping between
each variable/parameter and the array name plus the
index number in this array. This environment is then
used when the CUDA C-code is generated to find the
correct array and index to print for a given variable.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 256

Figure 5: Test case example.

Appendix A contains a Modelica model and a part
of the code necessary for simulating that model with
the Nvidia architecture. In particular the missing files
are model independent and can be found in [14].

6 Experimental Results

In this section a test case is presented, to evaluate
the CUDA code performances. The two mentioned
graphic cards are tested and a summary of the compar-
ison between them is reported. The execution times
are measured using the clock() function provided by
the CUDA library. The initial time is obtained at the
beginning of the program, before the memory alloca-
tion, in order to evaluate the architecture properly. The
end time is measured when the simulation stops with
the same function call and the difference between them
is divided by the CLOCKS_PER_SEC constant, to com-
pare architectures with different clock periods. The
parallel algorithm is compared to the sequential one,
where a single thread is executed on the graphic card
and takes care of the computation sequentially.

The code for the circuit model of figure 5 is gener-
ated and executed. The depicted model has eight state
variables that stands for the voltages in the eight capac-
itors. The model is then extended to sixteen, thirty-two
and sixty-four state variables while keeping the same
structure to prove the method scalability.

The following considerations apply to the model
with N state variables. The circuit consists of a gener-
ator voltage that comprises N− 1 different branches;
each of them is composed by a resistor with resistance
R/N and of a capacitor with capacitance C/N. The
last branch is made up of the resistor with resistance
R/N and a capacitor with capacitance C together with
a resistor with resistance R in parallel. The only in-
put of the system, in the following referred as u, is the
voltage V , that is supposed to be a square wave with
rise time and fall time of 1s and voltage of 1Volt. The

equation model with N = 8 is therefore

ẋ0(t) = N2

RC (−2x0(t)+u+ x1(t))
ẋ1(t) = N2

RC (−2x1(t)+ x0(t)+ x2(t))
ẋ2(t) = N2

RC (−2x2(t)+ x1(t)+ x3(t))
ẋ3(t) = N2

RC (−2x3(t)+ x2(t)+ x4(t))
ẋ4(t) = N2

RC (−2x4(t)+ x3(t)+ x5(t))
ẋ5(t) = N2

RC (−2x5(t)+ x4(t)+ x6(t))
ẋ6(t) = N2

RC (−2x6(t)+ x5(t)+ x7(t))
ẋ7(t) = N

RC (−R(N+1
N)x7(t)+ x6(t))

(3)

and can be easily generalized to N = 8× i with i being
an integer value (i = 1,2,3, . . .). The tests are con-
ducted with R = 1kΩ, C = 1mF and with a quantum of
0.001 for the QSS algorithm execution.

The results with the Nvidia Tesla GeForce 8600 can
be seen in Table 1. Table 2 contains the results with
the Nvidia Tesla C1060 when just one cluster is used
to compute the derivative values, while Table 3 reports
the data with the same graphic card when all the avail-
able clusters are used.

parallel sequential speed-up
[s] [s]

8-statevar 6.26 7.07 1.129
16-statevar 8.04 10.27 1.277
32-statevar 27.02 45.55 1.685
64-statevar 103.18 507.38 4.917

Table 1: Execution times and speed-up with the
GeForce 8600.

parallel sequential speed-up
[s] [s]

8-statevar 1.06 5.71 5.387
16-statevar 8.11 9.07 1.118
32-statevar 22.91 47.30 2.065
64-statevar 208.76 711.00 3.406

Table 2: Execution times and speed-up with the C1060
using one cluster for the derivative calculation.

In figure 6 a summary of the obtained speed-up val-
ues is presented.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 257

Figure 6: Speed-up measurements: comparison between a GeForce 8600 and an Nvidia Tesla C1060 when the
number of state variables in the model changes.

The results presented are promising but should in-
vestigated further in order to understand the scalabil-
ity of the proposed solution. Moreover, the new tools
available from Nvidia (e.g., a profiler) give the possi-
bility of a more careful analysis of the performances.

7 Conclusions and Future Research

This work considers the parallelization of the QSS
algorithm using a GPGPU. As shown in section 4
the implementation of the algorithm can not neglect
the particular hardware architecture. In this case
the difficulties are essentially related to the fact that
the Nvidia Tesla GPGPU is not a completely gen-
eral parallel architecture. The memory consumption
should also be taken into account. In particular, a
problem with 256 state variables requires more than
(5×64+1×32)×256

8 [Bytes] = 11[Mb], while a case with
1024 state variables would require 43[Mb].

Surely, the side effects of the diverging branches has
to be furthermore reduced. A comparison between the

parallel sequential speed-up
[s] [s]

8-statevar 1.98 5.71 2.884
16-statevar 7.73 9.07 1.173
32-statevar 23.73 47.30 1.993
64-statevar 98.09 711.00 7.248

Table 3: Execution times and speed-up with the C1060
using all the clusters for the derivative calculation.

code that uses just one cluster of multiprocessors and a
complete has been performed; however, further studies
are still necessary to investigate possible extensions,
e.g. for exploiting the computational power of each
processor within the cluster.

Despite this, the results are promising albeit prelim-
inary. Future work will compare QSS-based parallel
method with other parallel implementations and inves-
tigate how the Tesla architecture thread manager allo-
cates threads to the different computing cores. A pro-
filing analysis is needed too, in order to understand if
the limitations in the speed-up are caused by physical
limits of the architecture or due to the non-exploitable
hardware facilities.

References

[1] The OpenModelica project webpage:
http://www.openmodelica.org.

[2] NVIDIA CUDA Compute Unified Device Archi-
tecture - Programming Guide, 2008.

[3] P. Aronsson. Automatic Parallelization of
Equation-Based Simulation Programs. PhD the-
sis, Linköping University, Department of Com-
puter and Information Science, 2006.

[4] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and
M.O. Saar. Accelerating lattice boltzmann fluid
flow simulations using graphics processors. In
Processing the 2009 International Conference on
Parallel (ICPP), 2009.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 258

[5] F.E. Cellier and E. Kofman. Continuous System
Simulation. Springer, 2006.

[6] M. Flynn. Some computer organizations and
their effectiveness. IEEE Trans. Comput., C-
21:948–960, 1972.

[7] A. C. Klaiber and H. M. Levy. A comparison
of message passing and shared memory architec-
tures for data parallel programs. SIGARCH Com-
put. Archit. News, 22(2):94–105, 1994.

[8] E. Kofman. Discrete Event Based Simulation
and Control of Continuous Systems. PhD the-
sis, School of Electronic Engineering - FCEIA
Universidad Nacional de Rosario, 2003.

[9] Ernesto Kofman and Sergio Junco. Quantized-
state systems: a DEVS approach for continuous
system simulation. Trans. Soc. Comput. Simul.
Int., 18(3):123–132, 2001.

[10] H. Li and L. Petzold. Efficient parallellization
of stochastic simulation algorithm for chemically
reacting systems on the graphics processing unit.
Technical report, Dept. Computer Science, Uni-
versity of California, Santa Barbara, 2008.

[11] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. NVIDIA tesla: A unified graph-
ics and computing architecture. Micro, IEEE,
28(2):39–55, 2008.

[12] H. Lundvall. Automatic paralleliztion using
pipelining for equation-based simulation lan-
guages, 2008. Lic. Thesis.

[13] H. Lundvall, K. Stavåker, P. Fritzson, and
C. Kessler. Automatic parallelization of simu-
lation code for equation-based models with soft-
ware pipelining and measurements on three plat-
forms. Computer architecture news, Special is-
sue MCC08 - Multicore computing 2008, 36(5),
2008.

[14] M. Maggio. Simulazione di modelli orientati agli
oggetti su architetture parallele tramite algoritmo
QSS. Master thesis. Politecnico di Milano, Di-
partimento di Elettronica ed Infomazione, 2008.

[15] Michael Schwarz and Marc Stamminger. Fast
GPU-based adaptive tessellation with CUDA.
Computer Graphics Forum, 28(2):365–374,
2009.

[16] H. Shutter. The free lunch is over: A fundamental
turn toward concurrency in software. Dr. Dobb’s
Journal, 30(3).

[17] Bernard P. Zeigler, Tag G. Kim, and Herbert
Praehofer. Theory of Modeling and Simulation.
Academic Press, London, January 2000.

[18] Bernard P. Zeigler, Hae Sang Song, Tag Gon
Kim, and Herbert Praehofer. DEVS framework
for modelling, simulation, analysis, and design
of hybrid systems. In In Proceedings of HSAC,
pages 529–551. Springer-Verlag, 1996.

Appendix A: Code References
The following code example contains the model de-
pendent part of the code for the generation of the ex-
periment presented in Section 6 with 8 state variables,
where three output variables are defined.

model Test_Model
parameter Integer N = 8;
input Real inputVars[1](start = 0.0);
Real stateVars[N](start = 0.0);
output Real outputVars[3];

equation

der(stateVars[1]) = N*N * (-2.0*stateVars[1] +
stateVars[2] + inputVars[1]);

for i in 2:(N-1) loop
der(stateVars[i]) = N*N * (-2.0*stateVars[i] +

stateVars[i-1] + stateVars[i+1]);
end for;

der(stateVars[N]) = N * (stateVars[N-1] -
1000 * ((N+1)/N) * stateVars[N]);

outputVars[1] = stateVars[1];
outputVars[2] = stateVars[4];
outputVars[3] = stateVars[N];

end Test_Model;

The translation phase produces two output files:
model.h and model.cu. The first one is the C-CUDA
header and contains the function prototypes of the rou-
tine contained in the second one.

/*********************************
* MODEL.H
********************************/

#ifdef _MODEL_H
#define _MODEL_H

#define NUMBER_STATES 8
#define NUMBER_INPUTS 1
#define NUMBER_OUTPUT 3
#define NUMBER_EVENTS 10
#define SIMULATION_TIME 10
#define SIMULATION_STEP 0.001

/* Initializations */
void initializeSystem(float* x, float* u);

void initializeEvents(float* t, unsigned* i, float* v);

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 259

/* Derivative calculation */
__global__ void derivative
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx7
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx6
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx5
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx4
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx3
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx2
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx1
(float* dx, float* x, float* u, float* t, unsigned* c);

__device__ void dx0
(float* dx, float* x, float* u, float* t, unsigned* c);

/* Output calculation */
__global__ void output
(float* y, float* x, float* u, float* t, unsigned* c);

__device__ void y2
(float* y, float* x, float* u, float* t, unsigned* c);

__device__ void y1
(float* y, float* x, float* u, float* t, unsigned* c);

__device__ void y0
(float* y, float* x, float* u, float* t, unsigned* c);

#endif

/*********************************
* MODEL.CU
********************************/

#include "inclusion.h"
#include "model.h"

/* Initializations */
void initializeSystem(float *x, float* u) {

int i;
u[0]=0.0;
for(i=0;i<NUMBER_STATES;i++) x[i]=0.0;

}

void initializeEvents(float* t, unsigned* i, float* v) {
t[0] = 1; i[0] = 0; v[0] = 1;
t[1] = 2; i[1] = 0; v[1] = 0;
t[2] = 3; i[2] = 0; v[2] = 1;
t[3] = 4; i[3] = 0; v[3] = 0;
t[4] = 5; i[4] = 0; v[4] = 1;
t[5] = 6; i[5] = 0; v[5] = 0;
t[6] = 7; i[6] = 0; v[6] = 1;
t[7] = 8; i[7] = 0; v[7] = 0;
t[8] = 9; i[8] = 0; v[8] = 1;
t[9] = 10;i[9] = 0; v[9] = 0;

}

/* Derivative calculation */
__global__ void derivative
(float* dx, float* x, float* u, float* t, unsigned* c) {
int i = threadIdx.x;
switch(i) {

case 7: dx7(dx, x, u, t, c); break;
case 6: dx6(dx, x, u, t, c); break;
case 5: dx5(dx, x, u, t, c); break;
case 4: dx4(dx, x, u, t, c); break;
case 3: dx3(dx, x, u, t, c); break;
case 2: dx2(dx, x, u, t, c); break;
case 1: dx1(dx, x, u, t, c); break;
case 0: dx0(dx, x, u, t, c); break;
}

}
__device__ void dx7
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[7] = 8.0 * (x[6] - 1000 * 1.0625 * x[7]);
}
__device__ void dx6
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[6] = 16384.0 * (-2.0 * x[6] + x[5] + x[7]);
}
__device__ void dx5
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[5] = 16384.0 * (-2.0 * x[5] + x[4] + x[6]);
}
__device__ void dx4
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[4] = 16384.0 * (-2.0 * x[4] + x[3] + x[5]);
}
__device__ void dx3
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[3] = 16384.0 * (-2.0 * x[3] + x[2] + x[4]);
}
__device__ void dx2
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[2] = 16384.0 * (-2.0 * x[2] + x[1] + x[3]);
}
__device__ void dx1
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[1] = 16384.0 * (-2.0 * x[1] + x[0] + x[2]);
}
__device__ void dx0
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[0] = 16384.0 * (-2.0 * x[0] + x[1] + u[0]);
}
/* Output calculation */
__global__ void output
(float* y, float* x, float* u, float* t, unsigned* c) {
int i = threadIdx.x;
switch(i) {

case 2: y2(y, x, u, t, c); break;
case 1: y1(y, x, u, t, c); break;
case 0: y0(y, x, u, t, c); break;
}

}
__device__ void y2
(float* y, float* x, float* u, float* t, unsigned* c) {
y[2] = x[7];
}
__device__ void y1
(float* y, float* x, float* u, float* t, unsigned* c) {
y[1] = x[3];
}
__device__ void y0
(float* y, float* x, float* u, float* t, unsigned* c) {
y[0] = x[0];
}

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 260

Modeling and Control of a Parallel Robot

Using Modelica

Isolde Dressler1 Johannes Schiffer1,2 Anders Robertsson1

1Department of Automatic Control, Lund University

Box 118, 22100 Lund, Sweden
2 Institute for System Theory and Automatic Control

University of Stuttgart, Germany

Abstract

A new type of high-performance robots has been
developed by ABB Robotics, the Robotics Lab
at Lund University and Güdel AG, Switzerland.
In all parts of the project, ranging from the
simulation of the kinematic configuration and
reachable workspace, and kinematic and dynamic
calibration/grey-box identification, and to code
generation of controllers and optimal switching
strategies for hybrid control, Modelica and Opti-
mica provide very valuable functionality. We will
make a short overview of the different aspects used
during the development.

Keywords: Robotics, Multi Body Systems, Dual
motor control

1 Introduction

A new type of high-performance manipulator, the
Gantry-Tau robot [1], has been developed within
the EU FP-6 project SMErobotTM[2] by ABB
Robotics, the Robotics Lab at Lund University
and Güdel AG, Switzerland. The new concept,
which is based on the parallel configuration of the
robot’s joints (parallel robots), see Fig. 1, is mod-
ular, has a large open workspace, is easy to scale
and has the inherent benefit of very low inertia
of the moving robot parts. This, together with
high stiffness of joints and arms, makes it possi-
ble to build high-performance robots with respect
to accuracy, speed, stiffness and mechanical band-
width.

Modelica and the MultiBody Library [3] can ad-
vantageously be used for modeling and control of
robots. In [4] we have reported on how the dy-
namic model equations of the Gantry-Tau robot
were extracted from a MultiBody Modelica model

Figure 1: Full size Gantry-Tau prototype developed
within the SMErobotTMproject. The carts (red) are
controlled in a coordinated way along the three rails to
move the tool/end-plate along a desired trajectory.

of the robot. The control of a parallel robot using
an inverse dynamic model generated by Dymola is
presented in [5].

This article presents how different functionali-
ties of Modelica have been used for modeling, sim-
ulation, identification and controller generation of
the Gantry-Tau manipulator during the different
project phases. Two main areas will be discussed:
The first is the calibration of the robot’s kinemat-
ics using Optimica [6], the second the optimization
of the actuator control.

In [4], the authors carried out kinematic cali-
bration of the Gantry-Tau robot using a scripting
language. In this work, it is shown how a Model-
ica model for optimization is generated of a sub-
set of the original MultiBody model of the robot.
The kinematic parameters are then optimized us-
ing Optimica.

To reduce backlash and improve the actuator
positioning, the usage of two motors for each cart
has been investigated. The actuator system was

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 261 DOI: 10.3384/ecp09430118

X

Z

Y

X

Z

Y

q1

q2

q3

(X0
1 ,Y

0
1 ,Z

0
1)

(X0
2 ,Y

0
2 ,Z

0
2)

(X0
3 ,Y

0
3 ,Z

0
3)

(X1,Y1,Z1)

(X2,Y2,Z2)

(X3,Y3,Z3)

L1

L2

L3 TCP
(X,Y,Z)

Figure 2: Gantry-Tau schema with variable and pa-
rameter notation

modeled in Modelica and a hybrid switching con-
trol concept has been tested and optimized using
Dymola.

The article is structured as follows: In Sect. 2,
the Gantry-Tau manipulator is presented, Sect. 3
describes the kinematic calibration and Sect. 4 the
dual motor control. In Sect. 5 the results and
methodology are discussed and Sect. 6 concludes
the article.

2 The Gantry-Tau Robot

The 3 degree-of-freedom (DOF) parallel Gantry-
Tau robot (Figs 1 and 2) consists of three kine-
matic chains. A prismatic actuator, implemented
as a cart moving on a track is connected to an end-
effector plate via a link cluster. The altogether
6 links, mounted with passive spherical joints on
cart and plate, are distributed in a 3-2-1 configu-
ration to the 3 link clusters. The spherical joint
placement on carts and plate is such that links be-
longing to one cluster form parallelograms, which
assures a constant end-effector orientation.

The actuation for the linear motion of the carts
along the rails are provided by a so called rack-
and-pinion system. In all transmissions friction
and backlash may severely degrade the perfor-
mance and accuracy. However, with a rack-and
pinion system several motors/carts/robots may be
mounted on the same rail and can be controlled
independently of each other, which is not the case
if the linear motion transmission is made by e.g.,
ball screws. In Sect. 4 this property will be used
for dual motor control and backlash reduction, see
also Fig. 5.

As the end-effector orientation is constant for
all cart positions, it is sufficient to consider one

link per kinematic chain. In addition to a full
model with 6 links according to Fig. 2, a simplified
Gantry-Tau model has been implemented using
the Modelica MultiBody Library (Fig. 3). Here
the end-effector orientation is kept constant by a
block (blue rectangle in the bottom) which con-
tains 3 passive, serially connected prismatic joints
aligned with the 3 coordinate axes. Each of the
3 kinematic chains visible in Fig. 3 consists of a
model for track and cart positioned in the base
coordinate system by a FixedTranslation block
and a link connected to the end-effector plate. In-
put signals of the model are the cart positions.

blockrotation1

Track_3

Track_2

Track_1

FixedTranslation1

r={0,Parameters.Y...

a b

FixedTranslation2

r={0,Parameters.Y...

a b

platform1

a b

bar4

Parameters.L3

a b

bar2

Parameters.L2

a b

bar1

Parameters.L1

FixedTranslation3

r={0,Parameters.Y...

a b

Frame_a1

X
1

X
2

X
3

Frame_b1

X Y Z

Figure 3: Modelica model of a Gantry-Tau PKM

3 Kinematic Calibration using

Optimica

To determine the kinematic parameters, the end-
effector position (X,Y,Z) was recorded with a
laser tracker for a number of actuator positions
(q1,q2,q3). The altogether 21 parameters to opti-
mize are link lengths Li, the vectors in track direc-
tion ci and the track offsets (Xoffset

i ,Y offset
i ,Zoffset

i),
which accumulate the start positions (X0

i ,Y
0
i ,Z

0
i)

and the offsets between spherical joints and tool
center point (TCP) on the end-effector plate, i=
1,2,3 (see Fig. 2).

The calibration with Optimica is divided in sev-
eral steps. As the MultiBody Library is not yet
compatible with Optimica, a flat Modelica model
for optimization has to be generated. For that,
the model equations are extracted automatically
from the MultiBody model. With a subset of these
equations, the kinematic constraint equations, a
model for optimization is then generated. After

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 262

the optimization, the results are validated.
The extraction of the model equations was first

presented in [4]. When translating the MultiBody
model in Dymola, the dsmodel.mof file with a list-
ing of the translated Modelica code can be gener-
ated. This file contains a section with the rel-
evant model equations and assignments relating
the large number of variables and parameters that
the MultiBody model contains. A script written
in python parses this file, extracts the model equa-
tions and uses the assignments to successively sub-
stitue variables and parameters until the equations
are expressed in a desired and previously deter-
mined set of parameters and variables. The equa-
tions for the kinematic constrains are:

0 = L2
i −

(

(Xi−X)2 + (Yi−Y)2+

+(Zi−Z)2
)

, i= 1,2,3, (1)

where the cart position (see Fig. 2)
(Xi,Yi,Zi)T = (Xoffset

i ,Y offset
i ,Zoffset

i)T + qi · ci.
The remaining 9 equations can be found in [4].
Using the measurement data and the kinematic

constraint equations among the extracted equa-
tion system, a new Modelica model for optimiza-
tion is then generated:

model GTPKinCalib

parameter Real q1[N] = {data};

parameter Real q2[N] = {data};

parameter Real q3[N] = {data};

parameter Real X[N] = {data};

parameter Real Y[N] = {data};

parameter Real Z[N] = {data};

parameter Real L1;

parameter Real X1offset;

parameter Real Y1offset;

parameter Real Z1offset;

parameter Real c1[3];

parameter Real L2;

parameter Real X2offset;

. . .

Real f1[N];

Real f2[N];

Real f3[N];

Real cost;

equation

for i in 1:N loop

f1[i] = kinematic constraint link 1;

f2[i] = kinematic constraint link 2;

f3[i] = kinematic constraint link 3;

end for;

cost = f1[1]2+f2[1]2+f3[1]2+ . . .;

end GTPKinCalib;

The variables fi[N] in the model GTPKinCalib

are the residuals for equation (1) for the given
measurement data and parameter values. The
variable cost is then minimized using Optimica.

3.1 Results

For kinematic calibration, the TCP position
(X,Y,Z) was recorded for 176 robot poses with
known actuator positions (q1,q2,q3) with a laser
tracker. Every second measurement was used for
calibration, the remaining ones for the validation
of the optimization results.

Figure 4 shows the validation results of the cal-
ibration. The calibrated model has a mean abso-
lute positioning error of about 140 µm. Very sim-
ilar results for parameters and positioning accu-
racy can be obtained with the Matlab script used
in [4].

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Index of measurement point

E
rr

or
[m

m
]

Figure 4: Positioning accuracy of the Gantry-Tau af-
ter calibration: absolute positioning error of TCP for
the validation measurement points. The model cali-
brated with Optimica (solid) and the model obtained
with the Matlab script used in [4] (dashed) give very
similar results.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 263

4 Dual Motor Control

To meet the demands on the system, kinematic
sensitivity analysis shows that the robot needs
backlashfree gearboxes to achieve the desired posi-
tioning accuracy of the robot’s TCP. The actuator
and drive-line of the robot are based on the rack-
and-pinion principle which has been simulated in
Modelica.

Figure 5: Backlash is present in gearboxes and connec-
tion to rails (rack-and-pinion); By using two motors on
each cart, which work in opposite directions, improved
positioning accuracy and stiffness can be achieved.

In the following, a model representing the
robot’s actuator drive-line and including a control
law for the dual motor control is implemented in
Dymola. We will then show, how the Optimiza-
tion Function of the Dymola Design Library both
can be used to optimize the parameters of the mo-
tor control law and how to find the the optimal
switching instant for when to change direction be-
tween the motors..

4.1 Model and control law

A model representing the robot’s actuator drive-
line consisting of two driving motors and one cart
is implemented in Modelica as shown in Fig. 6.
Each motor is connected to the load by a free
shaft inertia. The backlash is modeled by the
’ElastoBacklash’-block of the Mechanics-package.

This kind of system represents an extension of a
two-mass system exhibiting backlash. The latter
has been well-studied in literature since the 1940s,
due to the fact that in most cases the considered
plants which exhibit backlash-effects may be mod-
eled as such a two-mass system. Some older and
more recent research on this standard plant can
be found in [7], [8]. In the present case, the addi-
tional second motor is considered by introducing
a third mass, which leads to a three-mass system

Figure 7: Nonlinear dual motor control structure of
a three-mass system. Kswitch defines the switching of
the slave motor and provides the master motor with
additional information through a feed-forward struc-
ture.

with two nonlinearities representing the backlash
between each motor and the cart.

The implemented control structure aims to use
both motors for the motion drive while the system
is not in backlash and to switch the operating di-
rection of the second motor when the system gets
into backlash for fast closing the backlash gap and
improving the position accuracy of the carts, and
thus of the robot TCP. In the traditional case of a
cart driven by just one motor limit cycles may oc-
cur in the system due to the backlash. These can
be eliminated by the dual motor control. There-
fore a nonlinear, smooth switching control law
based on a switching variable v ∈ [−1,1] (’direc-
tion’) and a switching function Kswitch is designed
(see Fig. 7). For first simulations nominal param-
eters for the controllers and the switching function
are used. Herewith, the results shown in Fig. 8 are
obtained. As desired, no limit cycles occur.

4.2 Parameter Optimization

This section aims to improve the system perfor-
mance by optimizing the controller parameters
and the switching of the second motor. For this
purpose, the Optimization Function of the Dy-
mola Design Library is used. This design tool
provides several optimization algorithms and al-
lows to optimize parameters of a Dymola model
with respect to certain criteria. An introduction
to the function is given in [9].

4.2.1 Controller parameter optimization

In a first step, we aim to optimize parameters for
the outer-loop PID-controller, controlling the cart
position xpos. Therefore the following cost func-
tion is defined

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 264

f =min
(

max
(

1
W1

riseTime(xpos)

+
1
W2

overshoot(xpos)

+
1
W3

settlingTime(xpos)
))

with weights W1 = 1.7473, W2 = 10−4 and W3 =
3.957. Blocks to determine the rise time, the over-
shoot and the settling time are provided by the
Dymola Design Library.

For the optimization an operation with a con-
stant torque on the second motor is chosen, thus
v = −1. The values of the weighting parameters
correspond to the obtained results of the charac-
teristics when simulating with the nominal con-
troller parameters. The available tuning parame-
ters are Kp, Ti and Td of the PID-controller. The
optimization is carried out using the different al-
gorithms implemented in the Optimization Func-
tion. As starting values the nominal values of the
PID-controller

KP = 200, Ti = 1.5, Td = 0.05

are used. The start value of the cost function is
then 3.00354. The Optimization Function allows
also to set bounds on parameters. We set the fol-
lowing bounds

Kp ∈ [100,300], T i ∈ [0.5,2], Td ∈ [0.01,0.1].

An overview of the results is provided in Table 1.
The best results are obtained by Pattern Search
and Genetic Algorithm.

4.2.2 Switching parameter optimization

In this section, we consider the switching strat-
egy, that is when to change direction of the second
motor (slave motor), see Fig. 7. The switching is
based on the relative position error

eabs =
|xref,new−xpos|

|xref,new−xref,old|
.

A schematic view of the switching v is depicted
in Fig. 9, where the parameters emax and emin
parametrize the curve and thus can be used as tun-
ing parameters for the optimization. For a more
detailed description, see [10].

Figure 9: Switching function v= f(eabs). |v| takes the
value 1, when eabs < emin . If eabs > emax , v takes
the value 0.

To minimize energy and reduce overshoot for a
step response in the position reference, the follow-
ing cost function is defined

f1 = min(max(
1
W1

∫ T

0

(u2

1 +u2

2)dτ

+
1
W2

overshoot(xpos))), (2)

with W1 = ψ · 2165 and W2 = 3 · 10−4. The
weighting parameters correspond to the values ob-
tained for the characteristic parameters of the op-
timization function, when operating with the pre-
viously chosen values emax = 0.25 and emin = 0.01,
as well as an input step reference of xpos,ref =
0.1 m and a simulation time of t = 10 s. As the
optimization goal consists of minimizing the en-
ergy input by avoiding any overshoot in the sys-
tem’s step response, the energy input is addition-
ally weighted with a factor ψ = 10.

For the optimization different start values and
optimization methods are chosen. As initial values
for the switching parameters two sets are chosen,
[emax = 0.5, emin = 0.25] and [emax = 0.25, emin =
0.01]. The cost function has then a start value
of f1(start) = 9.54322 and f1(start) = 10.9464 re-
spectively. The tuning parameters are limited to
emax ∈ [0.1,1] and emin ∈ [0.01,1] in order to avoid
switchings in the area where limit cycles occur.
An overview of the different setups and the corre-
sponding results is given in Table 2.

All algorithms give similar results for the opti-
mal switching parameters. These lie in a range
of emax ∈ [0.62,0.69] and emin ∈ [0.40,0.45]. Only
the SQP and the Simplex-method lead to different
results when starting with [emax = 0.25, emin =
0.01]. However, the Genetic Algorithm and the
Pattern Search seem to give more reliable results,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 265

as the value of the cost function and the optimal
switching parameters are almost identical for both
initial sets.

To recheck the optimization results, the cost
function f1 is reformulated to f2

f2 = min

(

max

(

1
W1

∫ T

0

(u2
1 +u2

2)dτ,

1
W2

overshoot(xpos)
))

. (3)

Then the start values are f2(start) =
[8.8531, 0.6901] and
f2(start) = [10.02246, 0.9240]. The results of
this optimization are shown in Table 3. For the
cases with initial values [emax = 0.5, emin = 0.25]
the results are similar to the ones obtained with
the previous cost function. However, for the
initial set [emax = 0.25, emin = 0.01] there seem
to exist at least two different minima, one in
the neighbourhood of [emax = 1.0, emin = 0.1]
and one around [emax = 0.6, emin = 0.4]. Again
the Genetic Algorithm gives the best results.
The optimal values for the switching parameters
obtained with this method are almost identical
to the ones obtained with the previous cost
function f1. Thus, one can conclude that a pair
of parameters [emax ≈ 0.6, emin ≈ 0.4] may satisfy
the optimization goal best.

As a consequence, the switching parameters are
set to [emax = 0.6, emin = 0.4]. Then the inte-
grated square sum of the required input signals
for a reference step of xpos,ref = 0.1 m and a sim-
ulation time of t = 10 s is reduced from 2165 to
1845, which represents an energy saving of about
15 %.

5 Discussion

The authors showed that the kinematic calibra-
tion method presented gives accurate results. In
comparison to the Matlab script used in [4], the
method is more flexible.

Changes in the MultiBody model of the Gantry-
Tau robot, which would make a cumbersome re-
programming of a calibration script necessary, can
be handeled with minor changes. Such changes
may include kinematic error models (e.g. to con-
sider all 6 links in a slightly non-ideal configura-
tion so that the end-effector orientation varies)

or new robot components (e.g. to increase the
robot’s DOF).

A similar procedure can be used for calibrating
the dynamic model of the Gantry-Tau robot or
models of a different robot.

6 Conclusion and Future Work

This article shows how different functionalities of
Modelica were used for modeling, identification
and controller generation for the parallel kine-
matic Gantry-Tau robot. The work focuses on two
aspects, kinematic calibration with Optimica and
the evaluation and optimization of the actuator
system control.

A method for kinematic calibration of the
Gantry-Tau robot using Modelica and Optimica
was presented and shown to give accurate results.

A nonlinear three-mass system representing the
robots actuator drive-line and a previously de-
signed switching control law has been imple-
mented in Dymola, which Optimization Function
of the Dymola Design Library has then been used
to optimize the control and switching parameters.

In the future, the flexibility of the calibration
method presented can be used for calibrating a
kinematic error model. With a similar proce-
dure, the dynamic model of the Gantry-Tau will
be calibrated and the inverse dynamic model used
for feedforward control. The dual motor control
tested successfully in simulations will be imple-
mented and tested in practice. The possibility of
code generation for hardware-in-the-loop simula-
tions from the Gantry-Tau Modelica models pre-
sented here will be considered.

7 Acknowledgements

This work has partially been funded by the Euro-
pean Commission’s Sixth Framework Programme
under grant no. 011838 as part of the Integrated
Project SMErobotTM. The authors would like
to thank Johan Åkesson for discussions about
kinematic calibration with Optimica and ABB
Robotics for supporting the laser tracker measure-
ments.

References

[1] L. Johannesson, V. Berbyuk and T.
Brogårdh, “Gantry-Tau – A New Three

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 266

Degrees of Freedom Parallel Kinematic
Robot”, in Parallel Kinematic Machines in
Research and Practice; The 4th Chemnitz
Parallel Kinematics Seminar, 2004, pp.
731-734.

[2] SMErobotTM homepage:
http://www.smerobot.org (2009).

[3] M. Otter, H. Elmqvist, S.-E. Mattson, “The
New Modelica MultiBody Library”, in Proc.
of the 3rd International Modelica Conference,
Linköping, Sweden, 2003, pp. 311-330.

[4] I. Dressler, A. Robertsson and R. Johans-
son, “Accuracy of Kinematic and Dynamic
Models of a Gantry-Tau Parallel Kinematic
Robot”, in Proc. International Conference on
Robotics and Automation (ICRA’07), Rome,
2007.

[5] M. Krabbes and C. Meißner, Dynamic mod-
eling and control of a 6 DOF parallel kine-
matics. In: Proceedings of the 5th Modelica
Conference 2006, Vienna, Austria, Modelica
Association, 2006.

[6] J. Åkesson, Optimica–An Extension of Mod-
elica Supporting Dynamic Optimization. In:
Proceedings of the 6th Modelica Conference
2008, Bielefeld, Germany, Modelica Associa-
tion, 2008.

[7] M. Nordin and P.-O. Gutman (2002). Con-
trolling mechanical systems with backlash - a
survey. In Automatica 38 (pp. 1633-1649).

[8] P. Rostalski, T. Besselmann, M. Baric, F.
Van Belzen and M. Morari (2007). A hybrid
approach to modelling, control and state esti-
mation of mechanical systems with backlash.
In International Journal of Control Vol.80,
No. 11 (pp. 1729-1740).

[9] H. Elmqvist, H. Olsson, S.E. Mattsson, D.
Brück, C. Schweiger, D. Joos, M. Otter
(2005). Optimization Design and Parameter
Estimation. The Modelica Association.

[10] J. Schiffer (2009), Dual motor control for
backlash reduction. Master’s Thesis report,
Department of Automatic Control, Lund
University, Sweden, ISRN LUTFD2/TFRT-
-5841--SE.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 267

Figure 6: Three-mass system representing the robots actuator drive-line implemented in Dymola. The
backlash is represented using ’ElastoBacklash’-block of the Mechanics-package.

0 5 10 15 20
−40

−20

0

20

40

Input torques [Nm]

Time t [s]

T
m1

T
m2

0 5 10 15 20
−5

0

5

10

15

Angle Position [rad]

Time t [s]

Θ
m1

Θ
m2

Θ
l

0 5 10 15 20
−5

0

5

10

Angular velocity [rad/s]

Time t [s]

ω
m1

ω
m2

ω
l

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Absolute position [m]

Time t [s]

x
pos

x
ref

0 5 10 15 20
−1

−0.5

0

0.5

Relative position angle [rad] and switching variable [−]

Time t [s]

Θ
d1

Θ
d2

v

0 5 10 15 20
−50

0

50

100

Shaft torques [Nm]

Time t [s]

T
s1

T
s2

Figure 8: Dual motor control with v = f(eabs) simulated with Dymola. The limit cycles are oppressed
and the required controller energy is distributed on both motors in the beginning of the motion.
Furthermore a smooth response is obtained and the strategy is robust against disturbances.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 268

Table 1: Optimization of controller parameters. The Genetic algorithm gives the best result. The
start value of the cost function is 3.00354.

Optimal values Optimization method Optimal value f

[Kp,Ti,Td]
[292.01,1.24,0.01] Pattern Search 1.67645
[229.32,1.38,0.05] SQP 1.82310
[223.38,1.4,0.073] Simplex 1.88427
[281.92,1.25,0.087] Genetic Algorithm 1.67730

Table 2: Optimization of switching parameters with cost function f1 of Eq.(2). The Genetic algorithm
gives the best results. The start value of the cost function is 10.9464.

Start Optimization Optimal Optimal

values method value f1 values

[0.5,0.25] Pattern Search 9.08898 [0.69,0.41]
[0.5,0.25] SQP 9.06205 [0.62,0.44]
[0.5,0.25] Simplex 9.08140 [0.63,0.45]
[0.5,0.25] Genetic Algorithm 9.06148 [0.62,0.45]
[0.25,0.01] Pattern Search 9.08444 [0.68,0.4]
[0.25,0.01] SQP 9.47738 [1,0.01]
[0.25,0.01] Simplex 9.19005 [1,0.24]
[0.25,0.01] Genetic Algorithm 9.06148 [0.62,0.45]

Table 3: Optimization of switching parameters with cost function f1 of Eq.(3). The Genetic algorithm
gives again the best results. The start values of the cost function are [10.02246, 0.924029].

Start Optimization Optimal Optimal

values method value f1 values

[0.5,0.25] Pattern Search 8.50622,0.51865 [0.67,0.40]
[0.5,0.25] SQP 8.60525,0.51835 [0.55,0.33]
[0.5,0.25] Simplex 8.49155,0.57118 [0.60,0.44]
[0.5,0.25] Genetic Algorithm 8.49167,0.57253 [0.61,0.45]
[0.25,0.01] Pattern Search 8.80359,0.65697 [1,0.033]
[0.25,0.01] SQP 8.81529,0.66332 [1,0.01]
[0.25,0.01] Simplex 8.55782,0.58015 [0.98,0.28]
[0.25,0.01] Genetic Algorithm 8.49013,0.57150 [0.62,0.44]

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 269

Modelling and Simulating the
Efficiency and Elasticity of Gearboxes

F.L.J. van der Linden P.H. Vazques de Souza Silva
German Aerospace Center (DLR)

Institute of Robotics and Mechatronics, Oberpfaffenhofen,Germany

Abstract

Two elastic gearbox models with friction losses are
presented; a 1-Degree Of Freedom (DOF) and a 3-
DOF model.
The presented models have advantages over the exist-
ing lossy gear model [7] of the Modelica Standard Li-
brary when gear vibrations are of interest. Care has
been taken that also in the case of gear locking, the
elasticity effects are treated adequately.
In addition to external excitations, it is now also possi-
ble to model internal excitations of the gearbox caused
by the varying stiffness and/ or damping. This vary-
ing stiffness can be specified by the user for each gear
wheel. This feature can for instance be used to model
tooth interaction or broken gears.
Furthermore, the 3-DOF elastic model can simulate
the elasticity of the support bearings in the load di-
rection, which is impossible in the standard lossy gear
model.
Keywords: Elastic Gearbox, Efficiency, Gearbox

1 Introduction

Gearbox vibrations and losses can affect the perfor-
mance of a mechanical system as a whole. For ex-
ample in wind turbines, vibrations of gearboxes of-
ten cause undesired behaviour or even fatigue fail-
ures. Moreover, in other applications elastic effects
of the gearbox can influence the performance of the
system, especially in low weight - high gear ratio
applications, such as lightweight robots and aircraft
applications. In this article it is presented how the
lossy gear model from the Modelica Standard Library
Modelica.Mechanics.Rotational addressed by
Pelchen et al. [7] is extended to a full elastic model,
without losing the symmetry of the model. Two mod-
els have been developed; a 1-DOF model and a 3-DOF
model.

(a) asymmetric elastic gear

(b) symmetric elastic gear

Figure 1: Lossy gear from the Modelica Standard Li-
brary, extended with springs to create an elastic gear
model

2 Overview of Available Models

The lossy gear model can simulate the efficiency of the
gearbox depending on load direction and speed as well
as stick slip effects. Bearing friction effects are also
included in the model. The standard lossy gear model
is a rigid model. When elastic effects are needed for
correct modelling, constructions as in Figure 1 can be
made to simulate elasticity. Figure 1a yields in the
case of a locked gear a non-symmetric model since the
elasticity is lumped on one side. In many cases this
leads to non-realistic model behaviour.
The model shown in Figure 1b has problems to be sim-
ulated at all. See Appendix A for an in-depth analysis
of this problem.
Sing and Houser [8] have developed an elastic gear
model that can simulate torsional as well as transverse
vibrations. Mesh- and bearing losses, however, are not
taken into account. Howard et al. [1] have been work-
ing with FEM models. These models are highly com-
plex and the simulation times are high. Moreover the
geometry and material properties have to be known,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 270 DOI: 10.3384/ecp09430052

which is usually not the case.
In this report, the work of Pelchen et al. [7] on the
standard lossy gear model is combined with the work
of Sing and Houser [8]. The goal of this paper is to
present a low order symmetric model that can sim-
ulate mesh- and bearing losses as well as an elastic
contact. The parameters needed for the model can ei-
ther be found in vendor catalogues or can be measured
without spending much time and resources.

3 The Elastic Lossy Gear Model

Two elastic gear models are developed; a torsional
elastic model (Figure 2a, 1-DOF) and a translational-
torsional model (Figure 2b, 3-DOF). With the first
model the effect of elastic teeth in a gearbox can be
simulated. The second model adds elasticity of the
bearings in the direction of the gear load.
A schematical overview of the power flow through the
lossy gear model is shown in Figure 3. The symbols
and their description are listed in Table 1.
The mesh is modelled using a spring and a damper
on each side of the contact positionymesh. The mesh
forcesFmA andFmB are related to the mesh torquesτmA

andτmB as:

FmA =
τmA

rA
=

τgA− τlossA

rA
(1)

FmB = −
τmB

rB
= −

τgB− τlossB

rB
(2)

And the resulting driving forces are (These are the
forces left after all friction losses):

FgA =
τgA

rA
, FgB = −

τgB

rB
(3)

The spring forcesFmA andFmB in the load direction are
for the 1-DOF model (see Figure 2a):

FmA = khA(ymesh− rAθA)+chA
(
vmesh− rAθ̇A

)
(4)

FmB = khB(rBθB−ymesh)+chB
(
rBθ̇B−vmesh

)
(5)

For the 3-DOF model (see Figure 2a) it results:

FmA = khA(ymesh− (rAθA +yA))+

chA
(
vmesh− (rAθ̇A + ẏA)

) (6)

FmB = khB((rBθB +yB)−ymesh)+

chB
(
(rBθ̇B + ẏA)−vmesh

) (7)

Since in a gear mesh the gear moduli of the mesh-
ing teeth have to be equal, the following assumption
is postulated:

Symbol Description

mJ Mass wheelI
rI Radius of wheelI
IgI Mass moment of inertia of wheelI

khI Gear contact spring constant wheelI
kh Total gear contact spring constant
kbI Bearing stiffness wheelI
∆khI normalized stiffness profile
kh,base kh = kh,base∆khI

chI Gear contact damping constant
wheelI

ch Total gear contact damping constant
cbI Bearing damping wheelI
∆chI normalized damping profile
ch,base ch = ch,base∆chI

yI Displacement of wheelI
ymI yI + rI θI

ymesh Displacement in load direction of
the contact point

vmesh ẏmesh

θI Angular position of wheelI
τI Input torque on shaftI
τmI Mesh torque of shaftI
τgI Resulting driving toque of shaftI
τlossI Mesh loss torque on shaftI
τb fI Bearing friction torque on shaftI
τloss,maxI Maximal loss torque of gearI
τloss,minI Minimal loss torque of gearI
FmI Mesh force of gear wheelI
FgI Resulting driving force of gearI
FlossI Mesh loss force on shaftI : τgI

rI

FbI Bearing force wheelI
∆Fh Force difference over the mesh

∆Fg = FgB−FgA

Floss,maxI Maximal loss force of gearI
Floss,minI Minimal loss firce of gearI
Ploss Power loss of the gear mesh
PlossI Power loss of the gearI
PmI Power flow into meshI
I can be substituted for respectivelyA or B to
indicate a certain gear wheel

Table 1: List of symbols.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 271

rA, IA

rB, IB

khA chA

khB chB

ymesh

yA + rAθA = ymA

yB + rBθB = ymB

(a) 1-DOF Elastic Gear

rA, IA

rB, IB

khA chA

khB chB

ymesh

kbA

kbB

cbA

cbB

yA + rAθA = ymA

yB + rBθB = ymB

(b) 3-DOF Elastic Gear

Figure 2: The One Degree and the Three Degrees of
Freedom Elastic Gear Models

Assumption 1 The mesh stiffness and the mesh damp-
ing are equal on both gear wheels

This leads to:

kh =2khA = 2khb (8)

ch =2chA = 2chb (9)

The bearing forces are given by:

FbA =− (kbAyA +cbAẏA) (10)

FbB =− (kbByB +cbBẏB) (11)

In Figure 3 the torques and forces on both gear wheels
are shown. Using the sign conventions from this fig-
ure, the rotational and translational equations of mo-

 {

{

{

{

WheelA

τA τb f A IgAθ̈A τlossA τgA++++

++++

+

+

+

+

+

+

WheelB

τB τb f B IgBθ̈B τlossB τgB

F g
A

F g
B

F m
A

F m
B

F b
A

F b
B

F l
o

ss
A

F l
o

ss
B

m
A
ÿ A

m
B
ÿ B

khA chA

khB chB

MeshA

MeshB

τmA

τmB

ymA

ymB

ymesh

P
os

.
di

re
ct

io
n(

y,
F

)

Positive direction (τ,θ)

Figure 3: Forces and moments on the gearbox. The
Torque/ Force convention is also shown.

tion can be obtained.

τA− τb f A− IgAθ̈A− τlossA+ τgA = 0 (12)

τB− τb f B− IgBθ̈B− τlossB+ τgB = 0 (13)

FbA−mAÿA−FlossA+FgA = 0 (14)

FbB−mBÿB +FlossB−FgB = 0 (15)

Equations 14 and 15 reduce for the 1-DOF model to:

FlossA−FgA = 0 (16)

−FlossB+FgB = 0 (17)

For a moving gear (not stuck) this coupling equation
between hullA andB is defined by the resultant drive
forces:

FgA = FgB (18)

In stuck mode though, hullA and B are uncoupled.
Since the gear is stuck, the constraint equation is:

vmesh= 0 (19)

3.1 Gear Mesh Losses

For the gear mesh efficiency it is important to identify
the power in- and outflows of the gear mesh. These

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 272

FhY > 0 FhY < 0

vmesh> 0 Quadrant 1 Quadrant 2
vmesh< 0 Quadrant 4 Quadrant 3

Table 2: Gear operational modes and quadrants. The
power flow in quadrant 1 and 3 is from GearwheelA
to GearwheelB, in quadrant 2 and 4 from Gearwheel
B to GearwheelA

powers can be obtained by rearranging Equation 12
and 13 and multiplying them by the rotational velocity.
The power that flows into the gear hull is therefore:

Pm,A =
(
τA− τb f A− IgAθ̈A

)
θ̇A

= (τlossA− τgA) θ̇A
(20)

Pm,B =
(
τB− τb f B− IgAθ̈B

)
θ̇B

= (τlossB− τgB) θ̇B
(21)

The total mesh loss is:

Ploss= PlossA+PlossB (22)

To distribute the losses over both gear wheels the fol-
lowing assumption is made:

Assumption 2 The mesh power losses are equally
distributed over both gear wheels.

This assumption leads to:

τlossAωA =
Ploss

2
= τlossBωB (23)

Using the sign conventions from Figure 3 this leads to
the conclusion that a power flow into the gearbox is
positive. Therefore the power loss is defined as:

Ploss= PmA+PmB (24)

Gearbox efficiencyη depends on the power flow
through the gear1. Using operational quadrants (see
also Table 2), the efficiency in each quadrant is defined
by following definitions:

Definition 1 The efficiency of the gearbox in quadrant
1 and 3 is:

η = −
PmB

PmA
= η1 (25)

Definition 2 The efficiency of the gearbox in quadrant
2 and 4 is:

η = −
PmA

PmB
= η2 (26)

1A good example is a worm wheel drive. In such a drive the
efficiency from worm to gearwheel is usually > 0.5. However, the
efficiency from gearwheel to worm is in some cases zero.

Combining Assumption 2 with Definitions 1 and 2, the
friction moment on the axis for quadrant 1 and 3 is for
θ̇ 6= 0:

τlossA= −
1−η1

1+η1
τgA (27)

τlossB= −
1− 1

η1

1+ 1
η1

τgB (28)

For quadrant 2 and 4 the power loss and friction mo-
ment on the axis is:

τlossA= −
1− 1

η2

1+ 1
η2

τgA (29)

τlossB= −
1−η2

1+η2
τgB (30)

For vmesh= 0 (gear mesh can get stuck), the loss mo-
ment working on the gear wheel is set to zero, since
the position where the loss is generated is fixed. This
leads to:

τlossA= 0, τlossB= 0 (31)

3.2 State Switching

In order to define in which quadrant the gearbox is op-
erating or if the gearbox is stuck, a state machine is de-
veloped. It switches based on the mesh velocityvmesh,
the sum of the total mesh loss forces and the force dif-
ference over the mesh.
The total mesh loss force depends on the operational
quadrant. Since forvmesh= 0, it is unknown if the gear-
box is operating in quadrant 1 or 3 (motor mode) or in
quadrant 2 or 4 (generator mode). As the mesh forces
(FgA and FgB) are known it is possible to develop a
maximum and minimum loss torque for each hull. The
quadrants 1 and 2 lead toτloss,max using quadrant 1 for
Fh > 0 and quadrant 2 forFh < 0. The quadrants 3 and
4 τloss,min using quadrant 4 forFh > 0 and quadrant 3
for Fh < 0. This leads to the total loss forces:

Floss,max=
τloss,maxA

rgA
+

τloss,maxB

rgB
(32)

Floss,min =
τloss,minA

rgA
+

τloss,minB

rgB
(33)

The force difference over the mesh is:

∆Fg = −

(
τgA

rgA
+

τgB

rgB

)
= FgB−FgA (34)

Figure 4 shows how the mode switching takes place.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 273

∆Fh < Floss,min ∆Fh > Floss,max

StuckBackward Forward

vmesh< 0 vmesh> 0

vmesh= 0vmesh= 0

Figure 4: Mode switching of the elastic gearbox

3.3 Mesh Stiffness- and Damping Variations

Kar and Mohanty [3], Li et al. [4] as well as Kahra-
man and Singh [2] report that internal gearbox vibra-
tions are caused by the variation of the mesh stiffness
between two adjacent teeth in contact. Nevzat et al.
[5] report that also damping is an important factor in
gear vibrations. Moreover Li et al. [4] note that gear
root cracks lead to a lower local stiffness.

To model these variations, a normalized gear stiffnes-
and damping profile (∆kh,∆ch) is introduced for each
gearwheel that specifies the local stiffness and damp-
ing over the circumference of each gear wheel. Using
this profile the stiffness and damping of the contact
point is calculated using:

kh =kh,base·∆khA(θA) ·∆khB(θB) (35)

ch =ch,base·∆chA(θA) ·∆chB(θB) (36)

In Figure 5 an example of the two normalized stiffness
profiles and the total local stiffness is given for two
gear ratiosi = 1 andi = 2.

3.4 Bearing Losses

In the elastic lossy gear model it is possible to have a
stuck mesh and at the same time moving gearwheels.
Therefore the mesh- and bearing losses cannot be
lumped like Pelchen et al. [7] do. Instead two bear-
ings are modelled, one on each gear wheel side. Since
usually the bearings from gearboxes are not identical,
each bearing can have individual friction characteris-
tics. The same approach as Otter et al. [6] is used to
model the bearing friction (this is in fact the bearing
friction model from the Modelica Standard Library).

Stiffness profiles of gearwheelA andB

θA,B

2π

k h
k h

,b
a

se

khA

khB

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

(a)

Local gear stiffness

θA,B

2π

k h
k h

,b
a

se

kh for i = 1

kh for i = 2

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

(b)

Figure 5: Local stiffness of two contacting gear wheels
for gear ratiosi = 1 andi = 2

4 Modelica Model

The elastic lossy gear model as developed in Section
3 can be implemented straightforward into a Modelica
model. The parameters for the simulation of a 1-DOF
model are the gear wheel radiirA andrB, the moments
of inertia of the gearwheelsIgA andIgB and the nomi-
nal stiffnesskh and dampingch of the mesh. Tabulated
values ofηn1, ηn2 as a function ofvmesh, τb f A andτb f B

have to be given as a function oḟθA respectivelyθ̇B.
The last inputs are the profile tables∆khA, ∆khB, ∆chA

and∆chB which are a function of the normalized cir-
cumference of the gear wheel.

5 Simulation Results

To check if the simulation results of the elastic lossy
gear model correspond with the simulation results of
the standard lossy gear model (extended with a dummy
mass and two spring and damper elements) a sim-
ulation is executed with both models. A schematic

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 274

Figure 6: Elastic 1-DOF lossy gear model and stan-
dard lossy gear model extended with dummy mass and
two spring- damper combinations.

overview of the models can be found in Figure 6. Both
gears are driven by a sinusoidal torque (left). The load-
ing of the gearbox takes place by a spring (right) with
very low stiffness (1N/m). Note that this dummy mass
is a work-around to avoid simulation problems. It in-
troduces higher dynamics and moreover increases the
simulation order. For a smooth simulation, the stan-
dard “Dassl” integrator requires the dummy mass to
be maximal 106 times smaller than the main masses.
Implementing a 3-DOF system using the Modelica
Standard Library is hardly possible and therefore not
worked out.

5.1 Gearbox Sticking

The simulation results of the gearbox getting stuck,
are shown in Figure 72. This figure demonstrates
that the simulation results are almost identical for both
torsional models, leading to the conclusion that the
1-DOF elastic lossy gear model delivers the right re-
sults. The simulation results also show that the eigen-
freuquency of the 3-DOF model is lower than the 1-
DOF model. This can be explained by the lower stiff-
ness and damping of the 3-DOF model than the 1-
DOF model, caused by the extra spring-damper com-
bination at the bearings. Note that the bearing stiff-
ness is set to a low value to make the differences extra
clear.
In addition the simulation results show clearly that in
the case of a blocked gearbox, both sides of the gear-
box are uncoupled; the eigenfrequency of wheelA is
higher than of wheelB. This seems not logical at first
sight, since the inertia of wheelA is higher than of
wheelB. Yet the stiffness of a gearbox has a quadratic
relation with the gear ratio, leading to a 9 times higher
stiffness of wheelA with respect to wheelB. Since the
inertia of wheelA is only 4 times higher than of wheel

2The simulation parameters are:kh = 1e6Nm−1, ch =
10Nsm−1, η1 = η2 = 0.5, IgA = 4e−3kgm2, IgB = 1e−3kgm2,
rgA = 0.3mandrgB = 0.1m.

Gear Locking Simulation

Time [ms]

S
pe

ed
[m

ra
d/

s]

1-DOF LGA

3-DOF LGA

LG + springsA

1-DOF LGB

3-DOF LGB

LG + springsB

0 2 4 6 8 10

−5

0

5

10

15

20

Figure 7: Simulation of the elastic 1-DOF and 3-DOF
lossy gear model together with the standard lossy gear
model extended with dummy mass and springs.

B, the eigenfrequency of wheelA is
√

k
m =

√
9
4 = 1.5

times higher than wheelB.

5.2 Internal Gearbox Vibrations

As concluded in Section 3.3 the stiffness variation of
the gear mesh between the gear teeth is an important
source of gearbox vibrations. To simulate this be-
haviour a gearbox is modelled using realistic param-
eters for radii, stiffness and damping. The mesh stiff-
ness variation is modelled by using the stiffness profile
from Section 3.3. To simulate two gear wheels with
60 teeth, both gearwheels are given a stiffness varia-
tion profile (∆khA and∆khB) with a sinusoidal variation
with 60 periods and an amplitude of 2.5% ofkh,base.
The average of the profile is one. Combining both gear
wheels lead to a 10% fluctuation of the gear stiffness
varying 60 times each rotation.
The simulation setup is shown in Figure 8. In this fig-
ure the gear is driven by a constant speed block (left)
and loaded by a constant load block (right). The elas-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 275

Figure 8: Simulation environment for the internal gear
vibration test.

Rotational velocity of gear wheelB

Time [ms]

S
pe

ed
[R

P
M

]

1-DOF Lossy Gear

3-DOF Lossy Gear

0 1 2 3 4 5
1995

2000

2005

2010

(a)

Mesh forceFhA [N]

Time [ms]

F h
A

0 1 2 3 4 5
300

320

(b)

Figure 9: Simulation of the Elastic lossy gear model
with a varying tooth stiffness at 2000 RPM:

tic gearbox is coupled using two relatively stiff cou-
plings of 20kNM/rad to a constant speed and a con-
stant torque block. The simulation results for the gear
running stationary at 2000 RPM are illustrated in Fig-
ure 93. The extra elasticity of the bearings lowers the
eigenfrequency of the vibrations (2000 RPM is close
to the eigenfrequency of the 3-DOF lossy gear model).
Just like in Section 5.1, the bearing stiffness and damp-
ing is chosen relatively low to show the effect of bear-
ing stiffness.

3kh = 1e8Nm−1, ch = 50Nsm−1, ηa = η2 = 0.9 ,IgA = 9e−
5kgm2, IgB = 9e−5kgm2, rgA = 30mmandrgB = 30mm.
The extra parameters for the 3-DOF model are:
mA = 0.3kg, mA = 0.5kg, kA = kB = 1e8Nm−1, cA = cB = 5Nsm−1

6 Conclusion

The lossy gear model of the Modelica Standard Li-
brary is extended with two models; a 1-DOF model,
simulating tooth stiffness and a 3-DOF model, sim-
ulating tooth and bearing stiffness. Elasticity of the
gearbox is dealt with in an appropriate way without the
need for dummy masses. Just like the standard lossy
gear model, chattering is avoided in this model by the
state switching algorithm.
With the 1-DOF and 3-DOF elastic lossy gear mod-
els it is now possible to model the torsional as well as
the translational (in load direction) vibrations of gear-
boxes. In addition it is possible to simulate the change
of stiffness and/ or damping between the two adjacent
teeth of a gear. This facilitates the modelling of vibra-
tions that are internally generated. Furthermore, the
3-DOF model can simulate the effect of elastic bear-
ings. The extra elasticity caused by the bearings will
decrease the lowest eigenfrequency, which can cause
huge problems in high velocity gear applications. The
possibility to easily simulate these problems makes it
possible to identify problems in an early design stage.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 276

Appendices

A Lossy Gear Simulation Problems

The lossy gear model from the Modelica Standard Li-
brary can not simulate when it is directly coupled with
two springs. In this appendix an example will be used
to demonstrate where the simulation problems origi-
nate.

θ1 θa θb θ2

τa τb

Figure 10: Lossy gear model extended with two
springs

The equations of motion for the model in Figure 10
using gear ratioi = 1 are shown in equation 37 to 40:

θa = iθb = θb (37)

τa = c(θa−θ1) (38)

τb = c(θ2−θb) (39)

τloss=

{
stuck :−(τa + τb) so thatθ̈a = 0

sliding :k(θ̇a) θ̇a
(40)

In Equation 40,k(θ̇a) is a variable defining the effi-
ciency of the lossy gear model (which can be depen-
dant onθ̇a).
Combining equations 37 to 40 yield the following dif-
ferential equations for the stuck mode as well as for
the sliding mode:

stuck: c(θa−θ1)+c(θ2−θa)+k
(
θ̇a

)
= 0 (41)

sliding:

{
τloss = −(c(θa−θ1)+c(θ2−θa))

θ̈a = 0
(42)

Comparing Equation 41 and 42 shows that the equa-
tion in stuck mode (Eq 41) is a differential equation
of first order inθa (θ1 andθ2 are input signals to this
equation). On the contrary, the differential equation
for sliding (Eq 42) is of second order inθa.
Summing up, this leads to a changing number of dif-
ferential equations while switching between stuck and
sliding mode. Dymola (and also other Modelica tools)
cannot handle cases in which the number of differen-
tial equations changes during simulation. Therefore
the model as shown in Figure 10 cannot simulate any
switching between stuck and sliding.

A method to fix this problem would be to replace
θ̈a = 0 from Equation 42 bẏθa = 0, yielding a model
that does not change states. However this is non-trivial
because all switching conditions (how to switch be-
tween sliding and stuck mode) would change.

References

[1] I. Howard, S. Jia, and J. Wang. The dynamic mod-
elling of a spur gear in mesh including friction and
a crack.Mechanical Systems and Signal Process-
ing, 15:831–853, 2001.

[2] A. Kahraman and R. Singh. Interactions between
time-varying mesh stiffness and clearance non-
linearities in a geared system.Journal of Sound
and Vibration, 142:49–75, 1990.

[3] C. Kar and A. Mohanty. Determination of time-
varying contact length, friction force, torque and
forces at the bearings in a helical gear system.
Journal of Sound and Vibration, 309:307–319,
2008.

[4] C. J. Li, H. Lee, and S. H. Choi. Estimating size
of gear tooth root crack using embedded mod-
elling. Mechanical Systems and Signal Process-
ing, 16:841–852, 2002.

[5] H. Nevzat, Özgüven, and D. Houser. Dynamic
analysis of high speed gear by using loaded static
transmission error.Journal of Sound and Vibra-
tion, 125:71–83, 1988.

[6] M. Otter, H. Elmqvist, and S. E. Mattsson. Hybrid
modeling in modelica based on the synchronous
data flow principle. InCACSD, Hawaii, USA, Au-
gust 1999.

[7] C. Pelchen, C. Schweiger, and M. Otter. Modeling
and simulating the efficiency of gearboxes and of
planetary gearboxes. In2nd International Model-
ica Conference, pages 257–266, 2002.

[8] R. Sing and D. R. Houser.Non-Linear Dynamic
Analysis of Geared Systems. PhD thesis, Ohio
State University, February 1990.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 277

Performance Analysis of VON MISES’ Motor Calculus
within Modelica

Tobias Zaiczek Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits

Design Automation Division
Dresden, Germany

{Tobias.Zaiczek,Olaf.Enge}@eas.iis.fraunhofer.de

Abstract

This paper presents an alternative concept of mod-
elling multibody systems within Modelica, the so-
called motor calculus. This approach was introduced
by R. VON MISES in 1924 and can be used to describe
the dynamical behaviour of spatial multibody systems
in a very efficient way. While the equations clearly
take a very simple form in terms of motor algebra, the
numerical efficiency is still an open question.

In the paper, first some fundamentals of motor cal-
culus are summarized. An experimental implemen-
tation of motor algebra is used to measure and anal-
yse the numerical efficiency and performance regard-
ing the simulation time of VON MISES’ approach.
Therefore, some components of the Modelica Multi-
body Standard Library were modified in order to com-
pare both implementations. Finally, some examples
are given to prove the applicability and correctness of
the concept but also to serve as a basis for a discus-
sion of the numerical performance. The chosen ap-
proach utilizes all object-oriented features provided by
the modelling language. Besides, it gives reason for
the present endeavours to introduce the possibility of
operator overloading within Modelica.

Keywords: motor calculus, screw theory, rigid
multibody system, Modelica, performance

1 Introduction

The motion of mechanical systems in three-dimen-
sional space has been examined for hundred of years.
In 1924 R. VON MISES suggested an approach, the so-
called motor calculus, to describe rigid body motion in
3D mechanics in a very clear and efficient way [6, 7].
Inspired by previous contributions (e.g. [2, 3, 12]), he
introduced the motor as a six-tuple of scalar quanti-
ties and developed a special algebra for these mathe-

matical objects, called the motor calculus. Though his
approach is not well known throughout all branches
of mechanical engineering, in the field of robotics
VON MISES’ ideas were rediscovered during the last
decades [1, 5, 10, 11, 13], since they seem to be well
suited to investigate the behaviour of spatial multibody
systems. However, in the context of the modelling lan-
guage Modelica (see e.g. [4, 14]), the motor calculus
has not been taken into account up to now.

Meanwhile, many researchers apply the Modelica
Multibody Standard Library ([9]) to model different
kinds of – partially very complex – multibody sys-
tems (see proceedings of the Modelica conferences
[8]). Hence, this library has proven to be a well suited
resource to modelling such systems. Nevertheless, ap-
plying the motor calculus, the equations of motion for
a rigid body become more concise and clearer, e.g.

ṗ = f

(p – momentum motor, f – force motor). Despite
the formal equivalence to Newton’s Second Law for
a point mass, this equation fully describes the three-
dimensional mechanics of a rigid body.

In our first publication [15], we were already able
to show the possible simplifications of the resulting
equations within some components of the Modelica
Multibody Standard Library using the motor calculus.
Furthermore, we compared both approaches e. g. with
respect to numerical correctness. So, the motivation to
follow further up the motor calculus in the Modelica
context is now to investigate the performance of the
simulation of mechanical systems with regard to sim-
ulation time.

An extended test realization within the Modelica
Multibody Standard Library has been carried out by
changing some components of this library. These
modifications take advantage of the built-in feature of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 278 DOI: 10.3384/ecp09430105

inheritance. Hence, it is possible to compare both ap-
proaches e. g. with respect to numerical effectiveness.

In the following section, some fundamentals of mo-
tor calculus are shortly sketched. Some of the most
important mathematical operations are defined. The
test implementation is presented in section 3. The per-
formance of the motor calculus approach will be eval-
uated and compared to the performance of the Model-
ica Multibody Standard Library using some examples
in section 4.

2 Fundamentals of motor calculus

A motor

h =
(

g
ho

)
is an ordered pair of vectors, ho and g, that define a
vector field

h(r) = ho + g × r (1)

in the three-dimensional Euclidean space. In this def-
inition, r is the position vector of any point in space,
while the vectors h and g are called the moment and
the resultant vector of the motor, respectively. Accord-
ingly, ho stands for the moment of the motor at the
origin O of the reference coordinate system.

For every motor, an infinite number of points exists,
for which the moment of the motor h is parallel to the
resultant vector g. All these points exhibit the same
moment hn and lie on a straight line N given by

rn(λ) =
g × ho

|g|2
+ λg , λ ∈ R.

Geometrical interpretation. A very strong goal of
the motor calculus is the fact that motors and all oper-
ations with motors (that will be defined later on) can
be interpreted as geometrical objects or constructions.
Hence, all motors can be seen as abstract objects that
do not depend on the choice of a reference frame. De-
tails can be found in [7, 15].

2.1 Motor calculus

In the following, some computational rules of the mo-
tor calculus are recalled.

Let h, h1, and h2 be three motors given by

h =
(

g
ho

)
, h1 =

(
g1

ho1

)
, h2 =

(
g2

ho2

)
.

Then, according to VON MISES, the following mathe-
matical operations are defined:

h1 + h2 =
(

g1 + g2

ho1 + ho2

)
(addition)

αh =
(
αg
αho

)
(multiplication with

a scalar α ∈ R)

(h1, h2) = (g1,ho2) + (g2,ho1) (inner product)

h1 × h2 =
(

g1 × g2

g1 × ho2 + ho1 × g2

)
(outer product)

In analogy to the vector calculus, VON MISES de-
clared dyads for the motor calculus by linear vector
functions mapping motors to motors. Referred to a
concrete coordinate system, such a dyad can be repre-
sented as a (6× 6) matrix.

The mapping can be described in the following man-
ner:

T ◦ h1 =
(

T 11 T 12

T 21 T 22

)
◦
(

g1

ho1

)
=
(

T 11ho1 + T 12g1

T 21ho1 + T 22g1

)
. (2)

Now, all calculation rules for the motor calculus can
be derived readily. For details we refer to [7, 15]. In
[15], it is also shown that, due to the definition of ad-
dition and scalar multiplication, motors span a vector
space over the field of real numbers. Additionally, by
the introduction of the outer product, motors form a
Lie-Algebra1.

2.1.1 Differentiation with respect to real-valued
parameters

Consider a motor h that depends on a real parameter t
(e. g. the time) with differentiable components g and
ho with respect to t. Then, the first derivative of this
motor with respect to t can be computed component-
wise:

dh

dt
=

(
dg
dt

dho
dt

)
.

2.1.2 Differentiation in moving frames

If frame F1 moves relatively to a reference frame F0,
the observed temporal change of a motor is then in
general different in the two frames. The relative mo-
tion of the origin of frame F1 measured in frame F0

1Named after the mathematician SOPHUS LIE (∗1842, †1899).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 279

shall be given by the velocity vector vo, while the
angular velocity vector of frame F1 with respect to
frame F0 is denoted by ω. Then, the equation

ḣ =
o
h +

(
ω
vo

)
× h (3)

holds for the derivation with respect to time observed
in frame F0. In Equ. (3),

o
h denotes the derivation

w. r. t. time of the motor h observed in frame F1.

2.2 Applications of motor calculus

The most important application of motor calculus is
the description and analysis of the static and dynamic
behaviour of rigid bodies subject to external forces and
torques.

All forces and torques acting on a rigid body can be
combined to one single force vector f and one torque
vector do. Similarly, the movement of a rigid body
can be fully described by the movement of a special
reference pointO on the body (i. e. by its velocity vec-
tor vo) and the angular velocity vector ω, the body is
turning with (see Fig. 1).

P

A

ω

F

B

r0

r

r

O

O

Figure 1: Definition of vectors at the rigid body

The following paragraphs aim to show that, by in-
troducing physically motivated motors, the motor cal-
culus is well suited to describe rigid body movements.

2.2.1 Definition of physically motivated motors

Here, we introduce some motors that are able to de-
scribe the motion sequence of a rigid body as well as
the acting torques and forces in a physically meaning-
ful manner.

The first motor is called the force motor f combin-
ing the resulting force f and torque do (referred to the
reference point O) acting on the rigid body, i. e.

f =
(

f
do

)
.

Hence, the torque referred to any other point with
the position vector r is calculated by

d(r) = do + f × r .

A second motor, the so-called velocity motor, is able
to describe the whole motion of a rigid body. It con-
sists of the velocity vector vo of the chosen reference
pointO and the angular velocity vector ω representing
the rotation of the body w. r. t. an inertial frame:

v =
(

ω
vo

)
.

This motor is able to describe the velocity v of any
point r of the rigid body by the equation

v(r) = vo + ω × r .

Two other important vectors in the description of
dynamic mechanical systems are the momentum vec-
tor p and the angular momentum vector lo. Both are
combined in the momentum motor p with

p =
(

p
lo

)
.

Similar to the force motor, the representation of mo-
mentum motor depends upon the chosen reference
point. Between the angular momentum lo referred
to O and the angular momentum vector l(r) referred
to any other point at position r, the relationship

l(r) = lo + p× r

holds. The proof of this statement can be found in [15].

2.2.2 Some fundamental laws of mechanics in
terms of motor calculus

With the definitions above, a relationship between the
velocity motor v and the momentum motor p can be
derived by introducing the inertia dyad M for the mo-
tor calculus:

p =
(
mI −mRs

mRs Θo

)
︸ ︷︷ ︸

M

◦ v . (4)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 280

The new symbol Rs describes the cross product dyad
of the vector rs pointing to the centre of mass.

With the help of the foregoing motor relations, the
main mechanical laws can be rewritten in terms of mo-
tors.

The first law describes the change of momentum
and angular momentum in the presence of external
forces and torques in a very efficient and short way,
namely

ṗ = f .

Here, ṗ denotes the time derivative of the momentum
motor p observed in an inertially fixed reference frame.

A much more applicable form for concrete calcu-
lations can be derived using (3) to express the time
derivation w. r. t. the body frame

o
p + v× p = f , (5)

where p, v, and f are referred to the origin of the body
frame.

Replacement of the momentum motor with the help
of Equ. (4) yields the following relationship

M ◦ o
v + v× (M ◦ v) = f

if all components are given in the body frame.
The kinetic energy of a rigid body can be expressed

by means of motor calculus as follows:

T =
1
2

(v, p) with p = M ◦ v .

Again, this expression agrees formally with the equa-
tion of the kinetic energy of a mass point, if therein
the mass is substituted by the inertia dyad M and the
vectors are substituted by their corresponding motors.

Similarly, the equation for the power performed by
the applied forces and torques is given by

P = (f, v) .

2.2.3 Applications to multibody systems

The use of the motor calculus introduced above can
also be very beneficial when describing multibody sys-
tems. These systems are often modelled as an inter-
connection structure of rigid bodies and ideal joints.

Exemplarily, two types of ideal joints, the revolute
and the prismatic joint, will be analysed in this paper.
Therefore, the necessary equations will be derived in
this paragraph.

Both joints set up five constraint equations on the
relative motion of the rigid bodies interconnected. By
defining the unit vector e as the joint axis, one can
write the velocity motor of the relative motion for the
prismatic and the revolute joint as

vr = ẋeP =
(

0
ẋe

)
and vr = ẋeR =

(
ẋe
0

)
.

(6)

Here ẋ denotes the translational velocity along or the
rotational velocity around the joint axis e. The cut
forces and torques within the joint are merged in the
force motor f. Since friction is neglected, the dissi-
pated power of the joint vanishes and hence the applied
power reads

P = (f, vr) .

3 Object-oriented implementation

The test implementation presented here is based on the
Modelica Multibody Standard Library. Due to some
still existing limitations of the Modelica language in
terms of operator overloading, compromises had to be
made during implementation of the motor calculus.

3.1 Motor library

The first step of the implementation towards a descrip-
tion of rigid body motion by means of motor calculus
is the realization of a general motor class. From the
view of data structure, motors are nothing more than a
combination of six scalars.

A clear structured class motor with two vectors,
the resultant vector and the moment vector, would
have been desirable. Due to the missing possiblity of
operator overloading in our simulation tool (Dymola
7.1), an alternative implementation has been chosen.
All six scalars are stored within one vector which is
called Motor:

type Motor = Real[6]
"Motor: [Resultant;Moment at r0]";

The reason for the chosen implementation was the
ability to keep at least the operators "+" and "−" as
well as the multiplication with scalars for the motor
calculus in its original sense. One drawback is that,
within the context of inheritance, no real specializa-
tion concerning the physical units of the quantities can
be made. Hence, the child classes of velocity motor,
force motor, and momentum motor have also a quite
simple definition, namely:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 281

type VelocityMotor= Motor "Velocity motor";
type ForceMotor = Motor "Force motor";
type MomentumMotor= Motor "Momentum motor";
type DerMomMotor = Motor "Time Derivative

of Momentum motor";

All the other calculation rules introduced in sec-
tion 2.1 had to be implemented using Modelica func-
tions.

The first function has been written to perform the
inner product between two motors. It is denoted by
dot:

function dot "Inner product of motor
calculus"

input Motor m1 "First motor";
input Motor m2 "Second motor";
output Real r3 "Resulting scalar";

algorithm
r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3];

end dot;

Similarly, the outer product has been implemented us-
ing the function ’x’:

function ’x’ "Outer product of motor
calculus"

input Motor m1 "First motor";
input Motor m2 "Second motor";
output Motor m3 "Resulting motor";

algorithm
m3 := vector([cross(m1[1:3],m2[1:3]);

cross(m1[1:3],m2[4:6])
+cross(m1[4:6],m2[1:3])]);

end ’x’;

The preceding reasons for the simple implementation
of the motor class apply for the implementation of the
motor dyads, too. Hence, a motor dyad given w. r. t. a
given frame can be expressed as a (6× 6) matrix:

type MotorDyad = Real[6,6] "Motor Dyad";

To apply a motor dyad to a motor, another function has
been created. Referring to Equ. (2), the function has
been defined by:

function times "Application of a Motor Dyad
on a Motor"

input MotorDyad m1
"Motor dyad to be applied";

input Motor m2 "Input motor";
output Motor m3 "Output motor";

algorithm
m3 := m1[:,1:3]*m2[4:6]

+ m1[:,4:6]*m2[1:3];
end times;

Finally, there exist two functions that enable to trans-
form the components of a motor from one frame to
another and vice versa.

function coordChange1 "Transforms motor
from frame b to frame a"

import F = Modelica.Mechanics.MultiBody.
Frames;

input Modelica.SIunits.Position[3] r_0
"Vector pointing from origin of frame a
to origin of frame 2, resolved in
frame 1";

input F.Orientation R "Orientation object
of frame 2 resolved in frame 1";

input Motor m1 "Motor res. in frame 2";
output Motor m2 "Motor res. in frame 1";

algorithm
m2 := vector([transpose(R.T)*m1[1:3];

transpose(R.T)*m1[4:6]
+ cross(r_0,

transpose(R.T)*m1[1:3])]);
end coordChange1;

function coordChange2 "Transforms motor
from frame 1 to frame 2"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame 2, resolved in
frame 1";

input F.Orientation R "Orientation object
of frame 2 resolved in frame 1";

input Motor m1 "Motor res. in frame 1";
output Motor m2 "Motor res. in frame 2";

algorithm
m2 := vector([R.T*m1[1:3];

R.T*mom(m1,r_0)]);
end coordChange2;

3.2 Multibody implementation

The existing implementations of several parts of the
Modelica Multibody Standard Library were adapted
to the motor algebra. First of all, the connectors
frame_a and frame_b were changed by substitut-
ing the vectors force and torque by the force mo-
tor force in the connector class frame. Hence, all
other classes of the Multibody library used in this pa-
per had to be adjusted as well. In the following, some
important changes to the most relevant classes will be
explained in detail.

3.2.1 Changes to the body class

The first changes were the replacements of important
motion variables by some physically motivated mo-
tors. While the angular velocity vector as well as the
velocity vector of frame_a were removed, the veloc-
ity motor and the momentum motor were introduced.
Also, all acceleration vectors and all inertia dyades
have been replaced by the time derivative of the mo-
mentum motor dmom and the motor inertia dyad, re-
spectively.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 282

// Motors
// ------
VelocityMotor velB (start=[\dots])

"Velocity motor wrt. frame a";
MomentumMotor mom (start=[\dots])

"Momentum motor wrt. frame a";
DerMomMotor dmom (start=[\dots])

"Time Derivative of Momentum motor wrt.
frame a";

ForceMotor f_g
"Force Motor due to gravitation";

// Motor Dyads
// -----------
final parameter MotorDyad I_mot =

[diagonal({m, m, m}),-skew(m*r_CM);
skew(m*r_CM), [I_11, I_21, I_31;

I_21, I_22, I_32;
I_31, I_32, I_33]

+ m*(diagonal(r_CM*r_CM*ones(3))
-[r_CM]*transpose([r_CM]))]

"Motorial Inertia Tensor";

Afterwards, all declared motors and motor dyads had
to be defined using the following statements:

// Motors
// ------
velB = vector([frame_a.R.w;

frame_a.R.T*der(frame_a.r_0)]);
mom = times(I_mot, velB);
dmom = der(mom);
f_g = vector([m*frame_a.R.T*g_0;

cross(r_CM, m*frame_a.R.T*g_0)]);

Finally, the equations of motion originally imple-
mented according to

frame_a.f = m*(Frames.resolve2(frame_a.R,
a_0 - g_0)

+ cross(z_a, r_CM)
+ cross(w_a, cross(w_a, r_CM)));

frame_a.t = I*z_a + cross(w_a, I*w_a)
+ cross(r_CM, frame_a.f);

have been replaced by Equ. (5):

frame_a.f = der(mom) + ’x’(velB,mom) - f_g;

Because of the object-oriented structure of the Mod-
elica Standard Library, the changes had to be imple-
mented only once. All subclasses of the Body class,
like BodyShape, BodyBox, or BodyCylinder
inherit the changes automatically.

3.2.2 Changes to the revolute class

Also, in the class revolute some changes had to be
carried out. Firstly,

frame_a.f = -Frames.resolve1(R_rel,
frame_b.f);

frame_a.t = -Frames.resolve1(R_rel,
frame_b.t);

had to be replaced by

frame_a.f = -coordChange1(zeros(3),R_rel,
frame_b.f);

and

frame_b.f = -Frames.resolve1(R_rel,
frame_a.f);

frame_b.t = -Frames.resolve1(R_rel,
frame_a.t);

was substituted by

frame_b.f = -coordChange1(zeros(3),R_rel,
frame_a.f);

Last of all, the constraint equation was reformulated
according to (6) as

tau=-dot(frame_b.f,vector([e;zeros(3)]));

3.2.3 Changes to the prismatic class

In the class prismatic the following lines

zeros(3) = frame_a.f + frame_b.f;
zeros(3) = frame_a.t + frame_b.t

+ cross(e*(s_offset + s), frame_b.f);
// d’Alemberts principle
f = -e*frame_b.f;

were replaced by the two lines

zeros(6) = frame_a.f
+ coordChange1(e*(s_offset + s),
Frames.nullRotation(),frame_b.f);

// d’Alemberts principle
f = -dot(frame_b.f,vector([zeros(3);e]));

4 Examples and performance analy-
sis

On the basis of the following examples, different per-
formance tests were carried out in order to evaluate the
numerical effectiveness of the two different modelling
approaches. Two of the examples can also be found in
[15] where the authors already showed the applicabil-
ity and correctness of some of the implementations.

The following first three subsections describe the
chosen examples and show some simulation results.
The last subsection introduces a performance criterion
and evaluates the performance of the simulations.

4.1 Movable double pendulum

As a first example, the movable double pendulum
(Fig. 2) was chosen to compare the simulation time
of the implemented body classes based on motor cal-
culus to the implementation of the Modelica Standard

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 283

ts

M0

M1

M2

x

y

s

trolley
ϕ1

ϕ2

J1

J2

g

centre of mass
of body 2

Figure 2: Sketch of double pendulum

Library. The pendulum consists of a trolley with the
mass M0 and two rigid bodies with masses M1 and
M2. The trolley is able to move horizontally. The first
body is suspended on the trolley by a revolute joint.
The second body is suspended on the first body via a
revolute joint, too. Both axes of rotation are parallel
to the z-axis which lies perpendicular to the xy-plane
(see Fig. 2). The moments of inertia of both bodies
around the axis of rotation w. r. t. their particular centre
of mass are given by J1 and J2. The distance between
both axis of rotations is denoted by l1.

The pendulum moves from an initial deflection of
ϕ1(0) = 90 deg and ϕ2(0) = 0 deg due to the earth’s
gravity field. A viscous friction, acting in every joint,
damps the motion of the pendulum.

As a reference, the same pendulum system has been
implemented using the Modelica Standard Library. In
Fig. 3, the trajectory for the position s of the trolley for
both simulations is displayed. Both curves are nearly
congruent. Hence, Fig. 3 shows only one curved line.

Figure 3: Trajectory of the trolley position s

The time histories of the revolute joint angles ϕ1

and ϕ2 are depicted in Fig. 4. The differences be-

Figure 4: Trajectory of the pendulum angles ϕ1 and
ϕ2

tween both simulation results for an integration toler-
ance of 10−4 are shown in Fig. 5. Apparently, the de-
viation of the position stays smaller than 6 · 10−12m
for the given simulation time of 10s. The deviations
of both pendulum angles are also very small. They do
not exceed 10−11rad. Hence, these differences can be
interpreted as numerical errors of the simulator, since
they depend on the integration tolerance.

Figure 5: Deviations between both simulations for
trolley position s and both angles ϕ1 and ϕ2

4.2 Fourfold pendulum on two movable slid-
ers

The second example is a fourfold pendulum. It con-
sists of two trolleys and a chain of four rigid bodies
between them. Both trolleys are guided along straight
tracks (see Fig. 6). Hence, this example contains a
closed kinematic loop. Similar to the foregoing exam-
ple, the pendulum moves due to the gravity field of
the earth. The motion starts with an initial deflection
(see Fig. 7) and is damped by a viscous friction in ev-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 284

M0

M1

M2

M3

M4

M5

x

y
s1

s2

ϕ1

ϕ2

ϕ3

ϕ4

J1

J2

J3

J4

g

Figure 6: Sketch of fourfold pendulum

ery joint except the last one connecting the bodies with
masses M4 and M5. The initial values for the pendu-
lum angles are

ϕ1(0) = 45 deg, ϕ2(0) = −15 deg,

ϕ3(0) = 30 deg, ϕ4(0) = −37.5 deg.

Fig. 7 shows the initial configuration of the pendulum
system. Here, the length proportions between the four
bodies of the pendulum are illustrated.

Figure 7: Start configuration of fourfold pendulum

Like before, the pendulum system was implemented
twice using two different simulation models. The first
implementation is based on the Multibody Standard
Library and serves as a reference. The second model
uses the modified Multibody Library on the basis of
the motor algebra.

In order to compare both approaches concerning
their simulation results, one instance of the first model
and one instance of the second model were calculated

simultaneously. This way, the deviations of both simu-
lations can be calculated. For reasons of compactness
only the maximum deviation for all prismatic joints
and for all revolute joints are plotted in Fig. 8. They
have the same order of magnitude as in the example
before and can thus be explained by numerical errors.

Figure 8: Maximal deviations between both simula-
tions for all prismatic joints and all revolute joints

4.3 Rotating wheel on a movable axis

The last example is a rotating wheel that is fixed on
a movable axis (see Fig. 9). There are three revolute
joints within this mechanism. The first one allows a
rotation of the rack (the long cylinder posing upright in
Fig. 9) around the z-direction. A second revolute joint
is the bearing of the wheel that enables the wheel to
turn around its axis. Between them, there is a revolute
joint enabling a rotation of the axis orthogonal to the
rotation of the spinning wheel. Hence, in this example,
the rigid bodies do not only perform planar motions.

Figure 9: Sketches of a rotating wheel on movable axis

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 285

Again, the bodies move under the influence of the
earth’s gravitational field that acts in the negative z-
direction.

At the beginning, the wheel turns with a speed of
ω3 = 50 rad/s around its axis while the rack and the
wheel’s axes stand perpendicular to each other. In op-
posit to the foregoing examples, this system is com-
pletely undamped. Fig. 10 depicts the trajectory of the
intersection point between the wheel axis and a unit
sphere. Obviously, the resulting motion of the mech-

Figure 10: Trajectory of the intersection point between
the rotation axis and a unit sphere for ω3 = 50 rad/s

anism is a superposition of a precession and a free nu-
tation. In order to illustrate this characteristic motion
in more detail, Fig. 11 shows the same trajectory for
an initial speed of only 10 rad/s.

Figure 11: Trajectory of the intersection point between
the rotation axis and a unit sphere for ω3 = 10 rad/s

As in the paragraphs before, the example was imple-
mented twice to compare Modelica Standard imple-
mentation with modified motor implementation. The

deviations for all revolute joint angles between both
implementations do not exceed 6 · 10−12 for a simu-
lation time of 10s. However, since the system is un-
damped, the deviations of both simulations increase
with continuing time.

4.4 Performance analysis

All simulation tests were performed using the simula-
tion tool Dymola in the version 7.1. The analysis of the
performance requires the definition of a performance
indicator. Even though Dymola provides a lot of in-
formation on the translation as well as the simulation
process, we decided to evaluate the performance by the
simulation time, since this might be the most interest-
ing indicator for many users. For all simulations, we
used a PC running the operating system Windows XP
Professional. All simulations has been carried out ten
times for each model while no other application was
running on the system. A comparison of the average
values of the simulation time for these implementa-
tions can be seen in Fig. 12.

Figure 12: Simulation time of all examples for both
implementations

Hence, the performance analysis on the chosen sim-
ulation system revealed that the modified multibody
library on the basis of the motor algebra shows a per-
formance which is inferior compared to the one of the
Modelica Standard Library. According to the transla-
tion information of Dymola the reason might be that
Dymola was not able to reduce and simplify the sys-
tem equations of the motor implementation as much as
the equations of the Modelica Standard Library. That
seems reasonable due to the broad use of functions
and vectorised quantities within the motor implemen-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 286

tation. Indicated by this insight, further investigations
with different simulation tools seem to be necessary
for the future to get results which are clearer and bet-
ter comparable.

5 Summary and outlook

The paper shows an alternative approach to modelling
spatial multibody systems in Modelica. This approach
is characterized by a clear and concise formulation of
the equations of motion.

To get some experiences in terms of numerical ef-
ficiency and limits of this approach, an extended test
implementation was carried out. Appropriate modifi-
cations of the Modelica Multibody Standard Library
enabled us to compare the Standard Library imple-
mentation and the motor calculus implementation with
regard to simulation time.

The results presented here were determined using
the Modelica simulator Dymola. These results seem to
encourage the idea of testing the motor calculus within
other Modelica simulator tools, too.

References

[1] J. Angeles. Fundamentals of Robotic Me-
chanical Systems.. Second Edition. NewYork,
Springer-Verlag, 2003.

[2] R.S. Ball. A Treatise on the Theory of Skrews.
Cambridge University Press, 1900.

[3] W.K. Clifford. Preliminary sketch of bi-
quaternions. Proc. London Math. Soc., 4:381–
395, 1873.

[4] P. Fritzson. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2003.

[5] C. Heinz. Motorrechnung imX1+3+3. Zeitschrift
für Angewandte Mathematik und Mechanik
(ZAMM), 67(11):537–544, 1987.

[6] R. von Mises. Motorrechnung, ein neues Hilfs-
mittel der Mechanik. Zeitschrift für Angewandte
Mathematik und Mechanik (ZAMM), 4(2):155–
181, 1924.

[7] R. von Mises. Anwendungen der Motorrech-
nung. Zeitschrift für Angewandte Mathematik
und Mechanik (ZAMM), 4(3):193–213, 1924.

[8] http://www.modelica.org/events.
seen on August 10th, 2009.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The
New Modelica MultiBody Library. In 3rd Inter-
national Modelica Conference, Linköping, Swe-
den, November 3–4, 2003, Proc., pages 311–330.
The Modelica Association, 2003.

[10] B. Roth. Screws, motors, and wrenches that can-
not be bought in a hardware store. In M. Brady
and R. Paul (eds.): The First Internal Sympo-
sium on Robotic Research., MIT Press, Cam-
bridge (MA), pp. 679–693,.

[11] K. Sugimoto. Kinematic and Dynamic Analy-
sis of Parallel Manipulators by Means of Motor
Algebra. Journal of mechanisms, transmissions,
and automation in design, vol. 109(1), pp 3–7,
1987.

[12] E. Study. Geometrie von Dynamen. Die Zusam-
mensetzung von Kräften und verwandte Gegen-
stände der Geometrie. Teubner, Leipzig, 1903,

[13] H. Stumpf and J. Badur. On the non-abelian mo-
tor calculus. Zeitschrift für Angewandte Mathe-
matik und Mechanik (ZAMM), 70(12):551–555,
1990.

[14] M.M. Tiller. Introduction to Physical Modeling
with Modelica. Springer, 2001.

[15] T. Zaiczek, O. Enge-Rosenblatt. Towards an
Object-oriented Implementation of VON MISES’
Motor Calculus Using Modelica. In 2nd Inter-
national Workshop on Equation-Based Object-
Oriented Languages and Tools, Paphos, Cyprus,
July 3, 2008, Proc., pages 131–140.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 287

Implementation of the Contensou–Erismann Model of Friction in

Frame of the Hertz Contact Problem on Modelica

Ivan Kosenko Evgeniy Aleksandrov
Russian State University of Tourism and Service, Department of Engineering Mechanics

Glavnaya str. 99, Cherkizovo-1, Moscow reg., 141221, Russia

Abstract

An approximate model to compute resulting wrench
of the dry friction tangent forces in frame of the Hertz
contact problem is built up. An approach under con-
sideration develops in a natural way the contact model
constructed earlier. Generally an analytic computa-
tion of the integrals in the Contensou–Erismann model
leads to the cumbersome calculation, decades of terms,
including rational functions depending in turn on com-
plete elliptic integrals. To implement the elastic bodies
contact interaction computer model fast enough one
builds up an approximate model in the way initially
proposed by Contensou.
To verify the model built results obtained by several
authors were applied. First the Tippe-Top dynamic
model is used as an example under testing. It turned
out the top revolution process is identical to one simu-
lated with use of the set-valued functions approach.
In addition, the ball bearing dynamic model was also
used to verify different approaches to the tangent
forces computational implementation in details. A
model objects corresponding to contacts between balls
and raceways were replaced by ones of a new class de-
veloped here. Then the friction model of the approxi-
mate Contensou type embedded into the whole bearing
dynamic model was thoroughly tested.
Keywords: Hertz contact model; Contensou simplified

model; Contensou–Erismann model; Vil’ke model;

Tippe-Top; ball bearing model

1 Introduction

To make a contact model for the multibody dynamics
more accurate and simultaneosly more efficient using
the Hertz contact problem as a frame one has to de-
velop an approach taking into account nature of the
tangent forces acting along a contact spot area. The
simplest case one could encounter in this way is one
of the dry friction forces distributed over the elliptic

area arising in the Hertz model. It is known as the
Contensou–Erismann friction model [1, 2].
The model assumes the resulting wrench of the dry
friction tangent forces. The wrench consists of the to-
tal friction force and the drilling friction torque. An
approach under consideration continues in a natural
way the contact model development started earlier [3].
The normal contact force distribution is determined by
the Hertz model while the tangent forces on an ele-
mental level satisfy the Amontons–Coulomb law for
dry friction.
The dry friction force and torque are integrated over
the contact elliptic spot thus composing the resulting
wrench. Generally an analytic computation of the in-
tegrals mentioned leads to the cumbersome calcula-
tion including decades of terms depending on rational
functions depending in turn on complete elliptic inte-
grals.
To keep an accuracy and to make the model fast
enough an approach proposed initially by Contensou
[1] is built up. The model under construction is one
derived from the Contensou simplified model in the
following directions: (a) the model is anisotropic: total
friction forces along the contact ellipse axes are differ-
ent; (b) for the translatory and almost translatory rela-
tive motions one uses the Amontons–Coulomb friction
law regularization [4]; (c) the approximate model for
the drilling torque also is under construction.

2 Problem Formulation

The Hertz problem solution [5] to a normal pressure
distributed over the contact area of elliptic shape is de-
fined [6] by the formula

σ(x,y) =
3N

2πab

√

1−
x2

a2
−
y2

b2
,

where N is the total force of normal pressure, a and b
are the contact spot ellipse semi-major and semi-minor

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 288 DOI: 10.3384/ecp09430006

axes respectively, see Figure 1, Pxyz is the contact lo-
cal coordinate frame oriented such that the x-axis is
directed along the ellipse semi-major axis. All three
values: N, a, and b supposed already computed by the
Hertz algorithm [3].

Figure 1: The contact spot area

The body A supposed “below/behind” the picture of
Figure 1 plane while the body B supposed “above/in
front of” it. In addition, all the forces under computa-
tion here supposed to act to the body B from the body
A. Consider a method to compute a wrench consist-
ing of the tangent force F= Fxi+Fyj and the resulting
torque T = Tzk arising due to couple of dry friction
forces distributed over the contact area. This latter one
usually called a drilling friction torque.
According to the dry friction definition the tangent
stress τττ(x,y) at the contact spot any point M(x,y) is
computed by the formula

τττ(x,y) = − fσ(x,y)
vM(x,y)

|vM(x,y)|
, (1)

where f is the dry friction coefficient, vM(x,y) is the
relative slip velocity of the body B with respect to
(w. r. t.) body A at the geometric point M. The right
hand side of Eqn. (1) isn’t regular. Because of that the
set-valued functions calculus is applied frequently to
the problems including dry friction [7]. Let us try to
build up a computational procedures for the dry fric-
tion problems staying in frame of classical calculus
and using the known results [8, 9] on asymptotic close-
ness for an exact and an approximate problems.
Assuming the bodies A and B to be rigid from the kine-
matic viewpoint the body B relative motion, along the
contact spot plane, is an instant planar (the relative ve-
locity normal component supposed to participate only
in the normal force computation), and subsequently
field of velocities over the spot is defined by the known
Euler formula

vM(x,y) = vP+vM/P(x,y) =

vPx−ωzy
vPy+ωzx

0

 , (2)

where vM/P(x,y) = [ωωω,r(x,y)], and r(x,y) = xi+ yj is
the current point M(x,y) radius vector within the con-
tact spot, see Figure 1. The ellipse central point rela-
tive slip velocity vP is represented as follows

vP = v

α
β
0

 = vw, α = cosψ, β = sinψ,

where v is a relative slip velocity value at the point P,
and ψ is the angle between the axis Px and vector vP.
According to the Contensou–Erismann model [1, 2] to
compute the dry friction total force and torque vectors
one has to evaluate integrals over the contact elliptic
area in the following way

F=
∫∫

τττ(x,y)dxdy, T=
∫∫

[r(x,y),τττ(x,y)]dxdy.
(3)

For the further use it is suitable to introduce the dimen-
sionless velocity u = v/aωz of relative slipping at the
point P instead of a dimensioned one.

3 Theoretical Background

It turned out the friction total force and drilling friction
torque components are regular functions of the relative
sliding (dimensionless) velocity u, relative angular ve-
locity supposed fixed parameter here, at a center of the
ellipse such that for the exact force F and torque T we
have

F(u) = F∞
0 +O

(

u−2
)

, T(u) = T∞
1 u

−1+O
(

u−2
)

(4)
as u−→ ∞, and

F(u) = F01u+O
(

u2
)

, T(u) = T0
0+O

(

u2
)

(5)

as u −→ 0. Here F∞
0 , T

∞
1 , F

0
1, T

0
0 are constant vectors

defining the approximate model. The vectors F01, T
0
0

depend on complete elliptic integrals of the first and
the second kind depending in turn on the contact el-
lipse eccentricity in the following way

F01 x = −αAu, F01 y = −βBu, T 00 z = −C

with the constants

A =
3

2

K(e)−E(e)

e2
,

B =
3

2

(

K(e)+
E(e)−K(e)

e2

)

,

C =
3

8
E(e),

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 289

where K(e), E(e) are complete elliptic integrals of the
first and second kind respectively. Remark that really
the values A, B, C are a variable functions of time be-
cause the contact ellipse eccentricity e can vary while
the simulation process.
Note here the dry friction total wrench simplified
model doesn’t require any noticeable computational
resources because complete elliptic integrals men-
tioned are already calculated while computing the total
normal force according to the Hertz model.
As Contensou [1] remarked the main effect in the
Contensou–Erismann dry friction model if the con-
tact area is non-zero besides the drilling friction torque
arises is that the total friction force decreases mono-
tonically to zero as a function of u.
On the other hand one can easily note from (5) that a
steepness of the total friction force change, as a func-
tion of v, grows as aωz −→ 0. In this case either con-
tact spot area decreases to zero or the drilling angu-
lar velocity vanishes. Finally, for the value aωz small
enough and A,B ≥ aωz/δ, where δ is a regulariza-
tion parameter for the case of dry friction, we have
the almost point contact case already implemented ear-
lier [4] as a dry friction model regularization. Thus in
the current simplified Contensou model resulting com-
puter model always uses the “regular” case of the fric-
tion force decreasing, though sometimes steep, to zero.
Taking into account that according to (4) for u large
enough the simplified friction force differs from its
Coulomb’s value by the magnitude of the second order
of smallness and following the Contensou proposal [1]
let us simplify our model such that the friction force
supposed to be of the Amontons–Coulomb type for
u ∈

[

u∗x,y,∞
)

and linear one for u ∈
[

0,u∗x,y
)

. Note,
the friction force has an anisotropy here: constants u∗x
and u∗y along axes Px and Py respectively are in gen-
eral different. Evidently, we can find these values from
equations

Au∗x = 1, Bu∗y = 1.

Now we can represent the Contensou approximate
model for the (dimensionless) functions Fx(u), Fy(u),
Tz(u) as follows

XC(u) = −α
{

Au for u ∈ [0,u∗x) ,
1 for u ∈ [u∗x ,∞) ,

YC(u) = −β
{

Bu for u ∈
[

0,u∗y
)

,

1 for u ∈
[

u∗y ,∞
)

,

TC(u) =

{

−C for u ∈
[

0,u∗z
)

,
T∞
1zu

−1 for u ∈
[

u∗z ,∞
)

,

where u∗z is a sewing point for the horizontal “shelf” of
height C and a branch of the hyperbola decreasing at

Figure 2: x-components of the force vector for ex-
act and approximate models (similar picture for y-
components)

infinity and being defined by the function T∞
z (u). An

equation specifying the value u∗z has the form

C = −
T∞
1z

u∗z
.

Comparison of graphs for the Contensou–Erismann
model functions is represented in Figures 2 and 3.
Functions of the exact model correspond to solid lines,
and ones of the approximate model correspond to the
dotted lines.

Figure 3: The drilling friction torque for exact and ap-
proximate models

If while the simulation process all the values u∗x , u
∗
y ,

u∗z found become less than δ/aωz then we arrive at
the regularized Coulomb model implemented earlier.
Thus the approximate Contensou model implemented
here really is a simplest generalization of the regu-
larized Coulomb one mentioned regularizing it even
more by introducing the parameters u∗x , u

∗
y , u

∗
z enhanc-

ing initial use of the parameter δ. Such an improve-
ment simply is a consequence of the contact spot ex-
istence in the exact model. Thus as a result, with the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 290

exception of the cases of a = 0 and ωz = 0, we can
avoid use the set-valued functions being able to apply
the procedures of classical calculus.
The approximate model under construction here has
several differences from a piece-wise linear approxi-
mation built up in the paper [1]:

(a) the model is anisotropic and is suitable for the
elliptic contact area of any eccentricity;

(b) for the cases of instant translatory and almost in-
stant translatory bodies in the contact relative mo-
tion with the conditions

u∗xaωz < δ, u∗yaωz < δ, u∗zaωz < δ

fulfilled simultaneously we apply the dry friction
regularization proposed in [8] and [11];

(c) the approximate model used also for the drilling
friction torque.

Computations show the force/torque expressions rep-
resented here give an approximation of the Contensou-
–Erismann model more accurate in compare with the
linear-fractional approximation satisfying boundary
conditions at zero and infinity. If we use the Pade ap-
proximations with the polynomials of the second and
third degrees [12] then the resulting accuracy is im-
proved but computations become more significant.
It is known [13] the V. G. Vil’ke formula gives an ap-
proximation for the contact interaction normal elastic
force decent enough in a wide range of eccentricities.
Computer implementation of such a model runs no-
ticeably faster than the implementation of the exact
Hertz model. The main reason for that is a necessity in
the latter case to resolve the transcendental equation

1

2

K(c)

K′(c)
− (1− c) = g (0≤ c< 1,0< g≤ 1) (6)

w. r. t. c = e2 which is the contact spot eccentricity
squared. Here we use the elliptic integral modulus
squared c as an argument of complete elliptic integral
of the first kind, as it has been done in [14].
The V. G. Vil’ke algorithm to compute the normal con-
tact force doesn’t require to know the current value
of c but the Contensou–Erismann anisotropic friction
model does. To keep the gain has been gotten while the
normal force calculation and don’t waste the computer
time to resolve the equation (6) this time to compute
the tangent friction force it turned out to be possible
that the solution mentioned can be reduced to the ex-
plicit linear formula once applied.

After the value c= c∗ needed has been computed then
to find the values A, B, C mentioned above we should
calculate complete elliptic integrals of the first and sec-
ond kind using theta-functions [14]. First of all for any
c∗ ∈ [0,1) one can use the expansion

θ3(q) = 1+2
∞

∑
n=1

qn
2

with fast conversion such that complete elliptic inte-
gral of the first kind can be computed by the formula

K(c) =
π
2

θ23(q),

where nome q is calculated with a very high accuracy
using equations [14, 15]

ε =
1

2
·
1− (1− c)1/4

1+(1− c)1/4
,

q= ε+2ε5+15ε9+150ε13+1707ε17+ . . . ,

and the terms enumerated above are sufficient for the
accuracy level of order not less than one for the value
1/221.
It is convenient for complete elliptic integral of the
second kind to use the formula [16]

E(c) =
2− c

3
K(c)+

π2

K(c)

[

1

12
−2

∞

∑
n=1

q2n

(1−q2n)2

]

.

If the value of c is small then to regularize the expres-
sion

E(c)−K(c)

2c
=
dE

dc

one can use hypergeometric expansions converging
well enough in this case [17].

4 Implementation Specifics

According to experience while developing the models
for elastic contacting of rigid bodies interactions in the
multibody dynamics a flexibility provided by Model-
ica can be used to utilize a wide variety of different
properties concerning a contact of solids. The proper-
ties are mainly of the following categories:

(a) geometric properties for surfaces in vicinity of
the contact spot (gradients of the functions defin-
ing surfaces, their Hesse matrices);

(b) a model to compute the contact area dimensions
and normal elastic force;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 291

Figure 4: The model of mechanical contact by stages of inheritance.

(c) model for the normal viscous force of resistance;

(d) model for the tangent forces along the plane of
the contact area.

A submodel of the geometry properties is to describe
analytically algebraic surfaces of the structure com-
plex enough. To implement the normal force computa-
tion one can choose from at least two approaches: the
Hertz model and its volumetric modification. Force
of viscous resistance also can be modeled in several
different ways: linear, non-linear, etc. In the mod-
els for tangent forces one can adopt either “simplest”
approaches based on the Amontons–Coulomb friction
or more complex ones represented by the Contensou–
Erismann, and other models.
While developing a mechanical contact model archi-
tecture we used the base class Constraint described
earlier [18] as a starting point to construct its inher-
itor ContactConstraintTemplate being simulta-
neously a base class of new family of models to sim-
ulate mechanical contacts. Really this class is a base
template represented as a container having four “sock-
ets” to instantiate there the specific parameter classes
of four types enumerated above, see its visual model
in Figure 4 at a top left corner, and its Modelica code
can be outlined as follows

partial model ContactConstraintTemplate

extends Constraint;

...

replaceable

NormalElasticForce

normalElasticForce;

replaceable

NormalViscousForce

normalViscousForce;

replaceable

TangentForce

tangentForce;

replaceable

SurfacesOfConstraintDifferential

geometry;

...

end ContactConstraintTemplate;

To develop complete model one can move along differ-
ent ways. Class parametrization implemented in Mod-
elica is the facility in line to apply to the problem under
description. In our case we have four class parameters
corresponding to the submodel categories enumerated
above. An example to construct specific contact inter-
action model see in Figure 4. The example includes
two stages of inheritance:

1. to derive a template with the forces models,
namely: the Hertz model for normal force, non-
linear viscous force, the Contensou–Erismann
model for the dry friction forces (to “fill in” three
sockets in the middle of the base template visual

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 292

model, see the derived template visual model at a
central position of the Figure 4);

2. to complete the whole construct one should de-
fine a specific geometry submodel for the sur-
faces in contact (to “seal” the socket for geom-
etry properties, see the complete visual model at
a bottom right corner of the Figure 4).

The Modelica code for the intermediate derived tem-
plate can be represented in the following way

partial model

ContactConstraintTemplate...

extends ContactConstraintTemplate(

redeclare

NormalElacticForceHertzDiff

normalElasticForce,

redeclare

NormalViscousForceNonLinear

normalViscousForce,

redeclare

TangentForceContensou

tangentForce);

...

end

ContactConstraintTemplate...;

On all the stages of inheritance the templates con-
sidered have an internal information interconnections
between the submodels to be instantiated. These in-
terconnections are implemented via the set of equa-
tions hidden behind the visual models and can vary
for different models requiring different variables for
the algorithms to compute normal and tangent forces
of the complete model. So the whole picture remind
us known construct of a card with the sockets and the
interconnection wiring in its internal layers as a base
template, and a chips to be instantiated in the sockets
as a models of four types from above. With one exclu-
sion: we have the derived template playing a role of
additional card with its own additional wiring servic-
ing already instantiated models “covering the card” of
the base template.
One can remark finally an approach under presentation
allows us to create and to change fast enough different
types of an elastic contact models while developing the
multibody dynamics systems simulators.

5 Numeric Experiments

The tangent forces model under presentation here has
been verified by two stages: (a) for the case of cir-
cular contact; (b) for the case of elliptic non-circular
contact. The known Tippe-Top dynamical model was

Figure 5: The Tippe-Top geometric properties

Figure 6: The top axis of symmetry evolution

investigated as an example of the first case. All the
parameters and initial conditions are exactly the same
as in the paper [19] whose authors got these data in
turn from the work [20]. The only difference is that in
our case we considered an unrestricted problem with
the contact ellipse, including depth of penetration and
normal force, being computed dynamically.

The top body, supposed geometrically rigid, com-
posed by two balls, Figure 5, one of larger radius
R= 1.5 ·10−2m, and another, smaller, one of the radius
r = 0.5 · 10−2m. The top mass center location sup-
posed “under” the larger ball geometric center on its
axis of symmetry at a distance of a0 = 3 ·10−3m and at
the distance of a1 = 16 ·10−3m to the smaller ball cen-
ter. The top mass is equal to m = 6 · 10−3kg. The top
body supposed dynamically symmetric, and the cen-
tral principal moments of inertia are the following: an
equatorial moment equals to 8 ·10−7kg ·m2, and a po-
lar one has the value of 7 ·10−7kg ·m2. A material the
top and the horizontal floor the top rolls on are made

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 293

Figure 7: The contact indicators evolution. Some fragments zoomed in and rescaled.

of the wood with Young’s modulus E = 9.1 ·109N/m2.
If we suppose the Poisson ratios as 0.3 then an effec-
tive Young’s modulus has to be E∗ = 5 ·109N/m2 just
as in [19]. The dry friction coefficient supposed to be
equal to the value f = 0.3.
The top center of mass supposed resting at initial in-
stant of motion. Besides the top itself, more accurately
its larger ball, assumed without any initial penetration
with the horizontal surface. The smaller ball is located
on the upper hemisphere of the larger ball, and ini-
tially the top axis of symmetry bends w. r. t. verti-
cal by the angle θ0 = 0.1rad. Initial angular velocity
ω0 = 180s−1 is the same as in [19] and directed along
axis of the top symmetry.
Note that in [19] contact problem is interpreted as
usual in so to speak “restricted” sense: the contact
area supposed constant and predefined corresponding
to the normal force of the static equilibrium. This as-
sumption concerns the contacts for both the balls with
the same contact area radius. Actually, while motion
the normal reaction force, being implemented here by

elastic forces, changes. Then the contact spot changes
also, and so for its radius. Thus the top really under-
goes the vertical microvibrations. And, as one can see
from the above simplified model, the drilling friction
torque also changes causing in general a consequences
for the top motion.
In the model under development here we consider an
unrestricted contact problem that is the normal force is
computed from the Hertz (or V. G. Vil’ke) model with
addition of some nonlinear viscous term. Simultane-
ously the contact area is computed too. Then all the
data have been gotten are used to calculate the tangent
force and the drilling friction torque in frames of the
simplified Contensou model.
Remarkably, a computational experiment showed the
top revolution from “feet”, the larger ball in contact, to
“head”, the smaller ball in contact, scenario obtained
in [19] using another approach to the problem, based
on the set-valued functions calculus, repeated in our
model with a high degree of accuracy. One can get
an access to the paper [19] visiting, for instance, the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 294

Figure 8: Comparison of three models

one of the authors Home Page, see [21]. Graph in
Figure 6 illustrates well the Tippe-Top revolution pro-
cess: similar to [19] it shows the θ(t) angle evolution.
If we compare this plot with one from [19] then soon
the complete identity can be observed. The only dif-
ference is that in Figure 6 one can find additional vi-
brations of small amplitude evidently existing due to
elastic compliance in direction normal to the contact
area. Similar identity show the curves of the contact
indicators for the balls the top composed of and the
horizontal surface, see Figure 7. The indicator for the
pair (larger ball, floor) marked by the solid line while
the (smaller ball, floor) contact indicator pictured as a
dashed curve.

Really an indicators are the distances between an op-
posite points for the surfaces being tracked for contact.
The indicator is strictly positive if contact is absent.
Otherwise it is less than (if the bodies are in a state
of mutual penetration) or equal to (if the bodies touch
one another exactly at one point) zero. Let us describe
the Figure 7 in more details. Initially the top smaller
ball is out of contact, and corresponding indicator is
positive, dashed curve. But other indicator is not equal
to zero. Instead it is negative, see the vertically scaled
subfigure at the upper edge of Figure 7. Here at the
very left side we see that initially indicator set to be of
the zero value. Then the penetration develops and the
whole top sinks into the floor by very small depth un-
til the vertical quasi-equilibrium is reached. After that
we can observe the vertical micro-oscillations develop

into the modulated pulse decreasing afterwards. One
can match the problem parameters such that the pulse
amplitude will grow and the top can start to bounce
over the floor thus distorting all the following dynami-
cal predictions of its revolution. In the upper subfigure
we can observe also the change of the balls at contact,
before the instant of time = 2 seconds. Then for the
case of the smaller ball contacting the floor we observe
the larger depth of penetration. Indeed, in this case we
have a smaller area of the contact spot.

The bottom subfigure reflects the revolution process
inself. Here the whole graph zoomed in vicinity of the
time instant of 1.825 seconds, and we see that the rev-
olution process is implemented by two attempts: two
times the solid humps alternate the dashed ones. Thus
first time the Tippe-Top “head” touches the floor then
it once more is forced to loose a contact temporarily,
and only then the head–floor contact becomes perma-
nent. The right subfigure illustrates the depth of pen-
etration for the larger and smaller balls by the vertical
rescaling over the same interval as for the bottom sub-
figure.

In addition, yet another verification procedure has
been performed, this time using the results of the pa-
per [10] (one can access the paper [10] using the Sci-
enceDirect on-line library [22]). Namely, exact for-
mulae for the friction force and for the drilling fric-
tion torque, case (a), were applied to the top dynamics
computer model implemented on Modelica language
in frame of the unrestricted, in sense mentioned above,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 295

Figure 9: The Tippe-Top 3D-animation

contact model. In the same dynamical frame the sim-
plified Contensou model, case (b), as well as a linear-
fractional Pade approximation for the friction force
and torque, case (c), were also implemented. The re-
sults of the inclination angle evolution are shown in
Figure 8, where the cases (a), (b), and (c) correspond
to the solid, dashed, and dotted curves respectively.
One can see easily the revolution scenarios are mu-
tually closest in cases (a) and (b). The 3D-animation
shot is shown in Figure 9.

Note in addition, one can easily obtain a behavior typi-
cal to the Tippe-Top, revolution to “head”, in frame of
the “regularized” Amontons–Coulomb friction. One
has to understand regularization in a sense proposed
in the works [8, 11] and used in [4] in case of the
point contact. We only have to “bend” graph for the
friction force dependence on the relative slip velocity
in vicinity of zero replacing its discontinuity by the
linear function. The more flat slope of the graph the
sooner one can find out the Tippe-Top revolution ef-
fect. As the simplified Contensou model shows that
just this slope appears in the corresponding graph for
the friction force dependence on the velocity, this time
in frame of the exact Contensou–Erismann model.

The dynamical model of the ball bearing was consid-
ered in a way similar to the paper [3] while the verifica-
tion second stage. This time the contact area is essen-
tially elliptic one. The main goal for the numeric sim-
ulations was to compare two approaches: (a) the stan-
dard Hertz model for the normal force plus the Con-
tensou simplified model for the friction forces; (b) the
simplified model of V. G. Vil’ke for the normal elastic
force plus the Contensou simplified model for the fric-
tion forces. As it was observed in [3] for the case of
the regularized Coulomb friction force here dynamical
models of the cases (a) and (b) differ one from another
in a slightest degree too. Simultaneously, the model
(b) is faster than (a) by 20% meaning the CPU time
needed. To illustrate this in Figure 10 we compare the
cases (a) and (b) for one component of the tangent fric-
tion force at a contact between one of the bearing ball
and its inner raceway. The solid curve corresponds to

the case (a) while the dashed one represents the case
(b). A values of the contact spot eccentricity squared
appeared to be constant equal to 0.687 in the case (a)
and 0.643 in the case (b).

Figure 10: One of the friction force component evolu-
tion. A final stage of the simulation zoomed in.

6 Conclusions

Summarizing the results described above we can re-
mark the following.

• The Tippe-Top “on head” revolution effect is
caused completely by the dry friction force “reg-
ularization” in vicinity of zero value for the ve-
locity of relative slip. Such a regularization takes
place exactly in the Contensou–Erismann model.
Numeric experiments showed if the slope of fric-
tion force graph in vicinity of the zero velocity in
the regularized Coulomb model is steep enough
then the Tippe-Top effect either isn’t observed at
all or arising during short time after a long evolu-
tion then vanishes quickly. And only noticeable
decreasing of the slope mentioned immediately

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 296

causes the top revolution on the “head” with the
subsequent long precession in this position.

The Contensou–Erismann model creates a prop-
erty just as one described above. Note the drilling
friction torque role is reduced to a dissipative ef-
fect with subsequent gradual “fall” of the top ap-
proaching it to the static stable configuration.

• Since complete elliptic integrals used in the Con-
tensou simplified model are already found in
frame of the Hertz algorithm while computing the
normal force then from the computational view-
point application of this model is practically “cost
free”. If, in addition, we will take into account
an effect of the regularization provided by the
Contensou–Erismann model then we arrive at a
unexpected from the first sight result: a numeric
simulation of the Hertz model for the normal
force and the Contensou–Erismann for the tan-
gent force and the drilling friction torque turned
out to be faster than the combination of the Hertz
model and the “simple” Amontons–Coulomb dry
friction. It is evident such a deceleration in lat-
ter case surely concerns the large stiffness of the
problem while the almost rolling mode.

• Though for isotropic case, one of the circu-
lar contact area, the tangent forces average val-
ues for the Amontons–Coulomb and Contensou–
Erismann models differ not so much, however in
anisotropic case the first model becomes inad-
equate while the second one continues to serve
correctly the contacting process simulation. Such
a property has an importance for instance in case
of the ball bearing simulation with the contact ar-
eas of essentially elliptic form.

Regarding the directions of a future work one can
enumerate possible development and testing for dif-
ferent kinds of the contact properties combinations:
normal-elastic-force / normal-viscous-force / tangent-
force+drilling-friction-torque to match various engi-
neering applications. It would be for instance different
types of lubrication, or any new types of the normal
elastic volumetric models etc.

7 Acknowledgement

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, projects 08-01-
00600-a, 08-01-00718-a, 08-08-00553-a.

References

[1] Contensou, P., Couplage entre frottement de gli-
ssement et frottement de pivotement dans la
théorie de la toupie. In: Kreiselprobleme Gyro-
dynamics: IUTAM Symposium Celerina, 1962,
Berlin: Springer, 1963, pp. 201–216.

[2] Erismann, Th., Theorie und Anwendungen des
echten Kugelgetriebes. Z. angew. Math. Phys.,
1954, Vol. 5, No. 5, pp. 355–388.

[3] Kosenko I. I., Alexandrov E. B., Implementa-
tion of the Hertz Contact Model and Its Volumet-
ric Modification on Modelica. In: Bachmann, B.
(Ed.) Proceedings of the 6th International Model-
ica Conference, Bielefeld, Germany, March 3–4,
2008, Bielefeld: The Modelica Association, and
University of Applied Sciences Bielefeld, 2008,
pp. 203–212.

[4] Kossenko, I. I., Implementation of Unilat-
eral Multibody Dynamics on Modelica. In:
Schmitz, G. (Ed.) Proceedings of the 4th Interna-
tional Modelica Conference, Hamburg–Harburg,
Germany, March 7–8, 2005, Hamburg–Harburg:
The Modelica Association, and The Depart-
ment of Thermodynamics, Hamburg University
of Technology, 2005, pp. 13–23.

[5] Hertz, H., Über die Berührung fester elastischer
Körper. J. reine und angewandte Mathematik,
1882, B. 92, S. 156–171.

[6] Landau, L. D. and Lifshitz, E. M., Theory
of Elasticity. 3rd Edition. Landau and Lifshitz
Course of Theoretical Physics. Volume 7. Oxford
– Boston – Johannesburg – Melbourne – New
Delhi – Singapore: Reed Educational and Pro-
fessional Publishing Ltd., 1999.

[7] Leine, R. I. and Nijmeijer, H., Dynamics and Bi-
furcations of Non-Smooth Mechanical Systems.
Berlin – Heidelberg – New York: Springer Ver-
lag, 2004.

[8] Novozhilov, I. V., Conditions of Stagnation in
Systems with the Coulomb Friction. Mechanics
of Solids, 1973, Vol. 8, No. 1, pp. 8–14.

[9] Novozhilov, I. V., Fractional Analysis: Methods
of Motion Decomposition, Boston: Birkhauser,
1997.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 297

[10] Zhuravlev, V. F., The Model of Dry Friction
in the Problem of the Rolling of Rigid Bodies.
J. Appl. Math. Mech., 1998, Vol. 62, No. 5,
pp. 705–710.

[11] Rooney, G. T. and Deravi, P., Coulomb Friction
in Mechanism Sliding Joints. Mechanism and
Machine Theory, 1982, Vol. 17, Iss. 3, pp. 207–
211.

[12] Kireenkov, A. A., Three-Dimensional Model
of Combined Dry Friction and Its Applica-
tion in Non-Holonomic Mechanics. In: van
Campen, D. H., Lazurko, M. D. van den
Oever, W. P. J. M., (Eds.) Proceedings of ENOC-
2005, Fifth EUROMECH Nonlinear Dynam-
ics Conference, Eindhoven, August 7–12, 2005,
Eindhoven, The Netherlands: Eindhoven Univer-
sity of Technology, 2005.

[13] Aleksandrov, E. B., Vil’ke, V. G. Kosenko,
I. I., Hertzian Contact Problem: Numerical Re-
duction and Volumetric Modification. Computa-
tional Mathematics and Mathematical Physics,
2008, Vol. 48, No. 12, pp. 2226–2240.

[14] Whittaker, E. T., Watson, G. N., A Course of
Modern Analysis, Cambridge – NewYork –Mel-
bourne – Madrid – Cape Town: Cambridge Uni-
versity Press, 2002.

[15] Janke, E., Emde, F., Lösch, F., Tafeln Höherer
Funktionen, Stuttgart: B. G. Teubner Verlagsge-
sellschaft, 1960.

[16] Milne-Thomson, L. M., Elliptic Integrals,
Abramowitz, M., Stegun, I. A., (Eds) Hand-
book of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables, New York:
Dover Publications Inc., 1972.

[17] Bateman, H., Erdélyi, A., Higher Transcenden-
tal Functions. Volume 3. New-York – Toronto
– London: Mc Graw-Hill Book Company, Inc.,
1955.

[18] Kosenko, I. I., Loginova, M. S., Obraztsov, Ya. P.
and Stavrovskaya, M. S., Multibody Sys-
tems Dynamics: Modelica Implementation and
Bond Graph Representation. In: Kral, Ch. and
Haumer, A., (Eds.) Proceedings of the 5th Inter-
national Modelica Conference, Vienna, Austria,
September 4–5, 2006, Vienna: TheModelica As-
sociation, and arsenal research, 2006, pp. 213–
223.

[19] Leine, R. I. and Glocker, Ch., A Set-Valued
Force Law for Spatial Coulomb–Contensou Fric-
tion. Europian Journal of Mechanics A/Solids,
2003, Vol. 22, No. 2, pp. 193–216.

[20] Friedl, C., Der Stehaufkreisel. Master’s thesis.
Augsburg: Institut für Physik, Universität Augs-
burg, 1997.

[21] http://www.zfm.ethz.ch/~leine/

publications.htm

[22] http://www.sciencedirect.com/

science/journal/00218928

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 298

Evaluation of Different Compressor Control Concepts
for a Swash Plate Compressor

Norbert Stulgies./ Manuel Gräber./ Wilhelm Tegethoff./ Sven Försterling�
./ Technical University Braunschweig, Institut für Thermodynamik (IfT)

38106 Braunschweig - Germany
� TLK Thermo GmbH, 38106 Braunschweig - Germany

n.stulgies@tu-bs.de

Abstract

Due to the development of high efficiency R744 air
conditioning systems, the main aim of this paper
is the investigation of a control concept for swash
plate compressors.
This paper presents three different control

concepts for a swash plate compressor using a
built-in control valve. Therefore a model for a
one-phase R744 expansion valve was developed
and adapted to detailed measurement data.
To achieve high reliability in the simulation,
the entire R744 refrigerant cycle was validated
using analyses of measurement data from an
IfT test bench. The simulation of the refrig-
eration cycle components was realised using
TIL (TLK-IfT-Library). The main focus was
set as the description of the compressor with
its internal and external mass flow rates. The
internal mass flow, which is directed through the
crankcase, directly affects the crankcase pressure.
It is also called the control mass flow. As a
result of the crankcase pressure an adjustable
mechanism regulates the displacement as shown
in figure 1. The greater the displacement, the
greater is the inclination angle. This is caused
by different load incidence points on the swash
plate e.g. by springs, pistons and pressure states.
A comparison of different control concepts shows
the characteristic and control behaviour of each
of them relating to control time and control mass
flow rate. Whenever a control mass flow occurs, it
implicates throttle losses. The dissipated energy
can be minimised using another control concept.

Keywords: CO2; compressor; control; R744; re-
frigeration; simulation; valve

1 Introduction

In case of different motor speeds, the refrigerant
compressor needs to adjust the displacement in
order to control the cooling capacity. The adjust-
ment is reached by inclining the swash plate by an
angle α as seen in figure 1. The inclination itself
is a function of the balance of forces. Besides the
friction, inertia and spring forces, the pressure dif-
ference between the crankcase and the cylinder ca-
pacity has the greatest influence. Thus the target
is to control the aforementioned pressure differ-
ence by controlling the crankcase pressure. The
control mechanism of a swash plate compressor
separates a part of the cooling mass flow of the re-
frigerant cycle at the discharge chamber and leads
it through a valve to the crankcase. Another valve
seated between the crankcase and suction cham-
ber completes the control path of the compressor.
Depending on the throttle devices used in the two
throttle locations, different control strategies can
be realised. Throttle devices can be either simple
orifices or proportional valves.

2 TIL

TIL is a component model library for ther-
modynamic systems that was developed by the
Institute for Thermodynamics (IfT) and TLK-
Thermo-GmbH, and allows steady-state and tran-
sient simulation of thermodynamic systems. The
library provides miscellaneous models of thermal
and fluid technology components, as well as trans-
port phenomena. Media properties can be in-
cluded by using the TILMedia library or Refprop
media data. The structure of TIL is an indepen-
dent library-modelling concept, which due to its
shallow inheritance structure, permits designers

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 299 DOI: 10.3384/ecp09430035

P
OO'

α

C O''

BDC TDC

DC

SC

crankcase

displ

ϕ

compressor

Figure 1: Swash plate mechanism with driven
shaft, pistons, suction chamber, discharge cham-
ber and displacement

as well as simulation specialists to achieve fast,
suitable models.

3 Cycle Layout

In order to model a cycle, some components used
from TIL, and some were made for the specific
problem. In the following section, the components
are described in more detail. All components can
run in both flow directions. More specific infor-
mation about TIL is in Richter2008 [Ric08]. The
complete cycle is shown in figure 2. The imple-
mented models for the external heat exchangers
use a cross flow scheme. To create a heat ex-
changer having more than one path it is possible to
use the required number of serial connected mod-
els. In the investigated cycle, a gas cooler with two
paths was used. The discretisation level on the
refrigerant side was ten cells per path. The inter-
nal heat exchanger (IHX), was realised by using a
tube in tube construction with discretisation level
10, and connecting the heat port of every cell in
one tube with another heat port from the second
tube in such a manner that a counter flow heat
exchanger is realised. The flow through the ex-
pansion valve can be specified using the Bernoulli
equation. The accumulator offers the possibility
to store refrigerant at different operating points.
The compressor model describes a variable dis-
placement compressor which can be characterised
by an efficiency based approach. The used effi-
ciencies are the volumetric efficiency, isentropic
efficiency and quality grade. The efficiencies are
accessible in a compressor characteristic plot. The

calculation of the displacement is an iterative pro-
cess of pressure states in the crankcase, suction
chamber and discharge chamber. In the model
considered, perturbances are caused by internal
leakage that means the blowing by of gas through
the piston clearance, which shows ordinary values
of 0.0004 in/in of diameter for steel pistons up
to 0.002 in/in of diameter for aluminium pistons
without piston rings [AAD00]. Although these
flows are very small compared with the cooling
mass flow rate, the influence on the control mass
flows is not negligible. A characteristic property
is the non-continuous behaviour of these flows.

Figure 2: Schematic diagram of the Modelica
model of concept A

4 Compressor Submodels

The simulation of the thermodynamical and me-
chanical behaviour of a mobile air conditioning
compressor is computationally very intensive. The
first reason for this is the complicated equations of
motion of the swash plate mechanism. The second
and far more significant reason for this condition
is the media data, which have to be calculated in
every of the several (in this case 7) displacement
chambers with a very small time constant. The
complexness of all is the strong causal dependence
of these two effects. The interdepence of the pis-
tons was in this model neglected. An complete
consideration can be find in [Cav08].To simplify
the model, detailed calculations of the swash plate
mechanism behaviour were done beforehand. The

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 300

analysis of the calculation leads to simple trigono-
metric equations which describe the mechanism of
the compressor. There are four main effects which
have an impact on the mechanism and its moment
balance system. At any time the moment balance
of the swash plate has to be zero.

• Adjusting springs
The moment due to the springs, with one dis-
placement increasing and another decreasing,
is the sum of the spring forces multiplied by
a constant lever. The function has the follow-
ing appearance. Msprings = f(α)

• Deviation moment of the swash plate
The swash plate is fixed to the driving shaft
by a swing bearing which allows inclination
by an angle α. Depending on the inclination
angle, the moment which forces the swash
plate to a position perpendicular to the driv-
ing shaft increases with an increasing speed.
The expression which is described as well in
Valeo [Val] is shown here:

Mdev = mSWP
12

cos(α) sin(α) (3r2
a+3r2

i −h2)

• Piston inertia
The piston inertia contributes a moment to
the swash plate that increases the angle of the
swash plate and hence the displacement of the
compressor. The observation of the moment
caused by a single piston shows a periodic mo-
ment to the swash plate related to one turn.
The moment resulting from all the pistons to-
gether shows an almost constant moment to
the swash plate. The only influencing vari-
ables are the compressor speed and the angle
of the swash plate, so that the moment due to
inertia is a function like this: Mpiston inertia =
f(α(t), α̇(t), α̈(t),ϕ(t), ϕ̇(t), ϕ̈(t)).
Assuming ϕ̈(t) is negligible leads to the fol-
lowing expression where M is a linear function
of the swash plate angle and has a quadratic
dependency on the speed:

Mp inert =
∑
i

mi · ẍ(α(t),ϕ(t)) · ri(ϕ)i

A chosen piston mass of 55g including the
piston slide shoes results in the implemented
expression in Modelica:

Minertia =(c0 α+ c1) n2 +(c2 α+ c3) n +
(c4 α+ c5)
where c0 =−1.01e−9

c1 = 5.68e−11
c2 = 1.01e−17
c3 =−5.32E−1
c4 =−7.67e−15
c5 = 4.76e−16

• Pressure loads
The pressure loads consider all forces or mo-
ments caused by the pressure differencees over
the pistons. These pressure differences are
given by the pressure in the crankcase and
the currently obtaining pressure in the dis-
placement chamber. In this model an expres-
sion was derived, which describes the torque
to the swash plate without calculating the
state variables in the displacement chamber.
The thus found equation depends only on the
quite slowly changing state variables of the
cooling circuit or the much more idle volume
of the crankcase.

Mdp = ((−0.5742 π+0.3449)ps+
(arctan((π+k0)k1)k2 +k3))+
3.82536 (pcrankcase−ps)
where

k0 = 0.0045 α2−0.1372 α−2.2008
k1 = 25
k2 =−0.0195 α2 +0.5915 α+0.606
k3 =−0.0316 α2 +0.9524 α+1.471

(1)

5 Control Concepts
In figure 3, three different control concepts are
shown. Concept A presents the combination of
an orifice at the high pressure side, i.e. between
the discharge chamber and crankcase, and a pro-
portional valve at low pressure side, which is situ-
ated between the crankcase and suction chamber.
Concept B shows the opposite assembly. In the
third example, concept C, the application of two
proportional valves is shown.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 301

4. Control concepts

Concept A Concept B Concept C

orificeorifice

pdpd pdpd
orifice

mleakage
.mleakage

.mleakage
.

crankcasecrankcase crankcase
pcc

orifice

psps ps
ps

orifice

13February 14, 2008 Technical University Braunschweig

SP control valve HP control valve SP-HP control valve

Figure 3: Visualisation of the three control con-
cepts [NS08]

It is quite simple to come to the conclusion, that
concept C has to be the best one. The explanation
for that is that concept A and B have a continu-
ous control mass flow rate of in steady state con-
ditions, whereas concept C shows no control mass
flow rate for this case. To simulate more realistic
conditions, perturbances such as blowing by flows
at the pistons are considered. These are shown in
figure 3 as leakage mass flow rates.

A comparison of the three different control con-
cepts was carried out using an identical maximum
mass flow rate through the control valves. For
concept A and B, simulation results are shown in
figure 4 and figure 5.

February 14, 2008 Technical University Braunschweig34

Concept A

6. Simulation / Results

pd

ps

pc

Figure 4: Filling process (proportional valve is
closed) and flow out with open valve

In figure 6 the sequence flow for the control of
the evaporator air outlet temperature is shown.
The above written equations are all included in the
compressor. More exactly in the adjusting process
of the swash plate.

February 14, 2008 Technical University Braunschweig36

Concept B

6. Simulation / Results

pd

ps

pc

Figure 5: Filling process (proportional valve is
open) and flow out with closed valve

6 Transient Simulation of the
System

In the following, results of the transient simula-
tion of the above mentioned CO2-system are pre-
sented. The transient data of the CO2-cycle was
measured by using the input data of speed and
air velocities from CADC (Commen Artemis Driv-
ing Cycle) [BM07]. The CADC shows much more
transient behaviour than the commen NEDC, and
thus the influence of the different control concepts
show different results in control behaviour.
In figure 7 the simulation results of the evapora-

tor air outlet temperature controlled CAD-Cycle
are shown. The controller of the outlet temper-
ature was realised using an integrator controller.
The necessary control mass flow related to the ef-
fective cooling mass flow shows effective cooling
losses of about 6.1%.
In figure 8 the simulation results of the com-

pressor sensitivity are shown. The proportional
control valve of the compressor (concept B) was
regulated by current. The first simulation shows
the response characteristic of the compressor in
idle mode and a constant control current. The
second simulation shows the influence of a sine-
shaped varying control mass flow. A modification
of the control mass flow shows a gain in influence
of the swash plate angle. The variation of the
mass flow by approximately 1% leads to responses
of the relative displacement up to 10%.

7 Conclusion

In this paper a refrigeration cycle was modeled
and validated by measurement data. The focus

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 302

Figure 6: Sequence flow of an evaporator air outlet
temperature controlled cooling cycle. The control
Valve is an normally opened valve mounted in be-
tween the discharge chamber and the crankcase
(concept B)

was set to the compressor especially to the adjust-
ing mechanism in the crankcase. For that, equa-
tions for the momentum balance of the swash plate
were derived. With this model the presented con-
cepts can be compared related to efficiency and
comfort.

References

[AAD00] Albert A. Domingorena, Dean
H. Rizzo, John H. Roberts Rudy
Stegmann Jaroslav Wurm: The
2000 ASHRAE Handbook, 34 - Com-
pressors, 34.1 – 34.36. ASHRAE, 2000.

[BM07] Boulter, Paul Ian McCrae: As-
sessment and reliability of transport
emission models and inventory systems.
, TRL Limited, October 2007.

[Cav08] Cavalcante, Peterson: Instationäre
Modellierung und Sensitivitätsanalyse
regelbarer CO2-Axialkolbenverdichter. ,
2008.

Figure 7: Simulation results of Concept B. The
green shape shows the speed of the compressor
the blue one the resulting swash plate angle. The
black curve shows the simple controlled tempera-
ture outlet response.

Figure 8: Identifying the swash plate angle re-
sponse due to a control mass flow variation

[NS08] Norbert Stulgies, Axel Müller,
Horst Kappler Wilhelm Tegeth-
off Sven Försterling Jür-
gen Köhler: Proposal for efficient
characterization of (R)744 compressor
control valves. 2008.

[Ric08] Richter, Christoph: Proposal of
New Object-Oriented Equation-Based
Model Libraries for Thermodynamic
Systems. , 2008.

[Val] Valeo: Verfahren zum Regeln
des Kältemittel-Massenstroms eines
Verdichters.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 303

Investigation of Energy Dissipation in an Ejector Refrigeration
Cycle

Christian Tischendorf 1 Denise Janotte 2 Ricardo Fiorenzano 1 Wilhelm Tegethoff 2

1 Technical University Braunschweig, Department of Thermodynamics
2 TLK Thermo GmbH

Hans-Sommer-Straße 5, 38106 Braunschweig Germany
c.tischendorf@tu-bs.de

Abstract

The presented work focuses on the differences in en-
ergy dissipation in each cycle component compared to
the energy dissipation of the whole ejector refrigera-
tion cycle. With help of this analysis, improvement of
energetic efficiency by using an ejector can be set in
relation to the potential improvement in efficiency of
other components such as heat exchangers. Informa-
tion about entropy production associated with energy
dissipation allows for an objective estimation of the
optimization potential of each component within an
ejector refrigeration cycle. In addition, the improve-
ment due to the specific process control of the ejector
cycle compared to the conventional heat pump cycle
can be analyzed. The energetic benefit gained using an
ejector depends on the refrigerant used. The refriger-
ants R134a and R744 (CO2) were compared in regard
to the entropy production of the heat pump system.

In order to simulate an ejector refrigerant cycle and
to evaluate the energy dissipation by means of en-
tropy production, existing models for cycle compo-
nents were modified. Applying the second law of ther-
modynamics, local distribution of entropy production
as well as the overall entropy produced in each com-
ponent was determined. The analysis showed that en-
tropy production is caused by two types of effects. One
part results from real effects such as pressure drop and
heat transfer, the other part is due to the modeling as-
sumptions made. Thus, the investigation of energy dis-
sipation leads to a deeper understanding of the model.

The simulated amount of entropy produced is sum-
marized in a record, so that the results can be read eas-
ily by other programs, e.g. programs that visualize en-
ergy and entropy flows. In the presented investigation
the entropy flow and dissipation effects were analyzed
by means of diagrams, such as Sankey diagrams.

The complete heat pump system has been simulated

using the Modelica library TIL (TLK-IfT-Library) in
order to determine the energy dissipation in each cycle
component. With the modified TIL models, other pro-
cess controls can also be investigated. This approach
offers the opportunity to analyze the energy dissipation
in detail, and differs in that sense from the commonly
used technique of integrated energy balances and COP
determinations.

Keywords: entropy analysis; refrigeration; com-
pression cycle; simulation; CO2; R134a

1 Introduction

The pressure difference between the high and low
pressures in CO2 refrigerant systems is high compared
to other refrigerants, e.g. R134a. Previous investi-
gations by other authors have shown that in a con-
ventional refrigeration cycle, the pressure differences
cause significant throttling losses. Using an expansion
valve results in an isenthalpic throttling process, which
means that the kinetic energy is completely dissipated
and the evaporation enthalpy is reduced compared to
an isentropic process.

Using an ejector is one way to recover part of the
lost kinetic energy and to increase refrigeration capac-
ity. As a result, the energetic efficiency (COP) of the
refrigerant system will be improved. In addition to the
improvement caused by an ejector, the COP can be
raised by optimization of other cycle components. The
key issues are the comparative cost effectiveness of the
modifications, as well as the question of which com-
ponents have the most optimization potential. There-
fore, an analytical technique enabling one to recognize
optimization potential is needed in order to assess the
alternative solutions. The required technique was de-
veloped during the project presented in this work.

One approach to investigate the potential is to ap-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 304 DOI: 10.3384/ecp09430090

ply the second law of thermodynamics to determine
the produced entropy in each refrigeration cycle com-
ponent, so that a basic analysis of the component effi-
ciencies is possible. This approach was introduced in
[Franke04]. In the presented work, the investigation
was carried out using the Modelica library TIL to sim-
ulate the refrigeration cycles. TIL is a component li-
brary for steady-state and transient simulation of fluid
systems such as heat pump, air conditioning, refriger-
ation or cooling systems, developed by TLK-Thermo
GmbH and TU Braunschweig, Institute for Thermo-
dynamics [for a detailed description see [Richter08]].
The advantage of TIL is that it has a very shallow in-
heritance structure, which makes the models easy to
understand and extend. The results of the entropy anal-
ysis were visualized by bar and Sankey charts using
the newly developed software EnergyViewer by TLK-
Thermo GmbH, in order to simplify the interpretation
of the effects.

2 Simulated Refrigeration Cycle

Figure 1: Object diagram of the simulated cycle

In the presented work, an ejector heat pump used
for heating water for domestic use and floor heating
using R744 or R134a as refrigerant was simulated.
The principal functionality of a common ejector
refrigerant cycle is described in the following liter-
ature [Elbel06]. For this investigation, the common
ejector refrigeration cycle was modified. An object
diagram of the modified ejector refrigeration cycle is

shown in figure 1. The cycle consists of the following
components: gas cooler (R744)/ condenser (R134a),
medium pressure evaporator (MP), low pressure
evaporator (LP), valve, separator, compressor and
ejector. In addition, a temperature controller and
a super-heating controller were added in the cycle.
As well, a high pressure controller was added to the
ejector component model. The heat pumps were
simulated at the following conditions.

heating capacity for both operation modes:
5000 W
temperature floor heating water:
30 ◦C to 35 ◦C
temperature domestic hot water:
10 ◦C to 60 ◦C
overall heat transfer capability gas cooler/condenser:
1400 W/K
overall heat transfer capability evaporator LP/MP:
500 W/K
heat exchanger pressure drop R744 refrigerant:
1 bar
heat exchanger pressure drop R134a refrigerant:
0,2 bar
water mass flow rate evaporator
equal for all simulations
water temperature of heat source
10 ◦C
high pressure
set to optimize the conditions in the gas cooler/condenser
(low mean driving temperature difference)

The water that serves as a heat source first flows
through the evaporator MP and afterward through the
evaporator LP. The temperature controller controls the
speed of the compressor, such that the desired output
temperature is achieved by a constant water mass flow
rate through the gas cooler or condenser. The con-
troller integrated in the ejector controls the high pres-
sure level by setting the mass flow rate through the
driving nozzle. The controller determines a high pres-
sure level, which can be adjusted such that optimal
conditions are found in the gas cooler or condenser.
The super-heating controller is used to create optimal
conditions in the evaporator LP.

3 Effects Causing Entropy Produc-
tion in the Cycle Components

An important distinction must be made between en-
tropy production caused by numerical errors based on

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 305

modeling assumptions and the entropy produced due
to real physical effects. The numerical errors depend
on the mathematical model as well as on the degree
of discretization when using a discretized model. The
real physical effects depend on the quality and the con-
struction of the refrigeration cycle components and
can be influenced by the specific process control. In
addition to this, the produced entropy is dependent on
the refrigerant used. In the presented work the follow-
ing entropy producing effects generated in the cycle
components were investigated:

• Heat Exchanger
pressure drop, heat transfer and numerical errors
(modeling)

• Valve
pressure drop (isenthalpic expansion)

• Compressor
efficiency based model

• Ejector
special efficiency based model

• Separator
mixing effects

3.1 Heat Exchanger

Figure 2: Illustration of cell structure of a tube

The heat exchangers used for the investigation con-
sist of tubes connected via heat ports. The number
of tubes and the direction in which the medium flows
through them can vary. The manner of connection
specifies the kind of heat exchanger. For this paper,
counterflow heat exchangers consisting of one liquid
and one refrigerant tube were used. The medium used
in the liquid tube was water. The tubes are divided
into cells, and each tube is comprised of two types of
cells: wall cells and fluid cells (see figure 2). The fluid
cells can be either liquid or refrigerant cells, depend-
ing on the type of medium flowing through them. The
connection of fluid and wall cells via heat ports allows
the exchange of heat between the cells. The temper-
ature of the connected heat ports of two cells are set

equal. The heat transfer inside the cell between the
medium and the heat port is determined by the heat
transfer relation and the heat transfer coefficient. In
the cell model, equations to determine the heat flow
are implemented. A similar modeling of heat trans-
fer and fluid flow is presented in [Patankar80]. The
number of wall and fluid cells in each tube determines
the degree of discretization (finite volume approach).
An introduction to the finite volume approach can be
found in [Baumann06]. In order to model the entropy
production within the heat exchangers, a hierarchical
approach was followed. First the entropy production
due to the aforementioned effects was determined for
each cell of the heat exchanger. The second law of
thermodynamics for a transient system yields:

d(sm)
dt

=
n

∑
i=1

ṁisi + ṠQ + ṠQ
prod + Ṡ∆p

prod + ṠM
prod (1)

With d(sm)
dt being the change of entropy of the cell.

The terms ∑
n
i=1 ṁisi and ṠQ specify the entropy con-

veyed by mass and heat flows. ṠQ
prod , Ṡ∆p

prod , ṠM
prod rep-

resent the entropy production rate due to heat transfer,
pressure drop and modeling respectively. Heat trans-
fer and pressure drop are real effects that cause en-
tropy production, which can be determined by formu-
las presented later. The last production term, however,
is due to the modeling of the cell as a volume with
constant medium properties such as enthalpy or tem-
perature. For a fluid cell this can be illustrated by the
image of an agitator stirring the medium inside the cell
so that it is perfectly mixed. Because of the modeling
assumptions, the enthalpy of the medium inside the
cell matches the enthalpy at the outlet port of the cell.
Likewise, the temperature of the medium inside the
cell matches the temperature at the outlet port of the
cell. If there is a temperature change, this mixing of
the cell content produces entropy. This entropy pro-
duction ṠM

prod is numerical error and differs from ṠMi,T
prod

the entropy production due to mixing of two streams
of ideal gas ṁa and ṁb with temperature Ta and Tb re-
spectively which is presented in [Cerbe07] as follows:

ṠMi,T
prod = ṁacma|tMi

ta ln
TMi

Ta
+ ṁbcmb|tMi

tb ln
TMi

Tb
(2)

with TMi being the mixing temperature and cm the
mean specific heat capacity of stream a or b. Hence
ṠM

prod has to be determined via the second law. Trans-
forming equation 1 and setting dm

dt = ∑
n
i=1 ṁi yields:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 306

ṠM
prod = m

ds
dt
−

n

∑
i=1

ṁi(si− s)− ṠQ− ṠQ
prod− Ṡ∆p

prod (3)

The index i labels the variables of stream i flowing
in or out of the cell. The variables of the medium in-
side the cell do not have index labels. Each fluid cell
has only one inlet ṁin and one outlet stream ṁout . The
modeling assumption yields s = sout so that the equa-
tion can be simplified further.

ṠM
prod = m

ds
dt
− ṁin(sin− s)− ṠQ− ṠQ

prod− Ṡ∆p
prod (4)

Without heat transfer and pressure drop, there can
still be entropy produced by continuously mixing the
fluid inside the cell. In the case that the specific en-
tropy at inlet and inside the cell are not equal, the last
term in the equation does not reduce to zero. This oc-
curs if the temperatures are not equal because the spe-
cific entropy depends on pressure and temperature.

ṠM
prod = m

ds
dt
− ṁin(sin− s) (5)

Each fluid cell emits a heat flow Q̇ at the heat port
with the temperature Thp. This flow conveys entropy
that can be determined by the following equation.

ṠQ =
Q̇

Thp
(6)

Before being emitted, the heat flow is transferred
from the medium inside the cell (temperature T) to the
heat port (temperature Thp). The temperature gradient
between Thp and T is determined by the heat trans-
fer relation and the heat transfer coefficient. In the
cell model, the equations for the heat transfer phe-
nomena are implemented. This heat transfer causes
entropy production, which can be determined accord-
ing to [Bejan88] as follows.

ṠQ
prod =

Q̇
T
− Q̇

Thp
(7)

Pressure drop between the inlet and outlet port also
leads to entropy production. It can be determined as
presented in [Bejan88].

Ṡ∆p
prod = ṁ

∫ in

out

v
T h=const

d p (8)

This formula can be linearized

Ṡ∆p
prod = ṁ

v
T

∆p (9)

∆p represents the pressure drop.

Equation 1 has to be adapted for the determination
of the entropy production inside a wall cell. Since
there is no medium flowing through the wall cell, there
are no terms for entropy transportation via mass flow,
and no pressure drop occurs. The entropy production
due to the modeling of the wall cell can be determined
according to the following equation:

ṠM
prod = m

ds
dt
− ṠQ− ṠQ

prod (10)

Heat can be emitted at each of the heat ports i with
the overall entropy conveyed because of heat flow be-
ing ṠQ = ∑

n
i=1 ṠQ,i. Each of the summands ṠQ,i can be

determined according to equation 6. The heat trans-
fer from the medium inside the cell to one heat port
or vice versa causes entropy production. Each produc-
tion term ṠQ

prod,i can be determined in accordance with
equation 7 and has to be summed in order to deter-
mine the overall entropy production due to heat trans-
fer, ṠQ

prod = ∑
n
i=1 ṠQ

prod,i.
The entropy production resulting from modeling

assumptions ṠM
prod (see equation 10) represents only

small numerical errors. There is no mixing inside the
wall cell and the term ṠM

prod can be neglected.
In order to calculate the entropy production due to
each effect for the whole tube, the results of the en-
tropy production in the cells are summed. The results
of the refrigerant and the liquid tube are then sum-
marized to determine the entropy produced within the
whole heat exchanger.

3.2 Valve

In the valve model (control valve) the refrigerant is
throttled adiabatically. It is assumed that the kinetic
energy of the flowing refrigerant is completely dissi-
pated. Since the valve has been modeled as a compo-
nent without volume, the second law for the valve has
be applied in the steady state form.

n

∑
i=1

ṁisi + ṠT
prod = 0 (11)

As the mass flow rate ṁi and the specific entropy si

at the inlet and outlet ports are known, this equation is
used to determine the overall produced entropy.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 307

ṠT
prod =−

n

∑
i=1

ṁisi (12)

3.3 Compressor

The compressor model is based on an efficiency model
with isentropic, volumetric and effective isentropic ef-
ficiency. Furthermore, a heat flow from the housing
surface to the surroundings is considered, but is set
to zero in the simulation. The main entropy produc-
tion in the compressor is caused by the following loss
mechanisms, which result from the compression pro-
cess of a reciprocating type compressor. These are:
friction losses due to mechanical components such as
pistons and piston rings and swash plate, throttling
losses that take place in the valves, flow channels and
chambers, the heat transfer between the different com-
pressor components, e. g. the suction and discharge
chamber, the leakage losses and losses caused by the
control valve. Since the compressor is modeled as a
volumeless component, the second law for the com-
pressor has to be applied in steady state form:

n

∑
i=1

ṁisi + ṠQ + ṠT
prod = 0 (13)

ṠQ specifies the entropy flow that is discharged with
the heat flow.

3.4 Ejector

When a medium is throttled in a conventional valve,
friction losses occur and the kinetic energy of the
medium is completely dissipated. In an ejector, how-
ever, the kinetic energy of a primary flow at high pres-
sure can be partly used to compress a secondary flow
and thus to diminish the compression work done in the
compressor. Figure 3 illustrates the functionality of an
ejector.

The driving flow exits the driving nozzle with a high
velocity and carries with it a flow from the suction noz-
zle. Since the cross section of the suction nozzle be-
comes progressively narrower, the suction flow is ac-
celerated and the pressure drops. Both the suction and
driving flows exchange momentum, are mixed in the
mixing tube and flow through a diffuser before leaving
the ejector. The pressure inside the diffuser increases
with decreasing velocity.

The ejector is modeled using an analogous model
consisting of several separate components. Because

Figure 3: Exploded view of an ejector

the exchange of momentum is not ideal and entropy
will be produced, the ejector can partly recover the ki-
netic energy. However, the entropy produced has not
been determined in detail for this work. A simplified
approach has been used instead, and the entropy pro-
duction rate for steady state has been determined as the
difference between inlet and outlet entropy flow rates
according to the second law in steady state.

ṠT
prod =−

n

∑
i=1

ṁisi (14)

3.5 Separator

The separator model is similar to the refrigerant cell
model apart from the fact that no heat transfer or pres-
sure loss is considered, and that the refrigerant is not
mixed, but separated into liquid and gaseous phase.
The entropy production rate is determined by the fol-
lowing equation.

ṠT
prod = m

ds
dt
−

n

∑
i=1

ṁisi (15)

As there are no effects producing entropy ṠT
prod is

equal to zero.

3.6 Implementation of Entropy Production
in TIL

In the Modelica library TIL, the specific entropy s is
implemented as a function of p and h. In order to re-
duce the index of the differential algebraic equation
system, the terms in the entropy equation have to be
expressed by means of state variables used for the de-
scription of the system. This implies that the term
ds
dt (derivative of the specific entropy with respect to
time) had to be rewritten in terms of p and h. To
transform the equation Bridgeman tables, which can

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 308

be found in [Bejan88] were used. This made the im-
plementation more numerically effective by not rely-
ing on Dymola for the rearrangement of the equation
system. The discussed mathematical equations to de-
termine the entropy production were implemented in
each model. The collection of the results in the sum-
mary records simplifies the readout by other programs
used to analyze the results.

4 Visually Supported Analysis of
Simulation Results

The simulation results were analyzed with the help of
2d-plots which show the temperature relations, and
Sankey diagrams which show the entropy flow be-
side the production rates. Therefor the entropy flows
at the inlet and outlet port of each component were
determined. The entropy production caused by heat
transfer, pressure drop, numerical errors due to model-
ing and the overall entropy production were calculated
according to the aforementioned equations and illus-
trated by bar charts. The visualized entropy flows were
normalized for each medium such that the flow with
the lowest specific entropy is equal to zero. With the
help of the Sankey diagrams, the entropy shift within
the flows is visualized, and for each medium the rela-
tion of the entropy flows between the components be-
comes clear. Sankey diagrams are a powerful visual-
ization method to analyze all kind of flows. A detailed
discussion of the application of Sankey diagrams can
be found in [Schmidt06].

4.1 Entropy Production in Heat Exchangers

The diagrams in figures 4 and 5 illustrate the tempera-
ture curves in the gas cooler (R744) and the condenser
(R134a) of a steady-state ejector refrigeration cycle for
domestic hot water. It can be clearly seen that the tem-
perature glide in the gas cooler (R744) leads to a lower
mean driving temperature difference in the gas cooler
than in the condenser (R134a). In the evaporators, the
refrigerant is evaporated at a nearly constant temper-
ature and exits the heat exchangers with low super-
heating, which is controlled by the controller. This
results in a lower mean driving temperature difference
and lower entropy production due to heat transfer in
the evaporators. See figure 7 and 9 for entropy pro-
duction in the evaporators in relation to entropy pro-
duction in the gas cooler / condenser. In figure 6 the
profile of entropy production due to different effects
is illustrated for the cells of the gas cooler. The cor-

Figure 4: Temperature profile of refrigerant, liquid and
wall cells inside the condenser (R134a domestic hot
water)

Figure 5: Temperature profile of refrigerant, liquid and
wall cells inside the gas cooler (R744 domestic hot wa-
ter)

Figure 6: Profile of entropy production inside the gas-
cooler (R744 domestic hot water)

responding temperature profile is shown in figure 5.
Wherever high temperature differences occur, the pro-
duced entropy due to heat transfer and mixing (model-
ing assumption) is high. The entropy production rate
due to pressure drop is low in comparison to the pro-
duction rate due to heat transfer and mixing.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 309

Figure 7: Entropy flow and production rate in an R744
heat pump cycle used to heat up hot domestic water.
Entropy production rate due to heat transfer (ṠQ), pres-
sure drop (Ṡ∆p), modeling (ṠM) and total entropy pro-
duction rate (ṠT) for each component are represented
by bar charts. The entropy flow is normalized to the
lowest specific entropy of each medium. Entropy pro-
duction and flows are represented in different scales.

4.2 Comparison R744 ejector cycle for do-
mestic hot water and floor heating

The figures 7 and 8 show the Sankey diagrams of a
steady state R744 ejector refrigeration cycle for do-
mestic hot water and floor heating operation respec-
tively. First, looking at the gas cooler, it is shown that
the entropy production caused by heat transfer in the
case of floor heating operation is higher than in the
case of domestic hot water operation. This is due to the
higher driving temperature difference in the gas cooler
in the floor heating operation. However, the entropy
production caused by mixing (modeling assumption)
in the case of floor heating operation is lower than in
the case of domestic hot water operation, despite the
greater refrigerant and water mass flow rates. The rea-
son for this is the lower temperature gradients between
the inlet and outlet of the refrigerant as well as liquid
tubes. With the heating capacities equal in both the
floor heating and domestic hot water operation modes,
in the floor heating mode, the compressor and the ejec-
tor produce more entropy, although the water mass

flow rate and the refrigerant mass flow rate are greater.
That shows that the R744 ejector refrigeration cycle is
better suited to heat water up to higher temperatures.

4.3 Comparison R744 and R134a Ejector
Cycle for Domestic Hot Water

The Sankey diagrams of a steady state R744 and
R134a ejector refrigeration cycle for domestic hot wa-
ter mode are illustrated in figure 7 and 9. The results
show that entropy production caused by heat transfer
in the condenser (R134a) is significantly higher than
in the gas cooler (R744). This is due to the higher
mean driving temperature difference between the re-
frigerant and the water in the condenser. The temper-
ature curves in the condenser and the gas cooler are
illustrated in figure 4 and 5. Because of the temper-
ature glide in the gas cooler, the mean driving tem-
perature difference is lower. For the same reason, the
entropy production resulting from mixing (modeling
assumption) is also higher in the condenser. In the
R744 refrigeration cycle, production of entropy in the
compressor and ejector is higher, the reason for this
being the different refrigerant properties and process
controls. Because of this, the pressure difference be-
tween the high and low pressure level in the R744 re-
frigeration cycle is higher. An ejector heat pump using
R744 as refrigerant is suited to supply domestic hot
water better than a heat pump using R134a, if partic-
ular attention is directed to the entropy production in
the condenser or gas cooler. In addition, the energy
saving potential with an ejector is higher in an R744
cycle than in an R134a cycle.

5 Conclusions and Outlook

The presented work shows how an analysis of the
dissipation effects in thermodynamic systems can be
done with the help of simulation. For this purpose
the equations are presented which are needed to math-
ematically describe the observed entropy-producing
phenomena. In particular, the entropy production in
the heat exchangers is examined. Entropy production
resulting from heat transfer, pressure drop and numer-
ical error due to modeling are observed. Using the ex-
ample of an ejector heat pump, it is shown how the
resulting simulated entropy production can be visual-
ized and used in the dissipation analysis. The analy-
sis is carried out using bar diagrams, Sankey diagrams
and 2d-plots. Heat pumps using R134a and R744 were
compared for both domestic water heating and floor

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 310

Figure 8: Entropy flow and production rate in an R744
heat pump cycle used to heat water for floor heating.

Figure 9: Entropy flow and production rate in a R134a
heat pump cycle used to heat domestic hot water.

heating. The investigation shows that the heat pump
with R744 is better suited for domestic hot water oper-
ation. It is shown that this analysis method is suitable
for investigation of thermodynamic systems on the ba-
sis of entropy production. In the future, it is planned

to research whether the boundaries of the system can
be altered to produce an even better analysis or not. In
addition, it is planned to carry out a more detailed anal-
ysis of entropy production within the ejector model.

References

[Baumann06] Baumann W., Bunge U., Fredrich O.,
Schatz M., Thiele F. Finite-Volumen-Methode
in der Numerischen Thermofluiddynamik. Tech-
nische Universität Berlin, Institut für Strö-
mungsmechanik und technische Akustik: Vor-
lesungsmanuskript, Berlin, 2006.

[Bejan88] Bejan A. Advanced Engineering Thermo-
dynamics. John Wiley & Sons, New York, 1988.

[Bejan02] Bejan A. Fundamentals of Exergy Analy-
sis, Entropy Generation Minimization, and the
Generation of Flow Architecture. In: Interna-
tional Journal of Energy Research vol.26 no.7
p.545-565, 2002.

[Cerbe07] Cerbe G., Wilhelms, G. Technische Ther-
modynamik, Hanser Verlag, München, 2007.

[Elbel06] Elbel S., Hrnjak P. Development of a Proto-
type Refrigerant Ejector used as Expansion De-
vice in a Transcritical CO2 System,Presentation
VDA Alternative Refrigerant Winter Meeting
Saalfelden, 2006.

[Franke04] Franke U. Thermodynamische Prozess-
analyse: Ursachen und Folgen der Irreversibil-
ität. Shaker, Aachen, 2004.

[Patankar80] Patankar S. Numerical Heat Transfer
and Fluid Flow. Hemisphere Publ. Co, New
York, 1980.

[Richter08] Richter C. Proposal of New Object-
Oriented Equation-Based Model Libraries for
Thermodynamic systems. Braunschweig, Ger-
many: PhD Thesis, Department of Mechanical
Engineerging, Institute of Thermodynamics, TU
Braunschweig, 2008.

[Schmidt06] Schmidt M. Der Einsatz von Sankey-
Diagrammen im Stoffstrommanagement.
Beiträge der Hochschule Pforzheim, Nr. 124,
Pforzheim, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 311

Simulation of an absorption chiller
based on a physical model

Christian Fleßner Stefan Petersen Felix Ziegler
Technische Universität Berlin, Fachgebiet Maschinen- und Energieanlagentechnik,

Marchstr. 18 10587 Berlin

Abstract

Previous works on simulation of air conditioning sys-
tems with absorption chillers in conjunction with de-
tailed experimental analysis have shown a need for a
more detailed and generalized modelling and simula-
tion of heat and mass transfer processes in absorption
chillers. An existing model for absorption is adapted
to be applicable for subcooled or superheated liquids
and for the desorption process. New classes com-
patible with the Modelica_Fluid library (beta 2) for
these sub-processes are developed. A media model for
evaporating aqueous salt solutions based on Model-
ica.Media is developed and implemented accordingly.
Subsequently, simulations of a complete absorption
chiller are conducted and compared with experimental
data. The comparison of simulations under stationary
conditions show a good agreement with experimental
data while the transient behaviour of the plant is not
yet fully implemented in the model.

Keywords: heat and mass transfer; falling film;
aqueous salt solutions; Modelica.Media; Model-
ica_Fluid

1 Introduction

Absorption chillers are an advantageous option
for reduction of primary energy demand for air-
conditioning. The necessary heat can be provided by
solar thermal collectors for example. To increase the
market share of these cooling systems, more efficient
and more compact systems with low driving tempera-
ture requirements are necessary.

Previous works on building system simulations with
absorption chillers [1] have used simple linear mod-
els for absorption chillers based on empirical coeffi-
cients. For newly designed systems or systems yet
to be designed these parameters are often not read-
ily available. Also, the results of a detailed experi-
mental analysis show significant deviations from the

simple assumptions made during design [2]. Physi-
cal simulation enables a more reliable design process
and improvement of absorption chillers with reduced
experimental effort. The models used for the simu-
lation must be as generalized as possible to be able
to vary parameters without the need for preliminary
experiments. To reach this, models based on funda-
mental physical properties are a favourable option. On
the other hand the complexity of the model must not
exceed certain limits to enable the simulation of com-
plete systems within acceptable time limits.

In the current work a thoroughly examined sorption
chiller is modelled to enable an evaluation of model
quality for a complete system. The focus of modelling
is on the absorption and desorption process since these
are critical for overall process efficiency.

The investigated system is a compact absorption
chiller with a nominal refrigerating capacity of 10 kW
and the working pair water/lithium bromide. All heat
exchangers are built as falling film units with the exter-
nal media passing through horizontal tubes in counter-
cross-flow to the internal (process side) falling film,
flowing on the outside of the tubes. Detailed exper-
imental data and the complete specification of this
chiller is presented in [2].

The simulation tool used in this work is Dymola 6.1
with version 2.2.1 of the Modelica standard library and
the beta 2 Version of the Modelica_Fluid library.

2 Model library

A new library for the simulation of absorption chillers
was developed. The library is based on and is com-
patible with the Modelica_Fluid beta 2. It consists
of some modified components of Modelica_Fluid, ex-
tended media models based on Modelica.Media and
newly developed models for absorption and desorption
or evaporation and condensation respectively in falling
film flow as the mostly used unit operation in absorp-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 312 DOI: 10.3384/ecp09430071

tion chillers. The most significant adapted models
were the integration of heat transfer models with vari-
able heat transfer coefficients with the the Distributed-
Pipe model.

Modelling concentrates on the thermodynamic
modelling of heat and mass transfer in falling film
flow. The pressure losses in the steam phase and
the falling film are considered to be negligibly small.
Therefore hydrodynamical aspects generally are con-
sidered on a significantly simplified level.

Some parts of the absorption chiller including the
sumps of the falling film heat exchangers, the pumps
and much of the external piping are not considered in
this model. The neglect of these parts is expected to
lead to inaccuracies of the model’s dynamic behaviour.
Control of the chiller was not considered as well since
the current work is mainly concerned with the mod-
elling and simulation of the internal process.

2.1 Media model

For the Media model a new partial model Partial-
MixtureTwoPhaseMedium was derived from the Mod-
elica.Media partial models PartialTwoPhaseMedium
and PartialMixtureMedium to allow for evaporating
mixtures analogously to the model developed for aque-
ous sodium chloride solution in [3]. The Correlations
for density, specific enthalpy, specific isobaric heat ca-
pacity and specific entropy are taken from [4], while
heat conductance and dynamic viscosity are computed
according to Lee et. al [5]. The final model for
the aqueous lithium bromide solution assumes pure
water in the steam phase since the salt has a negli-
gible vapour pressure within the valid range of the
medium model. This allows to refer to the Model-
ica.Media.Water models for this part. The final model
is not well suited for full two phase flow simulation
since it is explicit in pressure, temperature and mass
fraction which does not allow for a proper descrip-
tion of the two phase dome. For the scope of this
study the possibility of surface evaporation is suffi-
cient as it is reasonable to assume pure vapour with-
out liquid droplets in all units. In the following parts
only the newly developed models are described since
most adaptations of existing models includes only mi-
nor modifications.

2.2 Film model

The model for absorption and desorption is derived
from an existing model [6]. The full derivation of this
model is to be found there. In the current work only the

basic ideas and the main equations can be shown. Both
the original model and the further development shown
here assume that absorption and desorption only take
place during the falling film mode along the horizontal
tube with no mass transfer occurring in the droplet for-
mation and falling droplet modes. Furthermore ideal
mixing during droplet formation is assumed allow-
ing for simple connections between single tubes. The
geometry of the film is simplified to a straight one-
dimensional falling film.

The calculation of heat transfer coefficients in the
model is based on the stagnant film theory of Nußelt
resulting in eq. (1)

α f ilm =
λ

δ
= 3

√
λ 3gρ2

s

3Γ̇η
, (1)

with the mass flow rate per one side tube length Γ̇, the
thermal conductance of the solution λ , the dynamic
viscosity η and the density of the solution ρ .

By means of a coordinate transformation from the
running length z to a running time tr, the mass transfer
can be regarded as instationary diffusion into a semi-
infinite body since the concentration in the bulk phase
is constant along the falling film on each horizontal
pipe. A uniform entrance concentration can be derived
form the assumption of ideal mixing during droplet
formation. This results in eq. (2) to describe the con-
centration profile along the film thickness.

cH2O(y, t)− cH2O(y, t = 0)
cH2O(y = 0, t)− cH2O(y, t = 0)

= erfc
(

y
2
√

Dtr

)
(2)

The average mass transfer coefficient for a single
tube is defined by eq. (3)

β =
mabs

τ̄A(x′LiBr− xLiBr,i)
, (3)

with the overall absorbed mass for a single tube mabs,
the mean time of exposure τ̄ and the mass fractions
x. The local mass flow rate into the film is described
with Fick’s first law. The Introduction of eq. 2) into
Fick’s law along with the assumption that the density
at the interface ρi and the density on entry can both
be approximated with an average density ρ̄ allows the
integration of the mass flow rate over the time of expo-
sure. This leads to the calculation of the mass transfer
coefficient with eq. (4)

β =
2√
π
· ρ̄ ·

√
D
τ̄

. (4)

The original model assumes a stationary tempera-
ture profile and a latent heat that is large compared

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 313

to the sensible heat. Therefore only the heat of ab-
sorption has to be transferred from the interface to the
cooling water which determines the coupling of heat
and mass transfer as given by eq. (5)

mabs

τ̄
∆habs = A ·α f ilm · (Ti−Tw) . (5)

The interface temperature Ti and the wall temperature
Tw are to be assumed as constant. The interface mass
fraction and temperature are connected by the equilib-
rium relation Ti = Tsat (xH2O(y = 0, t), p) with the con-
stant pressure p.

This model is extended to be applicable to sub-
cooled and superheated conditions in the bulk liquid
phase of the film. To reach this the film is divided
into two layers, where the heat transfer from the film
surface to the core of the film is coupled with mass
transfer from or to the vapour phase while the heat
transfer in the inner layer between the film’s core and
the pipe wall is assumed to be independent from mass
transfer on the surface. Heat transport in both layers
is calculated separately according to Nußelt’s theory
and are coupled with an interface temperature between
the layers. As a first approximation this temperature
TS is constantly set to be the mixed cup temperature
T ′′ at the outlet derived from the energy balance. In
this model the the distribution of the film thickness be-
tween the layers is an arbitrary constant that has to be
fitted according to experimental data. A similar as-
sumption was already made by Jeong and Garimella
[7] for a laminar falling film. They assumed a linear
temperature profile with a sharp increase in tempera-
ture because the heat of absorption is released locally
at the surface therefore inducing a steeper gradient. In
contrast to the still greatly simplified model detailed
here they considered a variable depth of the bending
profile. Furthermore they did neither make the sim-
plified assumption of a constant temperature profile
over the complete tube nor did they assume the surface
concentration as constant. This leads to an extremely
complex model requiring a discretisation of a single
tube into 100 elements, making the model unsuitable
for the simulation of a complete chiller. In the current
work the thickness of the outer layer is set to be 10%
of the overall film thickness. Jeong and Garimella [7]
have calculated a similar distribution for a flow angle
of 90◦.

The schematic of a single absorber tube with its con-
centration and temperature profiles is shown in Figure
1 with the sharper increase of temperature towards the
phase interface highlighted. The desorption process is
described in the same way, leading to inverse profiles.

pipe

external
medium

ex
te

rn
al

m

ed
iu

m

film steam

T '
Ṁ '
x ' LiBr

T ' '
Ṁ ' '
x ' ' LiBr

Ṁ abs

T y

xLiBr y

T S

0
y

z

Figure 1: Schematic of a single absorber tube, concen-
tration and temperature profile

The average absorbed or desorbed mass flow rate
for a single tube Ṁabs = mabs/τ̄ is calculated with eq.
(6)

Ṁabs = β ·A ·
(
x′LiBr− xLiBr,Ph

)
. (6)

The heat flow transferred to or from the tube wall
and from there to the cooling water is given by eq. (7)

Q̇cool = A ·α f ilm,inner · (TS−Tw) . (7)

In the model presented here the coupling between
heat and mass transfer is set up slightly different to eq.
(5) since it is assumed that coupling between heat and
mass transfer occurs only in the upper layer which is
directly influenced by the heat of absorption resulting
in eq. (8)

mabs

τ̄
∆habs = α f ilm,upper ·A · (Ti−TS) , (8)

with the relevant heat transfer occurring between the
interface temperature Ti and the Temperature at the
bend of the temperature profile TS.

No mass storage in the liquid phase is assumed.
Therefore the overall mass balance is defined in eq.
(11)

0 = Ṁ′+ Ṁ′′+ Ṁabs . (9)

Accordingly the component mass balance of lithium
bromide is given as eq. (10)

0 = x′LiBr · Ṁ′+ x′′LiBr · Ṁ′′ . (10)

The energy balance eq. (11) is instationary to allow
for heat storage in the balance volume.

dU
dt = hL(T ′,x′) · Ṁ′+hL(T ′′,x′′) · Ṁ′′

+hv,sat(p) · Ṁabs + Q̇cool
(11)

The vapour phase is considered to consist entirely
of saturated pure water steam. Mass transfer resis-
tance in the vapour phase and on the phase boundary

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 314

is neglected. Thermal equilibrium on the interface is
assumed for the liquid phase. The mathematical repre-
sentation of the Generator in the current model is com-
pletely identical to that of the absorber and is therefore
not shown here.

Evaporator and condenser are completely described
with Nußelt’s stagnant film theory. No mass transfer
resistances are accounted for. Equilibrium is assumed
in both the vapour and the liquid phase. The heat trans-
fer and balance equations are identical to absorber and
generator. No composition has to be considered since
pure water is used as cooling agent.

The implementation in Modelica includes partial
models for film heat and mass transfer and final mod-
els based on the equations above. These models are
selectable from separate models for falling film flow
including the balance equations and the coupling be-
tween heat and mass transfer. Flow reversal is imple-
mented for the vapour phase connectors to allow the
usage of the film models for absorption/desorption and
evaporation/condensation respectively.

2.3 System models

The models for the falling film are coupled with the
modified tube models via HeatPort connectors from
Modelica.Thermal as shown in Figure 2. These pipe
segments are then connected with FluidPorts accord-
ing to each units flow path. A more flexible solution
allowing for selection of different flow paths and num-
ber of passes is desirable but is not implemented yet.

Figure 2: Diagramm of AbsorberGeneratorPipe

Each vapour phase is represented by a MixingVol-
ume which is connected to the heat exchangers by Flu-

idPorts. Constant mass flow rates are prescribed for
internal and external circuits. The temperatures of the
external flows are kept constant, while the entry tem-
peratures and concentrations of the internal solution
circuit and the entry temperature of the evaporator cir-
culation are fed back from the respective output val-
ues. The representation of the overall model in Dy-
mola is shown in Figure 3.

Figure 3: Diagramm of complete model

3 Comparison with experimental re-
sults

In most cases the simulation is conducted with con-
stant external conditions. From a cold start the whole
system becomes fully stationary after less than 100 s
simulated time. This relatively fast reaction is reason-
able as some major points of heat and mass storage
in the plant (heat exchanger sumps an external pip-
ing for instance) are not included in the model and
mass storage in the falling film is generally neglected.
Simulations with ideal steps in one of the three exter-
nal temperature levels have been conducted showing
a qualitatively correct response. Figure 4 exemplary
shows the response of the model to an instantaneous
increase in driving temperature with all other external
conditions left constant. The response is qualitatively
plausible with all final values identical to the station-
ary simulations. Due to the reasons mentioned above
the simulated delay is much shorter than the delay ob-
served in the real plant, where [8] reports measured
delays 10 times as high as in the current simulations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 315

0

5

10

-5-5

-10

Q
_f

lo
w

 [k
W

]

Generator

Condenser

Evaporator

Absorber

0 100 20050 150

t [s]

Figure 4: Response of external heat flows to step in
driving temperature (55◦C to 75◦C at 100 s)

The simulation of the complete systems yields sta-
tionary heat fluxes which show a positive deviation
of 5% to 15% from experimental data. The devia-
tion increases with the driving temperature. the results
for nominal operating conditions (external conditions:
75◦C generator inlet, 27◦C cooling water inlet, 18◦C
cold water inlet) are shown in Figure 5. One plausible
reason for this systematic deviation is that incomplete
wetting of the heat exchanger surfaces is not consid-
ered in the model. In [2] an average wetting between
80% and 90% with significant deviations between op-
erating conditions was reported. A rough approxima-
tion where the internal heat exchanger surface was re-
duced by 20%, while the external area was constant,
led to significantly improved results for nominal con-
ditions. The generator shows a larger deviation than
the other units. This indicates that the generalisation of
assumptions concerning heat and mass transfer as well
as wetting for absorber and generator is not fully ad-
equate. Nevertheless, the reults are generally in good
agreemant with the experimental data.

The internal temperatures and concentrations in the
falling film including superheating and subcooling that
were measured in [2] could also be approximated in
the simulation giving further credibility to the assump-
tions made in the model. Figure 6 shows the arithmetic
average of the calculated and measured internal tem-
peratures for better comparison.

4 Conclusion

Overall the accuracy of the stationary simulations with
this simple model which is nonetheless not strongly

6,0

8,0

10,0

12,0

14,0

Q
_
fl

o
w

 [
k
W

]

Experimental

Simulated, 100% wetting

0,0

2,0

4,0

Absorber Generator Evaporator Condenser

Q
_
fl

o
w

 [
k
W

]

Simulated, 80% wetting

Figure 5: Stationary heat flow at nominal conditions

30,0

40,0

50,0

60,0

70,0

80,0

T
_
in

t
[°

C
]

Experimental

Simulated, 100% wetting

0,0

10,0

20,0

30,0

Absorber Generator Evaporator Condenser

Simulated, 80% wetting

Figure 6: Stationary internal temperatures (arithmetic
average of inlet and outlet) at nominal conditions

dependent on empirical fitting parameters is rather
good. The comparison of the simulated results with
experimental data shows good agreement in overall
performance though an evaluation of the accuracy
of the predicted local transfer coefficients has yet to
be done by more detailed experiments. Pending is-
sues include the yet incomplete modelling of the dy-
namic behaviour of the whole system and the long
simulation times required for simulation of a com-
plete chiller. Since the implementation of flow re-
versal and the structure of the media model generate
large amounts of non-linear equations, a single sim-
ulation run over 100 s simulated time with constant
external conditions takes more than an hour of sim-
ulation time. In its current state the model is more
suitable for parameter generation for simpler models
than for system simulation. Therefore further devel-
opment will be conducted including the adaptation of
the library to the Modelica_Fluid 1.0 Library to re-
solve current performance issues. The hydrodynam-
ical modelling also needs some improvement as a sys-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 316

tematic and physically founded consideration of in-
complete wetting seems to be worthwhile for gener-
alisation of the model. Here care has to be taken to
avoid an overly complex model making simulation of
complete chillers unfeasible.

References

[1] Annett Kühn, José Luis Corrales Ciganda, Felix
Ziegler. (2008): Comparison of control strategies
of solar absorption chillers, Proceedings of the
1st International Conference on Solar Heating,
Cooling and Buildings (Eurosun), 7-10 October
2008, Lisbon, Portugal

[2] Annett Kühn, Lukas Enke, Felix Ziegler (2008):
Detailed Analysis of A 10 kW H20/LIBR Ab-
sorption Chiller, International Sorption Heat
Pump Conference 2008, 23-26 September 2008,
Seoul

[3] Katja Poschlad, Manuel A. Pereira Remelhe,
Martin Otter (2006): Modeling of an experimen-
tal Batch Plant with Modelica, Proceedings of
the 5th International Modelica Conference 2006,
Vienna

[4] Günther Feuerecker (1994): Entropieanalyse
für Wärmepumpensysteme: Methoden und
Stoffdaten, Ph.D.-Thesis Technische Universität
München

[5] R.J. Lee, R.M. DiGuilio, S.M. Jeter, A.S. Teja
(1990): Properties of Lithium Bromide-Water
Solutions at High Temperatures and Concentra-
tions - II Density and Viscosity in ASHRAE
Transactions, Paper 3381, RP-527, pp. 709-714
Atlanta: American Society of Heating, Refriger-
ating and Air-Conditioning Engineers

[6] Hein Auracher, Arnold Wohlfeil, Felix Ziegler
(2008): A simple physical model for steam ab-
sorption into a falling film of aqueous lithium
bromide solution on a horizontal tube, Heat and
Mass Transfer 44; 1529-1536

[7] Siyoung Jeong, Srinivas Garimella (2002):
Falling-film and droplet mode heat and mass
transfer in a horizontal tube LiBr/water absorber:
International Journal of Heat and mass Transfer
45; 1445-1458

[8] Paul Kohlenbach (2006): Solar Cooling with ab-
sorption chillers: Control strategies and tran-
sient chiller performance: Ph.D.-Thesis Technis-
che Universität Berlin; DKV-Forschungsbericht
Nr. 74

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 317

Effects of Tool Coupling on Transient Simulation of a Mobile
Air-Conditioning Cycle

Roland Kossel1 Nils Christian Strupp2 Wilhelm Tegethoff1

1TLK-Thermo GmbH
2TU Braunschweig, Institut für Thermodynamik

Hans-Sommer-Str. 5, 38106 Braunschweig
r.kossel@tlk-thermo.de

Abstract

Results of numerical simulations more and more pro-
vide a basis for design decisions in an automotive con-
text. When simulating complex systems, one of two
approaches can be chosen: The modeling in one multi-
domain language like Modelica or the utilization of
different specialized simulation programs.

This paper demonstrates the simulation of the Heat-
ing Ventilation and Air-Conditioning system (HVAC)
of a car. The different components are modeled indi-
vidually and validated with measurement data in sep-
arate test benches. A co-simulation using one Dymola
instance per component model is then created to repre-
sent the whole refrigeration cycle taking into account
the inter-component dependencies.

To evaluate the effects introduced by the tool
coupling, the results are compared to those of a single
Modelica model composed of all component models.

Keywords: tool coupling; co-simulation; refrigeration

1 Introduction

Results of numerical simulations more and more pro-
vide a basis for design decisions in an automotive con-
text. This also applies for the thermodynamic sub-
systems for example the Heating Ventilation and Air-
Conditioning system (HVAC).

This paper discusses dynamic simulations of an au-
tomotive refrigeration cycle with Modelica using the
TIL library and Dymola. A R134a cycle with detailed
components is used. Each component model is vali-
dated separately using measurement data from a broad
range of ambient conditions.

There are two approaches for modeling and simu-
lating complex systems composed of multiple compo-

nents: Use a suitable language to describe the com-
plete system in one model or divide the system into
submodels, then employ different simulation programs
specialized for the respective subproblems and use co-
simulation to create a model of the complete system.

The required level of detail plays an important role
in the decision for either approach. If for example a
simulation of the HVAC unit and the passenger’s com-
partment of a car shall be conducted, the models could
be created using just Modelica. If however the goal of
the whole simulation is an evaluation of the tempera-
ture distribution within the compartment, a 3d simula-
tion tool must be used; because the HVAC unit can be
represented only poorly by 3d tools, a co-simulation
makes sense [5].

Under specific circumstances it is even practical to
create a co-simulation with multiple instances of one
tool. The decision must be made considering two main
points: The simulation speed and the numerical sta-
bility of the simulation. For both points no general
rule can be given to decide in favor or against tool-
coupling. When considering small or numerically sim-
ple models, the simulation time is most likely to in-
crease when splitting them into several parts (see e.g.
[9]). Looking at large or complex models, splitting
these into submodels can greatly enhance the speed.

Especially solving systems of equations with sig-
nificantly different time constants can be greatly im-
proved by decoupling these time constants. While
simulation tools could support this internally by em-
ploying multi-rate solving techniques, co-simulation
enables the user to create a "distributed multi-rate sim-
ulation" using tools without a multi-rate solver.

Considering all points mentioned above it becomes
clear that the model partitioning is an important part
of the model design. Normally aspects like time con-
stants or required computing time have to be inspected.
This step can be omitted for this paper, since each

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 318 DOI: 10.3384/ecp09430064

component shall be simulated separately.

2 Co-simulation

For the tool coupling this paper uses the co-simulation
environment TISC R©. This environment is divided in
two layers: The Control-Layer and the Simulation-
Layer (figure 1). To ensure platform independency,
TCP-sockets are used for communication between all
distributed components.

Sim-Client

Control-Client

Sim-Client Sim-Client Sim-Client

Control-ClientC
on

tro
l-S

er
ve

r
S

im
ul

at
io

n-
S

er
ve

r Modelica CFD Simulink Flowmaster

Simulation-Connection

Control-Connection

TISC-Center

PC 2PC 1

S
im

ul
at

io
n-

La
ye

r
C

on
tro

l-L
ay

er

Figure 1: Layer structure of TISC

The Control-Layer consists of the central Control-
Server and several Control-Clients – one on each com-
puter participating in the simulation. Through the
Control-Server the user can trigger the start of the
simulation. The Control-Server sends the appropriate
commands to the respective Clients using the Control-
Connection. Besides these start commands, also status
messages and stop commands can be sent.

The started model instances connect to the
Simulation-Server through the Simulation-Client,
which has been integrated into each model. The used
integration techniques differs depending on the used
language and tool. In case of Modelica and Simulink
input and output blocks are added to the model, in case
of the 1d tools Flowmaster and Kuli the information is
accessed through interfaces available through COM,
other tools (e.g. CFD) require still other techniques.

To make it more convenient for the user to config-
ure, run and evaluate the simulation, the two Servers
are united in the TISC-Center.

During the simulation, the Simulation-Server’s
tasks are the data transfer between and synchroniza-
tion of the single models. While it is possible to use
sequential (or “explicit”) synchronization, the parallel
(or “implicit”) synchronization (see [11]) is used most
of the time in TISC. As main advantage of this over the
sequential synchronization, the different models are
being calculated in parallel. This benefit is amplified

with an increasing number of coupled models leading
to a major increase of simulation speed for complex
systems.

Client 3

Client 2

Client 1

Simulation Time
t1 t2 t3t0 t4

Figure 2: TISC snychronization scheme

The required time for the co-simulation is heavily
influenced by the exchange rate between the single
models. At synchronization time, every client has to
be stopped, the data transmitted and the solvers reini-
tialized. While the time needed for reinitialization
heavily depends on the employed solver, the other de-
lays are directly proportional to the number of syn-
chronization points. As shown in figure 2, the imple-
mented synchronization allows for different time step
sizes for the simulation clients. Therefore the over-
all simulation speed can be improved by increasing
the exchange rate for complex systems with relatively
large time constants thus reducing the overall number
of synchronization events.

At synchronization time the reinitialization of the
solvers is being hampered by the value patterns of
the variables exchanged through TISC. Since only the
value of the variables can be transferred, the variable
is a discrete one on the receiving side. The higher
the step at synchronization time, the harder it is for
the solver to find a consistent solution for the system
of equations – it is even possible that the solver fails
to find a solution. TISC includes extrapolation and
smoothing possibilities on the receiving side to can-
cel this effect. Figure 3 shows the values of a sine
sent through TISC with a period time of 1s and an ex-
change rate of 0.1s. Cubic polynomials are used to
extrapolate received values to the respective next time
step. By using a 5th degree polynomial to switch be-
tween the polynomial built from the 4 values before
synchronization time and the polynomial built from
the last 4 values including the synchronization time,
the curve is smoothed resulting in the line shown in
figure 3 (“Extrapolated”). The described technique
leads to a function which is two times continuously
differentiable, hereby helping the solving process.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 319

-0,5

0

0,5

1

Sent

Received

Extrapolated

-1

1 1,2 1,4 1,6 1,8 2

Time [s]

Figure 3: Value pattern with and without extrapolation

3 Investigated System

Figure 4 depicts the design of a car’s HVAC unit which
consists of five components: a compressor, a con-
denser, a receiver, an expansion device, an evaporator
and an internal heat exchanger.

Figure 4: HVAC unit of a car

The HVAC unit uses a circulating refrigerant which
enters the compressor and is compressed to a higher
pressure, resulting in a higher temperature as well. Af-
terwards the refrigerant enters the condenser, where it
rejects heat to the environment. In the internal hea-
texchanger the refrigerant is furthermore subcooled
by rejectig heat to the low pressure side. Hereafter
it is expanded to a lower pressure by an expansion
device, e.g. a thermostatic expansion valve. Then
the refrigerant flows through the evaporator where it
is evaporated. During the process of evaporation the
refrigerant absorbs heat from the passenger compart-
ment decreasing its temperature. The absorbed heat
is also called cooling capacity, which is a character-
istic value of the performance of an HVAC unit. Fi-
nally, inside the low pressure side of the internal heat
exchanger, the refrigerant is superheated before reen-
tering the compressor.

3.1 Component modeling

The R134a vapor compression cycle is modeled using
component models from the TIL library. TIL is a com-
ponent model library for thermodynamic systems de-
veloped by the Institute for Thermodynamics (IfT) and
the TLK-Thermo GmbH. It allows for steady-state and
transient simulation of thermodynamic systems.

Heat transfer and pressure drop correlations for
each component model are validated with measure-
ment data from a set of more than 15 different ambient
conditions.

The condenser is a flat-tube heat exchanger with
four refrigerant flow passes. Each of the four passes
is discretized into five control volumes (“cells”) repre-
senting the manifoldness of flat-tubes of the respective
pass, thereby considering different flow cross sectional
areas. Since the receiver is integrated into the conden-
sor, the component is also called “CondReceiver”.

Figure 5: Schematic diagram of CondReceiver

Air-side heat transfer coefficient and pressure drop
are modeled using correlations from literature [10]
capturing influences of geometry as well as ambient
conditions. The refrigerant side heat transfer coeffi-
cient is preestimated using a correlation specific for
condensation in minichannels [2] but is set constant
during the simulation to the preestimated value of α =
4300W/m2K. Wall heat conduction is modeled one-
dimensional and perpendicular to both fluids, where
characteristic lengths are calculated from the geomet-
ric parameters. The integrated receiver is considered
as a separator with a characteristic curve accounting
for changes in outlet vapor fraction at very low and
very high filling levels.

Due to the object oriented approach, the evapora-
tor model is built from the same basic elements as
the condenser – with different geometric parameters.
The evaporator modeled has a two layer design with
three passes per layer. Each of the passes is dis-
cretized into five cells. Condensation and evapora-
tion of moisture are taken into account by means of
an analogy of heat and mass transfer. The heat trans-
fer and pressure drop correlations are developed anal-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 320

ogous to those of the condenser. The refrigerant side
heat transfer coefficient is also set to a preestimated
value (α = 4300W/m2K) during simulation.

The internal heat exchanger is modeled as a tube in
tube heat exchanger, using heat transfer correlations
from [13]. Each tube is represented by five cells.

Figure 6: Schematic drawing of internal heat ex-
changer

The compressor model is mapped using a quasi-
steady state model based on measurement data for full
and partial load as proposed by [3]. Three efficiency
functions are used to characterize the compressor effi-
ciencies, namely volumetric efficiency, effective isen-
tropic efficiency and isentropic compressor efficiency.

The thermostatic expansion valve is modeled us-
ing Bernoulli´s equation for compressible and incom-
pressible flow [4].

3.2 Model validation

Even though data validity is usually not considered
part of model verification and validation, it is ad-
dressed here, as suggested by [12], as measurement
data validation sets the baseline for the achievable
model accuracy. Therefore only a small proportion of
the available measurement data was used for valida-
tion purposes.

Simulations in test bench environments have been
run for all component models. In these test benches,
each component model is provided with mass flow,
specific enthalpy and pressure by boundaries at the in-
let or the outlet. These boundary conditions are ex-
tracted from measurement data for over 15 measure-
ment points. Extreme-condition Tests were run to de-
fine the scope of each component model.

Exemplarily the validation results of the condenser
model are depicted in figure 7 in terms of measured
rejected heat over simulated rejected heat.

The measurement data can be reproduced with a
deviation of ±10% by using empirical, physically
motivated correlations without any correction factors.
These points cover a range of thermal efficiency of
65% to 100%.

H
ea

t F
lo

w
 R

at
e

M
ea

su
rm

en
t D

at
a

Heat Flow Rate Simulated

+10%

-10%

Figure 7: Comparison of measurement data and simu-
lated heat flow rate with validated condenser model

After combining the single models to a closed
model of the refrigeration cycle, p,h-diagrams were
used as further means of validation. Figure 8 depicts
the slight deviations of the simulation results com-
pared to the measurement data stating the validity of
the system model.

Pr
es

su
re

 [b
ar

]

Speci�c Enthalpy [kJ/kg]

closed model

measurement
data

Figure 8: Comparison of measurement data and simu-
lation results of a steady state condition

4 Simulation setup

In order to determine the effects of tool coupling on the
simulation of the closed refrigeration cycle, the single
validated models presented in section 3 are connected
in two different ways:

1. Closed model in Modelica

2. Co-simulation of separate models

When splitting a model into submodels in prepa-
ration of a co-simulation, several possibilities exist.
Various considerations may influence the partitioning.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 321

When different tools are to be employed – e.g. cou-
pling a 3d-model of a heat exchanger with 1d-models
of the remaining components – the cutting points are
obvious. Very detailed component models can be sep-
arated in order to use more processors and memory.
Models with considerably different time constants can
be decoupled creating a sort of distributed multirate
method increasing the overall simulation speed [6, 7].

The system presented in this paper is composed of
detailed models (especially the heat exchangers) with
many interconnections. Since the intention was to
reuse the models of section 3 without modifications,
they were in the first step included in the co-simulation
as independent systems. Since the small time con-
stant of the internal heat exchanger induces a tight
coupling of the two pressure levels, the complete sys-
tem is prone for oscillation of the thermodynamic state
variables. In addition, the complex heat transfer and
pressure drop correlations impede the simulation. In a
second step therefore the internal heat exchanger was
split into two parts in order to get closed models of
the two pressure levels which correspond to one pres-
sure state variable each in TIL [8]. Figure 9 shows the
structure of the closed refrigeration cycle, the colored
areas corresponding to the four coupled models Com-
pressor (green), CondReceiver and high pressure side
of the Internal Heat Exchanger (blue), Valve (brown)
and Evaporator and low pressure side of the Internal
Heat Exchanger (red).

Internal
Heat Exchanger

Evaporator

CondReceiver

Compressor

Valve

dp
dt

dp
dt

Figure 9: Structure of simulated cycle

As figure 10 shows, the internal heat exchanger is
represented by tubes with heat ports. The heat flow
rate is read on the high pressure side and imposed
on the low pressure side. The temperature is treated
the same way in the opposite direction. Resistors are
added to each side to increase the time constant of the
subsystems. Furthermore a capacitor is used to cre-
ate an artificial temperature state. While the effect of
these three elements on the accuracy of the steady-
state simulation result is negligibly small, they allow
for a larger larger exchange rate in the co-simulation.

IH
X

H
ig

h
Pr

es
su

re

IH
X

Lo
w

 P
re

ss
ur

e

R

C

R

T

Q
.

Figure 10: Splitting of Internal Heat Exchanger for co-
simulation

To be able to compare the closed model with the co-
simulation, the same component models with identical
sets of parameters are used. The correlations for heat
transfer and pressure drop are switched from constant
values during initialization to geometrically and phys-
ically based correlations at different instances in time
during the simulation. This procedure has shown to be
necessary for the closed Modelica model to achieve a
robust initialization. Although the co-simulation mod-
els can be started using the complex correlations from
the very beginning, the same settings were used for the
correlations for better comparability of the results.

5 Effects of co-simulation on steady-
state simulation

The main differences for the user are development
time and the time needed for the simulation. In fig-
ure 11 the simulation time for different simulations is
presented. The switching of correlations is deductable
from the pattern of the closed model (green line). The
red and the blue line represent coupled simulations
varying only in the employed solver (the time needed
for the simulation using the dassl solver is about 5800
seconds wall clock time for 60 seconds simulation
time).

Comparing the co-simulation with the closed
model, a gain in speed is achieved during initializa-
tion. As the curves of the coupled simulations high-
light, the co-simulation is able to initialize a lot faster

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 322

Co-Simulation
Radau

Closed
Modelica

Model

Co-Simulation
dassl

1200

1800

600

0 10 20 30 40 50 60
Simulation Time [s]

W
al

l C
lo

ck
 T

im
e

[s
]

Figure 11: Simulation time of different simulations
with constant boundary conditions

– regardless of the employed solver. Experience also
shows that the co-simulation is far less vulnerable to
ill-configured start and initial values. For this reason
the development time needed for reaching a well be-
having simulation is much lower when employing co-
simulation.

As figure 12 highlights, the result of the co-
simulation is consistent with the one from the closed
model. Analogous to section 3.2, the co-simulation of
the refrigeration cycle is considered as validated.

Pr
es

su
re

 [b
ar

]

Speci�c Enthalpy [kJ/kg]

closed model

measurement data

co-simulation

Figure 12: p,h-diagram of a simulated steady state
condition

The data exchange rate not only has effect on the
required simulation time as stated in section 2, it also
heavily influences the robustness of the co-simulation
– the smaller the exchange rate the more robust the

simulation. The drawback of a small exchange rate is
the decrease in simulation speed. Since the numerical
solver has to be stopped at a specific point in time, not
only the time event is generated, the solver also needs
to be reinitialized which requires a significant amount
of time [1]. As figure 11 shows, the chosen solver can
also greatly influence the simulation speed. The size of
the data exchange rate is limited by the time constants
of the system’s components. The simulation shown in
figures 11 and 12 were conducted with an exchange
rate of 0.1 seconds, which roughly equals the lowest
time constant in the system.

6 Effects of co-simulation on tran-
sient simulation

The advantage of the co-simulation reacting friendly
to ill-configured starting conditions can also be ob-
served during transient simulations with highly dy-
namic boundary conditions. As an example a simu-
lation using the NEDC (see figure 13) was conducted.

0

25

50

75

100

125

0 400 800 1200

 V
eh

icl
e

Ve
lo

ci
ty

 [k
m

/h
]

Time [s]

Figure 13: New European Driving Cycle (NEDC)

While the time constants can be easily determined
under constant boundary conditions, close attention
has to be paid in a changing environment. During peri-
ods with highly dynamic boundaries the smallest time
constant was as low as 0.02 seconds. Therefore the
data exchange rate had to be adjusted to these chang-
ing conditions since a slightly too large rate is imme-
diately inducing instabilities.

7 Conclusion and Outlook

Modelica models for the different components of a
car’s HVAC unit have been modeled and validated in
separate test benches. It could be shown, that a closed
model of a refrigeration cycle employing the validated

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 323

components as well as a co-simulation coupling sepa-
rate simulation instances of the same components can
be considered validated.

To reach a robust initialization for the closed model,
heat transfer and pressure correlations were set to start
with constant values, switching to physically moti-
vated equations at different instances in time during
the simulation. Furthermore, adjustments to start and
initial values had to be made. The co-simulation re-
quired no simplified correlations and also initialized
robustly with ill-configured start and initial values.
Therefore the co-simulation can play it’s trump cards
when changing single component models of an exist-
ing system or when building a completely new system
model. In addition, also the simulation of different
constant and dynamic boundary conditions is simpli-
fied. In all cases, the start and initial values hardly
ever need to be changed.

Different techniques can be utilized to further stabi-
lize the solution process during a co-simulation. De-
coupling of tight dependencies was presented by split-
ting the internal heat exchanger thus separating the
two pressure state variables of the refrigeration cy-
cle. Extrapolation and smoothing can be applied to
avoid steps in the course of received values simpli-
fying the reinitialization of the numerical solver. An
investigation targeting the optimal extrapolation order
has not been conducted for this paper but is interesting
for future work since the critical data exchange rate
is smaller at higher orders of extrapolation (see [7]).
Even if not using extrapolation, smoothing the steps
still helps the solver.

Close attention has to be paid to the data exchange
rate within the co-simulation since it must never ex-
ceed the smallest time constant. While this time con-
stant can easily be determined in simulations with con-
stant boundary conditions, it is more difficult but not
less important with dynamic boundaries like driving
cycles. An automatic adjustment of the exchange rate
is subject of future work.

References

[1] M. Arnold, Simulation Algorithms in Vehi-
cle System Dynamics, Martin-Luther-Universität
Halle-Wittenberg, 2004.

[2] T. M. Bandhauer, Measurement and Modeling
of Condensation Heat Transfer Coefficients in
Circular Microchannels, In: Transactions of the
ASME, Vol. 128, 2006.

[3] S. Försterling, Vergleichende Untersuchung von
CO2-Verdichtern in Hinblick auf den Einsatz
in mobilen Anwendungen, TU Braunschweig,
PhD-Thesis, 2004.

[4] D. W. Green, Perry’s chemical engineers’ hand-
book, The McGraw Hill Companies, ISBN 978-
0-07-142294-9, 2007.

[5] R. Kossel et al., Simulation of Complex Systems
using Modelica and Tool Coupling. In: Proceed-
ings of the 5th International Modelica Confer-
ence 2006, Vienna, Austria, Modelica Associa-
tion, 4-5 September 2006.

[6] R. Kossel et al., Einsatz hybrider Simulations-
technik für die Bewertung mobiler Heiz- und
Kühlkonzepte. In: Wärmemanagement des
Kraftfahrzeugs VI, Berlin, Germany, Haus der
Technik, June 2008.

[7] R. Kübler, Modulare Modellierung und Sim-
ulation mechatronischer Systeme, Universität
Stuttgart, PhD-thesis, 2000.

[8] N. Lemke, Untersuchung zweistufiger Flüs-
sigkeitskühler mit dem Kältemittel CO2, TU
Braunschweig, PhD-thesis, 2004.

[9] K. Nyström and P. Fritzson, Parallel Simulation
with Transmission Lines in Modelica. In: Pro-
ceedings of the 5th International Modelica Con-
ference 2006, Vienna, Austria, Modelica Associ-
ation, 4-5 September 2006.

[10] Y.-G. Park et al., Air-Side Heat Transfer and
Friction Correlations for Flat-Tube Louver-Fin
Heat Exchngers, In: Journal of Heat Transfer,
February 2009, vol. 131.

[11] W. Puntigam et al., Transient Co-Simulation of
Comprehensive Vehicle Models by Time De-
pendent Coupling. In: SAE 2006 Transactions
Journal of Passenger Cars: Mechanical Systems,
ISBN 978-0-7680-1838-7, pages 1516 - 1525.

[12] Robert G. Sargent, A tutorial on validation and
verification of simulation models, In: Proceed-
ings of the 1988 Winter Simulation Conference,
San Diego, USA, 12-14 December 1988.

[13] John R. Thome, Engineering Data Book III,
2004.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 324

[14] J. R. Thome, Heat transfer model for evapora-
tion in microchennels Part 1: presentation of
the model, In: International Journal of Heat and
Transfer, March 2004, vol. 47, pp. 3375-3385.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 325

Dynamic modelling of the heat transfer into the cooling screen
of the SFGT-Gasifier

Julia Kittel1 Frank Hannemann2 Friedemann Mehlhose2 Sindy Heil1 Bernd Meyer1

1Institut of Energy Process Engineering and Chemical Engineering

TU Bergakademie Freiberg
09596 Freiberg

2Siemens Fuel Gasification Technologie GmbH & Co.KG

Halsbrückerstraße 34
09599 Freiberg

Julia.Kittel@iec.tu-freiberg.de

Abstract

The paper deals with the transient modelling of the
heat flux into the cooling screen of the SFGT-
Gasifier. Therefore the modelling assumptions and
the implementation in Modelica/Dymola were de-
scribed.
Keywords: SFGT-Gasifier, heat transfer, slag layer
modelling, cooling screen

1 Introduction

The SFGT-Gasifier is an entrained flow gasifier.
Coal consisting of fixed carbon, volatiles, ash and
water is converted at high pressure (about 40 bars)
and high temperature (1400-1700 °C) conditions and
by addition of oxygen into a synthesis gas (syngas)
composed primarily of carbon monoxide (CO) and
hydrogen (H2).

An advantage of the SFGT-Gasifier is the utili-
zation of a cooling screen instead of refractory lining
allowing a fast start-up-process. The cooling screen
is composed of a castables layer and a helical tube
with water as cooling medium (Figure 1).

An entrained flow gasifier is operated at high
temperatures well above the ash melting temperature
(T > 1300 °C). The molten ash (called slag) accumu-
lates on the internal walls of the reaction chamber
due to drag forces. And hence, a liquid slag layer is
formed. Between molten slag and cold castables a

layer of solidified slag appears. The thickness of the
slag layer depends on the process conditions.

Figure 1: Schematic illustration of the reaction cham-
ber of the SFGT-Gasifier and slag deposit

Hence any dynamical change of heat flux indi-

cates variation in gasifier performance and can be
used for better operational control. For this reason it
is of great interest to simulate the slag layer forma-
tion since the slag layer is the limiting factor for the
heat flux, due to the small thermal conductivity of
the slag.

castables

solid slag

liquid slag

helical tube

raw
gas

slag slag

coal
oxygen

inert gas

ash particles

heat flux

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 326 DOI: 10.3384/ecp09430011

2 Gasification fundamentals

2.1 Gasification in general

The gasification process is of great importance for
the power and basic chemical industry as it coverts
any carbon-containing material into a syngas com-
posed primarily of carbon monoxide and hydrogen.
This syngas can be used as a fuel in a combined cy-
cle to generate electricity (Integrated Gasification
Combined Cycle). But it can also be used as a feed-
stock for a large number of syntheses in the chemical
industry, gaining products like methanol, methane,
ammonia or hydrocarbons (Fischer Tropsch Synthe-
sis).

Gasification means the thermo-chemical conver-

sion of fuels with one or more reactants to a combus-
tible gas, which is desirably rich of components CO,
H2 and methane (CH4). The most proceeded reac-
tions are the partial oxidations, which take place with
oxygen in free (molecular) or bounded form (steam
(H2O), carbon monoxide (CO2)). These partial oxida-
tions are interfered in dependence on the process and
the process parameters with pyrolysis or devolatiliza-
tion and hydrogenation processes [1].

The gasification process can be classified into dif-
ferent types according to the heat supply (autother-
mic, allothermic or hydrogenating gasification), the
gas-solid-contacting (fixed/moving bed, fluidized
bed or entrained flow gasification) or concerning the
process temperature (above or below the ash melting
point).

In the gasification process a large number of reac-
tions take place. Principle chemical reactions are
those involving carbon (C), carbon monoxide, car-
bon dioxide, hydrogen, water (or steam) and meth-
ane [2]:

Combustion reactions:

C + 0.5 O CO -111 MJ/kmol
CO + 0.5 O CO -283 MJ/kmol
H + 0.5 O H O -242 MJ/kmol

→
→
→

2

2 2

2 2 2

,

Boudouard reaction:

C + CO 2 CO +172 MJ/kmol↔2 ,

Water gas reaction:
C + H O CO + H +131 MJ/kmol↔2 2 ,

Hydrogenation reaction:
C + 2 H CH -75 MJ/kmol↔2 4 ,

CO Shift reaction:
CO + H O CO + H -41 MJ/kmol↔2 2 2 ,

Steam reforming reaction
CH + H O CO + 3 H +206 MJ/kmol↔4 2 2 .

Most fuels contain additional components beside

carbon, hydrogen and oxygen, e.g. sulfur, nitrogen or
minerals. Sulphur in the fuel is converted into H2S
and COS and the nitrogen into molecular nitrogen,
NH3 or HCN.

2.2 SFGT-Gasifier

The SFGT-Gasifier is a top fired, dry feed, auto-
thermic, oxygen blown, entrained flow gasifier with
temperatures in the gasification section well above
the ash melting point. The slag and the hot gasifica-
tion gas leave the gasification section together. After
gasification section the hot gas is cooled down in the
quench by injection of cold water.

Figure 2 shows the schematic design of the
SFGT-Gasifier.

Figure 2: Schematic design of the SFGT-Gasifier

3 Theoretical background

3.1 Equilibrium calculation for the gasification
process

For an entrained flow gasifier it can be assumed that
the raw gas leaving the reaction chamber is in
chemical equilibrium due to high temperatures.

There are two general alternatives to calculate a
chemical equilibrium: equilibrium due to reaction
equilibria or equilibrium due to minimization of the
Gibbs free energy.

water
saturated
raw gas

quench
water

water
overflow

granulated slag

inlet
streams

water
saturated
raw gas

quench
water

water
overflow

granulated slag

inlet
streams

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 327

Here the minimization of the Gibbs free energy
was adopted:

{ }() min!, ,
SN

j j j
j

G n n T p constμ
=

= ⋅ = =∑
1

 (1)

where G is the Gibbs free energy, jμ is the
chemical potential of chemical substance j, nj is the
mol quantity of chemical substance j and NS is the
number of chemical substances.

Under the side conditions:

, ,...,
SN

ij j i E
j

a n b i N
=

⋅ = =∑
1

1 (2)

where bi is the quantity of chemical element i,
{aij} is the elemental matrix and NE is the number of
chemical elements.

For the modelling of the heat flux through the
cooling screen of the SFGT-Gasifier only the typical
chemical gasification substances CO, CO2, CH4, H2,
H2O, H2S, N2, O2 and fixed carbon have to be con-
sidered for the calculation of the chemical equilib-
rium.

The constrained optimization problem can be
solved through conversion in an unconstrained
minimization problem by adoption of Lagrange mul-
tipliers { }λi [3]:

{ } { }()
1 1 1

min!

S SEN NN

j k j j i i ij j
j i j

L n , n b a nλ μ λ
= = =

⎛ ⎞
= ⋅ + − ⋅⎜ ⎟

⎝ ⎠
=

∑ ∑ ∑ (3)

This can be transferred in a set of ()S EN N+
nonlinear equations:

1

0 1

0 1

E

S

N

j ij i S
i ij

N

i ij j E
ji

L a j ,...,N
n

L b a n i ,...,N

μ λ

λ

=

=

∂
= = + ⋅ =

∂

∂
= = − ⋅ =

∂

∑

∑
 (4)

Nonlinear equation system (4) can be solved e.g.
by application of the Newton algorithm.

The above introduced equations are only valid
for constant temperature and pressure. But the equi-
librium temperature of the gasification gas is un-
known. Therefore the output temperature of the gasi-
fication gas is iteratively calculated by solving the
energy balance equation:

in ,k u ,k k ,in out , j u , j j ,out
k j

m ash,in

H H m H H m

h m

+ ⋅ = + ⋅

+Δ ⋅

∑ ∑
 (5)

where k belongs to coal, gasification agent and addi-
tional input gases; j belongs to gasification gas,
ash/slag and remaining fixed carbon. Furthermore Hu
represents the lower heating value, inH the entering
enthalpy flow, and outH the outgoing enthalpy flow.

mhΔ is the melting enthalpy of the coal ash and

,ash inm the incoming coal ash mass flow rate.

3.2 Heat transfer

The heat transfer from the hot, particle loaded gasifi-
cation gas to the slag layer is due to radiation and
convection, whereupon the convective heat transfer
can be neglected [4].

For calculation of radiative heat transfer the cou-
pled gas and particle radiation has to be considered.
Thereby CO, CO2, CH4 and H2O are radiation ab-
sorbing gas components. Due to the fact that there is
only less material about the calculation of the emis-
sion coefficients for CO under high pressure, CO is
handled as CO2 in the equations as Fleischer has
done [5].

For the hot gasification process the radiation due
to increased particle loading has to be regarded.
Then the heat flux radQ owing to the coupled gas-
particle radiation can be defined as [6]:

()rad G P G G P G S

S

G P S G P S

Q A T T+ + →

+ +

= ⋅σ ⋅β ⋅ ε ⋅ − α ⋅

ε
β =

α + ε − α ⋅ε

4 4

, (6)

where A is the heat transfer area, σ is the Boltz-
mann constant, TG is the gas temperature, G ST → is the
surface temperature of the liquid slag layer, Sε is the
emission coefficient of the slag, and G P G P+ +ε α are
the emission and the absorption coefficient of the
particle loaded gas, respectively. Modeling equations
and parametric tables for and G P G P+ +ε α can be
found in VDI Wärmeatlas [6].

For the emission coefficient of slag the fixed
value of 0.83Sε = is assumed [7].

3.3 Helical tube

For calculation the heat flow due to water side con-
vection the fluid flow conditions have to be known.
With the Nusselt number Nu the heat transfer coeffi-
cient α can be calculated:

0Nu dα
λ

= ⋅ (7)

where d0 is the internal diameter of the pipe and
λ is the thermal conductivity of the fluid.

Literature provides different equations for calcu-
lation of Nusselt numbers in helical tubes. An over-
view about some of them can be found in Kumar et
al [8].

The following explanations refer to VDI Wär-
meatlas [6].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 328

h

2 Wr⋅
02 r⋅

Figure 3: Helical tube

Figure 3 shows schematically a helical tube. The
critical Reynolds number Recrit to define the flow
condition is defined as:

0.45
0Re 2300 1 8.6crit

d
D

⎡ ⎤⎛ ⎞= ⋅ + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (8)

D is the middle curve diameter of the helical
tube.

For laminar flow conditions ()Re Recrit≤ the
Nusselt number is calculated as:

0.14

0.9
1/30

0.194
0

PrNu
Pr

where:

3.66 0.08 1 0.8 Re Pr

0.5 0.2903

l
W

md
D

dm
D

β

β

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟= + ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

 (9)

For turbulent flow conditions ()4Re 2.2 10≥ ⋅ the

Nusselt Number is defined as:

()
0.14

2/3

0.5

0.25

0.125 Re Pr PrNu
Pr1 12.7 0.125 Pr 1

0.3164 0.03
Re

t
W

d
D

ξ
ξ

ξ

⎛ ⎞⋅ ⋅ ⋅
= ⋅ ⎜ ⎟

+ ⋅ ⋅ ⋅ − ⎝ ⎠

⎛ ⎞= + ⋅ ⎜ ⎟
⎝ ⎠

 (10)

And for the transition zone ()4Re Re 2.2 10crit < < ⋅ :

() () ()4

4

4

Nu Nu Re 1 Nu Re 2.2 10

2.2 10 Re
2.2 10 Re

l crit t

crit

η η

η

= ⋅ + − = ⋅

⋅ −
=

⋅ −

(11)

3.4 Slag properties

Coal slag is a multi-phase system. The main compo-
nents are SiO2, CaO, MgO, Fe2O3 and Al2O3.

To implement a slag building model the physical
properties of the slag such as thermal conductivity or
viscosity must be known. Most of the physical prop-
erties are dependent on temperature and composition
of the coal ash.

3.4.1 Slag Viscosity
There are a lot of empirical viscosity models obtain-
able from literature. A summary of these models can
be found in Vargas et al [9]. At this point only the
Kalmanovitch-Frank Model shall be shortly intro-
duced, because this model reflects the viscosity of
coal slags with sufficient accuracy [9][10].
The Kalmanovitch-Frank Model is based on the
Weymann-Correlation:
log log loga T b / Tη = + + (12)

For calculation of the parameters a and b slag
components were classified into glass builder (xg),
glass modifier (xm) and amphoterics (xa):

()

2 2 5

2 2

2 2 2

2 3 2 3 2 3

SiO P O

FeO CaO MgO Na O K O

MnO NiO TiO ZrO CaF

Al O Fe O B O

+

+ + + +

 + + +2 + +3

+ +

g

m

a

x

x

x

= ζ ζ

= ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= ζ ζ ζ

where iζ is the mass fraction of component i.

With these mass fractions the parameters a and b
can be computed as:

()2 2 2

3 2 3
0 1 SiO 2 3SiO SiO

10b b b b b= ⋅ + ⋅ζ + ⋅ζ + ⋅ζ

()3exp 0,2812 10 14,1305a b−= − ⋅ ⋅ −

With:
2

0
2

1
2

2
2

3

13.8 39.9355 44.049

30.481 117.1505 129.9978

40.9429 234.0486 300.04

60.7619 153.9276 211.1616

b

b

b

b

= + ⋅α − ⋅α

= − ⋅α + ⋅α

= − + ⋅α − ⋅α

= − ⋅α + ⋅α

m

m a

x
x x

α =
+

3.4.2 Thermal conductivity
The thermal conductivity of slag is one of the physi-
cal properties with the largest influence on the heat
flow rate through the slag layer [11]. Literature
shows only some mathematical models available for
the calculation of the thermal conductivity.

Here the following mathematical model which
was also used by Seggiani [12] was implemented:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 329

7 2

3

with:
4.5 10 m /s
1100 J/(m K)

2500 kg/m

S p

p

c

c

−

λ = α ⋅ ⋅ρ

α = ⋅
=

ρ =

 (13)

4 Implementation of the Model in
Modelica/Dymola

4.1 Model development

As base for the modelling of heat flux through the
cooling-screen of the SFGT-Gasifier the Modelica
Fluid 1.0 Library connectors were used. The compo-
nents for modelling a gasifier do not exist in a Mode-
lica library. This extension was developed.

Figure 4: Implementation of the SFGT-Gasifier model
in Modelica/Dymola

The gasification section including the cooling

screen was modelled by division into several zones
(Figure 4). In the first zone the thermo-chemical
equilibrium is calculated by minimization of Gibbs
free energy. Therefore, a Dynamic Link Library
(DLL) was implemented in C and was inserted into
the Modelica model as an external function.

In the following zones slag layer thickness and
heat transfer from the hot raw gas to the cooling wa-
ter (heat flux zones) are calculated. The number of
heat flux zones depends on the size of the gasifier.

Furthermore, two system components have to be
included in the simulation model. The system com-
ponent “slag” comprises the composition of slag and
coal in order to calculate the slag properties. The

“slag” component provides also the opportunity to
include experimentally determined correlations for
slag properties.

In the component “reactor” the dimensions of the
gasifier like diameters of pipes and the properties of
wall materials are configured.

Each heat flux zone is built up of 3 sections
(Figure 5): the gas compartment, the solid materials
(liquid and solid slag layer, castables layer and heli-
cal tube material) and the cooling water. Between
these sections occur heat and mass transfer as shown
in Figure 6. For each section the energy and mass
conservation equations are solved, the momentum
conservation equations are neglected.

Figure 5: Implementation of one heat flux zone in Mo-
delica/Dymola

It has to be noted that the composition of the gas

leaving the last heat flux zone does not belong ex-
actly to the equilibrium composition at the outlet
temperature. But the differences in the equilibrium
composition for the equilibrium state with and with-
out heat loss, respectively, are only small due to the
high temperatures.

4.2 Gas compartment

The gas compartment is assumed as a continuously
stirred-tank reactor. The following mass balances are
regarded:

,
, , , ,

d
d

G i
G in i G out i

m
m m

t
= + (14)

,
, , , , , ,

d
d

S i
S in i S out i S wall i

m
m m m

t
= + + = 0 (15)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 330

,S inH ,G inH

,S outH ,G outH,W inH

,W outH

,W inm

,W outm ,S inm ,G inm

,G outm,S outm

,S wallH

,S wallm

radQ

convQ

condQcondQconvQ

, ,S wall inH , ,S wall inm

, ,S wall outH , ,S wall outm

,

G

G

G i

m
T
m

S

S

l

m
T
δ
δ

CTHTTW

W

m
T

Figure 6: Heat and mass flow for one heat flux zone
where mG,i is the mass of gasification gas, mS,i is

the mass of slag, , , , , and G in i G out im m are the incoming
and leaving gas mass flow rate and , , , , and S in i S out im m
are the incoming and leaving slag mass flow rate.

Equation (15) means no slag storage in the gas
compartment. The fraction of incoming slag mass
flow rate accumulating at liquid slag layer , ,S wall im
can be specified by the user.

For the energy balance of the gas compartment in
addition to the in- and out-flowing streams the gas
radiation heat flow ,G S iQ → has to be considered:

,
, , , , , ,

, , , , ,

d
d

G i
S in i S out i S wall i

G in i G out i G S i

U
H H H

t

H H Q →

= + +

+ + +

 (16)

For the calculation of specific enthalpy for the
slag mass flow rate accumulating at liquid slag layer
the gas temperature is assumed.

4.3 Solid materials

4.3.1 Slag Layer
For the implementation of the slag layer modelling,
assumptions of the slag building model by Reid and
Cohen [12] were used:
(1) The transition temperature between the solid

and the liquid slag layer is the temperature of
critical viscosity.

(2) The flow of liquid slag is of Newtonian type
and the flow at temperatures below TCV is neg-
ligible.

(3) The shear stress between gas and slag layer is
negligible.

(4) The temperature profile across the slag layer is
linear.

(5) The heat transfer occurs perpendicularly to the
surface.

(6) The model is written in linear coordinates,
owning to a large difference between slag de-
posit thickness and gasifier radius.

(7) The density, specific heat and thermal conduc-
tivity of slag are independent on temperature.

Mass balance for the slag:

,
, , , , , ,

d
d

S i
S in i S out i S wall i

m
m m m

t
= + + (17)

where mS,i is the slag mass, , ,S in im is the incoming
slag mass flow rate, , ,S out im is the discharging slag
mass flow rate and , ,S wall im is the mass flow rate im-
pacting on the liquid slag layer.

The discharging mass flow rate is calculated due
to the assumption that the slag can be considered as a
Newtonian fluid. Then the weight Fw equals the fric-
tion force Ff in steady state:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 331

()

Hence:
d d
dx d

f w

y y
f

w l

F F

u u
F A b h

x
F m g x b h g

=

= η⋅ ⋅ = ⋅ ⋅η⋅

= ⋅ = δ − ⋅ ⋅ ⋅ρ ⋅

 (18)

where η is the viscosity, A is the area, b is the
length of the slag layer, h is the height of the slag
layer, uy is the velocity in vertical direction, lδ is the
thickness of the liquid slag layer, m the mass of the
slag, ρ the density of the slag and x the horizontal
position.

Hence, the change in velocity at each horizontal
location x can be defined as:

()
()()

d
d

y lu x g
x T x

δ − ⋅ρ ⋅
=

η
.

By integration of this equation under the bound-
ary condition that the velocity at the boundary layer
between liquid and solid slag layer equals zero the
equation for velocity results to:

()
()()

2

, 2
S

y l i
g xu x x

T x
⎛ ⎞ρ ⋅

= ⋅ δ ⋅ −⎜ ⎟η ⎝ ⎠
. (19)

So the discharging slag mass flow rate can be
calculated as:

()
,

, ,
0

d
l i

S out i S i y
x

m b u x x
δ

=

= ρ ⋅ ⋅ ∫ . (20)

The thickness of the liquid slag layer is esti-
mated under the assumption of linear temperature
distribution as:

,
,

, ,

0.5 G S i crit
l i i

G S i S i

T T
T T

→

→

−
δ = ⋅ ⋅ δ

−
. (21)

Where ,G S iT → is the surface temperature of the
liquid slag layer, TS,i is the middle slag layer tem-
perature, Tcrit is the temperature of critical viscosity
and iδ is the thickness of the slag layer.

Energy conservation equation for the slag

,
, , , , , ,

d
d

S i
S in i S out i S wall i G S S C

U
H H H Q Q

t → →= + + + +

where for the temperature of discharging slag
, ,S out iT the middle temperature of the liquid slag layer

is assumed. The heat flux from the slag layer to the
castables layer is defined as:

, ,

,

,
0.5 0.51with:

S i C i
S C

i

i C
i

i S C

T T
Q

R

R
A

→
λ

λ

−
=

⎛ ⎞⋅ δ ⋅ δ
= ⋅ +⎜ ⎟λ λ⎝ ⎠

, (22)

where TC,i is the middle temperatures of the cast-
ables layer, Cδ is the thickness of the castables layer
and Cλ is the thermal conductivity of the castables
layer.

4.3.2 Castables layer and helical tube mate-
rial

For the castables layer and the helical tube material
only the energy conservation equations have to be
considered:
d
d

d
d

C
S C C HT

HT
C HT HT W

E Q Q
t

E Q Q
t

→ →

→ →

= +

= +
. (23)

The heat flux from the castables layer to the
helical tube material is defined as (linear temperature
distribution):

, ,

,

,
0.50.51with:

C i HT i
C HT

i

CHT
i

i HT C

T T
Q

R

R
A

→
λ

λ

−
=

⎛ ⎞⋅ δ⋅ δ
= ⋅ +⎜ ⎟λ λ⎝ ⎠

, (24)

where THT,i are the middle temperatures of heli-
cal tube material, HTδ is the thickness of helical tube
material and HTλ is the thermal conductivity of heli-
cal tube.

4.4 Cooling water

The cooling water in the helical tube in each heat
transfer zone is implemented as a water volume with
a heat port. The characteristic flow numbers are cal-
culated due to the actual flow conditions. Then the
heat transfer coefficient iα for the convective heat
transfer rate is calculated in a separate function. The
following heat and mass balance equations were im-
plemented for each water volume:

,
, , , ,

,
, , , ,

d
d

d
d

W i
W in i W out i

W i
W in i W out i HT W

m
m m

t
U

H H Q
t →

= +

= + +
 (25)

where the heat flow rate from the helical tube to
the cooling water is calculated as:

()HT W i i HT W WQ A T T→ →= α ⋅ ⋅ − (26)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 332

where HT WT → is the surface temperature of the
helical tube material and TW is the temperature of the
cooling water.

5 Simulation results

The Modelica/Dymola model could be steady state
and transient validated with data of the Siemens test
facility located in Freiberg.

Therefore, the input streams (e.g. coal mass flow
rate, temperatures, gasification agent mass flow
rate…) of the test facility were loaded to the model
as a Modelica TimeTable.

As shown in Figure 7 the model provides good

correlation with the test data for different evaluation
points and various kinds of coal. By means of Figure
7 it can also be shown that the Kalmanovitch-Frank
Model for calculation of the slag viscosity provides
sufficient agreement for calculation of heat flux
compared to experimentally determined viscosity.

Steady state comparison of the
return temperature of the cooling screen

35 45 55 65 75

HBC-EP1

HBC-EP2

HBC-EP3

L-EP1

L-EP2

GC-EP1

GC-EP2

GC-EP3

Temperature [°C]

test data

simulation with experimental viscosity

viscosity with Kalmanovitch-Frank model

Figure 7: Steady state validation of the model with test
data of the Siemens test facility located in Freiberg (In
the figure GC means Gas Coal, L belongs to Lignite
and HBC to Hard Brown Coal.)

Figure 8 shows the developing of the return tem-

perature of the cooling screen cycle water for a break
down of the coal mass flow at time 197 min.

For the regular operation the difference between
the simulated and the measured temperature are
mostly less than 2 K. As the coal mass flow breaks
down and the gasifier operates only with gaseous
fuel the difference increases up to 5 K. The cause of
this is the calculation of the absorption coefficients
for the gas components due to the fact that for the
above case the slag layer surface temperature is
above the area of validity for these equations. So the
value for the absorption coefficient is oversized
compared to the emission coefficient. Hence, the
heat flow rate from the gas to the slag layer is under-
estimated.

6 Conclusions

In the article the modelling of the heat flux through
the slag coated cooling screen of the SFGT-Gasifier
was shown. It could be demonstrated that the devel-
oped model reflects the test facility data both steady
state and transient with sufficient precision.

The next step will be the scale up of the model to
the industrial plant.

References

[1] Klose, E.; Toufar, W.: Grundlagen der Ver-
gasung, 1. Lehrbrief. Lehrbriefe für das
Hochschulfernstudiun, 1985

[2] Higman, C.; van der Burgt, M.: Gasification.
Gulf Professional Publishing, Amsterdam,
2002

[3] Smith, W.R.; Missen, R.W.: Chemical Reac-
tion Equilibrium Analysis: Theory and Algo-
rithms. John Wiley and Sons, 1982

[4] Brummel, H.-G.; Kakara, E.: Wärmestrah-
lungsverhalten von Gas-/Feststoffgemischen
bei niedrigen, mittleren und hohen Staubbe-
ladungen. In: Wärme- und Stoffübertragung
25 (1990), 129-140

[5] Fleischer, Thomas: Erarbeitung eines Mo-
dells zur Berechnung der Wärmeübertragung
auf die Kühlschirmwand unter Berücksichti-
gung der Schlackeeigenschaften. Freiberg,
Bergakademie, Fachbereich Maschinen-,
Verfahrens- und Energietechnik. Diploma
thesis, 2007

[6] Verein Deutscher Ingenieure, VDI-
Gesellschaft Verfahrenstechnik und Chemie-
ingenieurwesen (Hrsg.): VDI-Wärmeatlas.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 333

Zehnte, bearbeite und erweiterte Aufl. Berlin,
Heidelberg: Springer, 2006

[7] Zbogar, A. et al.: Heat transfer in ash depos-
its: A modelling tool-box. In: Progress in En-
ergy and Combustion Science 31 (2005), S.
371-421

[8] Kumar, V. et al.: Pressure drop and heat
transfer study in tube-in-tube helical heat ex-
changer. In: Chemical Engineering Science
61 (2006), S. 4403-4416

[9] Vargas, S. et al.: Rheological properties of
high-temperature melts of coal ashes and
other silicates. In: Progress in Energy and
Combustion Science 27 (2001), S. 237-429

[10] Hannemann, F. et al.: Application of Sie-
mens Fuel Gasification Technology for dif-
ferent types of coal. 25th Annual Pittsburgh
Coal Conference, Pittsburgh, PA, USA, Sep-
tember 29 – October 2, 2008

[11] Rezaei, H.R. et al.: Thermal conductivity of
coal ash and slags and models used. In: Fuel
79 (2000), S. 1697-1710

[12] Seggiani, M: Modelling and simulation of
time varying slag flow in a Prenflo entrained-
flow gasifier. In: Fuel 77 (1998), Nr. 14, S.
1611-1621

175 180 185 190 195 200 205 210 215 220 225
30

40

50

60

70

80

time [min]

re
tu

rn
 te

m
pe

ra
tu

re
 c

oo
lin

g
sc

re
en

 [°
C
]

Comparision between simulation and test facility data

simulation
test facility

Figure 8: Comparison between simulation and test data for the return temperature of the
cooling screen due to the break down of the coal mass flow

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 334

Modelling of complex thermal energy supply systems
based on the Modelica-Library FluidFlow

Manuel Ljubijankic1 Christoph Nytsch-Geusen1,2 Steffen Unger2
1Institute for Architecture and Urban Design, University of Arts Berlin

Hardenbergstraße 33, 10623 Berlin, Germany
nytsch@udk-berlin.de

2Fraunhofer Institute for Computer Architecture and Software Technology
Kekuléstr. 7, 12489 Berlin, Germany

Abstract

The new Modelica library FluidFlow is being
developed for the thermo-hydraulic simulation of
complex energy supply systems. This library
includes standard hydraulic model classes and
specialized components for HVAC-systems and
solar thermal systems. Most of these Modelica
classes are modelled with equations of the 1D-
transient energy transport. The validation of the
library takes place both by measuring values from
test stations and by comparing with detailed CFD
models. A first complex use case of the library
represents the simulations-based design of a complex
thermal energy supply system of a residential area,
as a part of a newly built city in Iran.

Keywords: thermo-hydraulic simulation; validation
with CFD; modelling of complex energy supply
systems

1 Introduction

In the last years, different Modelica-libraries for the
hydraulic and thermo-hydraulic simulation were
developed [1, 2]. From our point of view, these
libraries are not well suited for the modelling of very
complex thermal energy supply systems, because
their structure are either too complex within their
single components or do not include a lot of the
required specialized models. For this reason, the
authors decided to develop a new Modelica-library
for thermo-hydraulic network simulation, which is
called FluidFlow [3].

2 Modelica library FluidFlow

The present main application field of the FluidFlow-
library is the modelling of solar thermal systems,
HVAC (Heating, Ventilation and Air-Conditioning)-
systems and district heating/cooling systems.

2.1 Library structure

The FluidFlow-library comprises thermo-hydraulic
models and purely hydraulic models. The skeletal
structure of the library consists of a set of “ready-to-
use” standard hydraulic models, such as pipes,
elbows, distributors and pumps. These models are
built on variably specialized “partial”-Modelica
classes - e.g. for pressure loss calculations, heat
transport, model interfaces design - by the intensive
use of the object-oriented modelling technique.
In addition to the standard components, the library
includes more specialized models from several
domains (compare with Figure 1), such as solar
thermal technology (collector models), thermal
storage technology (storage models) or energy
transformation technologies (e.g. models of heat
exchangers, absorption chillers and cogeneration
plants).

Figure 1 Standard models (left) and specialized models

(right) of the thermal-hydraulic library FluidFlow

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 335 DOI: 10.3384/ecp09430070

2.2 Physical models

All the hydraulic models of the FluidFlow-library
are based on a stationary pressure loss-calculation,
which depends on the component type, its individual
parameters and the present flow conditions. In
addition, the thermo-hydraulic component models
have transient thermal models both for the 1D-
convective energy transport in the flow direction and
for the heat transfer to the environment. Some of the
models such as the thermal storage also have models
for the diffuse and turbulent heat transport within in
the fluid. The FluidFlow-library also supports
reverse flow. So the flow directions within the
modelled systems only depend on the external
boundary conditions of the corresponding thermo-
hydraulic network and the induced pressure values or
mass flows of the net-integrated pumps. All the
models of the FluidFlow-library can be used with or
without the Modelica.Media-library.

2.3 Validation

The validation of the single thermo-hydraulic
components and system models takes place in two
different ways. The first method represents the
traditional validation with measurement values, used
from thermo-hydraulic test stations from the
Technical University of Berlin [4]. At the moment
the validation of the component models such as
thermal water storages with and without internal heat
exchangers, external plate heat exchangers, pipes,
solar thermal collectors and also of the system model
of a solar thermal plant is taking place.
The second method consists of the comparison of the
simplified 1D-Modelica models with detailed 3D-
models, which are based on Computational Fluid
Dynamics (CFD) calculations [5].

Figure 2 Reduction factor fF for the total pressure loss for
the configuration “elbow – pipe –elbow” in dependency

of the length L of the intermediate pipe [6]

One result of this approach is the improvement of the
accuracy of the thermo-hydraulic “group-behaviour”
of several Modelica component models, which are
connected to a system model.
Therefore, we analysed in a first step the pressure
loss of a small hydraulic system with three serial
connected components – an elbow, a straight pipe
and a second elbow with the geometry in Figure 2
down on the left side: if the length L of the
intermediate pipe is relatively short in comparison to
its diameter d, then the impact of pressure loss from
both elbows on the pressure loss of the pipe is
considerable. In this case, the total pressure loss of
the three components is smaller than the sum of the
single pressure losses of each component (expressed
with the reduction factor fF), because the equations
used for the pressure loss calculation in the Modelica
models assume for each of the three components an
undisturbed flow profile at the inlet and outlet, which
here does not exist:

())1(21 elbowpipeelbowFtotal pppfp Δ+Δ+Δ⋅=Δ

But in the case of a relative long intermediate-pipe
(values L/d ≥ 50), the sum of the single pressure
losses approximates the total pressure loss of the
small hydraulic system (compare with Figure 2) and
fF becomes to 1.
First, we modelled the described hydraulic system
with the CFD-tool ANSYS CFX 11.

variable length

Re 500 .. 10.000

Figure 3 3D-CFD-model of two 90° elbows with an
intermediate pipe with variable length

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 336

In the CFD-model we add two pipes for an
additional inlet and outlet stretch, to have an
undisturbed flow profile at the red marked cross
section on the left side and only a small influence
from the second elbow on flow profile at the red
marked outlet cross section on the right side
(compare with Figure 3). Then we calculated the
total pressure loss between both red marked cross
sections. We did also a further CFD-calculation for a
straight pipe with the same L/d-value. The difference
between the total pressure losses of both calculations
are induced only by the elbows forcing a flow
direction change. We did these calculations for
Reynolds-numbers between 500 up to 10,000 and
L/d-values between 0 up two 50 and deduced a cor-
rection function fF=f(L/d) (compare with Figure 4).

y = -0,0002(l/d)2 + 0,0196(l/d) + 0,4768

R2 = 0,9416

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

l / d

f-
fa

ct
o

r

Figure 4 CFD-deduced correction function for the

component group “elbow – pipe – elbow” (mean values
for Reynolds numbers from 500 to 10,000)

Figure 5, the drawing in the left, shows a
“conventional” Modelica configuration of a
hydraulic loop, based on single independent
components. Figure 5, the drawing in the right,
demonstrates the same loop with a merged
component, which takes into account the strong
hydraulic dependencies between two elbows due to a
relatively short intermediate pipe with the help of the
correction function.

Figure 5 Configuration of a hydraulic loop with single

components (left) and a “compound-component” (right)

Figure 6 shows the calculated pressure loss of the
hydraulic loop (Reynolds number = 5,000), based on

single Modelica component models and with a
compound-component, where the calculated pressure
loss is modified by the use of the new correction
function. For small values of L/d the “real” pressure
loss lays 5 up to 15 percent lower than a pressure
loss calculation without a correction function.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

l / d

P
re

ss
u

re
 l

o
ss

 i
n

 P
a

Single components Grouped components with correction function
Figure 6 Calculated pressure loss of the hydraulic loop

with single components and with a compound-component
with the correction function (Reynolds number = 5,000)

3 Use case: modelling of a thermal
energy supply system of a district

The newly developed FluidFlow-library is being
used and evaluated within the research project
“Young Cities - Developing Energy-Efficient Urban
Fabric in the Tehran-Karaj Region” [7].

Figure 7 New Town Hashtgerd (Iran) and urban planning
model of the 35 ha pilot area for 8,000 inhabitants

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 337

Here, the Modelica library is used for the simulation-
based design of complex (thermal) energy supply
systems for a 35 ha residential district as a part of the
newly built Iranian city Hashtgerd with 2,000
accommodation units for 8,000 inhabitants.
For the determination of the approximate size and
the boundary conditions for a suitable energy supply
system, a first estimation of the heat and cold
demand for the 35 ha residential area, based on an
early design of the building typologies from the
architects and urban planners was performed.
Using the geometry, construction and building
materials of a typical three-storey row house of 33 m
depth and 7.5 m width, the energy demand for a
single building was estimated by using the program
CASANOVA [8] with climate data for Karaij.
Because energy efficiency is one of the main targets
of the “Young Cities”-project, the U-values for the
walls, roofs, basement ceilings and windows were
chosen to obtain a total thermal energy demand for
heating and cooling of 50 percent relative to the
limits of the “Code 19”-building Iranian energy
standard [9]. The energy demand of the whole 35 ha
district was projected as the product of the specific
energy demand of the single building and the
planned total living area of the district (compare with
Figure 8).

0

500

1000

1500

2000

2500

3000

3500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E
n

er
g

y
d

em
an

d
 i

n
 M

W
h

/m
o

n
th

Heating Cooling

Uwall = 0,35 W/m2K
Uwindow = 1,4 W/m2K
A/V = 0,78
Climate data Metenorm = Karaij
T_set_heating = 20 °C
T_set_cooling = 26 °C
airchange = 0,5 1/h

Figure 8 Projected monthly heating and cooling demand

for the 35 ha district (50 percent of the Code 19)

To estimate the energy demand, a nominal room
temperature of 20°C in heating periods and of 26°C
in cooling periods was presumed, in addition to a
ventilation rate of 0.5 h-1. During cooling periods
sunscreens were introduced, leading to a 50 percent
shadowing of the windows. Based on these
assumptions the heating period reaches from
November to March and the cooling period from
May to October. In April the climate in Karaij is
balanced well enough that neither cooling nor
heating is necessary.

In consideration of these boundary conditions
different concepts of the thermal energy supply are
being developed. These can have central, semi-
central or de-central characteristics. Figure 9 shows
an option with central heat supply and decentralised
cooling production, based on solar energy.
Therefore, this version contains one central thermal
distribution network and many separate decentralised
absorption chillers and solar thermal collector fields.
Because the local solar irradiation of Hashtgerd is
approximately 1,900 kWh/m2a, active solar cooling
can be attractive besides passive cooling for building
climatisation with a minimum of primary energy.

Energy Supply System B:“Centralized Cogeneration / Local Solar Cooling”

Energy Central

Gas-Cogeneration plants

Small absorption chillers

Solar thermal collectors

Energy storages

Central heat storages

Energy distributor

District heating net

Energy consumers

Residential houses

Office buildings

Educational buildings

Culture buildings

Religion buildings

CG

HSHS

HSHS
CG AC

CGHSHS

CSCS

SAC

STC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

STC
SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC
STC
SAC

STC
SAC

STC

SAC

STC

SAC

STC

SAC

STC

SAC

Figure 9 Energy concept of a thermal energy supply
system for a 35 ha district in Hashtgerd (Iran)

The application of the FluidFlow-library shall be
demonstrated by the modelling of the energy system
of Figure 9. In this case, only the left part of the
energy system is represented in the system model,
illustrated in Figure 10.

Figure 10 System model of the left part of the thermal

energy supply system for the 35 ha district (variant
centralised cogeneration/local solar cooling)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 338

The modelled subsystems are the energy central (co-
generation plant with a peak boiler and a thermal
storage), the district heating net for the heating and
warm-water demand and the thermal consumers,
modelled as groups of simplified thermal building
models, including the decentralised solar cooling
systems (compare Figure 10, 11 and 12). The
number of equations of the (non symbolic-reduced)
system model of the energy supply system amounts
to more than 30,000.
Figure 11 shows a sub-model for a building group
with two building models. Here, each building model
represents a bar of row houses, which are supplied
with hot water from the central energy station and
with cold water from the decentralised solar cooling
system. The back-up thermal energy for the solar
cooling system is also provided by the centralized
thermal energy supply. Each of the building models
has two controllers to adapt the mass flow through
the heat exchangers for the respective heat or cooling
demand at the moment. The modelling approach for
the building models is strongly simplified to reduce
the number of equations: The building model takes
into account one thermal zone, only separates outer
and inner positioned thermal masses and solely
calculates the passive solar gains and shading
devices for four main orientations [10].

Figure 11 Sub-model of a building group with a
decentralised solar cooling system

Figure 12 illustrated the model structure for the
decentralised solar cooling system. The most
important component of this sub-system model is a
small-scale absorption chiller, which can provide
some residential houses with cooling energy [11]. At
this, the main part of its thermal operating power
comes from the thermal storage, which is loaded by
the solar collector field. If the absorption chiller
needs additional thermal energy from the back-up
system, it is transferred by a plate heat exchanger.

Figure 12 Sub-model of the solar cooling system with an

absorption chiller

The thermal waste energy is delivered to the
environment by a separate thermal circulation. The
produced cold water is stored in further thermal
storages, from where the building is provided with
cooling energy.

Figure 13 Sub-model of a collector field

Figure 13 shows the sub-model for a collector field.
Six solar thermal collectors are serial-parallel
connected with the use of the basic components of
the FluidFlow-library. All the collector fields are
integrated in the envelopes of the air-conditioned
buildings.

4 Conclusion

The newly developed Modelica library FluidFlow is
being used the first time to model a very complex
thermal energy system. Here, the great challenge
consists in an enough detailed modelling for all parts
of the system model and a simultaneous limited
number of model equations, which enables yearly
simulation analysis. So, the next steps of our
research activities will aim on the reduction of the
complexity of the system model without a too large
loss of model accuracy. For this purpose, energy
system models with a different level of simpli-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 339

fication shall be developed with the help of the
FluidFlow-library and compared in terms of their
accuracy and numerical effort.

References

[1] S. Fabricius, E. Badreddin: Modelica Library for
Hybrid Simulation of Mass Flow in Process Plants.
QSSFluidFlow. Proceedings 2th International Modelica
Conference. DLR, München.18.-19. März 2002.

[2] F. Casella et al.: The Modelica Fluid and Media library
for modeling of incompressible and compressible
thermofluid pipe networks. Proceedings 5th
International Modelica Conference. Arsenal Research,
Wien. 4.-5. September 2006.

[3] M. Ljubijankic, C. Nytsch-Geusen: Thermo-
hydraulische Simulation solar-thermischer Systeme mit
Modelica. In Proceedings: 18. Symposium Thermische
Solarenergie, OTTI-Technologiekolleg, Regensburg,
2008.

[4] C. Nytsch, M. Poli, T. Schneider: Messtechnische
Untersuchungen an einer solarthermischen
Versuchsanlage zur Validierung der solartechnischen
Modelle der Simulationsumgebung SMILE. In
Proceedings: 10. Symposium Thermische Solarenergie
in Staffelstein, OTTI-Technologiekolleg, Regensburg,
2000.

[5] M. Ljubijankic, C. Nytsch-Geusen: Combining
different levels of detail in modelling for an improved
precision of HVAC plant simulation. In Proceedings:
Building Simulation 2009, International Building
Performance Simulation Association, Glasgow, 2009.

[6] W. Wagner: Strömung und Druckverlust. 6., bearbeite
Auflage, Vogelverlag, 2008

[7] Homepage of the research project “Young Cities”:
http://www.youngcities.org

[8] B.M. Kari, R. Fayaz: Evaluation of the Iranian Thermal
Building Code, in: Asian Journal of Civil Engineering
(Building and Housing) pp.675-684, p.683, Vol. 7, No.
6, 2006.

[9] Homepage CASANOVA: http://nesa1.uni-
siegen.de/index.htm?/softlab/casanova_e.htmCode 19

[10] C. Nytsch-Geusen, T. Nouidui: Gebäudesimulation mit
adaptiven Modellierungsansätzen. In Proceedings:
BAUSIM 2008, IBPSA Germany, Universität Kassel,
2008.

[11] A. Kühn, M. G. Ribigini, F. Ziegler: Dynamisches
Betriebsverhalten einer 10 kW Absorptionskälteanlage.
KI – Kälte-, Luft-, Klimatechnik 7-8/2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 340

Deficiencies of Modelica and its simulation environments for large
fluid systems

Kilian Link, Haiko Steuer, Axel Butterlin
Siemens AG, Energy Sector, Fossil Power Generation, Energy Solutions, Erlangen, Germany

{kilian.link, haiko.steuer, axel.butterlin}@siemens.com

Abstract

Modeling of large fluid systems requires in-house
(specialized) tools, since applicability of Modelica
and existing environments is limited.

Nevertheless Modelica is a very powerful and de-
scriptive modeling language, which is best suited for
physical modeling in a heterogeneous environment.
Its object oriented approach, the built-in documenta-
tion and the availability of commercial and free li-
braries justifies the decision for Modelica as the pre-
ferred modeling language within Siemens Energy.

For an appropriate analysis of transient power
plant processes, there often are large fluid systems to
be modeled, i.e. there can be several thousand states.
For such plant models, we use our in-house tool
Dynaplant (DP), which is specialized for large fluid
systems. A comparison between DP and Dymola[1]
reveals some deficiencies of the Modelica world
concerning performance and plant model construc-
tion: Especially, successive initialization and sparse
matrix solvers are important features in need.

Keywords: Fluid simulation; workflow; performance

1 Introduction

Providing clean and affordable electric power to
all human beings is one of the most ambitious chal-
lenges in our world. Technological efforts and inno-
vations lead to high effective and environmental gen-
tle methods of power production. Here, transient
simulation has become an inevitable tool. Especially
matters of unit safety in respect to material stresses
of components do require detailed modeling and
computational intensive dynamic simulations.

A typical use case which requires a detailed tran-
sient simulation of a power plant is a dynamic stabil-
ity analysis. In the remaining of the introduction the

system under consideration and the use case are in-
troduced.

1.1 Plant model

The system under consideration is a special kind
of evaporator modeled via several tubes with a total
length of some 100 meters. The tubes are filled with
water/steam, mostly in the two-phase region. Most of
the tubes are heated by a hot flue gas flow through
the tube metal wall.

Figure 1 Evaporator part model composed of a split-

ter, five heated tubes and a mixer.

Usually the plant model is composed of two of the
evaporator parts shown in Figure 1. For the purpose
of this article, we will focus on one single evaporator
part only.

A detailed one-dimensional hydrodynamic tube
model is used. The resulting differential-algebraic
equation system (DAE) is stiff and non-linear. In
addition, there is a narrow spatial discretization
along the tubes, such that up to several thousand
states have to be considered.

1.2 Use case “dynamic stability analysis”

The purpose of a stability analysis is to avoid
spontaneous mass flow fluctuations in the evapora-

flue gas
source

water
source

steam
sink

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 341 DOI: 10.3384/ecp09430034

tor, which could lead to material fatigue [6]. There-
fore, a large fluid system has to be built up using
component models with detailed geometry parame-
ters and many states.

At first a start point steady state has to be estab-
lished. Secondly, a dynamic experiment has to be
performed starting from this initial steady state with
a temporary perturbation. The perturbation is put into
the system via a temperature shift of the inlet flue
gas. Here, if the system relaxes to the steady state
again, it is stable. Otherwise, the evaporator design
should be modified.

Our in-house tool DP is specialized for such kind
of applications. Its component library is limited but
suitable for a dynamic stability analysis. Dymola, on
the other hand, is a multi-purpose simulation envi-
ronment. It is at present the only tool based on Mod-
elica, which supports fluid systems including Mode-
lica.Media and Modelica_Fluid elements.

Both tools will be compared with respect to the
reference work flow which covers a use case similar
to a stability analysis with a reduced plant model.

2 Reference workflow (using DP)

In this section, we will introduce a typical DP
workflow, which is very similar to a dynamic stabil-
ity analysis. It covers the plant build-up, initializa-
tion and a dynamic experiment.

2.1 Plant build-up with successive initialization

The scope of the plant model is a single evaporator
part as shown in Figure 1. It is composed of a water
source, a splitter for water, several parallel heated
tubes, a mixer for steam, a steam sink and a flue gas
flow. The flue gas heats the tubes via their metal
walls. In each of the parallel tubes, due to the splitter
and mixer, the same pressure loss but different heat-
ing is applied, such that a certain mass flow distribu-
tion will arise.

We will cover two different system sizes, which
distinguish only via their spatial discretizations
(“small” resp “large” system). In DP, the total plant
model results in a DAE system with 101 algebraic
and 440 (resp 895) dynamic degrees of freedom for
the small (resp large) system system.

The plant model can be edited in DP as follows:
Adding of components per drag & drop, editing its
parameters and setting start values at the connection
points can be carried out via a graphical user inter-

face. The build-up of the plant model takes place
using successive initialization:

(A) Starting with just a few components and speci-
fying start values at the connection points, a dynamic
simulation with constant boundary conditions can be
performed. The inner degrees of freedom of the ini-
tial state are computed using interpolations of the
connection values. After an appropriate simulation
time, the system will be relaxed into a steady state.

 (B) The resulting plant model including steady
state variables is loaded in DP.

(C) Here, the plant model can be modified. Further
aggregates can be added. At new connections, initial
state information has to be specified. For new aggre-
gates, the inner state variables are unknown, such
that they will be interpolated from these connection
values.

(A) In a next simulation, the “old” components
start with already computed state variables, and the
“new” components start with interpolated values.
After this run, there is a new steady state for this lar-
ger plant model, in which the “old” states may be
modified.

Figure 2 Successive initialization for plant build-up

Such, step by step, the plant model can be
enlarged in order to successively build up the steady
state of the total plant model (see Figure 2).

2.2 Dynamic experiment

Finally, the constructed plant model with a steady
state can be used as starting point of a dynamic ex-
periment, which is specified via certain time-
dependent boundary conditions.

Depending on the dynamics of the experiment, the
DAE system may be more or less difficult to solve.
DP uses a fast and stable DAE solver with sparse
Jacobian. The partial derivatives are defined in spe-
cial sub-model functions. The total Jacobian struc-

(A) Dynamic
initialization (B) Load fi-

nal state as
initial state
for further
simulation

(C) Add fur-
ther aggregates

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 342

ture is built only once at the beginning of the simula-
tion taking into account potential flow reversals. The
water/steam property computations are performed
using fast table based functions [5].

The boundary conditions are used to force the
evaporator to switch from 100% load case to a part
load case. Therefore, the water source changes its
mass flow rate and specific enthalpy, the steam sink
changes its pressure and the gas source changes its
mass flow rate and temperature.

Figure 3 DP parameter dialog of the gas source for

specifying dynamic boundary conditions.

In DP, dynamic boundary conditions are set in the
boundary components using time table parameters
(see Figure 3). The system simulation time is
3000sec.

3 Comparison: DP-Dymola

3.1 Application range

Unlike general purpose tools as Dymola the de-
velopment of DP is in line with the clearly defined
use case: Modeling of one-dimensional hydrodynam-
ics of large fluid systems. For a larger application
range two main features are missing,

• Handling of hybrid systems, i.e. discrete
states, including advanced event handling.

• Model libraries and the ability for user de-
fined components.

3.2 Modeling and Simulation

The explicit implementation of the Jacobian in DP
is time-consuming and error-prone.

Coping with very large systems, as described
above, heavy difficulties during computing the initial
state may occur, where iterative assembling and ini-
tialization of sub models is missing. For the recent
case of hard to find steady state solutions, the sup-
port for sub model initialization and setting the states
to known values is a key feature to gain success.
Currently setting fixed start values for parts of the
model is a time consuming task in Dymola. This is
strongly related to the Modelica specific requirement
to define initial values inside of models, while DP
allows the definition of initial values in the connec-
tion set. In addition identical initial values are not
propagated or checked for consistency, hence it is
difficult to find out which initial or guess values are
in use.

3.3 Performance

In this chapter the performance of DP and Dymola
[1], the by far best suited Modelica tool for fluid
simulations is compared for the dynamic experiment
of the reference work flow. In Dymola, evaluation of
parameters as well as the “NoGuard” userdefs.h
option is used. The Modelica model is slightly sim-
plified, since some details of the DP tube model are
not yet implemented in Modelica. It is based on the
Modelica_Fluid interfaces [2].

 small system large system

Dymola 691 sec 6780 sec

Dynaplant 46 sec 80 sec

Table 1 CPU times for reference dynamic experiment.
The small/large system has about 400 resp. 800
continuous time states.

The main results of the performance comparison
are that the Dymola CPU time is very large and criti-
cally depends on the system size. This is mainly due
to

• Missing high performance water/steam prop-
erty calculation [5].

• Missing sparse matrix solver.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 343

4 Conclusions

The comparison with Dynaplant reveals features
in need for large fluid systems in Modelica simula-
tion environments. Below, they are sorted by prior-
ity. The important features in need are tool related.
The other items cannot clearly be addressed to the
tool vendors alone, since enhancing Modelica will
also be necessary. Our intention is however, that the
further development of Modelica and tools may con-
sider the demands of large fluid system simulations.

4.1 Important features in need

• For generating a steady state successive ini-
tialization, i.e. “reload” of old simulation re-
sults with component specific states, should
be possible.

• A sparse matrix DAE solver is necessary.

4.2 Further improvements

• A standardized solver interface would sim-
plify the usage of external solvers An Exter-
nal Model Interface for Modelica:
http://www.modelica.org/events/modelica200
8/Proceedings/sessions/session5f.pdf[3], [4].

• Pre-compiled sub-models would reduce the
compilation time of large models.

• High performance water/steam property cal-
culation.

4.3 Nice to have features

Both nice-to-have features are related to the setting
of guess values used in the initialization routine.

• Redundant specifying of guess values for the
ports inside the sub-models may be replaced
by specifying values at the connection
points.

• Propagation of guess values would further
simplify the setting-up of large plant models.
This can be done using simple rules for flow
variables or by using more sophisticated in-
formation from pre-compiled sub-models.

References

[1] Dymola7.1
http://www.dynasim.se/index.htm

[2] Modelica_Fluid:
http://www.modelica.org/libraries/Modelica_
Fluid

[3] An External Model Interface for Modelica:
http://www.modelica.org/events/modelica20
08/Proceedings/sessions/session5f.pdf

[4] Modelisar:
http://www.itea2.org/public/project_leaflets/
MODELISAR_profile_oct-08.pdf

[5] Butterlin, A.; Schiesser, D.; Steuer, H.: Us-
age of Water & Steam Properties in Compu-
tational Intensive Dynamic Simulation,
ICPWS XV, September 2008.

[6] Franke, J., Brückner, J.: Dealing with tube
cracking at Herdecke and Hamm-Uentrop in
Modern Power Systems, October 2008.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 344

Real-Time Simulation of CESA-I

Central Receiver Solar Thermal Power Plant

Javier Bonilla1 Lidia Roca1 Luis J. Yebra1 Sebastián Dormido2

1CIEMAT- Plataforma Solar de Almería, Ctra. Senes s/n, 04200 Tabernas, Almería, Spain

Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas
2Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Abstract

This paper presents a real-time heliostat field sim-
ulator, based on a hybrid model, using Model-
ica as the modelling language. The development
of industrial dynamic simulators, in this work
for a central receiver solar thermal power plant:
CESA-I from CIEMAT-PSA, is mainly aimed as
a tool for the enhancement of advanced control
algorithms but it is also useful for training pur-
poses. The developed real-time heliostat field sim-
ulator is basically the union of the hybrid helio-
stat field model and a wrapped model which han-
dles the real-time simulation and communication
issues between the heliostat field simulator and
HelFiCo (Heliostat Field Control) software which
is in charge of manipulating and controlling the
heliostat field according to an automatic control
strategy. The real-time heliostat field simulator
provides a virtual system, with the same response
as the real plant.

Keywords: real-time simulation; hybrid mod-

elling; heliostat field; solar thermal power plant

1 Introduction

Design and development of dynamic models for
simulation and control system design purposes,
is gaining importance in solar thermal industrial
processes. An example is the deployment of ad-
vanced control systems that optimize the overall
performance of solar thermal power plants.

It is a fact nowadays that this task is a priority
research line [13] at CIEMAT National Spanish
Laboratories (Centro de Investigaciones Energéti-
cas, Medioambientales y Tecnológicas - Research
Centre for Energy, Environment and Technology),
public organization owned by the Spanish Min-
istry of Science and Innovation.

During the last years a big effort has been
devoted to the development of control systems
for solar thermal power plants,making an im-
portant part of the experiences directly against
the real plant. These real tests have increased
the resources needed for development. Neverthe-
less, some of these systems, are expensive, scarce
and present a costly experimentation time. This
fact has motivated the development of a dynamic
model for the CESA-I heliostat field plant, aimed
mainly as a tool for the enhancement of advanced
control algorithms. A preliminary research work
in this topic was published in [1].

Several softwares have been developed to calcu-
late the solar-flux density distribution on a central
receiver system [6] with the aim of optimizing the
components of the receiver, studying the optical
performance and improving the process. These
algorithms include geometry which depends on:
the sun vector, the heliostats and tower positions,
properties of the components (such as the reflec-
tivity of the mirrors), errors (such as wrong cant-
ing), shadows, atmospheric attenuation, etc.

This paper explains the heliostat dynamic as a
function of the messages received from a heliostat
field control, although a future goal in our working
is to include a simplified optical model to calculate
the flux distribution caused by a heliostat.

2 Goals

The main goal of this paper is to model and
develop a customizable real-time central receiver
thermal power plant simulator, which is adapted
to CESA-I test-bed facility requirements.

This development is mainly aimed as a tool for
the enhancement of advanced control algorithms
and also for training purposes. Design, testing and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 345 DOI: 10.3384/ecp09430062

validation of new advanced control strategies in
real plants, is expensive, dangerous and requires a
long testing time. It is intended to weed out such
problems by an efficient, safe and reliable real-time
simulator.

Figure 1: Relationship between HelFiCo software,
the real-time heliostat field simulator and CESA-I
central receiver plant.

The real-time simulator has to provide a virtual
system, with the same behaviour and response as
the real plant (see Figure 1). The communication
between HelFiCo (Heliostat field control) software
and the real-time simulator has to be transparent
for the user of the heliostat field control software.

3 Central Receiver Solar

Thermal Power Plants

In this section an overview of the basic compo-
nents and operating procedures for a Central Re-
ceiver Solar Thermal Power Plant (CRSTPP) are
introduced. Figure 2 shows an explicative diagram
of a general CRSTPP.

The operation of this kind of plants is based on
the concentration of incoming solar energy using a
heliostat field that reflects the incident solar radi-
ation onto a (typically volumetric) receiver (theo-
retically onto an optical point in the 3-D space).
As the sun position changes during the day, each
heliostat of the field has to change its position in
real time according to the selected aiming point
on the receiver, as different aiming points can be
selected in order to achieve a uniform tempera-
ture distribution on the receiver [5]. The receiver
is located at the top of the tower (84m height in
CESA-I) and acts as an energy exchanger, receiv-

ing solar energy and transferring it to a thermo-
hydraulic circuit with air medium (see Figure 2).
The system is also composed of an energy storage
tank, an air/water-steam heat exchanger (evapo-
rator), blowers and valves. The combined action
of the blowers allows feeding either the storage
tank or the heat exchanger with hot air. The evap-
orator is formed of the primary circuit and a sec-
ondary one with sub-cooled inlet water and with
superheated steam outlet. A measurement of the
overall concentrated input radiation, a controlled
water pump and an outlet controlled valve define
the main boundary conditions for the system.

Figure 2: Schematic diagram of a central receiver
solar thermal power plant [13].

3.1 CESA-I test-bed facility

The modelling and simulation activities object of
this work are focused on the CESA-I facility, a cen-
tral receiver solar thermal power plant belonging
to CIEMAT, and located at the Plataforma So-
lar de Almería (PSA), South-East of Spain. This
test-bed plant can be seen in Figure 3, and it is
an experimental prototype for electricity genera-
tion among other research projects.

The CESA-I facility collects direct solar radia-
tion by means of a field of 300 heliostats (39.6-m2-
surface) distributed in a 330-x-250-m north field
into 16 rows. The heliostats (see Figure 4) have
a nominal reflectivity of 92%, the solar tracking
error on each axis is 1,2 mrad and the reflected
beam image quality is 3 mrad. North of the he-
liostat field there are two additional test zones for
new heliostat prototypes, one located 380 m from
the tower and the other 500 m away. The max-
imum thermal power delivered by the field onto
the receiver aperture is 7 MW. At a typical de-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 346

sign irradiance of 950 W/m2, a peak flux of 3.3
MW/m2 is obtained. In addition, the 99% of the
power is focused on a 4m-diameter circle, 90% in
a 2.8-m circle.

Figure 3: CESA-I facility (CIEMAT-PSA).

The 80-m-high concrete tower has a 100ton load
capacity. The tower is complete with a 5-ton-
capacity crane at the top and a freight elevator
that can handle up to 1000-kg loads. For those
tests that require electricity production, the facil-
ity has a 1.2 MW two-stage turbine in a Rankine
cycle designed to operate at 520 ÂoC 100 bar su-
perheated steam.

Figure 4: Heliostats from CESA-I facility.

4 Heliostat Field

Modelica Model

To take advantage of all the Modelica features, the
heliostat field simulator has been developed us-
ing this language. Modelica is a standard unified
modelling language [8] with many advantages for
modelling dynamic systems, because it is both, an
object-oriented and acausal language. The object-
oriented feature allows developing a set of reusable
objects which can be used in future developments
and the acausal feature allows describing the be-
haviour of dynamic systems using the differential
equation systems which describe them. Dynamic
behaviour and numerical aspects are taken into
account in Modelica, because it provides equation
sections and event modelling [4].

Moreover, Modelica has a library, StateGraph,
for modelling hierarchical state machines. The
StateGraph Modelica library offers features to de-
fine conveniently discrete events and reactive sys-
tems in Modelica models. Since Modelica is used
as an action language, a Modelica translator can
guarantee that a State-Graph has deterministic
behaviour. StateGraph models can be combined
with components of any other Modelica library
and can therefore be very easily used to control
a continuous plant [9].

A simple hybrid model of a single heliostat has
been developed combining the system dynamic
continuous variables with operation mode discrete
variables. This one-heliostat model may be briefly
explained as follows:

• Movement dynamic. The continuous vari-
ables of the system are the azimuth, a, and
elevation positions, e, which can be obtained
through movement equations using the angu-
lar velocities as known parameters (ωa, ωe).

da

dt
= ωa;

de

dt
= ωe

• Operation mode. Not only each single helio-
stat must achieve the desired reference posi-
tion defined by the control system software,
but also communication failures and timeouts
must be taken into account by the heliostat.
These characteristics have been included in a
state machine using the StateGraph library.

Five main operation modes are defined:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 347

– Waiting: The heliostat is waiting for an
input message. In this mode, the helio-
stat may be moving to a position.

– Request: The heliostat sends an output
message including position information.

– Reset: When the heliostat is in reset
mode, that updates its positions moving
to zero position for azimuth and eleva-
tion, moving firstly in the azimuth di-
rection. Once it get to zero-azimuth po-
sition, it begins moving in the elevation
axis. In this operation mode, the helio-
stat does not send any output message
until the reset time, Treset, is reached.

– Stow: If the heliostat does not receive an
input message during Timeout seconds,
it moves to stow (zero) position. In this
case, the movement is in the two axes at
the same time.

– Control: The heliostat moves to the po-
sition reference specified in the input
message.

– Request + Control: Request and Con-
trol modes at the same time.

– Request + Reset: Request and Reset
modes at the same time.

Byte1

Byte4

Byte5

Byte6

Byte7

Byte3
m

IH

BooleanPulse

80

IH

m

wa

we

ra

re

a e

xe

xa

Byte2

Figure 5: The hybrid one-heliostat model

Figure 5 shows the one-heliostat model which
has the following features:

• The input signals are a collection of inte-
ger signals which represent the received bytes
from the heliostat field control software. No-
tice that these input signals are the same for
all the heliostats which belong to the same
heliostat row.

• These bytes are decoded to obtain the helio-
stat identifier (IH) parameter (which iden-
tifies univocally each heliostat), the control
message (m) and the azimuth and elevation
references (ra, re).

• A state machine component (see Figure 6),
based on the StateGraph library, makes pos-
sible to know the angular velocities in both
axes (wa, we) which depend on the heliostat
state.

Waiting

T1

0

c1 Request

T4

0

c1o

T2

0

c2 Control

T5

0

c2o

T3

0

c3 Reset

T6

0

c3o

T7

Timeout

c4 Stow

T8

0

c4o

ReqCon

T13

0

c5o

T14

0

c5

T15

0

c6 ReqReset

T16

0

c6o

Figure 6: The state machine diagram

• The azimuth and elevation positions (a, e) are
calculated with the movement dynamic using
the angular velocities provided by the state
machine component.

H...

He...

H...

He...

H...

He...

H...

He...

H...

He...

H...

He...

H...

He...

H...

He...

Figure 7: Heliostat field model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 348

A heliostat row model is NRowi heliostat model
instantiations, being NRowi a parameter that de-
fines the number of heliostats in the i row. Notice
that the control system software sends input com-
mands to each one of the 16 rows, therefore the he-
liostat field simulator is composed of 16-heliostat-
row instantiations (see Figure 7).

4.1 Simulation results

In this section a simulation of 16-heliostat row
is explained. The inputs messages are shown in
Table 1. The heliostat identifiers (IH) are IH =
{1,2,3, ...,15,16}, just the heliostat which identi-
fier matches with the one included in the input
messages, must process it.

Table 1: Simulation results. Input messages.
Time (s) IH Message ra re
t0 = 0 10 Request+Reset 100 100
t1 = 82 10 Request+Reset 100 100
t2 = 162 10 Request 0 0
t3 = 242 10 Request 0 0
t4 = 322 10 Request 0 0
t5 = 402 3 Request+Control 100 100
t6 = 482 3 Request+Control 100 100

The output message (see Table 2) specifies the
heliostat identifier which has to respond to the re-
quest, including its current position, (a, e), and
a boolean, ref, that turns to 1 when the heliostat
achieves the desired reference. At the beginning
of the simulation, the heliostat 10 moves to zero
position because of the reset message. At time
t2 the heliostat has reached the zero value in az-
imuth and the output value in this direction is
reestablished. The same situation occurs at time
t3 with the elevation direction. The last two mes-
sages order the heliostat 3 to move to (100,100)
coordinates with a movement request. The out-
put heliostat message at time t5 shows that its
position is (0,0) whereas at time t6 is (100,100),
so the desired reference is reached.

The position of the two heliostats during the
simulation are shown in Figure 8 together with the
angular velocities in each direction. These angu-
lar velocities are parameters that can be changed
depending on the heliostat features. For this sim-
ulation the velocities were chosen to be ± 5 posi-
tions/s. On the other hand, the operation modes
for both heliostats are shown in Figure 9.

Table 2: Simulation results. Output messages.
Time IH a e ref
t0 10 600 600 0
t1 10 190 600 0
t2 10 0 394 0
t3 10 0 0 0
t4 10 0 0 0
t5 3 0 0 0
t6 3 100 100 1

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

H
e

lio
s
ta

t
p

o
s
it
io

n

0 50 100 150 200 250 300 350 400 450 500

−5

−4

−3

−2

−1

0

1

0 50 100 150 200 250 300 350 400 450 500

−5

−4

−3

−2

−1

0

1

Relative time [s]

ω
a
,

ω
e

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

Relative time [s]

ω
e

ω
a

a
e

H
e

lio
s
ta

t
p

o
s
it
io

n

ω
a
,

ω
e

− Heliostat IH=3 −

− Heliostat IH=10 −

Figure 8: Simulation results. Heliostat positions.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

− Heliostat IH=10 −

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

− Heliostat IH=3 −

Relative time [s]

O
p
e
ra

ti
o
n
 m

o
d
e
s

1 = Waiting
2 = Request
3 = Reset
4 = Stow
5 = Control
6 = Request+Control
7 = Request+Reset

Figure 9: Simulation results. Operation modes.

5 Real-Time Heliostat

Field Simulator

The developed real-time heliostat field simula-
tor is mainly the union of the hybrid heliostat
field model and a wrapped model which handles
the real-time simulation and communication is-
sues. The heliostat field simulator is communi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 349

cated with HelFiCo (Heliostat Field Control) soft-
ware, a heliostat field control software [7] which
is in charge of manipulating and controlling the
heliostat field according to an automatic control
strategy.

Figure 10: Heliostat field simulator and HelFiCo
software block diagram

The figure 10 shows a block diagram which
illustrates the concept previously explained and
shows the interconnection between the heliostat
field simulator and HelFiCo software.

5.1 Real-time and

Communication Model

The real-time and communication model wraps
the main model, the heliostat field model. This
wrapped model provides the following functional-
ity:

• Real-time simulation: Synchronize the simu-
lation time dynamically to real-time.

• Communication issues: Receive input com-
mands from the heliostat field control soft-
ware, decode input commands, encode out-
put data from the heliostat field model and
send output data to the real-time simulator.

5.1.1 Real-time Model

Real-time demands that the simulation time must
be shorter than the simulated time. Since this
condition is a fundamental requirement for models
to be used in real-time simulations, in some cases,
the complexity of the model must be reduced at
the expense of loosing quality.

In our case it was not necessary to reduce
the complexity of the heliostat field model, just
take into account some improvement in the model
to optimize the computational efficiency. These
improvement will be discussed in the subsection
5.1.2.

Modelica does not have synchronisation sup-
port, some Modelica IDEs have this kind of sup-
port but it is specific to the IDE tool, such as

Dymola [2]. Moreover the synchronisations sup-
port in Dymola has the drawback that simulation
speed is not limited if simulation time is behind
real world time, this can lead to undesirable be-
haviour of the simulation.

There is an open source real time option for Dy-
mola called JPAARealTime [3]. Since JPAAReal-
Time makes use of Windows libraries it can only
be run on Windows operating system. But it was
required a multi-platform library for future devel-
opment in different operating systems. For these
reasons a real-time library has been developed for
this task. The developed RTSS (Real-Time Sim-
ulationS) library allows real-time synchronisation
support.

The RTSS library samples the simulation time
at certain time instants and stops the current sim-
ulation until the simulation time reaches the real
time according to the computer’s time when the
simulation started. This concept is shown in Fig-
ure 11.

Figure 11: Real-time synchronisation concept

5.1.2 Communication Model

The communication model simulates the be-
haviour of the communication line between the
simulator and HelFiCo (Heliostat Field Control)
software, involving receive, send, encode and de-
code messages. Message decoding is the process
of translating the incoming binary message from
the heliostat field control software into the corre-
sponding input variables in the Modelica model.
On the other hand, message encoding is the re-
verse process.

The real communication channels between
HelFiCo software and CESA-I test-bed facility are
RS-485 and RS-232 wires. Each one of the 16 he-
liostat rows has a shared RS-485 wire, all of them
converge to a RS-485 to RS-232 interface con-
verter which is directly connected with the com-
puter where HelFico software is running.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 350

The communication line between both com-
puter programs is simulated by two FIFO (First
In, First Out) files in the operative system for each
heliostat row in the field, one for sending and the
other one for receiving. This FIFO files are share
by HelFico software and the real-time simulator,
but the operation mode is different in each one.
For each heliostat row, the HelFico software open
one FIFO file in writing mode (output line) and
the other one in reading mode (input line). In
the real-time simulator the operation mode of the
FIFO files is the opposite, this behaviour is illus-
trated in Figure 12.

FIFO files were chosen as the inter process com-
munication method for serveral reason. First of
all, the FIFO files behaviour is suitable for the
developed simulator. The simulator requires just
message passing, in order of arrival, as in a queue,
and this can be easily obtained using FIFO files,
moreover it is not needed synchronization, shared
memory or remote procedure calls. Another rea-
son is that the FIFO files behaviour is quite sim-
ilar to the RS-485 and RS-232 wires behaviour.
There are four main operations: open, send, re-
ceive and close. It is straightforward to develop an
abstract parent class which set the common inter-
face with these four main operations. Then, two
subclasses are more specialized versions, inherit
attributes and behaviours from the parent class,
and introduce their own behaviour. One of these
classes implements the FIFO files communication
and the other one controls the real communica-
tion channels. These two classes allow HelFiCo
software to switch between them to communicate
properly to the simulator or the real plant. New
subclasses can be developed for different kinds of
communication, the only requirement is to inherit
from the abstract parent class.

Figure 12: Communication model

5.1.3 Improving the real-time

simulator performance

• Coupling the real-time synchronisation with

the data interchange: One of the improve-
ments consists in setting the same sam-
ple time for the real-time synchronisation
task and the data interchange between the
real-time simulator and HelFiCo software.
This can avoid some sample instructions and
events, and improve the simulation speed due
to the fact that the simulation stops when a
sample instruction is processed and therefore,
improve the simulator performance.

• Separated simulation approach: This ap-
proach takes advantage of the multi-core pro-
cessors (e.g. dual-core and quad-core proces-
sors) allowing the simultaneous execution of
several processes. For that reason a separated
simulation, where the differential equation
system is divided in different parts, achieves a
simulation speed improvement in a multi-core
processor computer.

This approach can be used because the model
is dividable, so that one partial simulator is
only responsible for a part of the system. Fig-
ure 13 shows a separated simulator where
each partial simulator simulates just some he-
liostat rows of the field, in this case, there are
16 partial field simulators, each one simulates
one heliostat row and therefore uses just one
pair of FIFO files.

Figure 13: Separated simulator concept

Table 3 shows the CPU-Time for integration
in simulation for different approaches: the
traditional approach which is a complete he-
liostat field simulator (CS), 2 separated sim-
ulators (PS-2) and 4 separated simulators
(PS-4). The 60-seconds simulation is the
same for the 3 approaches and was carried

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 351

Table 3: Simulation approaches and results
Approach CS PS-2 PS-4
Num. Processes 1 2 4
Rows per process 16 8 4
Num. Equations

114,904 57,452 28,726
per process
CPU-Time

37.40 s 21.20 s 18.22 s
for Integration

out in a computer with a dual-core proces-
sor. The speed improvement from CS to PS-2
approach it was expected, because PS-2 ap-
proach can take advantage of a dual-core pro-
cessor. But the PS-4 approach improves the
simulation speed even when just a dual-core
processor is used and this approach involves
more processor context changes. Therefore
this simulation speed improvement seems to
be because the numerical integration in these
simulation tests, do not scale properly with
the number of differential equations. The nu-
merical integrator, used in this simulations,
was LSODAR [10].

5.2 HelFiCo Software

HelFiCo (Heliostat Field Control) software be-
longs to Aunergy ThermoSolar S.R.L, a spin-off
from CIEMAT (www.aunergy.com). This soft-
ware is in charge of manipulating and controlling
each heliostat in the field according to an auto-
matic control strategy. The main features of this
software are the following ones:

• It is a generic software allowing different kind
of heliostats and even different central re-
ceiver solar thermal power plants.

• The software has two different subsystems, an
intuitive graphical user interface, see Figure
14, and the heliostat field control system.

• It is a scalable distributed software. This
feature allows that the software can be ex-
ecuted in several computers to achieve scal-
ability and robustness independently of the
number of heliostats in the field.

• The software allows different communication
methods with the heliostat field.

• The software can connect to both the real
plant and the simulated plant, and this pro-

cess is transparent for the HelFiCo software
user.

• It is a multi-platform software. The Adaptive
Communication Environment (ACE) [11] as
development framework and Qt [12] as user
interface framework have been used for the
development.

Figure 14: HelFiCo graphical user interface

6 Conclusions and Future Work

This paper explains a heliostat field real-time sim-
ulator of a central receiver solar thermal power
plant (CESA-I from CIEMAT-PSA) developed us-
ing Modelica language as the modelling tool. The
main goal of the developed model is providing a
virtual system, with the same response as the real
one, to test the control system software and to
reduce the costly real experiments over the real
plant. This paper also explains some techniques
to improve simulation efficiency.

Future works will include a detailed explana-
tion of dynamic heliostat models. Moreover, the
incident solar radiation reflections onto the re-
ceiver to obtain the temperature distribution, will
be implemented. The combination of the move-
ment dynamic, temperature distribution on the re-
ceiver, communication model and real-time simu-
lation will provide an efficient and practical tool to
test advanced control systems for aim-point track-
ing to optimize the overall performance of central
receiver solar thermal power plants.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 352

7 Acknowledgment

The authors wish to acknowledge the financial
support provided for this work by the CIEMAT,
and the Spanish Ministry of Science and Inno-
vation, without which this work could not have
been done. The authors want to acknowledge to
J. González for his help and contribution with
HelFiCo software. The authors also gratefully ac-
knowledge the comments of the reviewers.

References

[1] Bonilla, J., Roca, L., González, J., Yebra,
L.J: Modelling and real-time simulation of
heliostat fields in Central Receiver Plants.
In: 6th Vienna International Conference on
Mathematical Modelling, 2009, 2576–2579.

[2] Dynamsim, A.B.: Dymola - Dynamic Mod-
elling Laboratory. Ideon Science Park, SE-
223 70 Lund, Sweden. Online: http://www.

dynasim.se, 2009.

[3] Frey, G.: JPAARealTime V0.1. -
An open source real time option for
Dymola. Department of Mechatron-
ics Engineering, Saarland University,
SaarbrÃ1

4
cken, Saarland, Germany. On-

line: http://www.aut.uni-saarland.de/

software/software.html, 2007.

[4] Fritzon, P.: Principles of Object-Oriented
Modelling and Simulation with Modelica 2.1.
John Wiley & Sons, IEEE Press, 2004.

[5] García-Martín, F.J., Berenguel, M.,
Valverde, A., Camacho, E.F.: Heuristic
Knowledge-based Heliostat Field Control
for the Optimization of the Temperature
Distribution in a Volumetric Receiver, In:
Solar Energy, vol 66, 1999, 355–369.

[6] Garcia, P., Ferriere, A., Bezian, J.: Codes
for solar flux calculation dedicated to central
receiver system applications: A comparative
review, In: Solar Energy, vol 82, 2008, 189–
197.

[7] González, J., Yebra, L. J., Berenguel, M.,
Valverde, A., Romero, M.: Real-time Dis-
tributed control system for heliostat fields (in
Spanish). In: XXV Jornadas de Automática,
2004.

[8] Modelica and the Modelica Association. :
Modelica Standard Library, Version 2.2.1,
2007. Online: http://www.modelica.org/

libraries/Modelica/releases/2.2.1/.

[9] Otter, M., Årzén, K-E., Dressler, I.: State-
Graph – A Modelica Library of Hierarchichal
State Machines. In: Proc. 4th International
Modelica Conference, 2005.

[10] Petzold, L. R., Hindmarsh, A. C.: LSODAR.
Computing and Mathematics Research Di-
vision, 1-316 Lawrence Livermore National
Laboratory, Livermore CA 94550.

[11] Schmidt, D. C.: The Adaptive Communi-
cation Environment (ACE), DOC software.
Washington University, University of Califor-
nia, Irvine, and Vanderbilt University. On-
line: http://www.cs.wustl.edu/~schmidt/

ACE.html, 2007.

[12] Trolltech:A cross-platform application and
UI framework. Online: http://trolltech.

com, 2008.

[13] Yebra, L.J., Berenguel, M. and Dormido,
S. and Romero, M.: Modelling and Sim-
ulation of Central Receiver Solar Thermal
Power Plants. In: Proc. 2005 European Con-
trol Conference Decision and Control CDC-
ECC’05. 44th IEEE Conference, 2005, 7410–
7415.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 353

Modelica for Embedded Systems
Hilding Elmqvist1, Martin Otter2, Dan Henriksson1, Bernhard Thiele2, Sven Erik Mattsson1

1 Dassault Systèmes, Lund, Sweden (Dynasim)
2German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany

Hilding.Elmqvist@3ds.com, Martin.Otter@DLR.de, Dan.Henriksson@3ds.com,
Bernhard.Thiele@DLR.de, SvenErik.Mattsson@3ds.com

Abstract
New language elements are introduced in Modelica
3.1 to facilitate use Modelica models in embedded
systems, e.g., as controllers. Models can be conven-
iently configured by marking the borders of the re-
spective controller parts and by defining the mapping
of the marked parts to target processors and target
tasks.

This approach allows to define a “logical” model
from which all different “real” controller configura-
tions for Model-, Software-, Hardware-in-the-Loop
(MiL, SiL, HiL), rapid prototyping, and production
code for multi-processing/multi-tasking are auto-
matically derived by setting configuration options.
Furthermore, a new, free library - Modelica_Embed-
dedSystems - is presented that provides a convenient
user interface to the new language elements. In
summary, the power of Modelica in the area of real-
time control is improved significantly.

Keywords: Embedded systems, real-time control,
multi-tasking, multi-core, multi-rate, model paral-
lelization, Model-in-the-Loop, Software-in-the-Loop,
Hardware-in-the-Loop, rapid prototyping.

1 Introduction
Modelica has been used in advanced controller ap-
plications for embedded systems for several years,
especially when non-linear plant models are part of
the control system (Looye et. al. 2005), such as non-
linear control systems for aircrafts (Bauschat et. al.
2001), for industrial robots (Thümmel et. al. 2005),
or for power plants (Franke et. al. 2008).

Within the ITEA2 EUROSYSLIB project, a ma-
jor effort started at end of 2007 to enhance Modelica
considerably in the area of model-based control. This

effort is also carried on in the ITEA2 MODELISAR
project that started during 2008.

Existing methods and tools have been analyzed
and different designs have been performed. Typi-
cally, controller parts that are to be downloaded to
target platforms are defined by the root of a hierar-
chical structure. However, this standard approach has
several inherent limitations and therefore, a novel,
new approach was developed where only the borders
of control systems are marked and algorithms have
been developed to deduce the controller code from
this information. Furthermore, in principal any Mod-
elica model is supported, and therefore a controller
to be downloaded to a real-time target machine may
contain non-linear differential-algebraic equation
systems as needed for advanced control systems.

Modelica extensions have been designed and are
included in version 3.1 of the Modelica Specification
(Modelica 2009). A free library “Modelica_-
EmbeddedSystems” has been developed as a conven-
ient user interface to the new language elements. A
prototype implementation in Dymola (Dymola 2009)
was performed to validate the concept. Furthermore,
device drivers for Windows game controllers, I/O
boards using the Comedi-Interface (Comedi 2009) on
real-time Linux and CAN-bus have been imple-
mented by DLR. Device drivers for dSPACE
(www.dspaceinc.com) hardware and the Lego Mind-
storms NXT platform (mindstorms.lego.com) have
been implemented by Dynasim, and the concept has
been used in a student project (Akesson et. al. 2009).

2 Logical and Technical
System Architecture

A model of an embedded system is composed of
subsystems which may have local controllers. The
subsystems are coupled physically and through con-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 354 DOI: 10.3384/ecp09430096

trol systems (e.g. with buses). The notation from
(Schäuffele and Zurawka 2005) is used:

Complex controllers, e.g., in vehicles, are first de-
signed with an abstract view which is termed “logi-
cal system architecture”. Here all the functional and
logical behavior of the control system is defined. In a
second step this architecture is mapped to a “techni-
cal system architecture” which is the concrete im-
plementation of the control system in several tasks
on several micro-controllers inter-connected by com-
munication buses and other communication methods.
For complex control systems, as in vehicles with
over 60 ECUs interconnected via different bus sys-
tems, it must be possible to map from the logical to
the technical architecture in a very flexible way. The
new Modelica language extensions have been de-
signed to fulfill this demanding requirement.

An already sufficiently complicated, but still ra-
ther simple, logical system architecture of a robot is
shown in the left part of Figure 1. Every “axis” of the
robot has a local control system in addition to the
continuous motor and gearbox models. All local con-
trollers are connected to a global controller (at the
top of the figure) via a control bus. This system has
eight coupled controllers that shall be downloaded to
different processors (e.g., all axes controllers on two
signal processors and the global controller on an-
other processor and the processors communicate via
buses). An example is shown in the right part of Fig-
ure 1 where this mapping of the logical to the techni-
cal system architecture is sketched. The new method
has now the following important properties:

1. The user is not forced to manually assemble the
parts belonging to the technical system architec-
ture for download to the ECUs. Instead a Mode-
lica translator performs this automatically from
the logical system representation, given informa-
tion about the mapping to the technical system
architecture. Note, with standard methods and
tools this is not possible, because the logical sys-
tem architecture would be destroyed if the user is
forced to move all controller parts under a hier-
archical structure.

2. The mapping to the technical system architecture
can be defined without modifying the logical
system architecture. This is performed by a new
model that inherits (extends) from the logical
system model and where the mapping informa-
tion is given as modifier, including the selection
of hardware drivers. The latter are defined via
replaceable external objects.

With these two features it is possible to conveniently
configure different use cases, such as:

• Model-in-the-Loop (MiL) simulation
(Plant: variable step size integrators. Controller:
ideal, synchronous continuous or discrete control-
lers)

• Software-In-the-Loop (SiL) simulation
(Plant: variable step size integrators. Controller:
non-ideal, asynchronous controllers with modeled
latencies).

• Rapid prototyping (real-time)

 Figure 1: Mapping of logical to technical system architecture for a robot control system.
(Displayed ECUs adapted from http://commons.wikimedia.org/wiki/File:KeylessGoSiemensVDO.jpg)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 355

(Plant: physical prototype. Controller: asynchronous
controllers, channel assignment).

• Hardware-In-the-Loop (HIL) simulation (real-time)
(Plant: fixed step size, multi-rate integrators.
Controller: embedded in ECUs, multi-tasking, pro-
duction code, fixed-point representation, channel as-
signment, bus communication).

• Production code (real-time)
(Plant: Real product. Controller: embedded in ECUs,
multi-tasking, production code, fixed-point represen-
tation, channel assignment, bus communication).

Dealing with embedded systems in Modelica accord-
ing to the sketched concept above consists of the fol-
lowing parts:

• New Modelica language elements are intro-
duced. This is described in section 4. Basically, a
new annotation “mapping” and some new built-
in operators are provided. Furthermore, new al-
gorithms are sketched to deduce the controller
code from the logical system architecture.

• A new library “Modelica_EmbeddedSystems” is
offered that provides a convenient interface to
the new language elements. This library is dis-
cussed in the next section. It is provided freely
and it is planned to be included in the Modelica
Standard Library (note: a user may provide its
own interface to the new language elements).

• Hardware drivers as Modelica external objects to
access hardware from a Modelica model. A few
hardware drivers that are available on every
PC/notebook are provided in the Mode-
lica_EmbeddedSystems library freely for Win-
dows and for Linux. Other hardware drivers will
be provided from third parties (e.g., commer-
cially from tool vendors).

3 Modelica_EmbeddedSystems
The Modelica_Embedded-Systems library is avail-
able as an open source library from www.modelica.-
org/libraries and will be the basis of embedded sys-
tems in Modelica. The current status of the library is
shown in the screenshot to the right.

The Examples sub-library contains various use
cases to demonstrate the usage of the library. Only
some of the available examples are currently in-
cluded in the library.

The Interfaces sub-library contains the basic
components to define communication points (i.e.,
borders of controller parts) and to select the imple-
mentation of the actual communication in the em-

bedded system. This can be
external I/O, network
communication or inter-
task communication on the
same ECU.

The Communication
sub-library contains open
source drivers for simu-
lated communication (ideal
and with simulated quanti-
zation effects taken into
account), as well as a sim-
ple template for hardware
drivers.

The Configuration
sub-library contains tem-
plates to define the con-
figuration of the embedded
target systems (tasks, sub-
tasks, sampling, target pro-
cessor, etc.).

Types and Icons are
utility sub-libraries.

The major goal of the li-
brary is to define the split-
ting of a model in tasks and
subtasks and to associate device drivers with input
and output signals of the respective parts. The fol-
lowing notation is used:

A “task” identifies a set of equations that are
solved together as one entity, so equations are sorted
and solved in a “synchronous” way as usual in Mod-
elica. There are no equations that relate variables
from different tasks because communication to and
from tasks is performed by function calls of Mode-
lica ExternalObjects1. Different tasks are executed
asynchronously with possible synchronization via
the ExternalObjects used for communication and
possibly running on different cores or processors.
Typically, a Modelica task is mapped to a task of the
underlying operating system.

A “subtask” identifies a set of equations inside a
task that are executed in the same way within the
subtask with regards to sampling and integration me-
thod: If a subtask has continuous equations, all these
equations are solved with the same integration
method. Different subtasks can use different integra-
tion methods, e.g., fixed or variable step size meth-
ods of different orders. If a subtask is sampled, it is
activated at the sampling instants and the equations
of the subtask are integrated from the time instant of

1 A Modelica ExternalObject defines a Modelica interface
to C-functions that operate on the same memory and have
constructor and destructor functions for this memory.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 356

the last sample instant up to the current sample in-
stant using the defined integration method. If a sub-
task is running on a real-time system, usually real-
time integrators are utilized like explicit fixed-step
solvers. The equations of several subtasks in the
same task are automatically synchronized via equa-
tion sorting.

3.1 Communication Blocks

The usage of the Modelica_EmbeddedSystems li-
brary will be demonstrated by the very simple use
case from Figure 2. The model consists of a refer-
ence controller (“ramp”), a feedback controller
(“feedback” and “PI”) and a plant (“torque”, “load”
and “speedSensor”). The task of the controller is to
control the speed of the load inertia.

The model is split in different partitions by plac-
ing "communication blocks" in the signal paths. This
is the "logical" model. At this stage it is only defined
how the model is split into different parts, but it is
not yet defined how to handle these parts (or more
precisely, by default all communication blocks just
pass their input signal to their output).

A "target" model is derived by inheriting from
the model and by applying modifiers on the commu-
nication blocks. These modifiers usually reference a
"configuration block" (in Figure 2 this is called "co-
medi") where all details are defined how to map this
model to one or more target machines.

The "communication blocks" are the central part
of the Modelica_EmbeddedSystems library and pro-
vide a graphical user interface between the user and
the new Modelica 3.1 language elements. Clicking
on one of the communication blocks in Dymola
gives the menu shown in Figure 3.

The most important option is the first entry
"communicationType". It defines the communication
that shall take place between the input and the output

of the communication block:

• Direct communication with Modelica equations
(simplest case: y = u). This is mainly used to
start and have a meaningful default, and/or to
test some controller effects like noise or signal
delays.

• Communication between two subtasks. This de-
fines that the input and output signals are in dif-
ferent subtasks. All properties of these subtasks
can be configured with the rest of the options,
e.g., that the input subtask is periodically sam-
pled with a defined sampling rate.

• Communication between two tasks. This defines
that the input and output signals are running in
different tasks on the same machine. All proper-
ties of the tasks can be configured with the rest
of the options, e.g., in which way the communi-
cation between the tasks takes place (e.g., via
shared memory).

• Communication to a port. This defines that the
input signal is sent to an I/O board or to a bus
(like the CAN bus). In this case, the communica-
tion block has no output signal. All properties of
the I/O board can be configured with the rest of

Figure 2: Simple drive train with two controller parts and three communication blocks.

Figure 3: Menu of a communication block.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 357

the options, as well as the task/subtask properties
of the equations that generate the signal to be
sent to the I/O board.

• Communication from a port. This defines that
the output signal is received from an I/O board
or from a bus. In this case, the communication
block has no input signal. All properties of the
I/O board can be configured with the rest of the
options, as well as the task/subtask properties of
the equations that use the received signal.

Depending on the selected option, input fields of the
parameter menu are enabled. These are mostly re-
placeable models using Modelica ExternalObjects.
For example, when clicking on "toPort", all currently
loaded device drivers to send a signal to an I/O board
are listed. Selecting the desired device driver and
then clicking on the "table" symbol to the right of the
menu, opens the driver specific menu to configure
this particular device.

Whenever a user introduces a device driver that is
derived by inheritance from one of the partial models
defined in Modelica_EmbeddedSystems.Interfaces
(like Interfaces.BaseReal.PartialWriteRealToPort),
this device driver is automatically included in the
corresponding list of the communication block, due
to the “choicesAllMatching” annotation defined in
this block.

The important point is that all these hardware
configuration settings can be made without copying
the "logical model" and modifying it, but just inherit-
ing from it and applying modifiers on the communi-
cation blocks.

When clicking on "inSubtask", the sub-
task/task/target properties of the model part can be
defined that is connected to the input of the commu-
nication block (in a similar way, the properties of the
output can be defined with “outSubtask”). In Figure
4 a typical screen shot is shown:

This is a hierarchical structure where all properties of
a mapping annotation can be defined (for details see
section 4). In Figure 4, the top-most hierarchical dia-
log level is shown to define the identifier, the sam-
pling properties and the integration method of the

subtask in which the input signal is running. The
subtask identifier is a string that must be unique
within a task. If the same subtask shall be referenced
in different communication blocks, identical subtask
identifiers must be given.

The second level of the dialog is shown in Figure
5, to define the task identifier, the task priority, the
basic sample period (if the task is periodically sam-
pled) and the core, if the task is running on a multi-
core machine.

Finally, the third level of the dialog (shown in Figure
6) is used to define the identifier of the target on
which the task is running and the “kind” of the tar-
get. The kind property will identify in a tool-specific
way all properties of the target machine that need to
be known for the code generation (e.g. if the target
has or does not has a floating point unit).

From the information provided in the communication
blocks, it is possible to partition all equations of the
flattened Modelica model in to the desired pieces.
E.g., in the example above, two different C-codes are
generated, one for the two controller parts and one
for the plant and both are running in different tasks.
The reference and the feedback controller are run-
ning with different sampling rates in the same task
(sub-sampling).

The algorithm to determine the equations that be-
long to the different parts is sketched in section 4.4.
In short, the BLT-algorithm (usually used by Mode-
lica translators to determine the sorting of the equa-
tions) must be applied two or three times additionally
on the model equations. So, a Modelica tool vendor
has the basic algorithm already and must just apply it
in some variants.

Note, subtask properties (like sampling period)
may be defined at the input and/or at the output of a

Figure 4: Defining subtask properties of the input
signal of a communication block.

Figure 5: Defining task properties.

Figure 6: Defining target properties.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 358

subtask. If a subtask has several inputs and/or several
outputs it is sufficient to define this information only
at one location. For example in the use case of Fig-
ure 2, the properties of a subtask are defined at the
output signal of the respective subtask.

3.2 Configuring Subtasks, Tasks, Targets and
Devices.

All information to configure the subtasks, tasks and
targets could be given in the hierarchical menus of
the communication blocks shown in Figure 4, 5, and
6. However, this has a significant drawback: In the
example above, the same target properties have to be
defined three times (for all three different subtask
definitions) and the task properties of the controllers
have to be defined twice (for the “reference” and for
the “feedbackController” subtask). Even more criti-
cal is the configuration of the device drivers. For
example, an IO board is typically initialized once
and then channel assignment takes place. It is diffi-
cult to define such initialization processes in the
communication blocks.

In order to avoid redundant definitions and to
have a simple way to initialize the device drivers, it
is recommended to define all configuration options
at one place once on the top level of the control sys-
tem. An example is block “comedi” in the lower left
part of Figure 2, where the control system is config-
ured for real-time Linux using the comedi device
drivers (Comedi 2009).

This block consists of record instances to define
subtask, task and target properties of all parts of the
control system and to initialize the used device driv-
ers. For example, Modelica_EmbeddedSystems.-
Configuration.Subtask is defined as:
record Subtask
 parameter Task inTask = Task();
 parameter identifier = "Default";
 ...
end Subtask;

The first parameter in the record is “inTask” which
is an instance of record “Task”. In order to auto-
matically have a hierarchical menu built up, a default
value of “Task()” is given, i.e., the record construc-
tor of record “Task” is called. When using the Sub-
task record in a configuration block, the “task” prop-
erties are defined in an instance of record “Task”
(called “controller” in Figure 7). In the subtask defi-
nitions, like “slowSampler” and “fastSampler” in
Figure 7, parameter “inTask” is defined as the in-
stance name of the record task (“controller” in Figure
7). By this technique, the configuration is defined in
a non-redundant way.

Device drivers are record instances where device-
specific configuration options are given and a final
parameter is used for the device handle that is de-
fined by a call to the constructor of the respective
ExternalObject.

Finally, a hierarchical modifier is used to refer-
ence the configuration record instances at the appro-
priate places in the communication blocks. For ex-
ample, parameter “inSubtask” in the communication
block at the output of the feedback controller in Fig-
ure 2 is defined as “comedi.fastSampler”. In Dymola
this can be conveniently defined by just clicking on
the small arrow at the right part of the input field of
“inSubTask” and selecting “Insert Component Ref-
erence”. Dymola presents a list in which the in-
stances (like comedi.fastSampler) are listed that can
be utilized in the input field, and the modeler has just
to select the appropriate entry.

3.3 Mapping to Target Data Types

Modelica has the four basic data types Real, Inte-
ger, Boolean and String that are usually mapped
by Modelica translators to the C-types “double”,
“int”, “int” and “char*”, respectively. In many
cases a different mapping is desired if the target is an
embedded micro-controller. The details how this is
defined is not standardized in Modelica 3.1. Stan-
dardization will occur when more practical experi-
ence is gained. In the meantime, vendor-specific en-
hancements have to be used.

In the simplest case, the “target.kind” definition
in the “Target” record defines the type of the target
machine. A vendor may associate different data type
mappings for different target kinds. For example, a
Modelica “Real” type may then be automatically
mapped to a C “float” type.

Figure 7: Configuration of use case for real-time
Linux with the comedi device drivers.

Target machine

Task and processor
(on target machine)

Sampling and
integrator (in task)

Device initialization
and configuration

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 359

For cheap microprocessors that do not have a
floating point unit, such an automatic type mapping
is not sufficient. For this purpose, vendor-specific
variable annotations are planned that can be changed
via hierarchical modifiers. The purpose is to allow
definitions of the following form:

block Controller
 Real x(min=20, max=80);
 ...
end Controller;

Controller myController(x annotation(
 mapping(__NameOfVendor(
 targetType = uint16,
 min=10, max=100))));

The interpretation is that “x” is mapped on the target
machine to an unsigned 16-bit integer “xi” with
range [0 .. 65535] so that x = 10.0 is mapped to
xi = 0 and x = 100.0 is mapped to 65535:

xi = round((x – 10)*65535 / (100-10))

The “targetMapping” min/max values (10 .. 100)
might be different from the variable min/max values
(20 .. 80) in order to have a margin so that operations
on “xi” do not immediately cause overflow.

It is of course not practical to define such a data
type mapping on every variable in a controller ma-
nually. Here, special tool support is needed. Possible,
tool-specific approaches might be:

• All variables from the model part that shall be
downloaded are displayed in a hierarchical vari-
able browser and the GUI supports a convenient
way to define the mapping quickly for sets of va-
riables (e.g., all selected variables, or all vari-
ables of the same type in a particular hierarchy).

• The data type mapping might be defined for a
few variables only (e.g., for the input variables).
Via the equation-based relationships between va-
riables, this mapping is propagated along the eq-
uations. E.g., if “a = b + c” and a data type map-
ping is defined for “b”, but not for “a” and “c”,
then “a” and “c” are mapped in the same way as
“b”. This approach is similar to the automatic
“unit” propagation in Dymola.

This approach of data type mapping has the big ad-
vantage that every Modelica model can be utilized
even on cheap microprocessors without any changes
to the “logical” model (at least in principal). In con-
trast, the standard approach in many controller envi-
ronments is much more restrictive: Every model has
to be defined from the beginning in the desired data
types of the expected target system. As a result,
whenever a controller is designed, it must be re-
implemented from scratch for a particular target sys-
tem.

4 Modelica Language Extensions
In this section the Modelica language extensions and
the needed algorithms are sketched to implement the
approach discussed above. All the details can be
found in the Modelica 3.1 Language Specification
(Modelica 2009, Chapter 16).

4.1 Defining Subtask Boundaries

Boundaries of subtasks are identified with the fol-
lowing built-in operator (which is part of the built-in
package “Subtask”):

Subtask.decouple(v); // same as v
A boundary between a subtask A and a subtask B is
defined by using this operator in an equation of sub-
task A with a variable v which is computed in sub-
task B. The operator returns its argument. Typically,
this operator is used as:

u = Subtask.decouple(y);

where y is an output of subtask B and u is an input of
subtask A. The effect is that “u = y” and “u” and “y”
are in different subtasks.

4.2 Defining Subtask, Task and Target

The “mapping” annotation defines properties of va-
riables. This annotation can only be applied on a dec-
laration of a variable that does not have a constant
or parameter prefix. It is usually applied on input
and output variables of a subtask or a task. Example:
parameter Modelica.SIunits.Time Ts;
RealInput u annotation(mapping(
 target (identifier = "cluster"),
 task (identifier = "slowTask",
 sampleBasePeriod = Ts),
 subtask(identifier = "reference",
 samplingType =
 Subtask.SamplingType.Periodic,
 samplePeriodFactor = 4)));

The meaning is that variable “u” is in the subtask
“reference” which is periodically sampled with a
sample period of “4*Ts”. Subtask “reference” is
within task “slowTask” that has a base sampling pe-
riod of Ts. Task “slowTask” shall be downloaded to
the target machine with the name “cluster”.

The mapping annotation is formally defined by
the following hierarchical record definition (as with
all annotations, also here vendor-specific extensions
can be added):
record mapping
 Boolean apply = true;
 Target target ;
 Task task ;
 Subtask subtask;
end mapping;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 360

record Target
 String identifier="DefaultTarget";
 String kind = "DefaultTargetType";
end Target;

record Task
 String identifier = "DefaultTask";
 Integer onProcessor = -1;
 Integer priority = 1;
 Modelica.SIunits.Period
 sampleBasePeriod = 0;
end Task;

record Subtask
 String identifier= "DefaultSubtask";
 Subtask.SamplingType samplingType =
 Subtask.SamplingType.Continuous
 Integer samplePeriodFactor(min=1)= 1;
 Integer sampleOffsetFactor(min=0)= 0;
 IntegrationMethod integrationMethod
 = "SameAsSimulator";
 Modelica.SIunits.Period fixedStepSize;
end Subtask;

All values supplied to these records can be parameter
expressions. If

mapping(apply = false,
 target (..),
 task (..),
 subtask(..));

the “target(..), task(..), subtask(..)” definitions are
ignored. This is, e.g., used to conveniently define in
a parameter menu whether the input and/or the out-
put signal of a communication block defines tar-
get/task/subtask properties without complicated
Modelica code.

The mapping annotation defines that the respec-
tive variable is computed in the task with the identi-
fication “task.identifier” and with the task priority
“task.priority”, on the target platform (e.g., com-
puter, processor) with the identification “tar-
get.identifier” on processor “onProcessor”.

The interpretation of task.identifier,
task.onProcessor, task.priority, target.identifier and
target.kind is tool-dependent. For example, tar-
get.kind may identify a multi-processor or multi-core
target machine and task.onProcessor may identify
the processor or core on this target. Alternatively, a
tool may identify a particular processor or core with
target.kind and may ignore task.onProcessor.

The respective task may have one or more sub-
tasks. A task is active when any of its subtasks is
active. A subtask is defined with the following prop-
erties:

• If samplingType = Subtask.SamplingType.-
Continuous, the subtask is a continuous system
that is always active.

• If samplingType = Subtask.SamplingType.-
Periodic, the subtask is periodically sampled
with a sample period of “samplePeriodFactor *
task.sampleBasePeriod” and an offset of “sam-
pleOffsetFactor*task.sampleBasePeriod”. So
sample period and sample offset are integer mul-
tiples of the task.sampleBasePeriod.

• The differential equations in a subtask are inte-
grated according to the “integrationMethod”
property. For fixed-step integration methods, a
fixed integrator step size of fixedStepSize is
used. A tool may adapt the selected fixed step
size, e.g., by automatically restricting it to the
time from the previous to the actual activation.
Usually, fixedStepSize = samplePeriodFactor *
task.sampleBasePeriod. In some applications,
fixedStepSize might be smaller than one sample
period, in order to have several integrator steps
in one sample period since otherwise the fixed
step size integration method might not be stable.

The mapping annotation influences the simulation
result and therefore different simulation results might
be obtained if this annotation is removed.

4.3 Inquiring Subtask Properties

In order for purely discrete models to be imple-
mented, there are two operators to inquire properties
of the subtask in which the model is running:

• Subtask.activated():
Returns true at the activation time instant of the
subtask, where this operator is called. At all oth-
er time instants when the associated task is exeu-
ted, including initialization, the operator returns
false.

• Subtask.lastSampleInterval():
Returns the time instant from the activation time
instant of a subtask to the previous activation
time instant of the same subtask, where this op-
erator is called.

If one of these operators is used, the corresponding
subtask is not allowed to have subtask.sampleType =
Subtask.SamplingType.Continuous.

In many standard cases these operators are not
needed. Typically, a controller block, like a PI block,
is implemented in its continuous form. When the
subtask is periodically sampled, the Modelica trans-
lator automatically derives the discrete form, if an
appropriate integration algorithm with fixed step-size
is used. For linear control systems it is recommended
to use the trapezoidal integration algorithm, since
this gives the closest correspondence between the
continuous and the sampled form and only small lin-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 361

ear equation systems must be solved in the discrete
form (since the trapezoidal method is an implicit in-
tegration algorithm).

In some cases, a controller has only a discrete re-
presentation. A typical example is a finite impulse
response (FIR) filter. A mean value FIR filter, would
be typically implemented in the following form:
block meanValueFilter
 import Modelica.Blocks.Interfaces;
 Interfaces RealInput u;
 Interfaces.RealOutput y;
equation
 when {initial(), Subtask.activated()}
 then
 y = (u + pre(u)) / 2;
 end when;
initial equation
 pre(u) = u; // steady state init
end meanValueFilter;

4.4 Partitioning a Model in to Parts

Via the decouple(..) operator and the mapping an-
notation, certain variables of a model are marked. In
this section the algorithm is sketched how to derive
all equations that belong to a particular subtask and
task, respectively:

This requires the “Block Lower Triangular” (BLT)
transformation to be applied several times. The BLT
algorithm is, e.g., described in (Pantelides 1988).
This is the standard algorithm used in Modelica
translators to sort the equations of a model and iden-
tify the algebraic loops. In (Pantelides 1988) it is
shown that a differential-algebraic equation system
does not have a unique solution2, if all “der(v)” are
replaced by “v” and a unique assignment for all un-
known variables is not possible (“v” are treated as
unknown variables in this case).

We will use a similar technique below. The moti-
vation is that the “der(..)” and “pre(..)” operators act
as “loop breakers” between equation systems. If
“der(v1)” is replaced by “v1” and “pre(v2)” is re-
placed by “v2” and all “v1” and “v2” are treated as
unknowns, then algebraic loops are present between
all equations that need to be “treated” together.

Based on this observation we can now sketch the
partitioning algorithm:

1. BLT to determine the (asynchronous) tasks:

If tasks are present, there are function calls to receive
signals from another task or from external inputs and

2 or more precisely, the system has an infinite index. If on
the other hand all variables “v” have a unique assignment,
then and only then, the “Pantelides” algorithm to deter-
mine the equations to be differentiated will converge.

to send signals to another task or external outputs.
From a Modelica point of view, there is no coupling
between variables of different tasks (due to the func-
tion calls) and therefore the equations are naturally
“cut” in to partitions. These partitions are determined
by replacing all pre(v1) with v1 and all der(v2) by
v2 and by performing a BLT transformation.

All BLT blocks that have variables with the same
task.identifier annotation belong to the same task. If
a BLT block B references one or more variables that
are assigned in a BLT block A, that belongs to a task
task.identifier, then all equations of B belong to task
task.identifier. If a BLT block C references variables
that are assigned in B, then all equations of C belong
to task task.identifier, and so on. If a BLT block, di-
rectly or indirectly, references variables that are as-
signed in two different tasks, this is an error (wrong
mapping annotations). All remaining BLT blocks
that do not belong to any task are collected together
to a “continuous” default task. This default task is
usually running on the host machine or might also be
deactivated (not running).

2. BLT to determine the (synchronous) subtasks:

This is achieved by inspecting all equations of every
task. For every task, the decouple(v) operators are
conceptually replaced by zero, so that “v” is no long-
er part of the equation where decouple(v) appeared.
As a result, subtasks are decoupled. BLT is per-
formed on all equations of a task by replacing all
pre(v1) with v1 and all der(v2) by v2.

If one or more variables of a BLT-block A have a
subtask annotation, the equations belong to this sub-
task S. If a BLT block B references one or more va-
riables that are assigned in A, all equations of B be-
long also to S. If a BLT block C references variables
that are assigned in B, all equations of C belong also
to S, and so on. All remaining BLT blocks that do
not belong to any subtask, are collected together to a
“continuous” default subtask. It is an error, if a BLT
block, directly or indirectly, references variables that
are assigned in two different subtasks. If different
subtasks have identical samplingType, samplePe-
riodFactor and sampleOffsetFactor, the subtasks can
be merged (the subtasks are sampled at the same
time instants but different integration methods are
used for the subtasks).

3. BLT to determine the sorted equations in a task:

Standard BLT is performed on the equations of a
task (identified in step 1) to determine the execution
order of all equations. In this phase, every “de-
couple(v)” operator is replaced by “v”. If sampled
subtasks are present, the corresponding equations

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 362

(identified in step 2) must be guarded by if-clauses
and must be only evaluated if the corresponding
sampling event occurs. As a result the sorted (syn-
chronous) equations of a task are obtained.

Note, due to the equation sorting, it is guaranteed
that a variable reading from an input communication
channel is only used after it is read and that a vari-
able is first computed before writing it to an output
communication channel.

The description above was made for clarity. It is,
however, not the most efficient implementation. For
example, it is possible to combine step 1 and 2, by
just performing the BLT transformation according to
step 2, i.e., in total only two and not three BLTs are
needed . The task/subtask annotations are then used
in a corresponding way to determine the tasks and
subtasks.

5 Conclusions
In this article, a powerful extension to Modelica has
been described that is used to define a “logical”
model in Modelica and from this same model derive
various “real” representations as needed for, e.g.,
Model-in-the-Loop, Software-in-the-Loop, or Hard-
ware-in-the-Loop Simulation, as well as rapid proto-
typing, or generation of production code. With re-
spect to standard approaches in state-of-the-art con-
trol design environments, no copying of model parts
takes places and the data type on the target machine
is defined as a mapping rule of the “logical” model.

The language elements are not complete and
some features are missing. After getting more ex-
perience with this new way of describing control
systems, more features will be standardized and
missing features will be added. Especially, it is
planned to include triggered subtasks in the next ver-
sion.

6 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA2 project EUROSYSLIB is highly appre-
ciated (www.itea2.org/public/project_leaflets/EU-
ROSYSLIB_profile_oct-07.pdf).

Dynasim thanks the Swedish funding agency
VINNOVA (2008-02291) for partial funding for this
work within the ITEA2 project MODELISAR.

Furthermore, we would like to thank our Mode-
lica Association colleagues Ramine Nikoukhah (IN-
RIA), Torsten Blochwitz and Gerd Kurzbach (ITI
GmbH) for fruitful discussions.

References
Akesson J., Nordström U., Elmqvist H. (2009): Dymola

and Modelica_EmbeddedSystems in Teaching –
Experiences from a Project Course. In: F. Casella
(editor): Proc. of the. 7th Int. Modelica Conference,
Como. www.modelica.org/events/modelica2009

Bauschat, M., Mönnich, W., Willemsen, D., and Looye,
G. (2001): Flight testing Robust Autoland Con-
trol Laws. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, Montreal CA.

Comedi (2009). Linux Control and Measurement Device
Interface. www.comedi.org.

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
www.dymola.com.

Franke R., Babji B.S., Antoine M., Isaksson A. (2008):
Model-based online applications in the ABB Dy-
namic Optimization framework. In: B. Bachmann
(editor): Proc. of the 6th Int. Modelica Conference,
Bielefeld. www.modelica.org/events/-
modelica2008/Proceedings/sessions/session3b1.pdf

Looye G., Thümmel M., Kurze M., Otter M., Bals J.
(2005): Nonlinear Inverse Models for Control. In:
G. Schmitz (editor): Proc. of the 4th Int. Modelica
Conference, Hamburg.
www.modelica.org/events/Conference2005/online_
proceedings/Session3/Session3c3.pdf

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Pantelides C. (1988): The consistent initialization of
differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, pp. 213-231.

Schäuffele J. and T. Zurawka (2005): Automotive Soft-
ware Engineering – Principles, Processes, Meth-
ods and Tools. SAE International. ISBN-10 0-
7680-1490-5.

Thümmel M., Otter M., Bals J. (2005): Vibration Con-
trol of Elastic Joint Robots by Inverse Dynamics
Models. H. Ulbrich, W. Günthner (editors): IUTAM
Symposium on Vibration Control of Nonlinear Me-
chanisms and Structures, München, ISBN 978-1-
4020-4160-0, pp. 343-353.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 363

A New Formalism for Modeling of Reactive and Hybrid Systems

Martin Otter1, Martin Malmheden2, Hilding Elmqvist2, Sven Erik Mattsson2, Charlotta Johnsson3

1German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany
2 Dassault Systèmes, Lund, Sweden (Dynasim)

3 Department of Automatic Control, Lund University, Sweden
Martin.Otter@dlr.de, Martin.Malmheden@3ds.com, Hilding.Elmqvist@3ds.com,

SvenErik.Mattsson@3ds.com, Charlotta.Johnsson@control.lth.se

Abstract
A new Modelica library is presented that is used to
model safe hierarchical state machines in combina-
tion with any Modelica model, e.g., controllers, logi-
cal blocks, and physical systems described by diffe-
rential-algebraic equations. It has been designed to
simplify usage, improve safety aspects and to har-
monize with the design of the new Modeli-
ca_EmbeddedSystems library. Furthermore, new
blocks are introduced to define actions in a visual
way, and not textually. The library is inspired by Sta-
techarts, Sequential Function Charts, Safe State Ma-
chines (SSM) and Mode-Automata. It has been de-
signed so that only small extensions to Modelica 3.1
are needed. The algorithms are sketched that are
used to guarantee consistent graphs that give a li-
mited number of event iterations. Furthermore, it is
shown how a symbolic verifier can be used to guar-
antee additional properties of state machines.

Keywords: ModeGraph; Statechart, Sequential
Function Charts, Mode-Automata, Safe State Ma-
chines; NuSMV; reactive systems, hybrid systems.

1 Introduction
In this article the open source Modelica_StateGraph2
library is presented. This is version 2 of the existing
Modelica.StateGraph library (Otter et. al. 2005). It is
planned to replace Modelica.StateGraph in one of the
next releases of the Modelica Standard Library with
Modelica_StateGraph2. Besides the basic Step and
Transition mechanism, all other parts have been re-
designed and significantly improved based on the
experience with the experimental ModeGraph library
(Malmheden et. al. 2008). Note, below the name

“StateGraph” is often used as abbreviation for the
full name “Modelica_StateGraph2”.

The StateGraph library is inspired by Statecharts
(Harel 1987), Sequential Function Charts (SFC),
Safe State Machines (SSM) (André 2003), and
Mode-Automata (Maraninchi and Rémond 2002).
The primary purpose of the library is to provide sup-
port for modeling of reactive and of hybrid systems
and to verify certain properties of such systems.

Reactive systems react to stimuli from their envi-
ronment, see, e.g. (Benveniste et. al. 2003). In com-
bination with the Modelica_EmbeddedSystems li-
brary (Elmqvist et. al. 2009), the StateGraph library
can be used to model such systems and it will be
possible to use StateGraph models in production
code of embedded systems.

Hybrid systems combine closely continuous-time
models and discrete event systems, see, e.g. (Lynch
2002). The StateGraph library is implemented with
the Modelica language and therefore every Modelica
model, i.e., models consisting of differential, alge-
braic and discrete equations, as well as functions, can
be conveniently and naturally combined with state
diagrams constructed with the StateGraph library.

2 Using Modelica_StateGraph2
In this section an overview is given of how to use the
library by several small examples.

2.1 StateGraph Elements

A StateGraph graph is constructed by three elements:
Step, Transition, and Parallel that will now be dis-
cussed in some detail.

Step
A Step is the graphical representation of a state and
is said to be either active or not active. A StateGraph

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 364 DOI: 10.3384/ecp09430108

model is comprised of one or more steps that may or
may not change their states during execution. A Sta-
teGraph model must have one initial step. An initial
step is defined by setting parameter initialStep at one
step to true. The initial step is visualized by a small
arrow pointing to this step, see Step s1 in Figure 1.

Transition
To define a possible change of states, a Transition is
connected to the output of the preceding Step and to
the input of the succeeding
Step, see, e.g., Figure 1,
where Transition t1 defines
the transition from Step s1 to
Step s2. Note: A Transition
has exactly one preceding
and one succeeding Step. A
Transition is said to be
enabled if the preceding step
is active. An enabled transi-
tion is said to be fireable
when the Boolean condition
defined in the parameter
menu of the transition is eva-
luated to true. This condition
is also called “Transition
condition” and is displayed in
the icon of the Transition. When parameter
“use_conditionPort” is set, the Transition condition
is alternatively defined by a Boolean signal that is
connected to the enabled “conditionPort”. A fireable
transition will fire immediately. In Figure 1, t1 fires
when s1 is active and time is greater than one.

The firing of a transition can optionally also be
delayed for a certain period of time. See, e.g., t2 in
Figure 1, that is delayed for one second before it may
fire, given that the condition remains true and the
preceding Step remains active during the entire delay
time. The evolution of a graph over time can be vi-
sualized by diagram animation: Active steps and
Boolean variables that are true are marked in green
here, see, e.g., Figure 1.

Parallel
Subgraphs can be aggregated into superstates by us-
ing the Parallel component. This component acts
both as a composite step (having just one branch)
and as a step that has parallel branches. The Parallel
component, often referred to as “p” in the following
figures, allows the user to place any StateGraph ele-
ment inside it, especially Steps, Transitions, and Pa-
rallel components.

A Parallel component has always an entry port,
see Figure 2, and it may have optionally an exit port.
All branches in a Parallel Component must start at
the entry port and at least one must terminate at the

exit port, provided the exit
port is enabled via parameter
“use_outPort”. If a Parallel
component shall be entered
from the outside via a Transi-
tion, parameter “use_inPort”
must be set to true, to enable
an input port. If a Parallel
Component shall be left via a
transition to an outside step,
parameter “use_outPort” must
be set to true, to enable the
output and the exit port. A
Parallel component may be
used as initial step, by setting
parameter initialStep to true.
This property is again visua-
lized by a small arrow point-
ing to the Parallel component,
see Figure 2.

A Parallel component may be suspended and sub-
sequently resumed. In Figure 3, Transition T6 fires
whenever the input signal u is true, suspending the
Parallel component p and the enclosed Steps s2, s3,

Figure 3: Parallel component with 2 parallel branches
that is suspended whenever the input u is true.

Figure 1: Model
with two steps and
two transitions

Figure 2: A Parallel
component with a
small sub-system.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 365

s4 and s5 for two seconds. When Transition T7 fires,
p is re-activated in the same state as when it was
suspended.

As mentioned before, inPorts and outPorts of a
Parallel component are optional and can be set by the
user. If the parallel component has an inPort, then
the entry port constitutes the connection between the
Transition connected to the inPort and the first Steps
to be activated in the Parallel component. If the Pa-
rallel component is configured to have an outPort, an
exit port shows up on the bottom of the Parallel
component, see Figure 3.

The Parallel component allows the entry port to
branch out into several parallel paths. These
branches are not allowed to interact, see Figure 3.
When all Steps connected to the exit port are active,
the Parallel component is said to be available and
may exit when the Transition connected to the out-
Port fires. In Figure 3 Transition T5 fires when both
Step s2 and s5 have been active together for one
second and thereby deactivates the Parallel compo-
nent p. Note, in Statecharts parallel branches must be
synchronized via transition conditions, which is in-
convenient. In SFC, all branches are synchronized.
In StateGraph, only branches that are connected to
the exit port are synchronized, which is more flexible
as the SFC approach.

No component contained within the Parallel
component may be connected to any other compo-
nent “outside” of the Parallel component. This rule is
used to protect the user from making mistakes that
could lead to unexpected results and states of the
graph that are not well-defined. Consider for exam-
ple the graph in Figure 4Figure at T=7. Especially,
note that the Parallel component p is never properly

Figure 4: Wrong graph since components in the Paral-
lel component may not be connected to “outside” ones.

terminated through either an outPort or a suspend
port. If the graph would be allowed to execute, the
consequence would be an increasing number of ac-
tive Steps. Such a situation is reported as an error.
The details about the algorithm to accomplish this
are given in appendix A2.

In order to graphically organize large graphs in
different levels of hierarchy and with encapsulation
of variables, StateGraph also contains a component
PartialParallel. It is similar to the normal Parallel
component but introduces a new hierarchy once the
user inherits from it. A number of large subsystems
can thus be abstracted into composite steps to im-
prove organization and overview of the subsystems.
Figure 5 shows a component built from a PartialPa-
rallel component. As the diagram and the icon layer
of the PartialParallel component does not need to be
the same size, the user can benefit from collecting
large subsystems in smaller closed Parallel compo-
nents to improve overview and modularization of the
full system.

Figure 5: Composite derived from PartialParallel
component and its subsystem.

2.2 Graphical Action Blocks

An important practical aspect of state machines is the
ability to assign values and expressions to variables
depending on the state of the machine. In State-
Graph, a number of graphical components, see Fig-
ure 6, have been added to facilitate usage in a safe
and intuitive way. Since these are just input/output
blocks and will also be useful in another context, it is
planned to add them to the Modelica Standard Li-
brary under “Modelica.Blocks”. Some of these
blocks will be explained in this section.

There are a number of standard blocks with
common operations/displays of the three basic types
(Boolean, Integer, Real) using vector input connec-
tors which enables them to be connected to an arbi-
trary number of sources. Resizing a vector port and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 366

connecting to the next free ele-
ment is performed automatically
when connecting to the connector,
see Appendix A4. So this is much
more convenient than with the
Modelica.Blocks.
Logical, Modelica.StateGraph or
ModeGraph libraries. A vector of
input connectors is visualized as
an ellipse, see, e.g., the violet
connector on the left side
of the “and” block in the
figure to the right where
“y = u[1] and u[2]and ...”.

A MultiSwitch block selects
one of n expressions depending
on an array of Boolean inputs.
The index of the first input in the
Boolean array that is true defines
the index of the expression in the
expression array to be used as the
scalar output y. In Figure 7, the
MultiSwitch component will out-
put the value y = 1 if Step s1 is
active, and will output y = 2 if s2
is active as the expression array is
defined as {1,2}. If none of the
Boolean array inputs is true, the
“else” value will be used instead
that is defined in the parameter
menu of the MultiSwitch compo-
nent and is displayed below the

icon. Consider Figure 7 when Step s3 is active – this
will set the output of component “multiSwitch” to
the “else” value “3”. Alternatively, in the parameter
menu of the MultiSwitch component it can be de-
fined to keep its previous value, i.e. y = pre(y). If
this option would be selected for Figure 7, then mul-
tiSwitch.y = 2 when Step s3 is active.

Figure 7: Example of MultiSwitch component for
Integer numbers that depends on different steps.

The MultiSwitch block is inspired by “Modes” from
Mode Automata (Maraninchi and Rémond 2002):
Variable multiSwitch.y has always a unique value,
and this value depends on the expressions that are
associated with mutually exclusive active steps. The
advantages of MultiSwitch are that (1) the definition
is performed in a purely graphical way, (2) it can
also be used for mutually non-exclusive active
steps1, and (3) it can be implemented in Modelica in
a very simple way. The drawback is that the expres-
sions in the MultiSwitch block might no longer be so
easy associated with Steps, compared to the alterna-
tive where the expressions are defined directly in the
respective Steps. This latter approach would, howev-
er, require non-trivial extensions to the Modelica
language.

The RisingEdge, FallingEdge and ChangingEdge
components can be used to generate “pulse” signals
depending on the rising, falling or changing values
of Boolean signals. An example is shown in Figure 8
where the Boolean indicator lamp is turned on when
Step s2 becomes active and is turned off when Tran-
sition t3 fires and Step s3 becomes inactive. Two
variants are shown to utilize the “rising” property of
a Boolean signal: The Boolean connectors at steps
and transitions can be activated via parameters
“use_activePort” and “use_firePort”, respectively. If
s2 becomes active, rising = true and therefore multi-
Switch.y = true. If transition t3 fires, t3.firePort=true
and therefore multiSwitch.y = false.

Figure 8: Two variants to control a Boolean
indicator by a MultiSwitch component.

1 If an MultiSwitch block is connected to steps of different
branches of a Parallel component, a priority is present: If
several inputs are true, then the one has highest priority
that is connected to the lowest index of the vector of input
connectors (= connection line “closest” to the icon name).

Figure 6: Blocks
to define actions
graphically.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 367

2.3 Safe StateGraph models

In this section it will be discussed in which sense
“StateGraph” models are “safe”.

Only valid graph structures are accepted
Contrary to Modelica.StateGraph (version 1 of the
library which is distributed with the Modelica Stan-
dard Library since 2004), only valid graph structures
are accepted for the Modelica_StateGraph2 library.
For example, the model of Figure 4 leads to an error.
In order that this was possible, Modelica 3.1 had to
be enhanced slightly. Details are given in section A2.

One variable is defined by one equation
In all state machine formalisms problems are present
when assignments to the same variables are per-
formed in branches that are executed in parallel. As
an example, in the next figure such a situation in Sta-
teflow (StateFlow 2009) is shown:

The two substates “fill1” and “fill2” are executed in
parallel. In both states the variable “openValve” is
set as entry action. The question is whether open-
Valve will have value 0 or 1 after execution of the
steps. Stateflow changes this non-deterministic be-
havior to a formally deterministic one by defining an
execution sequence of the states that depends on
their graphical position. The grey number on the
right of the states shows in which order the states are
executed. In the figure above this means that “open-
Valve=0” after leaving the two states. If the second
state “fill2” is changed a little bit graphically

“openValve=1” after “fill1” and “fill2” have been
executed. This is a critical situation because (a)
slight changes in the graphical positioning of states
might change the simulation result and (b) if the pa-
rallel execution of actions depends on the evaluation
order, errors are difficult to detect.

In StateGraph such a situation is not possible.
The reason is that StateGraph is implemented in
Modelica and a very basic feature of Modelica is that
every declared unknown variable must be defined by
exactly one equation. This is sometimes called “sin-

gle assignment rule”. It is therefore not possible to
assign the same variable twice in a model. The above
situation would be described in StateGraph instead
with a MultiSwitch action block “openValve” as
shown in Figure 9. Here, everything is well defined:
There are two input connections to the openValve
block. If both become true at the same time instant,
the connection with the “lowest” index (i.e., the up-
per signal in the figure) has highest priority. There-
fore, openValve gets the value true, once the Parallel
component is entered.

Figure 9: Assignment of variables with forced priority
due to Modelicas single assignment rule.

Upper bound on number of model evaluations
At an event instant, an event
iteration occurs, due to the
Modelica semantics (= whenev-
er a new event occurs, the model
is re-evaluated). This means that
Transitions keep firing along a
connected graph, as long as the
firing conditions are true. The
question therefore arises,
whether infinite event looping is
possible? A simple example of
this kind is shown in Figure 10.
Here, all Transition conditions
are true and therefore all Transi-
tions fire forever. This is no va-
lid StateGraph model and will
result in an error.

In order to avoid a situation
as in Figure 10, it is required that
a StateGraph model has at least one delayed Transi-
tion per loop, see Appendix 0. This means that one
of T1, T2, or T3, must be a delayed Transition, oth-
erwise an error occurs. Since event iteration stops at
a delayed Transition, infinite event looping cannot
occur. This also means that at one time instant every
Transition can fire at most once and therefore the

Figure 10: Wrong
graph that gives rise
to infinite looping.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 368

number of model evaluations at an event instant is
bounded by the number of Transition components.

It is still possible that infinite event looping oc-
curs due to model errors in other parts of the model.
For example, if a user introduces an equation of the
form “J = pre(J) + 1” outside of a when-clause, event
iteration does not stop. Although this situation is not
completely satisfactory, it helps already a lot if a tool
points out potential problems of a StateGraph model,
in case delayed transitions are missing.

3 Application Examples
In this section some involved application examples
are shown to demonstrate the usage of the State-
Graph library. These and other examples are availa-
ble in the library under “Examples.Applications”.

3.1 Harels wristwatch

When presenting the Statecharts formalism in (Harel
1987), David Harel identified and described the be-
havior of his Citizen Quartz
Multi-Alarm III wristwatch
(see schematic figure to the
right) using the new visual
formalism as a case study to
proof his new formalism to be flexible enough to
describe the intricate structure of the wristwatch be-
havior in a comprehensible and clean way. As the
wristwatch example serves as a challenging bench-
mark for the capabilities of a graphical formalism, it

has been included as an application example in the
StateGraph library to demonstrate that the library is
flexible enough to realize this example in a good
way. It also serves as a template for other human
interfaces. For example, an automotive cruise control
has several switches and some of them have different
levels. There are different influences if in cruise
mode or not.

The wristwatch display is comprised of a number
of different display modes showing the current time
(displayed in either 12h or 24h mode), time setting
(also in either 12h/24h mode), date/date setting (day,
month, day of week, year etc.), alarm setting, chime
setting, and a stopwatch display. The stopwatch can
be turned on, off, stalled when running to show lap
time and reset when stopped. The chime functionali-
ty is triggered each time the clock reaches a whole
hour that makes the chime beep for two seconds.
Furthermore, the wristwatch has two concurrently
running alarms that sound when the time hits their
respective configured time, display back-light for
improved illumination, alarm test functionality and
low battery warning.

The wristwatch is operated by four buttons A, B,
C and D. Button A switches between the different
modes where time and date can be set, alarms and
chime can be set and turned on/off and the stopwatch
can be run, paused and reset. When in a time-, date-,
alarm- or chime-setting mode, button C can be used
to flip through between different quantities that the
current time/alarm/chime-setting can be incremented
with the currently chosen quantity using button D.

Figure 11: Top level of the StateGraph that defines Harels wristwatch.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 369

When updating the time or an alarm time, button B
can be used to immediately return to displaying ei-
ther time or the current setting of the current alarm.

There are in total six concurrently running sub-
systems (Main – containing all the display and set-
ting behavior, Alarm 1 Status, Alarm 2 Status,
Chime Status, Back-Light and Power Status) that
independently of each other react to the user input
and the current time. There is also interaction be-
tween the Main subsystem and the Alarms/Chime
Status to make it possible to concurrently guard the
status of each functionality depending on the current
time but also provide means to update their setting
using only the given four buttons. The Main view of
the StateGraph implementation of the wristwatch can
be seen in Figure 11.

3.2 Controlled tank system

As another application example, the control of a tank
system is present in the StateGraph library. This ex-
ample is based on a similar system from (Dressler
2004), which in turn is based on an example model
of Karl Erik Årzén from the JGraphCharts manual.
The top level view is shown in Figure 12: On the
right side a two-tank system is present which is
modeled with the Modelica.Fluid library (Franke et.
al. 2009): It consists of an infinite reservoir of water,
“reservoir”, that flows via two tanks, “tank1,

Figure 12: Two tank system controlled by 3 buttons.

tank2”, to the environment, “ambient”. The flow can
be controlled by three valves, “valve1, valve2,
valve3”. There are three buttons, “start”, “stop”,
“shut”, to control the operation. The actual level of a
tank is measured in an ideal way by accessing va-

riables tank1.level and tank2.level. All variables are
communicated via an ideal bus “bus” to the tank
controller. The basic operation is to fill and empty
the two tanks:

1. Valve 1 is opened and tank 1 is filled.
2. When tank 1 reaches its fill level limit, valve 1 is

closed.
3. After a waiting time, valve 2 is opened and the

fluid flows from tank 1 into tank 2.
4. When tank 1 is empty, valve 2 is closed.
5. After a waiting time, valve 3 is opened and the

fluid flows out of tank 2
6. When tank 2 is empty, valve 3 is closed

The above "normal" operation can be influenced by
three buttons:

 Button “start” starts the above process. When this
button is pressed after a "stop" or "shut" opera-
tion, the process operation continues.

 Button “stop” stops the above process by closing
all valves immediately. Then, the controller waits
for further input (either "start" or "shut").

 Button “shut” is used to shutdown the process, by
emptying both tanks at once. When this is
achieved, the process goes back to its start confi-
guration. Clicking on "start", restarts the process.

The tank controller is hierarchically modeled with
two Parallel components and some logical blocks:

Figure 13: Top level view of tank controller logic.

The “MakeProduct” Parallel component is the initial
step and performs the “normal” operation. When the
“stop” button is pressed, the suspend transition T8
fires, the “MakeProduct” step is suspended and the
graph goes in to step “stopStep1”. Note, the transi-
tion condition of T8 is “bus.stop”, i.e., this transition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 370

fires when variable stop from the bus is true. When
“start” is pressed again, the “MakeProduct” step is
resumed at the place where it was suspended. When
“shut” is pressed, the Parallel component “ShutStep”
is entered to shut down the tank system. Here it is
still possible to press the “stop” button and then
again continue with “shut”.

4 Formal definition of StateGraph
In section 2.1 an informal introduction to the State-
Graph formalism was given. In this section, a precise
mathematical description of StateGraph models will
be presented. The formal definition describes the
structure of a StateGraph model and its interpretation
algorithm (= semantics).

4.1 Structure of a StateGraph model

A StateGraph model, , is described by a 4-tuple:

 = < Vc, G, T, gI >

where

 Vc is a set of Boolean expressions. Boolean ex-
pressions are used as conditions of transitions.
They are either external inputs or the outputs of
Modelica models. A Modelica model consists of a
set of differential, algebraic and discrete equa-
tions, see (Modelica 2009, Appendix C).

 G is the set of Generalized Steps, G = {g1, g2, ,...}.
A Generalized Step gi G can be active or not ac-
tive, signaled by the Boolean Active(gi). A Gene-
ralized Step gi G is described by the 5-tuple
 < I, R, O, S, s >
where
 I is a vector of in (entry) ports I = [i1,i2,...],
 R is a vector of resume ports R = [r1,r2,...],
 O is a vector of out (exit) ports O = [o1,o2,...],
 S is a vector of suspend ports S = [s1,s2,...],
 s is a set of sub-graphs s = {γ1,γ2,...}
A Generalized Step gi that has only in and out
ports, < I, O >, is also called Step.
A Generalized Step gi where R, S or s is not an
empty set, is also called Parallel Step.
A sub-graph γi s is described by a 5-tuple
< Vc, G, T, gI, gE > where Vc, G are a set of Boo-
lean expressions and a set of Generalized steps as
described above, T is the set of Transitions as de-
scribed below, gI G is the initial generalized
step that is first activated when the sub-graph γi is
“normally” activated and gE {, G} is the op-
tional exit generalized step that is the last active
step, before the sub-graph γi is de-activated.

 T is the set of transitions, T = t1, t2, t3, …. A
transition ti T is defined by the 4-tuple
 ti = < pIR(ti), pOS(ti), Condition(ti), Delay(ti) >
where
pIR(ti) is a connected port of an in or resume vec-
tor of a succeeding generalized step gi G.
pOS(ti) is a connected port of an out or suspend
vector of a preceding generalized step gi G.
Condition(ti) Vc is the fire condition associated
with ti

Delay(ti) {, R+} is the optional delay time as-
sociated with ti. If present, the delay time is a
positive real number, Delay(ti) > 0.
There is the restriction, that every “loop” must
have at least one transition ti with Delay(ti) > 0 in
order to avoid infinite transition looping.

 gI is the initial generalized step, gI G.

4.2 Interpretation Algorithm

The dynamic behavior of a StateGraph = < Vc, G,
T, gI > is given by the interpretation algorithm pre-
sented below:

(1) The initial step gI is activated. If the initial step
has sub-graphs γi s, then all initial steps gI of
these sub-graphs are activated as well. If an ini-
tial step gi GI of a sub-graph has again sub-
graphs, then all initial steps of these sub-graphs
are recursively activated.

(2) Active(gi) of all Generalized Steps, including all
recursive sub-graphs, is set to true, if gi is active.
Otherwise it is set to false. Models are solved us-
ing Active(gi) as inputs.

(3) The condition expressions of all transitions in T
and in all recursive sub-graphs are evaluated (ei-
ther from external inputs or from outputs of
models).

(4) All Transitions are determined where (a) the
Transition condition is true and (b) the preceding
Generalized Step is active and (c) all exit steps
gE of all sub-graphs γi s of the preceding Ge-
neralized Step are active, as well as of all exit
steps of sub-graphs of exit steps recursively. For
every such Generalized Step, at most one Transi-
tion can fire. For Transitions having the same
preceding Generalized Step, the one connected
to the out port or if both are connected to the
same port vector, the one with the smallest vec-
tor index of the out or the suspend port respec-
tively is marked as “fires”.

(5) All Transitions that are marked as “fires” in (4)
are firing, i.e., the respective preceding Genera-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 371

lized Step of a Transition is deactivated and the
succeeding Generalized Step of the Transition is
activated. If a transition has a non-zero delay-
time, it fires after the delay time, provided all
conditions of (4) remain true during the delay
time.
 Deactivating a Generalized Step that has sub-
graphs γi s means, that all Generalized Steps
in these sub-graphs and their recursive sub-
graphs are deactivated as well.
 Activating a Generalized Step that has sub-
graphs γi s means that either (a) all initial
steps gI of these sub-graphs and their recursive
sub-graphs are activated, or (b) the Generalized
Steps are activated that have been active when
this step was deactivated the last time. Case (b)
is used, if the last deactivation of this step was
performed via a transition of a suspend port.
Otherwise case (a) is used.
 Goto (2).

4.3 Example

The StateGraph given in Figure 3 can be presented
by the 4-tuple .

 = < Vc, G, T, gI >

where

Vc = {true, u},
G = {s1, s6, p}

s1 = < i[1], o[1], , , >
s6 = < i[1], o[1], , , >
p = < i[1], o[1], s[1], r[1], {γ 1, γ2} >

T = {T1, T5, T6, T7}
T1 = < s1.o[1], p.i[1], true, Delay(T1)=1 >
T5 = < p.o[1], s1.i[1], true, Delay(T5)=1 >
T6 = < p.s[1], s6.i[1], u, >
T7 = < s6.o[1], p.r[1], true, Delay(T7)=2 >

gI = s1
and a sub-graph can be represented by the 5-tuple
< Vc, G, T, gI, gE >:

Sub-graph γ1:
Vc = {},
G = {s2}

s2 = < i[1], o[1], , , >
T = {}
gI, = s2
gE = s2

Sub-graph γ2:
Vc = {true, time > 5},
G = {s3, s4, s5}

s3 = < i[2], o[1], , , >
s4 = < i[1], o[2], , , >

s5 = < i[1], o[1], , , >
T = {T2, T3, T4}

T2 = < s3.o[1], s4.i[1], true, Delay(T2)=1 >
T3 = < s4.o[2], s3.i[2], true, Delay(T3)=1 >
T4 = < s4.o[1], s5.i[1], true, Delay(T4)=1 >

gI, = s3
gE = s5

5 Verification of StateGraph models
Even if a state machine is checked to be structurally
correct, its behavior might be faulty and dangerous.
A typical example is if the behavior would deadlock,
i.e., that no further transitions can be performed.
Such behavior is related to the action and transition
logic, not only to the topology of the StateGraph it-
self. Dymola (Dymola 2009) has been experimental-
ly extended to extract all Boolean equations in order
to facilitate model checking with external tools. The
language used is SMV (Symbolic Model Verifica-
tion) and the tool used is NuSMV (NuSMV 2009).

Consider the example in Figure 14. It has four in-
dependent StateGraph models, two are modeling
some processes which compete on using two re-
sources. The allocations of the resources are done in
opposite order which means that there is a risk of
deadlock. Detecting such potential problems is in
general hard. Dymola produces code in SMV as
shown below:
freeA_inport_fire := release1A_fire |
release2A_fire;
next(pre_freeA_newActive) :=
 freeA_inport_fire | freeA_active & !
 freeA_outport_fire;

Relations are converted to unknown inputs. When-
clauses are converted to if (case) according to Mod-
elica specification. Condition for non-deadlock is
expressed using temporal logic according to the
Computational Tree Logic syntax, e.g.:
_Dymola_SMV(
"CTLSPEC AG (! pre_freeA_newActive ->
EF pre_freeA_newActive)");

The String argument to the special built-in function
_Dymola_SMV means “For All states such that
not pre_freeA_newActive (resource A not free) there
Exists eventually in the Future a state when
pre_freeA_newActive (resource A free)”

NuSMV uses a BDD (Binary Decision Diagram)
algorithm to verify the specification (NuSMV com-
mand check_ctlspec). If the specification is not al-
ways true, NuSMV presents a sequence of input
events that will show the failure, i.e., in this case
deadlock. Such a deadlocked situation is shown in
Figure 14 with active Steps marked green.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 372

Figure 14: Two processes trying to acquire two re-
sources ending up in a deadlock.

6 Conclusion
A new library Modelica_StateGraph2 was presented
to model safe hierarchical state machines in combi-
nation with any Modelica model, e.g., controllers,
logical blocks, functions and physical systems de-
scribed by differential-algebraic equations. The li-
brary is designed to model the logic of reactive sys-
tems and to describe hybrid systems. The library is
freely available from www.modelica.org/libraries, it
is distributed in Dymola 7.3, and it is planned to in-
clude it in one of the next versions of the Modelica
Standard Library. The work on the library will con-
tinue especially to take advantage of the features of
the Modelica_EmbeddedSystems library (Elmqvist
et. al. 2009):

7 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA project EUROSYSLIB
(www.itea2.org/public/project_leaflets/EUROSYSLI
B_profile_oct-07.pdf) is highly appreciated.The au-
thors also would like to thank Daniel Weil from Das-
sault Systèmes for fruitful discussions.

References
André, C. (2003): Semantics of S.S.M (Safe State Ma-

chine). I3S Laboratory – UMR 6070 University of
Nice-Sophia Antipolis / CNRS.
www.i3s.unice.fr/~map/WEBSPORTS/Documents/
2003a2005/SSMsemantics.pdf

Bauschat, M., Mönnich, W., Willemsen, D., and Looye,
G. (2001): Flight testing Robust Autoland Con-
trol Laws. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, Montreal CA.

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchron-
ous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. Download:
www.irisa.fr/distribcom/benveniste/pub/synch_Proc
IEEE_2002.pdf

Dressler I. (2004): Code Generation From JGrafchart
to Modelica. Master thesis. Supervisor: Karl-Erik
Arzen, Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.
www.control.lth.se/documents/2004/5726.pdf

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). www.dymola.com/.

Elmqvist H., Otter. M., Henriksson D., Thiele B.,
Mattssson, S.E. (2009): Modelica for Embedded
Systems. In Proc. of Modelica’2009 Conference,
Como, Italy.
www.modelica.org/events/modelica2009

Franke R., Casella F., Otter M., Proelss K., Sieleman M.,
Wetter M. (2009): Standardization of thermo-fluid
modeling in Modelica.Fluid 1.0. In Proc. of Modeli-
ca’2009 Conference, Como, Italy.
www.modelica.org/events/modelica2009

Harel, D. (1987): Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Program-
ming 8, 231-274. Department of Applied Mathemat-
ics, The Weizmann Institute of Science, Rehovot,
Israel. www.inf.ed.ac.uk/teaching/courses/seoc1/-
2005_2006/resources/statecharts.pdf

Lynch N., Segala R., and Vaandrager F. (2002): Hybrid
I/O Automata. MIT Laboratory for Computer
Science, techreport, MIT-LCS-TR-827b. Download:
theory.lcs.mit.edu/tds/papers/Lynch/HIOA-final.ps

Malmheden M., Elmqvist H., Mattsson S.E., Henriksson
D., and Otter M. (2008): ModeGraph - A Modelica
Library for Embedded Control Based on Mode-
Automata. B. Bachmann (editor), in Proc. of Mod-
elica’2008 conference, Bielefeld, Germany.
www.modelica.org/events/modelica2008/Proceedin
gs/sessions/session3a3.pdf

Maraninchi, F. and Rémond, Y. (2002): Mode-
Automata: a New Domain-Specific Construct for
the Development of Safe Critical Systems. www-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 373

verimag.imag.fr/~maraninx/SCP2002.html

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Mosterman P.J., Otter M., and Elmqvist H. (1998): Mod-
eling Petri Nets as Local Constraint Equations
for Hybrid Systems Using Modelica. In Proceed-
ings of SCS Summer Simulation Conference, pp.
314-319, Reno, Nevada, July.
www.modelica.org/publications/papers/scsc98fp.pdf

NuSMV (2009): A symbolic model checker.
nusmv.irst.itc.it.

Otter, M., Årzén, K.-E., Dressler, I. (2005): StateGraph -
A Modelica Library for Hierarchical State Ma-
chines. Proceedings of the 4th International Modeli-
ca Conference. TU-Hamburg-Harburg, Germany.
www.modelica.org/events/Conference2005/online_
proceedings/Session7/Session7b2.pdf

Stateflow (2009):
www.mathworks.com/products/stateflow

Appendix

A1 Mapping StateGraph to Modelica

In this section it is sketched how a StateGraph model
is mapped to Modelica. This section is based on the
implementation technique used in (Mosterman et. al.
1998, Malmheden et. al. 2008, Otter et. al. 2005):
Steps, Transitions, and Parallel components are
mapped to Boolean equations. These equations are
handled as any other Modelica equations, e.g., for
the code generation the equations are sorted and
therefore the evaluation sequence of a StateGraph
model and/or of a hybrid system is automatically
determined. Therefore, defining how the StateGraph
elements are mapped to Boolean equations defines
automatically also the semantics of hybrid systems
built by StateGraph and other Modelica models. The
mapping algorithm starts with a sketch of the used
interfaces between the elements:

A Step component has a vector of connectors
called “Step_in” in order to connect from transitions
to a step, and a vector of connectors called “Step_out
to connect from a Step to Transitions.

A Transition component has a (scalar) connector
called “Trans_in” to connect from a Step to a Transi-
tion and a (scalar) connector called “Trans_out” to
connect from a Transition to a Step.

Only unary connections are allowed, i.e., exactly
one connection must be made between one element
of a vector of connectors and a scalar connector. The
connector classes use pair-wise the same variables,
but with different causalities (with exception of
“node”), as shown in the next table:

connector
Step_out

connector
Trans_in

 output input Boolean available
 input output Boolean fire
 output input Boolean checkLoop

Node node

connector
Trans_out

connector
Step_in

 output input Boolean fire
 output input Boolean checkLoop
 input output Boolean checkUnary

Node node

record Node
 Boolean suspend;
 Boolean resume;
 function equalityConstraint
 input Node node1;
 input Node node2;
 output Real residue[0];
 algorithm
 end equalityConstraint;
end Node;

The meaning is the following: When an element of
the “Step_out” vector at a Step is connected to the
“Trans_in” connector of a Transition, then the sig-
nals “available, checkLoop” are computed in the
Step and are communicated to the Transition. On the
other hand, the signal “fire” is computed in the Tran-
sition and communicated to the Step. The meaning
of “node” is explained in section A2.

When input/output prefixes are used in a Modeli-
ca connector, then block diagram semantics applies
for a connector (e.g., only one signal can be con-
nected to an input). Since connectors “Step_out” and
“Trans_in” have both input and output variables,
only unary connections are possible, as desired. The
basic form of “Trans_out” and “Step_in” has either
only “output” or “input” variables and therefore un-
ary connections are not guaranteed. For this reason,
the dummy variable “checkUnary” is introduced
with opposite input/output prefixes. Now, only unary
connections are here possible too2.

A Transition is basically defined by the following
equations, depending on the options that have been
selected in the parameter menu:

Equations of a Transition component

Immediate transition:
fire = condition and trans_in.available;

Delayed transition:
enableFire = condition and

2 The alternative to use an assert with cardinality is not
possible, because the resume connector is conditional and
then it cannot be referenced in an assert.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 374

 trans_in.available;
when enableFire then
 t_next = time + waitTime;
end when;
fire = enableFire and time >= t_next;

Propagation of signals (in both cases):
trans_in.fire = fire;
trans_out.fire = fire;

Basically, the equations state that variable fire = true,
if (1) the fire condition “condition” is true and (2) if
the preceding step is active (trans_in.available
=true). For a delayed transition, additionally a time
delay is introduced. The “fire” variable is then re-
ported to the preceding and the succeeding steps.

A Step is basically defined by the following eq-
uations:

Equations of a Step component

Set active flag:
newActive =
 if node.resume then oldActive
 else anyTrue(step_in.fire) or (active
 and not anyTrue(step_out.fire))

 and not node.suspend;
active = pre(newActive);
when node.suspend then
 oldActive = active;
end when;

Set available flag:
for i in 1:size(step_out,1) loop
 step_out[i].available = if i == 1
 then active and not node.suspend
 else step_out[i-1].available and not
 step_out[i-1].fire and not
 node.suspend;
end for;

The function anyTrue(..) returns true, if at least
one element of the input vector is true. In a Step, the
next value of “active” is computed (called: “newAc-
tive”). It is assigned in the next event iteration to the
actual value, “active”, via “active=pre(newActive)”.
The equations state, that the Step becomes active in
the next iteration when one of the transitions con-
nected to the step_in connectors fire. The Step re-
mains active if it was active and no transition con-
nected to one of the step_out connectors fire.

If the Step is used inside one or more Parallel
components, the state of the nearest enclosing Paral-
lel component is propagated via the record “node”.
Details are given in section A2. At this stage it is
sufficient to know that if node.suspend = true, then
an enclosing Parallel component was suspended and
if node.resume = true, then an enclosing Parallel
component was entered via the resume port. If a Pa-
rallel component is suspended, the current value of
“active” is saved in “oldActive”, and “newActive” is

set to false. If a Parallel component is resumed, “ne-
wActive” is set to the saved value of “oldActive”.

The “active” flag of a Step is reported to the tran-
sitions connected to this Step in the following way:
If a step has only one outgoing transition:

step_out[1].available =
 active and not node.suspend

Therefore, the “available” flag propagated to the
Transition is set to true, if the step is active and if an
enclosing Parallel component is not suspended.

If a Step has several outgoing transitions, two or
more might fire at the same time instant. The transi-
tion that is connected to the lowest index of the
step_out connector vector is defined to have highest
priority. For example, if a Step has two outgoing
transitions, then the “available” flag of step_out[1] is
set as previously. The “available” flag of step_out[2]
is only set to true, if the transition that is connected
to step_out[1] does not fire and no enclosing Parallel
component is suspended.

The equations for a Parallel component are han-
dled similarly to a Step. For space reasons, they are
not listed here.

A2 Guaranteeing graph properties and propaga-
tion of suspend/resume flags

In the previous section A1 it is
sketched how the basic elements
are defined by Boolean equations
and how only 1:1 connections can
be made. Still some properties of
a StateGraph are not yet guaran-
teed. For example, two initial
steps might be defined in a sim-
ple StateGraph model (see Figure
to the right). This gives perfectly
legal Modelica code, but the si-
mulation would be wrong. We will now discuss how
the basic graph properties are guaranteed and how
the suspend/resume information of Parallel compo-
nents is propagated:

Record “node” in the connectors, see definition in
section A1, is an “overdetermined record” due to
function “equalityConstraint()”, see (Modelica 2009,
section 9.4). The idea is the following: The overde-
termined record R in a connector has more variables
than permitted by a “balanced model”. When two
connectors c1 and c2 are connected, then the desired
connection equations are c1.R = c2.R. If a loop of
connected components is present, this might give too
many equations (= more equations as unknowns). If
this is the case, exactly for one connection set in a
loop the equations “0 = R.equalityConstraints(c1.R,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 375

c2.R)” have to be used instead of the desired equa-
tions “c1.R = c2.R”. For example, a transformation
matrix has 9 redundant elements describing 3 inde-
pendent variables. In this case, the equalityCon-
straint(...) function has to return the 3 constraint equ-
ations between the 9 redundant variables.

In order that a translator can select which connec-
tion equations to use, built-in operators are provided
to construct an undirected dependency graph of the
connectors. For example, if a component has two
connectors ca and cb, a definition of the form:

Connections.branch(ca.R, cb.R);

must be present in the component. This definition
states that cb.R is equal to ca.R in this component.
One connector must be defined as root of the graph.
As a result, a set of undirected graphs is constructed.
The translator has to arbitrarily cut a graph at con-
nection sets, so that a spanning tree is constructed. In
the “tree”, connection equations of the form c1.R =
c2.R are used. For all connectors that have been re-
moved to arrive at a “tree”, the connection equations
0=R.equalityConstraint (c1.R, c2.R) are used.

In the StateGraph library, suspend and resume
flags are stored in an overdetermined record “Node“.
The Node.equalityConstraints(..) function returns a
vector with size zero. Therefore, no equations are
generated for connections that have been removed to
arrive at a “tree”. When the root of a graph is appro-
priately selected, then the suspend/resume flags are
just propagated to all components in this graph, even
if loops are present (since the loops are cut, and no
connection equations for node variables are intro-
duced at these cuts).

The operators available in Modelica 3.1 are not
sufficient and two additional ones had to be intro-
duced: “Connections.uniqueRoot(R, message)”
states that “R” is a unique root of the graph. If this
operator is used, the corresponding graph must have
exactly one such definition. The second argument
“message” shall be reported in the error message, if
more than one root is defined.

The usage of “uniqueRoot(..)” and of “branch(..)”
are sketched in Figure 15: Roots are defined at the
initial step (root1) and at the entry port of every
branch of a Parallel component (root2, root3). Then
“branches” are defined along the corresponding state
machine structure. If any such connection graph has
more then one root, the StateGraph graph is wrong.
E.g., if two initial steps would be defined, or if a
branch of a Parallel component would branch out
into the “outer” loop, the connection graph would
have two roots which would trigger an error.

With the new built-in operator “I = Connec-
tions.uniqueRootIndices(Ra, Rb, message)”, infor-

mation about the connection structure of a Parallel
component can be obtained: Ra is a vector of roots
and Rb is a vector of other overdetermined records.
The function returns an Integer vector “I”. I[i],
i=1:size(Rb,1), defines that there is a path from root
I[i] to record Rb[i]: Ra[I[i]] → Rb[i]. It is an error if
such a path does not exist. The remaining elements
of vector I are the indices of Ra that do not have a
path to an element of Rb. Due to the construction,
the function returns an error, if there are no paths to
all exit ports. So, every branch that ends at an exit
port, must start at an entry port of the same Parallel
component.

Figure 15: 3 virtual connection graphs to verify State-
Graph properties and to propagate resume/suspend flags.

Typical usage of this function:

 EntryPort entry [nEntry];
 ExitPort exit [nExit];
 Integer indices[nEntry];
equation
 Connections.uniqueRoot(entry, "...");
 indices = Connections.uniqueRootIndices
 (entry, exit, "...");

Example: The function returns the following values
for the graph in Figure 15:
nEntry=2, nExit=2,
indices[1] = 1, indices[2] = 2

The meaning is that there is a path from en-
try[indices[1]] (connected to Step s2) to exit[1]
(connected to Step s3), and a path from en-
try[indices[2]] (connected to Step s4) to exit[2]
(connected to Step s5).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 376

A3 Avoiding infinite transition loops

The basic semantics of a StateGraph graph is that at
one time instant, during event iteration, all transi-
tions fire, until none of the transitions can fire any-
more. In order that no infinite looping can occur,
there must be at least one delayed transition in
“every loop”, since at a delayed transition the loop-
ing stops at the current time instant.

In order to verify this property, the Boolean flag
“checkLoop” is propagated through the connection
structure, see connectors in section A1. At delayed
transitions and at steps that do not have an input
transition, this flag is initialized. If there is no de-
layed transition in a loop, an algebraic system of
Boolean unknowns occurs. Since this system of equ-
ations cannot be solved, an error is triggered. In the
connectors, “checkLoop is defined with the new an-
notation “BooleanLoopMessage = string”. If the cor-
responding variable appears in an algebraic loop
with Boolean unknowns, the BooleanLoopMessage
is included in the error message, in order to get mea-
ningful error reporting.

A4 Automatic connection to next free index

When connecting a Step with a transition, the dimen-
sion of the vector of connectors Step.outPort has to
be increased by one, say to dimension N, and then
the connection has to be performed from
Step.outPort[N] to the scalar transition input port.
Performing this manually is very inconvenient and
error prone. For this reason, in Modelica 3.1 (Mod-
elica 2009, section 17.6) the new annotation “con-
nectorSizing” was introduced, that is used for all
vector connections in the StateGraph library.

Example:

model Step
 parameter Integer nIn=0 annotation(
 Dialog(ConnectorSizing=true));
 StepIn inPort[nIn];
 ...
end Step;

When this model is used and a connection is made to
vector “inPort”, then the tool increments the dimen-
sion nIn by one and performs the connection to this
new index. Therefore, performing connections be-
tween Steps and Transitions is convenient for a user
and only requires dragging a line between the cor-
responding connectors.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 377

Modelica as a design tool
for hardware-in-the-loop simulation
Marco Bonvinia,Filippo Donidab, Alberto Leva

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy

{leva,donida}@elet.polimi.it
aGraduate student at the Dipartimento di Elettronica e Informazione
bPhD student at the Dipartimento di Elettronica e Informazione

August 21, 2009

Abstract
This paper focuses on the automatic generation of
microcontroller code for hardware-in-the-loop sim-
ulation using Modelica models. In this work a
test is presented and commented in which Mod-
elica is used to specify a control system, the in-
line integration code is obtained from the Modelica
model and executed part on a PC, and part on a
microcontroller board. The presented application,
albeit created basically for educational purposes,
covers quite different scenarii, therefore evidencing
the usefulness of Modelica in the addressed con-
text, and providing as a consequence some future
research directions.

The contribution aspect of this work is twofold:
on one side the entire cross-compilator software
chain is built within the same framework; on the
other hand, all the involved software tools are open-
source (mainly GPL) licensed, making the applica-
tion extremely modular and extensible. Further-
more this work will be included in the next release
of the open source Modelica environment SimForge
[3], thus enriching its Modelica back-ends support.

1 Introduction
This paper presents some experimental results rela-
tive to the usage of Modelica as modelling and spec-
ification language for hardware-in-the-loop simula-
tion aims at control design.

The topic is of high interest both from the
methodological and the application-oriented points
of view. For the latter, it is evident that the usage
of a single tool for the simulation of a control sys-
tem irrespective of the code being run on the same
computer as the model or on the final control archi-
tecture is of great help for the designer. Similarly,
also having the process simulator running on dedi-
cated hardware can help, particularly if the control
strategy is the main object of the simulation stud-
ies. Also, having the possibility of deploying pro-
cess simulation code on dedicated hardware could
be of interest for testing control strategies directly
on the field, where a PC may not be available.

From the methodological point of view, the en-
visaged activity apparently requires to obtain op-
timised simulation code with inline integration,
starting from potentially complex object oriented
models, in an user-transparent and reliable man-
ner.

The importance having an integrated environ-
ment when testing the control performance in a
closed loop simulated environment using an inte-
grated environment was already well known in the
1996 [6], when the Control Aided Control System
Design tools were used to off-line control design
and HIL simulate the ABS systems. More in deep,
in the automotive field the HIL Simulation is a
quite established technique, both for engine control
system test and design [8] and suspension control
[2, 7]. Other works focus on the hydraulic servo
position [9], machine tools and manufacturing sys-

1

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 378 DOI: 10.3384/ecp09430087

tems [13] and spacecraft [11] control problem re-
spectively. A quite detailed review on the bene-
fits the HIL simulation can introduce for the de-
sign process is given in [5]. Moreover, as in [12],
where a magnetic levitation device control is pre-
sented, the HIL simulation technique can also be
used for educational scopes. In accordance with
that work, this paper has strong educational intent
and focuses on the possibility to use a complete
(both software and hardware) GPL environment to
control designing through the HIL simulation. The
goal is to simulate a closed loop SCARA process.
The model of the robot is obtained through the La-
grangian equations and formalized as a system of
Differential Algebraic Equations, and the position
controller is realised either as a continuous time sys-
tem and as a digital algorithm1. The architecture
is composed of a PC and a microcontroller board,
communicating through the USB port. Different
experiments — not reported here for space reasons
— have been conducted where the two CPUs al-
ternatively play the role of the process and of the
control, the python language (and more precisely
the python-visual library) being used on the PC as
a 3d visualisation system.

The first part of the paper, section 2, briefly
presents the Modelica model of the complete con-
trolled system.

Section 3 describes the employed microcontroller
board (namely the Arduino, [1] and its development
systems, in connection with the Modelica environ-
ment. Convenient references are also provided to
the interested reader in full detail.

Then, in section 4 it discussed how the vari-
ous components of that system can be automati-
cally turned into inline integration algorithms, so
as to cover all the possible combination of micro-
controller and PC in the simulation of the overall
system.

Subsequently, in section 5, the configurations of
the performed test is described, evidencing for each
configuration which particular aspect of the re-
search claims stated in the introduction is being
investigated: for example, a test in which the mi-
crocontroller runs the simulator and the PC the
control system is useful to analyse the latter to-
gether with the communications, while a test where

1Only the discrete time version of the controller is treated
in this paper.

the PC simulates the robot and the micro the con-
trol helps estimating the feasibility of a given algo-
rithm on the target architecture, and so on. The
test results are finally presented, ending with some
configuration on the subsequent research activity.

2 The SCARA: model and
control in Modelica

The SCARA robot we considered in this work in a
two rotational degrees of freedom mechanical pla-
nar chain, actuated via two ideal electrical servos.
The model of the robot is now introduced, starting
from some considerations about the links masses.

Making the hypothesis of the mass of each link
concentrated in a single point, the links inertias
could be expressed as:

Ii = 1
12
miai

2 (1)

with i = 1,2 being the subscript for identifying
the link, m the link mass, a the position of the
center of mass with respect to the beginning of the
link measured along the link itself.

From the Lagrangian equations, with some alge-
bra, it is trivial to express the system of differential
equations of the robot in the form τ = f

(
θ, θ̇, θ̈

)
:

τ =B (θ)θ+C
(
θ, θ̇
)
θ̇+g (θ) (2)

where the inertia matrix B (θ) is:

B (θ) =
[
B1,1 B1,2
B2,1 B2,2

]
(3)

with the Bi,j being:

B1,1 =m1l1
2 + I1 +m2a1

2 +m2l2
2+

+2m2a1l2 cos(θ2)+ I2

B1,2 =m2l2
2 +m2a1L2 cos(θ2)+ I2

B2,1 =m2l2
2 +m2a1l2 cos(θ2)+ I2

B2,2 =m2l2
2 + I2 (4)

the matrix corresponding to the centripetal,
Coriolis, and viscous friction forces, C

(
θ, θ̇
)
, is:

C
(
θ, θ̇
)

=
[
C1,1 C1,2C2,1 C2,2

]
(5)

2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 379

being the Ci,j elements:

C1,1 =−2m2a1l2 sin(θ2) θ̇2

C1,2 =−m2a1l2 sin
(
θ̇2
)
θ̇2

C2,1 =m2a1l2 sin(θ2) θ̇1

C2,2 = 0 (6)

while the matrix for the effects of the gravita-
tional filed, g (θ) is:

g (θ) = 9.81
[
g1,1
g2,1

]
(7)

with:

g1,1 = (m1l2 +m2a1)cos(θ1)+m2l2 cos(θ1 +θ2)
g2,1 =m2l2 cos(θ1 +θ2) (8)

Considering also that the plane containing the
robot joint space is orthogonal to the gravity direc-
tion, we can simplify the equation 2, thus obtaining:

τ =B (θ)θ+C
(
θ, θ̇
)
θ̇ (9)

Finally the “Lagrangian” Modelica model of the
SCARA can be straightforward obtained from the
previous DAE system implementing the equation 9
and specifying the torques (τ) as inputs while the
angular positions (θ) as outputs.

A more object-oriented and
Modelica.Mechanics based model for repre-
senting the robot had also been developed and
mainly used for testing the correctness of the
“Lagrangian” model. Unfortunately, at the time
this experiment has been conducted, it has not
been possible to use the OO Modelica model of the
SCARA with the OpenModelica compiler, because
of the current limitation in supporting the whole
Modelica Standard Library.

The control model is a vectorial discrete-time
Proportional Derivative regulator implemented as a
Modelica algorithm with saturation on the control
signal.

Moreover, to complete the control schema archi-
tecture, it has been necessary to implement a model
for computing the robot inverse kinematic. The
code is reported in the following.

model InverseKinematic
import MBI = Modelica.Blocks.Interfaces;
parameter Real L[2];//Lenght of links 1 and 2
MBI.RealInput xy[2];//x & y positions

MBI.RealOutput a[2];//joint space angles
algorithm

a:=InverseKinematic(xy, L1, L2);
end InverseKinematic;

function InverseKinematic
input Real xy[2];
input Real L[2];
output Real a[2];

protected
Real x,y,c2,s2,c1,s1,a1,a2;

algorithm
x := xy[1];
y := xy[2];
c2 := (x*x+y*y-L[1]*L[1]-L[2]*L[2])/(2*L[1]*L[2]);
s2 := sqrt(1-c2*c2);
a2 := atan2(s2,c2);
c1 := ((L[1]+L[2]*c2)*x+L[2]*s2*y)/(x*x+y*y);
s1 := ((L[1]+L[2]*c2)*y-L[2]*s2*x)/(x*x+y*y);
a1 := atan2(s1,c1);
a := {a1,a2};

end InverseKinematic;

3 The Arduino microcon-
troller

Arduino is an open-source microcontroller elec-
tronic platform, featuring 14 digital pins that can
be used both as input or output and 9 analog in-
put pins. The microcontroller on the board is pro-
grammed using the Arduino programming language
(based on Wiring) and the Arduino development
environment (based on Processing). In figure 1 the
ArduinoDuemilanove microcontroller is shown.

Figure 1: The Aurduino Duemilanove microcon-
troller.

Arduino executables can be a stand-alone pro-
cesses or can communicate with other processes,
i.e. running processes on a PC. Usually the struc-
ture of an Arduino program is quite standardized

3

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 380

and is organized in four main parts:

• the Preamble section: collects all the includes
and definitions statements,

• the Variables and functions definitions section.
According to the data types of the Arduino
language, all the variables used within the
program must be declared here and, if neces-
sary, instantiated. In addition the user-defined
functions headers must be listed in this section.

• the Setup function setup(): this is called when
your program starts, initializing the user-
defined variables, pin modes, etc. The setup
function runs only once, after each powerup or
reset of the Arduino board.

• the Loop function loop(): this function con-
tains the code to be sequentially executed, it-
eratively until resetting the Arduino.

With the intention to better explain the Arduino
coding procedure, in the following a simple program
for that board has been reported.

int buttonPin = 3;

// setup initializes serial and the button pin
void setup(){

beginSerial(9600);
pinMode(buttonPin, INPUT);

}

// loop checks the button pin each time,
// and will send serial if it is pressed
void loop(){

if (digitalRead(buttonPin) == HIGH)
serialWrite(’H’);

else
serialWrite(’L’);

delay(1000);
}

As one could easily evince from the code lines
reported above, the program is very simple, it just
makes the Arduino sending a ‘H’ or ‘L’ character
according to the state of a button (pressed or re-
leased).

4 Code generation
In this section a cross-compiler software to auto-
matically translate the Modelica code into Arduino
microcontroller code is presented. The code gener-
ation procedure, reported in figure 2 involves four

different software layers: the OpenModelica com-
piler (in fucsia), the Java environment (light green),
the Arduino environment (yellow) and the Maxima
[10] symbolic manipulator (grey). In this section a
description of the whole procedure is reported, for
more details please refer to the SimForge documen-
tation.

Figure 2: The steps for the Aurduino code genera-
tion from Modelica model.

The first step of the procedure is performed by
the OpenModelica compiler that reads the Model-
ica file of the model, parses the Modelica source and
creates the corresponding Abstract Syntax Tree
(AST). After doing that, the tree is traversed for
flattening the model, the index reduction algorithm
is performed (if necessary) and the Tarjan algo-
rithm is operated, thus obtaining the BLT structure
and the variables-equations matching. At this stage
the model is represented as an index-one system of
differential algebraic equations and can be dumped
out from the OpenModelica compiler through the
XML dump module. This module of the compiler
has been implemented with the intention to pro-
vide a standardized way for representing such a

4

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 381

system of differential algebraic equations. To make
the XML source syntactically constrained, an ad
hoc XML Schema [4] has been created, requiring
that it contains the variables lists (unknown, known
and external), the equations lists (equations, al-
gorithms, zero crossings, simplified equations, . . .)
and, optionally, information for solving the system,
i.e. the BLT structure and/or the matching algo-
rithm output.

To make an example, if considering the following
Modelica model:

model test_equation
Real x(start = 1);
parameter Real a = -1;

equation
der(x) = a*x;

end test_equation;

a XML-equivalent representation could be2:

<?xml version="1.0" encoding="UTF-8"?>
<dae xmlns:p1="http://www.w3.org/1998/Math/MathML"

xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=...
..."http://home.dei.polimi.it/donida...
.../Projects/AutoEdit/Images/DAE.xsd">

<variables dimension="2">

<orderedVariables dimension="1">
<variablesList>
<variable id="1" name="x" variability=...
..."continuousState" direction="none" ...
...type="Real" index="-1" origName="x" ...
...fixed="true" flow="NonConnector" ...
...stream="NonStreamConnector">
<classesNames>
<element> test_equation </element>
</classesNames>
<attributesValues>

<initialValue string="1.0"> </initialValue>
</attributesValues>
</variable>

</variablesList>
</orderedVariables>

<knownVariables dimension="1">
<variablesList>
<variable id="1" name="a" variability=...
..."parameter" direction="none" ...
...type="Real" index="-1" origName="a" ...
...fixed="true" flow="NonConnector" ...
...stream="NonStreamConnector">
<bindValueExpression>

<bindExpression string="-1"> </bindExpression>
</bindValueExpression>
<classesNames>
<element> test_equation </element>

2Given a Modelica model, the XML representation is not
unique, since some parameters can optionally be specified
when dumping the model (i.e. if add the solving information,
if dump the equations using the residual form, etc.), thus
changing the content.

</classesNames>
</variable>

</variablesList>
</knownVariables>

</variables>

<equations dimension="1">
<residualEquation id="1">der(x) - a * x = 0
</residualEquation>

</equations>

<additionalInfo>
<solvingInfo>
<matchingAlgorithm>

<solvedIn variableId="1" equationId="1" />
</matchingAlgorithm>
<bltRepresentation>

<bltBlock id="1">
<involvedEquation equationId="1" />

</bltBlock>
</bltRepresentation>
</solvingInfo>

</additionalInfo>

</dae>

The XML representation reported in 4 is quite
intuitive: at the top the header specifies where to
find all the related schemes, then the dae tag con-
tains all the variables, the equations and the ad-
ditional information. The variables list is usually3

split into two separated list: the ordered variables
and the known variables lists respectively, the for-
mer containing all the state (also dummy states)
and algebraic variables, while the latter listing all
the parameters and constants. The second section
is the equations section, and then, at the bottom
of the file, the additional information are located,
showing the matching algorithm output as well as
the BLT representation of the system.

This representation is extremely useful since of-
fers a standard machine-readable exchange format
for the DAE system.

In next macro-step of the cross-compilation pro-
cedure, the XML file is processed through an ad
hoc implemented Java routine. This software layer
has two main goals:

• implement some xml functionalities to handle
with the XML representation of the DAE sys-
tem and

• provide some basic symbolic manipulation ca-
pabilities through the Java-Maxima interface.

3In some cases also the external variables and/or the ex-
ternal classes lists could be present. We invite the interested
reader to refer to [4].

5

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 382

The Java module execution chain is basically
made up of four sub-steps:

• First the DAE XML file is parsed and all the
classes corresponding to the mathematical en-
tities (variables, equations, matching output,
BLT blocks, states selection,...) are instanti-
ated within the Java environment,

• then the system of equations is re-formulated
for the code generation, trying to use the
matching algorithm output to solve the equa-
tions system. It can happen that the greater
block of the BLT matrix is not a scalar. If
this happen there are two possibilities: the
Maxima interface can handle with the prob-
lem, thus solving the system for the variables
specified from the matching algorithm output,
otherwise (when Maxima can find more than
a solution or none at all) the system must be
included within the real code, together with a
Newton procedure to iteratively found the so-
lution, at each time step. As the reader can
easily imagine, the latter scenario is not really
desirable, since there is no a priori guarantee
for the convergence of the Newton algorithm
within the given time step.

• Thirdly the inlining procedure is applied to all
the state equations, according to the specific
integration algorithm (forward Euler, back-
ward Euler, trapezium) and the obtained
discrete-time system is solved with respect to
the new discrete states variables.

• Finally the file required to compile the model
of the controller within the Arduino environ-
ment is generated.

5 The SCARA: HIL
In this section the HIL experiment is described. As
already introduced in section 1, the Arduino micro-
controller runs the control algorithm, while the PC
creates the position set points, simulates the robot
model and visualizes the SCARA robot through the
Python script. More precisely, an algorithm on the
PC generates the position set points that are sent
to the Arduino through the USB port. The Ar-
duino microcontroller, translates the position set

points into angle set points, using the inverse kine-
matic block and then, according to the PD gains,
the torques to apply to each joint. The control sig-
nals are finally sent back to the PC, that simulates
and visualizes the SCARA movement.

In this work, the objective has been to make the
robot drawing a star. To do that, the position set
points generation function samples 12 points on a
couple of concentric circles (6 equidistant points
over the inner and the other 6 equidistant points
over the outer circle respectively), thus obtaining a
star path. After doing that, the set point trajectory
is thicken specifying the number of sub-samples be-
tween a point and the next on the star path.

In figure 3 the Scilab visualisation window is re-
ported, showing how the controlled robot follows
the target trajectory.

The experiment refers to a simulated SCARA
having the first link with a length of 1 [m] and
a weight of 2 [Kg], while the second 0.6 [m] and 1
[Kg]. The discretization technique has been used is
the Forward Euler method, with a fixed step of 0.1
[s]. A time of 2[s] has been chosen for moving from
a point to the next of the set point trajectory.

Figure 3: Graphical representation of the star
drawing process of the closed loop system.

The Process Values (blue) and Set Points (red) of
both the angles at top and Control Signals (green)
at bottom for the star experiment are reported in
figure 4 (the first angle is reported on the right
column while the second angle on the left column).

Even if the two signals (PV and SP) seem to be
quite overlapped, they are not identical, as it is pos-
sible to view from the figure 5, where a particular
is shown.

In addition to that, a Python script has been
implemented to 3d visualize the robot closed loop
behavior. Figure 6 refers to a test case in which
the simulation is done on the microcontroller, while
the PC runs the control algorithm and the visu-
alising machinery. In detail, the figure shows the
animation window obtained with the python-visual

6

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 383

Figure 4: Process Values (blue) and Set Points
(red) of both the angles at top and Control Sig-
nals (green) at bottom (the first angle on the right
column while the second angle on the left column)
for the star experiment.

library for the online visualisation of the SCARA
simulation.

All the Modelica, C (for the microcontroller),
and python code will be made available as free soft-
ware to the scientific community.

6 Conclusions
A closed-loop discrete-time SCARA process has
been simulated with the HIL technique, with the
Arduino microcontroller running the PD control,
while the PC generating the trajectory, simulating
the model of the robot and 3d visualising its move-
ment.

Even if this work has mainly educational in-
tentions, clearly shows the possibility of using an
integrated GPL-licensed framework for automati-
cally produce the HIL code from the Modelica lan-
guage, for control aims. The openness of the pre-
sented framework is of great importance, specially
for maintaining the modularity of the project, thus
ensuring the scalability and the extensibility.

Future works will probably focus in two main
directions: on one hand the possibility of specifying
more complex control strategies will be inspected,
on the other hand the eventuality of using a couple
of Arduino microcontrollers for HIL simulation will
be envisaged.

Figure 5: A particular of picture 4.

Figure 6: An example of python-based online ani-
mation of the simulation results obtained by the mi-
crocontroller, and fed to the visualising PC through
the USB interface.

References
[1] The arduino home page. http://www.

arduino.cc.

[2] S. B. Choi, Y. T. Choi, and D. W. Park. A
Sliding Mode Control of a Full-Car Electrorhe-
ological Suspension System Via Hardware in-
the-Loop Simulation. Journal of Dnamic Sys-
tems, Measurements and Control, 122:114–
121, March 2000.

[3] Politecnico di Milano sede di Cremona.
Simforge: a graphical modelica environ-

7

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 384

ment. https://trac.wd.dei.polimi.it/
simforge.

[4] Filippo Donida. Xml schema for dae repre-
sentation with the openmodelica compiler, 09
2009. http://home.dei.polimi.it/donida/
Projects/AutoEdit/Images/DAE.xsd.

[5] R. Ernst. Codesign of embedded systems: sta-
tus and trends. Design & Test of Computers,
IEEE, 15(2):45–54, Apr-Jun 1998.

[6] H. Hanselmann. Hardware-in-the-Loop Sim-
ulation Testing and its Integration into a
CACSD Toolset. In IEEE International
Symposium on Computer Aided Control Sys-
tem Design, pages 152–156. IEEE, September
1996.

[7] K. S. Hong, H. C. Sohn, and J. K. hedrick.
Modified Skyhook Control of Semi-Active Sus-
pensions: A New Model, Gain Scheduling,
and Hardware-in-the-loop Tuning. Journal of
Dnamic Systems, Measurements and Control,
124:158–167, March 2002.

[8] R. Isermann, J. Schaffnit, and S. Sinsel.
Hardware-in-the-loop simulation for the de-
sign and testing of engine-control systems.
Control Engineering Practice, 7:643–653, Au-
gust 1999.

[9] M. Linjama, T. Virvalo, J. Gustafsson,
J. Lintula, V. Aaltonen, and M. Kivikoski.
Hardware-in-the-loop environment for servo
system controller design, tuning and testing.
Microprocessors and microsystems, 24:13–21,
December 2000.

[10] MIT. Maxima, a computer algebra system,
1960. http://maxima.sourceforge.net/.

[11] A. Ptak and K. Foundy. Real-time spacecraft
simulation and hardware-in-the-loop testing.
In Real-Time Technology and Applications
Symposium, 1998. Proceedings. Fourth IEEE,
pages 230–236, Jun 1998.

[12] P. S. Shiakolas and D. Piyabongkarn. Devel-
opment of a Real-Time Digital Control System
With a Hardware-in-the-Loop Magnetic Lev-
itation Device for Reinforcement of Controls
Education. IEEE Transaction on Control Ed-
ucation, 46(1):79–87, February 2003.

[13] G. Stoeppler, T. Menzel, and S. Douglas.
Hardware-in-the-loop simulation of machine
tools and manufacturing systems. Computing
& Control Engineering Journal, 16(1):10–15,
Feb.-March 2005.

8

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 385

Real-Time Simulation of Modelica-based Models

Torsten Blochwitz Thomas Beutlich
ITI GmbH

Webergasse 1, 01067 Dresden, Germany
{blochwitz,beutlich}@iti.de

Abstract

This paper shows the various steps a simulation tool
has to perform to create a real-time-capable model
from a Modelica model. Reduction techniques are of-
ten necessary for complex models to meet the real-
time requirements. For non-linear models with dis-
continuities no automatic methods of model reduction
are known. The analysis methods supporting develop-
ers in identifying critical model parts are explained by
means of an illustrating example model.

Keywords: real-time simulation; hardware-in-the-
loop; model reduction

1 Introduction

The method of physical modeling is more and more
establishing itself in the engineering departments of
OEMs and component suppliers. The engineers do
no longer formulate the model equations by hand but
compile their models using sophisticated model li-
braries. Thus, detailed models are built up in com-
paratively short time. These models simulate the dy-
namic behavior of the system in detail. E.g., the vibra-
tional behavior of drive trains or hydraulic systems is
explored.

During software development of Electronic Control
Units (ECU) offline (non real-time), system simula-
tions are performed using Model-in-the-Loop (MIL)
techniques. In this development stage the detailed sim-
ulation models from the system design can still be
used. During the test phase of the ECU, Hardware-in-
the-loop (HIL) techniques are used requiring the sim-
ulation models to run in real-time.

Costs and resources can be saved if the plant mod-
els built up during system design can be reused for
real-time simulation [1, 2]. The SimulationX R© [3]
high-level system simulation tool supports the engi-
neer in reusing and reducing the simulation models.

The prospects and limitations of such model reuse and
reduction are shown.

2 Real-Time Requirements

In the general case physical models can be represented
by a DAE (differential algebraic equation) system of
the form

0 = f (x, ẋ,z,u, p, t) (1)

y = g(x, ẋ,z,u, p, t) (2)

with
x . . . Continuous states variables
z . . . Discrete states variables
u . . . Inputs
y . . . Outputs
p . . . Parameters
t . . . Time.

Appropriate implicit DAE solvers can directly solve
the DAE system in offline simulation.

The explicit ODE (ordinary differential equation) form

ẋ = f (x,z,u, p, t) (3)

is numerically easier to solve than the DAE form.

Real-time capable models need to be solved within a
predictable execution time per time step. The model
execution time has to be less than the step size.

Implicit solvers needed for DAE calculations work
by iterative methods. The execution time depends
on the number of executed iterations. A common
workaround is to limit the number of iterations. How-
ever, this limitation might lead to numerical inaccu-
racies. Additionally the Jacobian matrix needs to be
updated from time to time. Hence the execution time

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 386 DOI: 10.3384/ecp09430119

of iterative methods is not predictable making them in-
applicable for HIL simulation.

Explicit solvers do meet this requirement but can only
be used for solving ODE systems. Therefore the
physical model needs to be translated to the explicit
ODE (3) form.

Efficient offline solvers are characterized by step size
adaptations. E.g. the step size is decreased for a robust
calculation of high-frequency oscillations. However,
real-time capable solvers require a constant step size.

Variable step size solvers are also used to precisely
detect the discontinuities and events. This cannot be
guaranteed under real-time conditions; hence a robust
formulation of discontinuities and events is required to
prevent improper model behavior after an event.

The maximal model step size for stable calculation
of a differential equation using a given solver inte-
gration algorithm depends on the natural frequencies,
time constants and non-linearities. In other words if
real-time is required the dynamics and non-linearities
need to be limited, too.

Finally the model complexity is limited by the com-
puting power of the target hardware. The model exe-
cution time must not exceed the available calculation
time.

Summing up, the real-time requirements are

• Explicit ODE form of the system,

• Limited dynamics and non-linearities,

• Robust treatment of discontinuities,

• Limited model complexity.

3 Model Generation for HIL Simula-
tion

The steps shown in Fig. 1 are necessary to get from a
physical model to a HIL model.

In the first step the user defines the interfaces of the
HIL model, i.e. the model inputs, outputs and param-
eters. The SimulationX Modelica compiler translates
the model to explicit ODE form. The translated model
is then written as C code to file.

The SimulationX Code Export Wizard guides the user
step by step through the workflow. The model inde-
pendent code parts (i.e. the solver code and the target

Figure 1: Workflow of HIL model generation

specific code) are generated for selected real-time tar-
gets. For other HIL environments based on Simulink R©

and the MATLAB R© Real-Time Workshop R© these
code parts are generated afterwards during the Real-
Time Workshop code generation.

4 SimulationX Guidance

During the HIL model generation the simulation tool
can influence the compliance with the real-time re-
quirements. If such supporting measures are not suffi-
cient model reduction techniques need to be taken into
account. As before SimulationX supports the user in
model reduction, too.

4.1 Symbolic Preprocessing

Using a modeling description language like Mod-
elica requires symbolic preprocessing of the algo-
rithms/equations of the entire dynamic system result-
ing in a simplified system of equations prepared for
numerical integration.

The SimulationX Modelica compiler can either create
the DAE or explicit ODE form of the system of equa-
tions. The translated model can be calculated within
the simulation tool or be exported as C code (explicit
ODE form only).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 387

At the time of the symbolic preprocessing all model
equations are known and can be optimized (even for
offline simulation). The general optimization tech-
niques involve

• Simplification of complex expressions,

• Constants are only assigned once,

• Elimination of dead branches of conditional alter-
natives,

• One-time calculation of repeatedly used expres-
sions,

• Expansion of vectors and matrices,

• Loop unrolling.

For real-time simulation the optimization can even be
continued. Since the user defines the necessary inputs,
outputs and parameters of the model all other model
parts that do not contribute to the calculation of the
outputs can be cancelled. E.g. for the mechanical
spring-damper in Fig. 2 the change of potential energy
and the power loss are dispensable results as displayed
in Fig. 3.

Figure 2: SimulationX Spring-Damper library element

Figure 3: Required and dispensable results of the me-
chanical spring-damper

If the physical model contains implicit relationships
(algebraic loops) the symbolic preprocessing tries to
solve them when translating the model to explicit ODE
form. Non-solvable relationships are transformed to
local blocks of equations that additionally need to be
solved along with the calculation of the RHS (right
hand side) of the explicit ODE. Linear and non-linear
systems are detected and separately solved. The non-
linear implicit systems are solved by iterative meth-
ods that actually are inconsistent with the real-time re-
quirements. However, a fast calculation is guaranteed

• by a small dimension (2 . . .10) of the non-linear
implicit blocks,

• as a symbolic Jacobian matrix is provided that re-
sults in superlinear convergence,

• as well-chosen start values for the iteration are
given. (Assuming a low rate of change of the
unknown variables the results from the previous
time step can be used as start values for the cur-
rent iteration.)

If performance problems are still an issue the user is
informed of the blocks of implicit equations and the
unknown variables. This information finally allows
specific model changes.

Additional steps (such as index reduction and mini-
mum dynamic state selection) might be necessary for
higher index DAE systems.

4.2 Solver

In complex systems the execution time of the model
mainly depends on the calculation of the model. By
the introduction of a modified stability region it was
shown that the well-established Euler Forward solver
is the most efficient solver for complex models and
most suitable for HIL applications [4]. Additionally
the Euler Forward solver has the lowest numerical er-
ror on discontinuities.

Complex numerical solvers require multiple calcula-
tions of the model per time step. The stability region
increases with multiple calculations of the model, i.e.
the model step size can be increased as well. However,
the increased model step size does not compensate the
increased calculation time due multiple calculations of
the model. A stabilized fixed step size solver was de-
veloped that performs better for special model classes.
The distinction between the model sample rate and the
integration step size allows oversampling leading to
excellent results as proven by experience from numer-
ous applications.

4.3 C Code Generation

The result of the code generation is target independent
C code with defined interfaces [5].

If there are loops within auxiliary functions (e.g. char-
acteristic curves with non-equidistant nodes, delay
buffers with variable dead time) efficient search algo-
rithms are applied. It is also ensured that no dynamic

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 388

memory is allocated or freed during the model run-
time.

Own implementations are provided for suboptimally
implemented functions in the runtime libraries. The
SimulationX Code Export Wizard can interface the
following HIL environments

• Targets based on Simulink and the Real-Time
Workshop are addressed by Simulink C coded S-
Functions [6].

• DS1006 Processor Board [7] from dSPACE,

• SCALE-RT [8] from CosateQ,

• NI VeriStand [9] from National Instruments.

The architecture of the target specific code is different
for each of the targets. In case of the dSPACE target
the complete application code consisting of the model
code, the solver code and the simulation engine code
needs to be generated. The I/O function calls for se-
lected dSPACE I/O boards are realized by external C
function calls used within custom library elements as
demonstrated in Fig. 4.

Figure 4: Custom CAN library elements for the
DS1006 Processor Board target

SCALE-RT provides a simulation framework that is
addressed by the SimulationX model. Using distinct
custom I/O library elements the handling of the I/O
function calls is similar to the dSPACE target.

The NI VeriStand target provides an extended model
simulation framework. Aside from the model code
only the solver code with a matching interface has to
be generated. No custom I/O library elements need to
be modeled as all I/O hardware access is handled out-
side the physical model. The NI VeriStand System Ex-
plorer accomplishes the mapping between the physical
I/O channels and the model inputs and outputs after the
code compilation.

5 Model Reduction

Whereas automatic model reduction techniques are
neither available nor known a formal model reduc-
tion approach is described in [10]. The reduction steps

closely depend on the user know-how. The following
features and analysis methods of SimulationX support
the user by the demanding model reduction task.

5.1 Switchable Complexity

Most complex library elements feature switchable
complexity. E.g. the gear drive in Fig. 5 has to be
elastically modeled for Noise - Vibration - Harshness
(NVH) analyses.

Figure 5: SimulationX Gear library element

Fig. 6 shows the complex parameterization of the stiff-
ness and the damping of the toothing.

Figure 6: Elastic gear modeling with non-linear stiff-
ness, damping and backlash

On the other hand the gear toothing is considered as
rigid for HIL applications. Due to its complexity and
high dynamics the vibration behavior is no longer part
of the real-time simulation. If the gear parameter rigid
is selected the gear works as ideal rigid transmission
with reduced dynamics, dimension and complexity as
displayed in Fig. 7.

All deactivated parameters are disabled and there val-
ues are saved.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 389

Figure 7: Rigid gear modeling without backlash

5.2 Model Analysis

Certain components need to be alternatively modeled
in order to reduce the eigenvalue spectrum. E.g. me-
chanical elastic components need to be regarded as
rigid components or hydraulic throttles must be ne-
glected. It always is a non-trivial task to identify those
model components.

A simple automotive drive train (Fig. 8) is used as il-
lustrating example.

5.2.1 Analysis of Natural Frequencies and Mode
Shapes

The analysis of the natural frequencies and mode
shapes calculates the eigenvalues and eigenvectors at
the current working point. The eigenvectors provide
information on the influence of the state variables on
the respective mode shape. Fig. 9 displays the eigen-
vectors corresponding to the highest three natural fre-
quencies of a drive train. Thus the critical state vari-
ables can easily be identified.

Figure 9: Eigenvectors of a drive train

5.2.2 Distribution of Energy

Especially for mechanical systems the energy analysis
as shown in Fig. 10 graphically displays the compo-
nent effects on the respective mode shape.

Figure 10: Energy distribution for a selected mode

Thus the components with the highest influence on the
critical eigenvalues can be identified.

Figure 8: SimulationX model of a simple drive train

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 390

5.2.3 Performance Analysis

Both the analysis of the natural frequencies and the
energy analysis operate at the current working point
of the linearized system. Often a conclusion over the
complete simulation period is required. The Perfor-
mance analysis of Fig. 11 records an error criterion
for each state variable during the offline simulation by
summing up all local error estimates. Therefore it can
be applied to identify critical model parts, e.g. stiff
components or strong non-linearities.

Figure 11: Performance Analyzer

6 Modelica 3.1 Language Extensions

The new Modelica language 3.1 specification [11] in-
troduces language extensions that ease the mapping of
models to execution environments. These language
extensions are useful for the generation of HIL mod-
els, too.

The SimulationX Code Export Wizard is used to create
a HIL model for a chosen HIL environment. As shown
in section 3 the HIL target is selected here and inputs,
outputs and parameters are defined (Fig. 12).

The Code Export Wizard also manages the subsequent
steps (code generation, compilation and upload to the
real-time target). This proceeding is very convenient
if the complete model is mapped to one HIL platform.
If the real-time model consists of several parts, or a
model has to be split to run on several processor cores
this approach becomes a little bit cumbersome. The
user has to break up such models, copy each part to
separate submodels and generate C code for each of
them.

Figure 12: SimulationX Code Export Wizard with in-
puts page, model tree view and some inputs selected

Using the new Modelica 3.1 language extensions

• decouple() operator,

• mapping annotation,

• the task/subtask definition

a model can be separated in place and exported at once.

These new Modelica features look very promising for
HIL targets that support the option to run models in
several parallel tasks.

7 Conclusions

A simulation tool can already provide fundamental
real-time support by

• Symbolic preprocessing,

• Efficient model code generation,

• Appropriate solvers.

For complex physical models a reduction is mostly ad-
ditionally required and supported by SimulationX by

• Switchable model complexity,

• Analysis of natural frequencies and mode shapes,

• Distribution of energy,

• Performance analysis for state variables.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 391

The consideration of the potential real-time capabil-
ity of physical models already during the modeling
stage results in better performance since similar mod-
els for offline and real-time simulation can shorten the
model reduction steps. An appropriate model structur-
ing (e.g. replaceable types) can also ease the model
reduction and lead to higher process reliability.

ITI systematically deals with the real-time challenge.
E.g. the TEMO project [12] is a joint research project
by TLK Thermo GmbH, Braunschweig University of
Technology, Visteon Deutschland GmbH, Daimler AG
and ITI GmbH for preparation of real-time capable
model components in heat conduction and thermal-
fluid applications.

References

[1] Kurz, S., Wittler, G.: Hardware-in-the-Loop-
Simulation: Eine Technologie im Wandel der
Zeit. In: Proceedings of the 7th Haus-der-
Technik-Tagung “HIL Simulation”, München,
Germany, 27-28 February 2007.

[2] Blochwitz, T., Uhlig, A.: Modellgenerierung für
HIL-Simulationen auf der Basis physikalischer
Ansätze. In: Proceedings of the 8th Haus-der-
Technik-Tagung “HIL Simulation”, Kassel, Ger-
many, 16-17 September 2008.

[3] SimulationX: http://www.simulationx.com

[4] Richter, S.: Untersuchung zur Echtzeitsimula-
tion von Modellen aus ITI SimulationX. Dres-
den, Germany: Master thesis, Dresden Univer-

sity of Technology, Faculty of Electrical Engi-
neering and Information Technology, Institute of
Automation, 2006.

[5] Blochwitz, T., Kurzbach, G., Neidhold, T.: An
External Model Interface for Modelica. In: Pro-
ceedings of the 6th Modelica Conference 2008,
Bielefeld, Germany, Modelica Association, 3-4
March 2008.

[6] Simulink: Writing S-Functions. The Math-
Works, Inc., Natick, USA, March 2009.

[7] dSPACE DS1006 Processor Board:
http://www.dspace.de

[8] SCALE-RT: http://www.scale-rt.com

[9] NI VeriStand: http://www.ni.com/veristand

[10] Rodionow, P., Grützner, S., Schreiber, U.: Erstel-
lung, Reduktion und Validierung von Simulati-
onsmodellen am Beispiel eines kompletten Kfz-
Antriebsstranges. In: Proceedings of the 1st Sim-
PEP Kongress, Veitshöchheim, Germany, 14-15
June 2007.

[11] Modelica Association: Modelica, A Unified
Object-Oriented Language for Physical Systems
Modeling. Language Specification, Version 3.1,
27 May 2009.

[12] TEMO – Thermische Echtzeit-
fähige Modelle: http://www.pt-it.pt-
dlr.de/_media/Infoblatt_TEMO.pdf

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 392

Modelica Library for Building Heating,
Ventilation and Air-Conditioning Systems

Michael Wetter
Simulation Research Group, Building Technologies Department,

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

Abstract

This paper presents a freely available Modelica library
for building heating, ventilation and air conditioning
systems. The library is based on the Modelica.Fluid
library. It has been developed to support research and
development of integrated building energy and control
systems. The primary applications are controls design,
energy analysis and model-based operation.

The library contains dynamic and steady-state com-
ponent models that are applicable for analyzing fast
transients when designing control algorithms and for
conducting annual simulations when assessing energy
performance. For most models, dimensional analy-
sis is used to compute the performance for operating
points that differ from nominal conditions. This al-
lows parameterizing models in the absence of detailed
geometrical information which is often impractical to
obtain during the conceptual design phase of building
systems.

In the first part of this paper, the library architecture
and the main classes are described. In the second part,
an example is presented in which we implemented a
model of a hydronic heating system with thermostatic
radiator valves and thermal energy storage.

Keywords: building energy systems, heating, venti-
lation, air-conditioning, controls

1 Introduction

Buildings account for a large fraction of carbon diox-
ide emission and energy consumption. For example,
in the United States, buildings account for 38% of to-
tal carbon dioxide emissions, 70% of electricity con-
sumption and 50% of natural gas consumption, while
less than 2% of the building sector’s energy consump-
tion is from renewable energy [5]. Several government
bodies and professional societies have set the goal to
mandate Net Zero Energy Buildings (ZEB) in the next

15 to 20 years. Such buildings should produce as much
energy as they consume on an annual average. The
challenges inherent in designing and operating high
performance buildings and ZEBs demand a number of
breakthroughs, both in technology, including software
and information technology, and in the fundamental
knowledge of optimizing whole building performance
through integration and component operation [4]. To
accelerate innovation towards ZEB, we started the de-
velopment of a freely available open-source Modelica
library for building energy and control systems that is
available from http://simulationresearch.lbl.
gov. For the early applications, we are particularly
interested in enabling:

1. Rapid prototyping of new building components
and systems.

2. Development of advanced control systems.

3. Reuse of models during operation for energy-
minimizing controls, fault detection and diagnos-
tics.

The current development is focused on the develop-
ment of models for building heating, ventilation and
air-conditioning equipment and their control systems,
as opposed to the building envelope. However, the li-
brary contains an interface that allows coupling Mod-
elica with the EnergyPlus whole building energy sim-
ulation program [3] for co-simulation. This allows
the use of the detailed, extensively validated Energy-
Plus program for modeling the heat transfer through
the envelope and the daylight illuminance in rooms,
while using Modelica for rapid prototyping and anal-
ysis of innovative energy and control systems. The
coupling is done through the Building Controls Vir-
tual Test Bed (BCVTB) that is currently under de-
velopment at the Lawrence Berkeley National Lab-
oratory [13]. The BCVTB is a middleware that is

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 393 DOI: 10.3384/ecp09430042

based on Ptolemy II [1, 6]. Ptolemy II is an open-
source software framework to study modeling, sim-
ulation, and design of concurrent, real-time, embed-
ded systems, with focus on the assembly of concur-
rent components and the use of heterogeneous mix-
tures of models of computation that govern the inter-
actions between components. Ptolemy II allows mod-
eling, analysis and simulation of systems that com-
municate and interact in a variety of ways such as
synchronous or asynchronous, buffered or unbuffered.
The BCVTB adds functionalities to Ptolemy II that
allow coupling Modelica, EnergyPlus, MATLAB and
Simulink to Ptolemy II for data exchange during the
simulation. Interfaces to actual building control sys-
tems will be added in the future to enable use of mod-
els during the operation of the building.

The here described Buildings library is based on
the Modelica.Fluid library 1.0 that uses the new
concept of stream variables [8]. The Modelica.Fluid
library provides a set of component models for one-
dimensional thermo-fluid flow in networks of pipes.
It demonstrates how to implement fluid flow compo-
nent models that may have flow friction, heat and mass
transfer. The library demonstrates how to deal with
difficult design issues such as connector design, han-
dling of flow reversal and initialization of states in a
computationally efficient way. While many classes
of this library can be used for our application do-
main, we provide in the Buildings library classes that
extend and augment models from Modelica.Fluid
where applicable, using the same modeling approach
as Modelica.Fluid. Our library implements classes
that are specifically needed for energy and control
analysis at the whole building system level, as opposed
to the development of individual equipment such as a
refrigeration engine. Since our applications typically
involve annual simulations, we generally do not model
two-phase flow and refrigerant distribution in vapor
compression cycles such as in [11, 10], although our
library can be coupled to more detailed models.

When designing building energy systems, decisions
that significantly affect building performance are typ-
ically done in the early design stage prior to spe-
cific equipment selection and prior to sizing the duct
and piping networks. To enable assessing the per-
formance of building energy systems when such de-
tailed information is not yet available, many models in
the Buildings library are implemented using dimen-
sional analysis. Using dimensional analysis allows
computation of a component’s performance over a
range of operating conditions based on a user-specified

nominal operating point and its nominal performance,
which is then scaled to different operating points based
on laws of physics. Equations (4) and (7) are examples
of such models.

Other developments for building energy system
simulations in Modelica include the ATPlus library [9,
7]. We chose however to base our library on
Modelica.Fluid as it allows modeling fluids with
multiple compositions and trace substances. The first
is important for humidity control in buildings while
the second is needed to assess indoor air quality, for
example, in variable air volume flow systems.

In Section 2, we will discuss the architecture of the
Buildings library. Section 2.1.3 discusses the main
partial models, and Sections 2.1.1 to 2.1.11 discuss
the main packages and their models. In Section 3, we
present an illustrative example in which we modeled
a hydronic heating system. For other examples that
include controls design, we refer to [12].

2 Library for building energy and
control systems

Version 0.6.0 of the Buildings library consists of 73
models and blocks, and 26 functions that are public
and non-partial.

2.1 Packages of the Buildings Library

The Buildings library is organized into the packages
shown in Fig. 1. Components in these packages aug-
ment components from the Modelica Standard Library
and from the Modelica.Fluid library. Most packages
contain a package called Examples, which contains
example applications that illustrate the typical use of
components in the parent directories and that are used
to conduct unit tests.

2.1.1 Package Controls

The package Controls contains blocks that are typi-
cally needed to implement controllers of building en-
ergy systems. For example, the package Controls.
Continuous contains a block of a composite con-
troller where a hysteresis block can switch equipment
on/off, a timer allows for the locking out of equipment
for a minimum time, and a PID controller computes
the actuator signal when the controller is in the on
state. Such a controller can for example be used to
control a modulating boiler. The package Controls.
SetPoints includes blocks for gain scheduling and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 394

Buildings.Controls.Continuous
.Discrete
.SetPoints

Buildings.Fluids.Actuators.Dampers
.Motors
.Valves

.Boilers

.Chillers

.Delays

.FixedResistances

.HeatExchangers

.HeatExchangers.CoolingTowers
.Radiators

.Interfaces

.MassExchangers

.MixingVolumes

.Movers

.Sensors

.Sources

.Storage

.Utilities
.HeatTransfer
.Media
.Utilities.Diagnostics

.IO

.Math

.Psychrometrics

.Reports

Figure 1: Package structure of the Buildings library.
Only the major packages are shown.

time schedules. For example, there is a gain sched-
uler that can be used to compute in a hydronic heating
system the set point of the supply water temperature as
a function of the outside temperature. There is also a
block for an occupancy schedule that has, as one of its
outputs, the time until the next occupancy. This out-
put can, for example, be used to start ventilating the
building prior to occupancy to remove volatile organic
compounds that may have accumulated when the ven-
tilation was switched off.

2.1.2 Package Fluid

The Fluid package contains component models for
thermo-fluid flow systems. The level of modeling de-
tail is comparable with the models of the Modelica.
Fluid library, and most models in Buildings.Fluid
extend models from Modelica.Fluid to form compo-
nents that are typically needed when modeling build-
ing energy systems.

The pressure drop calculation of most resis-
tance models in our library is implemented in

the partial model BaseClasses.FlowModels.
BasicFlowModel. This model computes the relation

ṁ = sign(∆p)k
√
|∆p|, (1)

where the flow coefficient k is assigned by mod-
els that extend PartialResistance. The model is
used to model pressure drop in valves, pipes and me-
chanical equipment. The implementation is realized
using the function Modelica.Fluid.Utilities.
regRoot2, which regularizes the equation near the ori-
gin. Our implementation uses mass flow rate instead of
volume flow rate. This has been done to avoid the in-
fluence of density, and hence temperature, on the pres-
sure drop calculation. In pressure drop calculations for
piping and duct networks in buildings, the uncertainty
in the pressure drop calculation is typically larger than
the error introduced when assuming a constant density.
Note that our implementation still allows the use of a
fluid model with variable density in order to model,
for example, pressure differences due to a stack effect
which can be important for high rise buildings or for
naturally ventilated buildings.

At low flow rate, equation (1) is regularized to
model laminar flow and to avoid numerical problems
as its derivative is unbounded. For undisturbed flow
in a pipe, the flow transition between laminar and
turbulent typically occurs for Reynolds numbers in the
range of 1500 to 4000, but turbulence may occur at
much smaller Reynolds numbers due to flow mixers,
diverters or bends. Also, in early design of build-
ings, the piping or ducting diameters are typically
unknown. Thus, in our models, a user can specify at
what fraction of the nominal flow rate equation (1)
is regularized. Alternatively, the transition region
can be specified by entering parameter values for
the hydraulic diameter and the critical Reynolds
number where turbulence occurs. If a user requires
more detailed flow friction models, then models from
Modelica.Fluid can be used in conjunction with the
Buildings library.

Next, we will discuss the package Fluids.
Interfaces which provides partial classes that are
used by most models in the Fluids package. After
this discussion, we will present the other packages.

2.1.3 Package Fluids.Interfaces

Similarly to Modelica.Fluid.Interfaces, there
is a package Buildings.Fluids.Interfaces
that defines the partial models for components

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 395

that exchange heat or mass with one or two fluid
streams. Such partial models are implemented for
components with two and with four fluid ports.
For models with two fluid ports, i.e., models
that have one fluid stream, the top-level model is
PartialStaticTwoPortInterface, which extends
Modelica.Fluid.Interfaces.PartialTwoPort
to add equations for the states at the ports and
variables for the mass flow rate and pressure drop.
This partial model is extended by two models:
PartialStaticTwoPortHeatMassTransfer and
PartialDynamicTwoPortTransformer. The
first adds equations for the enthalpy, species,
trace substances and pressure drop between its
ports. It also introduces the variables Q flow and
mXi flow[Medium.nXi] that need to be assigned by
models that extend this partial model. These variables
can for example be used to implement a steady-state
model for a heater and humidifier. The second partial
model, PartialDynamicTwoPortTransformer, adds
a pressure drop element and an instantaneously mixed
volume to the base class. This partial model is used
to implement dynamic components that add heat or
species to the fluid. Clearly, it would have been conve-
nient to use PartialDynamicTwoPortTransformer
also for steady-state models by configuring the
volume model in such a way that energy and mass
balance are steady-state. Such a configuration has
been tested, but it led to a larger equation system,
it required using the computationally less efficient
function actualStream() to compute the enthalpy
flow rate at the ports of the volume, and it led in test
models to divisions by zero for zero mass flow rate.
For all of the above models, there are also similar
versions with four fluid ports that are used as partial
models for implementing models that exchange heat
or mass between two fluid streams.

2.1.4 Package Fluids.Actuators

The package Fluids.Actuators contains models of
valves and air dampers, as well as of motors that can
be used in conjunction with the actuators. Actuator
models are based on a flow coefficient φ , defined as
the flow rate at the current actuator position y ∈ [0, 1]
divided by the flow rate at y = 1, i.e.,

φ =
Cv(y)

Cv(y = 1)
. (2)

This flow ratio is proportional to k in (1). For the
two-way valve model with linear opening characteris-
tics, TwoWayLinear, the flow ratio is φ = l + y(1− l),

where 0≤ l� 1 is the valve leakage. Fig. 2 shows φ as
a function of the valve opening y for a linear valve, an
equal percentage valve and a quick opening valve. For
better display, untypical values of l = 0.05 and a range-
ability for the equal percentage valve of 10 have been
selected. These two-way valve models are also used
to construct three way valve models with linear char-
acteristics, or with a combination of equal percentage
characteristics in the main flow path and linear charac-
teristics in the bypass, to allow the modeling of valves
that are typically used in hydronic heating systems.

Figure 2: Flow characteristic φ(y) for valves.

Besides valves, there are also air damper models
with exponential opening characteristics and models
for terminal boxes of variable air volume flow systems.

There is also a model of a motor with hysteresis and
finite actuation speed that can be used with the valve or
the damper models. If the current actuator position y is
below (or above) the input signal u by an amount big-
ger than a hysteresis δ , then the position y is increased
(decreased) using a finite speed until it reaches u.

2.1.5 Package Fluids.Boilers

The package Fluids.Boilers contains a boiler
model that can either be configured as a dynamic
model or as a steady-state model. The heat transferred
from the combustion to the the water, Q̇, is computed
as

Q̇ = Q̇0
η(y,T)
η(1,T0)

y, (3)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 396

where Q̇0 is the nominal heating capacity, y ∈ [0,1] is
a control signal (typically, y ∈ 0∪ [0.3, 1] for a mod-
ulating boiler) and η : [0, 1]×ℜ→ ℜ is the furnace
efficiency based on the load fraction y and the fur-
nace temperature T . The nominal heating capacity
Q̇0 and its associated temperature T0 are parameters.
The model allows users to select different functional
forms for η(·, ·). The heat Q̇ is added to a volume
from Modelica.Fluid (to model the fluid’s heat bal-
ance) which is connected to a solid heat storage ele-
ment from the Standard Modelica Library (to model
heat stored in the metal). The model also exposes a
heat port of a heat conductor to allow modeling heat
losses to the ambient environment.

2.1.6 Package Fluids.Chillers

This package contains a model of a chiller whose co-
efficient of performance (COP) is proportional to the
Carnot efficiency. Parameters are either the Carnot ef-
fectiveness ηc,0 at the nominal conditions, or the COP
and the evaporator and condenser temperatures at the
nominal conditions, COP0, Te,0 and Tc,0. In the latter
case, the Carnot effectiveness is computed as

ηc,0 = COP0
Tc,0−Te,0

Te,0
. (4a)

A user can specify what temperatures should be used
as the evaporator (or condenser) temperature. The
available options are the temperatures of the fluid vol-
ume, of port a, of port b, or of the average temper-
ature of port a and port b. The chiller COP is com-
puted as the product

COP = ηc,0
Te

Tc−Te
ηpl(y), (4b)

where ηpl(·) is a polynomial in the control signal y that
can be used to take into account a change in COP at
part load conditions. The electrical power consump-
tion of the compressor is P = P0 y, where P0 is a pa-
rameter for the nominal compressor power. The heat
extracted from the evaporator is Q̇e = COP P, and the
heat transferred to the condenser is Q̇c = Q̇e +P. The
condenser and evaporator are modeled using volumes
from Modelica.Fluid and can therefore be modeled
dynamic or at steady-state.

2.1.7 Package Fluids.HeatExchangers

This package contains steady-state and dynamic heat
exchanger models, some of which compute condensa-
tion of water vapor that may occur at a cooling coil.

Simple models include a model with prescribed heat
input into the medium, i.e., the transferred heat is
Q̇ = Q̇0 u, where the maximum heat transfer Q̇0 is a
parameter and u ∈ [0, 1] is an input signal.

There is also a constant effectiveness heat ex-
changer in which

Q̇ = ε min(|Ċ1|, |Ċ2|)∆Tin, (5)

where ε ∈ (0,1) is a parameter, Ċ1 is the heat capac-
ity flow of the stream 1, and ∆Tin is the temperature
difference of the two inlet temperatures.

If a more detailed dynamic model is required, then
finite volume models of a dynamic cooling coil, op-
tionally with water vapor condensation, can be used.
In these models, each pipe is discretized along its flow
path. Pipes can be arranged in parallel to form a regis-
ter. There are headers to redirect the flow between reg-
isters, or between pipes inside a register. The registers
are exposed to the air stream that flows from one regis-
ter to another. The most basic element of the coil mod-
els consists of two fluid volumes, one for the air stream
and one for the water stream, that are connected to a
thermal storage model for the metal pipe (see Fig. 3).

Figure 3: Basic element for a dynamic cooling coil
with condensation. Models with index 1 and 2 refer to
the water and air side, respectively.

The sensible convective heat transfer coefficient can
be constant, or it can be a function of mass flow rate
and temperature. The convective mass transfer co-
efficient is calculated based on similarity laws bet-
ween heat and mass transfer. Using the Lewis num-
ber, which is defined as the ratio between the heat and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 397

mass diffusion coefficients, the ratio between convec-
tion heat transfer coefficient h (in W/(m2 K)) and mass
transfer coefficient hm (in m/s) is obtained as

h
hm

= ρ cp Le(1−n), (6a)

where ρ is the mass density, cp is the specific heat
capacity of the bulk medium and n is a coefficient
from the boundary layer analysis, which is typically
n = 1/3. From this equation, the water vapor mass
flow rate ṁw (in kg/s) is obtained as

ṁw =
Gc

cp Le(1−n) (Xs−X∞), (6b)

where Gc = hA is the sensible heat conductivity
(in W/K) and Xs and X∞ are the water vapor mass
fractions in the boundary layer and in the bulk of the
medium. In this model, Xs is the saturation water
vapor mass fraction corresponding to the surface
temperature of the pipe.

The package Fluids.HeatExchangers.
CoolingTowers contains models of cooling tow-
ers. The air inlet temperature is obtained from an
input signal which can be set to the dry bulb or
wet bulb temperature. There is a simple model in
which the water outlet temperature minus the air
inlet temperature is constant. There is also a more
detailed model in which the water outlet temperature
is computed based on the performance curve of a
York cooling tower. This model can operate either
with forced flow when the fan is operating or in free
convection mode.

The package Fluids.HeatExchangers.
Radiators contains a radiator model for hydronic
space heating systems. The model can be configured
as a steady-state or a dynamic model, and it can be
discretized into finite volumes. If n ≥ 1 denotes the
number of discretization volumes, then the convective
and radiative heat transfer is

Q̇c = (1− fr) Q̇0
1
n

n

∑
i=1

(
∆Tc,i

∆T0

)n

, (7a)

Q̇r = fr Q̇0
1
n

n

∑
i=1

(
∆Tr,i

∆T0

)n

, (7b)

where fr is the fraction of radiative heat transfer, Q̇0
and ∆T0 are the nominal heating capacity and temper-
ature difference, and ∆Tc,i and ∆Tr,i are the convec-
tive and radiative temperature differences of the i-th
volume. The parameters fr, Q̇0 and ∆T0 are typically
available from product catalogs.

2.1.8 Package Fluids.MassExchangers

This package contains two models for mass exchang-
ers. The model HumidifierPrescribed adds water
to an air stream in the amount of ṁw = yṁw,0, where
ṁw,0 is a parameter and y ∈ [0, 1] is an input.

The model ConstantEffectiveness transfers
heat and moisture in the amount of

Q̇ = εs min(|Ċ1|, |Ċ2|)∆Tin, (8a)

ṁ = εl min(|ṁ1|, |ṁ2|)∆Xin, (8b)

where εs and εl are the sensible and latent effective-
ness, Ċ1 is the heat capacity flow rate of medium
one, ∆Tin is the temperature difference over the in-
let streams, ṁ1 is the mass flow rate of stream one
and ∆Xin is the difference in water vapor mass fraction
across the two inlet streams.

2.1.9 Package Fluids.Storage

This package contains models of thermal energy stor-
age tanks.

The model Stratified uses a user-specified num-
ber of fluid volumes that are connected in series to
model a stratified storage tank. Heat conduction is
modeled between the volumes through the fluid, and
between the volumes and the ambient environment
through the tank enclosure. A heat port that is con-
nected to the fluid volume can be used to add a tem-
perature sensor or to inject heat into the fluid when
modeling a heat exchanger. The tank also contains a
model that emulates buoyancy if there is a temperature
inversion in the tank.

The model StratifiedEnhanced extends the
above model to add equations that reduce the numeri-
cal dissipation that is introduced when fluid flows from
one volume to another. Such numerical dissipation is
typical for upwind discretization schemes. To reduce
the numerical dissipation, we implemented a model
that is based on the one described by Wischhusen [14].

2.1.10 Package Media

This package contains media models that can be used
in addition to the models from Modelica.Media.
Some of the media models in this package are based on
simplified state equations and property equations that
lead generally to a faster and more robust simulation
compared to the models of Modelica.Media. For ex-
ample, there are models that are similar to Modelica.
Media.Air.MoistAir, but our implementations in
Buildings.Media.PerfectGases are based on the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 398

Table 1: Benchmark tests for medium models.

system Medium model init. simulation computing
model l nl J l nl J time in [s]

1 Modelica.Media.Air.MoistAir 0 25 0 0 1 26 20
1 Buildings.Media.PerfectGases.MoistAir 0 25 0 0 1 26 13.5
1 Buildings.Media.GasesPTDecoupled.MoistAir 0 7 0 0 1 26 8.6
2 Modelica.Media.Air.SimpleAir 0 31 0 0 1 0 *
2 Buildings.Media.GasesPTDecoupled.SimpleAir 0 21 0 0 0 26 0.55

∗ Failed to solve initialization problem.

thermally perfect medium assumption [2], i.e., the spe-
cific heat capacity is constant and internal energy and
enthalpy are functions of temperature only.

There is also a package Buildings.Media.
GasesPTDecoupled that contains medium models that
do not follow the ideal gas law. Instead, the medium
model is based on the equation ρ/ρstp = p/pstp,
where p denotes pressure and ρ denotes mass den-
sity, and pstp = 101325Pa and ρstp = 1.2kg/m3 for
air. Hence, in an isobar heat exchange, density re-
mains constant, which generally leads to smaller equa-
tion systems. Table 1 shows benchmark problems
conducted with Dymola 7.1 using models that are
part of the example models of the Buildings li-
brary. The system model 1 is a dynamic cooling coil
with feedback control and valve motor with hysteresis
(model WetCoilDiscretizedPControl). The sys-
tem model 2 is an open-loop simulation of a variable
air volume flow system that serves 6 rooms (model
MITScalable). In Tab. 1, the first three columns are
the statistics for the initialization problem, the next
three columns are for the time integration, and the
last column is the computing time. The columns with
header “l” or “nl” denote the largest dimension of a lin-
ear or nonlinear system of equations, and the columns
with header “J” denote the number of numerical Ja-
cobians. For the system model 1, decoupling pressure
and temperature reduced computing time by more than
a factor of two. For the system model 2, Dymola was
only able to solve the initialization problem with the
simplified medium model.

2.1.11 Package Utilities

The package Utilities.Diagnostics contains
blocks with assert statements that can for example
be used to check that setpoints are within expected
ranges, which can be helpful to automate some of the
debugging during the development of large models.

The package Utilities.IO contains blocks for in-

put and output. Its subpackage Utilities.IO.BCVTB
contains a block that allows linking Modelica to the
Building Controls Virtual Test Bed (BCVTB). At the
start of the simulation, this block establishes a socket
connection using the Berkeley Software Distribution
socket (BSD socket) implementation, and then ex-
changes data with the BCVTB during the simulation.
The BCVTB interface allows

1. co-simulation between Modelica and the Energy-
Plus whole building energy simulation program,
MATLAB and/or Simulink,

2. the use of Ptolemy II to link heterogeneous mod-
els of computation with Modelica models, and

3. linking Modelica with building control systems
through the controls interface that will be added
to the BCVTB.

Fig. 4 shows a simple model that was used for test-
ing the BCVTB interface. Fig. 4(a) shows the imple-
mentation in Ptolemy II, which models the controls.
The block labeled “Dymola” sends control signals to
Dymola and receives measured temperatures from Dy-
mola. Fig. 4(b) shows the implementation of the heat
transfer model in Dymola. The model on the very left
sends the measured temperatures to Ptolemy II and re-
ceives the control signal from Ptolemy II. The data ex-
change is done through BSD sockets and hence can be
across a network.

The package Utilities.Math contains functions
and blocks that augment the mathematical functions
of the Modelica Standard Library. Examples are
once continuously differentiable approximations to the
functions y = min(x1,x2), y = exp(|x|) and y = |x|n,
for n > 0, that are used by various models in the
Buildings library.

There is also a package Utilities.
Psychrometrics with psychrometric functions
and a package Utilities.Reports with blocks for
reporting output values to files.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 399

(a) Ptolemy model that implements the models for the controls.

(b) Modelica model that implements the models for the heat transfer.

Figure 4: Illustration of the BCVTB interface for co-simulation using Ptolemy II and Modelica.

3 Applications

We will now present an example application of a hy-
dronic heating system which is part of our library (see
model Buildings.Examples.HydronicHeating).
Applications in which the library has been used for
controls design can be found in [12].

Fig. 5 shows the Modelica model of the hydronic
heating system. On the lower left quadrant of the
figure is the heating plant, with a dynamic model of
a boiler and a circulation pump. The boiler loop is
connected to a stratified thermal energy storage tank.
Based on the temperatures of the top and bottom seg-
ment of the tank, a finite state machine switches the
boiler on and off. The vertical lines in the middle
of the figure are the water supply and return pipes to
the rooms. The supply water temperature set point
is scheduled based on the outside air temperature.
An equal-percentage three-way valve mixes the wa-
ter. The distribution pump has a controller that ad-
justs the pump revolution in order to maintain a con-
stant pressure difference across the pump. On the up-

per right quadrant are models of two rooms. Each
room has a thermostatic radiator valve with equal-
percentage opening characteristics. The radiator mod-
els are dynamic and exchange radiative heat with the
room enclosures and convective heat with the room
air. The room air is modelled using a thermal capacity
model and a thermal conductor (to model ventilation
heat losses) from the Modelica Standard Library, and
a finite difference model for transient heat conduction
through the walls. There is also an occupancy sched-
ule for each room, which is used to model heat gains
from occupants, lights and equipment.

The total system model contained 353 simulation
components that led to a differential algebraic equa-
tion system with 2278 scalar equations and 29 state
variables. A simulation of two days took about 12 sec-
onds on a desktop computer.

Fig. 6 shows the time trajectories for the second day
of simulation. The top figure shows the room tem-
peratures. The middle figure shows the valve posi-
tions (red and blue are radiator valves and black is the
three-way valve). The bottom figure shows the supply

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 400

Figure 5: Model of the hydronic heating system with thermal energy storage.

24 26 28 30 32 34 36 38 40 42 44 46 48
19

20

21

22

T
ro

om
 in

 [°
 C

]

24 26 28 30 32 34 36 38 40 42 44 46 48
0

0.25
0.5

0.75
1

y

24 26 28 30 32 34 36 38 40 42 44 46 48
20
30
40
50
60

T
w

at
er

 in
 [°

 C
]

time in [h]

Figure 6: Time trajectories for the second day of sim-
ulation of the hydronic system model.

water temperature after the three-way valve (red), the
return water temperature from the two rooms (blue),
the boiler temperature (green) and the temperatures of
the five volumes used to discretize the thermal storage

tank (black).
The room temperature set point is well maintained.

The peaks in room air temperature are due to internal
heat gains and cause the thermostatic radiator valves
to close as expected.

4 Conclusions

The Modelica.Fluid package provided a rich set of
basic models that we could either use directly or adapt
to implement a library for building energy systems.
The flexibility of Modelica has been shown to enable
analysis of building energy and control systems [12]
that are outside the capability of traditional building
energy simulation programs.

However, numerically solving for initial conditions
and time trajectories of such systems can sometimes
pose difficulties for solvers. We believe that further
advances in model formulation and in solution algo-
rithms are needed to make equation-based modeling

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 401

of building energy and control systems available to a
larger audience who is not trained in addressing nu-
merical problems. In the meantime, however, Model-
ica is a valuable tool for researchers who can debug
numerically challenging problems, as it allows flexi-
ble system modeling and the addition of new models
to existing libraries with less effort compared to causal
programming languages.

5 Acknowledgments

This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office
of Building Technologies of the U.S. Department of
Energy, under Contract No. DE-AC02-05CH11231.

References

[1] Christopher Brooks, Edward A. Lee, Xiao-
jun Liu, Steve Neuendorffer, Yang Zhao, and
Haiyang Zheng. Ptolemy II – heterogeneous con-
current modeling and design in Java. Techni-
cal Report No. UCB/EECS-2007-7, University
of California at Berkeley, Berkeley, CA, January
2007.

[2] William B. Brower. A primer in fluid mechanics:
dynamics of flows in one space dimension. CRC
Press, Boca Raton, FL, USA, 1999.

[3] Drury B. Crawley, Linda K. Lawrie, Curtis O.
Pedersen, Richard J. Liesen, Daniel E. Fisher,
Richard K. Strand, Russell D. Taylor, Freder-
ick C. Winkelmann, W. F. Buhl, A. E. Erdem,
and Y. J. Huang. EnergyPlus, a new-generation
building energy simulation program. In Proc.
of Renewable and Advanced Energy Systems for
the 21st Century, Lahaina, Maui, Hawaii, April
1999.

[4] Building Technologies Program – planned pro-
gram activities for 2008-2012. Technical report,
U.S. Department of Energy, Energy Efficiency
and Renewable Energy, 2008.

[5] Buildings Energy Data Book. Technical Re-
port DOE/EE-0325, U.S. Department of Energy,
Washington, D.C., September 2008.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, J. Lud-
wig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity – the Ptolemy approach.
Proc. IEEE, 91(1):127–144, January 2003.

[7] Felix Felgner, Rolf Merz, and Lothar Litz. Mod-
ular modelling of thermal building behaviour us-
ing modelica. Mathematical and Computer Mod-
elling of Dynamical Systems, 12(1):35–49, 2006.

[8] Rüdiger Franke, Francesco Casella, Martin Otter,
Katrin Proelss, Michael Sielemann, and Michael
Wetter. Standardization of thermo-fluid mod-
eling in Modelica.Fluid. In Francesco Casella,
editor, Proc. of the 7-th International Modelica
Conference, Como, Italy, September 2009. Mod-
elica Association.

[9] Rolf Mathias Merz. Objektorientierte Model-
lierung thermischen Gebäudeverhaltens. PhD
thesis, Universität Kaiserslautern, September
2002.

[10] Christoph C. Richter. Proposal of New Object-
Oriented Equation-Based Model Libraries for
Thermodynamic Systems. PhD thesis, Technis-
chen Universität Carolo-Wilhelmina zu Braun-
schweig, Germany, January 2008.

[11] Hubertus Tummescheit, Jonas Eborn, and Katrin
Prölss. AirConditioning - a Modelica library for
dynamic simulation of AC systems. In Gerhard
Schmitz, editor, Proceedings of the 4th Model-
ica conference, pages 185–192, Hamburg, Ger-
many, March 2005. Modelica Association and
Hamburg University of Technology.

[12] Michael Wetter. Modelica-based modeling and
simulation to support research and development
in building energy and control systems. Journal
of Building Performance Simulation, 2(2):143–
161, June 2009.

[13] Michael Wetter and Philip Haves. A modular
building controls virtual test bed for the integra-
tion of heterogeneous systems. In Proc. of Sim-
Build, Berkeley, CA, August 2008. IBPSA-USA.

[14] Stefan Wischhusen. An enhanced discretization
method for storage tank models within energy
systems. In Christian Kral and Anton Haumer,
editors, Proc. of the 5-th International Modelica
Conference, volume 1, pages 243–248, Vienna,
Austria, September 2006. Modelica Association
and Arsenal Research.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 402

HumanComfort Modelica-Library
Thermal Comfort in Buildings and Mobile Applications

Boris Michaelsen Joerg Eiden
XRG Simulation GmbH

Harburger Schlossstr. 6-12, 21079 Hamburg, Germany
{michaelsen,eiden}@xrg-simulation.de

1 Abstract

The HumanComfort library provides basic models to
predict the thermal comfort of occupants within an air-
conditioned space in mobile or stationary applications.
The library is modularly structured to allow a flexi-
ble use in combination with air conditioning systems
or complex zone simulations. TheHumanComfort li-
brary provides models and functions to establish a
multi zone model to analyse the interaction between
the inertia of the zone and a HVAC (heating ventila-
tion and air conditioning) system relating to the ther-
mal comfort of the occupants. The validation of the
building simulation including a thermal comfort anal-
ysis was done by a comparative validation test with
EnergyPlus using DesingBuilder [1].

Keywords: human comfort, thermal comfort, PMV,
PPD, GTO, multi zone model

2 Introduction

Energy systems are often optimized with regard to
economical rules, on the other hand humans feel com-
fortable within certain limits defined by thermal and
personal factors. Studies showed that the change of
the thermal sensations can be defined by means of
characteristic numbers and standardized mathemat-
ical methods. TheHumanComfort library is cur-
rently developed within the European research project
EuroSysLib-D, providing basic models to predict the
human comfort in form of mathematical criteria and
also graphical visualizations. TheHumanComfort li-
brary uses an integrated approach to simulate a zone
(building or cabin model) and an air-conditioning si-
multaneously. This approach is crucial for the optimal
dimensioning of an air conditioning system by taking
the thermal comfort into account.

3 Library Structure

The main structure of theHumanComfort library is
shown in fig. 1.

Figure 1:HumanComfort library structure

TheGettingStarted package includes a brief intro-
duction of the library concept and shows the most im-
portant steps to handle the library.

TheGlobal package encloses common models and
functions, icons, interfaces, and special types.

TheHumanComfort package contains basic func-
tions and models to predict the thermal comfort. It
also contains a package for the model animation of the
characteristic numbers.

TheWeather package encloses functions and mod-
els to provide annual weather data for the zone model.

The Zone package provides models for stationary
and mobile applications. Mobile applications will be
covered by models for aircraft and automotive cabins.
The mobile zones are designed as detailed as necessary
to analyse the human comfort. It is not the aim of the
mobile zones to cover up all effects in detail.

TheExamplespackage includes examples for typi-
cal applications and verification models.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 403 DOI: 10.3384/ecp09430082

4 Human Comfort

Thermal comfort is defined as that condition of mind
that expresses satisfaction with the thermal environ-
ment. Dissatisfaction may be caused by warm or cool
discomfort of the body or may be caused by an un-
wanted cooling or heating [2]. Thermal comfort stan-
dards are based on collected data from laboratory and
field studies which provide the necessary statistical
data to define the conditions that a specified percent-
age of occupants will find thermally comfortable.

The implemented thermal prediction models con-
sider statistic and adaptive comfort models, based on
the following standards:

• DIN EN ISO 7730 [2]

• ASHRAE Standard 55-2004 [3]

• ISSO 74 [4]

To predict the thermal comfort, it is necessary to
consider the thermal factors: temperature, radiant tem-
perature, humidity, and air velocity as well as the per-
sonal factors: activity (metabolic rate) and clothing in-
sulation.
The relation between this factors are provided by the
standards as mathematical formulated characteristic
numbers.

Using the characteristic numbers Predicted Mean
Vote (PMV) and Predicted Percentage of Dissatisfied
(PPD) the thermal comfort can be calculated.

The local thermal discomfort will be considered by
the Percentage of Discomfort (PD) and can be divided
into the following sections:

• Radiant temperature asymmetry

• Draft

• Vertical air temperature difference

• Cool or warm wall

• Cool or warm ceiling

• Cool or warm floors

Adaptive thermal comfort consider the fact that oc-
cupants will tolerate a wider range of temperatures and
internal conditions when more control is allowed over
their internal environment. The implementation of the
ISSO 74 (Dutch Thermal Comfort Guideline) expands
theHumanComfort library with additional characteris-
tic numbers and diagrams regarding the adaptive ther-
mal comfort.

The operative indoor temperature, the Adaptive
Temperature Limits (ATG) and the annual characteris-
tic numbers Weighted Temperature Exceeding Hours

(GTO), TO25◦C and TO28◦C (Operative Temperature
Limits) cover up this adaptive thermal comfort.

Figure 2: Diagram layer of theHumanComfort model;
including the functions and models for the PMV, PPD,
and PD’s calculation, and the HumanComfort adapter

The characteristic numbers are pooled in one model
namedHumanComfort (see fig. 2). The therefore
establishedHumanComfort adapter enables an easy
interface for the end-user. This allows a complete
thermal comfort analysis by simply connecting the
HumanComfort model to this adapter.

4.1 Characteristic Numbers

Calculation methods and the resulting characteristic
numbers are provided in several international stan-
dards ([2], [3], [4]). The characteristic numbers are
implemented as functions and models for a flexible
use. The most important characteristic numbers are
described in detail in the following sections.

4.1.1 Predicted Mean Vote (PMV)

The PMV is an index that predicts the mean value of
the votes of a large group of persons on the sevenpoint
thermal sensation scale [3]. It uses heat balance princi-
ples to relate the thermal and personal factors for ther-
mal comfort to the average response of people on the
sensation scale. The ideal range is between -0.5 and
+0.5 (neutral) (see fig. 3).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 404

PMV Comfort
+3 hot
+2 warm
+1 slightly warm
0 neutral
-1 slightly cool
-2 cool
-3 cold

Figure 3: PMV and PPD visualization, screen shot of
the Dymola model animation window

PMV = Predicted Mean Vote [−]
PPD = Predicted Percentage of Dissatisfied[%]

Thermal factors:

Ta = ambient temperature [K]
Tr = mean radiant temperature[K]
vair = relative air velocity [m/s]
pa = water vapour pressure [Pa]
RH = relative humidity [%]

Personal factors:

CLO = thermal isolation of the clothing [clo = 0.155·m2 ·K/W]
M = metabolic rate [met= 58.15W/m2]
W = external work [W/m2]

Internal values of PMV function:

Icl = thermal resistance of the clothing [m2 ·K/W]
hc = convective heat transfer coefficient [W/m2 ·K]
fcl = ratio of clothed body [−]
HLx = heat loss factors [−]
TS = thermal sensation transformation coefficient[−]

The first step to determine PMV is the calculation of
the thermal resistance of the clothingIcl and the ratio
of clothed bodyfcl (see eq. 1 and 2).

Icl = 0.155·CLO (1)

fcl =

{
1.05+0.645· Icl for Icl > 0.078
1+1.29· Icl for Icl ≤ 0.078

(2)

It is necessary to iterate, due tohc = f (Tcl) andTcl =
f (hc,Tcl), see eq. 3 and 4. The allowed failure of the
iteration process is 10−9.

hc =

{
2.38· |Tcl −Ta|

1
4 for 2.38· |Tcl −Ta|

1
4 > 12.1·

√
vair

12.1·
√

vair for 2.38· |Tcl −Ta|
1
4 ≤ 12.1·

√
vair

(3)

Tcl = 35.7−0.028· (M−W)
−Icl · [3.96·10−8 · fcl · (T4

cl −T4
r)+ fcl ·hc · (Tcl −Ta)]

(4)

The user has two options to describe the input of
the humidity. The first one is to use the water vapour
pressurepa. The second option is to use the relative
humidity RH. The following equation describes the
relation betweenpa andRH.

pa,internal =

{
RH ·10·e16.6536−4030.183/(ta+235) for pa = 0

pa for pa > 0
(5)

The calculations of all heat losses and the thermal
sensation transformation coefficient are the last steps
to determine the PMV (see eq. 6 to 12).

TS= [0.303·e−0.036·M +0.028] (6)

HL1(skin) = 3.05·0.001· (5733−6.99· (M−W)−Pa) (7)

HL2(sweat) =

{
0.42· (M−W−58.15) for M−W > 58.15

0 for M−W ≤ 58.15
(8)

HL3(latent_respiration) = 1.7·0.00001·M · (5867− pa) (9)

HL4(dry_respiration) = 0.0014·M · (34− ta) (10)

HL5(radiation) = 3.96·0.00000001· fcl · (T
4
cl −T4

r) (11)

HL6(convection) = fcl ·hc · (tcl − ta) (12)

The final step is the calculation of the PMV.

PMV = TS· (M−W−HL1−HL2−HL3−HL4−HL5−HL6) (13)

The PMV is the basis of the PPD and the GTO.

4.1.2 Predicted Percentage of Dissatisfied (PPD)

The PPD is an index that establishes a quantitative pre-
diction of the percentage of thermally dissatisfied peo-
ple determined from PMV (see eq. 14 and fig. 4) [3].

PPD= 100−95·e−0.03353·PMV4−0.2179·PMV2
(14)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 405

Figure 4: Correlation between PMV and PPD

4.1.3 Weighted Temperature Exceeding Hours
(GTO)

The GTO-method which is based on the analyticalPMV

model is an annual characteristic number.
In the GTO-method the hours during which the cal-

culated or actual PMV exceeds the PMV-limit of +0.5
are weighted proportional to the PPD. With this, a tem-
perature that results in a PPD of 20% during 1 hour
will be weighted twice as severe as a temperature that
results in 10% dissatisfied occupants [4]. When the
PMV has a value of 0.5 (PPD=10) the weighting fac-
tor is 1.0, see tab. 1:

PMV PPD Weighting factor

0 5 0.0
0.5 10 1.0
0.7 15 1.5
1.0 26 2.6

Table 1: Correlation of PMV, PPD, and the GTO
weighting factor [4]

The GTO will be calculated every 3600 seconds, by
using the actual PMV value as the input. This is im-
plemented by using the Modelica sample function, see
source code 1. The governing equations for the GTO
are described in eq. 15- 17.

PPDhour = 100−95·e−0.03353·PMV4
hour−0.2179·PMV2

hour (15)

GTOhour =

{ PPDhour
10 f or PMV ≥ 0.5
0 for PMV < 0.5

(16)

GTO=
8760

∑
hour=1

GTOhour (17)

PMVhour = Predicted Mean Vote of current hour [−]
PPDhour = Predicted Percent. of Dissatisfied of curr. hour[%]
GTOhour = Weighted temperature of current hour [−]
GTO = Weighted temperature Exceeding Hours [−]

The following source code shows the implementa-
tion of the GTO-Method in Modelica.

h o u r _ s t e p = f l o o r (t ime / 3 6 0 0) ;
hour = t ime / 3 6 0 0 ;
day = hour / 2 4 ;

when i n i t i a l () then
s t a r t T i m e = t ime ;

end when;

der (PMV_int) = PMV;
PMV_mean = noEvent (i f t ime − s t a r t T i m e > 0 then

PMV_int / (t ime − s t a r t T i m e) e l s e PMV) ;

when sample(0 , 3600) then
PMV_int_step = PMV_int ;
PMV_in t_s tep_pre =pre (PMV_int_step) ;
PMV_mean_h = noEvent (i f t ime − s t a r t T i m e > 0 then

(PMV_int_step− PMV_in t_s tep_pre) / (3 6 0 0)e l s e PMV_in) ;
i f abs(PMV_in) >= 0 .5 then

GTO = pre (GTO) + PPD(PMV_in) / 1 0 ;
e l s e

GTO = pre (GTO) ;
end i f ;

end when;

Source Code 1: Modelica code of the GTOmodel

The in [4] given annual limit of 150 will be consid-
ered in the analyses of the GTO. Fig. 5 describes the
correlation between the hourly values of PMV, PPD
and GTO. In this theoretical case the PMV increase
from -3 to +3 in a time period of 60h. The grey area
in the graph shows a constant GTO value within the
PMV limit from -0.5 to +0.5.

Figure 5: Correlation of the hourly values of PMV,
PPD, and GTO by an increasing PMV from -3 to +3

4.2 Other Characteristic Numbers

The following characteristic numbers are defined
in the standards and are implemented in the
HumanComfort library, but will not be described in
this paper in detail.

• DR - Draught Rating [2]

• PD Due to Radiant Asymmetry [2]

– PD Due to Cool Wall

– PD Due to Warm Wall

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 406

– PD Due to Cool Ceiling

– PD Due to Warm Ceiling

• PD Due to Cool or Warm Floors [2]

• PD Due to Vertical Air Temperature Difference [2]

• ATG - Adaptive Temperature Limits [4]

• TO - Operative Temperature Limits [4]

• DAR - Limits on Temperature Drifts and Ramps [3]

5 Zones

The zones are separated into models for mobile and
stationary applications. The stationary applications are
single rooms or small buildings. The mobile applica-
tions will be automotive or aircraft cabins. Each appli-
cation can be combined with the weather or Human-
Comfort module (see fig. 6).

Figure 6: One room model with a connected weather
andHumanComfort model

The main features of the zone models are:

Internal heat radiation between visible surfaces.
TheRadiationExchangeApproximated model con-
siders the heat exchange due to heat radiation of sur-
faces to each other. The external solar radiation
through the windows and the internal heater radiation
will be considered as well. Therefore the heat emis-
sions of all surfaces, defined by their areas, tempera-
tures and long wave emissions coefficients will be col-
lected in a virtual heat pool. The solar radiation, de-
fined by the short wave emission coefficient, and the
heater radiation are also collected in the virtual heat
pool. The absorbed heat flows of the surfaces are de-
fined by their areas, temperatures and absorption co-
efficients. The schematic of the virtual heat pool is
shown in fig. 7.

The solar radiation reflection and back reflection on
all surfaces will affect the final amount of the solar ra-
diation into the virtual heat pool. The mean absorption
rate of a zone is calculated with the absorption ratio of

Figure 7: Schematic of the virtual heat pool imple-
mented in theRadiationExchangeApproximated
model

all surfaces and a reflection parameter. The reflection
parameter defines the mean number of internal reflec-
tions of all sun rays, before they leave the zone. The
source code 2 presents the implementation of the solar
reflection calculation.

Q _ t o t a l = sum(Q_out [i] f o r i i n 1 : 1 2)
+ G _ t o t a l∗abs_mean + Q _ r a d i a t o r ;

So la rGa in = G _ t o t a l∗a b s _ t o t a l ;
abs_mean=sum(A_abs [i] f o r i i n 1 : 1 2) / A _ t o t a l ;
emiss ion_mean=sum(A_emi [i] f o r i i n 1 : 1 2) / A _ t o t a l ;

f a c t o r [1] = 1 ;
a b s o r p i o n _ f a c t o r [1]= abs_mean∗ f a c t o r [1] ;

f o r i i n 2 : 1 : 1 0 loop
f a c t o r [i]=min (max(r e f l e c t i o n s− i +1 ,0) , 1) ;
a b s _ f a c t o r [i]=(1−sum(a b s _ f a c t o r [x] f o r x i n 1 : i −1))

∗ abs_mean∗ f a c t o r [i] ;
end fo r ;

a b s _ t o t a l =sum(a b s _ f a c t o r) ;

f o r i i n 1 : 1 : 1 2 loop
i f A[i] < eps then

Q_out [i] = 0
e l s e

Q_out [i] =(em i ss i on [i]∗ sigma∗A[i] ∗T[i] ^ 4) ;
end i f ;
Q_in [i] = Q _ t o t a l / A _ t o t a l∗A[i] ∗abs[i] / abs_mean ;
A_abs [i]=A[i]∗abs[i] ;
A_emi [i]=A[i] ∗ em i ss i on [i] ;

end fo r ;

Source Code 2: Modelica code of the solar refection.

This virtual heat pool method is an approximation
of the exact calculation of the heat radiation exchange.
To prove the HumanComfort approach, the model was
validated against the EnergyPlus program, which uses
the Hottel Grey Interchange Method. This method is
an exact formulation of radiant heat transfer within an
enclosure of grey diffuse surfaces [5].

The validation shows that the surface and mean radi-
ant temperatures, calculated with theHumanComfort
library, are within acceptable limits.

With regard to an annual simulation of a complex

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 407

building, the approximated radiation model of the
HumanComfort library provides a fast and sufficient
method to determine the heat radiation exchange.

Control volume with energy and mass balance.
TheHumanComfort library provides two control vol-
umes. AControlVolumeAir model for the indoor air
with heat and flow ports, using the Modelica_Media
moist air media model, and theControlVolumeWater
model for water flows in heating cycles, fitted to im-
prove incompressible flows.

Multi-layer wall model. The wall models considers
the heat conduction and convection at the in- and out-
side. The internal and external radiation absorption
as well as the internal heat radiation will be consid-
ered. Every layer has a homogeneous mass to store
thermal energy. It is also possible to define the orien-
tation of the wall to the sun. The wall model input is a
record which includes a parameter matrix. The param-
eters define the conductivity, thermal capacity, den-
sity, surface area, and thickness for every layer. The
HumanComfort library contains severals pre-designed
wall records, ready to use. In addition, it is possible to
connect a heating system (e.g. floor heating) to a sin-
gle layer in the wall model via heat flow connectors.

Air exchange due to pressure and density differ-
ences between adjacent rooms with doors or other
openings. The WallFlowDensityPressure model
defines the air exchange between two rooms. The mass
flow rate depends on pressure and density differences
and the size of the opening (see fig. 8). The opening
size can be varied during the simulation to consider
realistic office building behavior.

Figure 8: Influence of pressure and density for air ex-
change between two rooms [6]

The governing equation for the resulting mass flow
rate are described as follows:

ṁdensity=
W
3
·H

3
2 ·µ0 ·

√
g·

∆ρ
ρm

·Nodoors (18)

ṁpressure=

√
∆p·2
ρm ·ζ

·
W ·H ·ρm ·Nodoors

2
(19)

ṁ1 = ṁpressure− ṁdensity (20)

ṁ2 = ṁpressure+ ṁdensity (21)

H = height [m]
W = weight [m]
g = gravity [m/s2]
∆p = pressure difference [Pa]
∆ρ = density difference [kg/m3]
ρm = mean density [kg/m3]
Nodoors = number of doors [−]
µ0 = coefficient of airflow [−]
ζ = coefficient of friction [−]

Air exchange between zone and ambient. Air ex-
change of azone model and the ambient occurs due to
variable indoor air pressure effected by internal tem-
perature changes. This air exchange is inverse for-
mulated, by setting the pressure difference to zero.
The corresponding mass flow will be calculated by the
model. This results in an efficient code that signifi-
cantly reduces the computation time of an annual sim-
ulation.

Dynamic calculation of heat transfer coefficients
for indoor and outdoor surfaces. Three calcula-
tion methods are implemented for the convective heat
transfer. The first method describes the heat trans-
fer coefficient as a constant parameter. The sec-
ond method calculates the heat transfer coefficient de-
pending on the temperature difference and the surface
roughness. The third one defines the heat transfer co-
efficient depending on the temperature difference, the
surface roughness, the wind speed, and the wind direc-
tion. The correlation of the second and third method
are described in [1].

Window models with pre-designed window prop-
erty records. TheWindow model considers two ef-
fects, the reflection of solar radiation and the thermal
conductivity. The total solar gain through windows is
considered by parameters based on the fraction of so-
lar heat gain that passes through compared to either the
incident solar radiation or the transmission of a refer-
ence glazing type. They are given as a decimal value
in the range 0-1. TheHumanComfort library use the
Solar Heat Gain Coefficient (SHGC) or the G-Value.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 408

Internal time table based heat source due to equip-
ment and light sources. The influence of the vari-
able operating time of the equipment is an important
factor for the load and energy analyses calculations.
The operating time can be set for every hour of a day.
The following equation describes the implantation:

Q̇equipment= Q̇heat_source· ftime_table_equ (22)

Q̇heat_source = heat flow due to equipment [W]
Q̇equipment = total heat flow due to equipment [W]
ftime_table_equ = ratio of active equipment [−]

Internal time table based heat- and water vapour
sources due to occupants. The heat and vapour
emission depends on the air temperature, the activity
level, and the presence of the occupants. The Internal-
Loads model generates heat flow and humidity flow
into the room. Eq. 23- 25 describe the correlation de-
fined in [1].

MET = met·Askin (23)

Q̇met_rate = 6.461927+0.946892·MET+0.0000255737·MET2

+7.139322·Tair −0.0627909·Tair ·MET
+0.0000589172·Tair ·MET2−0.19855·T2

air
+0.000940018·T2

air ·MET
−0.00000149532·MET2 ·T2

air
(24)

Q̇occupant= Q̇met_rate ·occ· ftime_table_occ (25)

met = spec. metabolic rate due to skin surface[W/m2]
MET = metabolic rate [W]
Askin = skin surface [m2]
Q̇met_rate = metabolic rate [W]
Tair = indoor air temperature [◦C]
Q̇occupant = total heat prod. acc. to occupants [W]
occ = number of occupants [−]
ftime_table_occ = ratio of present occupants [−]

[7] defines the vapour emission of the occupants de-
pending on the air temperature and the activity as a
matrix, see tab. 2.

Air temperature ◦C 18 20 22 23 24 25

ṁvapor (120 W) g/h 35 35 40 50 60 60
ṁvapor (190 W) g/h 95 110 125 135 140 145
ṁvapor (270 W) g/h 165 185 215 225 230 240

Table 2: Vapor emission of occupants depending on
temperature and activity level defined by [7]

Simplified HVAC components. The
HumanComfort library includes simplified HVAC
components defined by [8](e.g. pump and radiator),
which are compatible with the Modelica_Fluid library.

The radiator model consists of a control volume, a
pressure drop model, and a heat transfer model. The
input of the pressure drop model can be either a zeta
value or aKv value. Two different heat transfer models
are available and described in the following:

1. The heat flow is calculated by a heat transfer co-
efficient, the heat exchange surface, and the inbound
water and air temperature difference. The model is
discretized to increase the precission.

Q̇ = k ·A· (Twater−Tair) (26)

Q̇ = radiator heat flow to the room [W]
k = heat transfer coefficient [W/m2 ·K]
A = heat transfer area [m2]
Twater = water temperature [K]
Tair = air temperature [K]

2. Theradiator heat flow is calculated by an ap-
proximating function, which uses a nominal character-
istic of existent radiators. The input values for nominal
conditions at the operating point are defined by radia-
tor manufacturers. These values are available by using
pre-designed records for severals radiator types.

ṁn =
Q̇n

(Tin,n−Tout,n) ·cpn
(27)

∆Tm,n =
Tin,n +Tout,n

2
−Tair,n (28)

∆Tmax= max((Tin −Tair)−∆Tout,min) ,0) (29)

∆T = min

(
L · (Tin,n−Tout,n) · (Tin −Tair)

Tin,n−Tair,n
·

ṁn

ṁ
,∆Tmax

)
(30)

∆Tm = max

(
Tin +(Tin −∆T)

2
−Tair ,0

)
(31)

f1 =

(
∆Tm

∆Tm,n

)nexp

(32)

f5 = (
p0

pair
)0.75 (33)

Q̇ = Q̇n ·
L · f1

f2 · f3 · f4 · f5
(34)

Q̇n = nominal heat flow [W]
ṁn = nominal mass flow [kg/s]
cpn = nominal thermal capacity [J/kg·K]
Tin,n = nominal inbound water temperature [◦C]
Tout,n = nominal outbound water temperature [◦C]
Tair,n = nominal air temperature [◦C]
Q̇ = heat flow [W]
ṁ = mass flow [kg/s]
Tin = inbound water temperature [◦C]
Tout = outbound water temperature [◦C]
Tair = air temperature [◦C]
∆Tm,n = mean nominal temperature difference [◦C]
∆Tmax = maximal temperature difference [◦C]
∆Tout,min = minimal outlet temperature difference [◦C]
L = radiator length [m]
nexp = radiator exponent [−]
f1 = excess temperature factor [−]
f2 = temperature splay factor [−]
f3 = correction factor - type of connection [−]
f4 = correction factor - type of cover [−]
f5 = correction factor - atmospheric pressure[−]

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 409

Figure 9: Diagram layer of the room model

Mean radiant temperature. Three different func-
tions are implemented to calculate the mean radiant
temperature of a cubical room with six sides.

1. Themean_T_MRT function sets the mean surface
temperature to the mean radiant temperature [1].

TMRT =
∑x

i=1 Ti

x
(35)

2. Themean_T_to_A_MRT function calculates sur-
face weighted mean radiation temperatures [1].

TMRT =
∑x

i=1 Ai ·Ti

ATotal
(36)

TMRT = Mean Radiant Temperature[◦C]
T = Temperature [◦C]
A = Area [◦C]

3. The deltaT_max_MRT function calculates the
mean radiation temperature depending on the mean
surface temperature and the temperature that has the
highest difference to the mean valueTmax,di f . The
HumanComfort library use Tmax,di f as an extreme
value, because normally the surface that is next to the
occupant would be used as the maximal value. But
the model has no geometric data of the position of the
occupant so the maximal possible value will be used.

TMRT =
Tmax,di f +Tmean

2
(37)

Fig. 9 shows a main model of the zone package, the
room model. It consists, amongst others, an air control
volume (1), a radiation exchange model (1), internal
heat and vapour sources (1), six multi-layer wall mod-
els (2), several heat and fluid connectors (3), a weather
connector (4), and a human comfort adapter (5).

6 Weather

The weather package provides severals ambient con-
ditions by reading an external text file.

• Ambient and temperature, pressure and humidity

• Global, direct and diffuse radiation to a tiled surface

• Azimuth (north based) and Zenith

• Sun position and radiation, depending on the location

7 Verification and Validation

An essential part of the library development is the ver-
ification and validation. The verification process of the
HumanComfort models and functions was done in ac-
cordance with the implemented standards.

A comparative validation test was done by com-
paring theHumanComfort library with the Energy-
Plus/DesignBuilder program [1], which is validated
according to ANSI/ASHRAE Standard 140-2004.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 410

Therefore a two room test model was established
(see fig. 10).

Figure 10: Graphical representation of the
HumanComfort test model for the validation

The rooms have an opening in the adjacent wall
to consider an air exchange. No heating system was
implemented to generate higher temperature differ-
ences between the rooms. The rooms have one occu-
pant with a normal metabolic rate for office activities
(1met). The north room has two windows, one orien-
tated to the west and one to the east. The south room
has one window orientated to the south. The ambient
condition are defined by the weather data, which refer-
ences to the city of Hamburg. The graphical represen-
tation of the two room test model is shown in fig. 11.

Figure 11: Graphical representation of the Design-
Builder test model for the validation

As the operative, mean radiant, and the indoor air
temperature were important factors for thermal com-
fort, their simulation results will be discussed. Fig. 12
shows the simulation results of the north room opera-
tive and outside temperature over a time period of one
year.

Figure 12: Simulation results of the operative and out-
side temperature from theHumanComfort library and
DesignBuilder of the north room

Tab. 3 shows the mean values of the different tem-
peratures, the deviation to each other and the mean of
the absolute deviations.

mean value HC DB dev. abs. dev.

unit ◦C ◦C ◦C ◦C

indoor temperature 13.058 12.633 0.425 0.625
operative temperature 13.215 12.816 0.399 0.611
mean radiant temperature 13.372 13.000 0.372 0.620

Table 3: Selected temperatures of the north room

The maximum deviations occurs in the summer
during rapidly decreasing outside temperatures. The
mean deviation of the operative temperature amounts
to 0.399◦C with an absolute deviation of 0.611◦C. The
mean deviation of the indoor air temperature amounts
to 0.425◦C with a maximal deviation of 2.4◦C at 11th
of June.

Fig. 13 depicts the relative humidity of the north
room during the course of the year. The occurring de-
viations can be explained by the fact that the relative
humidity depends on the temperature.

Figure 13: Simulation results of the relative humidity

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 411

The resulting PMV of the north room is shown in
fig. 14. Due to the fact that the PMV depends on the
temperature and relative humidity the deviations be-
have analogous.

Figure 14: Simulation results of the PMV from
HumanComfort library and DesignBuilder of the north
room

Tab. 4 displaces the mean values of the PMV, the
deviation to each other and the mean of the absolute
deviations.

mean values HC DB deviation absolute dev.

PMV -2.62 -2.67 -0.047 0.151

Table 4: Mean values and their deviations of the PMV
from the north room

The comparative validation test reveals that the
results predicted by theHumanComfort library are
within the range of EnergyPlus/DesignBuilder.

8 Conclusion

The HumanComfort library enables the prediction of
thermal comfort in zone models. All relevant charac-
teristic numbers, described in the standards, are im-
plemented. The validations shows that the stationary
zone model is in the range with another accurate en-
ergy simulation program on the market. The library
development is still going on. The complete imple-
mentation of the mobile application will be finished
until the end of the EuroSysLib-D project.

Acknowledgement
The HumanComfort library is developed within the
European research project EuroSysLib-D funded by
German Federal Ministry of Education and Research
(promotional reference 01IS07022B). The project has
been started in October 2007 and will end in March
2010. The authors bear the sole responsibility for the
content of this publication.

References

[1] US Department of Energy.EnergyPlus - Engi-
neering Reference, June 2007.

[2] DIN EN ISO 7730. Ergonomics of the thermal
environment - Analytical determination and inter-
pretation of thermal comfort using calculation of
the PMV and PPD indices and local thermal com-
fort criteria. Beuth Verlag GmbH, 2005.

[3] ASHRAE Standard 55-2004. Thermal Environ-
mental Conditions for Human Occupancy, January
2004.

[4] A.C. van der Linden A.C. Boerstra W. Plokker
A.K. Raue, S.R. Kurvers. Dutch Thermal Comfort
Guidelines from Weighted Temperature Exceed-
ing Hours Towards Adaptive Temperature Limit,
2004.

[5] Strand Pedersen.Modeling Radiant Systems in an
Integrated Heat Balance Based Energy Simulation
Program. ASHRAE Transactions, 2002.

[6] Frank Meyer zur Heide. Energieeinsparung und
Komfortgewinn. CCI Print, 2005.

[7] Schramek Recknagel, Sprenger.Taschenbuch für
Heizung und Klimatechnik. Oldenbourg Indus-
trieverlag, 2005.

[8] Bernd Glück. Strahlungsheizung - Theorie und
Praxis. C.F. Müller Verlag Heidelberg, 1982.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 412

Integrated Thermal Management Simulation: Evaluating the Effect of

Underhood Recirculation Flows on AC-System Performance

Zhu Wang¹, Kristian Tuszynski², Hubertus Tummescheit², Ales Alajbegovic¹

1) Exa Corporation

Livonia, MI 48152, USA

2) Modelon AB

Ideon Science Park, Lund, Sweden

ales@exa.com kristian.tuszynski@modelon.se

Abstract

Presented is a model for the simulation of the inte-

raction between the airflow and the AC-system.

Demonstrated is 1) a successful coupling of flow

solver (PowerFLOW 4.1) with the Modelica-based

Dymola system tool and the AirConditioning Li-

brary, making use of the previously validated under-

hood-environment, and 2) the importance of a care-

ful design of the underhood flow for the AC-system

performance. The validity of the developed simula-

tion capability is tested by successful comparison

with the available experimental data for the condens-

er at the given operating conditions. Shown is the

potential for the analysis of the flow details and

structures affecting the condenser performance like

airflow recirculation.

Keywords: HVAC simulation; underhood flow;

simulator coupling

1 Introduction

Vehicle can be seen as a system composed of mul-

tiple sub-systems. One such subsystem is the AC-

system which is used to maintain passenger comfort.

A key component of the AC-system is the condenser.

The condenser is used to condensate the refrigerant

by extracting the heat from the refrigerant to the air-

flow. For the operation of the AC-system is very im-

portant that the refrigerant condensation is completed

at the outlet from the condenser. It is possible that

this does not occur in cases of adverse airflow condi-

tions in the proximity of the condenser. For example,

airflow recirculation can cause local temperature

peaks and consequent reduction of the condensation

rate.

The ability to predict such behavior and if possible

avoid it is of great importance for the design of ve-

hicle cooling airflow performance. Srinivasan et al.

[1] presented an omni-tree meshing technology for

rapid mesh generation for Navier-Stokes solvers.

The cooling airflow simulations using Navier-Stokes

solvers coupled with heat exchanger calculations for

passenger cars were presented by [1], [2], [3], and

for trucks by [4], [5], [6].

Fortunato et al. [7] used the Lattice-Boltzmann Equ-

ation (LBE) solver for the cold flow simulation over

the entire car including the underhood and a Navier-

Stokes solver for the underhood flow. The velocity

field on the entrance surfaces into the underhood

area calculated by the LBE solver was used as the

inlet boundary condition to the Navier-Stokes solver

calculation. Fully coupled simulations between the

LBE solver and a system simulation tool for the heat

exchanger were presented by Alajbegovic et al. [9],

[10]. A detailed validation of the cooling package

using coupling with the AMESim system simulation

tool was shown in [11]. The simulation capability

presented here used the same experimental data for

the validation of the developed methodology.

2 Simulation Methodology

The presented simulation methodology is based on

coupled simulations between the flow and system

solvers. Therefore, the following three major simula-

tion components are:

1. Flow modeling with the Lattice-Boltzmann

Equation solver

2. Dymola AC model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 413 DOI: 10.3384/ecp09430098

3. Automatic coupling between the flow solver

and Dymola

2.1 FLOW MODELING

The flow simulation is performed using the Lattice-

Boltzmann Equation (LBE) based solver. The Lat-

tice-Boltzmann solvers are numerically very efficient,

accurate and robust. The numerical efficiency allows

handling of lattices with very large element (or voxel)

counts. It is quite normal to have 100 million voxels

for a full vehicle analysis. This is required to resolve

an as large as possible span of turbulence scales and

in this way increase the accuracy of the predictions.

Properties of the Boltzmann equation allow for an

improved treatment of fluid interactions with the

wall surface. Surface elements (or surfels), are de-

signed as active elements that interact with the

neighboring lattice elements. The combination of

both large lattices and dynamic surface treatment

allow accurate representation of surfaces without the

need for geometry simplification.

Earlier use of Lattice-Boltzmann equation in fluid

flow simulations was done by Frisch, Hasslacher, &

Pomeneau [12]. After that, significant efforts were

made to develop Lattice-Boltzmann flow solver [13],

[14], [15]. Turbulence effects are modeled using a
modified k-ε model based on the original RNG for-

mulation [16], [17]. This LBE based description of

turbulent fluctuation carries flow history and

stream information, and contains high order terms to

account for the nonlinearity of the Reynolds stress

[18]. This is contrasted with typical Navier-Stokes

solvers, which tend to use the conventional linear

eddy viscosity based on the Reynolds stress closure

models. Turbulence and temperature equations are

solved on the same lattice using a modified Lax-

Wendroff-like explicit time marching finite differ-

ence scheme.

Simulations presented in this work were performed

using the flow solver described in the following ref-

erences [19], [20], [21], [22], [23].

2.2 DYMOLA MODELING

Dymola (Dynamic Modeling Laboratory) is a multi-

engineering software package suitable for modeling

of a large variety of physical and engineering sys-

tems, such as mechanical, electrical, hydraulic,

chemical, thermodynamic, control, etc., see [24].

Based on the open modeling language Modelica [25],

[26], Dymola supports hierarchical model composi-

tion, libraries of truly reusable components, domain-

specific connectors taking care of mass- and energy

conservation on the system level and non-causal

connections. A typical representation of the graphic

user interface is shown in Figure 1.

Figure 1. Dymola Graphic User Interface

Model libraries are available in many engineering

domains. The heat exchanger models used in this

paper are from the AirConditioning Library deve-

lopped by Modelon AB (see [27], [28]). The Library

has been validated in many industrial projects (e.g.

[28]) and before commercialization in many years of

research use at DaimlerChrysler and TU Hamburg-

Harburg. The AirConditioning library was selected

as the preferred AC- systems tool by Audi, BMW,

Daimler and Volkswagen and their suppliers in 2004.

The condenser model used in this paper is built

based on the latest AirConditioning Library 1.7

(ACL). An example of the user interface for a hori-

zontal flow microchannel flat tube condenser from

ACL is shown in Figure 2.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 414

Figure 2. Dymola condenser model from the AC

library

2.3 COUPLING PROCESS

The PowerFLOW and Dymola two-way coupling is

implemented via an automated process using scripts.

The coupling process involves the extraction and

exchange of flow data distributions on each of the

heat exchanger inlet and outlet surfaces. Power-

FLOW provides the cooling air velocity and temper-

ature field, and Dymola calculates the distribution of

the heat source and provides the heat flux distribu-

tion back to PowerFLOW. The coupling process is

also described in Figure 3.

Figure 3. General two-way coupling scheme

In further detail, the coupling process between the

flow solver and Dymola is realized by the table re-

read functionality of PowerFLOW shown in Figure

4, and by polling for new data on the Dymola side.

PowerFLOW treats the heat exchangers as porous

media with heat release per volume, whereas in the

Dymola and the ACL, the interaction is through dis-

cretized surfaces represented as connector variables.

Before flow simulation starts, the Dymola program

“dymosim” is executed through a batch process. At

each coupling step during the simulation, a coupling

script is executed. The coupling script reads the de-

scription of each porous medium in the pmspec file,

which contains the support information for the data

extraction performed by the program exatool. Once

the data are extracted (*.csv) for each heat exchang-

er, “dymosim” will read-in the .csv files and then

generate the heat rejection table file for each heat

exchanger. The flow solver calculates the flow field

again once all heat exchangers table files are availa-

ble. The flow solver divides these two-dimensional

heat fluxes data by the thickness of the porous media

to get the distribution of the volumetric heat. Once

the coupling is completed, the flow solver automati-

cally rereads the new tables. This process continues

until convergence is reached for each time step.

 Figure 4. Flow chart of the coupling process

The output from the Dymola heat exchanger models

does not require special treatment due to the uniform

grid discretization. The velocity and temperature

field at the inlet plane of the heat exchanger are

mapped to Dymola grid uniformly.

2.4 Validation

The vehicle used for the validation of the coupling

between the flow solver and the Modelica based si-

mulation of the HVAC system was the Renault Scen-

ic II, Figure 5. Shown are the vehicle, its underhood

geometry and cooling package. Flow predictions

provide air velocity and temperature distributions in

the entire domain including the engine compartment

and vehicle exterior. The details of the geometry

preparation, case setup and boundary conditions can

be referred to in [11].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 415

Figure 5. a.) Vehicle geometry, b.) Cooling package

details and c.) Underhood geometry

Vehicle placement in the thermal wind tunnel and

geometry with the nozzle profile is shown in Figure

6. Validation was focused on evaluating the con-

denser performance. The predicted values were

compared to the measurements.

Figure 6. Vehicle in Thermal Wind Tunnel

2.5 TESTING CONDITIONS

Vehicle cooling package performance was measured

in the thermal wind tunnel at a velocity of 40 km/h.

The distance between the nozzle exit and the bumper

of the vehicle was 1.5 m. In order to prevent flow

separations in the front region of the underbody, a

boundary layer suction system was used extracting

0.78 m
3
/s of air from the suction section of the wind

tunnel and returning the same amount of volume

flow back to the wind tunnel downstream of the ve-

hicle as indicated in Figure 7.

Figure 7. Overview of thermal wind tunnel

1.5m

a

.

b

.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 416

WIND Air Velocity km/h 39.7

Air Temperature °C 44.8

FAN Voltage V 13.0

Intensity A 32.5

CONDENSER Inlet Pressure bar 25.0

Outlet Pressure bar 23.6

Inlet Temperature °C 106.3

Outlet Tempera-

ture

°C 67.46

Volumetric Flow

Rate

l/h 136.8

Heat Rejection kW 6.4

Table 1. Simulation conditions

Heat exchanger conditions used during the experi-

ments are summarized in Table 1. The numbers in

denoted with italic font are used as input conditions

to the simulations.

2.6 CONDENSER MODEL

As mentioned in the previous section, the condenser

model is based on Dymola air conditioning library

1.7 and it could be one component of the HVAC sys-

tem within a complete circuit loop. The condenser

model utilizes the details of the condenser geometry,

while the charge air cooler and radiator uses the Log

Mean Temperature Difference (LMTD) approach to

calculate the outlet air and outlet refrigerant tempera-

tures based on the inlet temperatures, mass flow rates

and heat transfer coefficients. The condenser consists

of four passes.

The Modelica schematic of AC-system is shown in

Figure 8.

Figure 8. Dymola condenser schematic

3 RESULTS AND DISCUSSION

The results show good agreement between the simu-

lations and available experimental data. The temper-

ature field in front of the condenser is shown in Fig-

ure 9, and behind it in Figure 10. Figure 11 shows

the velocity and temperature distribution at the fan

middle plane. It can be observed the heating of the

air by the condenser through the coupling between

the flow solver and Dymola.

Figure 9. Temperature distribution in front of the con-

denser

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 417

Figure 10. Temperature distribution behind condenser

Figure 11. Velocity and temperature distribution at the

fan middle plane

The details of the predicted flow velocity field within

the underhood region are shown in Figure 12. Shown

is the velocity field magnitude on several critical

vertical planes. These locations are top left grille, fan

center, center vertical plane and top right grille. High

velocity at grille inlets and fan area are identified.

Due to the complicated geometry, the flow within

the underhood region is very complex. Recirculation,

separation and local acceleration can be observed to

occur almost everywhere.

Figure 12. Velocity on y-plane in the underhood region

The details of the temperature field in the underhood

region are shown in Figure 13. Shown are both

streamlines and temperature field for the same ver-

tical planes as in Figure 12. The aerodynamic and

thermal behavior of cooling air can be easily cap-

tured, which can be used for the optimization of the

underhood components.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 418

Figure 13. Temperature field on the y-plane in the un-

derhood region

Figure 14 and Figure 15 show velocity and tempera-

ture distributions separately on several horizontal

planes. These locations are bottom grille, fan center

and top grilles.

Figure 14. Velocity on the z-plane in the underhood

region

Figure 15. Temperature on the z-plane in the under-

hood region

The obtained results demonstrate the overall capabil-

ity of the presented simulation approach where both

the flow field parameters and the performance of the

cooling package are evaluated.

Figure 16 shows the Dymola output for the cooling

mass flow rate and the heat rejection for the con-

denser.

Figure 16. Dymola output: Cooling air mass flow rate

and heat rejection for the condenser

Table 2 presents simulation results compared to the

measured values. The predicted heat rejection for the

condenser is very close to the measured value.

HEAT REJECTION

[kW]

Condenser

EXPERIMENT 6.40

SIMULATION 6.56

Table 2. Heat rejection comparison

The averaged temperatures at the monitor locations

use the fluid measurements close to 2 cm window at

the corresponding locations. Figure 17 shows these

locations.

The averaged fluid temperatures at the monitoring

locations before and after the condenser are summa-

rized in Table 3. Excellent correlation with the expe-

rimental data is obtained for P2R, P3FLT, P3FRT

and P3FLB.

0.464 kg/s 6.561 kw

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 419

Figure 17. Locations and descriptions of the thermo-

couples before and after the condenser (front view)

TEMP

[°C]
P2L P2R P3FLT P3FRT P3FLB P3FRB

EXP. 78.0 54.5 58.0 71.7 67.3 72.4

PRE. 65.8 56.4 62.1 74.0 71.2 61.2

Table 3. Comparison between experimental and aver-

aged predicted fluid temperature

3.1 Study of Recirculation Airflow Effects

To understand the interaction of the AC-System with

the recirculating flow, a true coupling of a system

tool and the flow solver is necessary. For the given

heat exchanger case, the system tool actually discre-

tizes the air flow across the heat exchanger face in

both directions and takes inhomogeneous flows and

temperatures into account. For the closed thermody-

namic cycle, the hot recirculated air raises the pres-

sure, which in turn leads to a higher temperature af-

ter the AC condenser. This positive feedback loop

can either trip the high-pressure cut-off switch for

the AC-system, or leads at best to severe perfor-

mance degradation of the AC-circuit. The AC-

system is potentially run far away from standard

conditions, close to the critical pressure in the con-

denser, until the compressor is switched off or regu-

lated to minimum flow.

Figure 18 and Figure 19 shows the streamline co-

lored by the velocity magnitude around the cooling

packages. The cooling airflow in front of condenser

is highly non-uniform. The air streams coming

through the top grilles and bottom grilles mix with

each other. Recirculation of cooling airflow can be

observed right before top and bottom of the condens-

er. With the help of the fan nozzle, no obvious recir-

culating hot air downstream of the fan flows back

into upstream of heat exchangers.

Figure 18. Streamline around heat exchangers (side

view)

In Figure 19, a low velocity zone is identified at the

top right corner of the condenser. This is due to the

blockage of the fan nozzle at the right side. This low

cooling air velocity zone causes limited local back

flow and local high temperature, as can be seen

clearly in Figure 20.

Figure 19. Streamline around heat exchangers (top

view)

Condenser Fan nozzle

Low velocity zone

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 420

With the help of a post-processing tool, the approach

presented in this paper can easily help analyze the

flow structure and thermal behavior of underhood

cooling air. Small details like recirculation, separa-

tion and blockage can be quickly observed. This can

help quick optimization of the underhood compo-

nents.

Figure 20. Local high temperature and back flow

4 Conclusions

Presented was the simulation methodology for the

AC-system that consists of the flow solver Power-

FLOW coupled with the Modelica based system si-

mulation tool Dymola. Shown were the details of the

coupling procedure that enables two way coupling

between the three-dimensional flow effects and the

condenser. The results demonstrate that the tightly

coupled interaction of the underhood air flow with

the AC-system can predict the measured heat rejec-

tion while allowing detailed analysis of the flow and

temperature fields. The developed simulation metho-

dology can be used for the studies of the vehicle air

cooling performance and its optimization.

References

[1] K. Srinivasan, Z.J. Wang, W. Yuan, R. Sun,

“Vehicle thermal management simulation us-

ing a rapid omni-tree based adaptive Carte-

sian mesh generation methodology,” HT-

FED2004-56748, 204 ASME Heat Trans-

fer/Fluids Engineering Summer Conference,

July 11-15, Charlotte, North Carolina, USA.

[2] B. Uhl, F. Brotz, J. Fauser, U. Krueger, “De-

velopment of engine cooling systems by

coupling CFD simulation and heat exchanger

analysis programs,” SAE 2001-01-1695.

[3] G. Seider, F. Bet, T. Heid, U. Hess, T. Klein,

and J. Sauer, “A numerical simulation strate-

gy for complex automotive cooling systems,“

SAE 2001-01-1722.

[4] H. Knaus, C. Ottosson, F. Brotz, W. Kueh-

nel, ”Cooling module performance investiga-

tion by means of underhood simulation,“

SAE 2005-01-2013.

[5] T.P. Nobel, S.K. Jain, “A multidimensional

approach to truck underhood thermal man-

agement,” SAE 2001-02-2785.

[6] C.L.R.Siqueira, P. Vatavuk, M. Jokuszies,

M.R. Lima, “Numerical simulation of a truck

underhood flow,” SAE 2002-01-3453.

[7] E.A. Costa, “CFD approach on underhood

thermal management of passenger cars and

trucks,” SAE 2003-01-3577.

[8] F. Fortunato, F. Damiano, L. Di Matteo,

P.Oliva, “Underhood cooling simulation for

development of new vehicles,” SAE 2005-

01-2046.

[9] A. Alajbegovic, R. Sengupta, W. Jansen:

"Cooling Airflow Simulation for Passenger

Cars using Detailed Underhood Geometry,"

SAE 2006-01-3478, SAE Conference, Chi-

cago, October 2006

[10] B. Xu, A. Konstantinov, J. Amodeo, W. Jan-

sen, A. Alajbegovic, "Simulation of Cooling

Airflow under Different Driving Conditions,"

SAE 2007-01-0766, SAE World Congress,

Detroit, April 2007

[11] S. Brémont, G. Servera, E. Fares, J. Abanto,

A. Alajbegovic: "Experimental Investigation

and Numerical Validation of Cooling Air-

flows of a Realistic Vehicle," 6
th
 FKFS Con-

ference, Stuttgart, Germany, October 2007

[12] U. Frisch, B. Hasslacher, and Y. Pomeneau,

“Lattice gas automata for the Navier-Stokes

equation,” Physical Review Letters, 56:1505-

1508, 1986.

[13] S. Chen and G. D. Doolen, “Lattice

Boltzmann method for fluid flows”, Annual

Review of Fluid Mechanics, 30:329-364,

1998.

[14] S. Succi, The Lattice Boltzmann Equation for

Fluid Dynamics and Beyond, Series Numeri-

cal Mathematics and Scientific Computation,

Clarendon Press, Oxford, 2001.

Condenser Radiator

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 421

[15] D. d’Humieres, P. Lallemand and Y. H.

Quian, “Lattice BGK models for Navier-

Stokes equations,” Europhysics Letters,

17(6):479-484, 1992.

[16] V. Yakhot, and S.A., Orszag, “Renormaliza-

tion Group Analysis of Turbulence. I. Basic

Theory” J. Sci. Comput., 1(2), 3-51, 1986.

[17] V. Yakhot, V., S.A. Orszag, S. Thangam, T.

Gatski, and C. Speziale, “Development of

turbulence models for shear flows by a

double expansion technique,” Phys. Fluids A,

4 (7), 1510-1520, 1992.

[18] H. Chen, S.A. Orszag, I. Staroselsky, and S.

Succi, “Expanded Analogy between

Boltzmann Kinetic Theory of Fluid and Tur-

bulence”, J. Fluid Mech., 519: 307-314,

2004.

[19] H. Chen, “H-theorem and generalized semi-

detailed balance conditions for lattice gas

systems,” J. Stat. Phys. 81:347-359, 1995.

[20] H. Chen and C. Teixeira, “H-Theorem and

origins of instability in thermal lattice

Boltzmann models,” Comp. Phys.

Communication, 129:21-31, 2000.

[21] H. Chen and R. Zhang, ”Lattice Boltzmann

method for simulations of liquid-vapor ther-

mal flows,” Phys. Rev. E67(6): Art. no.

066711 Part 2, 2003.

[22] C. M. Teixeira, “Incorporating turbulence

models into the lattice-Boltzmann method,”

Int. J. Modern Physics C, 9(8):1159-1175,

1998.

[23] PowerFLOW User’s Guide, Release 4.1, Exa

Corporation, Boston, Massachusetts, 2007.

[24] Dymola User’s Guide, Release 7.2, Dynasim

AB, Lund, Sweden, 2009.

[25] www.Modelica.org, accessed August 2009

[26] S.E., Mattsson, H. Elmqvist, M. Otter,

“Physical system modeling with Modelica,”

Control Engineering Practice, 6, 501-510,

1998.

[27] D. Limperich, M. Braun, G., Schmitz, and K.

Prölß, “System Simulation of Automotive

Refrigeration Cycles,” 4
th
 International Mod-

elica Conference, Hamburg, 2005.

[28] H. Tummescheit and D. Limperich, “The

AirConditioning library for simulation of ad-

vanced vehicle A/C systems,” VTMS8: Ve-

hicle Thermal Management Systems Confe-

rence & Exhibition, Nottingham, 2007.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 422

Investigating the Multibody Dynamics of the Complete Powertrain
System

Alessandro Picarelli Mike Dempsey
Claytex Services Ltd.

Edmund House, Rugby Road, Leamington Spa, CV32 6EL, UK
alessandro.picarelli@claytex.com mike.dempsey@claytex.com

Abstract

The specifications and integration of two new Mod-
elica libraries is presented: The Powertrain Dynam-
ics (PTDynamics) and the Engines libraries. The lib-
raries enable the simulation and modelling of power-
train systems including their fluid dynamic, pollutant
emission, mechanical and thermal performances in
one simulation environment (Dymola), utilising the
object orientated modelling language Modelica.
Two variants of the Engines library are presented: a
Mean Value variant (MVEL) and a Crank Angle Re-
solved variant (CAREL).
Both the PTDynamics and Engines libraries make
use of a new approach to modelling the mechanics
that captures the full MultiBody effects of the
Powertrain system without the computational cost of
using the standard Modelica MultiBody library.

1 Introduction

Development of powertrain systems and components
is an ongoing and relentless activity in the automot-
ive industry. The ability to reduce the number of ex-
pensive prototypes, engineering costs and develop-
ment time is an attractive feature of CAE simulation
tools.
Simulation time performance is an important feature
particularly in real-time applications such as for SIL
(Software-in-the-loop) and HIL (Hardware-in-the-
loop) experiments. For this particular reason, the lib-
raries presented in this paper have been designed
with efficiency in mind and show reduced model
complexity when compared to analogous system
models built with the Modelica standard library com-
ponents whilst retaining equal or improved levels of
accuracy.

2 Engine Library

The Engine library is capable of modelling both
Spark Ignition (SI) and Compression Ignition en-
gines and is split into two variants with different
levels of fidelity. Both levels of the Engines library
have been designed to work with common engine ar-
chitecture templates. This enables quick model set-
up and ensures a consistent layout for a variety of en-
gine architectures.

Example of a multi-cylinder MVEM layout

The mechanical components are modelled using a
new Rotational3D library described in section 3 and
the Fluids models are based on the new Modelica
Fluids library [1].

2.1 Mean Value Engine Library (MVEL)

This level of the library is capable of predicting
cycle-averaged values for engine torque, thermal ef-
fects and emissions. The methods for predicting the
engine torque and emissions are map based and/or
neural network based.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 423 DOI: 10.3384/ecp09430085

The library is of particular use for investigating dif-
ferent control algorithms and their effect on the en-
gine transient response. This variant of the engine
library is also suited to driveability analysis where
the transient torque output of the engine is fed
through the transmission and reacted into the trans-
mission and engine mounts. Furthermore, engine
models using this library are capable of running in
real time making it suitable for SIL and HIL testing
of control systems.
Mass flow rate through the engine cylinders is com-
puted by means of [2]:

() ()
1000120

, nyps
RT

Vpnm iii
d

iap +=

Where:
m is the mass of fluid within the cylinder, Vd is
the volumetric displacement of each cylinder
R is the gas constant
T is the fluid temperature (K)
pi is the intake manifold pressure (bar)
n is the engine speed in rpm.

The above equation relates the mass flow rate
through each cylinder to the engine speed and intake
manifold pressure. The equation can be scaled to ac-
count for variations in engine displacement provided
the engine technology and valve timing remains sim-
ilar.
Derivation of the engine specific constants si and yi

must be arranged prior to use. These are obtained by
a linear fit of a rearranged version of the mass flow
rate function (shown below) vs. intake manifold
pressure.

()iii
d

ap yps
nV

RTm +=
*

1000*120*

The linear fit yields an equation in the form of y =
mx + c, where the gradient m will be equal to si and
the intercept c will be equal to yi:
If the engine makes use of variable induction mech-
anisms (variable valve timing, variable length intake
runners, etc.) the user might wish to determine si and
yi for various engine speed intervals, to improve the
accuracy of the mass flow rate. A map of these val-
ues can then be input into the model.
Once si and yi have been determined, the computed
mass flow rate is used in a mass flow rate source and
sink, each representing the flow past the intake
valves and the exhaust valves respectively.
The intake and exhaust system mediums are based
on Modelica.Media medium models and are mod-
elled as separate fluids, each containing the appropri-
ate species for that part of the engine.

The main reason for utilising two specific medium
models (intake and exhaust), as opposed to a single
medium model encompassing all intake and exhaust
species, is down to CPU time reduction.

Whole engine medium:
Species 1
Species 2
Species 3
Species 4
Species 5
Species 6
Species 7

Intake medium: Exhaust Medium:
Species 1 Species 4
Species 2 Species 5
Species 3 Species 6

 Species 7

If we were to use the whole engine medium model,
we would have to:

• set the exhaust specific species mass frac-
tions to zero on the intake side
• set the intake specific species mass fractions
to zero on the exhaust side

Due to computational errors the mass fractions of
these mediums might end up not being exactly equal
to zero. By using two separate, simpler, medium
models the mass fraction balancing becomes more
robust and gains in CPU time are achieved.

2.2 Crank Angle Resolved Engine Library
(CAREL)

This variant of the engine library is capable of pre-
dicting crank angle resolved values for torque,
thermal effects and friction with more detailed in-
take, exhaust and combustion models. Typical ap-
plications of this variant of the library would be for
investigating/modelling:

o Mount forces
o Excitation of driveline with full cyclic torque
o Cranking (start-up) and engine warm up
o Detailed friction modelling

Methods for predicting the engine torque are based
on the widely used Wiebe function. Where more de-
tailed combustion or heat release models are re-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 424

quired, bespoke models can be “plugged in”
provided their interfaces are compatible with the En-
gine Library architecture.

2.3 Surrogate models and real time simulation

To minimise CPU time for the simulations and
achieve real-time simulation, in addition to a con-
ventional multi-cylinder architecture, the Engines
library adopts an option presented in [3]. A single-
cylinder model is parametised and a duplicating
model replicates the variables of interest, namely the
flows, temperatures and torque generated. With ap-
propriate connections made from the variable duplic-
ating model to the relevant components, a multi cyl-
inder engine model can be simulated with minimised
CPU time and negligible loss of accuracy (<2%).
This solution has been successfully implemented in
both variants of the Engines library
The surrogate model method also allows a reduction
in architecture diagram complexity and a quick and
effective way to vary the number of cylinders in the
engine.

Example of surrogate MVEM layout

2.4 Thermal effects

Pipe wall and fluid thermal effects are taken care of
using the Modelica Fluid dynamic pipe models
(Modelica.Fluid.Pipes.DynamicPipe) [1]. In addition
to the heat transfer models within Modelica.Fluid,
the Engines library includes a further heat transfer
model where existing or bespoke Nusselt Number
correlations can be “plugged in” with a drop-down
list of options [4].

Heat transfer GUI with Nusselt number correlation drop-
down list

These correlations make use of the Re (Reynolds
number), Pr (Prandtl number), the medium temperat-
ure and the medium pressure and are used in the
equations below to calculate the heat transfer
between the fluid and the pipe wall.
A heat transfer correction factor has been introduced
for correlation purposes.

 Q_flows = {alphas[i]*surfaceAreas[i]*(heatPorts[i].T -
Ts[i])*nParallel for i in 1:n};

 alphas = lambdas*heatTransferCorrectionFactor .* Nus ./
dimensions;

where for the descretised pipe:
• Q_flows is the vector of heat flows
• alphas is the vector of heat transfer coef-

ficients
• surfaceAreas is the vector of heat trans-

fer surface areas
• heatPorts.T and Ts are the vectors of the

heat port temperatures and fluid temper-
atures

• nParallel is the number of parallel pipes
• lambdas is the vector of thermal con-

ductivities
• Nus is the vector of Nusselt numbers
• Dimensions is the vector of pipe diamet-

ers

Pipe Wall Heat Dissipation Models
Three options for pipe wall heat transfer model are
available within the Engines library models. The first
is a fixed temperature model where the user fixes the
pipe wall temperatures for steady state tests. The
second option models the thermal energy dissipation
to ambient (including convection and radiation ef-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 425

fects). This might be of particular interest when per-
forming transient engine tests where the temperat-
ures of the pipe walls throughout the test may vary
significantly.

Heat transfer-to-air model

The third is a bespoke model for catalytic converter
heat transfer. This model accounts for the thermal
capacities of the catalyst brick and the casing of the
catalytic converter. It can be used to model the cata-
lyst light off in a transient test.

Catalyst heat dissipation model

All models are based on Modelica.Thermal library
components.

2.5 Engine Friction

Bearing models with friction take into account the
crank shaft, camshaft support and valvetrain mech-
anism bearing friction. Established friction models
have been implemented [5] [6] [7] [8] which de-
scribe the friction torque resulting from hydro-
dynamic and rolling contact bearings. A more de-
tailed description of the bearing models can be found
in section 3.

Piston Assembly
Piston assembly friction is cyclic and related to the
cylinder pressure, piston speed and piston ring geo-
metry. Piston skirt - cylinder liner friction is also
modelled and relates to piston speed, geometry and
the resultant lateral forces. Boundary and Hydro-
dynamic friction types are modelled [7] [8].

Valve train
Cam friction is also cyclic and calculated with refer-
ence to the cyclic vertical and horizontal loading,
cam geometry and material.
The sliding friction of the cams has been modelled as
a multi-stage solution [5]. The type of lubrication ex-
isting at the cam sliding surface is determined by
means of the equation below where λ is the film
thickness parameter, H is the minimum film thick-
ness for hydrodynamic lubrication, Rx is the effect-
ive radius of the sliding pair of surfaces, and σ is the
measured composite surface roughness of the two
surfaces [5].

λ >1 denotes a hydrodynamic lubrication regime
λ ≅ 0 denotes a boundary lubrication regime and
0 >λ >1 denotes a mixed lubrication regime

Both viscous and boundary components of the slid-
ing surface friction are then calculated and summed
to yield the total sliding surface friction.

vbtot FFF +=

2.6 Aftertreatment

Catalysis
3-way catalytic converter models make use of the
species tracking within the exhaust medium to model
the catalysis of the pollutant emissions.
The catalysis is modelled phenomenologically using
efficiency maps. The catalysis efficiency is depend-
ant on the air fuel ratio and the brick temperatures.
Each of the pollutant emissions is reduced accord-
ingly and adjustments are made to the mass fractions
of other species within the medium model [9] [10]
[11].
The heat release is calculated according to the num-
ber of moles of each pollutant emission that have
been converted. In addition, a Secondary Air Injec-
tion and Diesel particulate filter have been de-
veloped.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 426

3 –way Catalytic converter model

Engine Control Unit
A generic engine management system is provided for
basic control of the throttle, variable valve timing,
emissions control systems (such as Exhaust Gas Re-
circulation and Secondary Air Injection), pressure
charging, spark timing and injection timing and dur-
ation. All the required engine sensor signals are
available to the ECU via the control bus to ensure in-
terchangeability with a bespoke control system. A
template using this control bus is available for such
systems to be developed.

3 Powertrain Dynamics Library

The PTDynamics library is a new library for model-
ling rotating MultiBody systems. The components
are designed to be a more efficient way to model ro-
tational mechanics capturing the full MultiBody ef-
fects of the rotation. The development was driven
from the fact the 1D Rotational library is too simple
and the MultiBody library too inefficient for model-
ling transmission and driveline system dynamics.
PTDynamics includes shafts, bearings, gear mesh
models, flexible joints and complex assemblies such
as epicyclic and differential models along with the
associated mounting systems.

3.1 Rotational3D Approach

Both the Engines and PTDynamics library make use
of a new Rotaional3D library that uses the standard
Modelica connector called FlangeWithBearing [12].
Within the scope of this library it is assumed that the

bearingFrame is always included and it is used to
capture the MultiBody dynamics of the rotating sys-
tem. Within the connector, the flange connector is
used to capture the rotation angle of the body and the
torque being applied around the axis of rotation. The
bearingFrame is used to track the position, orienta-
tion, forces and other torques being applied to the
body. The rotation of the body is assumed to always
be about the local x-axis of the bearingFrame.
To capture the full MultiBody dynamics of the body
the rotation angle of the flange connector and the po-
sition and orientation of the bearingFrame connector
have to be combined. The angular velocity of the
flange connector and the bearingFrame connector are
resolved in to a virtual orientation frame. The virtual
orientation frame follows the bearingFrame orienta-
tion and rotates with the flange connector.

[]
[] () [] ()
[] () [] ()

+
+
+

=

flangeframeflangeframe

flangeframeflangeframe

flangeframe

body

ϕωϕω
ϕωϕω

ωω
ω

cos*3sin*2
sin*3cos*2

1

Where φflange, ωflange mean the angle and angular velo-
city of the flange connector, ωframe means the angular
velocity of the bearingFrame connector and ωbody is
the overall angular velocity of the body resolved in
to the virtual orientation frame.
From this the acceleration of the centre of mass can
be determined and thus the inertial effects can be cal-
culated to determine the forces acting on the bearing-
Frame due to the rotation on the body.
The torque acting in the flange (τflange) is the torque
required to accelerate the rotation of the body and is
dependent only on the inertia of the body around the
principle axis of rotation. The reaction torque in to
the bearingFrame is the difference between the
torque in the flange connector and total torque acting
on the body:

()
}0,0,{

)*(*

*

, flangeframebodyframe

bodybodybodybody

flangexxflange

II
I

τττ
ωωατ

ατ

−=

×+=

=

Where αflange is the angular acceleration of the flange
connector, I is the inertia matrix, αbody is the angular
acceleration of the body and τbody is the torque acting
on the body resolved into the virtual orientation
frame, τbody,frame is this torque resolved in to the orient-
ation of the bearingFrame and τframe is the torque in
the bearingFrame.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 427

Benchmarking:
To understand the benefits of this approach and to
validate the method, a series of benchmark cases
were developed to compare the Modelica 1D Rota-
tional and MultiBody libraries with the new Rota-
tional3D model. The simplest test case is shown be-
low where a torque actuator is used to accelerate an
inertia.
Using Dymola these test cases are reduced to the
system of equations shown below. The 1D Rotation-
al model is of course the most simple system pos-
sible but it ignores many important effects. The Ro-
tational3D and MultiBody models both capture ex-
actly the same effects and predict the same motion of
the body and reaction forces and torques in to the
world object.
The advantage of the Rotational3D approach is that
the linear set of equations seen in the MultiBody ex-
ample is eliminated and the number of time varying
variables is reduced to 15 from 27.

rotatingBody

J=1

torqueAtFixed...

m=1

rotatingBody

world

x

y

torqueAtFixed...

a

b

n=
{1
,0
,0
}

ac
tu
at
ed
Re
v.
..

rotatingB...

world

x

y

torqueAt...

3.2 Bearings

Bearings can be modelled as an ideal bearing which
pins the shaft in position or with compliance that al-
lows the shaft to move within the bearing. A number
of friction models are available ranging from plain
bearings to hydrodynamic lubrication so that differ-
ent types of bearing can be modelled. Within each
type of friction model we can define particular char-
acteristics pertinent to that friction type.
In all bearings a full hydrodynamic model is avail-
able which makes use of the Sommerfeld number [7]
[8] and bearing clearances to determine the lubrica-
tion regime. The model also accounts for the non-hy-
drodynamic type of lubrication under critical speeds
and loads.

Rolling element bearing friction is also modelled
with a selection of predefined friction coefficients
that depend on the type of bearing and geometry of
the rolling elements (single or double row ball,
roller, taper roller).
Seal friction is taken into account using the normal
force generated by the seal on the shaft and the
defined coefficient of friction [13].
The rolling element bearing friction torque is calcu-
lated using the following formula:

+

=

2
**

2
** dfFdfFM ssr

Mr = Friction torque (Nm)
F = Radial (or axial load) (N)
Fs = Seal radial (or axial load) (N)
f = coefficient of friction of rolling bearing
fs = coefficient of friction of seal
d = Diameter of the bore of the bearing (Shaft diameter)
(m)
D = Outside diameter of the bearing (m)

Continuous time states: 2 scalars
Time-varying variables: 2 scalars
Sizes of linear systems of equations: { }
Sizes after manipulation of the linear systems: { }
Sizes of nonlinear systems of equations: { }
Sizes after manipulation of the nonlinear systems: { }

Continuous time states: 2 scalars
Time-varying variables: 27 scalars
Sizes of linear systems of equations: {3}
Sizes after manipulation of the linear systems: {0}
Sizes of nonlinear systems of equations: { }
Sizes after manipulation of the nonlinear systems: { }

Continuous time states: 2 scalars
Time-varying variables: 15 scalars
Sizes of linear systems of equations: { }
Sizes after manipulation of the linear systems: { }
Sizes of nonlinear systems of equations: { }
Sizes after manipulation of the nonlinear systems: { }

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 428

Careful attention has to be paid by the modeller to
avoid mechanical loops as these can be easily intro-
duced. A mechanical loop is one where a position
could be calculated via two or more paths and this
cannot be handled automatically in Modelica. A
simple case is illustrated below where the
fixedTranslations form a loop.

Using the shaft and bearing components within the
PTDynamics library it would be very easy to create a
mechanical loop. In the simplest case this would
consist of a shaft with a support bearing at each end
which would form a loop. To overcome this prob-
lem the bearing components include a flag break-
MechanicalLoop and the modeller then has to fol-
low the simple rule that only 1 bearing supporting a
shaft can have this flag set to false, all the other bear-
ings must have this flag set to true. The bearing icon
is changed to reflect the value of this flag to make it
easy for the modeller to verify this rule.

3.3 Gears

Within the PTDynamics library the fact that two
gears are meshing is defined by adding a gear mesh
component between the two gear bodies. This gear
mesh model then calculates the forces and torques
acting between the gears based on their relative posi-
tions and geometry.

The mesh models account for the pressure angle and
helix angle to calculate the radial and axial forces
acting on the shafts. The mesh models also account
for the rotation induced in the shafts due to their axi-
al movement and the sliding of the gear teeth against
one another in non-spur gears. A range of different
mesh models will be available to account for mesh
stiffness and backlash within the gear pair.
Specialised mesh models are also defined for use in
epicyclic and differential gears that allow the forces
and torques acting on each gear to be calculated.

3.4 Joints

A range of different shaft couplings are available al-
lowing articulation of the shafts. The Joints can all
include torsional compliance effects such as backlash
and account for the cyclic speed and torque effects
present in joints such as the Hookes joint (Universal
joint). Also available are plunging joints with friction
and constant velocity joints.

.
To simplify models and eliminate joint articulation
two special joints are provided, a rigid joint and one
called a MBDisconnect joint. The rigid joint elimin-
ates all degrees of freedom in the joint. The MBDis-
connect joint provides a complete break in the
MultiBody system.

4 Coupling the Engines and Power-
Train Dynamics Libraries

Being able to replicate engine torque pulsations
through the driveline for torsional vibration analysis
is a key part of driveline design. The designer could
just input a table based torque signal obtained by
means of a logged test but the ability to dial in a pre-
scribed throttle profile and being able to vary it for
different tests, thus being able to generate the corres-
ponding torque is a desirable feature.
Using the VehicleInterfaces library [12] a complete
vehicle model has been developed using the Engine
library and the PTDynamics library to model the
Transmission, Driveline and Chassis systems.
A rear-wheel drive vehicle has been developed and
used to perform driveability tests whilst exploring
the mount reaction forces and driveline vibration.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 429

Diagram of the 6-speed dual clutch gearbox used in the
vehicle model.

5 Driveability study

In this example, a 1.8L gasoline inline 4-cylinder en-
gine is coupled to a manual transmission, 1100kg
kerb weight, rear wheel drive vehicle and made to
perform a typical tip-in/tip-out test whilst travelling
in a straight line. The resulting driveline vibrations
are displayed. The differential movement on its
mounts is also shown during the tests

5.1 The Engine

The engine has been modelled using both variants of
the library. For use during the tip-in/tip-out test the
MVEL variant of the engine is utilised. The CAREL
variant is used for correlation purposes and in other
tests using the same vehicle.
The engine is a 4 cylinder inline, spark ignition, dir-
ect injection engine with a total volumetric displace-
ment of 1800cc. It’s naturally aspirated with 4
valves per cylinder and direct acting camshafts. The
engine is mounted in the vehicle with 3 non-linear
mounts.

5.2 The transmission

The vehicle modelled uses a 6-speed dual clutch
transmission rigidly mounted to the engine.

The model includes backlash, synchro parallel gear
mesh models and compliant bearing models with rel-
evant parasitic loss (friction) and efficiency models.

5.3 The driveline

An open differential with 4-point mounting system
has been used. The PTDynamics Differential Gear
and Bevel Gear mesh models have been used for
both differential assembly and the pinion-wheel
mesh. Parasitic losses have been implemented within
the bearings and the power-dependant losses are
modelled as efficiency terms within the mesh mod-
els. All main shafts and joints are compliant with
backlash applied to specific joints within the drive-
line model.

5.4 The Chassis

A Pacejka Magic Formula tyre model was used, util-
ising the SAE J2452 rolling resistance model. The
vehicle body used a 3 degree of freedom model cap-
turing pitch and bounce in addition to the longitudin-
al motion of the vehicle.

5.5 Correlation

Vehicle coast downs were performed for the vehicle
in each gear to correlate the aerodynamic, rolling
resistance and driveline losses.

5.6 Tip-in tests

The terms tip-in and tip-out are used within driveab-
ility tests to describe a positive and negative step
change in throttle input. In the context of this paper,
the tip-in will refer to a 70% step throttle opening.
Tip-out will refer to a full throttle pedal lift off.
Tip-in tests were performed using open-loop control
of the driver throttle pedal. The same test can be re-
peated in each of the gears in the transmission and
for varying amounts of throttle opening applied.
The vehicle is left to settle to a predefined speed at
which a tip in event is triggered. At a predefined en-
gine speed we then trigger the tip-out event.
The oscillatory phenomena at the investigated events
will be captured for driveline vibration analysis.

6 Results

6.1 Engine: MVEM and CAREM vs Test Data

Simulation data from a fully correlated engine model
generated in a widely used engine simulation pack-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 430

age was used to correlate both a MVEM (Mean
Value Engine Model) and a CAREM (Crank Angle
Resolved Engine Model).

CAREM results (blue) vs. correlated engine model (red)

Real Time with MVEM
Simulation of the first 23s of the ECE15 cycle are
completed within 11s of CPU time. The model in-
cludes the catalysis of the exhaust gasses and the
modelling of the 3-way catalytic converter brick
light-off.

MVEM Vs. CAREM

Plot of plenum pressure and throttle body mass flow rate
for a CAREM (blue) and MVEM (red).

The results from the MVEM and CAREM were
compared to each other to ascertain similarity within
the two models.
The plenum pressure error comparing a MVEM and
CAREM representation of the same engine is within
+/- 5%. The throttle body mass flow rate is within
+/- 1%. The discrepancy during the first 10 seconds
of the plenum pressure plot can be attributed to slight

a miscalibration of the MVEM mass flow rate func-
tion at low throttle openings and engine speeds.

6.2 Multi Cylinder vs. Surrogate

The advantages of surrogate models lie in model
simplification, which translates to a reduction in
CPU time. A test was performed to demonstrate neg-
ligible loss in accuracy when using the surrogate cyl-
inder engine model to replace a multi-cylinder en-
gine model.
Whilst the error was contained within +/- 2%, the be-
nefit in running a surrogate CAREM model over a
multi-cylinder CAREM is a 4.5 times reduction in
CPU time.

Plot of plenum pressure for a CAREM multi-cylinder rep-
resentation (blue) vs. a surrogate representation of the

same 4-cylinder SI engine (red).

6.3 Tip-in tip-out tests

Results from a second gear tip-in tip-out test are
shown below.

Vehicle longitudinal acceleration

Vehicle longitudinal velocity and engine throttle position

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 431

The vehicle longitudinal acceleration presents
damped oscillations typical of this type of man-
oeuvre at and after the tip-in and tip-out events. The
backlash in the driveline is particularly visible
between the tip in/out events and the first peak in the
vehicle acceleration oscillations as shown below.

Vehicle longitudinal acceleration showing discontinuities
due to backlash regions being crossed.

The mount displacements for the differential were in
agreement with expectations for this type of man-
oeuvre.
The relative roll of the differential is visible shortly
after the tip-in and tip-out points (1.5s and 3.5s). A
positive pitch angle for the differential assembly is
demonstrated during the tip-in acceleration event
(front mounts have moved upwards and rear mounts
have moved downwards) whilst a negative one is
shown for deceleration event.

Vertical displacement of the 4 differential mounts during
the tip-in/tip-out test. The blue and red lines represent the
front mounts and the green and magenta lines represent

the rear mounts.

7 Conclusions

Two new libraries have been developed for model-
ling Engines and Powertrain system dynamics.
These both utilise a new approach to modelling the
mechanics that capture the full MultiBody effects in

a more efficient manner than the standard Modelica
MultiBody library.
Using these two libraries a complete vehicle model
has been built to study a range of different beha-
viours. Results for the engine model operation on its
own are presented along with results from a tip-
in/tip-out manoeuvre.
The developed vehicle model can therefore be used
for driveline vibration analysis as well as perform-
ance and vehicle dynamics tests. By plotting the
mode shapes we can identify the sources of vibration
and adjust the source components accordingly to
counteract undesired phenomena.

References

1. Franke, R. et al. “Standardization of thermo-
fluid modeling in Modelica_Fluid 1.0”. Mod-
elica Conference 2009.

2. Hendricks et al. “Modelling of the Intake
Manifold Filling Dynamics” SAE 960037
1996.

3. John J. Batteh Charles E. Newman. “Detailed
Simulation of Turbocharged Engines with
Modelica” Modelica Conference, 2008.

4. Finol C A and Robinson K. “Thermal model-
ing of modern engines: a review of empirical
correlations to estimate the in-cylinder heat
transfer coefficient”. Department of Mechanic-
al Engineering, University of Bath, UK.

5. Yang et al. “A Valve Train Friction and Lub-
rication Analysis Model and Its Application in
a Cam/Tappet Wear Study” SAE 962030
1996.

6. R. C. Coy. “Practical applications of lubrica-
tion models in engines” Tribology Internation-
al vol. 31 No. 10.

7. Heywood J.B. “Internal Combustion Engine
Fundamentals” McGraw Hill.

8. Stone, R. “Introduction to Internal Combus-
tion Engines” SAE International, 1999

9. Masoudi. M. “Pressure Drop of Segmented
Diesel Particulate Filters”. SAE 2005-01-
0971 2005

10. Kladopoulou et al. “A study Describing the
Performance of Diesel Particulate Filters
During Loading and Regeneration – A lumped
Parameter Model for Control Applications”.
SAE 2003-01-0842 2003

11. Silva et al. “Evaluation of SI engine exhaust
gas emission upstream and downstream of the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 432

catalytic converter”. Mechanical Engineering
Department, Technical University of Lisbon,
Portugal. 2006

12. Dempsey, M. et al. “Coordinated automotive
libraries for vehicle system modeling”. Model-
ica Conference 2006.

13. www.roymech.co.uk
14. Kandylas I. P. and Stamatelos A.M. “Engine

exhaust system design based on heat transfer
computation” Energy Conversion and Man-
agement 40 (1999).

15. Batteh J. J. and Kenny P. J. “Modelling the
Dynamics of Vehicle Fuel Systems”. Modelica
Conference 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 433

Detailed Loss Modelling of Vehicle Gearboxes

Clemens Schlegel
Schlegel Simulation GmbH

Freising, Germany
cs@schlegel-simulation.de

Andreas Hösl
BMW Group

Munich, Germany
andreas.ha.hoesl@bmw.de

Sergej Diel
University of Applied Sciences Landshut

Landshut, Germany
sergej.diel@fh-landshut.de

Abstract

Drag torques of gearboxes are an important part of
the overall losses in today’s vehicle drive trains.
From measurements it is well known that overall
drag torques of vehicle gearboxes vary significantly
over the range of operating points and speeds, de-
pending on the interaction of the losses of the single
gearbox elements like bearings, gearings, etc. Be-
cause today’s vehicle emission regulations are be-
coming stricter and stricter "drag torque design" of
gearboxes will be even more important in the future.
Prediction of losses helps to save cost (e.g. drag tor-
que measurements), speeds up the development and
allows to assess many concepts in short time.
We collected detailed semi-analytical drag models
for the common gearbox components from literature
and from manufacturer information and implemented
them in a Modelica library. This library contains
models for radial shaft seals, rotary unions, synchro-
nizers, multi-disc clutches, helical gearings, planeta-
ry gearings, various kinds of bearings, lubrication
systems and lubricant characteristics. Using this li-
brary drag torques of any vehicle gearbox may be
computed for any operating condition (engaged gear,
speed, torque, temperature). Simulation results for a
7 speed double clutch transmission show good corre-
lation with measurements.
Keywords: Automotive; Gearboxes; Drag torques

1 Introduction

Simulation of gearboxes is used widely for e.g. gear
ratio design, for investigating noise, vibration and
harshness, for assessment and tuning of control strat-
egies and similar design aspects. Gearbox compo-
nents are mostly modelled ideal, without losses, be-
cause drag torques are considered as negligible for
the mentioned cases. If detailed investigations with

respect to fuel consumption and emissions are
needed, mostly loss maps based on measurements
are used, an explicit computation of gearbox losses is
done rarely. Since in an early design stage measure-
ments are not available, the loss maps have to be es-
timated or derived from former designs.
A lot of papers and studies on loss computation of
gearbox components are available, for a survey see
e.g. [1]. For some components like torque dependent
losses of gears very reliable loss descriptions exist,
for other components like multi-disc clutches and
most of the further torque independent losses only
rough estimates are available in literature.
Losses which are independent from the gearbox in-
put torque are a major part of the overall losses in
driving cycle computations (like NEDC) which are
in turn an important part of any driveline assessment.
Even the most advanced codes for gearbox loss
computations which are generally available [2] do
not or only in part take into account torque indepen-
dent losses what results in reduced reliability of the
computations. Losses of synchronizers, multi-disc
clutches and rotary unions are rarely taken into ac-
count.
A further problem in this context is that loss compu-
tations for bearings need the forces and torques act-
ing on the bearings as input, but no general approach
to compute them for all kinds of bearings is availa-
ble, because for the highly nonlinear stiffness rela-
tions of bearings no analytical descriptions are
known.

2 Losses of gearbox components

2.1 General considerations

Naunheimer [3] gives a rough survey of typical
overall efficiencies of vehicle gearboxes under full
load:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 434 DOI: 10.3384/ecp09430059

Manual
gearbox

Automatic
gearbox

Mechanical
CVT

Hydrostatic
CVT

92 - 97 % 90 – 95 % 87 – 93 % 80 – 86 %

The losses of manual and automatic gearboxes are
made up of drag torques due to the following effects
in each single gearbox component (PV is the power
loss):

• Gears: Mesh friction, swash and squeeze in

splash lubrication, oil impulse in spray lubrica-
tion (PVZ)

• Bearings: Rolling and sliding friction, lubrica-
tion losses and losses in seals (PVL)

• Radial shaft seals: Friction between the sealing
lip and the rotating shaft (PVD)

• Rotary unions: Friction between the lateral sur-
faces depending on oil pressure and shear flow
in the pressure chamber (PVDDF)

• Synchronization: Fluid drag between synchro-
nizer and friction cone (PVS)

• Clutch: Fluid drag in wet multi-disc clutches
(PVK)

• Oil pump: Torque consumption depending on
system pressure, temperature and oil viscosity
(PVNA)

The total power loss is the sum of the power losses
of the single elements and can be expressed as:

VNAVKVSVDDFVDVLVZV PPPPPPPP ++++++=

(2.1)

Losses of gears and bearings may be split up into a
part depending on the transmitted torque and a tor-
que independent part. Torque dependent losses occur
when two surfaces which are under pressure move
relatively to each other, for example in gears or bear-
ings. These losses are depending on the force, sliding
speed and the friction coefficient (which is, in turn,
depending on the lubrication) in the contact area.
Torque independent losses arise even if no torque is
transmitted but the shafts rotate. These kinds of
losses occur for example in seals and rotary unions.
Losses in gearings and bearings dominate the overall
losses of manual gearboxes. In contrast, the losses of
wet multi-disc clutches in automatic gearboxes can

account for even more than 50 % of the total power
loss.
The computed overall loss of transmitted power is
used to set up an efficiency map, which may be used
in other simulation models for fuel consumption in-
vestigations. In the following chapters all the listed
effects influencing the total power loss are described
in more detail. Since the losses are modelled physi-
cally as “torques”, the equations are given with the
same definition.

2.2 Gears

The total loss torque MVZ in gears can be decom-
posed into the torque dependent part MVZ,la and the
torque independent part MVZ,lu:

luVZlaVZVZ MMM ,, += (2.2)

2.2.1 Torque dependent losses

Ohlendorf [4] introduced the first theoretical ap-
proach for the calculation of torque dependent losses
in gears in 1958. The power loss in [4] is calculated
on the assumption of a constant coefficient of fric-
tion µm, and a constant normal force:

VmanlaVZ HMM μ=, (2.3)

Man is the acting torque and HV is the gear loss factor
which takes into account the geometry of the teeth.
According to Schlenk [5], µm can be expressed as:

La
redCC

bt
m XR

v
bF 25,005,0

2,0

∑

/048,0 −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= η

ρ
μ (2.4)

Fbt is the tangential force at the base circle, b the
tooth width, v∑C the sum speed at the operating pitch
circle, ρredC the reduced radius of curvature at the
pitch point, η the dynamic oil viscosity, Ra the arith-
metic mean roughness, and XL a factor for the oil
type.
The gear loss factor Hv was introduced by Wimmer
[6]. He only depends on the gear geometry:

)

(
cos

1

43

210

BBAA

BA
bA

V iz
iH

εεαεεα

εαεαα
β

π

+

+++
+

=
 (2.5)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 435

i is the gear ratio, zA is the number of teeth of the
pinion, βb is the base helix angle, εA and εB are the
contact ratios of acting and driven wheel and α1 to α4
are coefficients depending on the values of εA and εB.
The parameters ρredC and ν∑C are:

b
wtwredC i

id
β

αρ
cos

1
)1(

)sin(
2
1

+
= (2.6)

)sin(2 wttCv αν=∑ (2.7)

with dw the pitch diameter, αwt the service pressure
angle and vt the pitch line speed.

2.2.2 Torque independent losses

Two kinds of lubrications are commonly used in
gearboxes: Splash lubrication and spray lubrication.
For splash lubricated gears the loss torque can be
written as:

VVZPlVZQVZluVZ MMMM ,,,, ++= (2.8)

In the case of spray lubrication the loss torque is de-
fined as:

VVZIVZQVZluVZ MMMM ,,,, ++= (2.9)

The squeeze loss MVZ,Q is caused by the displacement
of the oil in the contact area between the teeth. MVZ,Pl
is the resistance of the gear wheel when rotating in
an oil bath. The ventilation loss MVZ,V is the air drag
due to air or oil mist. The oil stream in spray lubrica-
tion causes the impulse loss torque MVZ,I, since it acts
on the rotating wheel.
The losses of splash lubrication are in general higher
compared with spray lubrication. The losses of spray
lubrication will be described in more detail, because
the gearbox investigated is lubricated by oil spray.
Mauz [7] gives a definition for MVZ,Q:

5,0

0

25,0

0

25,025,025,075,0
1, 12,4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅=

Z

Z

ntweQVZ

h
h

mbvrQCM

ν
ν

ρ

(2.10)

Here ρ is the oil density, eQ& is the oil volume flow, rw
is the pitch radius, and mn is the normal module. The
kinematic oil viscosity ν and the tooth height hz are
normalized by the reference values ν0 and hz0. Equa-

tion (2.10) is only valid for the cases BO and BU (see
fig. 1). For the cases AO and AU the loss torque
MVZ,Q is zero. The factor C1 is a scaling factor for
gravity effects, it is 1 for BO and 0.9 for BU.

Figure 1: Different cases of spray lubrication [7]

In the cases BO and BU the spray jet hits the ap-
proaching contact area from top or from bottom, re-
spectively. In the cases AO and AU the oil stream
meets the regressing contact area. In these cases,
there is almost no oil remaining on the teeth because
of centrifugal forces. Therefore the loss is very small
and can be neglected.
The impulse loss torque MVZ,I usually provides the
main part of the torque independent losses in spray
lubricated gears. Ariura [8] defines MVZ,I as:

)(2, stweIVZ vvrQCM −= &ρ for BO, BU (2.11)

)(2, stweIVZ vvrQCM += &ρ for AO, AU (2.12)

vs is the velocity of the oil stream. The coefficient C2
takes into account gravitation effects. For BO and
AO the coefficient C2 is 1, for BU it is 0,9 and for
AU it is 0,85.
According to Maurer [9], the ventilation loss torque
MVZ,V is composed of the loss of the gear wheel itself
(

ZVVZM ,) and the loss in the contact area between the
teeth (

EVVZM ,):

WandtwtZVVZ FmbdvM 69,052,06,19,19
, 1037,1 −⋅= (2.13)

WandtEVVZ FbivM 37,173,095,16
, 1017,1 −⋅= (2.14)

mt is the transverse module and FWand describes the
influence of the gearbox housing.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 436

2.3 Bearings

While the forces acting on the mesh or on statically
determined bearings can easily be computed from
force and torque equilibrium using the transmitted
torque and geometry parameters (see fig. 2), the
force calculation for statically over-determined bear-
ings requires some preprocessing.

Figure 2: Model for the calculation of bearing forces
of statically determined shafts

For the latter case, which is not uncommon for ve-
hicle gearboxes, and for more detailed investigations
computation of the forces and torques acting on a
bearing requires detailed knowledge of the stiffness
properties which are highly nonlinear for the rolling
bearings commonly used.
Since manufacturers do not publish detailed stiffness
data, we used a separate bearing calculation software
provided by a bearing manufacturer [10] to compute
for each over-determined shaft a map of bearing
forces and torques depending on the transmitted tor-
que and the gear engaged. The same procedure may
be used for adjusted bearings.
Because several gearings may act on the same shaft,
all single gearing forces and torques acting on a
couple or triple of bearings must be collected and
routed accordingly to the bearing drag computation
model component.
In vehicle gearboxes, mostly rolling contact bearings
are used. The respective loss computations will be
described in the following sections in more detail.
Figure 3 shows six different types of losses in a roll-
ing contact bearing: Rolling and sliding friction be-
tween rolling element and bearing rings (1 and 2),
sliding friction between cage bar and bearing rings
(3), sliding friction between cage and rolling element

front surface (4), sliding friction between rolling
element and outer ring (5), and friction between cage
and rolling element (6) [11].

Figure 3: Different types of losses in a rolling con-
tact bearing.

The first detailed approach to drag torque calculation
of rolling contact bearings was published by
Palmgren [12]. He proposed to split the drag into a
torque dependent and a torque independent part. The
investigations by Harris [13] and INA/FAG [14] are
based on [12] and have been used for a long time.
The relatively new approach by SKF [15] allows
more detailed investigations because the losses are
assigned to the places where they occur in the bear-
ing.
All mentioned methods have been implemented in
the library. Because of the importance of the SKF-
method it will be described shortly:

dragsealslrrrsishVL MMMMM +++= φφ (2.15)

In this equation the rolling frictional torque Mrr and
the sliding frictional torque Msl represent the torque
dependent losses. Mseal is the frictional torque of
bearing seals and Mdrag is the frictional torque due to
churning, splashing etc. Mseal and Mdrag represent the
torque independent losses.
The rolling and the sliding friction torques Mrr and

slM are given by:

6,0)(nGM rrrr ν= (2.16)

slslsl GM μ= (2.17)

The variables Grr and Gsl depend on the bearing type,
the bearing mean diameter, the radial load Fr and the
axial load Fa , n is the rotational speed, ν the kine-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 437

matic viscosity of the lubricant and µsl is the sliding
friction coefficient.

ishφ describes the influence of the lubricating film
thickness on the rolling friction. The factor rsφ con-
siders the lubricant displacement in the contact zone
due to overrolling which results in a lower rolling
friction torque.
The frictional torque in bearing seals is:

21 SsSseal KdKM += β (2.18)

The constants KS1 and KS2 depend on the bearing and
the seal type, sd is the sealing counterpart diameter
and β an exponent which depends on the bearing and
seal type.
The definition of Mdrag for ball bearings is:

25 ndKVM mballmdrag = (2.19)

and for roller bearings:

2410 ndBKVM mrollmdrag = (2.20)

Vm is a variable depending on the oil level, Kball and
Kroll are bearing type related constants, B is the bear-
ing inner ring width and dm=(D+d)/2 is the mean of
the bearing outer diameter D and the bore diameter
d.
The SKF-method is not applicable to needle bear-
ings. In this case other methods for example [13] or
[14] may be used.

2.4 Radial shaft seals

The loss torque of radial shaft seals is a result of the
friction between the sealing lip and the rotating shaft.
For the library presented, the approaches by Linke
[16] and by Kettler [17] have been used because of
their simplicity compared with other approaches.
The definition by Linke is:

(2.21)

dw is the shaft diameter and ϑ is the temperature.
Kettler gives a different formulation for the compu-
tation of the friction torque:

πρ
30109163,7 2

,
6

wDVD dFM −⋅= (2.22)

The factor FD,ρ represents the effect of the tempera-
ture dependent viscosity change.

2.5 Rotary unions

In gearboxes rotary unions are used to permit the
flow of oil to activate clutches or to transport the
lubricant through the shafts from a stationary inlet to
a moving part such as a rotating shaft or from one
rotating shaft to another. The oil is kept within the
rotary union using a (mostly rectangular) seal ring.
Figure 4 shows the structure of a rotary union.

Figure 4: Structure of a rotary union

Gronitzki [18] recently investigated the losses in ro-
tary unions in detail. He describes the loss torque as
the sum of three main loss sources:

IIIIIIVDDF MMMM ++= 22 (2.23)

MII is the friction between the seal ring and the
groove (see area II in figure 4). MIII (area III) is the
loss torque due to the shear flow between the inner
and the outer shaft in a pressurized chamber. The
loss torque MI in area I as a result of the oil leakage
is small compared to the losses in areas II and III and
can therefore be neglected. For further details see
[18].

2.6 Synchronizers and clutches

The analytical description of synchronizer losses is
subject of ongoing research [19]. The results of this
research are possibly also applicable to multi-disc
clutches. For our implementation we used tabulated
drag data for synchronizers and clutches based on
measurements.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 438

2.7 Oil pump

Since no reliable models are available in literature
we used measured, tabulated drag data for the oil
pump. A direct calculation would be rather complex.

3 Library implementation

For the actual implementation of our library Modeli-
ca and the tool Dymola [20] have been used in order
to easily fit into existing gearbox and drive train
models at BMW. Because of the intended use for
arbitrary gearbox topologies a signal oriented ap-
proach would be not feasible.
The used loss descriptions are either based on the
respective geometrical and physical properties, on
parameterized semi empirical descriptions, or on ta-
bulated measurement data. All parameters are orga-
nized in hierarchical data structures and stored using
a data sheet library approach. Since a gearbox may
comprise separated subassemblies, for each lossy
gearbox component a different lubricant may be cho-
sen and a dedicated temperature may be paramete-
rized.
Each component (e.g. a bearing) contains one (tor-
que independent) or two (torque independent and
torque dependent) loss components. These loss com-
ponents may be specific to a certain component sub-
type (e.g. a roller bearing) and contain a certain type
of loss computation (e.g. according to reference A or
B). Each loss component may comprise one or more
functions for the computation of the actual drag tor-
que part (e.g. splash loss and ventilation loss). Final-
ly, all loss torques are summed up and routed to the
Mechanics.Rotational connectors of the respective
component.
Since all formulas in literature are given only for a
certain range of operating conditions (e.g. between
1000 rpm and 2500 rpm speed, below 2000 rpm,
above 2000 rpm), special care has to be taken to al-
low usage of the models for zero speed and zero
transmitted torque. For practical reasons, the compo-
nents may optionally be described by a percentage
loss factor (e.g. gears) or as ideal, without any losses.
Since we are not interested in transient effects, stick-
slip phenomena have not been modelled. A smooth
friction characteristic with limited derivative at zero
is used instead.
The strict separation of torque independent and tor-
que dependent losses is useful because in many cases
only torque independent measurements are available.
The torque dependent losses can be calculated sepa-
rately and added to the overall loss map.

We made extensive use of class parameterization in
order to easily choose among a set of loss types and
combinations thereof for each kind of lossy elements
in a unified way. The flexible modular structure of
the library allows an easy implementation of new
components and loss models. Models of the losses of
the basic planetary gearings (planet / planet, planet /
ring, planet / sun) as parts of arbitrary planetary gear-
ings have been developed recently and are actually
under test.

4 Verification of library models

4.1 Component level verification

For a first validation of the library models, the loss
calculations have been compared with the results
presented in the literature references which contain
loss calculation formulas.
For some components it was also possible to ex-
amine special measurements of individual compo-
nent drag torques. For example, the drag torques of
some needle bearings of the gearbox presented later
were derived by measurements comparing a com-
plete gearbox and a stripped gearbox where the idler
gears of the counter shaft have been removed. Figure
5 shows the calculated drag torques for the regarded
idler gears, the sum of these calculated drag torques
and the drag torque derived from measurements. The
calculation method according to the bearing manu-
facturer INA [14] was used.

Figure 5: Validation of bearing drag torques of idler
gears

The correlation of calculation and measurement is
acceptable, especially for speeds above 2000 rpm.
The fidelity of the bearing drag torques of the idler
gears is mainly affected by the relative speed within
the bearing, which is rising from the 3rd to the re-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 439

verse gear. The automated computation of the reac-
tion forces of the tooth engagements and the bearing
forces was checked by analytical calculation of sev-
eral simple load cases.

4.2 System level verification and sample gear-
box loss model

For the system level verification, a complete model
of the new BMW 7 speed double clutch transmission
(DCT), which was developed in collaboration with
GETRAG and introduced in 2008 (BMW M3, 335i
Coupe and Convertible), has been set up. The buil-
dup and the functional principle can be seen in fig. 6.

Figure 6: Buildup of the BMW 7 speed double clutch
transmission

For the simulation of the drag torques, every lossy
component of a gearbox is represented by a corres-
ponding library element. Gears, synchronizers, bear-
ings, seals, rotary unions, clutches and an oil pump
have to be considered for loss calculations. The
complete Dymola DCT gearbox model is shown in
fig. 11.
The gearbox is basically modelled as a rigid multi
body system with rotational mechanic flanges at in-
put and output shafts. Inertias of inner shafts and
idler gears are reduced to the input and output shafts.
The clutches are derived from the original clutch

elements of the Modelica standard library. They can
be controlled by a torque request signal which is in-
ternally interpreted as friction torque (sliding clutch)
or maximum transmitted torque (sticking clutch).
The gears are shifted by applying forces to the slid-
ing links of the synchronizer units, which are physi-
cally modelled including the speed drop caused by
friction of the synchronizer cones and the mechani-
cal coupling at the stop position of the sliding links.
Since no validated calculation method was available,
the losses of the unengaged synchronizers were ap-
proximated via drag torque functions depending on
the number of cones and the friction radius according
to [21], see fig. 7.

Figure 7: Synchronizer drag torques

Figure 8: Virtual test bench

The drag torque map of the oil pump was measured
separately for several system pressures and could
therefore be interpolated from tabulated data depend-
ing on input speed and requested system pressure for

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 440

closing the clutches. For the gearings, rotary unions,
radial shaft seals and bearings, the loss calculation
algorithms described in chapter 2 have been used.
In order to calculate the losses of the gearbox for any
desired operating point, the gearbox model was inte-
grated in a virtual test bench shown in fig. 8. The
actual operating point is adjusted by prescribing the
input torque and the output speed. The total losses
and the respective overall efficiency can be calcu-
lated using the signals of the power sensors at the
input and output shaft of the gearbox. Depending on
the input torque the pressure level for the clutches,
which is mainly influencing the drag torque of the
rotary unions, can be derived using simple parameter
tables.

4.3 Simulation results

For the validation of the simulation model, two test
series were available. A comparison to measure-
ments at 80°C and for input torques between 10 and
100 Nm, varying the input speed from 750 to 2500
rpm, is shown below (figure 9a, 9b). This operating
range is very important for the NEDC driving cycle.
In the simulation, the loss torques of radial shaft
seals were calculated according to Linke [16], the
torque independent mesh losses according to Mauz
[7], the losses of the needle bearings according to
INA/FAG [14] and the losses of the remaining bear-
ings according to the SKF method [15]. In the inac-
tive subgearbox no gear was engaged (no gear pre-
diction). The comparison of measurement and calcu-
lation is given in fig. 9a and 9b.
Simulation results show a good correlation with
measurements. Except for the 7th gear, the maximum
differences of measured and calculated drag torques
are below 15%. In the 7th gear, which is engaged by
direct coupling of input and output shaft, the calcu-
lated discrepancy of the two loads 30 Nm and 100
Nm is significantly less than for the other gears,
since no gears are loaded in this case. The remaining
torque dependencies are related to the oil pump and
the rotary unions. The measurement for the 7th gear
(100 Nm) shows an abnormal characteristic, which
cannot be explained by the common loss approaches.
Using the validated simulation model it is possible to
perform detailed investigations of the partial losses
of all gearbox components. Figure 10 shows losses
of different components for the 6th gear and 60 Nm
input torque. The main amount of losses is caused by
the bearings, followed by the oil pump. Only the
losses of the synchronizers decrease with rising
speed due to the special characteristic shown in fig.
7.

Figure 9a: Comparison of measured and calculated
drag torque (80°C), gears 1 to 4

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 441

Figure 9b: Comparison of measured and calculated
drag torque (80°C), gears 5 to 7

5 Outlook on future work

Our recent investigations focus on 6 and more speed
planetary gearboxes. For the calculation of mesh
losses and bearing forces, the special relations within
the individual planetary gear sets have to be decom-
posed hierarchically to be able to build models of
complex lossy planetary gearboxes out of few base
components.
Due to the coupling of many highly nonlinear and in
part not continuously differentiable equations de-

scribing the drag torques of each single component,
numerical problems have to be overcome. They will
be investigated in more detail.

Figure 10: Partial losses (6th gear, 60 Nm, 40°C)

Acknowledgement

The authors would like to thank Mr. Stefan Mayr
who reviewed the literature, revised the loss formu-
las for implementation in Modelica, collected para-
meter data, tested and verified the models on com-
ponent and system level during his diploma thesis in
mechanical engineering.

References

[1] S. Mayr, Modellierung der Verluste von Ge-
triebekomponenten zur Berechnung von Ge-
samtgetriebewirkungsgraden. Diplomarbeit
TU München und BMW Group, 2008

[2] Forschungsvereinigung Antriebstechnik, Pro-
jekt Nr. 69 / I - IV: “Software WTplus”

[3] H. Naunheimer, B. Bertsche, G. Lechner,
Fahrzeuggetriebe, Springer, Berlin, 2007

[4] H. Ohlendorf, Verlustleistung und Erwärmung
von Stirnrädern. Dissertation TU München,
1958.

[5] L. Schlenk, Untersuchungen zur Fresstragfä-
higkeit von Großzahnrädern, Dissertation TU
München, 1994

[6] A. Wimmer, Verlustoptimierte Verzahnung,
FVA Forschungsvorhaben Nr. 372, Heft 731,
Abschlussbericht, 2004

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 442

[7] W. Mauz, Hydraulische Verluste von Stirn-
radgetrieben bei Umfangsgeschwindigkeiten
bis 60 m/s, Dissertation Uni Stuttgart, 1987

[8] Y. Ariura, T. Ueno, The Lubricant Churning
Loss and its Behavior in Gearbox in Cylin-
drical Gear Systems, Journal of Japan Society
of Lubrication Engineers, Vol. 20, No 3, 1975

[9] J. Maurer, Ventilationsverluste, FVA For-
schungsvorhaben Nr. 44/VI, Heft 432, Ab-
schlussbericht, 1994

[10] Bearinx ®, Schaeffler KG, Herzogenaurach,
Germany

[11] J. Koryciak, Wälzlagerreibmomente, FVA-
Forschungsvorhaben Nr. 382, Heft 823, Ab-
schlussbericht, 2007

[12] A. Palmgren, Neue Untersuchungen über
Energieverluste in Wälzlagern, VDI-Berichte
20, S. 117-121, 1957

[13] T.A. Harris, M.N. Kolzalas: Roller Bearing
Analysis I+II, 5th edition, Taylor & Francis,
New York, 2007

[14] INA Wälzlager KG, Basic principles rolling
bearings, Friction and increases in tempera-
ture,
http://medias.schaeffler.de/medias/de!hp.tg.cat
/tg_rot*CHEBHCFE;bhHLIZo_3h6b?lang=en

[15] SKF Kugellagerfabriken GmbH, Katalog 2004
[16] H. Linke, Stirnradverzahnung. Hanser Verlag,

1996
[17] J. Kettler, Planetengetriebe-Sumpftemperatur,

FVA-Forschungsvorhaben Nr. 313, Heft 639,
Forschungsbericht, 2002

[18] M. Gronitzki, Untersuchungen zur Funktion
und Auslegung von Rechteckdichtringen für
Drehdurchführungen, Dissertation Uni Han-
nover, 2006

[19] Forschungsvereinigung Antriebstechnik, Pro-
jekt Nr. 575 / I: “Synchro Schleppmomente”

[20] www.dynasim.com
[21] T. Skubasz: Untersuchungen von Schleppver-

lusten an Synchronisierungen, Getriebe in
Fahrzeugen 2008, VDI-Berichte 2029, VDI-
Verlag, Düsseldorf, 2008

Figure 11: Dymola model of the 7 speed double clutch transmission investigated

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 443

Powertrain Torsional Vibration System Model Development in Model-
ica for NVH Studies

Anand Pitchaikani, Shankar Venkataraman, Kiran Kumar Koppu, John Batteh, Michael Tiller
Emmeskay, Inc

47119 Five Mile Road, Plymouth, MI 48170, USA
anandp@emmeskay.com jbatteh@emmeskay.com mtiller@emmeskay.com

Abstract

For developing high-quality and cost-efficient
products, it is important to evaluate and compare
system level performance for different configura-
tions early in the development process. This paper
will present the development of a vehicle system
model in Modelica that is used to study the overall
vehicle power-train torsional vibrations that impact
Noise, Vibration & Harshness (NVH) characteristics
of the vehicle. In this study, a detailed crank-angle
resolved, multi-cylinder engine model is constructed,
which includes intake/exhaust dynamics, combus-
tion, heat transfer, engine friction and rotational dy-
namics of piston-crank mechanism. The engine
model accurately reproduced real-world engine
torque and acceleration fluctuations. The lumped
parameter powertrain system model which includes
clutch (and associated vibration isolation compon-
ents), transmission, driveline and chassis is de-
veloped and used with the engine model to predict
torsional vibrations. This system model is used to
understand the powertrain torsional vibration charac-
teristics in different operating regions such as idling,
driving and coasting conditions.

To demonstrate the applicability of the developed
models, results of unit tests for independent compon-
ents, especially the engine torque variation and the
clutch torsion characteristic, and the system-level
quantitative validation with test data are presented. A
special model that does fast Fourier transform of the
signal on the fly is presented and its role in the ana-
lysis discussed. We present a comparison of rattle
noise between two compliant clutch (isolator)
designs and discuss the rattle metrics used in the ana-
lysis. Generic considerations for the deployment of
such system level models are also discussed in this
paper.
Keywords: gear rattle; engine model; fast Fourier
transform

1 Introduction

The noise induced by vibrations of gear-pairs is
of great interest to powertrain developers. “Gear
rattle”, as this phenomenon is called, is caused by the
torsional vibrations of the crank shaft due to engine
dynamics (primarily combustion). These cyclic an-
gular accelerations are transmitted from engine to
transmission gear pairs and result in undesirable
rattle noise. Theoretical and numerical studies are re-
quired to improve our understanding of this phe-
nomenon and to enable us to predict such phenomen-
on so as to improve the underlying design.

Various theoretical and numerical studies on this
problem can be found in the literature [1, 2, 3, and
4]. Numerical studies are useful in the automotive in-
dustry as they enable a quick analysis of the influ-
ence of various parameters and design factors on the
dynamic behavior of powertrain. Two numerical
methods are usually employed for dynamic analysis
of gear rattle. In the “Uncoupled” method, the tor-
sionally loaded path is separated from unloaded gear
pairs and is first analyzed. Later, un-loaded gear
pairs are modeled as single degree-of-freedom sys-
tems where the excitation is that which was obtained
in the baseline torsional study. On the other hand, a
completely “coupled” model considers contemporary
interactions between loaded and unloaded gears.
Coupled models are preferred in that they account
for all the factors that might have an effect on the
rattle noise.

Crowther et al. [5] concluded that metrics meas-
ured after impact correlate well, and the relative ac-
celeration between impacting bodies and their relat-
ive kinetic energy determine the severity of impact.
Several researchers have studied rattle phenomenon
in a single maneuver like idling or driving. There are
even instances where Modelica® has been used for
similar studies [10].

The objective of this modeling effort is to devel-
op an overall generic system model that can be used
to study gear rattle phenomenon in various man-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 444 DOI: 10.3384/ecp09430009

euvers. A procedure for development and validation
of various powertrain component models is outlined.
These validated component models are used to build
a complete vehicle model. The models were de-
veloped in Modelica using the Dymola® environ-
ment. The condition of vehicle coasting with idle
speed control is studied in detail using the developed
models. For this maneuver, rattle metrics obtained
from the simulation model are shown to correlate
well with experimental noise measurement. Further
based on the understanding provided by the model,
an improvement in the isolator design is introduced
to reduce the rattle noise during this condition. Simu-
lation and test results that confirm the reduction in
rattle noise as a result of this design change are
presented.

2 Vehicle Architecture

The vehicle system model is comprised of engine,
compliant clutch (isolator), transmission, driveline
and chassis components connected in series with a
provision to mount the engine and transmission
through bearings (Figure 1). The detailed crank-
angle resolved engine model produces a fluctuating
torque that is required to carry out NVH studies.

tran...

drive...

cha...
isolatorisolator

gear_shift_str...

startTime=star...

mount

clutch_cover

J=0.033eng...

if time < ...
throttle_input

engin...

Figure 1 Vehicle Architecture
The non-linear, multi-stage isolator model isol-

ates the engine fluctuations before they get transmit-
ted downstream. The transmission is modeled with
certain gears fixed on the input shaft and others on
the output shaft. The simple chassis model consists
of a lumped vehicle mass and road loads connected
by a kinematic tire model. The effects due to tire and
suspension compliance are neglected. In the drive-
line model, a front-wheel-drive system is modeled.
The front half shafts are modeled as non-symmetric

compliances connecting the transmission to the
wheels.

3 Component Models

3.1 Engine Model

A reasonable approach for powertrain torsional
vibration analysis is to use experimental engine cyl-
inder pressure data for the various drive conditions
as inputs to the vehicle system model. However, es-
pecially in the early vehicle development phase, it is
difficult to generate pressure traces for engines that
are either in development, or for which the available
data is limited. Hence it is important to have a de-
tailed physical engine model to predict engine torque
fluctuation [8, 9]. This is especially important during
transient operation such as cranking, when predicting
cylinder pressures would be difficult without a mod-
el. Such models can even be used to study the effect
of engine manufacturing variation on the engine per-
formance much before the engine goes into produc-
tion [11]. Another important consideration is that by
integrating a detailed transient engine model in the
vehicle system model, the drive conditions that in-
volve interactions with the engine control strategy
such as idle speed control can be studied. Finally,
for high speed operation, pressure data alone is not
sufficient since the inertial forces of the piston be-
come significant. The detailed engine model would
account for the interaction between the combustion
force and the piston inertial force.

Figure 2 Sample crankshaft torque simulation.
The engine model used in this work was de-

veloped in-house to simulate both spark-ignited and
diesel engines. The model is parameterized such that
relevant engine design parameters can be easily
entered into the model from a customized GUI. Fig-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 445

ure 2 shows a typical crankshaft torque prediction
using the engine simulation model.

This model includes crank angle-resolved, multi-
cylinder modeling of the main engine thermodynam-
ics and rotational mechanics including:
• Intake and exhaust breathing
• Combustion
• Heat transfer
• Rotational dynamics of piston, crank-slider

mechanism, and crankshaft
• Engine friction (look-up table based)

3.1.1 Model Structure
Figure 3 shows the top-level structure of the de-

tailed engine model. This model contains the hier-
archical engine model, the flywheel inertia, a rota-
tional connector for connecting the crankshaft to
downstream components, and a signal bus connector
used to provide relevant control signals to the engine
model.

Figure 3 Engine model

Figure 4 Hierarchical engine model structure.

Figure 4 shows the engine model being hierarch-
ically composed of cylinders, with each cylinder
consisting of models for the intake, exhaust and cyl-
inder components. The model has another mechanic-
al connection to the powertrain mounts which ac-
counts for the reaction torque transmitted to the
powertrain mount system.

3.1.2 Parameterization
The engine model parameters include engine-spe-

cific design data, initial and boundary conditions,
and advanced parameters to customize the heat trans-
fer and combustion characteristics of the engine. The
parameters are summarized as follows:
• Parameters for initial conditions
• Engine geometry for overall engine specification
• Valve train for specification of the valve geo-

metry and cam timing
• Engine friction look-up table for modeling fric-

tion torque (mechanical/rubbing) as a function of
engine speed

• Manifold conditions that specify intake manifold
temperature and exhaust manifold pressure and
temperature

• Heat transfer parameters related to in-cylinder
heat transfer

• Combustion parameters for specifying burn rate
profile

3.1.3 Engine controller
Dynamic operating conditions are provided to the

engine models via an engine controller. The engine
controller takes a normalized torque input (0 to 1)
and determines the dynamic operating conditions to
match the engine torque profile based on a mapping
process using the engine model. The engine control-
ler component model takes the normalized torque as
input and outputs the dynamic operating conditions
to the control bus which will be provided to the en-
gine model. The dynamic operating conditions spe-
cified by the controller are as follows:
• Intake manifold pressure (throttling/boost)
• Air-fuel ratio
• Firing flag (true or false)
• Start of combustion (for diesel)
• Spark advance and burn duration (for SI)

3.2 Isolator Model

The isolator model captures the vibration isola-
tion characteristics of the clutch assembly. It is a
non-linear spring-damper, modeled in three stages.
Each stage is parameterized to incorporate spring
stiffness and hysteresis. It is modeled in such a way
that the effect of first stage spring is always felt at
the output of the isolator, whereas the springs in the
second and third stage will be in effect (in parallel to
the first stage), based on whether or not the respect-
ive backlash is taken up. These stages engage when

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 446

the relative angle between the input and output shaft
of isolator exceeds the specified values of backlash.
The model also includes the inertia of various com-
ponents of clutch like the clutch disc, clutch facing,
hub, and flange. This generic model allows a particu-
lar stage effect to be present only on one direction
(positive/negative torque) by specifying asymmetric
values to the specially made backlash element for the
positive (clockwise) and negative (anti-clockwise)
sides. This helps in parameterizing the model accur-
ately for any isolator characteristic data available.
The model for a three-staged isolator is shown in
Figure 5.

inertia_discfa...

J=isolator_dat...

inertia_hub

J=isolator_dat...

first_...

seco...

third_...

b=b

secondstagee...

b=b

thirdstageelas...

b=b

fourthstageel...

inertia_flange

J=isolator_dat...

f lange_a flange_b

Figure 5 Multi-stage clutch (Isolator) model

3.3 Transmission Model

The transmission subsystem represents the gear-
ing involved in delivering power from the engine to
the wheels. One side of the transmission is connected
to the engine while the other side is connected to the
driveline. Like the engine, the transmission is also
connected to the powertrain mounts. The considera-
tion of the mounts is an important aspect that differ-
entiates this architecture from many vehicle level
models because it accounts for the influence of reac-
tion torques in the power plant, transmission and
driveline on the motion of the powertrain. This part
of the physics is particularly important for the trans-
mission because it can be the source of large amp-
litude, low frequency disturbances not effectively
isolated by the mounting system [6, 7].

The transmission model is built from basic com-
ponents of Modelica Standard Library (MSL) that in-
cludes a gear pair with a synchronizer (clutch) in
between. Both of the gears in this component are
fixed either to the input or output shaft. Any trans-
mission architecture can be modeled by using com-
binations of this gear pair component.

basic_shifter

- +

synchronized_gear_p...

- +

synchronized_ge...

- +

synchronize...

input_shaft_in...

J=transmissio...

output_shaft_i...

J=transmissio...

input
...

outpu
...

b=0.00833

instrumentedB
...

u

input_sh... output_s...

bearing

Figure 6 Transmission model
As seen in Figure 6, the transmission model in-

cludes the input and output shaft inertias. The shifter
component sends the gear selection command to the
appropriate gear pair in which the gear needs to be
engaged. The commanded gear is then engaged by
the synchronizer onto the shaft on which it is floating
in neutral condition.

The model includes the coulombic drag torque as-
sociated with the input and output shafts. In physical
terms, this drag comes from the stir resistance of oil
around the transmission input and output shafts.
There is a provision in the model to include the back-
lash between the isolator and the transmission input
shaft. If not required, this effect can be eliminated
by activating the rigid-bypass model connected in
parallel to the backlash model. Rigid-bypass model
is capable of locking-up the flanges that are connec-
ted to its two sides. This component does not reflect
a physical component in the system, it is merely a
way to control what details are included in the mod-
el.

The gear pair component has the flexibility to in-
clude the effect of backlash between the mating
gears. The details regarding this backlash model are
provided as a code fragment below. The backlash
model is instrumented with the following metrics.
• Average_omega: Average relative angular velo-

city between the mating gears
• Average_alpha: Average relative angular accel-

eration between the mating gears
• Average_power_contact_damper: Average

power associated with contact damper between
the mating gears

These metrics are calculated right after each im-
pact between the gear pair. They are averaged over
the number of impact events within a chosen time
window.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 447

model InstrumentedBacklash
 "Backlash w/rattle instrumentation"
 import Modelica.Mechanics.Rotational;
 import Modelica.SIunits.*;
 extends Rotational.ElastoBacklash;
protected
 Real event_rate "Collisions/sec";
 Integer events "Collisions/interval";
 AngularVelocity omega_rel =
 der(phi_rel);
 AngularAcceleration alpha_rel =
 der(omega_rel);
 AngularVelocity avg_omega
 "Average rel omega per collision";
 AngularVelocity omega_sum;
 AngularAcceleration avg_alpha
 "Average rel alpha per collision";
 AngularAcceleration alpha_sum;
 Power power_sum;
 Power avg_power
 "Average power per collision";
algorithm
 when sample(0,0.02) then
 event_rate := events/0.02;
 if (events == 0.0) then
 avg_omega := 0.0;
 avg_alpha := 0.0;
 avg_power:= 0.0;
 else
 avg_omega := omega_sum/events;
 avg_alpha := alpha_sum/events;
 avg_power:= power_sum/events;
 end if;
 events := 0;
 omega_sum := 0;
 alpha_sum := 0;
 power_sum:= 0;
 end when;
 when phi_rel>=b2 or phi_rel<=-b2 then
 events := pre(events) + 1;
 omega_sum := pre(omega_sum) +
 omega_rel;
 alpha_sum := pre(alpha_sum) +
 alpha_rel;
 power_sum := pre(power_sum) +
 omega_rel*tau;
end when;
end InstrumentedBacklash;

3.4 Driveline Model

The driveline subsystem models the distribution
of transmission output torque to each of the wheels.
For many vehicles, this distribution is determined by
simple mechanical connections (e.g. differentials in
strictly front-wheel or rear-wheel drive vehicles). In
other cases, this distribution is actively controlled
(e.g. on-demand four wheel drive systems). In this
study, a non-active front-wheel drive system is con-

sidered. The transmission output shaft connects to a
final drive gear followed by a differential that splits
the torque to the front two wheels as shown in Figure
7. The final drive gear as well as the differential gear
models are taken from the Modelica Standard Lib-
rary. The driveline subsystem is connected to the
mounting system as well. The right and left half
shafts are modeled with inertia and compliance.

right_rear_tor...

left_rear_torque

differential

ratio
=1

right_halfshaf...

J=J_halfshaft/2

sprin...

left_halfshaft...

J=J_halfshaft/2

sprin...

driveline_inertia

J=J_driveline

right_halfshaf...

J=J_halfshaft/2

left_halfshaft...

J=J_halfshaft/2

finaldrive=fina...
driveli

...

driveshaft

right_rea...

right_fro...

left_rear...

left_fron...

bearing

Figure 7 Driveline model

3.5 Chassis Model

The chassis models the tire inertia and neglects
the stiffness of the tire and the compliance of the
shock absorber. The aerodynamic drag and rolling
resistance are modeled using representative equa-
tions. The vehicle mass is represented as a transla-
tional mass.

4 Component Validation

To study driveline torsional vibration, it is imper-
ative to have an accurate prediction of the engine
torque fluctuation, as well as an accurate prediction
of the behavior of the transferring system namely the
isolator. In this section, validation of the engine and
isolator components is presented.

4.1 Engine Model Validation

The vehicle system model has to be employed to
study the powertrain torsion characteristics for three
different conditions namely, idling, driving and
coasting. For this purpose, unit tests were carried
out to validate the engine model against engine test
data at each of these three conditions.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 448

4.1.1 Engine Vibration at Idling
Here the engine is at steady-state idling condition

with engine friction, A/C and alternator loads being
applied. Figure 8 shows the acceleration fluctuation
levels at the specified idling speed for 2 different en-
gine load levels. The model results show good agree-
ment with the test results.

Figure 8 Experimental (Top) vs. Model (Bottom) res-
ults for engine vibration at idle condition.

4.1.2 Engine Vibration at Driving
For the engine in driving condition, both acceler-

ation and deceleration validation tests were per-
formed. The acceleration test is done on the vehicle
model, with the engine and vehicle accelerating and
the transmission in third gear. By sweeping the en-
gine through the operating range (via a tip-in throttle
command), the speed fluctuation values at various
engine speeds were captured. For the deceleration
test, the tip-out maneuver is executed from a higher
engine speed.

To facilitate this analysis, a Fourier Transform
computation block in Modelica was developed in-
house. This model is connected to the engine crank-
shaft and performs FFT (Fast Fourier Transform) on
the engine speed signature on-the-fly. The Fourier
transform is computed for a user-specified funda-
mental frequency and specified number of harmonics
of this fundamental frequency. The model computes
the continuous Fourier integrals which are used to
compute Fourier coefficients, which in turn are used
to compute the magnitude and phase for the spe-
cified frequencies.

Figure 9 shows the speed fluctuation of the dom-
inant second order harmonic against engine speed. It
is noted that the engine speed fluctuation first de-
creases and then increases as a function of nominal
speed. The point at which this trend reversal in speed
fluctuation happens is dependent on the relative

magnitudes of the inertia forces due to the piston
mass and the combustion force.

Figure 9 Experimental vs. Model results for engine
driving vibration

As seen in Figure 9, a good correlation between
the simulation and experimental results for engine
driving vibration during both acceleration and decel-
eration is observed.

4.1.3 Engine Vibration at Coasting
To illustrate the applicability of the vehicle sys-

tem model to study vibration phenomenon under
various conditions, a generic maneuver different
from idling or driving, namely coasting was con-
sidered. In this maneuver, the transmission is en-
gaged in third gear and the engine is initially at a
speed higher than idle speed. The driver lets off the
throttle with the transmission still engaged, resulting
in the engine speed decreasing due to engine brak-
ing.

Figure 10 Engine speed prediction during coasting
When the engine speed comes down close to idle,

Idle Speed Control (ISC) takes over. To be able to

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 449

study rattle behavior during such a maneuver, it is
first essential to ensure that the engine model is able
to simulate the engine speed fluctuation accurately at
different stages in the maneuver. For this purpose,
an appropriate engine model control to capture the
exact behavior during coasting condition is de-
veloped. Figure 10 shows the predicted engine speed
during coasting condition that includes engine brak-
ing and ISC regions. It is noted that the model is able
to adequately represent both the mean value as well
as the variation in the engine speeds as a qualitative
validation of the model result with experimental data
was performed.

4.2 Isolator Model Validation

The unit test for the isolator component uses a
low frequency sinusoidal torque as input to the isol-
ator model. Figure 11 shows isolator torque plotted
against isolator relative angle. The experimental
curve was used to determine the parameters for isol-
ator model such as backlash (which governs the on-
set for each stage) and the stiffness and hysteresis
values for each stage.

Figure 11 Isolator torsion curve
It is observed that this particular isolator design

has 3 stages on the positive side but only the first and
third stage on the negative side (see the inset picture
of Figure 11).

5 Vehicle System Validation

In the previous sections, component model devel-
opment and validation for the vibration source com-
ponent (engine), the vibration transfer component
(isolator) and the noise source component (transmis-
sion and driveline) was discussed. After the com-
ponent validation is done for different vehicle condi-

tions, the vehicle system vibration validation and
analysis at these conditions needs to be performed.
This section presents the validation results for the
vehicle system at idle, driving and coating condi-
tions.

5.1 Idle Condition Validation

This test is done on the vehicle model with the
engine idling and the transmission in neutral, and
hence is intended to show the torsional vibration
isolation provided by the isolator first stage.

Figure 12 Experimental (top) vs. Model (bottom) res-
ults for driveline vibration during idling

Figure 12 shows the torsional vibrations being
dampened by the isolator from the engine to the
transmission input shaft. The amplitudes at the en-
gine and transmission shaft show good agreement
between simulation and experimental data.

5.2 Driving Condition Validation

This test case is very similar to the engine accel-
eration test, where the engine speed is swept and the
corresponding speed fluctuation of engine is cap-
tured. Here the speed fluctuation for the transmission
is also captured. In this test, the transmission reson-
ance where the transmission speed fluctuation over-
shoots the engine speed fluctuation near the trans-
mission resonant speed has to be observed. The ef-
fect of system parameters such as isolator hysteresis
on the system resonance is of great interest.

A frequency domain analysis of the vehicle sys-
tem model can determine the resonant speed at
which the engine speed fluctuation excites the trans-
mission. A frequency analysis of this system will
provide us the different resonant speeds of the sys-
tem.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 450

To perform this analysis, the model linearization
functionality of Dymola was used to generate a lin-
ear time invariant system from the developed mod-
els.

3. Transmission
Resonance

2. Tire
Resonance

1

1

3
2

Figure 13 Bode & mode shape plots obtained from lin-
earized model

Figure 13 shows the Bode plot and mode shape
plot obtained after vehicle model linearization. The
Bode plot represents the transfer function or fre-
quency response of a linear, time invariant system
and identifies the system resonant frequencies. The
mode shape plot helps identification of the particular
system components that are involved in each of the
resonant frequencies. For example, the resonance
frequencies arising from the transmission and the tire
inertias are identified in the Bode plot.

Figure 14 Transmission Frequency Response
After finding the resonant speed, the nonlinear

system model is used to find out the magnitude of
speed fluctuation for both the engine and transmis-
sion. It is observed from Figure 14 that at around the
predicted resonant speed, the speed fluctuation of the
transmission increases well over that of the engine.

The predicted frequency response agrees well with
the experimental data as well.

6 Model Based Design

One advantage of a model-based design approach
is the ability to analyze the effect of a design change
via simulation rather than requiring fabrication and
testing of actual hardware. The original isolator
design has the characteristics shown in Figure 15.
This isolator was observed to have a rattle noise peak
during the experiment in test bed. The modified isol-
ator with improved characteristics as in Figure 15
was shown to eliminate the rattle noise peak by the
results obtained from the simulation of developed
models.

Figure 15 Comparison of Torsion Characteristic of the
Original and Modified Isolator

The original isolator design did not include a
second-stage spring on the negative side and this res-
ulted in a sudden transition from the negative main-
damper (third stage) to negative pre-damper (first
stage) which led to rattle. The isolator design can be
improved with the addition of a second stage spring
in the negative direction as shown in Figure 15 in red
color. This design change is implemented in the
models and simulated to observe the new rattle met-
rics.

Figure 16 shows the comparison of the rattle met-
rics for the original and modified isolators for the
driving gear. These rattle metrics were captured in
the gear models of the transmission sub-system as
explained in section 3.3. Clearly, the magnitudes of
the rattle metrics are reduced in the case of the modi-
fied isolator, a result which again validates the
design proposal for eliminating rattle.

Engine T/M Tire Vehicle

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 451

Figure 16 Comparison of Rattle Metrics with the Ori-
ginal and Modified isolator for the T/M driving gear

The conclusions drawn from the model results
(Figure 16) were found to agree with the experiment-
al results obtained from the test bed as shown in Fig-
ure 17.

Figure 17 Comparison of vibration between original
and modified isolator in test bed

7 Conclusion

In this work, a systematic approach for develop-
ment and application of an overall vehicle system
simulation model to study the powertrain torsional
vibration characteristics using Modelica is presented.
The resulting comprehensive vehicle system model
is capable of analyzing a wide range of vehicle oper-
ating conditions such as idling, driving and coasting.
Comprehensive tests were done both at the compon-
ent level and overall system level to demonstrate
quantitative model validation.

To illustrate the applicability of the developed
system model, a vehicle coasting maneuver was
studied in detail and it was found to introduce rattle
noise in the system. Having an overall system model
was important since it captures the intimate interac-
tions between subsystems. In this particular case, the
system model clearly brought out the influence of
isolator design on backlash resonance in the trans-
mission. The observation of rattle metrics demon-
strated the effectiveness of the model in the identific-
ation of a design change in the isolator to eliminate
rattle during the maneuver. The effectiveness of the
design change was confirmed by vehicle testing. The
use of Modelica in modeling a complex system and
its use in analyzing complex phenomenon is demon-
strated in this work.

In terms of future applications, the simulation
model instrumented with the identified rattle metrics
could be used to assess likelihood of rattle noise in
other vehicle maneuvers without the need to run
costly vehicle tests. The system model has been de-
veloped in such a way that the component models
are readily replaceable. It would be fairly straight-
forward to integrate alternative components such as a
dual mass flywheel (DMF) in the architecture. In this
paper, the effectiveness of a design change in the
clutch disk isolator towards reducing rattle noise is
shown. Similarly design changes in other isolation
components such as engine and transmission mounts
can be studied in future.

8 Acknowledgements

The authors wish to thank Dr. Swaminathan Go-
palswamy and Mr. Sundaresan for their technical in-
puts throughout the work. The authors also wish to
thank Dr. Yasunori Yokojima for his invaluable con-
tribution to this work.

References

[1] R. Brancati, E. Rocca, R. Russo, An analysis
of the automotive driveline dynamic behavior
focusing on the influence of the oil squeeze
effect on the idle rattle phenomenon, Journal
of Sound and Vibration 303 (2007) 858-872.

[2] Y. Wang, R. Manoj, W. J. Zhao, Gear rattle
modeling and analysis for automotive manual
transmissions, Proceedings of Imech, Journal
of Automobile Engineering 215 (part D)
(2001) 241–258.

Original

Modified

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 452

[3] R. Singh, H. Xie, R. J. Comparin, Analysis
of automotive neutral gear rattle, Journal of
Sound and Vibration 131 (2) (1989) 177–
196.

[4] R. Brancati, E. Rocca, R. Russo, A gear
rattle model accounting for oil squeeze
between the meshing gear teeth, Proceedings
of Imech 219 (part D) 1075-1083.

[5] A. R. Crowther, C. Janello, R. Singh, Quan-
tification of clearance-induced impulsive
sources in a torsional system, Journal of
Sound and Vibration 307 (2007) 428-451.

[6] M. Tiller, W.E. Tobler, and M. Kwang,
Evaluating Engine Contributions to HEV
Driveline Vibrations, 2nd International Mod-
elica Conference (2002) Proceedings, PP 19
– 24.

[7] Michael Tiller, Paul Bowles, Mike Demp-
sey, “Development of a Vehicle Modeling
Architecture in Modelica”, 3rd International
Modelica Conference (2003) Proceedings,
pp. 75-86.

[8] Newman, C., Batteh, J., and Tiller, M., 2002,
"Spark-Ignited-Engine Cycle Simulation in
Modelica", 2nd International Modelica Con-
ference Proceedings, pp. 133-142.

[9] John Batteh, Michael Tiller and Charles
Newman, “Simulation of Engine Systems in
Modelica”, 3rd International Modelica Con-
ference Proceedings, pp. 139-148.

[10] M. Dempsey, S. Biggs and N. Dixon, Simu-
lating driveability using Dymola and Model-
ica, 4th International Modelica Conference
Proceedings,
http://www.modelica.org/events/Confer-
ence2005/online_proceedings/Session3/Ses-
sion3a4.pdf

[11] J. Batteh and M. Tiller, "Analytic Evaluation
of Engine NVH Robustness Due to Manufac-
turing Variations", ASME 2005 Internal
Combustion Engine Division Spring Tech-
nical Conference, pp. 429-437

[12] Modelica Specification, version 3.0, www.-
modelica.org/documents/ModelicaSpec30.pd
f

[13] M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publish-
ers, ISBN 0-7923-7367-7

[14] Modelica, http://www.Modelica.org.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 453

A Petri Net Library for Modeling Hybrid Systems in OpenModelica

Sabrina Proß Bernhard Bachmann

University of Applied Sciences Bielefeld
Am Stadtholz 24

33609 Bielefeld, Germany

sabrina.pross@fh-bielefeld.de bernhard.bachmann@fh-bielefeld.de

Abstract

For modeling continuous and hybrid Petri Nets
with dynamic edge weightings, the already
existing Petri Net Libraries were further
developed. The new library was implemented
in OpenModelica using the SimForge GUI,
however it works also with Dymola. With the
extensions it is possible to model complex
biological as well as production or traffic
systems.

1. Introduction

The Petri Nets formalism was first introduced
by Carl Adam Petri in 1962 [1]. Today Petri
Nets can be found in many different areas.
Modeling traffic light crossings, production
processes or metabolisms of bacteria are only a
few examples. In the last years, they were
more and more extended for using them for
different kinds of problems.
The first Petri Net Library in Modelica was
developed by Mosterman et al. and has been
further improved by Otter et al. [2; 3].
Herewith the modeling of “normal” Petri Nets
or so-called statecharts is possible. “Normal”
Petri Nets are bounded and the Places have the
capacity one. No time is associated with their
behavior. An external signal can enable or
disable the Transitions.
This Petri Net Library was further developed
by Fabricius [4]. The extensions are:
• Places can contain an integer number of

Tokens.
• The Transitions can be timed. They can

have either deterministic or stochastic
delays.

The Petri Net Library of the present paper
bases on the previous ones. The improvements
are:

• Continuous Petri Nets with real numbers
of Tokens and continuous firing.

• Continuous and discrete Petri Net
elements can be connected to model
hybrid Petri Nets.

• The edges can have integer weightings in
the discrete case and real ones in the
continuous case.

• The edge weightings can be functions.
• The Places can contain a maximum and a

minimum amount of Tokens.
• Each edge can have an upper and a lower

boundary. The number of Tokens of the
respective Place must be between these
values so that the connected Transition
can fire.

• In the discrete case: If a Place does not
contain enough Tokens to fire in all
possible Transitions, a random variable
decides in which Transitions the Place
fires. It is the same if a Place cannot gain
Tokens from all possible Transitions
because of its maximum value.

Firstly, the new Petri Net Library was
developed to model biological systems.
Metabolites, enzymes and genes are modeled
with Places and Transitions represent the
reactions between them [5].
Biochemical reactions, which convert one
substance to another, proceed continuously. In
order to model these, continuous Petri Net
elements were implemented.
Furthermore, the speed of these reactions
depends mostly on the current concentration of
specific substances which can be now
displayed by dynamic edge weightings [6].
Additionally, it should be possible to model
gene regulation which contains discrete
processes as well as continuous ones. Hybrid
Petri Nets, which comprise both discrete and
continuous Petri Net elements, are now able to
model this [7].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 454 DOI: 10.3384/ecp09430014

The edges can also have upper and lower
boundaries. This is necessary for modeling
substances which only react when a specific
concentration is reached.

In the further development of this library, it
became clear that these extensions are not only
specific for biological systems. They are also
useful in other areas. The present paper
illustrates this with an example of the steel
production process.

2. Petri Nets

A Petri net is a graphical construction to
describe and analyze concurrent processes and
non-deterministic procedures. It is a graph with
two different kinds of nodes: Places and
Transitions, whereas only a Place can be
connected with a Transition or a Transition
with a Place. A Place is symbolized with a
circle and a Transition with a rectangle (see
Figure 1).

Figure 1: A Petri Net

Every Place contains an integer number of
Tokens. In Figure 1, they are shown as black
dots. The edges of a Petri Net are provided
with weightings and the Transitions with
delays. In Figure 1, these are the black numbers
at the edges and the grey numbers over the
Transitions, respectively. A delay represents
the time units that a certain process takes.
A Transition T is ready to fire when every
Place in its previous area has at least as much
Tokens as the edge weighting from the certain
Place to T. In Figure 1, Transition T1 is ready to
fire because P1 has three Tokens and must
have at least two Tokens, whereas P2 must
contain at least one Token which it actually
has. T2 and T3 are not ready to fire.
A Transition T, that is ready to fire, fires by
removing so many Tokens dependent on the
respective edge weighting from all of the
Places in its previous area. In addition, a
specific number of Tokens is laid down in
relation to the edge weighting to all of the

Places in its past area. After firing T1 in Figure
1 P1 has one Token, P2 zero, P3 five, P4 one
and P5 zero (see Figure 2).

Figure 2: The Petri Net of Figure 1 after firing T1

Assumed a Place has only one Token, like in
Figure 3, this Token can be either fired in
Transition T1 or in Transition T2. Therefore, a
decision is necessary which Transition is
chosen. One possible solution is that a uniform
distributed random variable decides whether
T1 or T2 gets the Token. It is also thinkable
that the edges are weighted. In the example
shown in Figure 3, Transition T1 is chosen
with a probability of 80% and T2 with 20%,
respectively.

Figure 3: Example for output weightings

One possible extension are Petri Nets with
capacities: each Place can only contain a
maximum amount of Tokens and must always
have a minimum amount of Tokens.
Furthermore, the edges can have threshold and
inhibition values. In Figure 4 these are the red
numbers in brackets. The first value is the
threshold and the second is the inhibition. A
Transition is only ready to fire if the connected
Places have more or as much Tokens as the
threshold value and less or as much as the
inhibition value. In Figure 4 is the Transition
T1 ready to fire because this Tansition is only
connected with P1 and P1 contains three
Token. This is more than two and less than
five. The Transition T2 is not ready to fire
because the threshold value of the connecting
edge between P1 and T2 is not achieved.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 455

Figure 4: Example for threshold and inhibition

values

An additional extension are self modifying
Petri Nets which were firstly introduced by
Valk [8]. The edge weightings are now
functions, which can depend on the current
number of Tokens of the respective Places (see
Figure 5).

Figure 5: A self modifying Petri Net

2.1. Stochastic Petri Nets

The only difference between Petri Nets
described above and stochastic Petri Nets is
that the delay is a random variable instead of a
fixed value. This random variable can be for
example exponential or normal distributed. In
the latter case it has to be avoided that the
random variable is negative.

2.2. Continuous Petri Nets

A continuous Petri Net is a graphical
representation of a differential equation system
with the properties of a Petri Net.

Figure 6: A continuous Petri Net

The number of Tokens in each Place can be
real and changes continuously. The edge

weightings represent the firing speed for the
different branches. The sum of the incoming
and outcoming speeds is proportional to the
change of Tokens.
The continuous Petri Net in Figure 6 is the
graphical representation of the following
differential equation system:
dP1 1 P1
dt 2

dP2 1 P2
dt 4

dP3 5 1 1 3
dt

dP4 2 P3
dt

dP5 3 P3.
dt

= − ⋅

= − ⋅

= − − =

= ⋅

= ⋅

The difference between the continuous Petri
Net and the differential equation system is that
if one of the Places in the previous area of the
Transition is empty, the Places in the past area
will not gain Tokens anymore. If for example
P1 in Figure 6 is empty, then P3 will not gain
any Tokens.

2.3. Hybrid Petri Nets

Hybrid Petri Nets contain discrete and
continuous elements. A discrete Transition can
be connected with a continuous Place or a
continuous Place with a discrete Transition.
Connections between discrete Places and
continuous Transitions are forbidden.
If a continuous Place is connected with a
discrete Transition, the Transition fires by
decreasing Tokens continuously in the time of
the delay. The slope of the graph is calculated
by dividing the edge weighting by the delay. If
a discrete Transition is connected with a
continuous Place, the Transition fires by
adding Tokens continuously in the time of the
delay.

Figure 7: A Hybrid Petri Net

Figure 7 is an example of a hybrid Petri Net.
P1 and T1 are discrete and P2 is continuous.
After Transition T1 is ready to fire, P1 waits
two time units before firing one Token. In

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 456

these two time units, P2 receives three Tokens
continuously. Figure 8 shows these Token
progressions.

Figure 8: Token progressions of the hybrid Petri

Net in Figure 7

3. Petri Net Library

The Petri Net Library is structured in four sub-
libraries: Discrete, Continuous, Stochastic and
Reactions (see Figure 9). The Reactions
Library is discussed in detail in [9].

Figure 9: Structure of the Petri Net Library

Figure 10 shows the icons for the discrete,
stochastic and continuous elements of the Petri
Net Library. A discrete Place is represented by
a turquoise circle and a discrete Transition by a
turquoise rectangle. A stochastic Transition is
yellow with a turquoise margin and the
continuous elements have thick blue margins.

Figure 10: Icons of the Petri Net Library

Every sub-library has general models for
Places and Transitions (package partialModels
in Figure 11) which are extended to models
with fix numbers of input and output
connectors. TD21 is for example the
denotation for a discrete Transition with two
input connectors and one output connector (see
Figure 11).

Figure 11: Structure of the discrete Petri Net

Library

3.1. Place

In the property-dialog of the discrete and
contiuous Place the user can insert the number
of Tokens at the beginning of the simulation
and the minimum and maximum amount of
Tokens that the Place is able to contain (see
Figure 12).

Figure 12: Property-dialog of a discrete Place with
two inputs and two outputs

discrete
Place

discrete
Transition

stochastic
Transition

continuous
Place

continuous
Transition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 457

In the discrete Place, it is also possible to
determine input and output weightings. If a
Place is not able to fire in all activated
Transitions due to its lack of Tokens, the edges
can be weighted. By means of a uniform
distributed random variable, it is decided
which Transitions receive Tokens. The same
principle is applied if a Place is not able to gain
Tokens from all ready to fire Transitions due to
its maximum value (cf. section 2).

The current number of Tokens is determined in
the Place. To do that, two sums are calculated
at first. One is the sum of all Tokens that leave
the Place and the other one of all Tokens that
come inside the Place. In the discrete case, the
new number of Tokens is calculated as
follows:

tokeninout = sumIn > 0 or sumOut > 0;
when tokeninout then
 t = pre(t) + sumIn - sumOut;
end when;

In the continuous case, the new number of
Tokens is calculated by a differential equation.
Of course, additional conditions are
considered, i.e. the right hand side of the
differential equation may not be negative if the
Tokens are equal to the minimum.
After this computation, it is checked whether
the Place is empty or full. The current state is
reported to the connected input and output
Transitions (see Figure 13).
The inState of a continuous Place is only true
if the Place is full and the outState is only false
if the Place is empty.
The inState of a discrete Place is only true if
the Place is full or the Place has just gained
Tokens or both. The outState is only false if
the Place is empty or the Place has just gained
Tokens or both.

Figure 13: The states of a Place

The inState is the state that is reported to the
input Transitions and the outState is the state
that is reported to the output Transitions (see
Figure 13).

3.2. Transition

In the property-dialog of the discrete
Transition, a delay can be entered (see Figure
14). If the corresponding Transition is
activated, it will take as much time units as
keyed in until the Transition fires. In the
stochastic case, these are the characteristic
values of the corresponding distribution. For
example the expectation value lambda of an
exponential distribution or the expectation
value m and the standard deviation s of a
normal distribution. Therefore, the random
numbers are calculated by an external C-
function.

Figure 14: Property-dialog of a discrete Transition

with two inputs

There is also the possibility to determine a
condition which has to be true so that the
Transition is ready to fire. This condition can
be entered in ‘Modifiers’. For example:
con = time>5. In the discrete case a delay can
be determine additionally.

The weightings for each edge, which goes in or
out of the respective Transition, can be entered
in the property-dialog. This has to be done
with the aid of ‘Modifiers’, as functions are
also allowed in this case (cf. Section 2). The
weightings from the edges that go into the
Transition are denoted by sub1, sub2, … from
the top to the bottom. The weightings for the
edges, that go out of the Transition, are called
add1, add2, … (see Figure 15).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 458

Figure 15: The denotation of the edges weightings

The weightings for Transition T1 in Figure 6
are keyed in as follows:
sub1 = ½*P1.t
sub2 = ¼*P2.t
add1 = 5.

Figure 16: The entry of sub and add in ‘Modifiers’

If functions are entered as edge weightings, the
name of the respective Place has to be typed in
with the ending ‘.t’ (stands for Tokens).

In the property-dialog the threshold and
inhibition values for each edge, which goes
into the respective Transition, can be entered,
too (see Figure 14 and Figure 4). The
denotation is like the edge weightings. The
boundaries for the first input edge from the top
are called threshold1 and inhibition1, for the
second these are threshold2 and inhibition2
and so on.

Figure 17: The denotation of the inhibition and

threshold values

The Transition decides whether it fires or not.
For that, all Transitions check the states of all
connected Places. If all states of the input
Places are true and none state of the output
Places is true and in addition the entered
condition is true, the Transition is activated
(see Figure 18):

activated = if Functions.allTrue(inState)

and not Functions.anyTrue(outState)
and con;

In the continuous case the activation is
equivalent to firing. In the discrete and
stochastic case, the activation time is saved and
the Transition fires when the corresponding
delay is passed.

when edge(activated) then
 last_activation_time = time;
end when;
delay_passed = activated and

time - delay >last_activation_time;

Figure 18: The activation of a Transition

If the Transition fires or not, is reported to the
connected input and output Places.

4. Example

Figure 19 shows a simplified example of the
production process of crude steel, compare
[10].
At first, the iron ore is transported per ship
from Brasilia to a stock at the port of
Rotterdam. This trip takes generally 14 days.
Every 24 days a ship arrives at the port of
Rotterdam. But the exact time of arrival is
uncertain. The trip can take a little bit longer or
shorter because of nature or other conditions.
This is modeled with the aid of a stochastic
Transition (Transition ship). The time of
arrival is a normal distributed random variable

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 459

Figure 19: Steel production process

with the expectation value m = 24 and the
standard deviation s = 1. A shipload contains
360.000 t iron ore. For this reason add1 of
Transition ship is equal to 360.000. The stock
at the port can contain at most 720.000 t iron
ore. Therefore, the maximal value of the Place
stock is fixed to 720.000. The start value of
this Place is 360.000.
At the next level the iron ore is loaded from the
stock to several trains. A train can contain
5000 t iron ore and the drive to the steel
production in Duisburg takes 8 hours. The iron
ore is delivered “just in time” to the production
process. Hence, no other stock is needed. The
discrete Transition train represents the
transport from Rotterdam to Duisburg. The
delay is 1/3 day (= 8 hours) and sub1 = add1 =
5000. The iron ore (Place pro) and the coke
(Place coke) are mixed in the sintering plant. It
accrues the intermediate product sinter (Place
I1). For one ton employed iron ore 0.2 t coke is
needed and 0.73 t sinter is produced. This
production step is modeled continuously by
means of the Transition Si. The edge
weightings are the following:

1 0.2 .
2 .
1 0.73 . .

sub pro t
sub pro t
add pro t

= ⋅
=
= ⋅

The sinter is further processed in the blast
furnace to hot metal (Place I2). In addition, the
by-products slag (Place slag) and blast furnace
dust (Place dust1) are produced. For one ton

employed sinter 0.2 t coke is needed and 0.1 t
slag, 0.65 t hot metal and 0.01 t blast furnace
dust are produced. The Transition Fu displays
this. The edges weightings are:

1 0.2 1.
2 1.
1 0.1 1.
2 0.65 1.
3 0.01 1. .

sub I t
sub I t
add I t
add I t
add I t

= ⋅
=
= ⋅
= ⋅
= ⋅

The by-product slag is sold to building
industry. When 50.000 t slag are produced the
company is informed but it is uncertain when
the company arrives to pick up the slag and
how long this procedure takes. This is modeled
with a stochastic Transition with a normal
distributed delay (m = ½ and s = 1/8) and sub1
= 50.000.
In the last production step the hot metal is
processed to crude steel (Place steel) in the
steel works. Slag (Place slag) and converter
dust (Place dust2) are the by-products here.
For one ton employed hot metal 0.13 t slag,
0.8 t crude steel and 0.05 t converter dust are
produced. The Transition SW represents the
steel works. The edge weightings are:

1 2.
1 0.13 2.
2 0.8 2.
3 0.05 2. .

sub I t
add I t
add I t
add I t

=
= ⋅
= ⋅
= ⋅

ship

stock

train Si Fu SW

steel

coke slag

se
ll

Tr

dust1
dust 2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 460

Iron ore can be substituted by blast furnace
dust (Place dust1) and converter dust (Place
dust2). This is modeled with the Transition Tr
and the edges weightings are:

1 1.
2 2.
1 0.1 (1. 2.).

sub dust t
sub dust t
add dust t dust t

=
=
= ⋅ +

Following, some simulation results are shown.
Figure 20 displays three possible progressions
of the stock of iron ore at the port of
Rotterdam. Every progression is different
because of the stochastic modeling. The stock
is limited to 720.000 t iron ore. Hence, this
border is not exceed. The iron ore is loaded to
trains. Every 8 hours a train drives with 5000 t
iron ore to Duisburg. These are the discrete
stages in the magnification.

Figure 20: Three simulation results of the iron ore

stock at the port of Rotterdam

The iron ore is exhausted in all simulations at
specific time points:

Simulation 1
[days]

Simulation 2
[days]

Simulation 3
[days]

48 – 48.5 48 – 49.5 24 – 25.25
72.5 - 73 73.5 – 75.4 49.25 – 50.31
 74.31 – 76.28

This causes bottlenecks in the production
process.

The next figure shows the progression of iron
ore, sinter and hot metal of simulation 3. The
decrease after day 24.3, 49.6 and 74.4 is
caused by the exhaused stocks.

Figure 21: The progressions of iron ore (pro), sinter

(I1) and hot metal (I2) (simulation 3)

Figure 22 illustrates the bottleneck in the
production process of simulation 3, too. The
exhausted stocks are reflected in the amount of
crude steel. The production is decreased after
every empty stock period.

Figure 22: Stock of iron ore (stock) and produced

crude steel (steel) by comparison
(simulation 3)

Figure 23 displays the slag progression of
simulation 3. When 50.000 t slag are achieved,
it is sold to the building industry. The
bottlenecks are here visible, too.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 461

Figure 23: Slag (slag) progression of simulation 3

The conclusion of these simulations is that the
delivery period of iron ore has to be reduced.
The new period has to be big enough that only
small bottlenecks appear and small enough that
no high stocks accumulate. If for example a
period of 22.5 days is chosen, the probability
of a bottleneck is 6.7 % and the probability that
this bottleneck takes longer than one day is
0.62 %. Now is the task to find the “optimal”
solution between bottlenecks and stock costs.
Figure 24 shows three simulation results of the
progression of the iron ore stock if the delivery
period is 22.5 days.

Figure 24: Three simulation results of the iron ore

stock with a delivery period of 22.5

5. Conclusions

This paper has shown the new extensions of
the Petri Net Library. Now it is possible to
model continuous and hybrid Petri Nets with
dynamic edge weightings in OpenModelica.
These innovations can be applied in different
kinds of areas. The paper has demonstrated this
with an example of the steel production

process. But the Petri Net Library is also useful
for the modeling of biological systems [9].

References

[1] Petri, Carl Adam. Kommunikation mit
Automaten. Bonn: Institut für Instrumentelle
Mathematik , 1962.

[2] Mosterman, Pieter J., Otter, Martin and
Elmqvist, Hilding. Modeling Petri nets as Local
Constraint Equations for Hybrid Systems Using
Modelica. Reno, USA , 1998. Summer
Computer Simulation Conference .

[3] Otter, Martin, Arzèn, K.‐E. and Dressler, I.
SateGraph‐A Modelica Library for Hierarchical
State Machines. Hamburg , 2005. Modelica
Conference. pp. 569‐578.

[4] Fabricius, Stefan M. O. Extensions to the
Petri Net Library. 2001.

[5] Reddy, Venkatramana N., Liebman,
Michael N. and Mavrovouniotis, Michael L.
Qualitative Analysis of Biochemical Reaction
Systems. Compu. Biol. Med. 1996, pp. 9‐24.

[6] Hofestädt, R. and Thelen, S. Quantitative
Modeling of Biochemical Networks. In Silico
Biology. 1998, 1, pp. 39‐53.

[7] Doi, Atsushi, et al. Constructing biological
pathway models with hybrid functional Petri
nets. In Silico Biology. 2004.

[8] Valk, Rüdiger. Self‐Modifiying Nets: A
natural Extension of Petrinets. LNCS. 1978, 62,
pp. 464‐476.

[9] Proß, Sabrina, et al. Modeling a
Bacterium's Life: A Petri‐Net Library in
Modelica. Como, Italy , 2009. Modelica
conference.

[10] Dyckhoff, Harald and Spengler, Thomas.
Produktionswirtschaft. Berlin Heidelberg :
Springer‐Verlag, 2005.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 462

MODELING A BACTERIUM'S LIFE:
A PETRI-NET LIBRARY IN MODELICA

Sabrina Proß1), Bernhard Bachmann1), Ralf Hofestädt2), Karsten Niehaus2), Rainer Ueckerdt1),

Frank-Jörg Vorhölter2), Petra Lutter2)

1) University of Applied Sciences
Am Stadtholz 24

33609 Bielefeld, Germany

sabrina.pross@fh-bielefeld.de

2) Bielefeld University
POB 100 131

33501 Bielefeld, Germany

plutter@cebitec.uni-bielefeld.de

Abstract

For modeling biological systems the already
existing Petri Net Libraries were further
developed with OpenModelica using the
SimForge graphical user interface (GUI). The
Petri Nets elements were wrapped into models
for different reaction types to simplify the
modeling process. Additionally, a database
connection was implemented for integrating
kinetic data. The application of this new
Reaction Library is demonstrated by the
xanthan production of the bacterium
Xanthomonas campestris pv. campestris. A
mathematical model is introduced to predict
growth and xanthan production, given an
initial glucose concentration. The parameters
of this model are estimated with the aid of the
Optimization Toolbox in MATLAB.

1. Introduction

1.1. Biological Background

The organism under study, Xanthomonas, is a
gram negative bacterium of the
Xanthomonadaceae-family. It is yellow
pigmented, rod shaped and has one polar
flagellum (see Figure 1).

Figure 1: Electron micrograph of Xanthomonas
campestris [1]

It grows under aerobic conditions and its
genome contains about 5 million base pairs [2].
Xanthomonas belongs to a group of bacteria
that have adopted a plant pathogenic lifestyle.
Specifically, Xanthomonas campestris
pathovar campestris harms cruciferous plants
like cabbage and cauliflower. Besides its
importance as a phytopathogen, Xanthomonas
campestris pv. campestris is known as the
producer of the exopolysaccharide xanthan.
Xanthan (E-415) is industrially produced and
of high commercial significance. e.g. it is
employed as a thickening agent and emulsifier.
Although substantial efforts have been put into
understanding the xanthan synthesis [1], the
bacterium's life strategies are far from being
well understood.

1.2. Theoretical Background

To describe the influence of external
parameters on the production of substances
needed for the xanthan synthesis, different
kinetic models have been proposed.
Unstructured kinetic models consider the
bacterium's consumption of food (carbon and
nitrogen sources), its growth and its xanthan
production through a set of differential
equations. As this minimal set of equations
treats the bacterium's metabolism as a black
box, more complex models had to be
established. Garcia-Ochoa et al. introduced a
structured kinetic model for X. campestris
growth that is able to predict different growth
rates according to different initial nitrogen
concentrations [3]. As we are interested in the
question under which circumstances the
bacterium's focus is growth on the one hand
and which factors lead to xanthan production
on the other hand, we still include more details.
With a complete genome sequence at hand, the
biosynthesis pathways for the production of the
exopolysaccharide xanthan could be elucidated

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 463 DOI: 10.3384/ecp09430015

[2]. Consequently, we are enabled to set up all
the metabolic pathways in question.

2. Methods

2.1. Michaelis-Menten-Kinetics

Once the metabolic pathways are clear,
appropriate kinetic equations have to be
assigned. As Michaelis-Menten-Kinetics has
worked well with similar organisms, we have
concentrated on this equation type. The basic
reaction describes the transformation of a
substrate into a product under enzymatic
influence. At this juncture, the following
reaction type is the basis:

1 2

1

k k

k
E S ES E P

−

+ → + .

A substrate S links to the active center of the
enzyme E and forms an enzyme-substrate-
complex ES. ES is converted to the product P,
ki denote velocity constants. The enzyme is set
free and can link to another substrate again.
The Michaelis-Menten-Kinetic has the
following form:

[] [] [] []
[]

cat

m

d S d P k E S
v

dt dt K S
⋅ ⋅

= − = =
+

, where

[]S , []P and []E are the concentrations of
substrate, product and enzyme, respectively.
The parameter catk is denoted as turnover
number and specifies the number of substrate
molecules that one enzyme molecule converts
per second if it is completely saturated with
substrate. The Michaelis-Menten constant mK
is the substrate concentration at half-maximum
reaction rate (see Figure 2).

maxv

max

2
v

mK []S

v

Figure 2: Michaelis-Menten diagram

The negative substrate change is equivalent to
the positive product change. It is assumed that

the concentrations of free enzymes and
enzyme-substrate-complexes do not change
during time. They are in a steady state.

2.2. Growth kinetics

For modeling the growth of Xanthomonas
bacteria it is taken into account that there is a
relationship between the exhaustion of glucose
and the end of growth. Therefore, two different
nutrient limited Growth Kinetics are examined.
The first is known as Monod Kinetics [4]:
[] [] []

[]
l

l

N l

d B µ N
B

dt K N
⋅

=
+

, where []B is the

microbial concentration (biomass), []lN is the
concentration of the limiting nutrient, µ is the
maximum specific growth rate and

lNK is the
nutrient concentration at half-maximum
specific growth rate.
The second has the following form [5]:
[] [] []l

d B
k B N

dt
= ⋅ ⋅ , where k is a rate

coefficient that depends on physiochemical
variables such as temperature, dissolved
oxygen and stirrer speed.

2.3. Reaction Kinetics

Reaction Kinetics is used to model the
synthesis of xanthan.
The following equation is an example of a
stoichiometric equation:

1 1 2 2 3 3 1 1 2 2r R r R r R p P p P+ + → + , where R1,
R2 and R3 are the reactants, P1 and P2 are the
products and r1, r2, r3, p1 and p2 are the
stoichiometric coeffients. Reaction Kinetics of
this stoichiometric equation is

[] [] []

[] []

[] [] []1 2 3

1 2 3

1 2 3

1 2

1 2

1 2 3

1 1 1

1 1

,r r r

d R d R d R
v

r dt r dt r dt
d P d P

p dt p dt

k R R R

= − ⋅ = − ⋅ = − ⋅

= ⋅ = ⋅

= ⋅ ⋅ ⋅

where k is a rate constant.

2.4. Petri Nets

A Petri Net is a graphical construction to
describe and analyze concurrent processes and
non-deterministic procedures. It is a graph with
two different kinds of nodes: Places and
Transitions, whereas only a Place can be
connected with a Transition or a Transition
with a Place. Every Place contains an integer
number of Tokens and every edge has a

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 464

weighting. A Transition is ready to fire when
every Place in its previous area has at least as
many Tokens as the appropriate edge
weighting shows. A Transition that is ready to
fire fires by removing as many Tokens as the
respective edge weighting indicates - from all
of the Places in its previous area. In addition, a
specific number of Tokens is stored in all of
the Places of its past area - according to the
specific edge weighting. To model biological
systems, the Petri Net concept has been
extended to stochastic Petri Nets, continuous
Petri Nets and hybrid Petri Nets, cf [6].

2.5. Petri Net Library

Petri Nets are ideal to model biological
processes. Thereby, metabolites, enzymes and
genes are modeled with Places, and Transitions
represent the reactions between them [7]. In
the following it is described how the existing
Petri Net Libraries were exetended [6]:
• Continuous Petri Net elements were

implemented because biochemical
reactions, which convert one substance to
another, proceed continuously.

• The speed of these reactions depends
mostly on the current concentration of
specific substances [8], which can be now
displayed by dynamic edge weightings.

• It should be possible to model gene
regulation, which contains discrete
processes as well as continuous ones.
Hybrid Petri Nets, which comprise both
discrete and continuous Petri Net
elements [9], are now able to fulfil this
task.

• The edges can also have upper and lower
boundaries. This is necessary for
modeling substances which only react
when a specific concentration is reached.

The Petri Net Library is structured in seven
sub-libraries: Discrete, Continuous,
Stochastic, Reactions, Interfaces, Constants,
and Functions (see Figure 3).

Figure 3: Structure of the Petri Net Library

The next figure shows the icons for discrete,
continuous and stochastic Petri Nets elements.
For additional information about the
functionality, application and implementation
of these Petri Net elements see [6]. This paper
focuses on the Reaction Library.

Figure 4: Icons of the Petri Net elements

2.6. Reaction Library

Petri Net elements have been wrapped into
appropriate models for different kinds of
reactions to simplify the modeling process.
These reactions are organized in a sub-library
of the Petri Net Library called ‘Reactions’ (see
Figure 3). This library is again divided in
different sub-libraries to classify the reactions
(see Figure 5). These are:
• Reaction Kinetics
• Enzyme Kinetics
• Growth Kinetics.

Figure 5: Structure of the Reactions Library

discrete
Place

discrete
Transition

stochastic
Transition

continuous
Place

continuous
Transition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 465

2.6.1. ReactionKinetics Library

The ReactionKinetics sub-library comprises
reactions with the Reaction Kinetics as edge
weightings for one or two reactants and one or
two products. The reactions for more reactants
or products can be extended easily. The
reaction 1 1 2 2 1 1r R r R p P+ → for example can
be modeled by the reaction Re_21 (see Figure
6).

Figure 6: The icon of the reaction Re_21 of the

ReactionKinetics Library

The next figure shows the property-dialog of
reaction Re_21. The rate constant k and the
stoichiometric coefficients r1, r2 and p1 can be
keyed in.

Figure 7: Property-dialog of the reaction Re_21

2.6.2. EnzymeKinetics Library

The EnzymeKinetics Library consists of
reactions that are performed with the aid of
enzymes:
• Michaelis-Menten Kinetics (Re_MM)
• Reversible Michaelis-Menten Kinetics

(Re_MMad)
• Competitive enzyme inhibition (Re_IC)
• Uncompetitive enzyme inhibition

(Re_IUC)
• Non-competitive enzyme inhibition

(Re_INC)
• Substrate inhibition (Re_IS)
• Product inhibition (Re_IP)

For more information about the kinetics and
enzyme inhibition see [10].

Figure 8 shows a metabolism reaction modeled
with the Michaelis-Menten-Kinetics. The icons
sub and pro are Places of the sub-library
‘Continuous’ of the Petri Net Library, and the
Michaelis-Menten reaction between them can
be found in the EnzymeKinetics Library.

Figure 8: A reaction modeled with the Michaelis-

Menten Kinetics

The turnover number catk , the Michaelis-
Menten constant mK and the enzyme
concentration can be entered in the property-
dialog (see Figure 9).

Figure 9: Property-dialog of the Michaelis-Menten

Kinetics

The following figure displays the wrapping
process of the reaction in Figure 8. The model
‘Re_MM’ consists of a continuous Transition
of the Continuous Library with the Michaelis-
Menten Kinetics as edge weightings. The edge
weightings in continuous Petri Nets are the
right sides of a differential equation.

Figure 10: Wrapping of the Michaelis-Menten-

Kinetics

model Re_MM_11
 parameter Real kcat = 1;
 parameter Real Km = 1;
 parameter Real e_con = 0.1;
 parameter String ec_number = ";
 Real mm;
 Continuous.TC11 t(sub1 = mm, add1 = mm);
 Interfaces.FirePortIn sub;
 Interfaces.SetPortOut pro;
equation
 connect(sub,t.inPlaces1);
 connect(pro,t.outPlaces1);
 mm = (sub.t*e_con*kcat)/(sub.t+Km);
end Re_MM_11;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 466

2.6.3. GrowthKinetics Library

Reactions for modeling growth are organized
in the ReactionKinetics Library with two
reactions for limited growth:
• Monod Kinetics (Re_Monod)
• Limited Growth Kinetics (Re_limGrowth)

and two for unlimited growth:
• Logistic Growth Kinetics (Re_logGrowth)
• Gompertz Kinetics (Re_Gompertz) [11].

In the case of limited growth the decrease of
the limited nutrient is modeled with the
differential equation
[] []1

l

l

BN

d N d B
dt Y dt

= − ⋅ , where []lN is the

concentration of the limited nutrient, []B is

the biomass concentration and
lBNY is the

macroscopic yield of biomass per nutrient unit.

Figure 11 shows an example for modeling with
the Monod Kinetics, the nutrient and the
biomass are Places of the Continuous Library.

Figure 11: An example for modeling with the

Monod Kinetics

The parameters for the Monod Kinetics can be
entered in the property-dialog (see Figure 12).

Figure 12: Property-dialog of the Monod Kinetics
(Re_Monod)

2.7. Database Integration

Rafael Friesen has developed a database
connection to BRENDA in his master thesis
[12], which allows an easy and fast model
integration of kinetic data. For using this
database connection in combination with the
Petri Net Library, a special SimForge version
is necessary. Figure 13 shows the new
property-dialog of the Michaelis-Menten
reaction (Re_MM). Next to the parameters
kcat and km two additional fields show the EC-
number filled in at the bottom.

Figure 13: Property-Dialog of the Michaelis-

Menten reaction (Re_MM)

If you press ‘enter’ in these fields next to the
kcat or km values, the following selection
dialog appears.

Figure 14: Selection dialog

Firstly, the modeled organism can be chosen.
In the selection list all organisms with at least
one kcat or km value in the database BRENDA
appear.

Figure 15: Organism selection

After the organism selection it is possible to
choose a proper value. Next to the respective
value information about the substrate and
experimental conditions is given.

Figure 16: Value selection

If you press ‘Apply’ the value will appear in
the property-dialog of the Michaelis-Menten
reaction.

Similarly, you can integrate the dissociation
constants of the inhibition reactions.

3. Modeling Xanthan Production

With the aid of the model of the present paper,
it is possible to predict biomass and xanthan
concentrations of the bacterium Xanthomonas
campestris pv. campestris (Xcc), by a given

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 467

initial glucose concentration. Both, the growth
and the xanthan production, are limited by
glucose. Figure 17 shows the model on the top
level and Figure 18 shows the Xcc-model, the
model behind the grey icon with the denotation
‘Xcc’.

Figure 17: Model on the top level

As can be seen in Figure 18, the bacterium has
two choices after glucose intake: It can either
opt for growth or for xanthan production.
Xanthan consists of five components: UDP-
glucose, UDP-glucuronic acid, GDP-mannose,
pyruvate and acetate, the model, however,
confines to the three nucleotide sugars (UDP-
glucose, UDP-glucuronic acid, GDP-

mannose). The synthesis of these three
nucleotide sugars to xanthan is modeled with
Reaction Kinetics (cf. section 2.3), with one
xanthan unit consisting of two units UDP-
glucose, one unit UDP-glucuronic acid and
two units GDP-mannose.
The growth is modeled with the limited
Growth Kinetics and Monod Kinetics for
reasons of comparison (cf. section 2.2). The
conversion process glucose to biomass is split
up into two sub-processes.
The edge weightings of the transition glcOutIn
are:
add1 = sub1 = kg*der(Biomass.t)

and of transition growth:
add1 = sub1 = kb*glcIn.t
(limited Growth Kinetics)
add1 = sub1 = mb*glcIn.t/(Kmb+glcIn.t)

(Monod Kinetics).

The conversion from one metabolite to another
is modeled by the Michaels-Menten Kinetics
(cf section 2.1) from the EnzymeKinetics
Library and all metabolites are modeled by
continuous Places from the Continuous
Library.

Figure 18: Sub-Model Xcc

Glc

Biomass

Xanthan

Glc

Biomass

Xanthan

glcOutIn

growth

Glc6P

Glc1P
UDP-
Glc

UDP-
GlcA

Frc6P Man6P Man1P GDP-
Man

GlcIn

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 468

4. Experimental Data

To adapt the model parameters to the reality a
fermentation was made by Tony Watt [13]
under industrial conditions. The bacteria grew
in a fermenter with an initial glucose
concentration of 12.57 g/l.
For the validation of the model an additional
fermentation was made by Tony Watt in a
fermenter with an initial glucose concentration
of 13.75 g/l.
In both fermentation experiments the xanthan-,
biomass-, and glucose-concentrations were
measured at several time points.

5. Data-Fitting

The model parameters were fitted to the data of
the first fermentation using the MATLAB
optimization toolbox. At first, the model of
Figure 18 was simplified into a smaller sub-
model to estimate the first set of parameters
(see Figure 19). These are kb for the limited
Growth Kinetics, mb and Kmb for the Monod
Kinetics, kg for the edge weighting of the
transition glcOutIn, and the two parameters
kcat1 and km1 of the Michaelis-Menten
reaction mm1, respectively. The measured
concentrations were glucose and biomass. The
concentrations of the glucose inside the
bacteria (GlcIn) and of glucose-6-phosphate
(Glc6P) were unknown.

Figure 19: First sub-model for the parameter

estimation

The following figures show the results of the
adapted biomass concentrations, with Figure
20 displaying the results of the model with the
limited Growth Kinetics and Figure 21
representing the model with the Monod
Kinetics. Both show a good agreement with the
experimental data.

Figure 20: Data-fitting of biomass (limited Growth

Kinetics)

Figure 21: Data-fitting of biomass (Monod
Kinetics)

For the next optimization steps the limited
Growth kinetics was chosen. Figure 22 shows
the data-fitted glucose concentration of this
model.

Figure 22: Data-fitting of glucose

The four parameters (kb, kg, kcat1 and km1)
are now fixed and the sub-model of Figure 19
is expanded to estimate the concentrations for
the three nucleotide sugars that are necessary
to produce the experimental xanthan
concentration results (see Figure 23). In this
optimization step intermediate metabolites
have been left out.

Glc GlcIn

Biomass

Glc6P

growth

glcOutIn

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 469

Figure 23: Second sub-model for the parameter estimation

Additionally, the kinetic parameters for the
conversion from UDP-glucose (UDP-Glc) to
UDP-glucuronic acid (UDP-GlcA) are
determined.
Figure 24 displays the results of the data-fitting
for the xanthan concentration. Now the kcat
and km values for the conversion from UDP-
glucose to UDP-glucuronic acid are fixed and
the concentrations of the three nucleotide
sugars are saved.

Figure 24: Data-fitting of xanthan

The kcat and km values for the intermediate
metabolites are finally estimated in the last
optimization step. These are twelve additional
parameters which are adapted to the nucleotide
sugar concentrations of the previous
optimization step. Figure 25 shows the
predicted concentrations of the metabolites for
the metabolism in Figure 18.

Figure 25: Concentrations of the metabolites

With a data-fitted model at hand, it is now
possible to predict biomass growth and
xanthan production with different initial
glucose concentrations. Figure 26 shows the
biomass concentrations for the initial glucose
concentrations 3 g/l, 6g/l, 8 g/l and 10 g/l.
Figure 27 presents the corresponding xanthan
concentrations.

Figure 26: Influence of initial glucose concentration

on evolution of biomass concentration

Glc GlcIn

Glc6P

Xan

Biomass

growth

glcOutIn UDP-
Glc

UDP-
GlcA

GDP-
Man

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 470

Figure 27: Influence of initial glucose concentration

on evolution of xanthan concentration

For the validation of the model an additional
fermentation was made. The predicted model
curves of glucose, biomass and xanthan show a
good agreement with the experimental data
(see Figure 28, Figure 29, Figure 30).

Figure 28: Experimental and model-predicted

glucose concentration of the second
fermentation

Figure 29: Experimental and model-predicted

biomass concentration of the second
fermentation

Figure 30: Experimental and model-predicted

xanthan concentration of the second
fermentation

6. Conclusion and Outlook

For modeling biological systems, a Petri Net
Library was implemented in OpenModelica
with the SimForge GUI. To simplify the
modeling process, the Petri Net elements were
wrapped into reaction models for different
application areas: Reaction Kinetics, Enzyme
Kinetics and Growth Kinetics.
With the aid of this library a model was
developed for predicting biomass and xanthan
concentrations for the bacterium Xanthomonas
campestris pv. campestris given an initial
glucose concentration.
The respective model parameters were
estimated stepwise by using the MATLAB
Optimization toolbox. Validation tests
demonstrate a good agreement with measured
fermentation data. In the future more
experiments are planned to achieve an even
better adaptation. Additionally, not only
xanthan, biomass and glucose will be
measured but also the concentrations of the
corresponding metabolites. This measurement
is possible with a gas-phase chromatograph
that is coupled to a mass spectrometer, the so-
called GC/MS analysis. This method allows to
determine the concentrations of the metabolites
Glucose-6-Phosphate, Glucose-1-Phosphate,
Fructose-6-Phosphate, Mannose-6-Phosphate,
and Mannose-1-Phosphate .
Furthermore, the quantification of the
nucleotide sugars of xanthan can be achieved
using high performance liquid chromatography
(HPLC). Last but not least further extensions
of the model will be considered, i.e. modeling
nitrogen as growth limiting factor.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 471

References

[1] Garcia‐Ochoa, F., et al. Xanthan gum:
production, recovery, and properties.
Biotechnology Advances. 2000, 18, pp. 549‐
579.

[2] Vorhölter, Frank‐Jörg, et al. The genome
of Xanthomonas campestris pv. campestris
B100 and its use for the reconstruction of
metabolic pathways involved in xanthan
biosynthesis. Journal of Biotechnology. 2008,
pp. 33‐45.

[3] Garcia‐Ochoa, F., Santos, V. E. and Alcon,
A. Structured kinetic model for Xanthomonas
campestris growth. Enzyme and Microbial
Technology. 2004, pp. 583‐594.

[4] Monod, Jacques. The Growth of Bacterial
Cultures. Annual Review of Microbiology.
1949, pp. 371‐394.

[5] Quinlan, Alician V. Kinetics of Secondary
Metabolite Synthesis in Batch Cultures When
Two Different Substrates Limit Cell Growth
and Metabolite Production: Xanthan Synthesis
by Xanthomonas campestris. Biochemical Eng.
469, 1986, pp. 259‐269.

[6] Proß, Sabrina and Bachmann, Bernhard. A
Petri Net Library for Modeling Hybrid Systems
in OpenModelica. submitted (Modelica
Conference 2009). 2009.

[7] Reddy, Venkatramana N., Liebman,
Michael N. and Mavrovouniotis, Michael L.
Qualitative Analysis of Biochemical Reaction
Systems. Compu. Biol. Med. 1996, pp. 9‐24.

[8] Hofestädt, R. and Thelen, S. Quantitative
Modeling of Biochemical Networks. In Silico
Biology. 1998, 1, pp. 39‐53.

[9] Doi, Atsushi, et al. Constructing biological
pathway models with hybrid functional Petri
nets. In Silico Biology. 2004.

[10] Berg, Jeremy M., Tymoczko, John L. and
Stryer, Lubert. Biochemistry. New York : W. H:
Freeman, 2006.

[11] Gompertz, Benjamin. On the nature of
the function expressive of the law of human
mortality, and on a new mode of determining
the value of life contingencies. Phil. Trans. R.
Soc. Lond. 115, pp. 513‐585.

[12] Friesen, Rafael. Petrinets in systems
biology: Modelling cell communication with
petri nets. Bielefeld, 2009.

[13] Watt, Tony. private communication.
Bielefeld, 2009.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 472

Creating a Bridge between Modelica
and the Systems Biology Community

Jan Brugård1, Daniel Hedberg1, Marta Cascante2, Gunnar Cedersund3, 4, Àlex Gómez-Garrido5,
Dieter Maier6, Elin Nyman3, Vitaly Selivanov2, Peter Strålfors3

1 MathCore Engineering AB, Teknikringen 1F, 583 30 Linköping, Sweden
{jan.brugard, daniel.hedberg}@mathcore.com

2 Departamento de Bioquímica y Biología Molecular, Universitat de Barcelona, Spain
3 Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

4 Freiburg Institute for Advanced Studies, School of Life Sciences, Germany
5 Grup de Recerca en Informàtica Biomèdica, Universitat Pompeu Fabra, Barcelona, Spain

6 Biomax Informatics AG, Martinsried, Germany

Abstract

The Systems Biology Markup Language (SBML) is
the leading modelling language within systems biol-
ogy. It is a computer-readable format for represent-
ing models of biochemical reaction networks in
software. SBML has been evolving since 2000
thanks to an international community of software
developers and users. At the same time the Modelica
language has evolved as the leading object-oriented
modelling language for convenient, component-
oriented modelling of complex physical systems.
As a part of the EC-funded BioBridge project Math-
Core has developed the Modelica library BioChem
and the MathModelica Systems Biology toolbox.
With the release of version 1.0 of the BioChem li-
brary and the MathModelica Systems Biology tool-
box it will be possible to import and export from
Modelica to SBML. The toolbox also allows to pub-
lish the Modelica models as interactive HTML
pages, with biochemical and experimental enzyme
characterizations derived from the BioBridge portal
and BioXM knowledge management environment.
Keywords: Modelica tools; SBML; library; biologi-
cal systems; cellular pathways; translator

1 The BioChem Library

The first beta version of the BioChem library was
developed by Larsdotter Nilsson at the Linköping
University [1].
The design idea behind the BioChem library is to
create a general purpose Modelica library for model-
ling, simulation and visualization of biological and
biochemical systems. The models implemented in

the BioChem library describe substances and reac-
tions that can take place in-between these substances
in a diverse number of biochemical pathways. An
example pathway is shown in Figure 1.

Figure 1 Simple pathway model using components from
the BioChem library.
Version 1.0 of the library has now been completed
and is publicly available [2].

2 Modelica to SBML Translator

A translator that converts Modelica to SBML [3],
and vice versa, has been developed. The translator is
able to convert SBML models that are compliant
with SBML Level 2, version 3. The Modelica mod-
els created are Modelica 2.2 and 3 compliant. Mode-
lica models are translated to SBML Level 2, version
1, 2 or 3.

2.1 SBML

SBML is based on XML, making it more suitable to
read and write by computers than by humans. SBML
is a model representation format for systems biology,
created with an objective to become a common in-
termediate format for software tools. The idea is that
a large support for SBML enables the use of a wide
range of different tools without having to rewrite
models. In principle, a SBML model consists of a
number of components, describing biochemical enti-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 473 DOI: 10.3384/ecp09430016

ties (species) and transformations (reactions and
rules) forming a biochemical network. In addition it
is also possible to describe instantaneous discontinu-
ous state changes using events, and operating as-
sumptions for the model using constraints.

2.2 Design principles

Whereas SBML is a very specific language for de-
scribing models within the systems biology field
only, Modelica is a much more general and expres-
sive language. One of the challenges in writing a
translator lies in finding a way to map different lan-
guage constructs and features between the two lan-
guages. There is no obvious one-to-one mapping as
there are usually many different ways of describing
things in Modelica. One way to solve this is to try
and catch all possible constructs in Modelica and
map them to SBML. Another way is to restrict how
Modelica models may be constructed in order to re-
duce the number of possibilities.
In MathModelica a combination is used. The Bio-
Chem library provides the user with the building
blocks that must be used in order for a model to be
exportable to SBML. MathModelica also provides
wizards to help the user build custom components,
such as reactions and compartments. These wizards
are interactive step-by-step guides, serving two pur-
poses, guiding the user through complex operations
and helping the user create models that will be ex-
portable to SBML.

2.3 Verification of the translator

The translator has been tested by importing all cu-
rated models from the BioModels database [4] re-
lease 14. Table 1 shows the percentage of models
that (a) are possible to import to MathModelica
without failure, (b) give the same simulation result as
the reference simulation, and (c) give the same simu-
lation result after exporting to SBML.

Table 1 Verification of import and export of SBML mod-
els. Export has only been tested for models that do not
contain the piecewise function.
 Tested models Succeeded

(a) Import 216 212 (98 %)
(b) Simulation 212 208 (98 %)
(c) Export 18 18 (100 %)

Three of the models that fail to import because they
use comparison between reals, which is not allowed
in Modelica, while the fourth model fails because the

translator does not yet support delay in SBML
events. One of the failing simulations is due to out-
dated SBML code (to many equations which was
allowed previously, but is not allowed in Level 2
version 3), while the three others fail due to numeri-
cal reasons.

2.4 Comparison with other tools

The models in the BioModels database have been
developed in different SBML tools, such as Systems
Biology Workbench (SBW) [5], CellDesigner [6],
and Copasi [7].
The libSBML [8] library contains consistency checks
to ensure that a model is consistent with the SBML
specification. However, this does not ensure that a
model works to simulate in a specific software.
Therefore we have performed a comparison between
MathModelica, Systems Biology Workbench, and
CellDesigner to check if the results match the pub-
lished results from the original tool used for respec-
tive model on the BioModels database. Due to time
constraints we could not test the full set of available
models, instead a subset was chosen, by testing every
fifth model (every model with model name ending
with either 0 or 5). The result is presented in

Table 2.

Table 2 Comparison between different modelling envi-
ronments.
 Successful simulations

MathModelica 2.1 b4 98 % (42 of 43)
SBW 2.7.9 56 % (24 of 43)
CellDesigner 4.01 40 % (17 of 43)

The results indicate that MathModelica has a good
support for the SBML language, especially in com-
parison with SBW and CellDesigner, however im-
provements are still needed to reach a complete sup-
port.

2.5 Related work

The BioDyn [8] [9] [10] software can make external
calls to a few other software, including OpenMode-
lica [11] [12]. It also includes import functionality
from Modelica to SBML. However, SBML models
are imported as flat Modelica i.e. the pathway dia-
gram is lost in the translation.
There is also some other related work done, but with
limited or no public information available.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 474

3 Modelling Example

The Dalla Man model [4] is one of the best available
models for the whole-body glucose-insulin system,
and the model has even been formally accepted as a
viable tool when certifying new drugs for diabetes.
This model is, however, a non object-oriented model
developed in MATLAB.
Based on this model a multi-level object-oriented
whole-body model of the glucose-insulin system has
been developed using MathModelica, MATLAB,
and – for the communication between them – SBML.

3.1 Creating an object-oriented model

The original MATLAB model was exported to
SBML and inserted in MathModelica, and then re-
formulated into an object-oriented format, in which
each object typically correspond to an organ, thus
making it possible to successively replace respective
organ with more detailed models. The top level of
the model can be seen in Figure 2. As long as the
input-output profiles of the replaced organ is pre-
served this can be done with negligible effects on the
whole-body level.

3.2 Detailed adipose tissue model

A detailed model for the adipose tissue (fat tissue)
was developed (in MATLAB) using mechanistic a

priori information and existing and novel data from
experiments on human fat cells. The parameters of
the model were then optimized so that the simula-
tions fitted both the input-output profile of the old
model, and the cell-level data.
The model was exported to SBML, and then im-
ported to MathModelica, and inserted in the whole-
body model. As expected, this new detailed module
did not cause any major changes in the whole-body
behaviour (Figure 3), even though the intercellular
glucose utilization rate (i.e. within the altered adi-
pose tissue) had a somewhat different profile (Figure
4). Hence, the resulting object-oriented model can be
said to have a "zoomable" adipose tissue.
To further show the strength of the object-oriented
model, a parameter in the insulin signalling cascade
was changed, so that the adipose tissue became 5
times less sensitive to insulin. This corresponds to a
diabetic fat tissue in an otherwise healthy body. The
simulations (Figure 2 and 3) predict that these rather
big intracellular changes only leads to slightly higher
glucose in the plasma, since a healthy body easily
can adapt to the new situation, by slightly increasing
the insulin level.
A main strength of the developed model is that it has
the ability to translate mechanistically oriented simu-
lations on the biochemical/cellular level, which is the
level were drugs act, to the whole-body level, which
is the level of clinical interest.
Another important benefit of object-oriented model-
ling is that the modeller is forced to adopt the cell-

Figure 2 The top-level of the whole-body model (left) shows the organs, the flows, and the information exchange
between the organs, in an underlying level the detailed fat tissue module (right) is found.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 475

oriented experiments to physiologically realistic
conditions, compatible with the whole-body dynam-
ics.

Figure 3 Simulation results of glucose concentration in
plasma of the original model (—), with the mechanistic fat
tissue module included (---), and with changed parameters
on fat tissue module-level (···).

Figure 4 Simulation results of glucose utilization rate by
adipose tissue of the original model (—), with the mecha-
nistic fat tissue module included (---), and with changed
parameters on fat tissue module-level (···).

4 Publishing on the Web

In order to communicate results with others a publish
feature has been developed for MathModelica. Once
a Modelica model has been developed it can be ex-
ported to an interactive HTML page.
It is possible to publish not only the selected model,
but also its components. The exported model con-
tains interactive model diagram based on the Silver-
light technology [14]), model information (documen-
tation), and selected results.
Figure 5 shows an example of a published central
metabolism model, originally developed by Seli-
vanov et al [3].

4.1 Publishing on the BioBridge portal

Models can also be published as an integrated part of
the BioBridge portal. The BioBridge portal allows
modellers (and other users) to access an integrated
resource including clinical, genomic, proteomic, and
metabolomic information for the metabolic pathways
affected by disorders such as chronic obstructive
pulmonary disease (COPD), cardiac disease and dia-
betes. This information is then applied to model the
underlying metabolic network. This, in turn, can then
be utilized by the modeller for simultaneous analysis
of multilevel data in order to improve existing
knowledge on complex disorders.

Figure 5 Screenshot of the published central metabolism
model. Upper left corner shows the (clickable) model dia-
gram of the cytosol pathway, upper right the concentra-
tion of AMP and ADP substances, lower left browse menu,
and finally the lower right shows the model documenta-
tion (at the cytosol level).

4.2 Connecting to BioXM

The MathModelica Systems Biology toolbox also
includes the possibility to tag substances in order to
associate a specific substance with information
available in the knowledge management environ-
ment BioXM [17] [18]. When a user selects a sub-
stance with a tag, an http request is made to the Bio-
Bridge portal and information is retrieved using Bi-
oXM, as illustrated in Figure 6.
BioXM directly, or by access to their WebService
query interfaces, integrates more than 20 different
public databases and ontologies (see
Table 3 for integrated databases) representing a total
of 80 793 genes (30 246 human, 27 237 mouse, 23
310 rat), 1 307 pathways, 78 528 compounds, 1 525
474 protein interactions a total of 3 666 313 connec-
tions within the knowledge network and the entire
Gene Expression Omnibus database. Clinical and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 476

experimental data from the two clinical BioBridge
studies of chronic obstructive pulmonary disease
(COPD) has been integrated with these public re-
sources.
This information is combined with BioBridge litera-
ture-mining derived molecular networks for COPD,
cardiac disease, chronic systemic inflammation, dia-
betes and lung and muscle specific signalling sub-
networks. Experimental molecular sets encompass
gene expression, metabolomics and proteomics data.
Exercise and COPD specific kinetic and metabolic
data relevant to constrain muscle metabolic models
has been extracted from 30 published clinical trials.
Finally the mathematical models and probabilistic
networks generated within the BioBridge project are
fed back into BioXM.

Figure 6 Metabolite structural information for Pyruvate
given by BioXM.

Table 3: Public molecular data resources integrated into BioXM

Source Data-
base

Information Type Current Statistics Level of curation Updates/
Version

BIND Protein Interaction
Molecular complexes
Pathways

6256 Interactions High throughput data submission and
hand curated from the literature

last pub-
lic ver-
sion
20.3.07

BioGrid Protein interaction 19 707 interactions Manually curated from literature
Different evidence codes

updated
monthly

Biomodels SBML models 224 SBML models Partial verification of model simulation updated
monthly

ChEBI Compound information 15 367 Curated from different data sources updated
weekly

Comparative
Toxico-
genomics
Database
(CTD)

Compound-gene, Compound-
disease and Gene-disease
relationships

259 898 relations Manually curated from the published
literature

updated
monthly

GEO Expression data 12 543 studies, 257
312 expression sets

Partial manual curation of metainforma-
tion into study sets

updated
monthly

EntrezGene Gene functional information 80 793 human, mouse
and rat genes

Curated information integrated from
different databases, based on RefSeq
genomes

updated
weekly

Enzyme Enzyme related functional
information

4 833 Manually curated from the published
literature

updated
weekly

IntAct Protein interaction 21 584 binary interac-
tions

Literature curation
User submission

updated
weekly

KEGG Pathways 418 pathways Manually curated from the published
literature

updated
monthly

LIGAND Compound information 15 185 Manually curated from the published
literature

updated
monthly

MIPS Mam-
malian

Protein Interaction 410 interactions Manually curated from the published
literature

current
Release
31.10.07

OMIM Gene - disease relations 19 769 Curated from the published literature updated
weekly

Pfam Protein family information 10 340 families Manually curated from sequence align-
ments

23.0

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 477

5 Limitations and Current Work

The translator is currently in a beta stage and lacks
support for unit conversions, and some, as it appears,
less commonly used elements of SBML Level 2 ver-
sion 3, such as initial assignments and constraints.
Warnings will be issued if unsupported elements are
detected during translation. One element (the piece-
wise function of SBML) is supported by the SBML
to Modelica translator but not yet by the Modelica to
SBML translator. Most of these shortcomings will be
addressed in the final release of the translator.
The implementation where BioXM is used to access
and retrieve information has served as a test imple-
mentation and will be extended to make use of the
SBML RDF annotations in order to associate entities
with biochemical or biological semantics.
During the development of the translator, SBML
Level 2 version 4 was released. This version has not
yet been looked at and hence is not supported by the
translator.
Due to the lack of an accepted standard for storing
graphical diagrams of models in SBML, the transla-
tor does not support conversion of graphical repre-
sentations of models. SBML Level 3 is expected to
resolve this issue.
While the wizards in MathModelica do a good job
assisting the user in creating SBML exportable com-
partments, substances, and reactions in Modelica,
they do not let the user edit these components once
created. We intend to address this limitation in future
releases.
The current version includes Metabolic Control
Analysis (MCA) and dynamic sensitivity analysis;
however there are various other common tasks like
parameter estimation, model reduction, and stochas-
tic simulation that could be added in the future.

6 Conclusions

The ambition is to create a bridge between the sys-
tems biology community and the Modelica commu-
nity. The main benefits of the project is that it makes
it possible to 1) convert an existing SBML model
and benefit from Modelicas multi domain technology
when extending the model, and 2) get direct access
to biological databases and tools when developing a
biochemical pathway in Modelica.
A public available Modelica library, BioChem, for
modelling cellular pathways in Modelica has been

developed and a toolbox, MathModelica Systems
Biology; that allows import/export to SBML, pub-
lishing of models and results with connections to
biochemical databases has also been developed.
The translation from SBML to Modelica allows peo-
ple that work with SBML, to import their models to
MathModelica and use the full strength of the Mode-
lica language to expand their models.
All in all, we believe that hierarchical modelling has
a strong future for modelling of complex biological
processes, and that MathModelica, in communica-
tion with SBML-based software and models, has the
potential to take a leading role in such efforts.

Acknowledgements

The BioBridge project is supported by the European
Commission and is part of the Sixth Framework Pro-
gramme.

References

[1] Larsdotter Nilsson, E. and Fritzson P.,
(2003). BioChem - A Biological and Chemi-
cal Library for Modelica. Proceedings of the
3rd International Modelica Conference: 215-
220.

[2] BioChem library. (Accessed 2009-08-18)
http://www.mathcore.com/products/mathmod
elica/libraries/biochem.php

[3] Systems Biology Markup Language (Ac-
cessed 2009-08-18) http://www.sbml.org

[4] The BioModels Database - A Database of
Annotated Published Models. (Accessed
2009-08-18)
http://www.ebi.ac.uk/biomodels-main/

[5] Systems Biology Workbench. (Accessed
2009-08-20) http://sbw.sourceforge.net/

[6] CellDesigner. (Accessed 2009-08-20)
http://www.celldesigner.org/

[7] COPASI - Complex Pathway Simulator.
(Accessed 2009-08-20)
http://www.copasi.org

[8] libSBML. (Accessed 2009-08-18)
http://sbml.org/Software/libSBML

[9] BioDyn. (Accessed 2009-08-18)
http://cbbl.imim.es:8080/ByoDyn

[10] Gómez-Garrido, À. et al. (2008) ByoDyn: in-
tegrating computational methods for the
analysis of biochemical models. P oster pre-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 478

sented at the 4th Meeting of the Spanish Sys-
tems Biology Network (REBS).

[11] OpenModelica. (Accessed 2009-08-18)
http://www.ida.liu.se/~pelab/modelica/Open
Modelica.html

[12] Fritzson, P. et al. (2006) OpenModelica - A
Free Open-Source Environment for System
Modeling, Simulation, and Teaching. IEEE
International Symposium on Computer-
Aided Control Systems Design.

[13] Dalla Man C, Rizza R A and Cobelli C
(2007). Meal simulation model of the glu-
cose-insulin system, IEEE transactions on
bio-medical engineering, Vol. 54, No. 10, pp.
1740-1749.

[14] Microsoft Silverlight. (Accessed 2009-08-18)
http://silverlight.net

[15] Selivanov VA, et al., (2008). The changes in
the energy metabolism of human muscle in-
duced by training. Journal of Theoretical Bi-
ology 252, 402-410.

[16] The BioBridge portal. (Accessed 2009-08-
18) http://www.biobridge.eu

[17] Sameith, K. et al., (2008). Functional Mod-
ules integrating essential cellular functions
are predictive of the response of leukaemia
cells to DNA damage. Bioinformatics 24:
2602-2607.

[18] Losko, S. et al. (2006) Knowledge Networks
of Biological and Medical Data: An Exhaus-
tive and Flexible Solution to Model Life Sci-
ence Domains. Lecture Notes in Computer
Science 4075: 232-239.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 479

Optimization of a Pendulum System
using Optimica and Modelica

Pontus Giselssona Johan Åkessona,b Anders Robertssona

a)Dept. of Automatic Control, Lund University, Sweden
b)Modelon AB, Sweden

Abstract

In this paper Modelica and Optimica are used to solve
two different optimal control problems for a system
consisting of a pendulum and a cart. These opti-
mizations demonstrates that Optimica is easy to use
and powerful when optimizing systems with highly
non-linear dynamics. The optimal control trajecto-
ries are applied to a real pendulum and cart system,
in open loop as well as in closed loop with an MPC-
controller. The experiments show that optimal trajec-
tories from Optimica together with MPC feedback is
a suitable control structure when optimal transitions
through non-linear dynamics are desired.

Keywords: Optimal control, Optimica, Modelica

1 Introduction

Optimal control problems for dynamical systems with
non-linear dynamics often lead to non-convex opti-
mization problems. These problems are usually dif-
ficult to solve and lots of time and effort is usually
spent on transforming the optimal control problem into
a numerical optimization problem. In this paper we
use the high-level languages Modelica together with
Optimica to solve two different optimal control prob-
lems for a pendulum and cart system. The Modelica
and Optimica combination allows the user to concen-
trate on how to formulate the optimal control prob-
lem, rather than on how to transform it into a numer-
ical optimization problem. The pendulum dynamics
are highly non-linear which makes this an appropriate
application to show the efficiency of the Optimica and
Modelica combination. The first optimization problem
considered in the paper is to swing up the pendulum
from its downward position to the inverted position in
as short time as possible. The second problem is to
move the cart from one position of the track to another
in as short time as possible, while the pendulum end

point, i.e., the end of the pendulum that is not attached
to the cart, must avoiding an elliptical obstacle.

We also present experimental results where the op-
timal control trajectories are applied to a real pendu-
lum on a cart system. There is a close match between
the optimal trajectories and the real system trajecto-
ries when no or small disturbances are present. This
demonstrates that optimal control is applicable to the
real process. Of course, we get good experimental re-
sults when the process is accurately described by the
model. When larger disturbances are present, e.g.,
in the initial conditions, the optimal control trajecto-
ries applied to the real process result, as expected, in
state trajectories that are far from the optimal ones.
A Model Predictive Controller (MPC) is introduced
to minimize the influence of these disturbances. Ex-
perimental results show that the combination of opti-
mal control feed-forward and MPC-feedback is a suit-
able control structure for these problems where opti-
mal transitions through non-linear dynamics are de-
sired.

The remainder of the paper is organized as follows.
In Section 2 an introduction to the Modelica extension
Optimica is given. Section 3 describes the cart and
pendulum process used in the paper. In Section 4 we
state and solve two optimization problems using Op-
timica and Modelica. Results from the optimizations
are applied to the real pendulum, in open loop as well
as in closed loop with an MPC-controller, in Section 5.
Section 6 describes how Optimica and this particular
application is used in the education at the Dept. of Au-
tomatic Control, Lund University. Finally in Section 7
we give some conclusions.

2 Optimica and JModelica.org

Modelica does not offer explicit support for formula-
tion of dynamic optimization problems. In particular,
means to express quantities such as cost function, con-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 480 DOI: 10.3384/ecp09430094

straints, optimization interval, and optimization pa-
rameters are lacking. In an effort to extend Modelica
to also include high-level formulation of dynamic op-
timization problems, the Optimica extension was pro-
posed [1]. The Optimica extension is supported by the
novel Modelica-based open source platform JModel-
ica.org [8].

2.1 JModelica.org

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [2], [3].
JModelica.org features compilers supporting code
generation of Modelica models to C, a C API for eval-
uating model equations and their derivatives and op-
timization algorithms. The compilers and the model
C API has also been interfaced with Python [6] in or-
der to enable scripting and custom application devel-
opment. In order to support formulation of dynamic
optimization of Modelica models, JModelica.org sup-
ports the Optimica extension [1]. Optimica offers con-
structs for encoding of cost functions, constraints, the
optimization interval with fixed or free end points as
well as specification of transcription scheme.

The JModelica.org platform contains an implemen-
tation of a simultaneous optimization method based on
orthogonal collocation on finite elements [5]. Using
this method, state and input profiles are parametrized
by Lagrange polynomials, of order three and four re-
spectively, based on Radau points. This method cor-
responds to a fully implicit Runge-Kutta method, and
accordingly it possesses well known and strong sta-
bility properties. By parameterizing the variable pro-
files by polynomials, the dynamic optimization prob-
lem is translated into a non-linear programming (NLP)
problem which may be solved by a numerical NLP
solver. This NLP is, however, very large. In order
to efficiently find a solution to the NLP, derivative in-
formation as well as the sparsity patterns of the con-
straint Jacobians need to be provided to the solver.
The simultaneous optimization algorithm has been in-
terfaced with the large-scale NLP solver IPOPT [10],
which has been developed particularly to solve NLP
problems arising in simultaneous dynamic optimiza-
tion methods.

The choice of a simultaneous optimization algo-
rithm fits well with the properties of the dynamic opti-
mization problems treated in this paper. In particular,
simultaneous methods handle unstable systems well,
and also, state and input inequality constraints are eas-
ily incorporated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−5

−4

−3

−2

−1

0

1

2

3

4

5

C
on

tr
ol

 s
ig

na
l,

i.e
.,

ac
ce

le
ra

tio
n

(m
/s

2)

Time (s)

Figure 1: Control signal in the constrained double in-
tegrator example in Section 2.2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Position (m)

V
el

oc
ity

 (
m

/s
)

Solution
Non−linear constraint
Sol. without NL constr

Figure 2: Phase plot ofx andẋ in the constrained dou-
ble integrator example in Section 2.2. Also the non-
linear constraint and the solution to the unconstrained
problem are plotted.

2.2 Optimica example

In this section, the Optimica syntax is explained by
stating and solving a double integrator optimization
problem. The example will also serve as an evalua-
tion of the accuracy of the Optimica solution compared
to the optimal solution. The following optimization
problem is solved:

min
u

t f

subject to ¨x = u
0.2cos 15x+ ẋ≤ 1
|u| ≤ 5
x(0) = 0 ẋ(0) = 0
x(t f) = 0.5 ẋ(t f) = 0

(1)

wheret f is the final time,u is the control signal,x is the
position and ˙x is the velocity. The non-linear constraint
is added to make the problem a bit more complex. A
Modelica model for a double integrator is:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 481

model DoubleIntegrator

package SI = Modelica.SIunits;

SI.Position x(start=0);

SI.Velocity x_dot(start=0);

input SI.Acceleration u;

equation

der(x) = x_dot;

der(x_dot) = u;

end DoubleIntegrator;

An Optimica specification of the problem is:

optimization DIopt (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

DoubleIntegrator DI(u(free=true,

initialGuess=0.0));

constraint

DI.x(finalTime)=0.5;

DI.x_dot(finalTime)=0;

0.2*cos(15*DI.x)+DI.x_dot <= 1;

DI.u <= 5;

DI.u >= 5;

end DIopt;

In the first line of the Optimica specification the opti-
mization objective is specified. In this case the objec-
tive to be minimized is the final time. Then the Mod-
elica model of the dynamical system that is used in the
optimization is specified andu is chosen to be the de-
cision variable. Then all constraints, inequality as well
as equality constraints, are listed.

The solution to (1) is obviously to accelerate with
maximum positive acceleration until, or if, the con-
straint is reached. Then continue with maximum al-
lowed velocity until deceleration is needed to reach
x = 0.5 andẋ = 0. This behaviour is clearly seen in
the Optimica solution of the problem, Figures 1 and 2.

3 The Process

The Department of Automatic Control in Lund has a
history of designing and building laboratory processes.
One of the latest processes that are built in-house is
the pendulum and cart process depicted in Figure 3.
This process is used in this paper to demonstrate the
applicability of Optimica and optimal control.

3.1 Cart control

The cart is driven by a DC-motor which is controlled
in a cascaded structure. See Figure 4 for a schematic
view of the cascaded control structure. There is an
inner loop that controls the current through the DC-
motor. P1 represents the current dynamics which be-
haves like a first order system with a time-constant of

Figure 3: Photo of the cart and pendulum system de-
scribed in Section 3.

irvru ∫∫
C1C2 P1 P2

-1

-1

i
v

v x
ΣΣ

Figure 4: Cascaded control structure for the cart con-
trol.

0.17 ms.C1 represents the PI-controller in the current
loop that controls the current,i, to its reference,ir . The
current reference,ir , is set by the outer loop that con-
trols the cart velocity. The current dynamics are fast
in comparison to the velocity dynamics, which makes
ir ≈ i a good approximation. The transfer function
from i to v, i.e. P2, is ideally an integrator with a gain.
The velocity dynamics are controlled with another PI-
controller,C2. The reference to the velocity control
loop, vr , is integrated from an acceleration reference,
u, since acceleration is our desired control signal. This
cascaded control structure is suitable when fast closed
loop dynamics fromvr to v is desired. Sincevr ≈ v is
a good approximation, we have double integrator dy-
namics from control signal,u, to cart position,x.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 482

3.2 Hardware setup

On the cart there are two Atmel ATmega16 micro pro-
cessors. The current controller,C1 in Figure 4, dis-
cussed in Section 3.1, is running on one of them at a
sampling rate of 28.8 kHz. This micro processor gets
the current reference,ir , from the other micro pro-
cessor, where the velocity controller,C2, is running
at 1 kHz. This second micro processor also commu-
nicates with a PC via the serial interface. This com-
munication is performed at frequencies around 50 Hz.
From Matlab/Simulink on the PC, the velocity refer-
ence,vr , is sent to the velocity controller on the mi-
cro processor. The velocity reference is obtained by
integrating the acceleration reference,u, on the PC-
side. Since a smooth acceleration profile of the cart
is desired, the velocity reference needs to be updated
more frequently than at 50 Hz. Therefore the accel-
eration reference,u, is also sent to the velocity con-
troller from the PC. The velocity reference is updated
in the micro processor at a frequency of 1 kHz accord-
ing to vr(t) = vr(t0) + u(t0)(t − t0), wheret0 is the
time when the last references was received from the
PC,t ∈ [t0, t0+h] andh is the PC communication sam-
pling time. These updates are consistent with the ve-
locity reference in the next sample from the PC which
is vr(t0 +h) = vr(t0)+u(t0)h.

One alternative would be to send only the accelera-
tion reference to the micro processor and to calculate
the velocity reference there. This would imply that
in order to stop the cart, it must be controlled with
a feedback loop on the PC. With our implementation
structure the cart can easily be stopped by setting the
velocity reference to zero.

The PC also receives cart position and pendulum an-
gle measurements as well as velocity estimates from
the micro processor. This enables for us to, on the PC,
create another level of feedback loops in the cascaded
control structure.

3.3 System modeling

Due to the low level control of the cart, described in
Section 3.1, the cart behaves as a double integrator.
When x is the cart position andu the control signal,
we have the following cart dynamics

ẍ = u

The pendulum dynamics are well known; letθ be the
pendulum angle and we get

θ̈ = −
g
l

sinθ +
a
l

cosθ

model Pendulum

package SI = Modelica.SIunits;

parameter SI.Length l = 0.4;

constant SI.Acceleration g = 9.81;

SI.Position x(start=0);

SI.Velocity x_dot(start=0);

SI.Angle theta(start=0);

SI.AngularVelocity theta_dot(start=0);

SI.Position x_p;

SI.Position y_p;

Real u_dot(unit="m/s3");

input SI.Acceleration u;

equation

der(x) = x_dot;

der(x_dot) = u;

der(theta) = theta_dot;

der(theta_dot)=g/l*sin(theta)+1/l*cos(theta)*u;

der(u) = u_dot;

x_p = xl*sin(theta);

y_p = l*cos(theta);

end Pendulum;

Listing 1: A Modelica model for the pendulum and
cart system.

whereθ = 0 is defined to be the pendulum downward
position, g is the gravitational acceleration,l is the
pendulum length anda is the horizontal acceleration
of the pendulum pivot point. This horizontal acceler-
ation, a, is equal to the cart acceleration, ¨x, and thus
equal to the control signal,u. This gives us the follow-
ing model for the complete system

θ̈ = −
g
l

sinθ +
u
l

cosθ (2)

ẍ = u (3)

A schematic view of the full system is found in Fig-

Gcart

Spend

u

x
ẋ

θ
θ̇

z

S

Figure 5: Schematic view of the system.

ure 5, whereSpend represents the non-linear pendulum
dynamics (2) andGcart represents the double integra-
tor dynamics (3),z is a vector containing the states,
z = (x ẋθ θ̇)T andS represents the full system. The
position of the cart and the pendulum angle are defined
such that the pendulum end point in the horizontal di-
rection,xp, and in the vertical direction,yp, are given

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 483

by

xp = x− l sinθ
yp = −l cosθ

The Modelica model that describes this pendulum and
cart system is found in Listing 1.

4 Optimization

In this section we use Modelica and Optimica to solve
two different optimization problems based on the pen-
dulum and cart model. The first problem is to swing
up the pendulum in as short time as possible. The sec-
ond problem is to move the pendulum and cart from
rest at one cart position on the track to another, while
the end point of the pendulum must avoid an elliptical
obstacle. Also in this second problem the objective to
be minimized is the final time.

4.1 Time-optimal Swing-up

The optimization objective is to swing up the pendu-
lum from the downward pendulum position to the in-
verted pendulum position in as short time as possible.
The cart should stop at the same position as it started
and the cart and angular velocities should be zero at
the final time. The control signal, i.e., the cart ac-
celeration,u, is limited to the interval± 5 m/s2. Its
derivative, ˙u, is limited to the interval± 100 m/s3.
The cart track is limited, which lead to constraints
in the cart position. The cart position must satisfy
−0.5 m ≤ x ≤ 0.5 m. The optimization problem is
stated mathematically in (4)

min
u

t f

subject to θ̈ = −
g
l sinθ + u

l cosθ
ẍ = u
−0.5≤ x≤ 0.5
|u| ≤ 5 |u̇| ≤ 100
θ(0) = 0 θ̇ (0) = 0
x(0) = 0 ẋ(0) = 0
θ(t f) = π θ̇ (t f) = 0
x(t f) = 0 ẋ(t f) = 0

(4)

wheret f is the final time. The Modelica and Optim-
ica codes that describe the optimization problem are
found in Listings 1 and 2 respectively. The resulting
time optimal state and control trajectories are found in
Figures 6 and 7. The pendulum angle changes sign
two times during the swing-up. It starts with a positive
angle, switches to negative and finally it reaches its in-
verted position with a positive angle. This means that

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

x
p
 (m)

y p (
m

)

Figure 6: Optimal trajectory of the pendulum end
point for swing-up problem in Section 4.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

C
on

tr
ol

 s
ig

na
l,

i.e
.,

ca
rt

 a
cc

el
er

at
io

n
(m

/s
2)

Figure 7: Optimal control signal, i.e., cart accelera-
tion, for swing-up problem in Section 4.1.

the optimal swing-up is performed with three swings
before the inverted position is reached. In [4] the min-
imum number of pendulum swings needed for swing-
up, given a maximum acceleration of the pendulum
pivot point,amax, is analyzed. Three swings are needed
if 0.388g ≤ amax ≤ 0.577g which is equivalent to
3.81 m/s2

≤ amax ≤ 5.66 m/s2. This analysis
is not directly applicable to our setup since cart con-
straints and acceleration rate limitations are not con-
sidered in the analysis in [4]. When cart terminal po-
sition and acceleration rate constraints are chosen as
in our setup, three swings are needed for swing-up if
4.45 m/s2

≤ amax ≤ 7.70 m/s2. This interval is ob-
tained simply by solving the swing-up problem with
different acceleration constraints in Optimica. The fact
that our problem with additional constraints requires
more acceleration to swing-up the pendulum with a
fixed number of swings, is not surprising. The max-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 484

optimization Swingup (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

Pendulum pend(u(free=true,initialGuess=0.0));

constraint

pend.x(finalTime)=0;

pend.x_dot(finalTime)=0;

pend.theta(finalTime)=3.1415;

pend.theta_dot(finalTime)=0;

pend.x <= 0.5;

pend.x >= 0.5;

pend.u <= 5;

pend.u >= 5;

pend.u_dot <= 100;

pend.u_dot >= 100;

end Swingup;

Listing 2: An Optimica model for time optimal swing-
up of the pendulum.

imum acceleration in our example is 5 m/s2 which is
within the interval where a minimum of three swings
are needed.

In [4] they also discuss an energy based swing-up
strategy that was originally proposed in [11]. The idea
of the method is to control the system to the energy-
level that corresponds to the inverted pendulum posi-
tion using maximum acceleration in either way. When
this energy based approach is applied to this system,
with amax= 5 m/s2, the pendulum reaches its inverted
position when the cart position is approximately 3m
from its starting point. This position is far outside the
track, which is why this energy based method is not
directly applicable when track limitations are present.

4.2 Optimization with path-constraints

In this optimization problem we want the cart to start
at rest at positionx= 0 with the pendulum in the down-
ward pendulum position,θ = 0. At the final time,
the cart and pendulum should be at rest at position
x = 0.8 m and pendulum angleθ = 0. We also intro-
duce an additional constraint stating that the end point
of the pendulum must never enter an elliptical area de-
scribed by

(
xp−0.5

0.05

)2

+

(
yp +0.4

0.3

)2

= 1

Due to the track limitations we need the cart position
to satisfy−0.1 m ≤ x ≤ 0.9 m. The control sig-
nal limitations are the same as in the previous opti-
mization problem, i.e.−5 m/s2

≤ u ≤ 5 m/s2 and

−100 m/s3
≤ u̇ ≤ 100 m/s3. The objective of the

optimization is to reach the final states as fast as possi-
ble. The optimization problem is described mathemat-
ically in (5)

min
u

t f

subject to θ̈ = −
g
l sinθ + u

l cosθ
ẍ = u
xp = x− l sinθ
yp = −l cosθ(

xp−0.5
0.05

)2
+

(
yp+0.4

0.3

)2
≥ 1

−0.1≤ x≤ 0.9
|u| ≤ 5 |u̇| ≤ 100
θ(0) = 0 θ̇ (0) = 0
x(0) = 0 ẋ(0) = 0
θ(t f) = 0 θ̇ (t f) = 0
x(t f) = 0.8 ẋ(t f) = 0

(5)

wheret f again is the final time. The codes in the cor-
responding Modelica and Optimica files are found in
Listings 1 and 3 respectively. This problem turns out

optimization Path (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

Pendulum pend(u(free=true,initialGuess=0.0));

constraint

pend.x(finalTime)=0.8;

pend.x_dot(finalTime)=0;

pend.theta(finalTime)=0;

pend.theta_dot(finalTime)=0;

pend.x <= 0.9;

pend.x >= 0.1;

pend.u <= 5;

pend.u >= 5;

pend.u_dot <= 100;

pend.u_dot >= 100;

((pend.x_p0.5)/0.05)^2+((pend.y_p+0.4)/0.3)^2>=1;

end Path;

Listing 3: An Optimica model for the path following
problem.

to be more difficult to solve than the swing-up prob-
lem. Actually it is not easy to find a solution that is
feasible, i.e., that satisfies all constraints. In order to
solve this problem we need to give the solver an ini-
tial guess that is feasible and not too far away from
the optimum. One crucial decision to make is if the
pendulum should follow behind the cart over the ob-
stacle, or if it should go in front of the cart. It turns
out that if the pendulum follows behind the cart we get

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 485

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

O
bs

ta
cl

e

x
p
 (m)

y p (
m

)

Initial guess Part 1
Initial guess Part 2
Optimal trajectory

Figure 8: Optimal trajectory of the pendulum end
point for path constrained problem in Section 4.2.
Also the pendulum end point in the two parts of the
initial guess is plotted.

0 0.5 1 1.5 2 2.5 3 3.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

C
on

tr
ol

 s
ig

na
l,

i.e
.,

ca
rt

 a
cc

el
er

at
io

n
(m

/s
2)

Figure 9: Optimal control signal, i.e., cart accelera-
tion, for path constrained problem in Section 4.2.

very large oscillations after passing the obstacle. It is
time-inefficient to damp these resulting pendulum os-
cillations because of the track and control limitations.
Thus the time-optimal solution must have the pendu-
lum in front of the cart when passing the obstacle. To
help the optimizer finding this solution the problem is
divided into two smaller and easier subproblems.

The first subproblem is an altered version of the
original problem (5). The elliptical constraint is re-
moved and the final constraints are set to

θ(T) = −
75.52π

180 θ̇ (T) = 0
x(T) = 0.1127 ẋ(T) = 1.4

(6)

This terminal point of the optimization corresponds
to when the pendulum is precisely above the obstacle
with the pendulum leaning in the forward direction.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 10: Experimental results for swing-up prob-
lem when control trajectory applied in open loop as
described in Section 5.1. The optimal pendulum end
point trajectory is also plotted for comparison reasons.

The terminal cart velocity, ˙x, is set to a positive value
since we want the cart to have a forward motion over
the obstacle. The angular velocity of the pendulum,θ̇ ,
is set to zero which makes it possible for the pendu-
lum angle to decrease directly after passing the obsta-
cle. The terminal cart and pendulum angular velocities
are chosen intuitively to enable a fast transition from
above the obstacle to the terminal point of the original
problem (5).

The second subproblem continues from where the
first subproblem terminated. The initial conditions in
the second subproblem are the same as the terminal
constraints of the first subproblem, (6). The terminal
constraints of this second subproblem are the same as
in the original problem, (5). This means that the pen-
dulum continues on the other side of the obstacle until
it reaches the terminal point.

The resulting optimal trajectories of the two sub-
problems are then merged and given as an initial guess
when solving the original problem. Given this initial
guess, the solver converges to the optimal solution.
The resulting pendulum end point movements for the
two parts of the initial guess and for the optimal solu-
tion are found in Figure 8. The control signal for the
optimal solution is found in Figure 9. The final time
for the merged initial guess is 3.39 s while the optimal
solution has a final time of 3.34 s. The first part of
the initial guess takes 2.18 s while the second part is
performed in 1.21 s. The corresponding first and sec-
ond parts of the optimal solution take 1.94 s and 1.40 s
respectively. This means that the intuition behind the
choice of terminal constraints for the first subproblem

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 486

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

O
bs

ta
cl

e

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 11: Experimental results for path constrained
problem when control trajectory applied in open loop
as described in Section 5.1. The optimal pendulum end
point trajectory is also plotted for comparison reasons.

(6), i.e., to enable for a fast second part, is good. The
second part of the initial guess is fast and the merged
initial guess is not very far from the optimal one in
terms of the optimization objective, namely the final
time, t f .

5 Experiments on the real Pendulum

In this section the optimal control trajectories obtained
in the previous section are applied to the real system.
These experiments will serve as an evaluation of how
well the model describes the actual system and it will
show the practical applicability of optimal control tra-
jectories in a real system.

5.1 Open loop results

Figures 10 and 11 show how the real system responds
to the optimal control trajectories. The figures also
show the optimal trajectories from the previous sec-
tion for comparison reasons. The trajectories are very
similar, which means that the model of the system is
accurate.

In the optimizations it is assumed that the initial
conditions of the pendulum and cart are such that the
cart is at rest at position,x = 0, and the pendulum is at
rest at angleθ = 0. If the experiments are performed
with initial conditions of the pendulum that do not sat-
isfy the assumed ones, i.e., if the pendulum is swing-
ing when the experiment is started, we get results as
shown in Figures 12 and 13. The magnitude of the

initial swings are approximately 45◦ in these experi-
ments. The figures show that we are far from reach-
ing our objectives when this kind of disturbances are
present. To make the optimization results usable in re-
ality, we need feedback to take care of deviations from
the optimal trajectories.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 12: Pendulum end point trajectory for the real
system when pendulum is swinging initially and no
feedback is used as described in 5.1.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track
O

bs
ta

cl
e

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 13: Pendulum end point trajectory for the real
system when pendulum is swinging initially and no
feedback is used as described in 5.1.

5.2 MPC-Feedback

Model Predictive Control feedback (MPC) is intro-
duced to take care of disturbances to the system. A
schematic view of how the feedback is introduced is
found in Figure 14 wherez and S are defined as in
Figure 5. In MPC, a finite time-horizon optimization
problem with state and control constraints is solved in
every sample. In our setup, deviations from the opti-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 487

S

MPC

z

∆u

u

−zre f

Σ

Σ

Figure 14: A schematic view of how the MPC-
feedback is introduced.

mal state and control trajectories are minimized, such
that control magnitude and cart position constraints are
not violated.

The mathematical and implementational aspects of
the MPC-feedback is beyond the scope of this paper
and will be described in a future paper. The results
when applying the MPC-feedback to the real system
are, however, relevant to show that the optimal feed
forward trajectories must be accompanied with feed-
back to be useful in reality. Experimental results of
optimal trajectory feed-forward in combination with
MPC-feedback are visualized in Figures 15 and 16.
The experiments are performed with initial pendulum
swings. Also here the initial swings have a magni-
tude of around 45◦ to be comparable to the results
in the previous section. Due to the initial swinging,
the trajectories are far from the optimal ones in the
beginning but the feedback brings the system closer
with time. If the feedback control authority is large
enough, the original objectives of the optimizations
can be achieved despite errors in the initial conditions.
The figures show that we have enough control author-
ity in these experiments since we manage to swing-up
the pendulum in the first experiment and avoid the ob-
stacle in the second experiment, as desired.

6 Teaching

Optimal control of the cart-pendulum system was in-
troduced as a new laboratory exercise in the course on
Nonlinear Control and Servo systems (FRTN05) at the
Dept. of Automatic Control, Lund, in 2009, see [9].

The cart system has previously been developed as a
general module for different control experiments and
has been used as a test bed in both student and research
projects as well as in other courses [7].

The preliminary evaluation of the new computer
and laboratory exercises has been very positive from
both the students as well as from the lecturer and the
teaching assistants. Optimal control has already be-
fore played an important role in the course curriculum,

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 15: Pendulum end point trajectory for the real
system when pendulum is swinging initially and feed-
back is used as described in 5.2.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cart track

O
bs

ta
cl

e

x
p
 (m)

y p (
m

)

Optimal trajectory
Real system trajectory

Figure 16: Pendulum end point trajectory for the real
system when pendulum is swinging initially and feed-
back is used as described in 5.2.

but was mainly focused on the theoretical aspects and
lacked from the gap between constrained-low-order-
pen-and-paper-problems and more realistic examples
and applications. Here Optimica has played an im-
portant role to bridge that gap and to complement the
previous course contents.

The new software gives the the students the possi-
bility to concentrate on the formulation of the optimal
control problem separately from the system modeling
and to experimentally evaluate how solutions change
with respect to the cost function and to the constraints.

Obtaining a numerical solution naturally raises the
question of accuracy, but also to related questions on
sensitivity to initial conditions and to discrepancies of
the model and the real plant. In the lab exercises this is
evaluated where pure feedforward solutions are com-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 488

pared to the combination of a feedforward reference
from the optimal control problem together with feed-
back around this trajectory, similar to what has been
outlined in Sections 4 and 5.

7 Conclusions/Future Work

The second optimization problem with path con-
strained pendulum end point movements shows that
optimal control problems can be difficult to solve. Al-
though the Optimica tool is very powerful, one needs
to understand the problem and sometimes supply an
initial guess to help the solver converging to the cor-
rect solution.

The results of the Optimica optimizations are open
loop control trajectories. When applying these to a
real system, everything must be accurately modeled
and only very small disturbances may be present to get
good results. This is however rarely the case, which is
why we need feedback that controls the actual state
trajectories towards the optimal ones. This combina-
tion of optimal feedforward and feedback has shown
to be very efficient when optimal transitions through
nonlinear dynamics are desired.

In this paper, optimal trajectories are pre-calculated
using Optimica and MPC-feedback is used to stay
close to the optimal trajectories. An extension to this
work would be to instead of pre-calculating the opti-
mal trajectories, rather let an MPC-controller run with
Optimica in real time. Then the optimization problems
stated in (4) and (5) would be solved in each sample
with different initial conditions. The initial conditions
would be the measured state variables at the current
sample. The main difficulty would be to ensure fast
enough computations for this to be implementable in a
real time application.

References

[1] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. InIn 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[2] Johan Åkesson, Tove Bergdahl, Magnus Gäfvert,
and Hubertus Tummescheit. Modeling and opti-
mization with modelica and optimica using the
jmodelica.org open source platform. InPro-
ceedings of the 7th International Modelica Con-
ference 2009. Modelica Association, September
2009.

[3] Johan Åkesson, Magnus Gäfvert, and Huber-
tus Tummescheit. Jmodelica—an open source
platform for optimization of modelica models.
In Proceedings of MATHMOD 2009 - 6th Vi-
enna International Conference on Mathematical
Modelling, Vienna, Austria, February 2009. TU
Wien.

[4] Karl Johan Åström and Katsuhisa Furuta. Swing-
ing up a pendulum by energy control.Automat-
ica, 36:278–285, February 2000.

[5] L.T. Biegler, A.M. Cervantes, and A Wächter.
Advances in simultaneous strategies for dynamic
optimization. Chemical Engineering Science,
57:575–593, 2002.

[6] Python Software Foundation. Python Program-
ming Language – Official Website, 2009.http:
//www.python.org/.

[7] Per-Ola Larsson and Rolf Braun. Construction
and control of an educational lab process - the
gantry crane. InReglermöte 2008, Luleå, June
2008.

[8] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[9] Pontus Giselsson. Laboratory Exercise in
Nonlinear Control and Servo Systems, 2009.
http://www.control.lth.se/course/

FRTN05/labs/lab3/lab3.html.

[10] Andreas Wächter and Lorenz T. Biegler. On
the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear
programming. Mathematical Programming,
106(1):25–58, 2006.

[11] Magnus Wiklund, Anders Kristenson, and
Karl Johan Åström. A new strategy for swing-
ing up an inverted pendulum. InPreprints IFAC
12th World Congress, volume 9, pages 151–154,
Sydney, Australia, July 1993.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 489

Optimized Control of Hot-Gas Cycle for Solar Thermal Power Plants

Jan Gall Dirk Abel

IRT – Institut für Regelungstechnik, RWTH Aachen, Steinbachstr. 54, D-52074 Aachen, Germany
j.gall@irt.rwth-aachen.de

Nils Ahlbrink Robert Pitz-Paal
DLR – Deutsches Zentrum für Luft- und Raumfahrt, Linder Höhe, D-51147 Köln, Germany

Joel Andersson Moritz Diehl
Electrical Engineering Department (ESAT-SCD), KU Leuven, B-3000 Leuven, Belgium

Cristiano Teixeira Boura Mark Schmitz Bernhard Hoffschmidt
SIJ – Solar-Institut Jülich, FH Aachen, Heinrich-Mussmann-Str.5, 52428 Jülich, Germany

Abstract

In this paper, the overall modeling approach for an
optimized control of a hot-gas cycle with its different
components for solar thermal power plants is pointed
out.
For control purposes a linear model-based controller
(MPC) was implemented in Modelica based on an
external state-of-the-art QP solver linked to the
Modelica model.

Keywords: solar energy, control, optimization

1 Introduction

1.1 Background

One possible answer to address climate change is
using solar instead of fossil energy. Among other
technologies central receiver systems (CRS) using
air as heat transfer medium are being investigated. A
demonstration plant (STJ) has just been completed.
The STJ uses 18000 m² of sun-tracking mirrors
(heliostats) to heat up air to 700 °C which in turn
generates superheated steam, driving turbine and
generator. A storage system can take up the thermal
energy for one full-load hour. By adjusting the rate
of the volume flow of two blowers, it is possible to
charge or discharge the storage during operation. The
Virtual Institute of Central Receiver Power Plants
(vICERP) has been founded to solve the demanding
requirements for the optimal plant control under the
strongly fluctuating energy input.

1.2 Scope of Paper

In this paper, the overall modeling approach for an
optimized control of a hot-gas cycle for solar thermal
power plants is pointed out. A detailed description of
the modeling of the receiver and the heliostat field
can be found in an affiliated conference paper by
Ahlbrink et al. [1]. The emphasis of the modeling
work lays on the development of dynamic compo-
nent models to be used in control systems. Depend-
ing on the control task, the discretization has to be
adapted. Main components of the hot-gas cycle are
the solar thermal receiver and the storage system.
The steam cycle is preliminarily only included as
heat sink.

2 Modeling

The modeling efforts are shared among the vICERP
partner institutions. Therefore, it is crucial to use a
common model setup to ensure a proper use of the
models. A common test platform provides the neces-
sary interfaces, so that new, improved modules can
easily be integrated and tested. The models are based
on the open source library Modelica_Fluid [2]. The
vICERP library uses a finite volume approach with
staggered grid method implemented with flow and
volumes elements [3]. The mass and energy balances
are considered in the volume element. A formulation
of the balance equations from Hirsch [4] is imple-
mented using pressure and specific enthalpy as state
variables. The momentum equation is reduced to a
pressure drop equation and formulated in a flow
element. Models like the receiver, storage system,
steam generator are setup in a way that the models
end with a flow element. Thus, to the outside they

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 490 DOI: 10.3384/ecp09430053

behave like a pressure drop element. Volume models
are needed to interconnect the components.
Figure 1 shows the top-level of the model developed
in Dymola/Modelica. Several different components
can be identified in the figure: the heliostat field and
receiver on the top left, the storage in the middle, a
simple model of the water steam cycle on the right
and the two blowers on the bottom right. The follow-
ing sections give a brief introduction to the models.

Figure 1. Screenshot of the model in Dymola

2.1 Heliostat field and Receiver

The 2200 heliostats that focus the sunlight onto the
receiver are calculated by a special Monte-Carlo ray-
tracing code, called STRAL [1], which generates a
flux map on a surface which coincides with the re-
ceiver. The receiver is modeled in Modelica. The
output is an averaged temperature for the air mass
flow entering the hot-gas system.

2.2 Hot-Air Pipes and Blowers

The models for hot-air pipes are simplified using one
volume and one flow element for each pipe. The
blower models include the characteristic curve of the
blower provided by the manufacturer. Implemented
in a lookup table, this map allows the calculation of a
resulting mass flow given the power input and pres-
sure difference between inlet and outlet port of the
blower.

2.3 Storage

A thermal storage system is used as a buffer that
stores energy at times of high irradiances and enables
operation of the plant after sunset or during periods
of reduced solar input. The developed storage model
enables the analysis of different operation conditions
of the power plant. The storage behavior is similar to
that of a regenerator. The hot air flows through the
storage material and heats it up. During discharge,
the air flows in reverse direction and cools down the
storage material, while being heated up.
The storage model is divided into storage cells. Each
cell element describes the characteristic material and
flow phenomena, which are included in differential
equations. Thus, each cell element computes two
temperatures which represent the local temperature
of the storage material and the local temperature of
the fluid.
The model enables the description of charging, dis-
charging and stand-by operation. Additionally heat
losses during stand-by periods are calculated. Thus,
temperature profiles inside the storage can be com-
puted for any time in the simulation process.
Figure 2 shows the temperature profile for the 100%-
and 0%-storage capacity load situation.

Figure 2. Temperature profile of the storage system for

100%- and 0%- storage capacity

2.4 Heat Sink

Whereas in the final system the steam cycle will be
modeled in detail, it is – at this stage – merely inte-
grated as a heat sink, featuring qualitatively the
steam cycle’s anticipated behavior.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 491

3 Control

3.1 Basic automation scheme

The simulation of the operational behavior of the
complete plant requires an integrated control scheme
within the model to ensure compliance with given
limits of absolute and gradient values. As a first con-
cept, a basic automation scheme has been developed
based on a wiring of SISO control loops with PID
controllers. This scheme should on one hand assure a
safe operation of the plant under normal operation
conditions and on the other hand be a measure of
performance for more sophisticated control schemes.
The tuning of the different controllers has been done
in MATLAB using a response optimization tech-
nique. An extract of the scheme is depicted in Figure
3.

TI

Recv

TI

SP

PV

100%

FI

SP

PV

M

S
to

ra
g

e

FI

TI

TI

B1

B
o
ile

r

TI

TI

V1

M

B2V2

u

680°C

SP

PV

SP

PV

SP
PV

100%

Figure 3. Basic automation scheme

The measurement signals for the control scheme are
different volume flows and temperature information.
Actuating variables are the speed of the two blowers
and different valves located in the air cycle. The
main goal of the control scheme is to maintain the
outlet air temperature of the receiver constant at
680 °C. This is achieved by controlling the air vol-
ume flow through the receiver. As a consequence of
an increasing volume flow through the receiver, the
temperature of the outgoing air decreases. The tem-
perature difference from the design point is used in
an outer control loop of a cascaded structure, which
feeds the required volume flow as setpoint to the in-
ner control loop. The inner loop accesses two actua-
tors for adjusting the volume flow, a blower and a
valve mounted directly after the blower. The blower
is obviously necessary to generate the air flow. The
use of the valve is justified for two reasons. First, the
blower itself has a low pressure drop during stand-
still periods such that an airstream just flows through
it if the stream is generated by the other blower in-

stalled in series. Second, the blower is limited to a
minimal rotational speed. Therefore, the valve is
closed appropriately to set volume flows below the
threshold given by the blower itself.

3.2 Model predictive control

The vICERP project includes the application of a
model predictive controller (MPC). This makes use
of the dynamic model of the plant that has been de-
veloped for the simulation to predict future behavior
of the plant with regard to changes in actuating vari-
ables.
With an MPC approach, it is also possible to include
a natural objective function (maximize produced en-
ergy, minimize risk of boiler shutdown during tran-
sients, minimize time to start-up etc.) as well as im-
posing first-principle constraints such as bounds on
variables or periodicity constraints.
The scope of this paper is limited to a linear model
predictive controller, which aims at demonstrating
the concept as well as the basic software coupling.
It is the goal of the project to make extensive use of
the full nonlinear model of the plant to find an opti-
mal controller that works in nominal operation as
well as during start-up, shut-down and during sudden
changes in the weather conditions (if these changes
can be predicted, this prediction should be taken into
account). This will be described in more detail in the
outlook of this paper.

3.3 Linearized model

The MPC controller is based on a linear state space
model of the form:

(1) () ()

() ()

x k Ax k Bu k

y k Cx k

+ = +

=
 (1)

This model was obtained from the non-linear Mode-
lica model by using the linearizeModel command.

3.4 MPC implementation

Based on the above representation the controller is
able to predict the future behavior of the plant re-
garding to a future trajectory for the input (and pos-
sible disturbances). This can be expressed in an
equation of the form

()

() (1) () ()
m

Y k

x k u k U k D k

=

Ψ ⋅ + Υ ⋅ − + Θ⋅∆ + Ξ ⋅
 (2)

for suitable matrices Ψ , Υ , Θ and Ξ [9]. The
different terms represent the free and forced response
of the plant, together with the response to future tra-
jectories of the inputs and disturbances. Combined

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 492

with a given reference trajectory for the outputs and
additional linear constraints on the states and inputs,
this can be reformulated as an optimization problem
of the form

)()()(min
)(

kUGkUHkU TT

kU
∆⋅−∆⋅⋅∆

∆
 (3)

with Hessian matrix H and gradient vector G . This
is a standard optimization problem known as the
Quadratic Programming (QP) problem.

3.5 QP Solver

The MPC controller requires the above quadratic
program to be solved at each sampling time. This is
carried out with the QP solver qpOASES [5], which
uses an online active-set method particularly suited
for MPC problems [6].
To make qpOASES, which is written in C++, fully
compatible with Modelica, a C interface has been
written. By using Modelica’s external objects, the
QP solver is able to retain memory between calls.
This fact can be expected to grow importance once
the MPC controller is extended to nonlinear models.
The Modelica interface to qpOASES is available

upon request from the authors of the paper (LGPL
license).

4 Simulation Results

For evaluation of the model and different control
schemes the simulation results according to the fol-
lowing scenario are presented in Figure 4.
The plant is operating in its stationary design point
(i. e. outlet temperature at the receiver is at 680 °C)
with a constant solar irradiation. At time t = 100 s, a
sinusoidal disturbance with a period of 600 s and an
amplitude of 50% of the previous irradiation acts on
the input. After 1200 seconds the input remains con-
stant again.
The upper part of the figure shows this disturbance
of the solar irradiation. In the lower part the re-
sponses of the air outlet temperature at the receiver
with different controllers are depicted. The main goal
of this feedback control is disturbance rejection, i. e.
it should assure a constant outlet temperature by ad-
justing the air volume flow through the receiver ap-
propriately.

Figure 4. Simulation results

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 493

The first case is just an open loop simulation of the
system, i. e. no control actions are performed at all
and all manipulated variables, especially the set-
points of the blowers, remain constant.
The second curve shows the resulting characteristics
if the control scheme as depicted in Figure 3 based
on PI controllers is used. In this case the maximal
deviation of the outlet temperature is about 15 °C.
In the following two cases the implemented MPC-
block was used to control the air temperature. There-
fore the PI controller in Figure 3 which uses the air
temperature as measurement variable in the outer
control loop was simply replaced by the MPC-block.
The inner controllers directly manipulating the actors
remain the same. Although the model-based control-
ler has inherently the ability to cope with systems
with multiple in- and outputs, it this case it is just
used with a single in- and output. The controller has
a sampling interval of 0.5 s and uses an internal
model with 25 states at a discretization interval of 2
seconds. It has a prediction horizon of np = 150 and a
control horizon of nu = 30 (i. e. it predicts the re-
sponse of the plant 300 seconds in the future). As
one can see in Figure 4, the controller shows compa-
rable results to the PI controller.
In the fourth case, the MPC-block was extended to
also incorporate the influence of the disturbance on
the system by feedforward control. If the supplied
solar energy can not only be measured, but also pre-
dicted (e. g. by weather forecast or vision-based [8]),
it is possible that the MPC also uses this information
for prediction. In this case the controller achieves the
best performance with only minimal deviation from
the setpoint at 680 °C.

5 Conclusion

In this paper we have presented a first-principle
model for a central receiver solar power plant with
open volumetric receiver. The model includes the
different components of the plant, e. g. receiver,
storage, and is used for simulation and optimization
purposes of both the separate components and also
the plant behavior as a whole.
For control purposes a generic linear model-based
controller (MPC) was implemented and achieves
reasonable results. The implementation is based on
an external state-of-the-art QP solver linked to the
Modelica model for the calculation of optimal con-
trol actions.
Future work aims at not only using optimal control
for the air cycle as presented in this paper, but also to
extend this approach to other areas of the plant, e. g.
storage regulation.

6 Outlook

6.1 Non-linear MPC

A non-linear MPC controller is obtained if the linear
state space model (1) is a replaced with a continuous
state space model of the form:

() ((), (), ,)

() ((), (), ,)

x t f x t u t p t

y t g x t u t p t

=

=

&
 (4)

The dynamics are now described by a non-linear or-
dinary differential equation (ODE) and the discrete
time k has been replaced by the continuous time t.
Included is also the dependence of a set of parame-
ters p.
A model of the form (2) is always available since
simulating a translated Modelica model is always
equivalent to integrating a (possibly hybrid) differen-

tial-algebraic equation, due to construction of the
Modelica language [10].
By adding a quadratic objective function and intro-
ducing the prediction horizon Tp and control horizon
Tc, we obtain an optimal control problem in differen-

tial-algebraic-equations of the form:

2 2

ref ref
(), (), (),

0 0

(output bounds)lb ub

(control bounds)lb ub

(parameter bounds)lb ub

0

minimize

() ((), (), ,)
subject to

() ((), (), ,)

(0)

p c
T T

Q Rx u y p
y y dt u u dt

x t f x t u t p t

y t g x t u t p t

y y y

u u u

p p p

x x

⋅ ⋅ ⋅
− + −

=

=

≤ ≤

≤ ≤

≤ ≤

=

∫ ∫

&

(initial value)

(5)
where P is a positive definite and Q is a positive
semi-definite matrix. Bounds are denoted by the sub-
script “ub” and “lb” for upper and lower bounds re-
spectively.
Problem (5) is an infinite dimensional optimization
problem that can be efficiently solved by parameteri-
zation of both the control u and the state x using a
simultaneous method such as direct multiple shoot-

ing and collocation.
State-of-the-art numerical methods for solving such
and similar dynamic optimization problem have been
implemented in the software package ACADOtoolkit
[12], developed by OPTEC. The software is avail-
able open-source under the LGPL license, allowing it
to be linked also with commercial code, and work is
underway to fully integrate it with Modelica.
The integration consists of two parts. Firstly, it
should be possible to call ACADOtoolkit from Mod-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 494

elica. This is made possible by implementing a plain
C interface which can be called from Modelica code
using external objects just like the qpOASES inter-
face. ACADOtoolkit is written exclusively in C/C++
and avoids linking with external software, so it is
very suitable to use together with Modelica tools as
well as on embedded systems. Real-time optimal
control is one of the aims of the project.
The second, much larger part of the integration con-
sists of extending the software so that it can use
models formulated in Modelica. Small dynamical
models can easily be coded directly in C++, but for
complex models, a better solution is to import the
model equations into ACADOtoolkit. This will un-
doubtedly require the extension of the software to
deal with e.g. hybrid systems and integer valued con-

trols.
There are efforts to standardize the interaction be-
tween equation-based, object-oriented modeling lan-
guages such as gProms and Modelica on one hand,
and computer algebra tools and other mathematical
software on the other [7]. The two open-source
Modelica projects OpenModelica and JModelica
[11] both offer the possibility to export the flattened
simulation problem (i. e. variables, initial values,
model equations, etc.) in the ModelicaXML format
which in turn uses MathML to describe the model
equations.
To make also ACADOtoolkit conformant with this
standard, so that models defined in ModelicaXML
code can used by the software, an XML module is
being developed. This module parses the Modeli-
caXML code and translates the model equations into
ACADOtoolkit’s internal (symbolic) representation.
A further standardization is to use the Optimica, a
language extension for the formulation of optimal
control problems, to formulate the optimal control
problems. This provides an abstraction which is use-
ful to help engineers and scientists formulate optimal
control problems in a structured way [11].

Acknowledgements

The authors would like to thank for financial support
granted by the Initiative and Networking Fund of the
Helmholtz Association, the state of North Rhine-
Westfalia, and the European Union/European
regional development fund.

References

[1] Ahlbrink N., Belhomme B., Pitz-Paal R.:
Modeling and Simulation of a Solar Thermal

Power Plant with Open Volumetric Air Re-

ceiver. Conference Proceedings, Modelica
Conference 2009, Como

[2] Casella F., Otter M., Proelss K., Richter C.,
Tummescheid H.: The Modelica Fluid and

Media library for modeling of incompressi-

ble and compressible thermo-fluid pipe net-

works. Conference Proceedings, Modelica
Conference 2006, Vienna, September 4-5
2006

[3] Tummescheid H.: Design and Implementa-

tion of Object-Oriented Model Libraries us-

ing Modelica. Thesis, Department of Auto-
matic Control, Lund Institute of Technology,
Lund, August 2002

[4] Hirsch T.: Dynamische Systemsimulation und

Auslegung des Abscheidesystems für die so-

lare Direktverdampfung in Parabolrinnen-

kollektoren. Fortschrittsberichte VDI, Reihe
6, Nr. 535, VDI Verlag, Düsseldorf, 2005

[5] www.qpoases.org
[6] Ferreau H. J., Bock H. G., Diehl M.: An

online active set strategy to overcome the

limitations of explicit MPC. International
Journal of Robust and Nonlinear Control
18:816-830 (2008)

[7] Casella F., Donida F., Lovera M.: Beyond

Simulation: Computer Aided Control System

Design Using Equation-Based Object Ori-

ented Modelling for the Next Decade.
EOOLT 2008, Paphos

[8] López-Martínez M., Vargas M., Rubio F. R.:
Vision-Based System for the Safe Operation

of a Solar Power Tower Plant. Proceedings
of the 8th Ibero-American Conference on AI:
Advances in Artificial Intelligence, Vol.
2527, pp. 943 – 952, 2002

[9] Maciejowski J. M.: Predictive Control with

Constraints. Prentice Hall, 2002

[10] Fritzson P.: Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press, 2003

[11] Åkesson, J.: Optimica – An Extension of

Modelica Supporting Dynamic Optimization,
Conference Proceedings, Modelica 2008

[12] www.acadotoolkit.org

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 495

Feedback Loop Optimization
for a Distillation System by applying

C-Code Controllers with Dymola

Hansjörg Kapeller Dragan Simic
AIT Austrian Institute of Technology, Mobility Department, Electric Drive Technologies

Giefinggasse 2, 1210 Vienna, Austria
hansjoerg.kapeller@ait.ac.at dragan.simic@ait.ac.at

Abstract

The process engineering domain covers a large field
of different disciplines such as thermodynamics, elec-
trical engineering or chemistry. On one hand just
the knowledge about these different disciplines to ap-
proach and develop standalone-solutions is a big chal-
lenge where on the other hand the configuration and
the control of the system routines are crucial steps.
Nowadays most applications in process engineering
are automated and digital signal processors (DSP) are
widely used to implement control modules for differ-
ent automatic control systems in an efficient and flexi-
ble way. Nevertheless, without dynamically applicable
and real-time capable models it seems nearly impos-
sible to estimate real operating conditions (e.g. con-
troller parameter settings) in process engineering ac-
cording to real requirements.
This paper presents the simulation model of a ther-
mal control circuit for determining the distillation
properties of petrochemical end products modeled
in Modelica and performed by using the simulation
tool Dymola. This simulation environment improves
the design of interdisciplinary models and allows the
optimization of the entire feedback loop.

Keywords: process engineering, automatic control
systems, simulation, interdisciplinary models, opti-
mization

1 Introduction

The measurement device for determining the distilla-
tion properties of petrochemical end products is de-
picted schematically in Figure 1. It is a device in
which different processes of thermodynamics, chem-

Figure 1: Scheme of the investigated measurement
device for determining the distillation properties of
petrochemical end products

istry, mechanics, electrical measuring and control
technology must be controlled. The mode of opera-
tion is based on the vaporization of the investigated
medium, e.g. acetone, which condenses in a collect-
ing vessel again. The heating energy is controlled by
the heat controller and the condense level of the vessel
is controlled by a stepper motor, respectively. In case
of equilibrium and on condition that all controllers are
working in a stable operating point the medium vapor-
izes and condensates in the vessel by keeping a con-
stant level until all - in case of a pure substance - is
exhausted or - in case of a mixture - the next compo-
nent reaches the inherent evaporating temperature.

The challenge in this process engineering application
is to parametrize the level control and the heating con-
trol [1]. Both controllers are not independent: if the
stepper motor controller does not work adequatly, e.g.
the motor rotates too fast, the level in the vessel sinks
too quickly and the operating point becomes unsta-
ble. The incapacity resp. inertia of the heat controller

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 496 DOI: 10.3384/ecp09430054

leads to an insufficient vaporization of the medium and
therefore to an insufficient condensation rate with the
consequence, that the level decrease can not be com-
pensated. A flexible, timely and systematic way is to
model the entire measurement device using the object-
oriented modeling language Modelica [2].

2 Modeling and Simulation in Dy-
mola

For modeling and simulating integrated and complex
systems the software platform Dymola is used. Dy-
mola is an environment using the objects described in
Modelica syntax, which allows the software designer
to create models of any kind of objects that can be
described by algebraic and ordinary differential equa-
tions. With Dymola simulations of the behavior and
interaction betweens systems of different engineering
fields, such as mechanical, electric, thermodynamic,
hydraulic, pneumatic, thermal and control systems are
possible. The modeling language itself is open which
means that users are free to create their own model li-
braries or modify standard libraries to better match the
users individual modeling and simulation needs.

2.1 Simulation Models

To ensure, that the simulation reflects the measurement
device as best as possible, all components - except the
controllers - are modeled in Modelica code, whereas
the C-code algorithms of the DSP controllers and all
variable names have been retained unchanged and are
coupled directly as external C-functions to the rest of
the closed loop control system. Following this strat-
egy, the model allows to tune the controllers in the
same way as it occurs in the real measurement device
by adapting the C-routines of the DSP controllers and
the obtained simulation results based on the same C-
routines.
To emulate the DSP properties in Dymola, the exter-
nal C-routines (e.g. the heat controller) are invoked
using a sample clock. The clock frequency is given by
Tclock = 1

fsample
and corresponds to the processing time

when the heat controller routine will be executed on
the DSP. Thus every clock-event the Dymola-function
heatControl.mo will be executed (cp. Figure 2).
In Figure 3 the source code of this Dymola-function
in which the C-routine itself will be invoked and pro-
cessed is presented (cp. the sequence beginning with
external "C").

Figure 2: Dymola model of the heat controller.
When the clock-event occurs, the Dymola function
heatControl.mo will be executed

Figure 3: Modelica code of the Dymola function
heatControl.mo. Represents the interface to the
external C-routine heatController.c

2.1.1 Level Meter – Diode Array

Figure 4 depicts the model of the vessel equipped with
two input connectors. One connection provides the in-
put for the vaporized distillate (cp. Distillate_in), the
second one represents the control the input-variable
for the level control (cp. Stepper_connect). In real
life the level meter is realized by a diode array con-
sisting of 16 diodes, where effectively 10 diodes are
evaluated. The remaining 6 diodes are used, to de-
limit the upper and lower recoverable level positions.
In the simulation environment a corresponding dis-
crete signal is generated, which feeds the diodeDetec-
tor-model. The diodeDetector-model invokes the C-
function routines calcderiv.c and calcmen.c
and maps the discrete level signals into a proper range
of values (nominal value amounts 5) which are avail-
able after the inherent DSP process time of 0.1s as
output, again.
Figure 5 presents two generated outputs taken from
a simulation run during evaluation procedures. The
red curve shape (10 diodes evaluated) can be com-
pared with a gray curve, which represents the obtained
output of discrete position values, when all 16 diodes

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 497

Figure 4: Dymola model of the vessel including the
C-function routines for the level output generation

Figure 5: Obtained output of the level meter in Dy-
mola. Comparison of two curve shapes: red curve
10 evaluated diodes, gray curve 16 evaluated diodes

were evaluated. A diode array with higher resolution
gives rise to a higher frequent, albeit smaller ripple,
which leads to positive effects on one hand for the
stepper motor - less influence due to the mass inertia -
on the other hand for the heat controller, too.

2.1.2 Level Control

Figure 6 depicts the previous model extended with a
PI-controller which provides the control variable for
the level control thus the control loop for adjusting the
frequency of stepper motor can be closed. The stepper
motor controller is implemented as external C-routine
and corresponds identically to the implemented PI
controller on the digital signal processor. The DSP
process time for this C-code amounts 0.5s, the pro-
cess time for diodeDetector-model amounts 0.1s and
is implemented corresponding to the real measurement
device. With other words: the provided input sample
rate for the level controller is higher (10Hz) than the
generated output of the level controller (2Hz) which
acts as input for the stepper motor, again.

Figure 6: Extended vessel model with additional PI-
controller which provides the control variable for the
level control

Figure 7: Implementation of the heat controller closed
loop in Dymola which corresponds to the real mea-
surement device

2.1.3 Heat Controller

The control signal for the stepper motor is also used as
input for the heat controller (heatController.c)
which is implemented as PID-controller. The out-
put of the heat controller is filtered (iFilter) in or-
der to smooth the control variable if unexpected dis-
continuities occurs. This signal will be charged with
an acetone-specific base heat and is connected to the
cup-heater. Thus the controlled heating energy causes
the evaporation of the medium (acetone) and a de-
sired flow rate will be achieved (Distillate_out). All
components regarding the heat controller are depicted
schematically in Figure 7.

2.2 Simulation of the Entire Measurement
Device Model

If the two interfaces Distillate_out and Distillate_in
are connected using a pipe model (pipe), then the feed-
back loop for the entire model can be closed (antic-
ipated in Figure 1 already) and simulated in order to
ensure the validity comparing measurement data with
simulation data. Only after a successful validation,
modifications in parameterization or other appropri-
ate measures can be taken into account. The mea-
surement data are imported in Dymola using the block

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 498

Figure 8: Comparison of measured and simulated ac-
tual stepper motor frequency

measurementDataAcetone, the recorded DSP output is
also available. The comparison between measurement
and simulation is the subject matter of chapter 3.

2.2.1 Validation of the Stepper Motor Control

In Figure 8 the actual stepper motor frequency (blue
curve) - plotted from the real measurement device
when determining the distillation properties of ace-
tone - and the corresponding simulation curve shape
(red curve) are presented. The comparison of both, the
measured curve shape and the simulated curve shape
shows a good approximation of the developed mea-
surement device-model in the simulation environment
Dymola.

2.2.2 Validation of the Heat Controller

In Figure 9 the active heating temperature regulated
by the heat controller (blue curve from measurement
data) - when determining the distillation properties
of acetone - and the corresponding simulation curve
shape (red curve) are presented. The comparison of
both, the measured curve shape and the simulated
curve shape shows a good approximation of the de-
veloped measurement device-model in the simulation
environment, again.

3 Discussion of the Simulation Re-
sults

As in Figure 8 and Figure 9 already illustrated, the
validation of the simulated measurement device is
ensured adequately. The further investigation leads

Figure 9: Comparison of measured and simulated ac-
tive heat temperature

to a first conclusion, that the significant oscillating
heating tempertuare destabilizes the entire measure-
ment device. A suitable way to smooth this signal
is not to smooth the heat controller output as antici-
pated in chapter 2.1.3 already and realized here, but
to smooth the heat controller input, corresponding to
the common approach recommended by several con-
trol engineering theories [3]. As mentioned above,
the heat controller input signal (implemented as PID-
controller) is derived from the control signal for the
stepper motor and is a strong oscillating signal (cp.
Figure 8, nominal value: 120Hz) and from point of
reasonableness it makes sense to smooth this signal.
A different approach, but with similar effect, can be
achieved, when a diode array with higher resolution is
used (e.g. 16 evaluated diodes), which leads to less rip-
ple in the provided heat controller input signal. These
modification and further effects of controller and fil-
ter parameter changes will be investigated in the next
chapter.

3.1 Parameter Tuning - Improvements

The measurement device for determining the distilla-
tion properties of petrochemical end products is de-
picted in Figure 10 again, though with the already
mentioned modification to smooth the heatController
input. To enhance the filtering effect, the number of
averaged signals in the filter block is increased from
32 values up to 64. Thus the smoothed filter output is
generated by averaging the last 64 values and implies
an additional improvement for the entire system per-
formance. To reduce the signal-ripple distinctly (al-
lows more effective signal-smoothing), a diode array
with higher resolution (e.g. 16 evaluated diodes) could

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 499

Figure 10: Scheme of the supposed measurement
device for determining the distillation properties of
petrochemical end products

be used. Without improvements, the achieved active
heating temperature from the heat controller indicates
curve shapes, as shown in Figure 9 already. With the
modifications and when the heat controller parameters
are tuned in a proper way, too, the controlled heat-
ing energy leads to an optimized evaporation of the
medium (acetone) and therefore a more constant flow
rate can be achieved, however.

3.1.1 Consequences

Figure 11 depicts the achieved improvement when the
heatController input is filtered by using an enhanced
filter, where the number of averaged signals in the filter
block is increased from 32 values up to 64 and when
the heat controller parameters are tuned in experimen-
tal way: the derivative control component is deacti-
vated and the proportional gain is increased double the
amount. When applying these modifications (note that
the heat controller is a PI-controller and not a PID-
controller anymore) the obtained active heating tem-
perature curve shape shows a significant less oscillat-
ing curve shape.
Finally the investigation of the resulting flow rate in
the system is of interest and the comparison of the sug-
gested improvements are presented in Figure 12. The
red curve shape shows the flow rate of acetone (desired
flow rate 10µl/s) simulating the entire model without
improvements and where all parameters remain un-
changed.
The green curve represents the flow rate of acetone
when the heatController input is filtered by using the
enhanced filter and when the heat controller parame-
ters are tuned. This graph shows a signficant improve-
ment in the flow rate regarding minor oscillating and
closer approximating to the desired flow rate value.

Figure 11: Comparison of the simulated active heating
temperature curves - without improvements and with
improvements

Figure 12: Comparison of the of the simulated curves
for the acetone flow rate - without improvements and
with improvements

The gray curve shape shows a further enhanced time
behavior and results if additionally to the proposed im-
provements a diode array with higher resolution (e.g.
16 diodes) is used.

4 Conclusions

The purpose of this contribution was the implementa-
tion of the entire distillation model in such way, that
the simulation reflects the measurement device as best
as possible. Following this strategy, the model allows
to improve the measurement device and to tune the
controllers in the same way as it occurs in the real mea-
surement device by adapting the C-routines of the DSP
controllers, whereas time can be saved and a benefit in
flexibility can be obtained. The entire Modelica model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 500

of the measurement device for determining the distilla-
tion properties of petrochemical end products was pre-
sented and through the use of the simulation environ-
ment Dymola the design of interdisciplinary models
and the design of the entire feedback loop can be re-
vised. The recommended parameter modification es-
pecially for the heating controller and the changes re-
garding the control structure (i.e. the right selection
which signals should be filtered) show a significant im-
provement in the total system behavior.

References

[1] O. Föllinger, Regelungstechnik, Hüthig Verlag,
Heidelberg, 8 edition, 1994.

[2] Peter Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
IEEE Press, Piscataway, NJ, 2004.

[3] O. Föllinger, Optimierung dynamischer Systeme,
R. Oldenbourg Verlag, München, 1985.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 501

Modelling of high temperature storage systems for latent heat
Andreas Stückle

Institute of Technical Thermodynamics, German Aerospace Center (DLR)
Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

andreas.stueckle@dlr.de

Abstract

There is a huge demand for heat storages for evapo-
ration applications. Thermal storage systems are
used to increase the efficiency of thermal systems by
an improved adaption of energy availability and en-
ergy demand.

In this paper a possible solution for modular storage
systems from 200-600 °C and pressures up to 100
bar is presented. The application of steam as a work-
ing medium requires the availability of isothermal
storage if charging/discharging should take place at
almost constant pressure. The saturation temperature
range is between 200°C and 320°C. Therefore nitrate
salts are used as phase change material (PCM). The
solution developed at DLR is characterized by a
modular concept of tube register storages surrounded
by both sensible and latent heat storage material.

The focus in this paper is on modelling of the PCM
storage. A model is introduced for melting and freez-
ing of the PCM. To perform with an acceptable heat
transfer rate inside the PCM, fins are used to increase
the overall thermal conductivity. Instead introducing
mean storage material parameters, like thermal con-
ductivity or specific heat capacity, the geometry of
the finned tube is modelled by using discrete ele-
ments. Therefore the model allows detailed studies
on heat transfer during space and time. The fin de-
sign can be varied in order to find an optimal con-
figuration. A set of partial differential equations is
created and solved. When considering a stand alone
system, that means tube, fin and PCM, without a
connection to other components, investigation is
quite effective. In case of the PCM storage there is
the big advantage, compared with a sensible regen-
erator, that the almost constant fluid temperature,
when evaporating or condensing, leads to a uniform
temperature distribution in fluid flow direction.
Therefore only a very rough discretisation in axial
direction is needed, what even allows bonding with

other components e.g. from the Modelica Fluid Li-
brary.

Sensible storages as they are used for preheating and
superheating have a characteristic temperature gradi-
ent in axial direction. To describe their thermal be-
haviour concentrated models, using dimensionless
numbers, are used.
Keywords: latent heat; storage system; high tem-
perature

1 Introduction

The range for heat storage for evaporation applica-
tions is wide. One of the big topics today is the
equipment of thermal solar power plants for direct
steam generation [1] with thermal storage to increase
their total electricity output. Direct steam generation
means that the heat transfer fluid is water and steam.
Heat accumulators are a key for electricity suppliers
to guarantee safety of supply and to achieve good
results.
The DLR is working on solutions for storage systems
from 200-600°C and pressures up to 100 bar. The
saturation temperature range of the saturated steam is
between 200°C and 320°C. Due to the saturation
temperature, the melting range of the PCM is be-
tween 200°C and 320°C. Therefore, nitrate salts are
used.

Figure 1: Modular Storage System

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 502 DOI: 10.3384/ecp09430031

The storage systems developed at DLR are charac-
terized by a modular configuration of sensible and
latent heat accumulators (see Figure 1). The sensible
accumulators are made of a special high temperature
concrete. Both species are based on a tube register
surrounded by the storage material. The tube register
separates the heat transfer fluid from the storage ma-
terial. According to the Rankine process, a storage
system has to deliver superheated steam when dis-
charging. Therefore, the storage system for direct
steam generation is divided into modules. Feed water
is heated up close to the evaporation point in a pre-
heater storage. Evaporation takes place in the evapo-
rator system consisting of the evaporator PCM-
storage, a steam separator and a recirculation pump
[2]. The last part of the process is the superheating of
the saturated steam. Preheater and superheater stor-
age are both sensible accumulators.

When charging the system, the fluid flows in the op-
posite direction. The superheated steam is cooled
down in the superheater storage; thereafter con-
densed in the evaporator storage; finally the liquid
water is cooled down in the preheater.

Heat transfer in solids is characterized by partial dif-
ferential equations. Additionally, a model to describe
the melting and solidifying of the PCM was devel-
oped. Convectional heat transfer as well as conden-
sation and evaporation processes affect the heat
transfer at the tube’s inner surfaces and are described
by a Nusselt correlation for evaporation or condensa-
tion [3]. Also, pressure losses are calculated by cor-
relations. A steam- and water model is used to com-
pute state variables. Conservation laws for heat and
mass flow have to be solved.

A storage system for direct steam generation is char-
acterized by a modular design. That means that there
will not be a monolithic storage block but several
units. Therefore, an object oriented approach is con-
venient, particularly if the storage model will be con-
nected in the future with a power block or a collector
field model. Furthermore, peripheral equipment such
as pumps and valves have to be modelled and con-
trolled. Because of its interdisciplinary features and
modular character, Modelica is used.

The aim of this work is to provide a tool to design
and optimize storage systems and analyze especially
transient effects.

2 PCM Storage Model

2.1 Discrete Storage Models

In the first package of this work, discrete models of
“Storage-Tubes” were developed. Connecting these
elements in series and in parallel forms a whole stor-
age module [4]. The storage models are two-
dimensional formations fragmented into differential
elements. That means that the cylindrical storage
element is differentiated in axial and radial direc-
tions. The third dimension, which is the angle de-
pendence around the tube axis, is neglected because
it is assumed that the heat transfer is axially symmet-
ric. This assumption is particularly proper for verti-
cal tube registers. Vertical design is applied for high
temperature PCM storages because of various con-
structive reasons.

Figure 2: Model and two-dimensional grid of a stor-
age tube

The discrete elements as depicted in Figure 2 are all
composed in the same structure. Each element is de-
fined by coordinates x1 and x2. In the Modelica lan-
guage, indices are used to call the element.
Mass, heat capacity, substance values and state vari-
ables are concentrated in a centre point of the finite
volume element, which is from here on called cell.

Storage Material

Fin

Tube

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 503

This concentrated mass is surrounded by thermal
resistivities. They depend on the heat conductance
value of the cell, the distance between the centre
point and the heat transfer across the cross-sectional
area between two cells (see Figure 3).
The cells are coupled by “connectors” to transfer the
flow variable “heat flow rate” and the state variable
“temperature”.

Figure 3: Structure of Discrete Elements

2.2 Energy Balance

The following differential equation describes the
enthalpy change of a cell (left side) by the heat flow
over the cell’s borders (right side).

dSnJdVTc
dt
d

SpV
 ˆ

The heat transfer mechanism on the right side can be
convection, conduction or even radiation.
In this paper, only convection on the inside of the
storage tubes and conduction inside the material is
considered. This leads to the following form whereas
for the conduction the heat flow is the product of the
cross section, the heat transfer coefficient and the
temperature gradient perpendicular to the cross sec-
tion. For the cylindrical shape, a form factor is used.
At the inner tube side the convective heat coefficient
is derived from a Nusselt-correlation.

S
S x

TkAdSnJ

 ˆ

2.3 PCM Model

To model melting and freezing of cells, a model with
a specific heat capacity for the solid phase and liquid
phase is used. In theory, the enthalpy of a pure me-
dium rises in a step change when melting or freezing.
From experiments, we know that in engineering ap-
plications with nitrate salts there will not be a phase
change at a certain temperature but over a small
temperature interval of ca. 1K.
This effect is also useful for numerical calculations
where step changes should be avoided to guarantee
convergence and to increase calculation perform-
ance. Good performance is even reached with a
range of 0.1K. As there is no sense in engineering
applications to declare such a small range, the melt-
ing range is assumed to be 1K.

An effective specific heat capacity for the melting
range is defined by the specific enthalpy of fusion
divided by the temperature melting range.

melt

melt
meltp T

h
c

,

The following figure shows how the enthalpy of a
PCM increases with the rise of temperature.

Figure 4: Enthalpy of the PCM

Mass

Thermal Resistivity

Connector

x1

x2
En

th
al

py
 o

f F
us

io
n

Melting Range

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 504

The PCM is treated as a solid even for the liquid
phase. That means that there are no convective heat
transfer mechanisms if the PCM is liquid. They
would improve the performance when charging by
mass transfer inside the liquid phase.
The output performance of a thermal storage is criti-
cal because the discharge rating is usually higher or
equal to the charging rating. When discharging the
PCM storage, the PCM first solidifies at the surface
of the tube and the fins. Therefore, the heat transfer
mechanism is conduction.

2.4 Comparison with a Fluent Model

Plausibility of the model was checked by a 3-D Flu-
ent calculation (see Figure 5, the broken line is the
Fluent result, the continuous line from Modelica).
The Fluent standard PCM Model is used. As in
Modelica convectional heat transfer in the liquid
phase is neglected.
The temperatures of the cells lying on the line from
the chamfer between tube and fin to the cell with the
longest distance from tube and fin were compared
(see Figure 2). The rugged temperatures from the
Modelica model result from the coarse discretisation,
the Modelica grid consists of only 90 knots, but the
total time to melt the PCM completely is almost the
same. For this case, the PCM was molten in Fluent
within 8514s compared to 8726s in Fluent, which is
less than 2.5 % difference.

Figure 5: Comparison of the Modelica Model with
Fluent

The Fluent calculation took several hours whereas
the Modelica model only takes a few seconds. The
advantage of the Modelica model is the much higher
performance, which even allows coupling of the
model into a system simulation.

3 Application

3.1 Dimensioning of Fins and Tubes

These models are used to configure fins for different
applications, especially finned tubes and fins for a
claimed power in-/output by best utilization.
For evaporating water, high heat flux rates are
needed. Therefore, different kinds of fins can be used
to conduct the heat flow from the solidifying PCM
into the storage material or backwards.
Performance of fins of different materials and ge-
ometries is shown. The melting and freezing of the
PCM is examined, especially the melting front,
which controls power in- and output. The melting
front can be visualized as a two dimensional plot
using Matlab as depicted in Figure 6.

Figure 6: Temperature Field displayed in Matlab

In the following figure, two fins are compared. Inte-
gral heat flow rates are depicted. A cycle of complete
melting and solidification is shown. The storage was
initialized with a homogenous temperature 1 K be-
low the melting temperature. Therefore, before melt-
ing 0.5 K of sensible heat is needed. Heating was
stopped until the temperature of all cells was at least
0.5 K above the melting range. That means all cells
are liquid and slightly superheated. Cooling is done
with the same gradient and until the PCM is sub-
cooled 0.5 K. As expected, the model shows a sym-
metric behaviour.
The peak in heat flow rates at the beginning of
charging and discharging are due to the highest tem-
perature gradients at these moments.

totalQ , the total transferred heat flow rate, is the heat
flow rate transferred between the heat transfer fluid
and the inner surface of the tube. FinQ is the flow

rate between the fin and PCM and analogously TubeQ
between the tube and PCM.

Fin

Tube

PCM

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 505

The importance of the heat conducting role of the
fins in PCM evaporator applications is underlined
when considering that about 85% of the transferred
heat flows through the fin.

Figure 7: Heat Flow Rates in different Fin Configu-
rations

The tube, fin and PCM mass is the same in both
cases. Therefore, the amount of total enthalpy is the
same. In the first case, which allows the higher trans-
fer rate, the fins have half the thickness compared to
the second case.
With the same amount of material, about 50 %
higher heat flow rate is achieved.

3.2 Modeling of a whole Evaporator Storage

In the next step, the tube-fin-PCM-model is multi-
plied along the tube within a discrete element of the
fluid flow. Because of the almost constant tempera-
ture of a fluid when condensing or evaporating, the
axial discretisation can be relatively rough. This is
done in the following example of a PCM-storage
evaporator unit (see Figure 8).
While discharging, the source supplies the storage
module with almost saturated water. The fluid exits
the storage with a mass fraction of saturated steam at
the outlet. This mass fraction is separated in a steam

drum. The saturated steam flows into the sink. The
remaining water is recirculated through the storage
by a pump.

Figure 8: Example of a PCM-Evaporator Model

4 Conclusion and Outlook

A model to design a PCM storage equipped with fin-
ned tubes was developed. Rating and characteristic
can be calculated. Further, this model is adequate to
be coupled with other components, e.g. from the
Modelica Fluid Library, to model whole systems.

As depicted in Figure 8, the source and sink used to
simulate the sensible storages so far as shown in
Figure 1 will be replaced by sensible storage models
using coupled differential equations. They can be
solved easily in Modelica after transformation into a
system of differential algebraic equations (DAEs).

References

[1] Steinmann, W.D., Eck, M. Buffer storage for
direct steam generation. Solar Energy, 2006.

[2] Buschle, J., Steinmann, W.D., Tamme, R.
Analysis of steam storage systems using
Modelica. 5th International Modelica Con-
ference, 2006.

[3] Baehr, H.D., Stephan, K. Wärme- und Stoff-
übertragung. Springer-Verlag Berlin Heidel-
berg, 2006

[4] Steinmann, W.D., Buschle, J. Analysis of
thermal storage systems using Modelica, 4th
International Modelica Conference, 2005.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 506

Modelling of Residential Heating Systems using
a Phase Change Material Storage System

Corinna Leonhardt Dirk Müller
Institute for Energy Efficient Buildings and Indoor Climate,
E.ON Energy Research Center, RWTH Aachen University

Jaegerstr. 17/19, 52066 Aachen, Germany
cleonhardt@eonerc.rwth-aachen.de

Abstract

Modern heating systems for buildings need a supply
temperature of approximately 35 ◦C. Standard heat
storage systems do not work very efficiently with
small supply temperature differences, because of
the low sensible heat storage capacity. In contrast
to the sensible heat storage a phase change material
(PCM) storage system uses the phase change process
to store energy at small temperature differences [3],
[4], [5]. In this paper a thermo hydraulic model of a
PCM storage is developed and implemented by using
Modelica, so that dynamic modelling is possible. To
show the advantages of latent heat storage (LHS) the
PCM storage model has been combined to build a
standard heat pump system model with a PCM storage
instead of a sensible water storage and the overall
system is analysed.

Keywords: PCM; latent heat storage; heat pump;
thermo hydraulic modelling

1 Introduction

The topic of this research project is to study a latent
heat storage device for modern heating systems
with a supply temperature of approximately 35 ◦C.
The integration of the storage system into a heat
pump system should equalize the work load profile
leading to a higher yearly averaged coefficient of
performance. Additionally, the necessary heat pump
peak power will be decreased because the heat pump
is able to load the storage system over night time. The
center of research is the development of computer
simulations to examine the feasibility and advan-
tages of a latent heat storage system and of course
to find an efficient way of using the power of the PCM.

The institute for Energy Efficient Buildings and
Indoor Climate focuses on the research of the reduc-
tion of energy consumption of buildings and indoor
climate. There are two main research groups in the
institute. The first one works on energy systems and
the second one focuses on room airflows and indoor
comfort. According to these topics, one research
approach for example is the thermo hydraulic mod-
elling and simulation of energy systems and single
components with Modelica. The institute uses and
develops its own libraries [1]. Up to now one library
for the thermal building behaviour and a second one
for HVAC systems have been created. With the help
of these libraries and the Modelica Standard Library
a model of a phase change material storage system is
created and analysed.

Figure 1: Heat Pump System in Combination with La-
tent Heat Storage

Figure 2: Heat Pump System in Combination with
Sensible Heat Storage

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 507 DOI: 10.3384/ecp09430025

This paper describes the modelling and simulation
of a latent heat storage device and its integration
in a heat pump system. First the development of a
PCM storage device is shown and then the single
components of the heat pump systems are mentioned.
Finally a comparison between a heat pump system
with a sensible water storage to a heat pump system
with a latent heat storage is made and the results are
shown in this paper.

The pictures (fig. 1 and fig. 2) show a schematic
view of the overall systems. The first system de-
scribes a simple residential heating system in combi-
nation with a latent heat storage (fig. 1). The second
one is the reference case. Therefore, the whole set-up
is equal to the first one, but this time the latent heat
storage device is replaced by a simple buffer storage
with thermal layering.

2 Latent Heat Storage Device

2.1 Heat Transfer Equations

A thermo hydraulic model of a latent heat storage de-
vice is developed. The model is based on energy bal-
ance, which is given by:

∑ Q̇i = mcell · ccell ·
dTcell

dt
(1)

The sum of all heat fluxes Q̇i is equal to the prod-
uct of mass mcell , heat capacity ccell and the derivative
with respect to time of the temperature dTcell

dt . In this
paper a modified heat capacity is used and described
by an arc tangent function [2] of the specific enthalpy:

h = ht ·
[

arctan((T −Tt) · rt)
π

+0.5
]
+c ·(T−T0) (2)

first term (latent heat part)
ht specific enthalpy of transition
Tt temperature of transition
rt width of transition

second term (sensible heat part)
c specific heat capacity
T0 reference temperature of the system

So that the heat capacity is given by:

cp =
htrans

π · [((T −Ttrans) · rtrans)2 +1]
+ ĉp (3)

Fig. 3 shows an example of the heat capacity
and enthalpy function of an invented PCM, which
is based on a typical paraffin with a phase change
by 320 K. This latent heat storage material has a
characteristic phase change temperature of 320 K,
a phase change enthalpy of 180 kJ/kg and a heat
capacity of 2.4 kJ/(kgK). For the width of the peak
in the function of the specific heat capacity curve the
factor rt is set to the value two.

Figure 3: Specific heat capacity and enthalpy

2.2 Model of Latent Heat Storage

With the help of these functions a new latent heat
storage model has been created. The new latent
heat storage device consists of a box with several
PCM plates, which are flowed by water. The new
library consists of several sub packages, for example:
components, database and systems.

The components package includes all parts of a
PCM storage. For instance it includes the plates of
different phase change materials and several latent
heat storage devices, which differ in the set-up and
in the number of PCM plates. Generally a PCM
storage device is made up of several single plates
in combination with standard pipes of the Modelica
Fluid Library (fig. 4). The figure shows one example
of latent heat storage device, which exists of 12 plates
of PCM and a water flux, which flows in a meandering
course across the plates.

The plates are filled with the phase change material.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 508

Figure 4: Structure of a PCM Storage Device

Up to now there is no conduction and no mass of the
plate itself implemented, so that heat transfer from the
latent heat storage material to the pipe wall is ideal. In
order to get the best layout of the PCM storage plate
the design of an existing storage plate for cooling
systems is adapted to the heating system requirements.

One latent heat storage plate can be divided in two
directions (see fig. 5).

Figure 5: Structure of the Plates

In order to get the opportunity to describe the
behaviour of one latent heat storage plate in two
directions, it consists of discrete elements (finite
volumes). Every single element is described by one
energy balance (see fig. 6), which is realized by one
capacity block and four conductivity blocks, so that
the temperature distribution in the latent heat storage
device can be examined.

Fig. 6 shows the four heat conduction elements
and one capacity block, which are used. The single

Figure 6: Structure of the PCM-Volume

volumes are connected with each other, so that the
whole plate is created.

Due to the fact that thermodynamic properties
change during the phase change process the capacity
block and the conduction block of the Modelica
Standard Library are adapted (see Model PCM _
capacity and Model PCM _ conductivity).

model PCM_capacity
Real c_p;
Real T(start=T_start);

Modelica.Thermal.HeatTransfer...
Interfaces.HeatPort_a port;

equation
T = port.T;
m_cell*c_p*der(T) = port.Q_flow;
c_p=((h_trans/(pi*((T-T_trans)*...

r_trans)^2+1))+c);

initial equation
if steadyStateStart then

der(T) = 0;
end if;

end PCM_capacity;

The capacity block is duplicated and modified by
using the equation (3) mentioned before (see Model
PCM _ capacity, equation section).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 509

Another point is that the conductivity of the latent
heat storage material is a function of the actual state
of aggregation, so that the heat conduction, lambda, is
a function of the amount of the liquid and solid mass
fraction as shown in the model PCM _ conductivity.

model PCM_conductivity
...
if frac_liquid < 0 then
lambda=lambda_solid;
elseif frac_liquid < 1 then

lambda=frac_liquid*lambda_liquid+...
(1-frac_liquid)*lambda_solid;

else
lambda=lambda_liquid;
end if;

end PCM_conductivity;

Fig. 7 describes another aspect, which has to be
kept in mind by using a latent heat storage device, the
question of the amount of PCM, which has to be used
to keep the building warm.

Figure 7: Comparison of different numbers of LHS

The simulation set-up is based on a cool day and a
building, which is built up of five identical rooms. As
the name already suggests, the simple house model
describes the behaviour of a residential building. It
consists of five rooms with the same geometrical and
thermo hydraulic qualities.

As fig. 7 shows, the heat pump has to turn on three
times to keep the rooms warm, if there is only one
latent heat storage device. According to this, the heat
pump has to turn on once, if there are 7 PCM storage
devices integrated.

For the actual study six latent heat storage devices
have been taken, which means a total amount of mass
of PCM of about 170 kg.

3 Heat Pump System

At the Institute for Energy Efficient Buildings and
Indoor Climate an independent library for the whole
heat pump system has been developed [1]. This
enables us to take off all components for the heat
pump system, there. Therefore all components can be
directly put together to an overall system (see fig. 8
and fig. 9).

The heat pump model is described in detail in
paper [1]. This model consists of two heat exchangers
(condenser and evaporator). Both heat exchangers
allow changing energy between the heat pump cycle
and the medium of the heating cycle.

The standard buffer storage is also a component,
which can be taken off the heat pump library. It
consists of several layers. Within the model any
number of them can be chosen. In this study the buffer
storage consists of five layers, so that thermal layering
is also taken into account.

The heating cycle is controlled by a heating curve,
which is calculated in respect to the ambient tempera-
ture.

4 Combined Simulation

A comparison of two heat pump systems has been
made. The first system consists of simple buffer
storage with thermal layering and in contrast to the
first system, in the second one the buffer storage is
replaced by a latent heat storage device.

In fig. 8 the buffer storage is presented in the
middle. On the left the heat pump cycle is presented
and on the right the heating cycle can be seen.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 510

Figure 8: Heat pump system with buffer storage

Figure 9: Heat pump system with latent heat storage

The set-up of fig. 9 is built up analogously. Only
the storage system, the buffer storage, is replaced by a
latent heat storage device.

Both systems are simulated for a cool day in May
and the results are shown in fig. 10 and fig. 11.

4.1 Results

Fig. 10 shows the results of the first simulation run of
the two systems (fig. 8 (warm water storage) (WWS))
and fig. 9 (latent heat storage) (LHS)) and in fig. 11
the results after an optimization of the overall system
are described. In the first diagram of fig. 10 and fig.
11 the results of the heat pump power are described.
The second diagram shows the heat pump condenser
temperature and the last diagram shows the ambient
temperature and the room temperature.

Figure 10: Results of first set-up

The results of fig. 10 and fig. 11 show that the
latent heat storage device improves the heat pump
behaviour. On the one hand the switching between on
and off of the heat pump can be reduced by integrating
a PCM storage instead of the buffer storage, so that
heating costs can be spared. On the other hand it is
even possible to reduce the amount of energy, because
of the low supply temperature, which reduces the
energy losses. So another effect should be lower heat
pump temperatures, but up to now they are only a
little bit lower after the optimization, but this still has
to be analysed.

4.2 Conclusions

The first simulations of the latent heat storage device
show the potential of such a storage system and that
its integration into heat pump systems can decrease
the heat pump power.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 511

Figure 11: Results of the second set-up

The existing latent heat storage component itself
will be improved, for example by adding the conduc-
tion and mass of the storage plate. Another point is
that the heat transfer to the water in respect to the
specific surface area of the plates will be integrated.

One further application, which will be simulated, is
the combination with a solar thermal collector. And
another interesting addition of the existing simulation
model would be the integration of a domestic hot
water tank to the overall system.

5 Acknowledgement

The authors would like to thank the E.ON gGmbH for
the financial support of the project.

References

[1] Huchtemann, K. Advanced simulation methods
for heat pump systems: Modelica 2009, Septem-
ber 20-22.

[2] Buschle J. Analysis of steam storage systems us-
ing Modelica: Modelica 2006, September 4-5.

[3] Fachinformationszentrum Karlsruhe (Hg.)
Wärmespeicher: BINE- Informationsdienst,
Karlsruhe 2005

[4] Mehling, Cabeza Heat and Cold Storage with
PCM: Heat and Mass Transfer, Springer, Berlin
2008

[5] htttp://www.zae-bayern.de / deutsch / abteilung-
1 / arbeitsgebiete / latentwaermespeicher / ein-
führungg.html (Februar 2009)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 512

Rapid Thermal Analysis of Rigid Three-Dimensional Bodies
with the Use of Modelica Physical Modelling Language

Corey Bolduc Chahé Adourian
Canadian Space Agency, Department of Space Technologies

6767 Route de l’Aéroport, St-Hubert, Quebec, Canada
coreybolduc@yahoo.com Chahe.Adourian@asc-csa.gc.ca

Abstract

Quick analysis of thermal systems without the use
of CAD models may be very valuable for rapid-
prototyping. Such a need led to the heavy modifica-
tion of the Heat Transfer package found in the Mod-
elica standard library. The library in question revolves
around a three-dimensional generic block composed
of a variable number of interconnected elements with
individually assignable thermal and physical proper-
ties. When applying the accompanying library func-
tions, one may create moderately complex thermal
structures with non-uniform thermal properties. Fur-
thermore, other tools available also allow the user to
attach chains of blocks of different resolutions, as well
as insert one block into another to create composite
models with the possibility of internal heat genera-
tion.
Keywords: Thermal Analysis, Modelica, Finite Ele-
ment Analysis, Matlab

1 Background

Thermal analysis software may be generally catego-
rized into one of two groups, each with their own re-
spective strengths and weaknesses. The first group
represents packages such as the 1-D HeatFlow library
in Modelica which relies on primitive nodal techniques
to produce relatively crude analyses of thermal mod-
els, but in short order and with little effort. On the op-
posite side of the spectrum lie the other group consist-
ing of highly developed Finite-Element Analysis soft-
ware such as NASTRAN, ANSYS, and CATIA. Al-
though the latter group offers superior fidelity, CAD
models are required for analysis, which is often time
consuming in itself to produce. Somewhere in the mid-
dle lie a group of hybrid tools which may be consid-
ered as rapid thermal analysis tools, and whose im-
portance is only beginning to be recognized. They

are characterized by being capable of modeling ther-
mal models that go beyond 1-D but at the same time
don’t require a CAD model in order to create them.
We describe in this paper the implementation of such
a thermal modeling library with the use of the Model-
ica language.

2 Introduction

The need for a rapid thermal analysis tool arose natu-
rally with the development of a multidisciplinary satel-
lite simulator. Among other criteria, a means of pre-
dicting the temperature for specific sections of the
spacecraft at any point in orbit became necessary. By
combining multiple internal and external heat sources
as those produced by solar radiation and various on-
board power systems, a complete and reasonably ac-
curate analysis may be executed for both transient and
steady-state scenarios. Utilizing generic thermal mod-
els, one may quickly create specialized components
which may be “snapped” together, thereby creating
complex combinations quickly.
The overall objective is visualized by the components
seen in figure (1). The top part of the figure shows the
satellite being modeled with its two solar panels on
the left and the right and the main body in the middle.
These different components are connected mechani-
cally, electrically and thermally. Below the satellite
are three Modelica device blocks each containing be-
havioral models from each of the physical disciplines
mentioned previously (and more). Their structure re-
flects that of the spacecraft. On the left and right are
the Modelica models of the solar panels and in the
middle the main body. Each device model possesses
proper interfaces in each discipline to connect to its
neighbors and more importantly for the purposes of
this paper they each contain a Thermal Block model
shown below the device. The Thermal Blocks in turns

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 513 DOI: 10.3384/ecp09430036

is composed of Thermal Elements which are shown as
nodes on a grid at the bottom of the figure.

Figure 1: Example

The Thermal Element was designed such that it allows
and simplifies the creation of hierarchically structured
thermal components that fits nicely within the device
models and can be representative of the hierarchical
structure of real systems. This is accomplished by pro-
viding various types of ports permitting direct access
to heat flow and temperature variables within Thermal
Elements and Thermal Blocks. Designers have then the
freedom to apply different boundary conditions (e.g.
temperature, or heat flow) to individual elements and
define thermally dynamic components/devices such as
a battery or a heater.
Each Thermal Element in Thermal Block may be as-
signed thermal properties different from those of its
neighbors’ such as specific heat (heat capacitance),
thermal conductance and initial temperature. Thermal
conductance is of particular interest since the ability to
assign it a value of zero effectively prevents any heat
flow through an element, resulting in what accurately
represent a cavity. The assignment of the aforemen-
tioned properties is carried out by use of base functions
(three shapes for each individual thermal property and
density). For each property, these functions are avail-
able for spherical, rectangular prismatic, cylindrical
distributions, and are used to assign a particular prop-

erty value within the shape’s boundary and another on
its outside.
Other tools developed also give the user the option to
interface blocks of dissimilar resolution, or to insert
multiple blocks into a single block in order to repre-
sent a satellite containing interacting components of
varying fidelity, and heat sources through conduction
and radiation (future development).
Despite its powerful simulation capabilities, Model-
ica (and Dymola) leave much to be desired in terms
of user interfacing and three-dimensional graphic vi-
sualization of simulation results. In order to expedite
results analysis, a program was created in Matlab to
display an animation of the temperature and heat flow
distribution within a body (or bodies) as a function
of time. It is the hope that in the future further ad-
vances of the Matlab code will lead to an independent
executable which will be able to act as the interface
between the user and Dymola, thereby facilitating the
initial configuration and debugging of models.

3 Thermal Element

The basic building block of the thermal model is the
thermal element representing the thermal behavior of
a cubic shape with isotropic thermal properties. The
mathematical modeling follows from finite volume
methods as explained in [1]. In the following sections,
we provide the details of this model.

3.1 Physics

The Thermal Element is comprised of six thermal con-
ductors to represent thermal connections from any of
the six faces of the cube and connected to a central heat
capacitor modeling the cube capacitance via a heat
port (Figure 2). Two thermal conductors are placed on
each side of the heat capacitor in each direction. The
thermal conductors transport heat and are normally as-
signed a constant thermal conductance value given by
equation (3.2) where Gi is the heat conductance, k is
the thermal conductance, Ai is the cross-sectional area
and Li is the length of the cube in the direction

i ∈ {+x,−x,+y,−y,+z,−z} (3.1)

of heat flow.

Gi = k
Ai

Li/2
(3.2)

To calculate the heat flow through each thermal con-
ductor equation (3.3) is used where Ti and Tc are re-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 514

spectively the temperatures of surface Ai and the cen-
ter of the cube. Heat flow into the cube has positive
sign.

QT hermalConductori = G
Ti−Tc

Li/2
(3.3)

The heat capacitor modeling the heat storage capacity
of the cube completes the thermal model of the single
cube. Given the specific heat capacity c and the mass
of the cube its thermal capacitance C is calculated us-
ing equation (3.4).

C = c m (3.4)

Heat flow into the capacitor is given by equation (3.5)
where dTc

dt is the time rate of change of the capacitor’s
(or cube’s) temperature.

QHeatCapacitor = C
dTc

dt
(3.5)

Because a heat flow is associated with each thermal
conductor and the conductors are thermally coupled to
the central heat capacitor, the total heat flow into the
capacitor (or equivalently the cube) is the sum of heat
flows through the conductors (or cube surfaces) and is
given by equation (3.6).

QHeatCapacitor = ΣQT hermalConductori (3.6)

The Thermal Element is a single node in a rectangu-
lar grid discretisation of a physical object given by the
Thermal Block described in section (4).

3.2 Coding

The thermal element is assembled using standard com-
ponents from the Modelica library. Relevant compo-
nents include thermal conductors and a heat capacitor
from Modelica.Thermal.HeatTransfer library and con-
stant sources from the Blocks.Sources library. These
are arranged as shown in figure 2.

3.3 Interfaces

A Thermal Element has many different interfaces use-
ful under different circumstances.

Default Heat Ports In the basic use case of a Ther-
mal Element, the elements are packed side by side and
their heat ports connected individually top-to-bottom,
left-to-right and front-to-back in order to form the grid
nodes of a single Thermal Block.

Figure 2: Thermal Element model

Multiple Heat Port In some situations that we will
encounter later, it is convenient to have a single con-
nector which combines all six heat-ports of a Thermal
Element. A custom connector called HeatPortMulti
was created for this purpose and is part the Thermal
Element’s interfaces.

Conductance Ports In addition to the heat ports,
there are six signal output ports that hold the conduc-
tance values Gi and are used when connecting to a res-
olution adapter (i.e. Mapper or Surface Interface). Un-
der some circumstances, it is necessary for a Thermal
Element to share with connected thermal components
its conductance value for correct physical modeling.

4 Thermal Block

The Thermal Block pictured as a grid in figure (3) is
the main physical representation which the user ini-
tializes and analyzes after simulation. It represents a
block of material in the shape of a rectangular prism
and is composed of Thermal Elements set on a carte-
sian grid. Setting the parameters of the individual
Thermal Elements is the method by which the user
defines the actual shape of the prism. This is equiv-
alent to a Finite Element Model with the parameters
at each grid point determining both the type or even
presence of material together with its physical prop-
erties. For example, an empty cavity inside the prism
can be modeled by setting the conductance to zero at
grid points in the cavity. Different materials may be
specified at different grid points again by varying the
parameter values at these points.

4.1 Mathematical Model

The Thermal Block is assumed to be a rectangu-
lar prism with height H (x-direction), length L (y-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 515

Figure 3: Thermal Block

direction) and thickness T hk (z-direction). The grid
resolutions or the number of Thermal Element nodes
in each direction are specified by integers Nx, Ny and
Nz which the Thermal Block used to create a lattice
structure of Thermal Elements connected by their heat
ports.
Thermal conductivity, specific heat capacity, initial
temperatures and mass-density distributions must also
be provided and are used to initialize the Thermal El-
ements. The physical dimensions and grid resolutions
are used to calculate Thermal Element lengths Li and
cross-sectional areas Ai in each direction i which in
turn are used to calculate the individual thermal pa-
rameters C and Gi.

4.2 Physical Property Distributions

By default, the aforementioned properties are set to be
filled uniformly with a default value (arbitrarily cho-
sen to be that of aluminum) and can be changed by
the user. However, uniform distributions are not very
interesting and another option is required.
Components with complex geometries and non-
uniform thermal properties are made possible with
the aid of pre-defined functions. We defined exam-
ple functions that provide the parameter distributions
necessary to model cylinders, spheres and rectangu-
lar prisms of constant k, c, T0 and ρ values. Thermal
property values for both inside and outside the shape
in question are specified. Moreover, the center of each
shape function may be positioned anywhere within the
Thermal Block, and superimposed on one another. For
example, two create a thermal model representing two
parallel cylinders side by side we take a single Ther-
mal Block and apply a superposition of two Cylindrical
distributions with proper offsets.
By extending the use of distribution functions, one
may create cavities in the material by setting the con-

ductance of certain thermal elements to zero, thereby
effectively preventing heat flow through them as well
as reducing the number of equations to solve. The
hollow function originally prevented the connection
of heat ports between neighboring Thermal Elements.
This was counterproductive as these connections were
needed when inserting a Thermal Block into another.
Therefore, the current cavity function works by assign-
ing a thermal conductance value of zero to the thermal
element to be isolated from its neighbors. Given the
resulting “empty space” within the material, this does
not forbid the possibility to connect another block to
the cavity walls.

4.3 Interfaces

The Thermal Block has various interfaces for connect-
ing to other thermal components. There are six inter-
faces to connect to the surfaces of the block. The inter-
nal grid elements of the block are also visible allowing
for example to connect an external heat source to the
center of a Thermal Element or to insert a block into
another.

In order to allow for these complex interconnections,
access to heat and conductance value information were
devised through the creation of specialized ports. The
first, referred to as a HeatPortMulti port, includes six
standard heat ports (one per Thermal Element surface)
each of which connects automatically when HeatPort-
Multi’s are connected to one another. Such a port was
implemented in order to facilitate the insertion of one
block into another by the Mapper which is covered
later. The second type of port, the ConductanceMulti-
Port port, serves the same function as the former, but
for conductance.

Both types of ports were implemented as arrays of
size and dimensions equal to those of the Thermal El-
ements within the Thermal Block, and were connected
to the corresponding sides of the appropriate element
before connecting to one another in sequence.

With an infrastructure established to access the inter-
nal elements of a Thermal Block, six standard heat port
arrays and six conductance port arrays, each of dimen-
sion two, were introduced and connected to each side
of the Thermal Block in order to facilitate surface-to-
surface connections. These side ports are created con-
ditionally only when connecting a particular side, so
as to avoid the creation of mathematically problematic
extra equations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 516

4.4 Block Insertion

Given the grid structure of the Thermal Blocks, it is
natural to consider overlaying two such grids. Such
a scenario arises when we want to model components
contained within components. For example the satel-
lite’s external metallic frame contains within it a mul-
titude of components including the computer, sensors,
actuators, batteries, etc. We would like one Thermal
Block to represent the satellite’s structure with a cav-
ity within. Another block could represent the battery
which is smaller than the first block and is contained
within it. Inserting one block into another can be seen
as an overlaying of the two thermal grids at the inter-
section of the two physical objects. Thermal connec-
tions must be established at the interfacing surfaces.
The Mapper component enables this by accessing the
internal elements of each block and properly mapping
them to each other.

5 Surface Interface

The Surface Interface model serves to thermally cou-
ple the external surfaces of two thermal blocks with
different grid resolutions. When attempting to ther-
mally connect two such bodies, one finds that their
respective array indices cannot be correlated to each
other one-to-one. Instead a more complicated link-
ing mechanism must be implemented which requires
not only connections to the surface heat ports but also
knowledge of the conductance of each of the surface
elements. Therefore the surface interfaces of Ther-
mal Blocks contains both heat port and conductance
port arrays of dimension two on each end. The ar-
ray connectors of the Surface Interface are initialized
manually by the user and must match the array sizes
of the surface arrays on the adjacent bodies . Informa-
tion on heat and conductance from each body is passed
through both ends to a custom thermal conductor ar-
ray which receives its conductance value externally
through a conductance connection. In order to imple-
ment physically correct heat distribution, algorithms
were implemented to distribute the heat flow from one
element to the appropriate number of elements on the
opposite end.
Below is a sample of the distribution algorithm for
the connection between the input heat port array and
a thermal conductor array:

for i in 1:s loop
for j in 1:t loop

for Mi in (1:sp) loop

for Mj in (1:tp) loop
M1[Mi + (i - 1)*sp, Mj + (j - 1)*tp].G

= CPL[i, j] / (areaRatio1-1);
connect(HPL[i, j],

M1[Mi + (i - 1)*sp,
Mj + (j - 1)*tp].port˙a);

end for;
end for;

end for;
end for;

M1 is one of the external thermal conductor arrays,
sp and t p are the corresponding dimension sizes to s
and t and (either u or v depending on surface rotation),
areaRatio1 = u× v, and HPL is the heat port array on
the left side.

Interface parameters The parameters s and t repre-
sent the number of elements in each planar direction
of the interacting surface of the left body (u and v for
the right body). The algorithm essentially functions
by finding the product of the surface dimensions and
their counterpart dimensions on the opposing side (e.g.
areaRatio1 = u× v). The heat flow and thermal con-
ductance values for each body surface element are in-
dividually supplied to a number of thermal conductors
equal to that of the number of elements on the sur-
face of the other body. The thermal conductor itself
does not in fact utilize the received thermal conduc-
tance value immediately, but instead increases or de-
creases its value in order to avoid the intermediate ther-
mal conductor arrays interfering with heat flow, which
would ultimately skew the results. Included in the sur-
face interface model is the option to rotate the right
surface with respect to that of the left surface (input).
Such a feature becomes necessary when constructing
objects such as a cube out of four separate blocks.

Contact Resistance In the physical world, when
two objects come into contact with one another, there
exists a thermal resistance known as thermal contact
resistance. Thermal contact resistance represents the
thermal resistance created by the two materials not
coming into complete contact with one another due
to microscopic roughness and resulting spaces. These
spaces may either contain a fluid or vacuum, each of
which will inhibit the heat flow between the materials.
In order to simulate the aforementioned phenomenon,
a standard thermal conductor array is implemented in
the interface whose thermal conductance (G = A/Ri)
is based on the contact area and the interface resis-
tance. Contact resistance tables exits for a variety of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 517

materials, finishes, roughness, temperature and other
conditions.

Surface Mapping In order to distribute the heat
flow accurately through the surface interface from one
block to another, two separate thermal conductor ar-
rays are employed. This is shown in figure (4). The
two resolution values (e.g. m and p) for each surface
are multiplied by their directional counterpart to find
a product (m× p). The thermal conductor arrays are
then established as being size (mSide1 ×mSide2)×
(pSide1× pSide2). The intermediate thermal conduc-
tor array is based on a standard (library) thermal con-
ductor, but fitted with a heat and conductance port,
thereby allowing it to have its G inputted by the G of
the connecting element in the adjacent block. With
current value of G known for each element in a block
and the desired resolution change, the equivalent G
may be computed. Therefore, the computed G serves
to increase, or decrease resistance as required across
the surface interface, in order to obey heat conserva-
tion.

Figure 4: Surface Interface

6 Mapper

A three-dimensional extension to the surface interface
is the Mapper. The Mapper allows for one body of
a particular resolution, to be thermally coupled within
another block of a differrent resolution. Such an option
would allow one to be able to insert a power supply
into a certain section of the satellite’s main body.

7 Animation

Because of the somewhat limited data visualization
capabilities in Dymola when working with three-
dimensional data, a visualization tool was developed
using Matlab. At the present moment the visualiza-
tion tool accepts Dymola analysis data from the ther-

Figure 5: Temperature Distribution Snapshot

mal model run and renders a three-dimensional ani-
mation. Visualization allow color-coded animation of
the temperature scalar data as well as heat flow vector
information. Figure (5) shows an example heat dis-
tribution within a Thermal Block at a specific point in
time. The visualization capability is of great help in
determining whether our model is behaving properly
and for debugging purposes.

8 Conclusion

In conclusion, we have developed an experimental
thermal modeling library using Modelica that lies half-
way between simple 1-D modeling tools and advanced
CAD-based ones. The block diagram modeling capa-
bilities of Modelica were used to provide high-level
snap-on thermal models that could represent 2-D and
3-D models with non-uniform thermal distributions.
Further, mechanisms to connect these 3-D models in
complex ways were developed including the capacity
to insert blocks one into the other following the idea
of hierarchical composition.

References

[1] Earl A. Thornton.
Thermal Structures for Aerospace Applications.
AIAA, 1996: 98-99.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 518

SoundDuctFlow: A Modelica Library for Modeling
Acoustics and Flow in Duct Networks

Helmut Kühnelt Thomas Bäuml Anton Haumer
Austrian Institute of Technology, Mobility Department

Giefinggasse 2, A-1210 Vienna, Austria
{helmut.kuehnelt,thomas.baeuml,anton.haumer}@ait.ac.at

Abstract

SoundDuctFlow, a Modelica library for the joint
calculation of acoustic and flow quantities in
HVAC (Heating, Ventilation and Air Condition-
ing) ducts is presented. Modeling the sound prop-
agation in ducts by one dimensional acoustic two-
port methods is a well-established technique for
the acoustic characterization of large HVAC duct
networks. Two different approaches of acoustic
modeling will be considered in the framework:
When resonant phenomena are insignificant, it is
often sufficient to apply band-averaged models to
predict the sound power level and the transmission
loss within the individual components of the duct
network. For the low frequency range where linear
plane wave propagation is valid, acoustic two and
multi-port models based on a transmission matrix
formulation of the sound pressure can be applied
for high frequency resolution and phase accurate
calculations. For the prediction of the mean air
flow in the duct network pressure loss models
are applied. The coupling of acoustic and flow
elements permits the simulation of flow acoustic
phenomena.
For setting up large networks a smooth work
flow is vital for the user: The simulation is
easily set up using the GUI provided by Dymola.
External parameterisation ensures persistent data
management. The resulting system of equations
is automatically pre-processed and solved by Dy-
mola.
In this paper an overview of this new library is
given together with exemplary applications.

Keywords: acoustics; flow; ducts; flow noise;
HVAC; modeling; simulation; Modelica library

1 Introduction

The joint calculation of sound level, air flow rate
and pressure loss in large HVAC duct networks as
well as the prediction of the noise level in the pas-
senger compartment gains more and more in im-
portance in the early phase of design. The unified
Modelica framework for one-dimensional acoustic
and flow simulation introduced here serves as a
tool for concept modeling. Used by the design
engineer in an early design phase, it has to meet
several requirements: The prediction method has
to be fast and computational efficient. All kinds
of available data should be used, from analytic
and (semi)empiric models to data obtained from
measurements and three-dimensional acoustic and
fluid dynamics computer simulations to charac-
teristic diagrams and sparse point data provided
by component manufacturers. It also should be
extendable to add physical phenomena like heat
transfer or transport of humid air and complex
flow-acoustic interactions. Finally the framework
should be open for integration into a complete
system simulation.

2 Modeling acoustics in duct
networks

In modeling acoustics of duct networks usually
following assumptions are made: Only the steady
state of the system has to be regarded. The
dimensionality of the systems often can be reduced
from 3-D to 1-D. The acoustic properties of each
component can be characterized by an acoustical
two-port (or a multi-port in the case of a branch-
ing), a grey box whose transfer behavior can be
calculated by means of 1-D to 3-D methods, like fi-
nite (FEM) or boundary element methods (BEM),

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 519 DOI: 10.3384/ecp09430115

independently from each other. Two standard
one-dimensional approaches are available:
First, the sound power-based description has

been widely used and forms the basis of the most
standards and guidelines for the analysis of sound
in ducts, e.g. see ASHRAE [1, 2] or VDI [3].
It can be applied for frequencies well above the
plane wave cut-off. The sound power level within
a duct network can be determined by summation
of the losses and gains in sound power level at the
connecting interfaces of the components from the
fan towards the terminal sections of the network.
All contributions resulting from wave reflections
are neglected in this approach. This makes the
prediction procedure very simple, but reduces the
reliability considerably.
Second, the plane wave based description of

ducts, mufflers and networks [4, 5, 6] covers the
low frequency range. A variety of analytical
plane wave two-port models is available in the
literature. The acoustical transmission matrix of
non-standard components can be determined by
3-D FEM/BEM or unsteady CFD simulations in
case of non-zero mean flow. In HVAC duct net-
works with their large lateral dimensions, however,
the frequency range of plane wave propagation is
rather limited. Nevertheless, accurate sound pre-
diction at lower frequencies below a few hundred
Hz is quite important, since absorbing liners are
ineffective at those frequencies. In Table 1 the
plane wave cutoff frequency, fc, is given for some
exemplary circular ducts.

Table 1: Plane wave cutoff frequencies for circular
ducts.

diameter fc typical usage
10 mm 20 kHz brass wind instrument
50 mm 4 kHz car exhaust pipe
300 mm 670 Hz HVAC ducts

2.1 Sound power-based description

The sound power-based description of sound
transmission in ducts is valid for frequencies well
above the plane wave cut-off. Wave reflections
are neglected. The transmission loss of a duct
element is considered. The variable of state then
is the sound power level LW :

LW = 10log10

(
Pac
P0

)
dB (1)

with a reference sound power level P0 = 10−12

Watt. Typically LW is specified for octave or 1/3-
octave frequency bands. The summation of levels
Li obeys the following rule:

Lsum = 10log10

n∑
i=1

10Li/10 (2)

The acoustic elements based on the sound power
description are extended from one, two or multi-
ports. Each port is represented by a signal-
based connector holding two arrays of incoming
and outgoing LW in N frequency bands. Since
there are no reflections considered, in passive
elements like silencers, each incoming LW signal
is mapped onto the outgoing LW independently
of its counterpart:

LWi
out
A = LWi

in
B −∆LWiB→A

LWi
out
B = LWi

in
A −∆LWiA→B

(3)

with ∆LWi the reduction of the sound power level
at the ith band. This allows bidirectional usage of
the components.
In-duct sources, like fans or bends contributing

regenerated flow-noise, add their forward and
backward contribution to the total sound pressure
level according to eq. (2)
Figure 1 gives some examples of acoustic com-

ponents already included in SoundDuctFlow, like
different types of pipes, bends, silencers, fans.

2.2 Plane wave description

In the wave based description the steady state,
frequency dependent plane wave solution of the
wave equation is regarded. This approach is valid
only for the low frequency region below the plane
wave cut off. Although this region is rather
limited because of the large lateral dimensions
usually found in HVAC duct networks, an accu-
rate calculation is nevertheless important, since
absorbing materials are rather ineffective at those
frequencies. Two physically equivalent methods
can be applied to characterize the individual duct
element.
In the scattering matrix method the sound pres-

sure p is decomposed into forwards and backwards
traveling plane waves:

p(x,t) = p̂(x)expiωt = p+ expi(ωt−kx) +p− expi(ωt+kx)

(4)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 520

Figure 1: Examples of acoustic elements.

where k = ω/c0, p+ and p− are the amplitudes
of forwards and backwards traveling waves. The
acoustic particle velocity then is:

v̂ = 1
ρ0c0

(
p+ exp−ikx−p− expikx

)
. (5)

A four pole scattering matrix S maps the for-
ward and backward propagating sound pressures
of one port onto the second port:(

p+
1
p−1

)
=
(
S11 S12
S21 S22

)(
p+

2
p−2

)
(6)

This formulation is preferred in connection with
the experimental determination of the acoustic
reflection coefficient R = p−/p+ at the interfaces
of duct elements.
The transmission matrix method describes the

relation between acoustic pressure, p, and acoustic
volume flow, q, in forward and backward sections
of the single element by the matrix T :(

p1
q1

)
=
(
T11 T12
T21 T22

)(
p2
q2

)
(7)

This formulation is preferred for modeling in
Modelica since the potential variable p and the
flow variable q directly can be used to constitute
the physical connector.
A collection of plane wave models will be in-

cluded into the SoundDuctFlow library.

2.3 Modeling of junctions

In the sound power-based description, at junctions
the incident sound power is distributed over the
total of all outgoing duct sections. By definition
there are no reflections. The proportion of the

sound power transmitted from section i to section
j, Wi→j , then is

Wi→j =Wi
Sj

Stot−Si
(8)

where Wi is the sound power incident at the duct
section i, Si, Sj and Stot are the incident, outgoing
and total cross-sectional areas.
In the plane wave model, the reflection of

waves at a multiple junction is considered. As
an example a T-shaped junction between three
pipes of cross-sectional surfaces A1, A2 and A3 is
examined here. From the equation of Bernoulli we
find that the acoustic pressures p1 and p2 in the
duct just before and after the side-branch have to
be the same as the pressure p3 at the mouth of the
side-branch:

p1 = p2 = p3 (9)

The conservation of mass yields that the sum of
the acoustic volume flows at the junction is zero:

q1 + q2 + q3 = 0 (10)

3 Modeling flow and pressure
loss in duct networks

The 1-d modeling of air flow in HVAC ducts and
other components is based on several approxi-
mations: The air flow in HVAC ducts with its
low Mach number is regarded as incompressible,
steady state and fully stabilized. In most cases it
is also turbulent. The state variables for fluid flow
are the static pressure as the potential variable
and the mass flow rate as the flow variable. The
pressure loss coefficient K = ∆P

ρU2/2 relates the
pressure difference ∆P between the two ports
of an flow duct element to the kinetic energy
density of the flow. It depends on the Reynolds

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 521

Figure 2: Examples of flow elements.

number, on the relative roughness and on the
cross-sectional shape of the duct.
Analytic models, like the Colebrook-White

equation, as well as measurement data, given as
characteristic diagram or interpolated formula
[7, 8, 9] or tabulated manufacturer data serves
as input for the various flow models. Effects
by turbulence, adverse velocity gradients, cross-
sectional shape, surface roughness, curvature,
interaction between elements in not fully
developed flow regions result in corrective terms.
Within the Modelica library flow elements for
standard duct components are available (Fig. 2).

4 Complex duct components

Complex compound flow-acoustic duct compo-
nents (see Fig. 3) can be assembled from simple
elements representing either the acoustic or the
flow part of a duct element using a special con-
nector that combines the acoustic and the flow
connector. This allows the modeling of non-
standard components.

Figure 3: Complex compound flow-acoustic duct
component utilizing a combined flow-acoustic
connector.

5 Flow-acoustic interaction
Flow-acoustic coupling can also be modeled on
this basis. Inside duct elements, like bends or
orifices, the high Reynolds number flow triggers
flow noise. In most cases the back-reaction of
the sound field on the flow is negligibly weak.
This effect can be modeled by extracting the
state of the fluid flow and feeding it into the
acoustic element. There the additional flow noise
is calculated by (semi)empirical models, as given
in [3, 10] for instance. An example of a complex
compound pipe component with flow noise is given
in Fig. 4.

Figure 4: Compound flow-acoustic duct compo-
nent in which the mean flow velocity generates
flow noise at the bend.

6 Work flow and practical issues
When dealing with large models, the parameter-
isation of each component in the Dymola GUI is
error-prone and not very convenient for the user,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 522

Figure 5: Acoustic representation of of a ventilation unit.

(a) (b)

Figure 6: A-weighted LW in third octave bands at the suction side (a) and pressure side (b) components
of a ventilation unit.

especially when the parameters are varied repeat-
edly within the design process. Therefore we use
an external parameterisation procedure to ensure
consistent data handling and a smooth work flow:
After setting up the model in the Dymola GUI, all
model parameters and connections are extracted
into an XML structure. This XML structure then
is filled in with the parameters’ numerical values
and read in at the run time of the simulation. All
results are also written to an XML file for external
postprocessing procedures like report generation.

7 Examples

As a first example, the acoustic representation of
a ventilation unit is presented in Fig. 5. Here it
it is not connected to the duct network but in
a configuration for measuring the radiated sound
power from its exits. Therefore the nozzle reflec-
tions at the intake and exhaust pipe terminations
have to be included. The predicted A-weighted
LW at each element is shown in Fig. 6. Prediction

and measurement of the A-weighted LW at the
exits (Table 2) agree quite well.

Table 2: Measured and predicted A-weighted
sound power level of a ventilation unit.

Position Sound power level LwA
Measurement Prediction

Pressure Side 52 dB(A) 50.4 dB(A)
Suction Side 54 dB(A) 51.9 dB(A)

The ventilation unit is then installed in a small
duct network (Fig. 7). The predicted third band
SPL at each element is shown in Fig. 8.

8 Conclusions and perspectives

The concepts of sound propagation in HVAC
systems together with modeling of the air flow
are realized in the new Modelica library Sound-
DuctFlow, providing a joint prediction of the noise
level and the pressure loss in the duct network.
The concept of acoustical connectors based either

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 523

Figure 7: Acoustic representation of a ventilation duct network.

(a) (b)

Figure 8: A-weighted LW at each element of a ventilation duct network along two paths from the fan
to a listener, (a) at the suction side and (b) the pressure side.

on a sound power level description or a plane
wave description was discussed. The effects of
the geometric conditions on the mean air flow
is modeled by 1D pressure loss models. The
triggering of noise by flow effects is also modeled.
The modeling of the emitted noise level of a
ventilation unit agrees quite well with acoustical
measurements.

SoundDuctFlow will be extended to incorporate
also heat transfer, transport of humid air and
complex flow-acoustic interactions. For the last
point, however, there will be the need for new
models deduced from complex 3D computational
aeroacoustic simulations.

9 Acknowledgments
We are very grateful to Gerhard Karlowatz,
Liebherr-Transportation Systems, Austria,
for providing real life network examples and
measurement results.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 524

References
[1] Reynolds, D. D. and Bledsoe, J. M.,

Algorithms for HVAC Acoustics, ASHRAE
Inc., Atlanta, 1991.

[2] ASHRAE, Sound and Vibration Control,
2007 ASHRAE Handbook – HVAC Applica-
tions, ASHRAE Inc., Atlanta, 2007 (Chapter
47).

[3] VDI, Association of German Engineers, VDI
Guideline 2081, VDI, Düsseldorf, 2001.

[4] Munjal, M. L., Acoustics of Ducts and
Mufflers, Wiley, New York, 1987.

[5] Boden, H. and Abom, M., Modelling of Fluid
Machines as Sources of Sound in Duct and
Pipe Systems, Acta Acustica, 3 (1995), 545-
560.

[6] Boden, H. and Glav, R., Exhaust and Intake
Noise and Acoustical Design of Mufflers
and Silenecers, in Handbook of Noise and
Vibration Control, ed. by Crocker, M. J.,
John Wiley & Sons, 2007.

[7] Miller, D. S., Internal Flow Systems, BHR
Group Limited, Cranfield, UK, 1996 (2nd
ed).

[8] Idelchik, I.E., Handbook of Hydraulic Resis-
tance, Begell House, 1996 (3rd ed).

[9] Recknagel, Sprenger, Schramek, Taschenbuch
für Heizung und Klimatechnik. R. Oldenbourg
Verlag, München Wien, 1999 (69th ed).

[10] Nelson, P. A. and Morfey, C. L., Aero-
dynamic sound production in low speed
flow ducts, Journal of Sound and Vibration,
79(1981), 263–289.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 525

Introduction of the 3D Geometrical Constraints in Modelica

Régis PLATEAUX
Jean-Yves

LISMMA
3, rue Fernand Hainaut

{

Abstract

Mechanical Modelica Libraries enable
instances of geometrical objects and
positioning. But in order to facilitate the design by
taking into account the size and the positio
objects, we need relative positioning
parameters. In this paper, we propose
challenge by adding in Modelica
geometrical constraints and by implement

Keywords: Modelica 3D, Geometrical Constraint
TTRS, Relative positioning

1 Introduction

In previous studies [1], to facilitate the design of
mechatronic product [2], we proposed to integrate the
entire downward design cycle in order to achieve a
modelling continuity. To do this, we proposed a
hybrid design methodology based on several tools,

2D

Modelling

Figure 1. 3D Modelica Environment

Introduction of the 3D Geometrical Constraints in Modelica

Régis PLATEAUX Olivia PENAS Faïda MHENNI
Yves CHOLEY Alain RIVIERE
LISMMA – EA2336 (SUPMECA)

3, rue Fernand Hainaut - 93407 Saint-Ouen Cedex France

{ firstname.lastname}@supmeca.fr

enable one to model
and their absolute

positioning. But in order to facilitate the design by
account the size and the position of

relative positioning variables and
. In this paper, we propose to meet this

in Modelica a set of 13
implementing them.

Keywords: Modelica 3D, Geometrical Constraints,

to facilitate the design of a
we proposed to integrate the

design cycle in order to achieve a
, we proposed a

hybrid design methodology based on several tools,

languages and methodologies including Modelica
in Dymola [4] environment.

Modelica models integrate some geometrical
elements such as position of gravity point, mass,
volumes and inertia matrix elements. However, the
current environments don’t allow
improve entirely our method.
desired 3D Modelica framework
simultaneous representation
design window of the 2D logical
3D geometric class and keeping
simulation

Actually they usually propose:

• 2D icons containing only ge
parameters (absolute positions and
dimensions) in the modelling
interface,

• realistic 3D representations of
Modelica objects in the simulation
interface with the same geometrical
parameters,

2D

3D

Modelling

Simulation

3D

elling

Simulation

. 3D Modelica Environment
1

Introduction of the 3D Geometrical Constraints in Modelica

MHENNI

Ouen Cedex France

languages and methodologies including Modelica [3],

grate some geometrical
elements such as position of gravity point, mass,
volumes and inertia matrix elements. However, the

don’t allow until now to
improve entirely our method. Figure 1 presents the

3D Modelica framework enabling a
sentation in the “modelling”

2D logical diagram and of the
keeping the 3D view for the

hey usually propose:

2D icons containing only geometrical
parameters (absolute positions and
dimensions) in the modelling

realistic 3D representations of
Modelica objects in the simulation
interface with the same geometrical

3D

elling

Simulation

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 526 DOI: 10.3384/ecp09430038

2

But:
• no geometrical variables, and
• a framework without any dynamic

link between both of these interfaces.

For example, the geometrical structure of the model
in Figure 2 cannot easily be anticipated in 3D. We
must wait for the simulation to know which of
structures has been defined.

Figure 2. Two possible representations of the geometry
of a model: parallelogram or twisted parallelogram.

That is why our aim is to transform geometrical
parameters into geometrical variables in both
interfaces and to propose for the design one new
modelling interface with both views (2D and 3D).
Thus today we tackle the first problem by modifying
libraries of Modelica objects in order to switch
geometrical instances in objects modelled by
constraints. It will later help the transition from 2D to
3D modelling for the second step [5].

To do this, the first point is to introduce explicitly
geometrical constraints as Modelica objects.

2 Towards an explicit relative
positioning in Modelica

Considering the model already developed in our
laboratory for the geometrical tolerancing [6], we
implement geometric constraints with the
« Topologically and Technologically Related
Surfaces » (TTRS) theory [7].

2.1 TTRS Objects in Modelica

Any surface or association of real surfaces of an
object is related to a kinematic invariance class
named TTRS. There are 7 classes of TTRS classified
according to increasing degrees of freedom (DOF) in
Table 1.

Table 1 7 Classes of TTRS

Classes Symbol DOF

Identity {E} 0

Revolute {RD,P} 1

Prismatic {T D} 1

Helical {H D,P} 1

Cylindrical {CD} 2

Spherical {GP} 3

Planar {SO} 3

Kinematic joints can be expressed by TTRS.

Each TTRS is characterised by a MRGE (Minimal
Reference Geometric Element). Each MRGE is made
up of a combination of one point, one line and/or one
plan, but does not take into account the intrinsic
dimensional aspect of the object.

Figure 3 shows the example of a cone, which is
represented by the TTRS “Revolute Surface” whose
MRGE representation is one point and one line.

Figure 3. Cone representation: TTRS Revolute &
MGRE point/line.

In order to assemble two geometrical objects, i.e. to
define geometrical constraints between two TTRS, 44
associations are identified depending on the relative
orientations and positions with regards to the other.
In turn each association forms TTRS. They
correspond to the most elementary formulation of a
kinematic connection between objects.

Example: association of two Revolute TTRS

Given {RD1,P1} and {RD2,P2} : If �1 � �2 , 	R��,�� � 	R��,�� � �E�
If �1 � �2 , 	R��,�� � 	R��,�� � 	R��,��
Finally the passage to its MRGE enables us to have
only 13 possible cases of constraints (Table 3 p.5).

These constraints between MRGE numbered from C1
to C13 are expressed by means of algebraic
expressions and parameters.

For example: the association of 2 beams by
application of the C12 constraint (Figure 4)
corresponds to:

? ?

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 527

3

Given (M1, u1) and (M2, u2) two sliding points and
vectors which belong respectively to D1 and D2
lines, we have:

Figure 4. C12: line-line, parallel, distance.

2.2 MRGE Expression in Modelica/Dymola

The set of related MRGE may be implemented with
Modelica: each MRGE is an object (point, line and
plan).

In Modelica language, each object is associated to
another by means of its topological connexion
performed through its connectors. The elementary
connector for the MRGE is the point. The
implementation choice was to represent the MRGE
line by its affine view using the previous elementary
MRGE point.

Figure 5. Modelica implementation of the MRGE Point
connector and of the MRGE Line with 2 point
connectors and 1 line connector.

2.3 The 13 Constraints

With MRGE, the 13 constraints are generated thanks
to their algebraic expressions. The model is now
designed by constraints: they are no longer instances
of geometrical objects but their equivalent constraints
(e.g. Figure 5) with real geometrical variables and
parameters.

Figure 6. Example of the C12 Constraint in Modelica:
two lines constrained parallel.

3 Academic Application

Models currently developed take into account only
geometric variables. Further improvements will
integrate mechanical ones.

One goal is to come closer to the design habit. What
you see is what you mean is another one. So when we
express perpendicularity, parallelism or any
geometric constraint, our point of view is to declare it.

After a short description of the treated example, we
will study the method used with current models. Then
we will build it step-by-step with the new constraint
objects.

3.1 Design Point of View

The studied mechanical system is an automatic rising
barrier called “Sinusmatic”. The SINUSMATIC
barrier is adaptable to the dimensions and speed to
most applications. Its particularity results from
patented kinematics for his bellcrank that transforms
the continuous circular movement into an
approximately sinusoidal 1/4 round one.

Figure 7 Currently Sinusmatic

Its mechanical structure is schematized in Figure 8.
It is composed of S0: frame, S1: plateau, S2: socket,
S3: ball, S4: crosspiece and S5: fork axis.

Joints are expressed in Table 2.

Table 2 Sinusmatic Joints

 S1 S2 S3 S4 S5

S0 {RD,P} {R D,P}

S1 {E}

S2 {GP}

S3 {CD}

S4 {RD,P}

Some design requirements are specified:

• Axis of the cylindrical joint go through the
centre of the ball-and-socket (S3/S4),

C12 � � �� � ����. ����������������� � 0d � ����������������� !
D1

D2

C12

M1,u1

M2,u2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 528

4

• Centre D of S4/S5 joint is the intersection of
S1/S0 et S5/S0 axes,

• Axes of (S3/S4) and (S4/S5) joints are
converging.

Figure 8 Kinematic Diagram

3.2 Current approach

We need to express the structure by means of vectors
as Figure 9.

The direct impact is that we need all values or a set of
consistent values.

Moreover the sense depends on the choice of the
connected initial point.

Figure 9 Vectorial Model

Figure 10 Modelling with Vectorial Approach

3.3 Method with constraint objects

With this approach we may draw (Figure 11 in
Dymola framework) all characteristic nodes (green
circles) with lines (blue rectangles).

The entire model is non-simulable. Thus we add
constraints that express the design needs. Whatever
expressed now is definite.

The geometric loop may be simulated to obtain the
result in Figure 12.

Figure 11 Geometric Constraint Modelling

A

B
C

D E

O

A’

x

y

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 529

5

Figure 12 Result of Constraint Modelling

4 Conclusions

We use the interface properties with 3D environment
of Modelica/Dymola framework to add design
functionalities for geometrical integration.

This modelling by constraints in Modelica is not only
used to transform geometrical instances to
geometrical variables but also to integrate multi-
physics and geometry variables, relying on the
requirements data.

It will be developed more deeply in further papers.

References

[1]. Plateaux, Régis, et al. Towards an Integrated
Mechatronic Design Process. Málaga : IEEE, 2009.
ISBN 978-1-4244-4195-2.

[2]. Ferretti G., Magnani G., Rocco P. Virtual
prototyping of mechatronic systems. 2004, Vol. 28,
(2), pp. 193–206.
doi:10.1016/j.arcontrol.2004.02.002.

[3]. Modelica Association. Modeling of Complex
Physical Systems. Modelica. [Online]
http://www.modelica.org/.

[4]. Dymola – DYnamic MOdeling LAboratory with
Modelica (Dynasim AB). [Online] http://www.
dynasim.com.

[5]. Hadj-Amor, H.J. Contribution au prototypage
virtuel de systèmes mécatroniques basé sur une
architecture distribuée HLA - Expérimentation sous
les environnements OpenModelica-OpenMASK.
Toulon : Supmeca, 2008. LISMMA (EA 2336) thesis.

[6]. Clément, André, Rivière, Alain and
Temmerman, Michel. Cotation tridimensionnelle
des systèmes mécaniques. Paris : PYC Edition, 1994.

[7]. Clément A., Rivière A., Serré P., Valade C.
The TTRS: 13 Constraint for Dimensionning and
Tolerancing ”, 5th CIRP Seminar on Computer Aided
Tolerancing,. The University of Toronto, Canada :
s.n., April 27-29, 1997.

[8]. Fritzson, P. Introduction to Object-Oriented
Modeling and Simulation with OpenModelica. IDA -
The Department of Computer and Information
Science. [Online] [Cited: 03 01, 2009.]
http://www.ida.liu.se/~pelab/modelica/OpenModelica
/Documents/ModelicaTutorialFritzson.pdf.

[9]. Plateaux, R., et al. Méthodologie intégrée de
conception d'un produit mécatronique. Marseille :
CFM, 2009. (in reviewing).

Table 3 The 13 constraints

 "1 # $� � $� % 	&'(� "4 # $� * �� % 	+,-� "3 # �+,� "2 # $� � $� % 	+'('-� "5 # $� 0 �� % �1�

 "11: �� � �� % 	",(� "8: �� 4 5� % 	+,(�
 "12: 6 �� 7 �� �� � �� 8 % 	9,(� "9: �� 7 5� % 	9,(�
 "13: 6�� ; �� �� � �� 8 % �1� "10: ��< 5� % �1�

 "6: 5� 7 5� % 	>?(�
 "7: 5� ; 5� % 	9?(A?- �

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 530

Using Modelica for Interactive Simulations
of Technical Systems in a Virtual Reality Environment

Jens Frenkel1 Christian Schubert1 Guenter Kunze1 Kristian Jankov2

Dresden University of Technology, Institute of Mobile Machinery and Processing Machines
Muenchner Platz 3, D-01066 Dresden, Germany

CNH Baumaschinen GmbH
Staakener Strasse 53-63, D-13581 Berlin (Spandau), Germany

Abstract

Simulation has become an essential tool in the
development of construction machinery. In addi-
tion to the validation of technical features, the as-
sessment of man-machine interaction has become
more important within complex working environ-
ments. In cases where most attention is paid to
the human as the operator, simulations have to
fulfil special requirements. Allowing the user to
interact with the system implies the need for real
time simulation as well as flexible hardware in-
tegration and a powerful visualisation. There-
fore a modular software framework called SAR-
TURIS3 has been developed meeting all these re-
quirements. In order to support flexible multi-
domain modelling the Modelica language is being
used. This paper presents SARTURIS and its ap-
plications, focusing on the integration of Model-
ica based on OpenModelica using the example of
a wheel loader. Since OpenModelica is not yet
able to deal with the Modelica Multibody library,
a Python-based tool called PyMbs has been devel-
oped. It allows comfortable description of multi-
body systems and export to Modelica code as well
as other formats.

Keywords: real time simulation; construction
machinery; virtual reality; OpenModelica;

1 Introduction

A main focus of research is to study the impact of
the operator on mobile machinery. Due to the low
level of automation in such machines, the stress

1TU Dresden http://tu-dresden.de/bft
2CNH Baumaschinen GmbH http://www.cnh.com
3SARTURIS BMBF support code: 01ISC24A

. INPROVY BMBF support code: 02PC1110

on components during usage heavily depends on
the way a machine is operated. Studying this in-
fluence provides essential information needed dur-
ing the design process of such a machine. Ob-
taining these information from experimental data
requires a real prototype and increases demands
on cost and time. Furthermore, it is extremely
difficult to provide equal conditions for each ex-
periment which makes results hardly comparable.
Using simulation instead is a more efficient way of
achieving those results without facing the afore-
mentioned problems. It also can be used for study-
ing dangerous manoeuvres without endangering
man and machine. Thus, simulation proves to be
a valuable tool (see Figure 1).

Figure 1: Motion platform

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 531 DOI: 10.3384/ecp09430080

Only if a sophisticated model of the whole ma-
chine is implemented, significant results can be ob-
tained. Such models always involve different do-
mains like mechanics, hydraulics and control. The
Modelica language is ideally suited for describing
these models, since it has been designed to support
multi-domain modelling [6]. Moreover, its object-
oriented approach allows reuse and substitution of
submodels, simplifying the creation of a model [8].

The inclusion of an operator, however, is very
challenging. Obtaining a mathematical operator
model, which has to be able to react and decide,
is virtually impossible. Therefore Virtual Real-
ity (VR) is the only viable option leading to a
simulation with a “human in the loop”. There
are a lot of publications describing the use of VR
for analysing the influence of drivers’ behaviour,
e.g. [1][2][3][4]. Furthermore, the development of
the human-machine interface is supported by new
methods of VR technologies. The articles point
out that the current adoption of these technologies
in the industrial sector is rather low [5]. Current
simulation systems support the modelling and use
of VR technologies only to a minor degree. There
is no Modelica tool known to the authors that is
specialised in interactive VR simulations.

A tool is needed that not only carries out calcu-
lations in real time, but also offers realistic graph-
ics as well as a support for a large variety of input
and output devices. The simulation framework
SARTURIS, specifically developed at our insti-
tute towards interactive VR simulation, meets all
the aforementioned requirements including sup-
port for Modelica as primary modelling language.

2 SARTURIS

The simulation framework SARTURIS1 has been
developed at Dresden University of Technology
in cooperation with industrial partners within a
publicly funded (BMBF) research project [10] [11]
[12]. SARTURIS allows interactive simulation
of technical systems in a virtual reality environ-
ment. In order to achieve the best compromise be-
tween performance, portability, and development
methodology, SARTURIS is based on C++ and
uses freely available libraries.

SARTURIS itself is merely a slim application
featuring a module loader establishing a frame-
work for individual software components and

1BMBF support code: 01ISC24A

thereby enabling reusability (Figure 2). Efficient
creation of new software components is guaran-
teed through the use of Model Driven Architec-
ture (MDA). The interaction between these mod-
ules along with their parameterisation is specified
in XML-files. Each software component has its
own XML type definition describing its usage and
configuration as well as the interaction with other
components. Thus automated syntax checking or
even code completion is available. XML files are
either written as plain text or assembled using a
graphical user interface (GUI).

Figure 2: Sarturis Framework

Software components belonging to the same
field of functionality are encapsulated within the
same module. For instance the module Open-
SceneGraph (OSG) [13], see Figure 2, contains all
necessary functions to achieve a realistic 3D Vi-
sualisation. A comprehensive set of modules has
already been created. Graphical User Interfaces
can be defined within the XML files by using a
module referencing the GIMP-Toolkit (GTK) [14].
In order to integrate miscellaneous input and out-
put devices a module featuring Controller Area
Network (CAN) communication has been imple-
mented [15]. Even our motion platform (Figure
1) can be operated via SARTURIS by means of a
corresponding module.

To support the development of additional mod-
ules several different interfaces have been designed
in C++. Every implementation of a technical
model inherits from an according interface like
HDAESystem.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 532

3 Integrating Modelica Models
into SARTURIS

3.1 Initial Situation

Every technical system which is to be simulated
within SARTURIS forms a module on its own,
that contains a class which inherits from the inter-
face HDAESystem. Therefore it was necessary to
translate the system equations directly into C++
code. Although C++ is extremely powerful as a
programming language it is ill-suited for modelling
purposes. Hence, the integration of a new model
was very tedious and error-prone. Moreover, the
resulting code was neither reusable nor maintain-
able.

The Modelica language on the other hand facil-
itates convenient modelling of technical systems.
The model description is reusable and easily main-
tainable through its equation-based and object-
oriented approach. Furthermore it is very flexible
due to the acausal description.

In order to combine the strengths of Modelica
and the capabilities of SARTURIS, a transforma-
tion of Modelica code into C++ code was needed.
OpenModelica [22] proves to be the best solution,
since it is able to translate Modelica models into C
code. Beyond that, the usage of open-source soft-
ware is very beneficial to universities since it of-
fers great flexibility and can be used for teaching.
Furthermore, every user has the opportunity to
get involved in the development of the simulation
software through the OpenModelica Consortium.

3.2 OpenModelica Code Export

Before discussing the integration of the OpenMod-
elica Code Export into SARTURIS, a brief in-
troduction on how the OpenModelica Compiler
(OMC) translates Modelica code into a simulation
shall be given. This process is divided into differ-
ent stages which are shown in Figure 3. First,
the given coherent Modelica model is translated
into a flat model where all of the object-oriented
structures are removed yielding a system of differ-
ential and algebraic equations. Next, this system
of equations is analysed and optimised with re-
gards to numerical integration. Consequently the
resulting system of equations is passed to a code
generator which converts the optimised system of
equations into C Code.

The so-called C Code Export yields the follow-
ing files:

• Text file (init file) containing all initial val-
ues and information about the system and the
solver.

• C source code file (c model) containing all
equations arranged so that they can be read-
ily used with the supplied solver.

• C source code file (c model functions) con-
taining all functions both external and inter-
nal which are used in the model.

• precompiled libraries (sim libs) containing all
model independent functions needed for link-
ing

The c model and the c model functions are com-
piled and linked against the sim libs using an ap-
propriate C/C++ Compiler resulting in a stand
alone programme which runs the simulation and
stores the result in a text file. This file contains all
the values of the states, their derivations and the
algebraic variables that occured during the simu-
lation.

Figure 3: Translation Stages from Modelica Code
to a Simulation. According to [9], p. 10

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 533

3.3 Integrating the OMC Code Export
into SARTURIS

To transfer C code generated by the OpenModel-
ica Compiler automatically into C++ code which
can readily be used within SARTURIS as a mod-
ule, the following two steps have to be carried out.

In the first step information about the model
has to be gathered in order to generate the C++
class interface along with its XML type definition
as described in section 2. Following information is
needed.

1. names of all

(a) inputs

(b) outputs

(c) parameters

(d) states

(e) algebraic variables

2. default values of all parameters

3. initial values of all states

The init file, as part of the OMC Code Export,
provides most of the information except 1.a and
1.b. All information but 2. and 3. is stored within
the c model. Since there is no single file containing
all the information needed, both, the init file and
the c model have to be evaluated.

The second step is to convert the C code gen-
erated by the OMC into C++ code implementing
a SARTURIS module. A major requirement is to
minimise changes within the C code. Ideally, it
should be possible to use it without any modifi-
cations at all by encapsulating it into a wrapper
class. Unfortunately this does not seem to be pos-
sible as discussed in the following sections. Fur-
thermore, the system of differential equations and
the solver should be separated. Thus results of
different solvers can be compared without having
to recompile the model. So far the DASSL-solver
which comes with OpenModelica and some stan-
dard solvers like an Explicit Euler and a fourth
order Runge Kutta solver have been implemented.
A current student project is dealing with the in-
tegration of the SUNDIALS package [16].

3.4 Automation

A tool called OpenModelicaToSarturis (OM2S),
see (Figure 4), has been developed which auto-

mates the procedure outlined in the previous sub-
section. It enables the user to generate a SAR-
TURIS module without writing a single line of
C++ code. Thus, models developed in Modelica
can be easily used within SARTURIS for interac-
tive VR simulations.

Figure 4: OpenModelicaToSarturis: Automated
Translation of Modelica Models into a SARTURIS
Module

The whole compilation process from a Mod-
elica model to a SARTURIS module is coordi-
nated by CMake [17]. Thereby, custom build rules
can be defined easily and it is possible to detect
utility programmes, libraries and include direc-
tories in a platform neutral manner. It gener-
ates makefiles and workspaces which can be used
with any supported compiler. At the beginning
of the compilation process OM2S is started which
then launches the OMC. Communication between
OM2S and OMC is achieved via CORBA, offer-
ing a convenient interface to trigger the transla-
tion of a Modelica model. Subsequently, OM2S
turns the C code into C++ code implementing
a SARTURIS module. Simultaneously, a sample
SARTURIS configuration is generated featuring a
diagram for each state as well as sliders for each
input value. After the compilation process is fin-
ished, SARTURIS can be launched with the sam-
ple configuration [18]. It allows validating the re-
sults immediately and it may also be used as a
template for more complex settings.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 534

3.5 Difficulties And Suggested Solu-
tions

This section describes the difficulties encountered
during the integration of the OMC Code Export
into SARTURIS and the measures taken to over-
come them. In addition, suggestions to improve
the OMC Code Export regarding usability are
given.

3.5.1 Gathering System Information

Gathering system information needed for the class
interface as well as the XML type definitions, re-
quires a parsing of the init file and the c model.
Parsing the init file can be achieved using inter-
nal functions of the sim libs which are called at
every start of a simulation run. Analysing the C
code however proves to be much more challenging.
The current implementation reads the C code line
by line looking for unique keywords. All names of
the state variables, for instance, are stored within
the static array state_names which always has the
form of char* state_names[2]={"h", "v"};. Once
such a line is identified, all relevant information is
extracted.

Clearly, a change in the formatting of the source
code will inevitably leads to an abstraction of
wrong information or none at all. Thus, pars-
ing generated C code in order to gather informa-
tion about the system should generally be avoided.
One feasible solution is to extend the init file by
the names of the inputs and outputs. Thus all in-
formation could be extracted from a single text
document. Furthermore it allows changing the
values of inputs which are assumed to be zero oth-
erwise. One might also consider to change the for-
matting of the init file into a standardised format
like XML. This would enable checking the syn-
tax against a language definition and use readily
available parsers to extract all the information.

Another possible solution is to extend the
CORBA interface by single or multiple commands
that return all system information. Although this
is very elegant from a programmer’s point of view,
it limits the possibilities of usage. It would not be
possible to gather system information, if only the
code export but no OMC was available.

3.5.2 Using the C Code

Encapsulating the system of differential equations
into its own class poses a problem since the C code

generated by the OMC makes use of global vari-
ables. Namely the structure DATA, which con-
tains the values of all the states, algebraic vari-
ables and parameters is always referenced via a
global variable called localData. The usage of
global variables, however, has to be avoided when
dealing with classes since it causes unwanted in-
terference between different instances of the same
class. Consequently, every function has to be con-
verted into a function of the class. It can be
achieved by adding a prefix, consisting of the name
of the class, to every function definition.

Again, parsing and changing the provided C
code is not an elegant solution since changes to
the C code might cause this method to fail. In
order to avoid altering the C code and to allow
the use of a wrapper class, all global variables
should be eliminated. If a subroutine needs access
to localData it should provide a pointer to this
structure in its function definition such that the
caller is able to pass the structure. The interface
of the DASSRT solver for example also features
two pointers, namely rpar und ipar, see Figure 5.
They can be used to pass lists of real and integer

1 void DDASRT(
2 int (∗ r e s) (. . . , double ∗ rpar , long∗ i pa r) ,
3 . . .
4 double ∗ rpar ,
5 long ∗ ipar ,
6 int (∗ j a c) (. . . , double ∗ rpar , long∗ i pa r) ,
7 int (∗g) (. . . , double ∗ rpar , long∗ i pa r) ,
8 . . .) ;

Figure 5: Interface Solver DDASRT

parameters to DASSRT. Beside parameters like
start time and stop time, the DASSRT interface
expects multiple pointers to user functions. These
user functions perform the calculation of the resid-
uals, Jacobian matrix or constraints, respectively.
All these user functions are called by DASSRT
and need access to the information stored in lo-
calData. The parameter ipar could be exploited
passing the address to localData via a static type-
cast from long* to DATA* and back, see Figure 6.
Since both types are pointers no conflicts regard-
ing the size of the variable have to be expected.

Thus it is possible to change all global variables
into local ones and thereby to increase the usabil-
ity of the C code.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 535

1 . . .
2 s t a t i c DATA∗ l oca lData ;
3 . . .
4 int functionDAE_res (. . . , long int∗ i pa r)
5 {
6 . . .
7
8 return 0 ;
9 }

1 . . .
2 int functionDAE_res (. . . , long int∗ i pa r)
3 {
4 . . .
5 DATA∗ l oca lData ;
6 loca lData=(DATA∗) ipa r ;
7 . . .
8
9 return 0 ;

10 }

Figure 6: local DATA* vs. global DATA*

3.5.3 Implementation

In order to prove feasibility of the suggested so-
lutions, the following changes have been imple-
mented into a local copy of the OMC source code:

1. Extending the init file by the names of inputs
and outputs

2. Turning localData into a local variable

It has been proved that these changes allow
a much more convenient subsequent use of the
source code generated by the OMC.

4 PyMbs

A major drawback connected with the usage of
OpenModelica is the missing support for the Mod-
elica.Mechanics.Multibody library. Since multi-
body systems form an essential part in the study
of mobile machinery, a tool called PyMbs written
in Python has been created at Dresden Univer-
sity of Technology. Using sympy [21], a library
for symbolic mathematics, PyMbs generates the
equations of motion of arbitrary holonomic multi-
body systems having the standard form

ṗ = v

Mv̇+h = f +
(

dΦ

d p

)T

λ

Φ(p) = 0

where p is the vector of generalised positions, v
the vector of generalised velocities, λ the vector
of constraint forces or Lagrange multipliers re-
spectively, M represents the system mass matrix,

h is the vector of the gyroscopic and centrifugal
forces, f is the vector of all external and elastic
forces and Φ contains all holonomic constraints.
PyMbs is able to export this system of equations
as Modelica code which can then be used within
a Modelica model and simulated using OpenMod-
elica. It can also be exported as a MATLAB or
a Python file for the use with standard solvers.
In order to avoid extremely long equations when
calculating the mass matrix M or the vector h ex-
plicitly, a recursive formulation [7] exploiting the
structure of the multibody system has been im-
plemented. Arising kinematic loops may either be
closed by introducing kinematic constraints or us-
ing predefined and precalculated kinematic loop
objects describing the relation between dependent
and independent coordinates. This choice either
leads to a DAE or ODE formulation, respectively.

Figure 8 shows an exemplary implementation of
a model of a crane crab and a load (see Figure 7).
The crab may move horizontally in one axis and
the load may rotate around the crab. A force is
applied to the crab modelling the effect of a drive.
Figure 9 shows the Modelica code, automatically
generated by PyMbs. Note, that the model is de-
fined as partial since there is no equation defin-
ing the magnitude of the driving force. In order
to equip PyMbs models with connectors from the
Modelica Standard library a new model inherit-
ing all equations from the PyMbs model should be
created. Inside the new model mechanical connec-
tors can be instantiated and associated with the
corresponding variables as shown in Figure 10.

d

m1

m2

l2

F

Figure 7: Crane Crab

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 536

1 from PyMbs . Input import ∗
2
3 # S e t up a new MbsSystem
4 world=MbsSystem ([0 , 0 , −1])
5
6 # D e f i n e I n p u t and Parameters
7 F = world . addInput (’ Force ’ , ’F ’)
8 m1 = world . addParam(’mass 1 ’ , ’m1 ’ , 10)
9 m2 = world . addParam(’mass 2 ’ , ’m2 ’ , 1)

10 l 2 = world . addParam(’ l ength ’ , ’ l 2 ’ , 1)
11 I2 = world . addParam(’ i n e r t i a 2 ’ , ’ I2 ’ , 1/12)
12
13 # D e f i n e Bodies and C o o r d i n a t e Systems
14 crab = world . addBody (name=’Crab ’ , mass=m1)
15 load = world . addBody (name=’Load ’ , mass=m2,
16 i n e r t i a=diag ([0 , I2 , 0]))
17 load . addCoordSys (’ j o i n t ’ , p=[l2 , 0 , 0])
18
19 # Connect Bodies Through J o i n t s
20 world . addJoint (’ TransCrab ’ , world , crab , ’Tx ’ ,
21 s t a r tVa l s=1)
22 world . addJoint (’RotLoad ’ , crab , load . j o in t , ’Ry ’)
23
24 # Add S e n s o r s and Force Elements
25 world . addLoad (’ Driv ingForce ’ , ’ PtPForce ’ ,
26 crab , world , F)
27 world . addSensor (’ Pos i t i on ’ , ’ Distance ’ ,
28 crab , world , ’d ’)
29
30 # C a l c u l a t e E q u a t i o n s o f Motion and Generate Code
31 genEquations (world , e x p l i c i t=True)
32 genCode (’mo ’ , ’CraneCrab_PyMbs ’)

Figure 8: PyMbs Source Code of a Crane Crab

1 // This f i l e was g e n e r a t e d by PyMbs
2 p a r t i a l model CraneCrab_PyMbs
3 // P o s i t i o n s
4 Real [2] q (s t a r t ={1 ,0})
5 " q_TransCrab , q_RotLoad " ;
6 // V e l o c i t i e s
7 Real [2] qd (s t a r t ={0 ,0})
8 " qd_TransCrab , qd_RotLoad " ;
9 // I n p u t s

10 Real F ;
11 // Parameters
12 parameter Real I2 = 0.083 " ine r t i a_2 " ;
13 parameter Real g = 9.81 " g rav i ty " ;
14 parameter Real l 2 = 1 " length " ;
15 parameter Real m2 = 1 "mass_2 " ;
16 parameter Real m1 = 10 "mass_1 " ;
17 // S e n s o r s
18 Real [2] d ;
19 // V a r i a b l e s
20 protec ted
21 Real [2] WF_DrivingForce ;
22 Real [2 , 2] M;
23 Real [2] h ;
24 Real [2] f_grav i ty ;
25 Real [2] f_ext ;
26 Real [2] f ;
27 equat ion
28 der (q) = qd ;
29
30 d = {abs (q [1]) , q [1] ∗ qd [1] / abs (q [1]) } ;
31
32 WF_DrivingForce = {q [1] / abs (q [1]) , 0 } ;
33
34 M = {{m1+m2, l 2 ∗m2∗ s i n (q [2]) } ,
35 { l 2 ∗m2∗ s i n (q [2]) , I2+m2∗ l 2 ^2}};
36
37 h = { l2 ∗m2∗qd [2] ^ 2∗ cos (q [2]) , 0 } ;
38
39 f_grav i ty = {0 ,−g∗ l 2 ∗m2∗ cos (q [2]) } ;
40
41 f_ext = F∗WF_DrivingForce ;
42
43 f = f_ext+f_grav i ty ;
44
45 M∗der (qd) = f − h ;
46
47 end CraneCrab_PyMbs ;

Figure 9: PyMbs Modelica Output

With only few enhancements to the model of the
crane crab, PyMbs is able to generate an interac-
tive graphical output(see Figure 11). It enables
the user to check the consistency of the model by
manipulating the generalised coordinates via slid-
ers. The effect on the multibody system can be
evaluated ad hoc.

In case the available collection of joints, force
elements and sensors do not suffice, PyMbs can
be extended very easily due to its object oriented
structure. Moreover, it takes only very little effort
to implement further output formats.

PyMbs is freely available. For further informa-
tion please contact one of the authors.

1 model CraneCrab
2 extends CraneCrab_PyMbs ;
3 import Modelica . Mechanics . Tran s l a t i ona l . ∗ ;
4 // Mechanica l Connector
5 I n t e r f a c e s . Flange_b f l ang e ;
6 equation
7 f l ang e . s = d [1] ;
8 f l ang e . f = F ;
9 end CraneCrab ;

Figure 10: Usage of PyMbs Output in Modelica

Figure 11: Graphical PyMbs Output of the Crane
Crab

5 Example Models

Based on the described tool chain, several mod-
els have already been implemented. In this paper,
a wheel loader shall be presented (Figure 12 and
13). The purpose of the wheel loader model is
the assessment of innovative operational controls
and novel assistance systems. A realistic driving
experience is achieved by connecting the model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 537

via SARTURIS to a motion platform (Figure 1).
In order to provide the user with his familiar op-
erating environment, the manufacturer provided
a real driving cab, which has been installed onto
the motion platform and is integrated via CAN
Bus (Figure 14).

Figure 12: Virtual Reality Simulation of a Wheel
Loader (Exterior View)

Figure 13: Virtual Reality Simulation of a Wheel
Loader (Operator View)

The mechanics of this model have been de-
scribed using PyMbs, exported to Modelica and
equipped with mechanical connectors. Hydraulics,
drivetrain as well as control systems and a tire
model [23] have been modelled directly within
Modelica. This model was then translated into a
SARTURIS module and integrated into the sim-
ulation environment. It is now possible to run a
model of the wheel loader on the motion platform
which is equipped with the control units (ped-
als, joystick, steering wheel...) from the real ma-
chine. They allow interaction with the simulation
through an operator in real time.

Figure 14: Changing the Cabin of the Motion
Platform

6 Future Work

Increasing pressure on costs and time foster a need
for a more efficient design process. Prior research
has facilitated simulation processes that enable
companies to shorten the design process by using
virtual prototypes. However, these methods are
hardly used in the branch of mobile machinery.
Machines comprise numerous components manu-
factured by different companies. Thus, successful
simulation requires a cooperation of the manufac-
turer and his suppliers. Due to the risks connected
with transferring crucial information a coopera-
tive simulation process has not yet been estab-
lished in industry. INPROVY2 [20], a research
project coordinated by the Dresden University of
Technology, aims at overcoming those obstacles by
providing methods that allow simulations across
company borders. Furthermore, our research fo-
cuses on the reuse of available information and its
administration as well as its protection.

2BMBF support code: 02PC1110

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 538

7 Conclusion

It was shown that it is possible to conduct real
time simulations in a virtual reality environment
with Modelica by using our simulation framework
SARTURIS. A tool called OpenModelicaToSar-
turis has been developed which automatically con-
verts Modelica models into SARTURIS modules
using OpenModelica. The lacking support of the
Modelica.Mechanics.Multibody library by Open-
Modelica has been overcome by using PyMbs.
PyMbs is a tool, developed in Python, which al-
lows modelling of holonomic multibody systems.
It offers different output formats like Modelica,
MATLAB and Python code. The presented meth-
ods and tools are very beneficial to support the
modelling and use of interactive VR technologies.

Dresden University is very interested in cooper-
ation with other universities which might want to
use SARTURIS for their research.

References

[1] Koo, T. Y.; Bae, C. H.; Kim, B. Y.; Rowland,
Z.; Suh, M. W.: Development of a driving sim-
ulator for telematics human-machine interface
studies.-Proceedings of the Institution of Me-
chanical Engineers, Part D (Journal of Auto-
mobile Engineering) * Band 222 (2008) Heft
11

[2] Zschocke, A. K.; Albers, A.: A method to
examine links between subjective and objec-
tive evaluations of steering torque utilising a
model-based approach.-FISITA, World Auto-
motive Congress, 32 * (2008)

[3] Pasetto, M.; Gamberini, L.; Manganaro, A.:
Potential of immersive virtual reality models
in studies of drivers’ behaviour and interven-
tions to improve road safety.-PRESENCE, An-
nual International Workshop on Presence, 11
* (2008)

[4] VTT Technical Research Centre of Finland:
HumanICT - New Human-Centred Design
Method and Virtual Environments in the De-
sign of Vehicular Working Machine Interfaces
VTT Working Papers.-ISBN-Nr.: 978-951-38-
6625-9

[5] Strassburger, S; Schulze, T.; Fujimoto, R.: Fu-
ture trends in distributed simulation and dis-

tributed virtual environments.-WSC, Winter
Simulation Conference, 40 * (2008)

[6] Beater, P.; Otter, M.: Multi-Domain Simula-
tion: Mechanics and Hydraulics of an Excava-
tor. In: Proceedings of Modelica 2003 confer-
ence, 2003

[7] Fisette, P.; Samin, J. C.: Symbolic genera-
tion of large multibody system dynamic equa-
tions using a new semi-explicit Newton/Euler
recursive scheme. Archive of Applied Mechan-
ics, Vol. 66, Issue 3, pp. 187-199 (1996)

[8] Fritzson, P.: Principles of Object-
Oriented Modeling and Simulation with
Modelica2.1.Wiley-IEEE Press, 1 2004.

[9] Fritzson, P.; et al.: OpenModelica Sys-
tem Documentation.www.openmodelica.org, 1
2008.

[10] Penndorf, T.; Kunze, G.: Codegen-
erator fuer die Echtzeitsimulation von
Mehrkoerpersystemen.-ASIM 2006 19. Sym-
posium Simulationstechnik, Universitaet
Hannover, September 2006

[11] Penndorf, T.: Universelles Framework
zur Abbildung von Maschinenmodellen in
virtuellen Umgebungen. In: Schriftenreihe
der Forschungsvereinigung Bau- und Baustoff-
maschinen (2006) 34

[12] Penndorf, T.; Kunze, G.: “Durchgespielt”-
Interaktive Simulation von Baumaschinen.
IX-MAGAZIN FUER PROFESSIONELLE
INFORMATIONSTECHNIK Heft 08/2007.-
Heise Zeitschriften Verlag, Hannover

[13] OpenSceneGraph,
http://www.openscenegraph.org/

[14] GTK, http://www.gtk.org/

[15] CAN in Automation e. V.. http://www.can-
cia.org

[16] SUNDIALS (SUite of Nonlinear and
DIfferential/ALgebraic equation Solvers)
http://www.llnl.gov/CASC/sundials/

[17] CMake, http://www.cmake.org/

[18] Frenkel, Jens: Integration von OpenModel-
ica in das Programmsystem SARTURIS.-TU

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 539

Dresden, Professur fuer Baumaschinen- und
Foerdertechnik, Diplomarbeit,Februar 2009

[19] Schubert, C.; Frenkel, J.: PyMbs Userguide.-
TU Dresden, Professur fuer Baumaschinen-
und Foerdertechnik, Forschungsbericht,
September 2009

[20] www.inprovy.de

[21] sympy, http://code.google.com/p/sympy/

[22] OpenModelica,
http://www.openmodelica.org/

[23] Zimmer, Dirk and Otter, Martin(2009)’Real-
time models for wheels and tyres in an object-
oriented modelling framework’,Vehicle System
Dynamics,99999:1,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 540

Interactive Simulations and advanced Visualization

with Modelica

Tobias Bellmann
Institute of Robotics and Mechatronics, German Aerospace Center (DLR)

Münchner Straße 20, 82234 Weßling, Telefon: +49 8153 28-0, Fax: +49 8153 28-2243

Abstract

In this paper a Modelica library for interactive
simulation and advanced visualization called Ex-
ternalDevices is introduced and presented. Pro-
viding support for standard input devices like key-
board and joystick as well as for communication
via UDP and shared memory, this library allows
the user to interact with a running simulation
and process the output data of the simulation in
other processes capable of UDP connections. An
advanced visualization system replaces the stan-
dard Dymola visualization and offers additional
features like full-screen viewing, transparency and
support for flexible bodies.

Keywords: interactive simulation; visualization;
simulation; network; flexible bodies

Introduction

Simulations with Modelica normally are not de-
signed for interactive control. In the standard
Modelica 3.1 library, no blocks for input devices
or other control possibilities are existent. Never-
theless it can be help- and useful to interact with
a running multi-physics simulation, either to re-
duce the effort needed for the generation of input
data for the simulation, or to react directly to the
results of a running simulation.
The integrated visualization of the Modelica
MultiBody Library is vendor-specific. It is there-
fore limited to the specified visualization methods
provided by the simulation tool. The visualization
definitions of Modelica 3.1 are limited to some ba-
sic features like some elementary shapes and un-
textured .dxf CAD files.
To overcome the missing interaction and visual-
ization possibilities, the ExternalDevices Library
provides a set of blocks and techniques to allow
interactive simulations, as well as an advanced

real-time visualization of the running simulation,
considerably extending the scope of operation es-
pecially for multi-body simulations. The Exter-
nalDevices library is structured in the following
functional packages:

∙ Input devices: Blocks for the direct control of
simulation states by the user

∙ Communication devices: Blocks allowing the
simulation to communicate with other pro-
cesses via network or shared memory

∙ External visualization: Blocks and models re-
placing vendor-specific visualization systems
and adding additional visualization possibili-
ties.

The ExternalDevices library links either to
static or dynamic C++ libraries to provide this
additional functionalities. It is available for Dy-
mola 7.x, in a version for Windows, a version for
Unix/Linux is planned. Every Modelica imple-
mentation able to link external C libraries can use
the ExternalDevices library and the visualization
system.

1 Input devices

Input devices are needed for interactive control of
the simulation states, for example to trigger events
or to control actors of a multi-body simulation.
For this purpose the ExternalDevices library pro-
vides blocks for three common PC input devices:

Keyboard: This block allows the monitoring of
single keyboard keys, and has a boolean output
for the chosen key state. Several blocks can be
used parallel, each with a selectable key ID like
VK Return for the return key.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 541 DOI: 10.3384/ecp09430056

Figure 1: Input devices blocks

Joystick: This block includes support for three
axis, eight buttons joysticks for Modelica. The
joysticks must be configured and calibrated cor-
rectly in the Windows system control panel. Sev-
eral blocks at the same time are usable with sep-
arate joystick IDs, allowing the use of more than
one joystick attached to the PC. The three out-
puts are from the type Real and are normed from
-1 to 1 for each joystick axis.

SpaceMouse: The SpaceMouse block includes
support for the 3dConnexion Spacemouse, a six
DOF input device originally developed at the In-
stitute of Robotics and Mechatronics of the ger-
man aerospace center (DLR). This devices con-
sists of a pressure-sensible handle, which can
be pushed and rotated to manipulate objects in
three-dimensional space. The output connectors
of this block also are normed from -1 to 1 and all
buttons of the Spacemouse are retrievable via a
boolean output vector.

2 Communication devices

It is often useful to control a simulation via net-
work or to process the simulation output data
in another program or simulation. The Exter-
nalDevices library supplies the user with blocks
to communicate with external processes via UDP
or Shared Memory. As an example, one simulation
can provide input data for another simulation via
UDP.

Figure 2: Network devices blocks

UDPRecieve block: This block introduces an
UDP client communication input for Modelica.
The incoming data must be binary coded double
vectors, in the form [double 1,.....,double n] with
the selectable length n. The listening port can be
selected and must be unique on the system. More
than one block in a model may be used under this
premise.

UDPSend block: This block allows the send-
ing of Real vectors with selectable length n. Pa-
rameters are the target port and IP address. More
than one block may be used in a model.

UDPServer block: Combination of UDPSend
and UDPRecieve functionality.

Shared memory Block: A shared memory
block, using the QT framework from QT Soft-
ware [1] allows the communication between two
processes on the same computer system. Support-
ing Real, Integer and Boolean vectors it can be
used as an interface to other parallel running sim-
ulations or processes with the same QT shared
memory interface. Several blocks can be used
within the same model by defining different mem-
ory storage IDs.

3 A model-based approach for
visualization

Including the complete Modelica 3.0 standard for
visualization of multi-body models, this library
furthermore allows the user to build more complex
visual environments within the Modelica model,
to be simulated on an external visualization tool,
DLR SimVis. The visualization package uses net-
work communication to transmit the visualization
data from the simulation to the external visual-
ization tool. This tool, DLR SimVis, provided to-
gether with this library is based on OpenGL [4]
and the OpenSceneGraph [2] 3D scenegraph.
The main purpose is the visualization of
multi-body simulations, replacing vendor-specifig
graphic engines with a presentable graphic engine,
supporting full-screen viewing and a large variety
of textured 3D CAD file formats.
Every object visualized in the external viewer is
provided by a visualization component in Model-
ica, containing all necessary data for correct visual
representation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 542

3.1 Object-oriented approach for visu-
alization components

The object-oriented approach of the ExternalDe-
vices visualization system easily allows to inte-
grate the visualization components in to physical
components. The complete informations neces-
sary for the visualization are already existent in
the physical component and can be used in the
visualization block. Figure 3 shows the integra-
tion of a visualization block in the model of a
spring. The information about the spring’s po-
sition, orientation and length is available via the
frame connectors, other parameters like winding
number, wire diameter e.g. can be chosen via pa-
rameter dialog.

Figure 3: Integration of the visualization compo-
nent in a physical model

3.2 Comparison with existing physical
visualization systems

Most existing visualization systems rely on a cen-
tral configuration file defining the scene and the
input channels for a specific visualization task.
The MathWorks VR Toolbox [5] for example uses
VRML Files, containing the complete kinematic
and degrees of freedom for scene manipulations
as well as the CAD Data. In the correspond-
ing Simulink model, the VR Block provides the
inputs for the desired degrees of freedom in the
scene. These inputs are now connected with the
according signals of the Simulink physics model.
This leads to increased configuration efforts if the
model has to be changed, because both the VRML
Configuration and the signals have to be adapted.
Another example for the separation of model and
visualization system is the VisEngine of Aerolabs
GmbH [6]. The VisEngine uses a configuration file
defining the used CAD data for the scene and the
input channels (e.g. UDP, tables from the file sys-
tem, etc.) for moving the CAD objects.

In both cases, a change in the model requires a
modification in the visualization. With the object-
oriented approach of ExternalDevices combined
with Modelica, this is not necessary, because of
the complete integration of the visualization into
the model components.
Because of an additional software layer, hidden
from the user, there is no need for complicated
additional signal connections. The visualization
data is collected in a data core controlled by an Ex-
ternalObject construction and transmitted to the
external visualization viewer (see Figure 4).

Model layer

Software
layer Data core

Visualization

Figure 4: Model layer and software layer with data
administration (hidden)

3.3 Modified Modelica 3.0 standard li-
brary

One strength of Dymola’s visualization system
is the automatic generation of the scene via
the visualization properties of every multi-
body system. This is done via implementing
a visualization definition in every part of the
Multi-body library. These definitions all inherit
the Modelica.Mechanics.MultiBody.Visualizers-
.Advanced.Shape block, which is the connection
to the Dymola visualization. By replacing this
block with a modified variant, the complete model
visualization is redirected to the external visu-
alization. This modification allows to use every
existing model with the external Visualization.
Since Modelica 3.1 the vendor-specific library
elements like the Shape block are grouped in
an additional service library ModelicaServices.
Analogue to the modified Modelica library, it is
possible by providing a customized ModelicaSer-
vices implementation to redirect the visualization
data to the external viewer DLR SimVis.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 543

3.4 External viewer software DLR
SimVis

The visualization data is sent from the simulation
process via network to the external viewer soft-
ware SimVis. This software is responsible for the
interpretation of the visualization data and for the
rendering of the scene. Because of the use of a
network communication, the Viewer software does
not have to run on the same system as the simula-
tion, and therefore more computing power for the
simulation can be provided. Based on the open
source scene graph OpenSceneGraph [2] a wide
range of formats for CAD data is supported. The
continuing development of OpenSceneGraph pro-
vides the base for highly detailed visualizations.
Utilizing the ffmpeg video en/decoding library [3],
several video codecs for video grabbing are sup-
ported. The following features already are imple-
mented:

∙ Fullscreen mode

∙ Support for multiple cameras

∙ Multi-monitor support

∙ Textured CAD files (.dxf, .stl, .3ds, .obj, ...)

∙ Video grabbing, formats: (MPEG4, MS
MPEG4 2/3 (.avi), Flash video (.flv), Huff-
man Encoding (lossless), Windows Media
Video (.wmv))

∙ Video grabbing with free configurable bit rate
and replay speed

∙ Wireframe mode, Stereo mode (anaglyph and
indirectly by OpenGL graphics card drivers)

∙ Precise replay controls including a jog-dial

3.5 Object-oriented network protocol

In order to reduce the amount of visualization data
to be transported over the network connection, an
optimized protocol is necessary. In the implemen-
tation of the ExternalDevices library, an object-
oriented approach with data and packet objects
has been chosen. While the data objects handle
the data storage and the tasks of serialization /
deserialization, the packet objects are responsible
for data object administration. This includes an
incremental packaging of data, where only data
objects, which changed in the last time step are

included in the transmitted data. A lossless trans-
port protocol provided, like TCP/IP, this method
reduces the needed communication bandwidth sig-
nificantly, because static properties of visualiza-
tion elements must not be communicated every
time step.
Every packet is identified and assigned to a visual-
ization element by an unique, automatically gen-
erated ID. Figure 5 provides an overview of the
network communication architecture.

4 Visualization package content

The visualization package is structured in sub-
packages for Shape blocks, Camera blocks, Light
blocks, Energy Flow blocks and Effect blocks.

4.1 The UpdateVisualization block

The UpdateVisualization block is responsible
for the integration of the visualization blocks in
the simulation process. Similar to the Multi-
Body.World block, it will be automatically
inserted as an inner component if a visualization
block is used in the model. The UpdateVisu-
alization block controls parameters like the IP
address and port for the communication with the
visualization software SimVis and can be used to
disable the complete visualization.

During a simulation run, the block triggers a
time event every time visualization data shall be
sent to SimVis. This update interval time can be
varied via a parameter and should be < 0.04 s for
25 frames per second during real-time simulations.
If the update time event is triggered, every block
sends its data to the data core triggered by the
Boolean variable UpdateVisualization.send.

4.2 Shape blocks

Every Shape block has a frame connector as input.
The resulting forces and torques of such a block is
zero, so the block only has visual and no dynamic
or kinematic effects. This blocks can be used as

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 544

... ...

DLR SimVisSimulation process

Packet 1

Packet n
Data 1
. . .

Data k

Data 1
. . .

Data k

incremental
comparison serialization

deseriali-
zationEthernet

rootnode

Object 1 Object n

Box CAD file

Figure 5: Basic principle of visualization network architecture

integrated components in a Modelica multi-body
model:

Figure 6: Shape blocks

Elementary Shape: This block represents the
supported basic shapes, such as boxes, spheres etc.
The available primitives are:

Basic shape Existent in Existent
type Modelica 3.0 in library

Box Yes Yes
Sphere Yes Yes
Cone Yes Yes + Features
Spring Yes Yes
Cylinder Yes Yes
Pipe Yes Yes
Beam Yes Yes

Gearwheel Yes Yes + Features
Coordinate
System

Yes Yes

Grid No Yes

Every ElementaryShape can be parametrized in

size, color, transparency and reflection behavior
(for specular highlights). For the more complex
shapes like spring, gearwheel and cone, additional
parameters can be set. Beyond the standard pa-
rameters, required by the Modelica 3.1 standard,
some additional parametrization is possible, for
example the operating angle of gearwheels allows
the construction of bevel gears.

FileShape: The FileShape block allows to use
3D CAD models, supporting numerous file for-
mats like .obj, .dxf, .3ds, .stl, and every other
file formats supported by the OpenSceneGraph
plug-in system. The key features of this block
are support for textured 3D models and addi-
tional parameters like transparency and a wire-
frame modus. The loaded 3D model can be scaled
in x,y,z directions.

Line The Line block implements linear or Bezier
interpolated lines, with n control points relative to
the frame connector of the block.

Text Shape: This block allows to place 2D texts
in the scene, aligned to a specified direction or
to the screen. Font, character size and color are
parameterizable.

Text Shape with Value: In addition to the
TextShape, this block has a Real input connector.
The text in the visualization is followed by the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 545

input value of this connector, allowing the display
of simulation data in the visualization.

4.3 Visualization of flexible bodies

Especially for the use in the DLR FlexibleBodies
library, a visualization module for flexible bodies
is available in the library. For topologically sim-
ple objects (e.g. beams or tori) a parameterizable
surface can be used, visualizing an array of points
(see Figure 7)
For more complex models, an spatial interpolat-

Figure 7: quadratic, parameterizable surface

ing algorithm is implemented. This algorithm al-

Figure 8: Deformed(wireframe) component of an
industrial robot

lows to deform CAD models visually according to
a displacement set of n control points (n << nCAD)
and interpolates the CAD data points spatially
between the control points. With this algorithm
the number of points to be communicated to the
visualization system can be reduced drastically, as
only the displacement set has to be calculated and
submitted to the visualization (see Figure 8).

4.4 Energy flow visualization

The visualization package supports the visual-
ization of energy flows with several blocks (see
Figure 9). The energy flow is represented visually

Figure 9: Energy flow blocks

by a transparent pipe (can be deactivated) with
moving arrows inside. The spatial configuration
of the pipe is specified within the model by
parameterizing the single components of the
pipe (MultiBody Library compatible) with infor-
mations like length, diameter, radius of curved
segments etc. The basic flow elements available
are StraightPipe, CurvedPipe and FlexiblePipe
(flexible interpolated). For visualization purposes,
the color, size and speed of the arrows can be
dynamically changed during the simulation.

Every energy flow pipe has to begin with a
FlowBegin block and ends with an FlowEnd
block. The start position of a pipe is defined by
a MultiBody frame connector, whereas the flow
speed of the pipe indicators can be set by an
Real input of the FlowBegin block. The inter-
connection between the pipe segments is handled
by a special connector containing the connecting
frame of the segment, the flow through the pipe
and an ID of both connected pipe segments. The
IDs are necessary to provide information about
the assembly of the energy flow system for the
visualization software as a double-linked list.
In order to avoid kinematic loops, the frame
information of the pipe segments is encapsulated

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 546

Figure 10: Car Radiator with coolant flow

in the connector and should not be accessed
directly. If a connection between two defined
points is desired, the FlexiblePipe block can be
used to exactly construct a pipe connecting these
two points. This is done by a Bezier interpolation
algorithm and can be updated during the simu-
lation to visualize a flexible connection between
two moving points.

4.5 HUD Elements:

This objects support the generation of simple
head-up-displays, allowing the placement of text,
bar graphs and bitmaps. This elements can be
combined to form e.g. analogue instruments (see
Figure 11) or digital gauges. The displayed val-
ues are updated during the simulation and allow
a direct insight into the connected states of the
simulation. The head-up-display is placed as a 2D
overlay over the 3D scene.

Figure 11: Several bitmaps combined to an ana-
logue tachometer and rpm gauge

4.6 Cameras

The visualization system supports multiple cam-
era views. If there is no dedicated camera in the
model, a standard view will be used. For every
new camera block in the model, an additional sub-
window is available in the visualization viewer,
showing the scene from the cameras perspective.
Every camera can have its own background color,
viewing distance and field of view. A full screen
mode allows to display the camera perspective on
the complete display, multiple displays are sup-
ported. The following camera blocks are available:

FreeCamera: A free movable camera, initial-
ized at the camera-frame connectors start posi-
tion. The cameras position and perspective can be
adjusted in the viewer with the computer mouse.

FixedCamera: The perspective and position of
this camera is fixed. The position of the camera
only can be changed by the simulation itself, and
no user interaction is possible. The direction of
the camera view can be parametrized.

FollowCamera: This camera is centered on the
position of the camera’s reference-frame connec-
tor. As the reference connector moves, the camera
keeps focused on this position. The position of the
camera is defined via the camera frame connector.

DynamicFollowCamera: The position of this
camera is defined, like the FollowCamera via the
camera frame connector position. But unlike the
Follow Camera it is no direct coupling but a de-
layed following behavior characterized by a PT 1
system. The time constant of this following be-
havior can be parametrized.

AttachedCamera: A camera with free ad-
justable perspective, but with a position defined
by the camera’s reference-frame connector. This
camera is useful for the observation of a dedicated
object from different perspectives.

4.7 Lights

To create a well lightened scene, this sub-package
provides Light blocks. Without a dedicated light-
ing block in the model, a standard light will be
created and placed at the position of the camera.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 547

Figure 12: Lighting blocks

Light block: This is the most flexible lighting
block, including the complete OpenGL definition
for lights. Ambient, specular and diffuse light col-
ors as well as directional lighting and attenuation
of light are parameterizable.

Spotlight block: To reduce the configuration
effort, this block provides a preconfigured spot-
light with a selectable color and a spot angle and
direction. The specular and diffuse color are set
to the same value as the light color.

Diffuse Light block: This block provides a pre-
configured directional light, with selectable color
and light direction. This light can be used for
environment lighting, as it produces parallel light
rays like sunlight.

4.8 Effects

This sub-package contains blocks for additional vi-
sual effects. In the current release version of the
ExternalDevices library, the available effects are
weather and particle effects.

Weather effect block: Especially for environ-
ment visualization, this block provides the three
effects fog, rain and snow for more realism. The
fog effect, combined with a reduced viewing dis-
tance of the camera can be used to reduce the
viewing distance in the scene, in order to increase
the frame rate of the visualization.
The Rain and Snow effect are done with a parti-
cle system. A wind strength can be parametrized.
All weather effects can be triggered with a boolean
input by the simulation. Weather effects have
no distinct position but are located around every
camera.

Particle effect block: With this block simu-
lation of smoke or fire with variable intensity is
possible. A wind strength can be parametrized as

well as particle size and -lifetime. The ParticleEf-
fect block can be connected to MultiBody systems
with a frame connector defining the position of the
particle origin.

5 Application examples

The following samples are generated with the Ex-
ternalDevices library and are demonstrating se-
lected models with external visualization.

Example 1: Electric motor Figure 13 shows
a electrical engine propelling a rotor. In Figure
14 the associated Modelica model is shown, with
a magnification of the motor. File Shape blocks
are used to represent the CAD Data of the motor
and the rotor, a Flow Shape block visualizes the
energy flow between motor and rotor.

Figure 13: Electrical motor example

Example 2: Hybrid vehicle Figure 15 shows
a screen shot of a visualization of a hybrid vehi-
cle, rendered with SimVis. Advanced rendering
effects like the transparency of the chassis allow
an insight into the car’s components. The sim-
ulation is controlled with a SensoDrive steering
wheel via CAN bus, and a Logitech pedal system
via USB joystick input. In Figure 16 the com-
plete driving simulation, as shown on the FISITA
world automotive conference 2008 in Munich can
be seen. There are actually two simulations run-
ning, a driving simulation and a simulation of a
robot based motion simulation (see also Example
3). The driving simulation renders two camera
perspectives on the left and upper display, while
the motion simulator is shown on the right dis-
play. The motion simulator receives acceleration

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 548

Figure 14: Model of the example

and angular velocity data from the driving sim-
ulation and creates a trajectory simulating these
motions.

Example 3: Robot visualization Figure 17
shows a visualization of a KUKA KR500/1 robot
(Source CAD Data: kuka.com) used as motion
simulator. The effects of specular highlights are
visible, generating a more plastic look of the robot.
In this simulation, the robot joint angles are re-
ceived via UDP from the real KUKA KR500/1’s
control computer, the path-planning of the mo-
tion simulator is done in a Modelica model and
transmitted back to the robot control.

5.1 General performance

During internal tests and projects, scenes with
400 dynamically moved objects have been created,
reaching frame rates >25 fps. Models with a mem-
ory sizes up to 600 MB (uncompressed) have been
loaded and used as scenery. With the increas-
ing rendering power of actual graphic processing
units, CAD models with numbers of vertices > 106

can be displayed with acceptable frame rates.

Figure 15: Visualisation of a hybrid vehicle

Figure 16: Driving simulator shown at FISITA
2008

6 Conclusion and Outlook

The ExternalDevices library has shown its useful-
ness during DLR internal tests, especially for cre-
ating dynamic, interactive simulations. The pos-
sibility to interact with the simulation reduces the
effort to generate input trajectories and allows the
user to determine the progress of the simulation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 549

Figure 17: Visualisation of KUKA KR500/1 in-
dustrial robot

With UDP and shared memory interfaces, the co-
operation of several simulations or reading and
writing to other external sources is feasible.
The complete replacement of vendor-specific visu-
alizations and the shift to a platform independent
set of Modelica blocks allows much more flexibil-
ity in the development of visualization solutions.
The further development of the library will now
focus to extend the support of input instruments
(e.g. six-axis, force-feedback Joysticks) and the
improvement of the visualization, with a new,
modular HUD system and full integration of par-
ticle systems. Another very focused project aims
to integrate plug-ins for loading large terrain
databases into the SimVis framework.

References

[1] QT Software: http://www.qtsoftware.com/

products/

[2] OpenSceneGraph: http://www.

openscenegraph.org/

[3] FFMEPG: http://ffmpeg.org/

[4] OpenGL - The Industry Standard for High
Performance Graphics: http://www.opengl.

org/

[5] Simulink 3D Animation 5 - User’s Guide,
MathWorks Inc, http://www.mathworks.

de/access/helpdesk/help/pdf_doc/sl3d/

sl3d.pdf

[6] Aerolabs VisEngine: http://www.aerolabs.

net

[7] Vires Simulationstechnik GmbH: http://

www.vires.com/

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 550

Redundancies in Multibody Systems and
Automatic Coupling of CATIA and Modelica

Hilding Elmqvist1, Sven Erik Mattsson1, Christophe Chapuis2

1Dassault Systèmes, Lund, Sweden (Dynasim)
2Dassault Systèmes, Velizy Villacoublay, France

{Hilding.Elmqvist, SvenErik.Mattsson, Christophe.Chapuis}@3ds.com

Abstract
Traditionally, multibody systems have been defined
in Modelica by connecting bodies and joints in a
model diagram. Additionally the user must enter val-
ues for parameters defining masses, inertias and
three dimensional vectors of positions and orienta-
tions. More convenient definition of multibody sys-
tems can be made using a 3D editor available, for
example, in CATIA from Dassault Systèmes with
immediate 3D viewing.

A tool has been developed that translates a CA-
TIA model to Modelica by traversing the internal
CATIA structure to get information about parts and
joints and how they are related. This information is
then used to generate a corresponding Modelica
model. The traversal provides information about the
reference coordinate system, the center of mass in
the local coordinate system, the mass, the inertia, the
shape and color of the body exported in VRML for-
mat for animation purposes and the icon exported as
a PNG file to be used in the Modelica diagrams.

The Modelica diagram layout is automatically
generated and is based on the spanning tree structure
of the mechanism. Models obtained in this way often
contain redundant constraints. A new method has
been developed for Dymola to facilitate simulation
of such models, i.e. the model reduction is performed
automatically.

An important property of the translated model is
the possibility to use Modelica extends (inheritance)
for adding controllers and other features of the model
for dynamic simulation. For instance, the engine
model can be extended by introducing models of the
gas forces of the combustion acting on the cylindric-
al joints of the pistons. In that way, the translated
model is separated and can be changed independent-
ly of the added models.

Keywords: MultiBody systems, Modelica, CATIA

1 Introduction
Traditionally, multibody systems have been defined
in Modelica by connecting bodies and joints from the
MultiBody library (Otter et.al., 2004) in a model di-
agram. More convenient definition of multibody sys-
tems can be made using a 3D editor, available, for
example, in CATIA with immediate 3D viewing. See
for example the CAD model with kinematic defini-
tion of a four cylinder engine in Figure 1.

Figure 1. CATIA V5 model of engine

This paper discusses how to automatically derive
a corresponding Modelica model to enable dynamic
simulation of the mechanism. The first part of the
paper describes Modelica code generation, layout
generation and how a mechanical model can be ex-
tended for multi-domain dynamic simulation. The
last part discusses how redundancies in the kinematic
definition are handled.

Engelson (2000) discusses automatic translation
of SolidWorks models to an earlier version of the
Modelica MultiBody library. However, this work did
not consider automatic handling of kinematic loops,
automatic selection of states nor elimination of re-
dundancies in the kinematic definitions. Bowles
et.al. (2000) present a converter from ADAMS to
Modelica. This converter made automatic layout of
the Modelica code in a similar way as to what is de-
scribed in this paper. Cut joints were inserted auto-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 551 DOI: 10.3384/ecp09430113

matically. However, planar loops and redundant
joints were not handled. There are also other simula-
tion software vendors that provide tools for conver-
sion of CAD models to Modelica or similar formal-
isms. However, they require manual modification
after the conversion to derive a valid model. This is a
complicated and error prone task and also makes
maintenance of models harder.

2 Modelica code generation
A tool has been developed that translates a CATIA
V5 and V6 models to Modelica by traversing the
internal CATIA structure to get information about
parts and joints and how they are related. This in-
formation is then used to generate a corresponding
Modelica model. Bodies and joints are mapped to
Modelica models from a CATIA library written in
Modelica. This library is a wrapper library that maps
the models to Modelica.Mechanics.Multibody library
or to specially written models.

The CATIA parts are mapped to a model called
BodyShape. The traversal provides information
about the reference coordinate system, the center of
mass in the local coordinate system, the mass, the
inertia, the shape and color of the body exported in
VRML format for animation purposes and the icon
exported as a PNG file to be used in the Modelica
diagrams. The connector of the BodyShape body
represents the center of mass of the body.

The joints are mapped to models in the CA-
TIA.Joints package, see Figure 2.

Figure 2. CATIA package structure and Kinematics
Joints toolbar in CATIA V5.

There is a one to one mapping from the Modelica
Joints to the corresponding Joints in CATIA. The
joints include the necessary translations and rotations
from the MultiBody joint frames to the center of
mass of the respective bodies which the joint is at-
tached to. In addition to the MultiBody joints, some
new joint types such as point on curve were devel-
oped. The curve data are retrieved from CATIA and
table lookup is used in the joint model.

The Modelica model corresponding to the CA-
TIA model in Figure 1 is shown below. It consist of
30 bodies, 9 Revolute, 4 Cylindrical (one for each

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 552

cylinder), 8 Prismatic, 2 Gear (to drive the cam-
shafts), 8 PointCurve (one for each valve) and 10
Rigid joints. In addition, the translator introduced 14
CutJoints, one for each kinematic loop. As an exam-
ple, the Modelica code for the crankshaft is shown
below:

CATIA.Parts.BodyShape 'crankshaft__1'(
 m = 0.861027543288454,
 r_0_start = {-0.182833605157492,
 0.00863258496368804,-0.0978102539095819},
 R_start=MBS.Frames.Orientation(
 T=[
 0,-0.847538988037033, 0.530733137986643;
 0.0199597528990819, -0.530627407596764,
 -0.84737014496106;
 0.999800784288643, 0.0105933028037161,
 0.0169166684516004],
 w={0,0,0}),
 r_CM = {-0.0584560176906743,0,0},
 I_11 = 0.0116473560180544,
 I_21 = 0.000299454247697959,
 I_31 = -0.000193283295897208,
 I_22 = 0.00484290739689144,
 I_32 = 0.00442125657996889,
 I_33 = 0.00911887589804025,
 shapeName = "2",
 iconName = "./crankshaft__1.png")
 annotation (Placement(transformation(extent=
 {{-120,460},{-60,520}})));

The intial position, r_0_start, and orientation,
R_start, are retrieved for a consistent initial configu-
ration of the entire mechanism. Mass, m, and inertia,
I_11, …, I_33 are calculated for the density given in
CATIA. The parameter shapeName refers to the
name of a VRML file (2.wrl) exported by CATIA
representing the shape and color of the body. The
parameter iconName is the name of a PNG-file con-
taining a 2D projection of the body. It is used for the
icons in the bodies in the model diagram.

A joint instance is shown below. It contains the
axis of rotation, n, and fixed translations, ra and rb,
and rotations, fixedRotation_a and fixedRotation_b,
from the joint to the center of mass of the connected
bodies. In addition, the joint instance contains the
initial configuration, phi_start, of the joint.

CATIA.Joints.Revolute 'Revolute__5'(
 n = {0,0,1},
 ra = {0,0,0.124000000000001},
 rb = {0,0,0},
 fixedRotation_a(
 R_rel=MBS.Frames.Orientation(
 T=[0,0.907781470137235,-0.41944344371495;
 0,0.419443443714955,0.907781470137245;
 0.999999999999986,0,0],
 w={0,0,0})),
 fixedRotation_b(
 R_rel=MBS.Frames.Orientation(
 T=[0,0.81704961687189,-0.576567362560056;
 0,0.57656736256006,0.817049616871915;
 0.999999999999979,0,0],
 w={0,0,0})),
 phi_start = 1.07387718370489e-008)
 annotation (Placement(transformation(extent=
 {{-70,660},{-50,680}}, rotation = 90)));

Figure 3 shows the CATIA V5 representation of ki-
nematic joints, i.e. Revolute.5 is connected in be-
tween connecting rod_2.1 and pin.2.

Figure 3. CATIA V5 representation of kinematic joints
in engine

The corresponding Modelica representation is two
connections:

connect('pin__2'.frame_a,
 'Revolute__5'.frame_b);
connect('connecting_rod_2__1'.frame_a,
'Revolute__5'.frame_a);

3 Layout Generation
The Modelica diagram layout is automatically gener-
ated and is based on the spanning tree structure of
the mechanism obtained by the classical depth-first
search algorithm of graph theory. See the layout of
the engine four cylinders in the Modelica diagram
for engine model above and in Figure 4 which shows
the 4 cylinders zoomed in.

In this way, loops are generated and placed aside
of the main branches. Notice that the closing of the
loops are presented by red connections. For the En-
gine, it is possible to see the four cylinders and the
longest possible loop is starting at the crank case,
passing though a cylinder to the crank shaft and then
back through another cylinder to the crank case.
Then the other two cylinders are detected as loops
from the crank shaft to the already-detected crank
case and placed correspondingly. Other loops are the
synchronization belts and valve shafts. The root of
the tree is the fixed body present on the CATIA
model.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 553

Figure 4. The four cylinders zoomed in.

4 Incorporating dynamics by extend-
ing

An important property of the translated model is the
possibility to use Modelica extends (inheritance) for
adding controllers and other features of the model for
dynamic simulation. For instance, the engine model
can be extended by introducing models of the gas
forces of the combustion acting on the cylindrical
joints of the pistons. In that way, the translated mod-
el is separated and can be changed independently of
the added models.

CATIA models do not contain force aspects. This
means that springs, dampers, friction and other force
elements have to be added in the Modelica layer.
Actuators such as electrical motors or hydraulic sys-
tems as well as sensors and control systems are also
added to the Modelica layer.

5 Simulating engine
The possibly extended generated Modelica model is
symbolically translated to ODE form in the usual
way involving finding systems of simultaneous equa-

tions, making index reduction and automatic state
variable selection. For details, see Otter et.al. (2007)
and Mattsson et.al. (2000). The engine model con-
tains point on curve joints. This means a constraint
described by tabular data. The index reduction re-
quires the constraints to be differentiated twice. The
implication was that the tabular data was used for
generation of splines which could be differentiated
twice.

In addition, the engine model contains redundant
joints. Special methods were developed to handle
those, See section 6.

In fact the model has only one degree of freedom,
the crank angle. The automatically generated model
was extended and a constant torque generator was
added to drive the crank shaft. Figure 5 shows plots
of torque, acceleration and the position of each of the
cylinders. It can be seen that the inertia is not con-
stant since acceleration is time varying. In fact the
amplitude of inertia variations increases for higher
angular speeds.

Figure 5. Simulations results.

The results can be animated since all bodies are
represented by VRML. The animation in Dymola
can be seen in Figure 6.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 554

Figure 6. Dymola animation of dynamic behavior.

6 Redundancies in MultiBody Sys-
tems

The approximation or idealization that bodies of
multibody systems are rigid implies, unfortunately,
that it is not possible to determine forces acting on
the members of any structure.

As a basic example, let us model a door with two
hinges by the simple model Door1 in Figure 7.

do
or

r=
{0

,2
,0

}

20
b

a

a
b

n=
{0

,1
,0

}

hi
ng

e2

world

x

y a
b

n=
{0

,1
,0

}

hi
ng

e1

fra
m

e

r=
{0

,2
,0

}

a
b

rod2

r={0.5,0,0}

a b

rod1

r={0.5,0,0}

a b

Figure 7. The model Door1

The object door represents the door as one rigid
body. The house and the door frame are represented
by the objects world and frame. Each of the two
hinges is represented by a revolute allowing the door
to rotate along a vertical axis, the y-axis. This model
does not translate, because it is singular. The error
diagnosis from Dymola contains the following mes-
sage: “The model includes the following hints: All
Forces cannot be uniquely calculated. The reason
could be that the mechanism contains a planar loop
or that joints constrain the same motion.”

It is true that joints constrain the same motion in
the model. From a kinematics point of view this
model is equivalent to the model Door1a in Figure 8.

do
or

r=
{0

,2
,0

}

20
b

a

world

x

y a
b

n=
{0

,1
,0

}

hi
ng

e1

rod1

r={0.5,0,0}

a b

Figure 8. The model Door1a which is a kinematics
equivalent to the model Door1.

In other words, the door in the two models can only
rotate around the vertical axis, the y-axis. When it
comes to forces, the two models are different. The
model Door1a, requires hinge1 take all loads, while
the model Door1 allows the load to be shared by two
hinges.

Why do doors have at least two hinges? The
hinges not only balance the vertical force due to
gravity, but they need also balance the torque due to
gravity. When having just one hinge, this hinge has
to provide reactive torques in the x and y directions.
There will always be some play in a real hinge and
such a door would not behave as desired. When us-
ing two hinges, the balancing torque can be realized
by a force pair. When having two hinges a more rea-
listic model could be to use spherical joints to de-
scribe the hinge. A spherical joint does not produce
any reaction torque and we can view as a way of tak-
ing the play into account. The balancing torque must
be produced by a force pair from the two spherical
hinges. Unfortunately, such a model is still singular.
In real life, we know that it is important to mount the
hinge parts in the frame in the door with good accu-
racy. If not, the vertical load will not be shared, but
one of the hinges has to take all vertical loads. To
make the model non-singular, one of the hinges has
to include a prismatic joint in the vertical direction,
which means that the other hinge has to take all ver-
tical loads. You could think of letting both hinges
have two actuated prismatic joints and use springs
and dampers to split the vertical loads. However, if
we just want to know how the door moves due to
external forces, such a model would be unnecessary
complex.

When the desire is to model the dynamic behavior of
the door, it is just necessary to get the acceleration
correct. For a rigid body, we need then to get the to-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 555

tal forces and torques acting on it correct. We need
not consider how the forces and torques acting on the
body are distributed over the body. For the door, we
need only the sum of the forces and torques acting on
the body with respect to some common point, say,
the center of inertia. We can in fact prescribe any
value of the vertical reaction torque from hinge2,
because, hinge1, will automatically counter balance
it and the sum will be correct. The technique to relax
redundant position or orientation constraints by pre-
scribed forces and torques is to introduce cut joints.

Below we will introduce the concept of cut joints
and how Dymola handles selection of constraints
within cut joints automatically.

6.1 Introducing cut joints in kinematic loops

Redundancies in multibody systems can only appear
when there are kinematic loops.

The model Door1 has the loop: frame, hinge2,
rod2, door, hinge1, rod1 and back to frame. When
traversing the CATIA model structure to generate
the Modelica model, the tool keeps track of kinemat-
ic loops and introduces a cut joint in each kinematic
loop. Thus the model of the door, call it Door2, will
include a cut joint. Let us place it between hinge2
and rod2 as shown in Figure 9. Actuators have also
been introduced for testing purposes.

torque1

tau

do
or

r=
{0

,2
,0

}

20
b

a

a
b

n=
{0

,1
,0

}
hi

ng
e2

world

x

y a
b

n=
{0

,1
,0

}
hi

ng
e1

fra
m

e

r=
{0

,2
,0

}

a
b

rod2

r={0.5,0,0}

a b

rod1

r={0.5,0,0}

a b

trapetzoid2

period=100

torque2

tau

trapetzoid1

period=100

Figure 9. The model Door2.

The basic meaning of the cut-joint is that the position
and orientation should be the same. However, it can
handle the fact that these constraints might be redun-
dant, i.e., they might be deduced without considering
the cut-joint constraints. The cut joint does this by
giving expressions for the relative positions and
orientations of the two connector frames. The con-

straint saying that these should be zero is given by a
special function with the interface

function conditionalConstraint(
 input Boolean condition;
 input Real u1;
 input Real u2;
 output Real y;
 …
end conditionalConstraint;

The basic meaning is

 y = if condition then u1 else u2;

It is used vectorized in the cut joint as

 fill(0, 6) =
 conditionalConstraint(
 conditions,
 {r_rel_a[1], r_rel_a[2], r_rel_a[3],
 phi[1], phi[2], phi[3]},
 {f_c[1], f_c[2], f_c[3],
 t_c[1], t_c[2], t_c[3]});

The first actual argument is a Boolean vector with 6
elements. The second argument includes the relative
positions and rotations, while the third argument in-
cludes the forces and torques in the corresponding
directions. A user could set elements of conditions to
false to replace redundant position or orientation
conditions by postulating corresponding forces or
torques to zero. Unfortunately, realistic applications
have many loops and since there 26 = 64 ways of
setting the vector conditions for each loop, there is a
combinatorial explosion. It is not feasible to set cut-
joints manually. Dymola supports automatic selec-
tion of which of the constraints to use in order to
have a well-posed problem. In simple cases this can
be done statically at translation otherwise it is done
dynamically at simulation.

Initialization of models with kinematics loop may
be a non-trivial issue; in particular when there are
conditional constraints to select. Fortunately, CATIA
has a powerful kinematics solver, which means that
the Modelica models generated from a CATIA mod-
el structure can be provided with consistent initial
values, so there is no need for generating code for
initialization.

Dymola allows plotting of the Boolean conditions
vector in the usual way during and after simulation.
Dymola also reports the final selection as new model
extending from the model simulated with modifiers
setting the condition vector of all conditionalCon-
straint functions:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 556

model Door2_Fixed_Constraints
 extends Door2(cutJoint.conditions=
 {false, false, false,
 false, true, false});
end Door2_Fixed_Constraints;

Note that all elements are false but the fifth. It means
that Dymola has really cut the loop. The fifth ele-
ment represents rotation along the y-axis. In this re-
spect the cut joint is in series with hinge1 that allow
this rotation. Two revolute joints with the same axis
of rotation without inertia in between imply ambigui-
ty between the rotation angles of the two revolute
joints and such a model would thus be singular.

Typically you need just to simulate the model to
have it initialized, i.e., simulate with startTime =
stopTime. A model obtained in this way can be used
as a basis for further model development and simula-
tion where Dymola’s automatic selection is disabled.
For example, initialization equations are now sup-
ported in usual way.

We have presented a general cut joint with condi-
tional constraints. It can be placed anywhere in a
loop with one important exception. It cannot be
placed in series with a spherical joint if there is no
inertia in between. A spherical joint puts no con-
straints on the orientation. It is has no Connec-
tions.branch(…) defined between its frame connec-
tors to handle the over determined connectors de-
scribing the orientation. The same applies for the cut
joint. It means that the part between the spherical
joint and the cut joint has no root defined to handle
the normalization of the overdetermined part of
orientation description. To solve this problem, we
have introduced a special spherical cut joint. Such a
joint only has the position constraints conditional.

6.2 Example: The door model revisited

Let us consider the door model once more and put
the cut joint at another place in the loop, namely be-
tween rod2 and door as shown in Figure 10.

torque1

tau

do
or

r=
{0

,2
,0

}

1
b

a

a
b

n=
{0

,1
,0

}
hi

ng
e2

world

x

y a
b

n=
{0

,1
,0

}
hi

ng
e1

ro
d1

r=
{0

,2
,0

}

a
b

rod2

r={0.5,0,0}

a b

rod3

r={0.5,0,0}

a b

trapetzoid2

period=100

torque2

tau

trapetzoid1

period=100

Figure 10. The model Door3.

Assume that the cut-joint would break the loop com-
pletely, i.e, all conditions are false. It means that
hinge2 allows rod2 to rotate in a plane parallel to the
x-z plane. It means that a cut joint cannot break the
loop completely, but has to select one constraint.
There are two possibilities. First, as for Door2, it can
lock the rotation in the direction of the vertical axis.
Call this angle φ and thus the active constraint will
be φ = 0. Secondly, the motion can be prevented by
requiring the relative displacement of the cut joint in
the z direction, Δz = |rod2.r|∙sin φ to be zero, thus
requiring φ = 0. The selection of constraints is based
on analyzing the Jacobian of the constraints. For φ ≈
0, we have Δz ≈ |rod2.r|∙φ. It means that if |rod2.r| <
1, the condition, φ = 0 will be selected. Otherwise
the conditions Δz = 0 will be selected. The two will
give the same accelerations and the door will move
in exactly the same way. However, the torques and
forces at the connector frames of the cut joint will be
different. Choosing φ = 0 as the active constraint in
the cut joint, will set all forces and torques of the cut
joint to zero, except for the torque in the y direction,
cutJoint.frame_a.t[2], which will propagate the tor-
que due to the actuation of hinge2. Choosing Δz = 0
as the active constraint in the cut joint, will set all
forces and torques of the cut joint to zero, except for
the force in the z direction, cutJoint.frame_a.f[3],
which will propagate the effects of the actuation of
hinge2. Putting a cut joint close to hinge2 does not
influence the possibilities to have actuation on it.
This is a better alternative than removing it com-
pletely as done in model Door1a.

6.3 Planar kinematics loops

The door model is an example of a model having
redundant joints, i.e., joints constraining the same

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 557

motion. The error message for the model Door1 in-
dicated another possibility, namely possibility of the
loop being planar.

Consider the system PlanarLoop1 in Figure 11.

Figure 11. The system PlanarLoop1.

The system is built by bars lying in x-y plane and
connected by revolute joints with their axes of rota-
tion parallel with the z axis. A model is shown in
Figure 12.

a b

n={0,0,1}

r2 bodyShape

r={0.6,0,0}

1 ba a b

n={0,0,1}

r3

a b

n={0,0,1}

r4

ro
d3

r=
{0

.1
,0

.5
,0

}

a
b

world

x

y

a
b

n=
{0

,0
,1

}

r1
ro

d1

r=
{0

,0
.5

,0
}

a
b

rod2

r={0.5,0,0}

a b

m=1

body

Figure 12. The model PlanarLoop1.

Dymola selects the constraints in the following way:
model PlanarLoop1_Fixed_Constraints
 extends PlanarLoop1(cutJoint.conditions=
 {true, true, false, false, false, true});
end PlanarLoop1_Fixed_Constraints;

Since the third argument is selected to false, the loop
is cut in the z-direction, i.e., the position constraint in
the z direction is redundant. First, the system cannot
move in the z direction at all, because all joints are
revolute joints with their axes of rotation parallel
with the z axis. Starting from world going the path
rod2, r4 we can deduce that the left end of the cut
joint has always cutJoint.frame_a.r[3] = 0. Going the
other way from world we find in similar way that
cutJoint.frame_b.r[3]. This means that the position
constraint in z-direction of the cutJoint is redundant.
The components cannot rotate along any axes in the
x-y plane. This explains why Dymola selected
cutJoint.conditions[4] = false;

cutJoint.conditions[5] = false;

The model PlanarLoop1 is built nicely in a coordi-
nate plane z = 0. Far from all Modelica models gen-
erated from the CATIA models structure is that well-
behaved. Dymola must be able to find any planar
loop independent of which plane it exists in. Let us
define the mechanism in the plane
 -sin(a)*y + cos(a)*z = 0
It means a tilting of the mechanism along the x-axis
an angle, a, as shown in Figure 13.

Figure 13. The system PlanarLoop2 in two positions.

The model is shown in Figure 14.

a b

n=nrev

r2 bodyShape

r={0.6,0,0}

1 ba a b

n=nrev

r3

a b

n=nrev

r4
ro

d3

r=
nr

1
+

{0
.1

,0
,0

}

a
b

world

x

y

a
b

n=
nr

ev

r1
ro

d1

r=
nr

1

a
b

rod2

r={0.5,0,0}

a b

m=1

body

Figure 14. The model PlanarLoop2.

The model PlanarLoop2 is an extension of Planar-
Loop1, introducing the parameters a, nrev = {0, -
sin(a), cos(a)} and nr1 = 0.5*{0, cos(a), sin(a)}, and
modifying the axes of rotations of the revolute joints
and the axes of rod1 and rod3.

When the angle is small i.e., -45º<a <45º, Dymo-
la selects the constraints as for the model Planar-
Loop1, which is the special case a=0. For -90º<a <-
45º or 45º<a <90º for Dymola selects the constraints
in the following way:
model PlanarLoop2_Fixed_Constraints
 extends PlanarLoop1(cutJoint.conditions=
 {true, false, true, false, true, false});
end PlanarLoop2_Fixed_Constraints;

Simply said, you get the selection of the coordinate
plane to which you have least tilt angle.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 558

6.4 Example: A crank shaft, piston and cylind-
er mechanism.

Consider the model Engine1a, which is found in
Modelica.Mechanics.MultiBody.Examples.Loops.
see Figure 15 and 16..

Figure 15. An animation of Engine1a.

Figure 16. The model Engine1a.

The model is intricate. First, the revolute joint B1 is
a revolute planar cut joint indicating that it is part of
a planar loop. This is may be not that difficult to un-
derstand when looking at Figure 15. However, the

component cylinder at the top is not a cylindrical
joint as might be expected, but a prismatic joint. This
joint does not allow the piston to rotate. If B1 had
been a real revolute joint then the crank mechanism
had prevented rotation of the piston along its length
axis. Unfortunately, when B1 is a planar cut joint,
then the piston can rotate. The component Cylinder
being just a prismatic joint fixes that.

The new universal cut joint and the automatic
constraint selection of Dymola relives the user from
such complex “fixing” of the model. Let us make a
more natural, straightforward model, call it Engine.
It is similar to Engine1a, but B1 is an ordinary revo-
lute joint and Cylinder is a cylindrical joint. Addi-
tional we add a cutJoint between cylPosition and
Cylinder, because there is a kinematics loop. Dymola
translates and simulates this model without any prob-
lems. Dymola reports the following selection of con-
straints for cutJoint:

model Engine_Fixed_Constraints
 extends Engine(cutJoint.conditions=
 {false, true, true, true, true, false});
end Engine_Fixed_Constraints;

Note, that the conditions vector has only two ele-
ments selected to be false. Reconsider the model En-
gine1a. The revolute cut-joint B1 means selecting the
condition vector to be
 {false, true, true, true, false, false}
The fifth element is here false. It means that the re-
volute planar cut joint is cutting the loop a bit too
much. If Cylinder in model Engine1a would have
been a cylindrical joint, the part between B1 and Cy-
linder had been free to rotate along the y axis. Select-
ing Cylinder to be a prismatic joint prevents the rota-
tion along the y-axis.

7 Conclusions
A method for coupling kinematic CAD models, in
particular CATIA models, to Modelica has been de-
scribed. Since such models often contain redundant
joints, a new combined structural, symbolic and nu-
merical technique has been developed for Dymola to
handle such models. Details were given about typical
such redundant kinematic definitions and how the
new method handles those.

8 Acknowledgements
The authors would like to thank Martin Otter (DLR)
and Hans Olsson (Dynasim) for their contributions.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 559

References
Bowles P., Tiller M., Elmqvist H., Brûck D., Mattsson

S.E., Möller A., Olsson H., Otter M (2000).:
Feasibility of Detailed Vehicle Modeling. SAE
World Congress 2000.

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
www.dymola.com.

Engelson V. (2000): Tools for Design, Interactive Simu-
lation, and Visualization of Object-Oriented
Models in Scientific Computing. Department of
Computer and Information Science, Linköping
University, Sweden.

Mattsson S.E., Elmqvist H., and Olsson H. (2000): Dy-
namic Selection of States in Dymola. Proceed-
ings of Modelica Workshop 2000, pp. 61-67.
Download:
http://www.modelica.org/events/workshop2000/p
roceedings/Mattsson.pdf

Otter M., Elmqvist H., Mattsson S.E. (2003): The New
Modelica MultiBody Library. Proceedings of
Modelica’2003, ed. P. Fritzson, pp. 311-330.
Download:
http://www.modelica.org/events/Conference2003
/papers/h37_Otter_multibody.pdf

Otter M., Elmqvist H., Mattsson S.E. (2007): Multido-
main Modeling with Modelica. Handbook of
Dynamic System Modeling, Chapter 36, Ed. P.
Fishwick, Taylor & Francis Group LCC .

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 560

Improvement of MSL Electrical Analog Library
Kristin Majetta Christoph Clauß Matthias Franke Peter Schneider

Fraunhofer-Institute for Integrated Circuits, Design Automation Division
Zeunerstraße 38, 01069 Dresden, Germany

{Kristin.Majetta, Christoph.Clauss, Matthias.Franke, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

The set of device models of the Modelica electrical ana-
log library needs to be extended to support improved
applications. Within the EUROSYSLIB project a multi-
ple line model, a zener diode, a thyristor, an opamp and
some switches with arc models, and a conditional heat
port were added. The performance was improved gener-
ally. Furthermore, IGBT, TRIAC and converter models
are planned.

Keywords: Modelica standard library, electrical
analog library, EUROSYSLIB

1 Introduction

The electrical analog library of the Modelica Stan-
dard Library (MSL) has been developed for more
than 10 years [1], [2]. It was widely used which
caused suggestions for improving the library. The
intention of the library development is to

 meet the user requirements for functionality
 give examples for device modeling
 meet a textbook like level of simplicity

Therefore, the library development is a long-lasting
user-driven process. In this paper some single im-
provements are collected which arose on partner de-
mand in the EUROSYSLIB project.

2 Improved performance due to
 smooth-operator

The smooth-operator is an event-related built-in in-
trinsic operator of Modelica [3]. It can be used to
state the smootheness property of a Real expression.
If an expression is expected to be discontinuous (e.g.
due to an if-statement) usually an event has to be
generated which interrupts the analog simulation
algorithm. This interruption can be avoided if the
smoothness property was stated using the smooth
operator. Furthermore, the level of smoothness (how
often the expression is continuously differentiable)

can be used by the simulation tool to choose the ap-
propriate simulation order.
The MSL Electrical Analog Library was checked
with regard to smoothness. Mostly at semiconductor
devices the smooth-operator could be used. This im-
proved the performance in large circuit models con-
siderably. As an example an adder chain was simu-
lated using Dymola. It consists of 10 full adders built
by MOSFET transistors which are modeled using the
MSL Electrical.Analog.Semiconductor models. All
in all 620 transistors are used. The improvement is
shown in the following table 1.

Advanced.
SmoothEvent

Smooth
operator

F-
Evaluations

steps CPU
Seconds

default (1) not used 1994791 8575 1230

default (1) used 1487274 6767 962

0 used 28284 1541 4.8

Tab. 1: Full adder chain statistics
The second line addresses the usage of the smooth-
operator whereas all simulator parameters of Dymola
are default.
To fully exploit the smoothness information given by
the smooth-operator in Dymola the variable

Advanced.SmoothEvent = 0

is recommended to be set. This causes a drastic im-
provement shown in the third line of table 1. The
SmoothEvent variable controls the event handling if
the smooth operator is applied. By setting
SmoothEvent to zero no events are generated which
causes a high performance, but it must be taken into
consideration that precision can be lost. Conse-
quently, the smooth operator should be applied if
further models will be added to the MSL. Otherwise,
the smooth-operator should be improved to avoid the
necessity of setting SmoothEvent.

3 Conditional heat port

In usual electrical circuit simulation a heat port is not
necessary. Each device is simulated using its nomi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 561 DOI: 10.3384/ecp09430018

nal temperature which sometimes can be set via pa-
rameter. If otherwise a coupled electrical and thermal
simulation is asked for a thermal heat port for the
connection to a thermal network is desired. There-
fore, a conditional heat port was introduced that can
be switched on if needed. Moreover, the heat port is
useful for a clear handling of energy conservation.
The loss power which normally disappears in a pure
electrical simulation is dissipated to the heat port,
and the energy balance becomes correct.
As an example the new resistor model with condi-
tional heat port is described. The Boolean parameter
useHeatPort controls the presence of the heat port.
Fig. 1 shows the resistor icon which is sensitive re-
garding to the useHeatPort parameter.

R=R

r

R=R

r_heat

Fig. 1: Resistor icon with and without heat port

If the useHeatPort parameter is set to true, a heat port
of the thermal heat transfer library exists the tem-
perature of which is equal to an additional variable
T_heatPort. The heat flow rate of the heat port is set
to the variable LossPower, the value of which has to
be calculated basing on electrical loss power. In this
way the electrical loss power is transformed into an
accompanying thermal network. Otherwise via
T_heatPort the actual temperature can be used in the
electrical component.
If the heat port is not active (useHeatPort false, de-
fault case) the actual temperature is constant by set-
ting to a parameter T. Though the LossPower vari-
able is calculated it is not used.
Since this functionality of the heat port is the same in
all electrical components it was extracted to a partial
model ConditionalHeatPort which can be extended
from electrical components if a conditional heat port
is necessary. The source code of the Conditional-
HeatPort model is:

partial model ConditionalHeatPort

 import SI=Modelica.SIunits;

 import H=Modelica.Thermal.HeatTransfer;

 parameter Boolean useHeatPort = false

 “=true, if HeatPort is enabled”;

 parameter SI.Temperature T=293.15

 “Fixed device temperature

 if HeatPort is disabled”;

 H.Interfaces.HeatPort_a

 heatPort(T(start=T)=T_heatPort,

 Q_flow=-LossPower) if useHeatPort;

 SI.Power LossPower “Loss power leaving

 component via HeatPort”;

 SI.Temperature T_heatPort

 “Temperature of HeatPort”;

equation

 if not useHeatPort then

 T_heatPort = T;

 end if;

end ConditionalHeatPort;

Via inheritance the conditional heat port is used in
the resistor component. To make the component
temperature sensitive the parameters T_ref (refen-
rence temperature at which e.g. the resistance R was
measured) and alpha (linear temperature coefficient)
were introduced. The temperature T_heatPort which
is either coming from the heat port or is set to T_ref
if the heat port is not enabled is used to calculate the
temperature dependent resistance R_actual:

 R_actual =R*(1+alpha*(T_heatPort-T_ref));

Using alpha = 0 (default) R_actual is identical to the
resistance parameter R, and the resistor is not tem-
perature dependent.
The electrical dissipation is simply calculated by

 LossPower = v*i;

The partial model ConditionalHeatPort connects the
variable LossPower to the heat flow rate Q_flow of
the heat port.

The source code of the improved resistor model is:

model Resistor

 import SI=Modelica.SIunits;

 import A=Modelica.Electrical.Analog;

 parameter SI.Resistance R(start=1)

 “Resistance at temperature T_ref”;

 parameter SI.Temperature T_ref=300.15

 “Reference temperature”;

 parameter SI.LinearTemperatureCoefficient

 alpha=0;

 extends A.Interfaces.OnePort;

 extends A.Interfaces.ConditionalHeatPort

 (T = T_ref);

 SI.Resistance R_actual;

equation

 R_actual =R*(1+alpha*(T_heatPort-T_ref));

 R_actual*i = v;

 LossPower = v*i;

end Resistor;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 562

In this way a conditional heat port was added to
many devices with electrical dissipation. The con-
stant and the variable resistor and conductor as well
as some semiconductor devices are temperature sen-
sitive. Most of the ideal devices are not temperature
sensitive, but the loss power is calculated. In many
cases the temperature sensitive devices are still sepa-
rated from not sensitive devices.

As an example a simple NOR circuit is regarded (fig.
2) with temperature sensitive bipolar transistors. Fig.
3 shows both the electrical and the thermal behavior.
Since the thermal network is nonrealistic because of
missing cooling devices, the temperature rises until
the electrical function crashes (fig. 4).

HeatCapacit...

0.1

TC
1

G
=0.01

TC
2

G
=0.01

V

+
-

V
1

+
-

V
2

+
-

R=1800

R1

R=1800

R2

R=40

RI

Gnd

Gnd1

Gnd2

Gnd3

Gnd4

C=CapV
al

C
1

C=CapV
al

C
2

C=CapV
al

C
3

Gnd5

Gnd6
Gnd7

T1

T2

Fig. 2: Thermal electrical NOR circuit

Fig. 3: Thermal and electrical behavior

Fig. 4: Crash due to overheating

4 Multiple line model

For an improved modeling of electrical lines a multi-
ple line model was added. It consists of a series of
lumped RLGC segments according to fig. 5. Both the
number of lines and the number of segments can be
specified.
Further parameters are the length of line, and the
matrices of the linear electric constants (r, l, g, c)
which are used to calculate the segment parameters.
E.g. the segment parameter R1 is calculates by

R1 = r1 * length / number of segments
The segment parameters do not vary along the line.
Only the R and L parameters of the first segment are
cut into halves. They are complemented to full val-
ues by a special segment at the other end of the line
which consists of R and L devices only. This special
arrangement is used for reasons of symmetry. Fre-
quency dependent loss parameters [4] are not mod-
eled.
Since the linear electric constants matrices are sym-
metrical only the upper triangular matrix has to be
specified.

Fig. 5: RLGC segment

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 563

For the coupled inductors of the RLGC segment a
special model M_Transformer was introduced (fig.
6). Added to the Basic subpackage it allows the mod-
eling of multiple winding transformers. Its parame-
ters are the number of inductors and the inductance
matrix.

Fig. 6: Icon of the M_Transformer model

To demonstrate the multi line model behavior a four
line model is connected with resistors and a voltage
source according to fig. 7. Fig. 8 shows the expected
behavior. The voltage rising of the first single line is
temporarily coupled into the grounded single lines.

Fig. 7: Circuit containing a four line model

Fig. 8: Voltage coupling due to multiple line model

5 Zener diode

A simple Zener diode model [5] which is widely
used for voltage stabilization was added to the semi-
conductor subpackage. Its equation combines the
usual diode behavior with a breakthrough character-
istic:

v / Vt (v Bv) /(Nbv*Vt)i Ids(e 1) Ibv(e)

Parameters are Ids (saturation current), Vt (voltage
equivalent of temperature), Bv (Zener voltage), Ibv

(breakthrough knee voltage), and Nbv (breakthrough
emission coefficient). A parallel ohmic resistance is
added. If an exponent reaches the limit Maxexp the
characteristic is continued linearly to avoid overflow.
Fig. 9 shows a voltage stabilization circuit with a
sine input. The voltage stabilization reached due to
Zener diodes is shown in fig. 10.

Fig. 9: Voltage stabilization circuit

Fig. 10: Stabilized voltage due to Zener diodes

6 Thyristor

Since the ideal thyristor models are very simple ones
a more realistic, but still simple thyristor model was
added. It has the three pins Anode, Cathode and
Gate.
If the thyristor is in the blocking mode the behavior
is like a linear resistor. It changes into the conduction
mode if either the voltage between cathode and an-
ode exceeds a certain value or a positive gate current
flows a certain time.
There is no possibility to switch off the thyristor via
the gate. It stays in the conducting mode until the
anode current falls below the holding current value
which is a parameter. If the voltage between anode
and cathode is negative the model represents a diode
with reverse breakthrough voltage.
The following simple test circuit (fig. 11) shows the
behavior of the thyristor model.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 564

Fig. 11: Thyristor behavior test circuit

Fig. 12: Gate current of the thyristor test circuit

Fig. 13: Resulting behavior of the thyristor test

In fig. 13 the anode and cathode voltages are shown.
If the gate current (fig. 11) rises, the thyristor be-
comes conducting and the voltage drop between an-
ode and cathode is zero.

7 Operational Amplifier

In many cases the operational amplifier models of
the MSL (IdealOpAmp, IdealOpAmpLimitted,
OpAmp) are not sufficient. Therefore, a detailed
model OpAmpDetailed was added, which is divided
into five functional stages (input, frequency re-
sponse, gain, slew rate, and output). Each stage con-
tains a set of typical data sheet parameters, which are
independent from parameters of the other stages. The
model is described in detail in [6].

Fig. 14 shows an amplifier circuit using the
OpAmpDetailed model. The results in fig. 15 show
an amplification with voltage limitation.

Fig. 14: Voltage amplifier circuit

Fig. 15: Amplification with voltage limitation

8 Switches with Electric Arc

The ideal switch models of the Ideal subpackage in-
terrupt the current flowing through the switch within
an infinitesimal time span. This causes numerical
difficulties if an inductive circuit is connected since
that current has to be differentiated. The voltage
across the switch is only limited by the numerical
solution methods. To improve this switches a simple
electric arc model was introduced.
When the switch opens a voltage across the opened
switch is impressed. This voltage starts with the ini-
tial arc voltage (V0) and rises with the arc voltage
slope (dVdt) until the maximum arc voltage (Vmax)
is reached. V0, dVdt and Vmax are parameters. The
arc quenches if the current once reaches that current
that would flow in the off-state of the switch. Then
the off-state is activated.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 565

Both Boolean controlled and voltage controlled
openers and closers with arc model are added to the
standard library.
Fig. 16 shows a comparison circuit between switches
without and with the arc model. The arc model
avoids the sudden switching (fig. 17).

Fig. 16: Comparison circuit of switches without and
with electrical arc

Fig. 17: Switch currents of the comparison circuit

9 Translational EMF

Similar to the EMF model of the MSL Electri-
cal.Analog.Basic library which transforms electrical
energy ideally into rotational mechanical energy a
TranslationalEMF model was introduced that trans-
forms the electrical energy into translational me-
chanical energy. Fig. 18 shows the icons:

Fig. 18: Icons of the translational EMF model

If the parameter useSupport is set to false (default),
the model is internally grounded. Therefore it has

only one mechanical flange (left icon in fig. 18). Set-
ting useSupport to true the model has two flanges
without being internally grounded (right icon in fig.
18). With v being the voltage, i the current, vel the
velocity and f the force the essential equations are:

k * vel = v;

f = - k * i;
k is the transformation coefficient.

10 Conclusions

The modelica electrical analog standard library was
improved by a general usage of the smooth operator
which increased the performance drastically. A con-
ditional heat port allows thermal-electric simulation.
A multiple line model, a multi inductor transformer
model, a Zener diode model as well as thyristor and
a detailed operational amplifier model, switches with
an electric arc model and a translational EMF model
were added.
Further models are planned to be added in future:
IGBT, TRIAC and converter models. The MSL elec-
trical analog library development is accompanied by
the development of a library according to the Berke-
ley SPICE3 simulator devices.

Acknowledgement

This research was founded by the European ITEA2
project EUROSYSLIB. The authors thank A. Hau-
mer, C. Kral (Arsenal), M. Otter (DLR), S. Wolf
(Fraunhofer IIS), as well as both the Dymola and
SimulationX support for either models or helping
modeling.

References

[1] Clauß, C.; Leitner, T.; Schneider, A.; Schwarz, P.:
Modelling of electronic circuits with Modelica. Proc.
Modelica Workshop, Lund, Sweden, Oct. 2000, 3-11.

[2] http://www.modelica.org/libraries/Modelica
[3] Modelica – A unified object-oriented language for

physical systems modeling. Language Specification
3.0, via http://www.modelica.org

[4] Smolyansky, D.; Klein, W.: Angewandte Simulation
von verlustbehafteten digitalen Übertragungsleitun-
gen. Test Kompendium 2004, 109-112

[5] Tietze, U.; Schenk, C.: Halbleiter-Schaltungstechnik.
12. Aufl., Springer-Verlag Berlin Heidelberg, 2002

[6] Conelly, J.A.; Choi, P.: Macromodelling with SPICE.
Englewood Cliffs: Prentice Hall, 1992

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 566

SPICE3 Modelica Library
Kristin Majetta Sandra Böhme Christoph Clauß Peter Schneider

Fraunhofer-Institute for Integrated Circuits, Design Automation Division
Zeunerstraße 38, 01069 Dresden, Germany

{Kristin.Majetta, Sandra.Boehme, Christoph.Clauss, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

Since the very beginning of the Modelica development
ambitions for electronic simulation exist. The electronic
simulator SPICE, the SPICE models and the SPICE net-
lists grew to a quasi standard in electronics simulation
for the last 30 years. That is why the wish arose to have
SPICE models available in Modelica. This paper deals
with modeling the SPICE3 models in Modelica directly
extracted from the original SPICE3 source code. This
courses the problem of transforming the sequential
simulator-internal model descriptions of SPICE to the
declarative description from Modelica. To solve this
problem a way was developed and tested for some
SPICE3 semiconductor models. The actual library is
presented and further plans are shown.

Keywords: SPICE, Modelica, SPICE3 library for
Modelica, Semiconductor models, Electronic circuit
simulation

1 Motivation

With starting the development of Modelica, models
for electrical circuits were taken into consideration
[1]. Since SPICE and its derivatives grew to a quasi
standard in electronics simulation the SPICE mod-
els should become available within Modelica.
Beyond the Modelica standard library (MSL) two
SPICE libraries were developed [2], the SPICELib
and the BondLib. The SPICELib [3], which covers
different complex MOSFET models, is a standalone
library with its own connectors. The BondLib [4]
bases on bond graphs. It offers different levels of
models related to HSpice.
The reason for developing this SPICE3 library is to
provide both the original Berkeley SPICE3 models
and the SPICE netlist approach. Furthermore, some
additions will be prepared to cover PSPICE models.
Since the Berkeley SPICE3 simulator is the only
known electric circuit simulation program with
open source code it offers the opportunity to extract

models for implementation in Modelica. The
SPICE3 library uses that way for SPICE3 semicon-
ductor models.
In this paper the modelling steps are considered
which are done starting with a C++-model library
which was extracted from SPICE3 formerly. The
SPICE3 library structure is presented as well as a
circuit example.

2 SPICE3 models and netlists

The Berkeley SPICE3 (latest versions e5 or f4) is a
general-purpose circuit simulation program which
has built-in models both for general devices (resis-
tors, capacitors, inductors, dependent and independ-
ent sources) and semiconductor devices (Diode,
MOSFET, BJT,…). Some models are a collection of
different single models (levels). Instead of adding
new models the user is able to choose a large variety
of parameters. Only sometimes a new model is
added by the developer. The set of SPICE models is
like a standard in circuit simulation.
Via a netlist the SPICE3 models are composed to a
circuit to be simulated. The netlist contains the
model instances, their actual parameters, and the
connection nodes. In more detail SPICE3 netlists are
described in the SPICE3 user’s manual [5]. For
many electric and electronic devices SPICE3 netlists
are available. For the following inverter circuit figure
2 shows the SPICE3 netlist.

Fig. 1 MOSFET inverter circuit

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 567 DOI: 10.3384/ecp09430019

 Simulation inverter circuit
 MT1 4 2 0 0 Tran_NMOS L=2u W=5u
 MT2 6 2 4 6 Tran_PMOS
 VDD 6 0 5.0
 VEIN1 2 0 dc=0 sin(0 5 0.5)
 .model Tran_NMOS NMOS (VT0 =0.7
 tox=8n lambda=3e-2)
 .model Tran_PMOS PMOS (VT0 =-0.7)
 .tran 0.001 10
 plot v(6) v(2) v(4)
.end

Fig. 2 SPICE3 netlist of the inverter circuit

Within the semiconductor devices SPICE3 differen-
tiates between technology parameters and device
parameters. Device parameters can be chosen for
every single model instance, e.g. the channel length
of a transistor. Technology parameters which are
specified in a model card (.model) are adjustable for
more than one element simultaneously, e.g. the type
of transistors.

3 Model extraction out of SPICE3

The SPICE3 internal models were extracted from the
SPICE3 source code, and stored in a (commercial)
C++ library [6] [7]. This library was intensively
tested by including it as external model code to
SPICE3, so it was possible to test the C++ models
and the original SPICE3 models in parallel.

The C++ library includes the whole model pool of
the semiconductor elements of SPICE3. For each
element both a C++ file (*.cpp) and a header file
(*.h) exist. The header file of each semiconductor
element contains classes with data (parameter and
internal data) and declaration of methods. In the C++
file the methods are coded.

Due to the object-oriented principle, a class hierar-
chy of model components was created. Central base
classes contain such values and their methods that,
according to SPICE3, are needed in nearly every
model, e.g. the nominal temperature. Via inheritance
of the base classes their values are provided to other
classes. Each functionality that is needed more than
one time is coded in a separate function. Conse-
quently, a strongly structured hierarchy of classes
was developed.

To simulate a model with the C++ library a SPICE3
typical system of equations is generated (initializa-

tion phase) and for each solution step the current
data are loaded (simulation phase). For each device
of the circuit, model specific methods that are called
according to different aspects are supplied. These
methods can be disposed under functional aspects as
follows:

 Methods to analyse the source code
 Methods to create the linear system of

equations
 Methods for instantiation the models and

parameters
 Methods to calculate values of the linear

equation system
 Methods to insert values into the system of

equations
For each model parameter a variable exists, that is
called “parameterValue” which gets the value of the
particular parameter. For some parameters it is im-
portant to know whether they were set by the user or
their default values were used. Depending on which
case comes into effect, different formulas are used in
the further calculation. Even if the value set by the
user is the same as the default value, the simulation
results differ in some cases. The information if a pa-
rameter is set is stored in a Boolean value “IsGiven”
(true, if the parameter is set). The “IsGiven” value is
analysed by different methods.

The semiconductor devices are modelled by means
of a substitute circuit. In this process the different
physical effects are allocated at any one time to a
component of this circuit. For each of this effects
different methods exist, that insert the currents and
conductances that are calculated for the actual volt-
ages at the pins, into the linear system of equations.
Also equations are arranged for the internal nodes of
the substitute circuit. For the calculation also internal
values of the integration method are used, e.g. the
actual time step size and the history of the calculated
values.

In summary the C++ library of the SPICE3 semicon-
ductor elements can be characterized as follows:

 The complete library is according to the
semiconductors structured in classes, which
contain data and methods.

 For each device methods exist, that achieve
the necessary calculations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 568

 For each element of the SPICE3 netlist, the
according classes are instantiated. The needed
methods are called for every instance.

 The aim of these calls is to create a linear
system of equations to calculate the solution
like in SPICE3.

 The parameter handling is special because of
the calculations in the initial phase that uses
so called “IsGiven” values.

 Internal values of the integration methods are
used.

The C++ library which was thoroughly tested is the
base for creating SPICE3 models in Modelica.

4 Modelling steps towards Modelica

The C++ functions are constructed to calculate the
currents of an equivalent circuit starting with given
node voltages. The currents are used inside SPICE3
for filling a linear system of equations.
Starting with the C++ equivalent circuit a Modelica
top level model (figure 3) is constructed with electri-
cal pins for connecting. The components of the top
level model represent special (e.g. semiconductor)
effects (e.g. channel current). Using the pin voltages
the components call in their algorithm part typically
a hierarchy of functions for the calculation of cur-
rents.
There are several steps of modelling semiconductor
devices [8], which are described in the following:

Fig. 3 MOS top level model

1. Construction of top level model
In Modelica every semiconductor device gets a so
called top level model which calls the semiconductor
functions and can be connected to other models via
its connectors. This top level model is the semicon-

ductor device component which will be applied by
the user. As in SPICE3 the top level model is adjust-
able by choosing parameters. Within the top level
model the branch currents are calculated using the
existing voltages and parameters with the help of
functions.

The physical values that are calculated in the C++
semiconductor devices are prepared to be inserted
into the linear system of equations like in the
SPICE3 simulator. Such a system of equations can-
not be addressed in Modelica usually. Only the rela-
tion between voltage and current at the interfaces of
the model is of interest (terminal behaviour [9]). The
voltages at the pins, that are the results of the simula-
tion algorithm, are gripped and given to functions
that calculate currents and other values.

The top level model that can be connected and pro-
vided with parameters is extracted from the func-
tionality in C++ (figure 3).

2. Parameter handling
The behaviour of a transistor is determined by its
parameters significantly. Parameters are e.g. the
physical dimension, the temperature or the oxide
thickness. Before the simulation the Boolean value
“IsGiven” is analysed, which gives the information
whether a parameter was set by the user its default
value is used.

In the C++ library the parameters are handled as a
string. If a parameter is needed when calling a
method, the string is searched for a value of the pa-
rameter. This way is also possible in Modelica, but it
is not usual. In Modelica all parameters are provided
in a parameter list, where the user can adjust the pa-
rameters. It is desirable that in the Modelica concept
a possibility exists that decides whether a parameter
is set by the user (“IsGiven”) or not. Unfortunately
such a possibility does not exist yet. That is why a
temporary solution was chosen. The default value of
parameters whose “IsGiven” value is of importance,
is set to a very big negative value (-1e40), because
that values does make no sense as a normal parame-
ter value. Afterwards it is checked if the value of a
parameter is not equal to -1e40. In that case it is as-
sumed that the parameter was given by the user and
consequently “IsGiven” is true. Otherwise the pa-
rameter gets it default value. This solution is only
preliminary and will be improved as soon as Mode-
lica delivers the necessary possibilities. The example

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 569

in figure 4 shows the parameter handling with the
parameter phi.

Fig. 4 parameter handling

As described in section two the parameters in
SPICE3 are divided into two groups, device and
technology parameters. In Modelica the device pa-
rameters are part of the semiconductor model. The
technology parameters are collected in a record. This
record is a parameter for all semiconductor devices.
This courses that also the technology parameters can
be adjusted in every single model separately which is
not intended in SPICE. But in some cases it could
make sense.

Furthermore the record with the technology parame-
ters is available in the highest level of the circuit.
Every semiconductor device gets the record as a pa-
rameter. So the components of the record can be ad-
justed in a global way for each device in the circuit.
Another possibility to provide the technology record
as global is to define a model in the circuit level that
inherits the properties of the MOSFET where the
desired parameters are unchangeably included. Both
possibilities force the user to work within the source
code. For untrained users it would be better to work
in the graphical modus of Dymola and giving each
single semiconductor device parameter its value by
clicking on the device and inserting the parameter
value in the prepared list.

3. Transformation of C++ library data structure
In the C++ source library the data are concentrated in
classes and located in the according header file of the
semiconductor elements. For each parameter a vari-
able “parameterValue” exists that gets the particular
value of the parameter. In Modelica the parameters
are concentrated in records because these are the
equivalent classes to the C++ classes with the pa-
rameters. Records were developed in Modelica to
collect and administrate data and to instantiate data
all at once. Inside the records the data get their de-
fault values. With a function call all data that are lo-
cated inside a record can be accessed. Parameters
that are needed for more than on model are collected

in a higher level record which is inherited to the
lower level records of the single models (figure 5).

Fig. 5 Transformation of C++ data structure

4. Transformation of C++ library methods
The C++ library of the semiconductor elements of
SPICE3 contains beyond parameters and variables
that are concentrated in classes, also of a huge num-
ber of methods that need to be transformed. Within
the transformation it is important, that the structure
of the C++ library also remains in Modelica with the
aim to recognise the C++ code.

Each semiconductor element in the C++ library be-
comes to a top level model in Modelica. Inside the
top level model functions are called, that calculate
both the parameters and the currents at the pins of
the model. These functions need to be extracted from
C++ and transformed to Modelica. In the C++ library
a hierarchy of classes exists where often more than
one method calculate one physical effect. Like in a
tree structure one method calls another method that
itself also calls another method and so on.

The transformation starts with the transfer of the
name of the C++ method to the according Modelica
function. That function has to be included into a
package that has the name of the C++ class where
the appropriate method came from. In the second
step the parameters and values that are concentrated
in classes in C++ are transformed to Modelica into
records. In the third step the function text that
changes the values in the classes respectively the
records has to be directly red of the C++ code and
transformed to Modelica where the original C++
names are used. Within that step the C++ code is
included into the Modelica code as annotation to
recognise the C++ code (figure 6).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 570

Fig. 6 Transformation of a function

5. Code revision
After a SPICE3 model was transformed into Mode-
lica the source code is checked again with the aim to
make is more effective. One point is to include the
Modelica operator “smooth”. Within this all condi-
tions (if) are checked to find out if it is continuous,
also in higher derivations. In that case “smooth”
avoids the not needed breaks of the analogue simula-
tion algorithm. With this approach the performance
of the simulation can be increased very much.

It also has to be checked if methods were trans-
formed to Modelica that are actually not needed, to
simplify the Modelica code.
The system of equations that is built in SPICE3/C++
is not used in Modelica as well as internal values of
the integration method that is in connection to the
SPICE3 solution algorithm. The calculation of the
Jacobians that is done in SPICE3/C++ is also not
used in Modelica. It was tried to ensure to transform
only the functional aspects of the models to Mode-
lica. In this way a mixture between model equations
and numerical solution algorithms like in SPICE3 is
avoided.

5 Structure of SPICE3 library

The current SPICE3 library contains the packages
Basic, Interfaces, Semiconductors, Sources, Exam-
ples, Repository and Additionals (as can be seen in
figure 7).

Fig. 7 SPICE3 library overview

The package Basic contains basic elements like re-
sistor, capacitance, inductivity and controlled
sources. In the package Sources there are the volt-
age- and current sources transformed from SPICE3.
The package examples include some example cir-
cuits, to help the user getting a feeling of the behav-
ior of the library and their elements.

Only the semiconductor models are written using the
converted C++ library. The packages Semiconductor
and Repository are related to each other very closely.
In the package Repository the semiconductor devices
and their model cards from SPICE3 are modeled.
The necessary function and records are also in this
package. This package is not for user access. The
semiconductor package contains clearly arranged the
offered semiconductor devices and their model card
records for easy usage. The user should take the
models out of this package. Via inheritance these
models are connected to the repository. That’s why
the user does not have to access to the repository
directly.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 571

Fig. 8 Packages Semiconductor and Repository

The package Additionals contains the polynomial
sources like they are available in SPICE2 or
PSPICE. Other models that are not from SPICE3 can
be collected here.

6 Example

In this section a Modelica model of the inverter cir-
cuit shown in figure 1 is developed. The following
two approaches are important.

Graphical composition
The SPICE3 library models are composed and con-
nected with the graphical possibilities of the simula-
tor. Figure 9 shows such a circuit (Dymola).

Figure 9: Graphically composed inverter circuit

Textual composition
Starting with the SPICE3 netlist (figure 2) the Mode-
lica inverter model can be generated directly without
using graphical information. This feature is impor-
tant, because the SPICE3 netlists that exist for many
circuits, modules and complex circuit elements,
should also be available in Modelica. In the follow-
ing example of two inverters, a way of transforming
is shown. First of all the two source codes are op-
posed to each other.

SPICE3 Modelica
inverter

Mp1 11 1 13 11
+ MPmos

Mn1 13 1 0 0
+ MNmos

Vgate 1 0 PULSE
+ (0 5 2s 1s)

Vdrain 11 0
+ PULSE(0 5 0s
+ 1s)

.model MPmos PMOS
+ (gamma=0.37)

.model MNmos NMOS
+ (gamma=0.37
+ lambda=0.02)

.tran 0.01 5

.end

model inverter

 Spice3.Basic.Ground g;

 Spice3…M
Mp1(mtype=true,
M(GAMMA=0.37));

 Spice3…M
Mn1(M(LAMBDA=0.02,
GAMMA=0.37));

 Spice3…V_pulse
vgate(V1=0, V2=5, TD=2,
TR=1);

 Spice3…V_pulse
vdrain(V1=0, V2=5, TD=0,
TR=1);

 Spice3.Interfaces.Pin
p_in, p_out;

protected

 Spice3.Interfaces.Pin
n0, n1, n11, n13;

equation

 connect(p in, n1);
 connect(p_out, n13);

 connect(g.p, n0);

 connect(vdrain.n,n0);
 connect(vdrain.p,n11);

 connect(Mp1.NB,n11);
 connect(Mp1.ND, n11);
 connect(Mp1.NG, n1);
 connect(Mp1.NS, n13);
 connect(Mn1.NB,n0);
 connect(Mn1.ND, n13);
 connect(Mn1.NG, n1);
 connect(Mn1.NS, n0);

end inverter;

Fig. 10 Inverter model in SPICE and Modelica

The creation of the Modelica texts requires the fol-
lowing steps:

1. The obligate name of the Modelica model can be
derived from the first line in the SPICE3 netlist.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 572

2. It is necessary to create entities of each circuit ele-
ment of the SPICE3 netlist and to provide them with
parameters, e.g. the SPICE3 line
Vdrain 11 0 PULSE(0 5 0 1)

is in Modelica
V_pulse vdrain(V1=0,V2=5,TD=0,TR=1);

3. For each node number in SPICE an internal pin
has to be created in Modelica, e.g. for the node num-
ber 2 in SPICE, the Modelica line would be:
protected Spice3.Interfaces.Pin n2;

The “n” is necessary because in Modelica a single
number is not a name.

4. According to the netlist the internal pins have to
be connected to the circuit element, e.g.
connect (Mp1.ND, n11);

5. In the last step the external connectors have to be
created and connected to the according internal con-
nectors, e.g.
Spice3.Interfaces.Pin p_in, p_out;

connect(p_in, n1); connect(p_out, n2);

Concerning the semiconductor elements the model
cards have to be transformed to Modelica. Two ways
seem to be possible.

Separate record
The records of the technology parameters MPmos
and MNmos are instances of the record model card
in the model inverter for each transistor (Mp1,
Mp2,…).

model inverter

 parameter …modelcardMOS Pmos(GAMMA=0.37);

 parameter …modelcardMOS Nmos(LAMBDA=0.02,
 GAMMA=0.37);

 Spice3.Basic.Ground g;

 Spice3…MOS Mp1(mtype=1,modelcard=MPmos);

 Spice3…MOS Mp2(mtype=1,modelcard=MPmos);

 Spice3…MOS Mn1(modelcard=MNmos);

 Spice3…MOS Mn2(modelcard=MNmos);

 …

end inverter;

Extended model
For each technology parameter set a separate model
is created. This model extends the transistor M that
was defined in Modelica. Within this way the needed
technology parameters are given.

model inverter

 model MPmos

 Spice3.Semiconductors.modelcardMOS M
 (GAMMA=0.37);

 extends Spice3…MOS(final type=1,
 modelcard=M);

 end MPmos;

 model MNmos

 Spice3.Semiconductors.modelcardMOS M
 (LAMBDA=0.02, GAMMA=0.37);

 extends Spice3…MOS(final mtype=0,
 modelcard=M);

 end MNmos;

 Spice3.Basic.Ground g;

 MPmos Mp1;

 MPmos Mp2;

 MNmos Mn1;

 MNmos Mn2;

 …

end inverter;

With the help of these two possibilities the user can
give many transistors the same technology parame-
ters like it can be done in SPICE3.
The textual composition could be done automatically
by a special translator. The aim is to have such a
translator in the future, maybe in the Modelica lan-
guage.

 Fig. 11 Inverter simulation result

The result of the Dymola simulation of the inverter
circuit is in accordance with the SPICE3 simulation
result.

7 Test and Comparison

To verify the transformed models several different
test steps were arranged. It is important that the
Modelica library is in accordance with SPICE3.
Since the C++ library was tested very intensively it
can be assumed that it is correct. That is why
SPICE3 as well as the C++ library are the base of the
tests.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 573

The C++ code was included to the Modelica code as
comment. This allows the visual comparison of the
source codes.

Single values of currents or other variables (e.g. ca-
pacitances) are compared between the Modelica
simulation and the simulation of the C++ model li-
brary. This approach is very complex and time con-
suming. Therefore it is only done when the reason of
known differences has to be found out.

The terminal behavior is compared between Mode-
lica and SPICE3. Therefore single semiconductor
devices are connected to voltage sources to calculate
the current-voltage characteristics.

In the next step complex circuits are created with
several semiconductor elements and the results are
compared between SPICE3 and Modelica. Such cir-
cuits are the base for a collection of circuits for re-
gression tests, which are maintained to ensure the
correctness of the library in future.

A comparison between the Spice3 library for Mode-
lica and the BondLib in Dymola showed that the two
libraries have nearly the same results and perform-
ance. For the comparison three circuits were used
(NAND, NOR, double Inverter). The following table
1 shows the results in detail:

Tab. 1 Comparison between BondLib and
 Spice3 Library for Modelica

As it can be seen in the table 1, the Spice3 library
has much less variables then the BondLib before
translation of the model. After the model has been
translated, the BondLib has little less variables than
the Spice3 library. This shows that the simplification
algorithms of Dymola work better for the BondLib.

For the double Inverter circuit the output voltage of
the original SPICE3 simulator, the BondLib and the
Spice3 library for Modelica are shown in the follow-
ing figures 12/13.

 Fig. 12 Output voltage original SPICE3

 Fig 13 Output voltage BondLib and
 Spice3 library for Modelica

Each figure shows the output voltage of the second
inverter. In figure 12 the result of the original
SPICE3 simulator is shown. The results of the three
simulators are nearly the same.

8 Conclusions

In this paper a concept was described to transform
the procedural implemented SPICE3 models, which
are directly extracted from the original SPICE3
source code, to declarative described models for
Modelica. Therefore a list of modeling steps was
elaborated and applied to transform several semicon-
ductor devices from SPICE3 to Modelica whereas
the parameter handling was focused on. The result is
a SPICE3 library for Modelica which contains the
general devices and first semiconductor devices.

A disadvantage of the Spice3 library compared with
the Bondlib is that the Spice3 library has no heatport.
At the moment it is possible to simulate with a fixed
parameter “Temp”. It has to be figured out how this
parameter can be made variable and time dependent
in the future.

 NAND NOR Inverter
 SPICE3lib BONDlib SPICE3lib BONDlib Spice3lib BONDlib
Before
translat-
ing
scalar
unknowns 873 10.677 873 10.673 870 10.860
variables 1.157 12.136 1.157 12.132 1.152 12.315
After
translat-
ing
parameter
depending 8 2.005 8 2032 8 2.030
time-
varying
variables 826 688 826 687 824 687

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 574

Further steps for the improvement of the SPICE3
library are:

 developing a method for automatically trans-
forming SPICE3 netlists to Modelica

 increasing the performance of the Modelica
models (e.g. application of the smooth opera-
tor)

 parameter treatment (“IsGiven”) has to be
simplified

 adding SI units to the Modelica models
 large number of tests
 testing large circuits (many devices)
 inclusion of further SPICE3 models
 intensively testing, comparison to SPICE3
 inclusion of some PSPICE model features
 comparison with existing electronic libraries
 adding a heatport

Acknowledgement
This research was founded by the European ITEA2,
projects EUROSYSLIB and MODELISAR.

References

[1] Clauß, C.; Leitner, T.; Schneider, A.; Schwarz,
P.: Modelling of electronic circuits with Mode-
lica. Proc. Modelica Workshop, Lund, Sweden,
Oct. 2000, 3-11.

[2] Cellier, F.E.; Clauß, C.; Urquia, A.: Electronic
circuit modeling and simulation in Modelica.
EUROSIM 2007, Ljubljana, Slovenia, 9.-13.
Sept. 2007.

[3] Urquia, A.; Martin, C.; Dormido, S.: Design of
SPICELib: a Modelica Library for modeling and
analysis of electric circuits. Mathematical and
Computer Modelling of Dynamical Systems,
11(1)2005, 43-60.

[4] Cellier, F.E.; Nebot, A.: The Modelica bond
graph library. Proc. 4th Int. Modelica Confer-
ence, Hamburg-Harburg, Germany, 1, 2005, 57-
65.

[5] SPICE Version 3e Users Manual, 1991
[6] Leitner, T.: Entwicklung simulatorunabhängiger

Modelle für Halbleiter-Bauelemente mit objekt-
orientierten Methoden. Chemnitz, Technische
Universität, Diss., 1999.

[7] Leitner, T.: A new approach for semiconductor
models basing on SPICE model equations. Proc.

ECS’97, Bratislava, Slovakia, 4./5. 9. 1997, 119-
123.

[8] Majetta, K.: Entwicklung und prototypische Um-
setzung eines Konzeptes für eine Modelica-
Bibliothek von SPICE-Halbleiterbauelementen
und Erarbeitung einer Teststrategie. Dresden,
Berufsakademie Sachsen, Dipl., 2008.

[9] Clauss, C.; Haase, J.; Kurth, G.; Schwarz, P.:
Extended Admittance Description of Nonlinear
n-Poles. AEÜ, Vol. 49 (1995) 2, 91-97.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 575

Automatic modelling of Power Electronic Converter, Average model
construction and Modelica model generation

Loig ALLAIN
LMS

La Cité Internationale, 84 quai Charles de
Gaulle,F- 69006 LYON
loig.allain@lmsintl.com

Asma MERDASSI, Laurent GERBAUD
Seddik Bacha

G2ELAB
UMR 5269 INPG/UJF-CNRS

ENSE3, Domaine Universitaire, BP 46 SAINT
MARTIN D’HERES F-38402,

Asma.Merdassi@g2elab.grenoble-inp.fr,
Laurent.Gerbaud@g2elab.grenoble-inp.fr,

Seddik.Bacha@g2elab.grenoble-inp.fr

Abstract

Development in semi-conductor production and the
control of static converters leads to an increase use
of these devices in classical electrical motor control
application. But, the simulation of these elements in
a complete system involves longer computation time
in order to take into account the impact of switching
on the global system. Using average models to simu-
late them brings a drastic decrease of computation
time. Such models do not take into account switch-
ing. They are a good compromise between complexi-
ty, computing time and acceptable accuracy at a sys-
tem level. Even if the method to build these models
is well identified, it still requires a lot of manipula-
tion to get from the very structure description to the
simulation code. This paper deals with a method that
automates the average modeling of power electronic
converter. The associated tool prototype (AMG) that
has been implemented is also presented and some
simulation results are shown using the Imagine.Lab
AMESim[1] and its Modelica Platform.

Keywords: code generation; average model; power
electronics, Imagine.Lab AMESim

1 Introduction

Nowadays, numerous electrical actuators and drives
are based on the association of power electronics and
electrical motors driven by controller. Such associa-
tion guarantees better time response and better effi-
ciency for the whole actuator. Indeed, the control of
electronic commutations allows a fine control of the
power supply of motors.

Figure 1presents the most classical structure of an
electromechanical actuator.

Figure 1: General structure for electro-mechanical

actuator

The simulation of Control-Converter-Machine sets is
a CPU time consuming task beacause it involves the
complete simulation of power static converter and
especially of power switch commutations. Indeed,
classical PWM frequency may be about 500Hz to
50kHz, and has to be compared to the time response
of the whole system that could be about minutes or
more. So, it is important to find a formulation for
power electronic converter that reduces the CPU
time need.

The G2ELAB has a strong experience in this area,
and is involved in the automatic analysis and simula-
tion of power electronics converters [5][7]. Besides,
a strong knowledge of engineer modeling experience
and its specifities lead to the development of soft-
ware tools to store and manage the engineer know-
ledge thanks to an object oriented language [9]. In
this way, these developments allowed to explore new
concepts about average modeling of power electronic
structures. In an other direction, LMS-Imagine has a
long experience in multiphysical system modeling,
the code of his known software Imagine.Lab AME-
Sim has been used world around to simulate some
complex, multi-physical devices[4]. Using the facili-
ty of Imagine.Lab Modelica Platform, the G2ELAB
has been able to develop and test its approach ap-
plied to generate Modelica models for power elec-
tronic converter.

Obviously, the software tools presented hereafter are
not linked to the Imagine.Lab platform. As the pro-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 576 DOI: 10.3384/ecp09430092

duced code is fully Modelica compliant, it may be
used in any Modelica tool.

After, an introduction to average modeling in power
electronics, the paper explores the way to automate
code generation for average model in power elec-
tronics [7], [8]. The developed tool (namely AMG)
deals with the following kinds of static converters:
DC/DC (as in [2], [3], [4], [5]) but also DC/AC and
AC/AC. The generated Modelica code is shortly pre-
sented and used to create a simulation model within
the AMESim.Lab Modelica Platform. The generated
code is presented for two static power converters: a
three phase voltage inverter (DC/AC conversion) and
a boost converter (DC/DC conversion). Every exam-
ple aims at emphasizing interest point of static con-
verter average models. Then, some numerical results
are shown and discussed and the numerical efficien-
cy and reliability are discussed with regards to clas-
sic representation. Eventually, advantages and draw-
backs of average models are discussed as well as the
interest of such an approach.

2 Average Model of power electron-
ics converters

2.1 Electrical Actuator and Power Electronics

An electrical actuator aims at converting electrical
energy into mechanical one. One of the eldest tech-
nologies used is the electrical motor. Using Direct
Current (DC), or Alternating Current (AC) as an
electrical power source, it produces a mechanical
torque through electromagnetic transformation. Most
common electrical motors can be driven through a
control of the voltage of their power supply. This is
achieved using power electronics switching to pro-
duce whether an equivalent voltage value or a given
frequency [5]. Designing systems based on electron-
ic power supply requires being able to simulate
them. A well known drawback is that the classical
simulation of power electronics must take into ac-
count the switching frequency and the transient phe-
nomena of electronic switches. This requires a large
amount of CPU time and may neither compliant with
Real Time Simulation nor with controller design
steps. In order to reduce the needed CPU time to si-
mulate such complex associations, average model of
power supply can be used.

Moreover, it is obvious for every electromechanical
designer that, indirect conversion is a widely used
technology to control both the amplitude and the fre-
quency of applied voltage. As a consequence, one
has to face the tricky problem of increasing the com-

plexity of a whole system, and so the required simu-
lation time.

2.2 Average Model of power Electronics con-
verter

The purpose of the hereafter presented tool is not
to question a well know process leading from a cir-
cuit description to an average model [2] [3] [4] [5]
[6].

The paper aims at automating fully the process [7],
[8] for DC/DC, DC/AC and AC/AC static convert-
ers. Please note that, in the paper, only controlled
commutations are considered, so discontinuous con-
duction is not taken into account.

Here, a pure symbolic method (exact or topologi-
cal model) is chosen to obtain average models.

3 Average model construction and
code Generation

3.1 The generated models by AMG

3.1.1 Exact model
For an operating mode of a static converter, N possi-
ble configurations during the commutation period T
are given.
The global state model for every topology (indexed
by i) is:

 ()∑
=

⋅⋅+⋅=
N

i
iii feBxA

dt

dx

1

 (1)

Where:

• N: the number of topologies (configurations)
that happen during the switching period T.

• Ai : the state matrix for the ith configuration.
• Bi : the input matrix.
• e : the external sources.

For each switching cell, an equivalent control func-
tion is assigned: { }1,0)(∈thi or{ }1,1− that depends

on if (a configuration validation function of i):

if =
[[

 =∈ −

elsewhere

Nitttfor ii

0

,..,1;,1 1

The global behavior of the static converter is formu-
lated as equation (2):

dbxBhAx
dt

dx
i

N

i
ii +++= ∑

=
)(

1

 (2)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 577

Where:

• N: the number of topologies that happen dur-
ing the commutation period.

• x : the state vector (dim[n]).
• :A the state matrix (dim[n,n]).
• ii bB , : the input matrixes (dim[n,n],

dim[n,1]).
• d (dim[n,1]).

A, ii bB , are independent of x and the hi.

3.1.2 Large Signal Average Model

The large signal average model transforms an exact
model into an averaged one.
To calculate such an averaged model, the following
properties are used for the continuous state:

⋅=⋅

=

000

0
0

yxyx

x
dt

d

dt

dx

 (3)

By applying equations (3) on equation (2), the equa-
tion of the large signal average model is deduced:

()
0

1
00000

000

dhbxBh

xAx
td

d

N

i
iiii +⋅+⋅⋅+

⋅=

∑
=

(4)

In general, with linearization hypothesis, matrixes A,
Bi and bi are time invariant. So (4) can be simplified
as (5):

()
0

1
000

00

dhbxBh

xAx
td

d

N

i
iiii +⋅+⋅⋅+

⋅=

∑
=

(5)

3.1.3 Small Signal Average Model

This model is also called the small signal state space
model. It linearises the exact model and does not
include any nonlinear elements.
This model is calculated by a linearization around
the balance operating point (xe, ue) of the static con-
verter.

This point is calculated for 0=
dt

dx .

There, the modelling approach begins with equation
(6).

=

=

),(

),(

uxgy

uxf
dt

dx
 (6)

where:

• y : the output vector (dim[q])
• u : the input vector (dim[p]).

Equation (6) is transformed into the small signal av-
erage model (7):

⋅+⋅=

⋅+⋅=

uDxCy

uBxA
dt

xd

~~~~~

~~~~~

 (7)

The matrixes of the small signal state space model
are calculated by using the following expressions:

ee uxx

uxf
A

,

),(~

∂
∂= ;

ee uxu

uxf
B

,

),(~

∂
∂=

ee uxx

uxg
C

,

),(~

∂
∂= ;

ee ux

uxg
u

D
,

),(
~

∂
∂=

where:

•

−=
−=
−=

e

e

e

yyy

xxx

uuu

~

~

~

• A
~

 : the state matrix (dim [n,n]).

• B
~

: the input matrix (dim[n,p]).

• C
~

: the output matrix (dim[q,n]).

• D
~

 : the feedforward matrix (dim[q,p]).

The transfer function is also deduced from (7):

DBAIsC
su

sy ~~
)

~
(

~

)(

)(1 +⋅−⋅⋅= − (8)

• I : The matrix identity (dim [n, n]).

3.1.4 Generalized Average Model
This model is applied on static converters which
have one or several alternative variable states.
The general formulation of the state derivatives is:

k
k

k

xkj
dt

xd

dt

dx ⋅⋅⋅+= ω (9)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 578

where:

• k: The range of harmonic.
Equation (9) becomes:

• For alternative state variables (first harmonic,
i.e.: k=1):

1
1

1

xj
dt

xd

dt

dx ⋅⋅+= ω (10)

• For continuous states (k=0):

dt

xd

dt

dx 0

0

= (11)

The exact model of equation (2) becomes:

()
k

N

i
kiikii

kkk

dhbhxB

xAxkjx
dt

d

+⋅+⋅+

⋅+⋅⋅⋅−=

∑
=1

ω
 (12)

The development of its terms is made by using (13):

()
() { }

=

−∈

=

∑

∑ ∏∏

=

==

kj

j

aa

N

i
i

i

N

i ji
k

N

i i
i

1

11

1,0,1
 (13)

The expressions of the alternative state variables are
written under their complex shape (14):

−==

+=
∗

−)Im()Re(

)Im()Re(

11

1

ajaaa

ajaa
 (14)

In general, the applications of such a model are li-
mited to the fundamental (k=1) and averaged values
(k=0).
The large signal average model is a specific applica-
tion of the generalized average model.

3.1.5 The Equivalent Average Generator
The approach used to make such a model is de-
scribed in Figure 2.
The equivalent average generator eliminates the
discontinuous variables. The state variables are
separated into continuous (slow) and alternatives
(fast) variables.
The state vector is composed of two sub-vectors:

];[fs xxx =

where:

• sx : the vector of slow state variables.

• fx : the vector of fast state variables.

Now, the paper presents the steps of calculation:

• The behavior of the slow state variables giv-
en by equation (15):

() siisi

N

i
f

f
iss

s
is

f
f

ss
s
s

s

dhbhxBxB

xAxA
dt

dx

+⋅+⋅∑ ⋅+⋅+

⋅+⋅=

=1

 (15)

• The behavior of the slow state variables giv-
en by equation (16):

() fiifi

N

i
f

f
ifs

s
if

f
f
fs

s
f

f

dhbhxBxB

xAxA
dt

dx

+⋅+⋅⋅+⋅+

⋅+⋅=

∑
=1

(16)

• For the continuous state variablessx , the

large signal average model is applied to (15):

()
00

1
00

0
0

siis

N

i
if

f
isis

s
is

s
s
s

s

dhbhxBhxB

xA
dt

xd

+⋅+⋅⋅+⋅⋅+

⋅=

∑
=

(17)

• For the alternative state variables fx the ge-

neralized average model (16) (limited in this
example to the first harmonic) is used and

fx is considered to be at its steady state:

1111
1

111
1

fiifis
s
ifif

N

i

f
if

s
s
ff

f
ff

f

dhbhxBhxB

xAxAxj
dt

xd

+⋅+⋅⋅+⋅+

⋅+⋅+⋅−=

∑
=

ω
 (18)

• Equation (18) is solved by assuming that all
the continuous state variables are constant.

The development of the terms:
0if hx ⋅ ,

0is hx ⋅ ,

1if hx ⋅ and
1is hx ⋅ is made by using (13).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 579

Fast state
variables

Slow state
variables

By assuming
Xs=constant

),,(hxxf
dt

dx
fsf

f =),,(hxxf
dt

dx
fss

s =

),
~

,(hXxf
dt

dx
fss

s =

),(hxf
dt

dx =

),(
~

hxFX sff =

Averaging

Steady state behaviour of Xf

0
0),~,(hxxf

dt

xd
fss

s =

Figure 2: Required operations to get an equivalent

average generator

To obtain the equivalent average generator model,
the steady state of the alternative variables fx (in

equation 18) is obtained when 01 =
dt

xd f
 and re-

placed this steady state (stationary behavior) in equa-
tion (17).

3.2 Overview of code generation process

A large subset of the required operation as early pre-
sented can be automated; Figure 3 presents the gen-
eral process that has been implemented in AMG ge-
nerator.

Figure 3: Average model generation

Each model is entirely made in an automatic way
by the generator AMG, from an initial description of
a static converter structure:

• a netlist file: here the AMG user describes its

structure in P-Spice by using a dedicated
simplified component library); any tool giv-
ing a P-Spice netlist is also available.

• the switching mode, i.e. the cyclic sequence
of switched configurations in an operating
period,

• the switch control, mainly the control links
of switches.

This description is given by the AMG user and in-
duces a great “a priori” on the behaviour of the de-
scribed static converter.

The average models are made from the state equa-
tions of every configuration of the converter operat-
ing mode.

3.3 Global model of static converters and cau-
sality

In order to automatically build the Average or ex-
act model for static power converter, the kind of the
connected electrical sources (or loads) must be de-
fined. One could understand that a kind of causality
is “de facto” imposed to the converter, but it should
be noted that the resulting equations could be dealt in
the same way that any other Modelica model. The
point is that the limits of the converter have to be
carefully chosen according to the kind of average
model to generate:

• An exact model shall gather only the electron-
ics switches and need a “classical” control
law. This law shall be strictly identical to the
one used for non average converter

• An average model aims at building the average
value of state variable. As a consequence, one
must cautious to take into account the compo-
nent introducing state variable in the final de-
scription. Moreover the required input is also
different as it should also be averaged. This is
a fully explained with the boost converter ex-
ample, below.

The model of the static converter is linked to the
models of the other components of the system to
simulate.

The causality on the pluging points is required
only to build the model. This causality is cancelled
by connecting the generated models with other mod-
els. This is useful to create the models of static con-
verter that fed an electrical machine, without know-
ing the machine model that is generally not available
in a circuit shape (see Figure 4). Eventually, the true
causality is “set” by the Modelica compiler while it
reorganizes mathematical relations to produce an
executable code.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 580

Connection

Definition of the Bond Graph causality

Non affected causality

Static converter? ?

Static converter
Environment
Component

Environment
Component

?? ? ?

Non affected causality

Static converter
Environment
Component

Environment
Component

Affected causality

Figure 4 From a non oriented representation to an
oriented representation: Bond Graph representation

One has to be cautious, while assessing the causality
for electrical connectors, to respect the definition
given in Bond Graph representation for the electrical
field. In other words, the environment of a static
converter must be translated into equivalent sources:
a voltage source or a current source is imposed at
every connection point.

3.4 Modelica Code and simulation

The process as explained above leads to the follow-
ing code as it appears in Imagine.Lab Modelica Code
Editor (Figure 5). This code has been generated for a
Boost converter and includes both the source and
load of static converter.

As a reminder, eventually this code shall be used
either by Imagine.Lab platform or any other Modeli-
ca tool to create a simulation code. The Imagine.Lab
platform allows to create a dedicated C fully com-
pliant with the rest of the Imagine.Lab multi-physical
libraries.

Figure 5: Boost Chopper Mean Model

4 Implementation

Every model is entirely made in an automatic way by
the AMG software tool, from an initial description of
a state converter structure (here a netlist file generat-
ed by PSpice), the commutation mode (cyclic se-

quence of switched configuration), the switch control
sequence and the nature of state variables (slow or
fast). Figure 6 introduced an overview of this
process.
Firstly, the switch control and the operating mode
are defined and the nature of state variables are de-
duced from the analyze of a simulation of the studied
static converter, i.e. by using a power electronics
simulation software.
Secondly, a topological description is carried out
from a Netlist file extracted by PSpice.

This information is introduced into the software tool
AMG and finally several models are generated ac-
cording to the nature of the power conversion and
the state variables.

The obtained result is a file which contains the de-
sired models in an ASCII (text) shape.

Software tool AMG

Analyze of simulation

Average
modelsFile of Results

Structure
of converter

1

4 3

Netlist File
(PSpice)

2

Topological
description

0

• Control

• Mode

• State variables
(fast, slow)

Figure 6: Steps of modeling

4.1 Exact model building

The first step is the analysis of the circuit NetList to
carry out the incidence matrix of the whole circuit.
Then, this matrix is reduced for each state, according
to the conduction state of switches (state ON switch-
es are considered as “short-circuits” or state OFF
switches are considered as “open circuits”). For each
configuration, the state matrixes are calculated from
their simplified node equations. So, the global state
space model is obtained by a weighted sum of the
state matrixes of each mode state.

4.2 Implementation

In AMG, Java and Maple are combined to imple-
ment the previous approach. The building of the state
matrixes for every configuration is developed in Ja-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 581

va. The extraction of the averaged models from the
symbolic approach is made in Maple as shown in
Figure 7.

Software Tool AMG

Symbolic
Functions for Average

Models
(Maple)

Extraction of
the State

Matrix (Java)

Figure 7: Software tool AMG

At the present time, AMG deals only with conti-
nuous conduction operating modes.

5 First application: Three phase in-
verter

5.1 Description of the three-phase voltage in-
verter

Let’s have a look at the static converter known as
three phase inverter and the assumption needed to
build the average model. Figure 8 presents a three
phase voltage inverter with a basic inductive load.
Obviously, such an inductive load may even be an
electrical motor.

Figure 8: Three phase voltage inverter feeding a three

phase electrical load

In this case, each commutation cell is an inverter
legs. For, one leg when a switch is controlled to be
on (i.e. passing) the other one is off. As a conse-
quence, the inverter needs only three control signals
corresponding to the upper switch of the arm
(MOS1, MOS3 and MOS5). In the sequel, these sig-
nals will be known as h1, h2 and h3 respectively
connected to MOS1, MOS3 and MOS5.

Each control signal is a full wave control one (not a
pulse wave modulation, i.e. PWM). It is a square
wave with a duty cycle of 50%. Moreover, to pro-
duce equilibrated three phase system, the three con-
trol signals are shifted of 32π rad. (see Figure 9).

Figure 9: Full wave control for a three phase voltage

inverter

5.2 Causality of the static converter

As explained above, AMG needs basic assumptions
on the electrical sources to connect. For a voltage
inverter, one cans obvious state that the power
source is a voltage while the electrical load (induc-
tive one) is a current source.

This intellectual building allows to extract the power
static converter from its electrical neighborhood, as a
consequence, it can be seen as presented on Figure
10.

1h 2h 3h

3h1h 2h

Currents sources

Voltage sources

Figure 10: Causality for the three phase voltage inver-

ter

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 582

5.3 Generation of the exact model

With the above assumptions on both electrical
sources and load and on control laws, AMG is now
able to generate the average model of the converter.
Hereafter is a snapshot of the generated Modelica
code (see Figure 11).

Figure 11: Exact model for a three phase voltage inver-

ter generated by AMG

Analyzing the code, one can see the expression of
DC bus current as a function of:

• Control signal: h1, h2, h3
• Current in phase I1, I2 and I3

In the same way, the voltage drop applied in the
phase is a function of:

• The DC bus voltage (U1, U2)
• The control signal h1, h2, h3

The interest of the AMG tool becomes obvious by
having a look at the equation generated for this very
basic power converter structure. One can easily im-
agine the awful they may have for a multi-level con-
verter.

5.4 Building of a complete application

Let us observe the numerical results obtained with a
three phase inductive load. This can be achieved ei-
ther by adding specific relation like presented in the
Figure 12, or by connecting this component to elec-
trical components from the Modelica Standard Li-
brary. (Figure 13)

Figure 12: Equations for a three phase RL load

Figure 13 presents the integration of the above model
within a “complete circuit”.

Figure 13: Three phase voltage inverter with electrical

load

5.5 Numerical Results

Let us run a simulation with the following parame-
ters:

R = 2 ohm; L=0.01H;E=320V;freq=50Hz

The simulated currents are represented on Figure 14.

Figure 14: Simulation results: currents in the induc-

tors

The influence of inductors may be observed on the
following results.

One has to note that such numerical result is observ-
able as there is no parasitic time constant due to in-
ner resistance of electronic. In fact, in classical mod-
els like Ron/Roff ones, additional time constants are
observed when switches are connected to inductors
(or capacitors).

Then using exact model (as well as average one)
brings the guaranty that no additional time constant
is added to the whole electrical circuit.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 583

6 Second application

6.1 Description of the DC-DC converter

The studied converter in this part is a Boost conver-
ter. The electrical conversion is DC/DC. Boost con-
verter.

The static DC/DC boost converter allows increasing
the voltage level. This simple example demonstrates
both the capacity to analyze DC/DC converter and to
generate both exact and average power converter
models.

An exact model of a power converter allows to take
into account the real control on electronic switches.
Contrary average model aims at averaging the state
variable of the circuit.

It should be noted that using an average model, the
control law shall also be averaged:

• In case of DC/DC conversion, the input val-
ue is supposed to be the duty cycle

• In DC/AC conversion, average control is the
sinus law for output voltage (or the shape is)

6.2 Average model of the static converter

Two kinds of model have been generated by AMG.
Figure 15 presents the exact model and Figure 16 the
average model (a large signal model).

Figure 15: Modelica exact model of the boost converter

Figure 16: Modelica large signal model of the boost

converter

In the case of the boost converter, the average model
and the exact model are similar. As it has explained
above, the difference is the model of the control sig-
nal. For the exact model, the control signal is a
square wave. For the average model, the control sig-

nal is the average value of the square wave control
signal, i.e. the duty cycle on every switching period
(α) (see Figure 17).

Control for the exact model

Control for the average model
α

Ts⋅α
Ts

0

1

Figure 17: Control signal according to the model

6.3 Average model of the static converter

Numerical results for both of them are compared
using AMESim.Lab. Figure 18 and 20 show these
comparisons

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 584

Figure 18: Capacitor Voltage [V] general overview

Figure 19: Capacitor Voltage [V] comparisons aver-

age/exact/standards models

The following array emphasizes the CPU time
needed to perform the complete simulation for each
kind of representation (see tables 1 and 2)
Parameter Value

Time simulation 5 s

PWM frequency 10kHz

R 10 Ohm

L 0.001 H

C 1e-5 F

E 100 V

Duty cycle 0.8

Table 1: Parameters Value
Model CPU Time

Standard representation 6.64s

Exact model 5.5s

Average model 0.016s

Table 2: CPU time

7 Advantages and drawbacks

Average models of static converter do not represent
the commutations, so the simulation is faster. So,
average models fit very well to system simulation or
real time simulation.

The exact model represents switches by a short-
circuit at on state and an open circuit at off state.
Such a modeling that does not introduce parasitic
time constants like the classical modeling with a bi-
nary resistance. For this last modeling, every switch
is represented by a resistor which resistance is high
at off state and low at on state.

However, for both average models and exact models,
an a priori has to be carried out on the behavior of
the studied static converter. This means that a change
of the control mode may induce a new generation of
a new dedicated model.

The use of Modelica as non causal modeling lan-
guage allows achieving the model generation of
power electronics converters by not being con-
strained by the causality. This aspect is very impor-
tant and allows to deals with small power electronics
structures as well as with large power electronics
structures.

The use of Modelica also allows describing and ge-
nerating the model of the static converter indepen-
dently of the Modelica simulation environment.

In order to help the engineer to select the appropriate
representation, we will also provide some guideline
to select the model to be used.

8 Conclusions

In this paper, a methodology to get a fully functional
Modelica code for a average model of power elec-
tronics converter has been presented. Its implementa-
tion within software has been briefly presented. Nu-
merical tests for this code have also been introduced
using the Imagine.Lab Modelica Platform. The effi-
ciency of the proposed method has been discussed as
well as some criteria to select the right appropriated
sub-model according to the needs of engineer. A
Modelica library of static converter controls (e.g.
PWM), will be developed in future works as well as
a guidelines for the modeling in discontinuous mode.

References

[1] http://www.lmsintl.com/imagine-amesim-1-d-
multi-domain-system-simulation

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 585

[2] R.D. Middlebrook, S Cuk, "A general unified
approach to modelling switching converter
stages", IEEE Power Specialists Conf., pp 18-
34, 1976.

[3] P. R. K. Chetty, "Current injected equivalent
circuit approach to modelling and analysis of
current programmed switching DC-to-DC con-
verters (discontinuous inductor conduction
mode)", IEEE Trans. on Industry Applications,
Vol. IA-18, N°3, pp 295-299, 1982.

[4] S.R. Sanders, J. M. Noworolski, X. Z. Liu, G.
Varghese, "Generalized averaging method for
power conversion circuits", IEEE Power Elec-
tron. Specialists Conf. (PESC), Records 1990,
pp 333-340.

[5] S. Bacha, M. Brunello, A. Hassan, "A general
large signal model for DC-DC symmetric
switching converters" Electric Machines and
Power Systems, Vol 22, N° 4, July 1994 ; pp
493-510.

[6] Richard M.bass and Jian Sun, "Using symbolic
computation for power electronics".Computers
in Power Electronics, 1998. 6th Workshop, 19-
22 July 1998, pp I IV.

[7] F.Verdiere, S.Bacha, L.Gerbaud, "Automatic
modelling of static converter averaged mod-
els". EPE 2003- Toulouse .pp.1-9.

[8] Piero G.Maranesi, Marco Riva. "Automatic
modelling of PWM DC-DC converters". IEEE
Power Electron. Letters, Vol.1,N°4, December
2003.

[9] L. Allain, L. Gerbaud, C. Van Der Schaeghe,
"Capitalisation and treatment of models for the
optimisation of electric drives", in Optimisa-
tion and Inverse Problems in Electromagne-
tism, edited by M. Rudnicki and S. Wiak,
Kluwer Academic Publishers, 2003, ISBN 1-
4020-1506-2, pp 205-212 (8 pages)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 586

Pre-designing an electronic card using a multi-domain models ap-
proach with DYMOLA

Behrouz Roumizadeh Jean Yves Choley Régis Plateaux Olivia Penas
Alain Riviere

SUPMECA

3 Rue Fernande Hainaut, Saint Ouen, France
behrouz.roumizadeh@supmeca.fr, jean-yves.choley@supmeca.fr, regis.plateaux@supmeca.fr,

olivia.penas@supmeca.fr, alain.riviere@supmeca.fr

Abstract

This paper presents a new method to model electron-
ic circuits, considering not only the electrical aspect
of the circuit but also its geometrical and multi-
physical aspects via DYMOLA [1]. The new model-
ing method based on the representation of the elec-
tronic components and their environments, with the
multi-domain models. This means combining the
geometrical, electrical and multi-physicscal proper-
ties in one single mechatronical model. This kind of
representation will allow us to simulate the electron-
ic environments regarding their multi-domain as-
pects and relations. This new method will allows us
to perform the pre-dimensioning and pre-placement
of the components, through a simple modeling
process in DYMOLA environment. We expect the
result to be a more rapid pre-dimensioning procedure
for the electrical circuits.

Keywords: Electrical circuit; multi-physics; multi
domain modeling; DYMOLA; mechatronics.

1 Introduction

The design of automotive electrical circuits is a
complicated procedure, which includes vast parts of
science, from the pure electrical Eng., to the multi-
physical simulations such as thermal simulations.
This will result in the need for different and mostly
unrelated modeling and simulation programs, in or-
der to design and optimize the conception of elec-
trical components. The result would be a complete
mechatornic problem which includes electrical and
mechanical problems. It is obvious that unrelativity
of the different simulations, will result in the in-
crease of the time and cost of the design and design
process.

Generally, design of an electrical circuit begins with
its schematic model (logical view). This stage of de-
sign consists of the electrical and logical connections
between the components, and can be modeled and
simulated by the different software such as CA-
DENCE [2], ZUKEN [3], and the electrical library of
DYMOLA.

Simulation of the electrical schematics will result in
the electrical properties of the components and con-
nections, which are needed for the multi-physical
simulations. Although the electrical simulations at
this level can be performed without taking into con-
sideration the geometrical aspects of the circuit and
its environment, but once the multi-physical simula-
tions have been carried out, the circuit has to be re-
modeled and re-simulated due to changes originating
from the electrical-multi-physical interactions.

Once the logical aspect of the circuit has been vali-
dated, components have to be placed on the surface
on which they will operate. This step will be fol-
lowed by a routing procedure.

Existing electrical software is only capable of per-
forming the component placement and routing of the
PCBs (Printed Circuit Boards) on the 2D surfaces
[4]. There is also some new software [5] [6] and al-
gorithms [4][7] which offer this possibility on the 3D
surfaces, although existing software does not offer
any solutions for some other electrical designs such
as high current electronics and power electronics, for
which the 3D MCAD(Mechanical CAD) systems are
used as a design system.

The present design cycle is presented in fig.1. Once
the electronic card has been designed, the multi-
physical simulations, which are mostly the FE simu-
lations, will be performed to validate the operability
of the circuit, from the multi-physical point of view.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 587 DOI: 10.3384/ecp09430117

Figure 1: the actual electronic design cycle [8]

The two most important multi-physical simulations
for electronics are the thermal and EMC (Electro
Magnetic Compatibility) simulations. The circuit has
to be simulated within its environments, from the
thermal [9] and EMC [10] point of view, so that its
functionality will be validated. As can be observed
from the figure above, the position of the compo-
nents may be changed once the thermal simulations
for instance have been performed, and the board
must be rerouted. It is obvious that this cycle and
specially, the FE simulations are time consuming and
costly specially because this conception cycle will
continued till the optimized circuit would be
achieved.

A solution for this problem would be a rapid pre-
positioning and pre-sizing procedure, which would
result in a semi-optimized electronic card. We be-
lieve that this will reduce the need of FE simulations.
This simulation process has to combine some multi-
domain properties in one single model. DYMOLA
proposes a good graphical environment which
enables us to perform this multi-domain modeling.

As has been said above, DYMOLA proposes the
ability to simulate electrical circuits and there are
existing libraries to do so. It also proposes thermal
models which enables thermal simulations, although
a linked electro-thermal simulation which takes into
account geometrical properties of the components
and their placements, does not exist. To do so the
designer has to calculate the geometrical effects on
the thermal properties and with them perform the
thermal simulations. Our proposition is to introduce
a new modeling method so that it includes electrical,
geometrical and thermal properties in a single model
so that they are related. The representation of the

geometrical and multi-physical properties such as
thermal properties is simplified, so that the simula-
tion will be performed rapidly and it will serve as a
pre-dimensioning process so that it will reduce the
need for the FE simulation and replacement cycle.

2 Mathematical multi-domain para-
meters relations

To perform the new modeling procedure we will
need to have the mathematical relations of the differ-
ent multi-physical properties, electrical properties
and the geometrical properties with each other so
that we could build the new multi domain models in
DYMOLA. This is more essential in the sections that
the different properties have the interactions with
each other, such as the heating resistances or the sur-
faces which the multi-physical properties are related
to the geometrical and electrical properties. [11] and
[12] propose a method to extract such relations with
the help of the topological diagrams. The capability
of this has been shown by [13] which explained the
need of the topological structure to model the com-
plex systems. Fig.2 shows the algebraic diagram
which by that we can associate the different proper-
ties of our model. On the first step the analysis will
start from nodes on the Primal object. The nodes
present the properties of the nodes which in our case
are the coordination of the nodes (P), electrical po-
tential of the nodes (V) and the temperature of each
node (T). We will call the matrix which contains
these properties matrix [N]. The incidence matrix
[C], which builds up of the relations between differ-
ent nodes will capable us to have the relations of the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 588

same properties between two nodes(Branches) such
as the vector between two nodes, the potential differ-
ences between nodes and the temperature differenc-
es., this will be presented in matrix [B]. The dual
object RB for us will be the current and the heat flow
in the branches. To arrive to the RB we would need
the admittance matrix YB which represents the rela-
tion between different properties.

Figure 2: algebraic diagram of the relations between different
properties of the model

As it can be seen, once we have the topological dia-
gram of the model, from any property as the depar-
ture data we will be capable of calculating the other
properties of the model. These relations will help us
to perform our modeling and analysis. Although this
method will respond to our need of knowing the rela-
tion between the components in the model but it
would be hard to perform if the model is compli-
cated. [14] had showed that by partitioning the ma-
trices into smaller model and matrices we will be
able to simplify the model. This is done by associate
to each part of the model a topological diagram and
incidence matrix [C] and by connecting the smaller
parts together construct the bigger incidence matrix.
The possibility of partitioning the incidence matrix
into smaller parts of the model will permit us to easi-
ly extract the equations of the models which do not
exist in the standard DYMOLA library. As an exam-
ple the relations of the multi-physical properties of a
resistor are already exist in DYMOLA, and we just
need to connect the existing multi domain models
together by a new built connector which can support
all the parameters of these models, but as the thermal
relations on a surface with their interactions with the
geometry does not exist, the relations between the
different parameters of this new model has to be ex-
tracted by this method.
To calculate the thermal properties we have included
the thermal resistance concept [15]. This will reduce
the variables which are all included in the thermal
resistance Rth and facilitate the calculations. Alge-
braic diagram in fig. 3 present the different variables

in our calculations and their relations together. For
the reason that the entire variable has to be calcu-
lated in the same time with the different interactions
that they have with each other the relation between
the variables which will be obtained by this diagram
is quit complicated.

Figure 3: multi-physical parameters relations

To reduce the complicity of the equations [12] offers
a possibility of separating the diagram in more sim-
ple diagrams, solve these simpler diagrams and then
calculate their interactions’ with each other.

Figure 4: electrical and thermal algebraic diagrams and their
interactions

This method will reduce the complexity of the equa-
tions and has the advantage that as the upper section
(electrical diagram) which represent the electrical
equations already exist in DYMOLA, it will give us
the relation of these existing models with the newer
parameters needed in the models.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 589

2.1 Thermal characteristics of the electrical
boards

In the electrical boards and circuits most of the heat
passes through the board or surface of the circuit.
This produces a need to include the heat transfer
from the surfaces in the simulation. In the DYMOLA
thermal library, there is no mean to calculate the heat
transfer on a 2D surface. We have introduced two
plane models with the ability to calculate the heat
transfer between the connectors’ positions in relation
to the position of the connectors.
The first option to calculate the thermal properties on
the plane and between different points which will be
represented by the connectors, we will use the con-
cept of the radial heat conduction on a disc [15]
fig.5.

Figure 5: thermal resistance in a radial conduction on a plane

Although this method is simple to calculate and use,
it would be applicable only if the surface could be
supposed unlimited due to the dimensions of the r1
and r2. The other option is to use the equivalent elec-
trical network [16] fig.6, which represent the system
with the system with the thermal resistances and ca-
pacitors which can be simulated as an electrical net-
work.

Figure 6: equivalent electrical network representation of a ther-
mal system

To simplify the models in the first stage of modeling
procedure we suppose the problem as a steady state

situation so that we can neglect the C. This will sim-
plify our plane thermal model to a model which has
been divided by the smaller cubes which each will be
represented by their thermal resistances. Fig. 7

Figure 7: plane thermal model represented by the thermal resis-
tance network concept

These two thermal models can be used for modeling
the plane model including its geometrical equations
in DYMOLA.

3 Modeling procedure

Once the mathematical equations and relations of the
models have been extracted the models and the mod-
eling procedure can be introduced. This new model-
ing method will need a new library which includes
the electrical components presented with the new
concept, and new components which will serve as
the environment of the electronic circuit or the sur-
faces on which it will be installed. All of these new
models ought to include the multi-domain models,
properties and connectors inside them. Fig 8 shows a
new internal representation for a resistance compo-
nent.

Figure 8: Internal multi-domain representation of an electrical
resistance

It can be observed that the new model not only
represents the electrical properties of the resistance
but also its geometrical and thermal properties. This
new model has been introduced by utilization of the
existing DYMOLA library models with connecting
them to a new connector. This new connector con-
tains the combined properties needed in this model.
This connector is needed to ensure the multi-domain

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 590

modeling within a single model. Fig 9 shows the
properties of the new connector used to connect new
models build in DYMOLA.

Figure 9: New connector characteristics

It is obvious that due to the need of taking into ac-
count the newer properties in the system such as the
electromagnetic properties, other variables have to
be introduced in the connector.

To perform the multi-physics simulations, we also
need to integrate the environments of the circuits. To
do so, we propose new geometrical models, such as
plane model which is presented in fig 10, so that the
other components can be installed on them, and they
themselves can be connected to another environmen-
tal model.

Figure 10: integration of the electrical components in their multi-
domain environment e.g. plane

As the components are placed on the different places
on the plane, we need to be capable of calculating
the temperature (T), and the thermal flow (Q) be-
tween the different connector points. As it has been
explained in section two, this is possible by using the
thermal resistance concept. As the thermal resistance
is related to the geometry, and the heat produced is
related to the electrical properties of the circuit, the
relations which would be achieved by the procedures
in the section two would be used to build the new
multi-domain models such as the plane model.

Using the multi-domain electrical and geometrical
models to model the electrical circuits which are
made by this method, we are be able to simulate the
electrical circuits in DYMOLA not only due to their
electrical properties but also geometrical and thermal
properties in one single stage. The advantage would
be that normally, the circuit has to be modeled and
simulated due to one of these properties (electrical,
geometrical and thermal) and the relations between
each simulation has to be performed by the paper-
work. For instance to perform the thermal simula-
tions the electrical and geometrical variables of the
circuits has to be transferred by hand from one simu-
lation to the other.

4 Conclusion

We offer a new method to model and simulate elec-
trical circuits, considering their geometrical and mul-
ti-physical properties in one single model. This new
method will result in a pre-optimized electrical de-
sign and components placement, which will reduce
the need of costly Finite Element simulations.

The possibility of exchange the geometrical proper-
ties with CATIA [17] will serves as a strong positive
point for this new modeling method because the
geometrical data and positioning of the components
can be used in modeling a detailed geometry of the
electrical circuits with CATIA. This and a procedure
to perform an electrical routing on the 3D surfaces
with the help of DYMOLA and CATIA would be
subject of the future work.

References

[1] http://www.dynasim.se

[2] http://www.cadence.com

[3] http://www.zuken.com

[4] K. Feldmann, Y. Zhuo, C Alvarez, “3D Gridless
routing for the design of Molded Interconnect
Devices (MID)” Production engineering, XII-2
89-94. 2005.

[5] NEXTRA http://www.mecadtron.de

[6] E3-SeriesZUKEN
http://www.zuken.com/products/e3-
series.aspx

[7] Y Zhuo, C. Alvarez, K. Feldmann, “An Integrated
design system for Molded Interconnect Devic-
es(3D-MID)”, Digital enterprise technology, 2007

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 591

[8] T. Krebs, “3D mechanical CAD collision de-
tection with Allegro PCB editor and NEX-
TRA”, proceedings of EMEA conference,
May 2007

[9] FLOTHERM
http://www.mentor.com/products/mechanical
/products/flotherm

[10] Q3D
http://www.ansoft.com/products/si/q3d_extra
ctor/

[11] Franklin H. Branin Jr. “The Algebraic-
Topological Basis for network analogies and
the vector calculus.” Symposium on genera-
lized networks. 04/1966.

[12] Bjorke O., “Manufacturing systems theory”,
1995.

[13] R., Penas O., Riviere A., Choley J.Y., “A
need for the definition of a topological struc-
ture for the complex systems modeling”.,
CPI2007.

[14] Elmqvist H., “A structured model language
for large continuous systems”. PhD theses.
LIT 1978.

[15] G.F. Hewitt, G. L. Shires and T. R. Bott,
“Process heat transfer”, CRC press, 1993.

[16] J.M. Ortizo-Rodriguez, D. Berning, M. Her-
nandez, “Lumped-parameter Thermal Model-
ing of an IPEM using Thermal Component
Models” IEEE 2004

[17] P. Bhattacharya, N. S. Welakwe and R. Ma-
kanaboyina, “Integration of CATIA with
Modelica”, proceedings of Modelica confe-
rence, 2006

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 592

Modelica Libraries for
Linear Control Systems

Marcus Baur, Martin Otter, Bernhard Thiele
German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany

Marcus.Baur@DLR.de, Martin.Otter@DLR.de, Bernhard.Thiele@DLR.de

Abstract

This article presents and describes the new Lin-
earSystems and Controller libraries which are de-
veloped to enhance analysis, design and simula-
tion of linear control systems in Modelica. The
LinearSystems library contains basic functions for
linear system analysis and controller design for
state-space, transfer-function, and zeros-and-poles
representation. The library utilizes the operator
overloading technique from Modelica 3.1. The
Controller library provides input/output blocks
for these basic system descriptions and allows to
quickly switch between a continuous and a discrete
representation.
Keywords: linear systems; control design; system
control; sampled systems

1 Introduction

This article gives an overview of two new, open
source Modelica libraries to enhance the analy-
sis, design and simulation of linear control sys-
tems in Modelica, i.e. the LinearSystems library
and the Controller library. The LinearSystems li-
brary contains about 180 Modelica functions for
the analysis and design of linear control systems
in different description forms. The Controller li-
brary contains about 30 controller blocks where it
is easy to switch between a continuous and a dis-
crete representation of the blocks. The Controller
library is based on the description forms provided
by the LinearSystems library.
All numerical functions of the LinearSystems li-

brary are natively implemented in Modelica, with
exception of linear algebra functions (e.g. solv-
ing linear systems of equations) that use the LA-
PACK library [6]. Therefore, the functions of
the LinearSystems library can be used in the
production code of a controller, e.g., to design

at every sample instant a linear observer for a
non-linear plant model that is linearized around
the actual operating point. The goal is to use
this functionality in combination with the Mod-
elica_EmbeddedSystems library [4] for advanced
embedded control systems, where non-linear in-
verse plant models are present in a controller.
Parts of the functions and blocks of the two li-

braries are based on the Modelica_LinearSystems
library described in [9]. It is planned that
both libraries will be included in one of the
next versions of the Modelica Standard Library.
Currently, they are again collected in one li-
brary called Modelica_LinearSystems2 for the
LinearSystems library and the sublibrary Model-
ica_LinearSystems2.Controller for the Controller
library.

2 LinearSystems library

Figure 1: LinearSystems li-
brary

The LinearSystems
library contains
currently about
180 functions,
whereas the pre-
vious version had
about 20 functions.
A screen shot of
the first hierar-
chical level of the
library is shown
in Figure 1. Most
important are the
four records that
contain the basic
data structures
and functions for
linear control sys-
tems according to
the following mathematical description forms:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 593 DOI: 10.3384/ecp09430068

• StateSpace

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

• TransferFunction

y = n(s)
d(s) ·u

• ZerosAndPoles

y = k ·
∏

(s+n1i) ·
∏

(s2 +n2js+n3j)∏
(s+d1k) ·

∏
(s2 +d2ls+d3l)

·u

• DiscreteStateSpace

xd(tk+1) = Axd(tk)+Bu(tk)
y(tk) = Cxd(tk)+Du(tk)
x(tk) = xd(tk)+B2(tk)

with the Laplace variable s. Note, that the ma-
trix B2 to derive the continuous state space vec-
tor x(tk) from discrete xd(tk) depends on the lin-
earization method. The users view of the Ze-
rosAndPoles data structure are the zeros, poles
and the gain of the transfer function. Internally,
the transfer function is represented by the real co-
efficients of first and second order polynomials, so
that the operations on this representation results
in transfer functions with real coefficients. If com-
plex poles and zeros would be used, inaccuracies
in computational calculation could result in sys-
tems with complex poles without the conjugated
complex counterpart.
The data of the mathematical description forms

are stored in the respective record, e.g., the matri-
ces A, B, C, D are the data of the state space rep-
resentation stored in the StateSpace record. Addi-
tionally, the signal names can be optionally stored
as well. When linearizing a Modelica model,
e.g., with StateSpace.Import.fromModel(..),
the full signal names of the original model are au-
tomatically included in the linear system record.
StateSpace-, TransferFunction-, and Zeros-

AndPoles-records have the same basic struc-
ture. As an example, the first hierarchi-
cal level of the StateSpace record consisting
of several sublibraries is shown in Figure 2.

Figure 2: StateSpace
record

The first few elements,
coated with quotes, are
made for the usage of
operator overloading, see
[8], in order that the
elementary operations
+,−,∗,==, String(..) on
the data structure can be
conveniently carried out.
For example, the follow-

ing transfer functions

G0(s) = s+1
s2 +3s−2

and

G1(s) = G0
1+G0

can be easily defined in the interactive environ-
ment of Dymola [3] in the following way:

import tf =
Modelica_LinearSystems2.TransferFunction;
s = tf.s();
G0 = (s+1)/(s^2+3*s-2);
G1 = G0 / (1 + G0);
G1
// = "(s^3 + 4*s^2 + s - 2)/
// (s^4 + 7*s^3 + 9*s^2 - 11*s + 2)"

The new Command window of Dymola shows such
results appropriately rendered, e.g. Figure 3.

Figure 3: Dymola Command window

The further sublibraries structure the available
functions:

• Analysis contains functions to compute
eigenvalues, poles, zeros, or properties like
controllability.

• Design contains functions to design control
systems, e.g., with the pole placement or the
Riccati method.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 594

• Plot contains functions to compute and plot
poles and zeros, frequency responses, step re-
sponses etc.

• Conversion contains functions to convert
from one data structure to another descrip-
tion form, e.g., from StateSpace to Transfer-
Function.

• Transformation contains functions to per-
form a similarity transformation, e.g., to
transform to controllability form.

• Import contains functions to import the
data structure from a model (by linearization)
or from a file.

All functions of the library are Modelica functions.
For basic linear algebra computations, like solu-
tions of linear systems of equations, or eigenvalue
computations, the standard numerical library LA-
PACK [6] is used. Besides LAPACK, no other ex-
ternal functions are utilized.
In the following sections, some of the above

quoted sublibraries are described in more detail
for StateSpace systems.

2.1 StateSpace.Analysis

Figure 4: Package
StateSpace.Analysis

The Analysis package
of StateSpace contains
functions to compute
eigenvalues, invariant
zeros, and various
system properties.
The eigenvalues of
a state space sys-
tem, which are the
eigenvalues of the
system matrix A, are
calculated with the
LAPACK function
dggevx, i.e., using
the basic eigenvalue
computation with an
additional balancing
transformation to im-
prove the conditioning
of the eigenvalues.
The principle of the
algorithm is to reduce
matrix A to an upper
Hessenberg form first. The QR algorithm is then

used to further reduce the matrix to a real Schur
form (RSF) from which the eigenvalues are easily
computed.
Beside the eigenvalues, also the invariant zeros

play an important role for linear dynamic systems.
They identify those exponential input signals that
are completely blocked by the system. A complex
number s= zk is an invariant zero of a state space
system

ẋ = Ax+Bu
y = Cx+Du

if the Rosenbrock matrix

P(s) =
(
sI−A B
−C D

)

is rank deficient for s= zk, i.e.

rank (P(zk))<max
s

(rank (P(s))) (1)

(note, that the modification of the signs in the
matrix do not change the rank). If the system
has the same number of inputs and outputs, the
invariant zeros are the generalized eigenvalues of
the pair of square matrices (L,M) with

L =
(

A B
C D

)
, M =

(
I 0
0 0

)
.

In this case the generalized eigenvalues, i.e., the
invariant zeros, could be computed with a stan-
dard QZ-algorithm, e.g., with LAPACK function
dggev. However, this algorithm fails if the system
has not the same number of inputs and outputs or
if one of the matrices B or C does not have full
column or full row rank respectively. For this rea-
son, in the LinearSystems library the algorithm
from [5] is used to calculate the invariant zeros
of arbitrary StateSpace systems, i.e., with arbi-
trary numbers of inputs and outputs and rank de-
ficient matrices. The approach is to compress the
matrices (A,B,C,D) with QR-decompositions to
(Ar,Br,Cr,Dr) such that a reduced order system
matrix

Pr (s) =
(
sI−Ar Br

−Cr Dr

)
with invertible matrix Dr have the same zeros
as P(s). After another transformation that com-
presses the columns of [Cr,Dr] to [0,Df] such that(

Af ∗
0 Df

)
=
(

Ar Br

Cr Dr

)
V

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 595

and (
Bf ∗
0 0

)
=
(

I 0
0 0

)
V

the QZ-algorithm is applied to calculate the gen-
eralized eigenvalues of the pair (Af ,Bf). These
generalized eigenvalues are the invariant zeros of
the system.
Controllability, observability, stability, de-

tectability, and stabilizability are computed with
numerically effective staircase algorithms. All
properties can be computed with the convenience
function “analyze” that calls all functions from the
Analysis package and presents the results in a nice
layout in html format. The requested results are
selected by a menu (see Figure 5). Furthermore,
the dynamics of the states are being analyzed in
relation to the dynamics of the modal states, i.e.,
the states of the corresponding similar uncoupled
modal system representation. This helps to un-
derstand which eigenvalue and/or eigen response
is associated with which variable.

Figure 5: Menu of Analysis.analysis function

The following example illustrates this relation:
The state space system with the matrices

A =

−3 2 −3 4
0 6 7 8
0 13 34 0
0 −17 0 0

 , B =

1 0
0 1
1 0
0 1

C =

(
0 1 0 1
0 0 1 1

)
, D =

(
0 0
0 0

)

has the four eigenvalues

λ1 =−3, λ2 = 36.65, λ3,4 = 1.67±11.11 i.

The system analysis function reports that this
system is neither stable nor observable but it is
controllable and therefore it is stabilizable and it

is detectable. In particular:

characteristics
λ1 stable, controllable, not observable
λ2 not stable, stabilizable, detectable
λ3,4 not stable, stabilizable, detectable

The contribution of the modal states zi (t) to the
system states xi (t) and the characteristics of the
dynamic behavior of the modal states is given
by the following tables on the result file in html
format:

i λi T[s] z[i] contributes
1 -3 0.333 to x[1] with 100 %
2 36.65 0.273 to x[3] with 72.8 %

to x[2] with 14.8 %

i λi z[i] contributes
3/4 1.67 ± i 11.11 to x[4] with 43.9 %

to x[2] with 29 %

i frequency[Hz] damping
3/4 1.7877 -0.1492

The relation of the system states to the modal
states, i.e., the composition of the system states
is shown in the next table:

System state is composed of
x[1] 60.6 % by z[1]

34.9 % by z[3/4]
x[2] 83.9 % by z[3/4]

16.1 % by z[2]
x[3] 71.2 % by z[2]

28.8 % by z[3/4]]
x[4] 94.4 % by z[3/4]

5.6 % by z[2]

The meaning of contribution and composi-
tion is explained subsequently. The idea of this
approach is, that the zero input response

xh(t) = eAtx0

of a state space system can be represented by a
transformation

xh(t) = Ṽzh (t) (2)

of the decoupled zero input responses zh(t) of the
corresponding modal system

ż = Ṽ−1AṼz = Λ̃z

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 596

with
zk(t) = eλitzk0

for a single real eigenvalue λk or(
zk(t)
zk+1(t)

)
= eΓkt

(
zk0

zk+10

)
for a single pair of conjugated complex eigenvalues
(λk,λk+1) = αk± iβk respectively. The matrix

Γk = T−1ΛkT =
(
αk βk
−βk αk

)
with

T = 1
2

(
1 −j
1 j

)
and Λk =

(
αk + jβk 0

0 αk− iβk

)
results from a transformation of the complex
eigenvalue matrix Λk into the corresponding real
form. The matrix Ṽ is given by

Ṽ = V
(

T̂ 0
0 I

)
where T̂ is a block diagonal matrix of order 2r
with r matrices T in its diagonal. Note, that the
matrix Λ = diag(λk) is assumed to be appropri-
ately sorted, i.e. the first 2r elements of the diago-
nal are the r conjugated complex pole pairs of the
system. Considering (2), each element xhk (t) of
xh(t) is represented by a linear combination ṽTk zh
of the zero input responses zhk (t), where ṽTk indi-
cates the k’th row of matrix Ṽ. Furthermore, xhk
is composed by pkl = 100 ·

(
|ṽkl|/|ṽTk |

)
% by the el-

ement zhl . On the other hand, equation (2) can
be written as

x = Ṽz =
n∑
k=1

zkṽk,

i.e., for each modal state zhk of zh the elements
qlk = 100 · |ṽlk|/|ṽk|% of the corresponding vector
ṽk indicates the proportion of zhk that is con-
tributed to the state xhl . Since the state xk is
assigned to a system variable, which can proba-
bly be assigned to a physical component or a cer-
tain subsystem, then pkl and qlk help to indicate
the influence of this subsystem to the dynamical
behavior of the system which, mathematically, is
composed of the dynamics of the modal states zk
associated to the eigenvalues λk.
Currently, the poles are only considered as real

poles or pole pairs with multiplicity 1. Systems
with eigenvalues of higher multiplicity are pro-
cessed as multiple eigenvalues of multiplicity 1.
This should be improved in the future.

2.2 StateSpace.Plot

Figure 6: Package
StateSpace.Plot

The sublibrary Plot con-
tains functions to plot
poles, zeros, frequency
responses and various time
responses. For the plotting,
a separate small package
is provided that must be
adapted to the features
of the used Modelica
tool, since plotting is not
standardized in Modelica.
Currently, the plot pack-
age is only provided for
Dymola.
For example, the following function call com-

putes the step responses of a state space system
from every input to every output and plots the
corresponding curves:

StateSpace.Plot.step(
ss=ss, dt=0.05,tSpan=10);

Figure 7 shows a step response of a SISO state
space system with the matrices

A =
(

0 1
−25 −1.5

)
,B =

(
0
25

)
,

C =
(
1 −0.5

)
, D = 0.

Figure 8 shows the corresponding bode di-
agram generated with StateSpace.Plot.-
bodeSISO(ss=ss);

Figure 7: Step response

2.3 StateSpace.Design

The Design sublibrary (see Figure 9) provides
standard controller design methods for linear
systems. The pole assignment design function
StateSpace.assignPolesMI() for StateSpace
systems with one or more inputs is based on the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 597

Figure 8: Bode diagram

approach described in [11], where the system ma-
trix A is reduced to a real Schur form that allows
sequential and/or partial eigenvalue assignment.

Figure 9: Package
StateSpace.Design

The standard design
method of a ”linear
quadratic optimal con-
troller“ computes the
matrix K of the state-
feedback law u = −Kx
in such a form that a
quadratic cost function
with symmetric weight-
ing matrices Q and R

J (x) =
∫ ∞

0
xTQx+uTRudt (3)

is minimized. The feedback matrix K is obtained
from the solution X of the algebraic Riccati equa-
tion

Q+ATX+XA−XBR−1BTX = 0. (4)

In the LinearSystems library the linear quadratic
optimal controller design is performed with
the function call (K, sslqr, X, evlqr) =
StateSpace.lqr(ss, Q, R). The first output of
the function is the optimal and stabilizing gain
matrix K. It is calculated from the solution X of
(4) by K = R−1BTX. Additionally, the complex
output vector evlqr contains the closed loop
system eigenvalues, i.e., the eigenvalues of the
matrix A−BK. The record sslqr contains the
system representation of the closed loop system

ẋ = (A−BK)x+Bu
y = (C−DK)x+Du.

The corresponding control system structure for
the state feedback control is depicted in Figure 11
and is available as a model template in the Con-
troller library. Alternatively, a feedback control
structure with observer, as shown in Figure 12, is
also available.
Kalman filter design is related to the LQR-

problem. Actually, the corresponding design
function makes use of StateSpace.Design.lqr()
but with a dual system for the observer prob-
lem. Kalman filters are computed with (L,
sskf)=StateSpace.kalmanFilter(ss, Q, R).
Beside the filter matrix L the output sskf
represents the system together with the Kalman
filter, i.e.

ẋ = (A−LC)x+
(
B−LD, L

)(u
y

)

y = Cx+
(
D, 0

)(u
y

)
.

LQG design determines the matrices Kc and
Kf for linear quadratic gaussian problems
(LQG), i.e., the minimization of the expected
value of a cost function under the assump-
tion of stochastically disturbed states and out-
puts. Therefore, it is a combination of
LQR design and Kalman filter design. The
function (Kc, Kf, sslqg)=Design.lqg(ss, Q,
R, V, W) returns the controller matrix Kc and
the filter matrix Kf . Again, the matrices Q and R
are weighting matrices in the cost function of the
controller. The matrices V and W are assumed
to be the covariance matrices of the disturbances
v and w respectively but due to the lack of deeper
insight are usually treated as weighting matrices.
The output record sslqg represents the estimated
system

˙̂x = (A−KfC−BKc+KfDKc) x̂+Kfy
ŷ = (C−DKc) x̂

with y(t), the output of the original system, as
input.
The solution of the Riccati equation (4) is pro-

vided by X = Modelica_LinearSystms2.Math.-
Matrices.care(A, B, R, Q), which computes
the solution with a Schur vector method for the
continuous algebraic Riccati equation (CARE)
[2, 7]. The approach is to form the 2n×2n Hamil-
ton matrix (note that matrix A has order n)

H =
(

A −BR−1BT

−Q −AT

)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 598

and to transform it into an ordered real Schur form

T =
(

T11 T12
0 T22

)
= UTHU

where T11 contains the n eigenvalues of H with
negative real parts [2]. Considering an appropriate
partitioning of matrix U

U =
(

U11 U12
U21 U22

)
,

with n×n matrices Uij , the solution X can be
computed by solving

XU11 = U21.

Additionally, an optional refinement function
based on Newton’s Method with exact line search
is provided [1].

3 Controller library

Figure 10: Controller li-
brary

The former beta ver-
sion of the library
Modelica_Linear-
Systems [9] contained
a sub-package Sampled
with input/output
blocks for contin-
uous and discrete
linear systems simu-
lation. This package
was extended and
was adapted to the
Modelica_LinearSys-
tems2 library sketched
in the previous sec-
tion. Furthermore, the
package was renamed
and is now called
”Modelica_Linear-
Systems2.Controller“.
The Controller library
contains input/output
blocks for StateSpace,
TransferFunction and ZerosAndPoles systems,
as well as PI, PID, FirstOrder, SecondOrder,
Integrator, Filter blocks etc. Every block is
available in a continuous and a discrete (sampled)
representation, where the representation can be
chosen by a Boolean parameter. By specifying
a discretization method and a sample time, the

discrete representation is automatically derived
from the continuous form.
Besides standard input/output blocks, espe-

cially for the data structures of the LinearSys-
tems library, a “Template” sublibrary is present
which provides standard controller structures with
replaceable components. As an example, a state
feedback control is shown in Figure 11, and state
feedback control based on estimated states using
an observer is shown in Figure 12.

Figure 11: Template for state feedback control

Figure 12: Template for state feedback control
with observer

The observer structure is also provided as a tem-
plate (Figure 13) which automatically adapts the
dimensions to the loaded system.

Figure 13: Template for observer

Figure 14 shows a two degree of freedom con-
troller template with a (usually non-linear) in-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 599

verse system model in the feed forward loop. How

Figure 14: Template for a two degree of freedom
controller.

to utilize non-linear inverse (Modelica) models in
controllers is described in [10]. The templates are
provided to support quick implementations of con-
trollers by simple redeclarations of the replaceable
components.

4 Example

Figure 15 shows the multi-body model of a simple
inverse double pendulum and Figure 16 shows the
corresponding animation of the simulated system.

Figure 15: Multi-body model of inverse double
pendulum

The input of the system is a one-dimensional hor-
izontal force to move the cart. It is assumed that
the position and the angle between the lower rod
and the cart are measurable. Hence, the velocity,
the angle of the upper joint, and the angular ve-
locities of the joints have to be estimated by an
observer. Disturbances can be conditionally ac-
tivated and can be added to the horizontal force
input and as additional torque at the upper joint
applied at the upper rod. The control task is to

Figure 16: Screenshot of animated simulation

track the cart to a given (time varying) position
without dropping the pendulum.

4.1 Controller design

Linearization of the system around the
vertical position of the double pendulum
is performed numerically with function
StateSpace.Import.fromModel(modelName),
which returns an appropriate instance of the
StateSpace record. Both, the controller and
the observer are designed by pole assignment.
With the state space system ss of the linearized
model and the desired poles pc the feedback
matrix Kpc is calculated by calling K_pc :=
assignPolesMI(ss, pc);
Due to the duality of controllability and ob-

servability, function assignPolesMI()can also be
used to design the observer feedback matrix
Kpo . The inputs are the dual state space sys-
tem

(
AT ,CT ,BT ,DT

)
. Finally, the pre filter, see

Figure 12, is designed such that the model would
follow a constant input in case of steady state be-
havior:

M_pa := -inv(ss.C*Matrices.solve2(
ss.A - ss.B*K_pc, ss.B));

4.2 Simulation

The model of the controlled system (Figure 17) is
extended from the corresponding template shown
in Figure 12. To fit the template, the physical
system model must be put into an appropriate
form as depicted in Figure 18. The data of the
controller are directly copied into the controller

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 600

Figure 17: Block diagram of the controlled system

matrix or loaded from a file.

Figure 18: Model to fit the physical model of the
template shape

The characteristics of the undisturbed controlled
continuous system is shown in Figure 19. In the
upper picture, the position of the inverted pendu-
lum and its set point are depicted. The lower pic-
ture shows the corresponding input force. Figure
20 shows the same signals of a disturbed system
with a discrete controller.
The disturbances have of course much impact

on the angle of the upper joint. By comparison,
Figure 21 shows the first 15 seconds of this an-
gle and the corresponding estimated value for the
undisturbed system (upper picture) and the dis-
turbed system (lower picture).

5 Conclusions

This paper has sketched the Modelica libraries
LinearSystems and Controller, i.e. a library for

Figure 19: Controlled system without distur-
bances and with continuous controllers. Position
of the inverted pendulum and its setpoint (above)
and the input force (below)

Figure 20: Controlled system with disturbances
and with discrete controllers

linear systems analysis and synthesis and a li-
brary to model continuous and discrete linear con-
troller blocks. Compared with the former version

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 601

Figure 21: Angle ϕ2 (upper joint) and estimated
value (red line) for undisturbed (above) and dis-
turbed (below) system

of the LinearSystems library, the current version
has been extensively restructured and new func-
tions have been added. The most important func-
tions of this library have been described for the
case of state space systems and the mathematical
approaches have been outlined.
Concerning the Controller library, the new fea-

ture to use templates for common control system
structures have been introduced. An example of
the design of a controller for a inverse double pen-
dulum demonstrates the usage of the libraries. It
is planned to include the libraries in the Model-
ica Standard library. Currently, they are available
from http://www.Modelica.org/libraries.

Acknowledgements
Partial financial support of DLR by BMBF
(BMBF Förderkennzeichen: 01IS07022F) for this
work within the ITEA project EUROSYSLIB
(http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf) is highly
appreciated.
We would also like to thank Hilding Elmqvist

and Hans Olsson from Dassault Systèmes (Dy-
nasim) for their support and for discussions es-
pecially related to operator overloading.

References
[1] Benner P. and Byers, R. (1998): An Exact

Line Search Method for Solving Generalized
Continuous-Time Algebraic Riccati Equations.
IEEE Transactions on Automatic Control, vol 43,
pp. 101-107

[2] Datta B. N. (2004): Numerical Methods for Lin-
ear Control Systems. Elsevier Academic Press.

[3] Dymola (2009): Dymola Version 7.3. Das-
sault Systèmes, Lund, Sweden (Dynasim).
http://www.dymola.com.

[4] Elmqvist H., Otter M., Henriksson D., Thiele B.,
and Mattsson S. E. (2009): Modelica for Em-
bedded Systems. In: Proc. of the 7th Mod-
elica Conference 2009, Como, Italy, Sept. 20-22.
http://www.modelica.org/events/modelica2009.

[5] Emami-Naeini, A. and Van Dooren, P. (1982): Com-
putations of zeros of linear multivariable sys-
tems, Automatica 26, pp. 415-430

[6] LAPACK (2009): http://www.netlib.org/lapack/.
[7] Laub A. J. (1979): A Schur Method for Solving

Algebraic Riccati equations. IEEE Trans. Auto.
Contr., vol 24, pp. 913-921.

[8] Olsson H., Otter M., Elmqvist H., and Brück D.
(2009): Operator Overloading in Modelica 3.1.
In: Proc. of the 7th Modelica Conference 2009, Como,
Italy, Sept. 20-22.

[9] Otter M. (2006): The LinearSystems li-
brary for continuous and discrete con-
trol systems. In: Proc. of the 5th Model-
ica Conference 2006, Wien, Austria, Sept. 4-5.
http://www.modelica.org/events/modelica2006/-
Proceedings/sessions/Session5c1.pdf

[10] Thümmel M., Looye G., Kurze M., Otter M.,
and Bals J. (2005): Nonlinear Inverse Mod-
els for Control. In: Proc. of the 4th Int.
Modelica Conference 2005, Hamburg, March 7-
8. http://www.modelica.org/events/Conference2005/-
online_proceedings/Session3/Session3c3.pdf

[11] Varga A. (1981): A Schur method for pole as-
signment. IEEE Trans. Autom. Control, Vol. AC-26,
pp. 517-519.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 602

Dymola and Modelica_EmbeddedSystems in Teaching –
Experiences from a Project Course

Johan Åkessonab Ulf Nordströmc Hilding Elmqvistc
aDepartment of Automatic Control, Lund University, Sweden

bModelon AB, Lund, Sweden
cDassault Systèmes, Lund, Sweden (Dynasim)

Johan.Akesson@control.lth.se Ulf.Nordstrom@3ds.com Hilding.Elmqvist@3ds.com

Abstract

This contribution presents experiences from a master
level project course where the Modelica-based tool
Dymola, supporting embedded control system de-
sign, has been used. In a recent initiative, the Mod-
elica language has been enhanced to support model-
ing of embedded systems and code generation tar-
geted at micro processors.1 The new specification is
supported by Dymola and enables wide range of de-
sign tasks to be performed in a unified framework.
Such tasks include software in the loop simulation to
test controller code in simulation, hardware in the
loop simulation, and final deployment on the target.
In the context of teaching, the new features of Mod-
elica/Dymola enable universities to offer a realistic
environment providing students with hands on expe-
riences from model-based control system develop-
ment.
Keywords: Modelica; Dymola; Embedded Control
Systems; Teaching

1 Introduction

Much effort is devoted to studies of analysis and
synthesis methods in engineering programs oriented
towards systems and control. Often, the course mate-
rial is mainly of theoretical nature, sometimes com-
plemented with laboratory sessions. To further
strengthen the practical skills of the students, a pro-
ject course, “Projects in Automatic Control” is of-
fered by the Department of Automatic Control, Lund
University. The main themes of the course are prac-
tical application of theoretical skills acquired in pre-
vious courses and working in teams.

This contribution describes two projects that were
part of the course of 2009, where Dymola and Mod-

1 This effort has been performed within the EURO-
SYSLIB project.

elica_EmbeddedSystems was used to develop con-
trol systems for two-wheel robots, Figure 1, built
using the Lego Mindstorms NXT platform.

The paper is outlined as follows. In Section 2, an
overview is given over different approaches to teach-
ing embedded systems and control, and in Section 3
the Project in Automatic Control course is described.
Section 4 and 5 describes, respectively, the Mod-
elica_EmbeddedSystems library and the
LEGO_Mindstorms library. In Section 6, some
common usage scenarios are discussed and in Sec-
tion 7 the fixed point code generation module of
Dymola is outlined. The paper ends with a review of
the course results in Section 8 and a summary in Sec-
tion 9.

Figure 1. Lego robot

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 603 DOI: 10.3384/ecp09430086

2 Background

Teaching of embedded control systems requires in-
sights into different disciplines, including mathe-
matical modeling, control system design, and com-
puter science. In the latter case, real-time systems are
particularly important. Embedded control systems
are distinguished by the complex interplay between
the behaviors of the controller to be implemented,
typically designed in continuous time, the discretiza-
tion method used in order to obtain a discrete time
approximation of the controller, and the properties of
the execution environment. In order to analyze the
closed loop behavior of the controlled system, all
three aspects need to be attended to.

Teaching of embedded systems can be ap-
proached in several ways, using different levels of
abstraction. At the lowest level, control systems are
encoded in C, or even assembly. The control system
is then typically run without an operating system and
periodic processes, or tasks, are mapped onto timer
interrupts. Using this approach, the modeling and
control systems design is typically done prior to the
encoding phase, using different tools and method-
ologies. It is also common that controllers need to be
translated into fixed-point arithmetics. From a peda-
gogical perspective, this method has distinct advan-
tages and disadvantages. Coding an embedded con-
trol system in a low level language, perhaps includ-
ing manual fixed-point conversion, does indeed
promote understanding of the tasks involved. Also,
mapping of periodic tasks onto hardware interrupts
further strengthens the student’s understanding of the
methods involved. On the other hand, modeling and
control system design is disjoint from the actual en-
coding and execution of the control system. Debug-
ging is often further complicated by limited means to
log signals in the embedded control application.

At the next level of abstraction, a high-level lan-
guage, relative to C or assembly, can be used for im-
plementation. For example, Java offers suitable ab-
stractions for creating periodic tasks, e.g., threads
and synchronization. Also, there are platforms pro-
viding Java support, including Lego Mindstorms
NXT. Modeling and control system design, pro-
ceeds, however, as with the previous approach, and
is typically disjoint from the actual implementation.
Never the less, this approach captures important as-
pects of embedded control system, such as multi-
threaded applications and the consequences thereof.

In order to promote joint modeling, control sys-
tems design and implementation, tools like Real-
Time Workshop for Matlab/Simulink are available.
A similar tool is Scilab/Scicos. Such tools offer
strong support for block-based modeling, which is

well suited for development of control systems.
Real-Time Workshop may then translate the block-
oriented graphical Simulink model into executable C
code, which in turn can be compiled and downloaded
to the target processor. Using the simulation capa-
bilities of Simulink, the control system can be simu-
lated together with a model of a physical plant in
order to assess the closed loop behavior prior to de-
ployment. There is also a toolbox for fixed-point ar-
ithmetics available for Simulink as well as a freely
available toolbox for simulation of the temporal be-
havior of embedded kernels and computer networks,
TrueTime [1].

The approach taken in this paper is similar to that
of Matlab/Simulink and Real-Time Workshop. The
simulation software Dymola is used for physical
modeling as well as development of the control sys-
tem. Modelica is used as modeling and implementa-
tion language. As compared to Matlab/Simulink,
Modelica offers stronger support for physical model-
ing, and supports advanced modeling concepts such
as object orientation, equations, and acausal connec-
tions between components. An additional advantage
of Modelica is that the code is available to the user,
which adds to the transparency of the method. Using
novel features of Dymola and additions to the Mod-
elica language explored in the Modelica_Embedded
library, it is possible to generate C code, automati-
cally translated to fixed-point if desired, correspond-
ing to the control system. The generated C code may
then be either compiled and downloaded to the target
or compiled and linked with a simulation executable.
The latter case enables detailed study, in simulation,
of the closed loop behavior of the system prior to
deployment.

The method of automatic code generation from a
high-level description is a novel addition to the
course portfolio of Automatic Control. Joint control
system design and implementation on embedded
platforms has been a long-standing theme of the de-
partment, both in research and in teaching, but so far,
C and Java (and previously also Modula-2) has been
used as implementation languages. Dymola and
Modelica therefore offer an appealing complement
for providing the students with experiences from a
different environment.

3 Project in Automatic Control

The Department of Automatic Control has a long
tradition of laboratory work in control education.
Laboratory sessions are included in all theoretically
oriented courses and some courses also offer small
projects. In order to further strengthen the practical

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 604

and experimental skills of the students, a dedicated
project course is offered to master’s level students.
The course gives 7.5 ECTS units and is categorized
as advanced level. The syllabus of the course chan-
ges each year depending on the number of students
and the availability of interesting projects, usually
with connection to research or industrial applica-
tions. The projects are typically set up so that the
students need to go through several steps in the de-
sign cycle, including mathematical modelling, pa-
rameter identification based on measurement data,
control design, control system implementation, user
interaction and testing. The examination of the
course consists of weekly meetings with a teacher, a
written report and an oral presentation.

The students in the course have in most cases
taken several control courses covering topics such as
linear and non-linear control system design, multi-
variable control, sampled systems and real-time sys-
tems. For a list of courses offered by the Department
of Automatic Control, see [2]. In the project course,
the students need to apply their knowledge from pre-
vious courses in order to solve a larger design prob-
lem in a team consisting of three to five students.
More often than not, the course helps the students to
put their theoretical knowledge into a practical per-
spective where sensors and actuation, unit conver-
sions, and limited computing resources play import-
ant roles.

For the course as of spring 2009, the Lego Mind-
storms NXT [6] platform was selected as a basis for
the course projects. The platform features several
possibilities for sensors and actuations, also from
third party manufacturers, and the embedded micro
processor can be programmed in several ways using
e.g., C/C++, NXC or Java. Out of 22 students in
total, two teams of five students in each were selec-
ted to perform projects where the Dymola software
was used for modeling, control design and embedded
code generation.

3.1 Project infrastructure support

In order to emphasize and support the collaborative
character of the projects, a version control repository
and a web-based tool for project planning were made
available for each project group. As for version con-
trol, Subversion [3] was used and Trac [4] was used
as project planning platform. The objective of intro-
ducing these tools in the course was to add an addi-
tional element of industrial realism to the projects.
Also, the students were required to prepare each
weekly meeting with their teacher by updating the
Trac site to reflect the current status of the project.

Throughout the projects, the students had access
to a lab where the Lego sets and computers for de-
velopment were available.

3.2 Tutorials

All students in the course were offered a tutorial on
how to use Trac and Subversion, since few had any
experience of such tools. The students participating
in the Dymola projects were offered additional tuto-
rial lectures in order to get started with the course
work. A basic tutorial on how to operate the Lego
Mindstorms NXT hardware was offered in the be-
ginning of the course, with the objective of introduc-
ing the students to basic operation such as reading
from sensors, compilation of programs, and down-
loading and running programs. Since the students
lacked previous experience with Modelica, an intro-
ductory lecture was given. The tutorial covered basic
Modelica features, including textual and graphical
modeling, as well as an introduction to Dymola. Fi-
nally, a lecture on advanced Modelica and multi-
body modeling was offered, covering also the anima-
tion features of Dymola. The final lecture was given
by personel from Dynasim, whereas the three first
were given by personel from the Department of Au-
tomatic Control.

The initial tutorial lectures given early in the
course provided the students with sufficient informa-
tion to get started with Modelica and Dymola. How-
ever, some additional support in the form of informal
tutorials in front of the computer was also needed,
especially in order for the students to learn how to
use the new advanced features related to Mod-
elica_EmbeddedSystems and code generation.

3.3 Project task

The task for the students to solve was to construct a
two-wheel robot, see Figure 1, and to develop a
model-based stabilizing control scheme using Mod-
elica and Dymola. Dynamic modeling of the robot
was done using the multi-body library in Dymola.
While modeling of the mechanical parts is fairly
straightforward, the Lego servos pose a challenge. In
order to obtain a good model for these, identification
experiments need to be performed. This was made
possible by the data-logging feature of Dymola; a
small Modelica test program was downloaded and
the resulting signals were logged back to Dymola
over the BlueTooth communication link. Having
constructed a dynamic model, a linearized approxi-
mation can be derived and exported from Dymola.
Both groups opted to use a state feedback controller
designed using Control Systems Toolbox in Matlab.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 605

Given the controller, sensors and sensor processing
needs to be considered. The Lego servos have built-
in angular measurements, and in addition, one rate
gyro and one accelerometer were available to each
group. In the final step, the control system was de-
signed using blocks from the Modelica Standard Li-
brary, and the details of the embedded platform were
set up. As a parallel task, animation of the robot was
set up in Dymola.

4 Modelica_EmbeddedSystems

The Modelica_EmbeddedSystems library [5] was
used to set up the models for use with embedded sys-
tems. Using components from the library, target con-
figuration records and communication points are in-
serted in the models containing properties of the tar-
get system and computational tasks.

4.1 Communication points

One of the key components of the library is the
CommunicateReal block. It is used to set up
communication with external I/O ports of the target
system or to model the interface.

In the LEGO_Mindstorms Modelica library, de-
scribed in a later section, I/O communications blocks
were implemented such that they fit in the frame-
work set by the CommunicateReal block. The
design allows for straight forward use of the GUI
(parameter dialog) to enable access to the external
I/O blocks by a simple pull-down menu, depicted in
Figure 2.

A user could thus implement new I/O blocks that
would end up in the same dialog for selection.

Figure 2. Lego I/O blocks in the CommunicateReal

parameter dialog

4.2 Configuration records

Another key component of the library is the configu-
ration record that is used to configure the models
with respect to the target platform and task partition-
ing. A configuration record is a user configurable
nested record (record containing records). Depending
on the problem, the record could contain one or more
targets, tasks and subtask. A simple example is de-
picted below, Figure 3, where there is just one target,
one task and one subtask. The additional block with
a Bluetooth icon is from the LEGO_Mindstorms li-
brary and is used to select virtual COM ports for
Bluetooth communication.

Figure 3. Example of configuration record

5 Dymola Lego Mindstorms API

The Lego Mindstorms NXT device can run under
several operating systems. For this project course the
nxtOSEK [7] open source real-time operating system
was selected due to its openness and well doc-
umented C API for sensors, motors and other devices
(including some third party sensors). It provides a C
programming environment using a GCC tool chain
and comes with an extensive set of samples that help
the students to get a throughout understanding of the
platform and interaction with sensors and actuators.
Based on these samples a main program was devel-
oped as a wrapper to the Dymola generated model
code and variable declarations. The main program
handles initialization and termination of sensors and
Bluetooth communication (invoking the hook rou-
tines described in the nxtOSEK C API Reference
[7]) and mapping of system time to fixed-point time
while the Dymola generated code that is included
performs all the computations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 606

5.1 LEGO_Mindstorms library

The LEGO_Mindstroms library, Figure 4, has been
developed for education and implements communi-
cation blocks and a small set of examples and addi-
tional components.

Figure 4. LEGO _Mindstorms library

The communication blocks can be used in models to
map Modelica variables to low-level C functions on
the Lego Mindstorms NXT device. An example
would be to map the output of a speed controller to
the servo motors and to feed the same controller with
data from the ultrasonic sensor for obstacle detec-
tion.

The communication blocks provide the mapping
to selected function of the API for interaction with
sensors and actuators. Also included are some third
party sensors from HiTechnic [8] and Mindsensors
[9]. The design extends from the Mode-
lica_EmbeddedSystems architecture in such a way
that the various blocks can be conveniently selected
from a drop down list in the parameter dialog of the
CommunicateReal block. This enables the
students to easily configure the interaction with sen-
sors and actuators in their models.

In addition to the standard sensors of the NXT
device the students had access to third party sensors,
some included in the C API for nxtOSEK and some
not included. Currently the following sensors and
actuators are supported:

• ECRobot
o Light sensor
o Servo sensor
o Sound sensor
o Touch sensor

o Ultrasonic sensor
• HiTechnic

o Acceleration sensor (NAC1040)
o Gyro sensor (NGY1044)

• Mindsensors
o Acceleration sensor (ACCL-Nx-v3)

The ECRobot sub package contains the interface
blocks for the standard Lego Mindstorms I/O de-
vises. The blocks contain a mapping to the corres-
ponding nxtOSEK C API functions and utilises the
Modelica external function concept. Below is a sim-
ple example using the Touch Sensor. As can be seen
in Figure 5 the Touch Sensor API takes an U8 (un-
signed 8-bit integer) as argument and returns an U8.

Figure 5. Touch Sensor API (in nxtOSEK)

The corresponding function in Modelica that maps to
this is depicted below in Figure 6.

Figure 6. Modelica function mapping

A block that can be used in the Communi-
cateReal block of Modelica_EmbeddedSystems
is constructed by extending from the appropriate
base class and calling the mapping function, see
Figure 7.

Figure 7. Block calling the mapping function (paths
have been shortened to fit in the picture)

Note that in this first implementation the return type
of the Modelica function is Real even though the C
function returns an integer (U8). This was done to
simplify usage for the students but should be re-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 607

designed for a final version of the library. The type
conversions are handled by Dymola and the C com-
piler automatically. All of the sensors and actuators
in this sub package are standard Lego sensors and
they are all included in the nxtOSEK C API.

The HiTechnic sub package contains the inter-
face blocks to two third party sensors from HiTech-
nic, a gyro sensor and an acceleration sensor. Both
sensors are available in the C API which make the
Modelica implementation straight forward with one
exception. The API for the acceleration sensor,
Figure 8 below, differs in that it takes an integer ar-
ray to store the results in.

Figure 8. Acceleration sensor API (in nxtOSEK)

For this sensor a special wrapper has been written in
C to extract only one of the elements since the Com-
municateReal block in
Modelica_EmbeddedSystems currently only sup-
ports scalars. In Modelica you then choose with a
parameter which axis to read from. The drawback is
that you need three blocks to read all axes compared
to just one function call if using the API as it is.

The Mindsensors sub package contains an ad-
ditional third party sensor: the ACCL-Nx-v3 accel-
eration sensor from Mindsensors. This sensor can be
used either as a tilt sensor or to measure acceleration
in any of the x-, y- or z-axis. It is more sensitive than
the acceleration sensor from HiTechnic and returns
the measured acceleration in units of milli-G, where
G is the gravitational unit. This sensor was not repre-
sented in the nxtOSEK C API so API functions had
to be written manually and supplied to the students.

The Components.BlueTooth sub package
contains a block that is used to set up Bluetooth
communication from the Lego NXT to dymosim (the
standard Dymola simulator). It is designed and tested
only for Windows and uses virtual COM ports for
Bluetooth communication.

5.2 Main program

The main program is based on the sample programs
from the nxtOSEK distribution and acts as a wrapper
to the model code generated by Dymola. It also han-
dles mapping of system clock to fixed-point time
(currently hard coded to 10 fractional bits) and pro-
vides some wrappers and API functions for third
party sensors. Below in Figure 9 the main program is
outlined in pseudo code.

Figure 9. Main program pseudo code

The students could easily modify the program for
more advanced use of the display, reconfiguring,
adding or removing sensors etc. It is also possible to
access all the fixed-point variables for online debug-
ging etc. using their fixed-point representation (inte-
ger values used to store the signals). For more con-
venient debugging the variables can be sent to Dy-
mola using the Bluetooth connection.

6 Dymola and code generation

6.1 Configuring the model for fixed-point

The Lego Mindstorms NXT device does not have
hardware support for floating-point arithmetic’s and
in order to avoid using computationally heavy and
memory consuming floating point math libraries,
fixed-point code is preferred. In order to use the
fixed-point code generation capabilities of Dymola
the model must be annotated with additional infor-
mation. This is done using the min and max attributes
to specify the range of a variable and the relative
resolution with newly introduced experimental anno-
tation, annotation(mapping(resolution=0.001)). In
Figure 10 an example of setting the resolution for
two variables of a component is shown. Note that
this experimental annotation can be set as a modifier.
The information is then used during translation to

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 608

allocate integer and fractional bits for the fixed-point
variables.

Figure 10. Fixed-point annotated component

6.2 Code output

When configured for external code generation, Dy-
mola generates two files, namely declaration.c and
equations.c with fixed-point code to be included in
the main program. The code is well documented and
includes the original Modelica code and the assigned
fixed-point format in Q-notation. An example of de-
clatation.c can be seen in Figure 11, note the full
Modelica declaration from where the variable origi-
nates and the Q-notation indicating the number of
integer- and fractional bits.

Figure 11. Declaration of fixed-point variables

All computations are collected in the file equations.c.
Just as for the declarations, the eqation file includes
the original Modelica eqation as a comment for
traceability. Below in Figure 12 is an example of
generated fixed-point code for a ramp-function.

Figure 12. Fixed-point code for an equation

6.3 Bluetooth data logging

It can be a very hard task to debug code in embedded
systems. To make debugging easier, Dymola gener-
ates code (for the Lego Mindstorms NXT target) to

send the internal variables of the target in fixed-point
representation to Dymola using Bluetooth. The re-
ceived values are automatically re-scaled to their
corresponding Real (SIunit) values. This enables
real-time plotting of the internal variables of the tar-
get as well as storing the data.

7 Scenarios

In this course, Dymola and Mode-
lica_EmbeddedSystems were used in several of the
scenarios the students were faced with. Typical such
scenarios are plant modelling and controller design
including development and tuning using Model-in-
the-Loop (MIL) simulation and Software-in-the-
Loop (SIL) simulation. Also for final production
code generation and deployment Dymola was used
(in combination with other tools; Cygwin, GCC to
name the most important).

7.1 Model in the Loop simulation

MIL simulations were performed to test the control
strategy with the student’s model of the robot. These
simulations are typically done with continuous time
(ideal) controllers without taking into account effects
of sample, communication delays, fixed-point arith-
metic’s etc. It serves as a foundation, to validate that
the control strategy is feasible.

To set up the model for MIL simulation one uses
communication blocks from Modelica_Embedded-
Systems. These blocks are inserted between different
parts of the model, for example controller and plant,
to define the border between different tasks.

7.2 Software in the Loop simulation

The next logical step after MIL simulation is SIL
simulation where more detail is included in the con-
troller (non-ideal), in this course, the effects of fixed-
point arithmetic’s in particular.

The model is prepared for SIL simulation by us-
ing the Modelica extends mechanism (inheritance)
together with a modifier with another configuration
record to indicate that the target of the control task
does not have a floating-point arithmetic unit. This
means that the original model is not changed which
is a great benefit in larger projects. The reconfigur-
ing described above is a very simple modification of
the model assuming that the model was correctly
partitioned for MIL simulation and that the configu-
ration records was set up containing all necessary
details. Below, in Figure 13, is an example plot
showing the effects of fixed-point arithmetic’s on a

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 609

PI controller with low resolution driving a simple
drive train.

Figure 13. Plot of control signal for a system in closed
loop in floating-point vs. low resolution fixed-point

7.3 Production code

Dymola was used for this final stage to generate
fixed-point C code for the model equations. This
code combined with the main program described in
an earlier section can be downloaded to the Lego
Mindstorms NXT device and run.

As for the case above, SIL simulation, the recon-
figuration is very simple to do. Again the Modelica
extends mechanism is used together with a modifier
to change the configuration record. This new con-
figuration record specifies the target to be a Lego
Mindstroms NXT unit without a floating-point
arithmetic support. Dymola could then recognize this
target and generate code to fit with the main pro-
gram. Code is also generated for dymosim which is
running in parallel with the Lego controller to collect
variable data and convert them for logging, plotting,
animation and debugging using Bluetooth, more on
this in Section 1. Below in Figure 14 an animation of
the Lego robot can be seen.

Figure 14. Dymola animation of Lego robot

8 Student results and experiences

Both project groups working with Dymola reached
their goal of designing a stabilizing controller based
on their multi-body models. The approach was very
similar in both cases, and followed largely the steps
outlined in Section 3.3. However, the students ran
into numerous problems on their way, which needed
attention.

While the students quickly constructed mechani-
cal models for their robots, the servos posed a chal-
lenge, both in terms of unknown dynamics and in
terms of how to connect such a model once available
to the mechanical parts. Much time was devoted to
solve this problem. The diagram layer for a me-
chanical model constructed by one of the student
groups is shown in Figure 15.

Figure 15. A Modelica model for a two-wheel robot
constructed by one of the student groups.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 610

Once a complete model for the robot had been
constructed, linearizations were computed to use in
the control design. In initial attempts, the linearized
models were of high order, in some cases due to
high-order servo models derived by means of black-
box systems identification. While the high-order
models did not impair the possibility to design con-
trollers, problems arose in the controller implementa-
tion phase where the availability of measurement
signals was limited. In order to solve this problem,
simpler models were derived, in particular by simpli-
fying the servo models, and increased attention was
given to the available sensors. In the end, the com-
plexity of the controllers was matched to the avail-
able measurement signals, but without compromising
the model-based approach.

The students experienced some problems with
specification of the mapping of controllers onto
hardware and the fixed-point code generation in
Dymola. Most of the problems were a result of the
beta-status of these features at the time of the course.
The problems where, however, quickly solved and
did not significantly hinder the students in their
work.

The reactions from the students were overly posi-
tive: “great to apply knowledge from previous
courses in practice” and “appreciated the opportu-
nity to work with an industrially relevant tool like
Dymola” were some of the comments. While the
students in some cases were a bit disappointed by
implementing only stabilization but not remote con-
trol the general opinion seems to be that they learnt a
lot. Not the least to put their theoretical knowledge
into a practical perspective.

9 Summary and conclusions

In this paper, we have reported an application of
Modelica in education. Modelica, Dymola, and in
particular Modelica_EmbeddedSystems have been
used in a master’s level course; Project in Automatic
Control. The experiences are very encouraging and
the tools and methods used in the course of 2009 will
be used also in the next year’s course.

References

[1] Cervin, A., Henriksson, D., Lincoln, B.,
Eker, J., Årzén, K-E.: How Does Control
Timing Affect Performance? Analysis and
Simulation of Timing Using Jitterbug and
TrueTime. IEEE Control Systems Magazine,
23:3 pp. 16-30, June 2003.

[2] Courses at Automatic Control:
http://www.control.lth.se/education/civing.ht
ml

[3] Pilato, C., Collins-Sussman, B., Fitzpatrick,
B. (2008): Version Control with Subversion.
O’Reilly Media, Inc.

[4] Trac webpage: http://trac.edgewall.org/
[5] Elmqvist, H., Otter, M., H.,Henriksson, D.,

Thiele, B.,Mattson, S.E.: Modelica for Em-
bedded Systems, Modelica Conference 2009.

[6] Lego Mindstorms webpage:
http://mindstorms.lego.com/

[7] NxtOSEK webpage:
http://lejos-osek.sourceforge.net/

[8] HiTechnic webpage:
http://www.hitechnic.com/

[9] Mindsensors webpage:
http://www.mindsensors.com/

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 611

Towards Unified System Modeling and Simulation with ModelicaML:
Modeling of Executable Behavior Using Graphical Notations

Wladimir Schamai1, Peter Fritzson2, Chris Paredis3, Adrian Pop2

1EADS Innovation Works, Hamburg, Germany
2PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
3Georgia Institute of Technology, Atlanta, USA

wladimir.schamai@eads.net, chris.paredis@me.gatech.edu, {petfr, adrpo}@ida.liu.se

Abstract

This paper is a further step towards application of the
Model-Based Systems Engineering (MBSE) paradigm,
using standardized, graphical, and executable system
modeling languages. It presents further development of
Modelica graphical Modeling Language (Modeli-
caML), a UML Profile for Modelica, which enables an
integrated modeling and simulation of system require-
ments and design (for systems including both hardware
and software). This approach combines the power of
the OMG UML/SysML standardized graphical notation
for system and software modeling, and the modeling
and simulation power of Modelica. It facilitates the
creation of executable system-specification and analy-
sis models that can simulate time-discrete (or event-
based) and time-continuous system behavior.
Keywords: Modelica, ModelicaML, UML, SysML,
graphical modeling, system requirements, system de-
sign.

1 Introduction

UML/SysML [2],[4] and Modelica [1] are object-
oriented modeling languages. Both provide means to
represent a system as objects and to describe its internal
structure and behavior. SysML is a UML profile for
systems modeling. It facilitates efficient capturing of
relevant system requirements, design, or test data by
means of graphical formalisms, crosscutting constructs
and views (diagrams) on the model-data. Modelica is
defined as a textual language with standardized graphi-
cal annotations for model icons, and is designed for
efficient simulation of system dynamic behavior.

1.1 Paper Structure

This paper first presents the motivation and previous
work done on the integration of UML/SysML and
Modelica, followed by a brief description of

UML/SysML, Modelica, and ModelicaML languages.
Section 4 summarizes the basic mapping between UML
and Modelica, which results in the ModelicaML pro-
file, and provides examples of applications. Section 5
discusses graphical notations for Modelica behavioral
concepts. Sections 6 and 7 discuss ModelicaML con-
cepts not present in Modelica. Sections 8, 9 and 10 ad-
dress the supporting modeling, code generation and
simulation environment.

2 Motivation

By integrating Modelica and UML/SysML the
UML/SysML's strength in graphical and descriptive
modeling is complemented with Modelica's formal ex-
ecutable modeling for analyses and trade studies. Vice
versa, Modelica will benefit from using the selected
subset of the UML/SysML graphical notation (visual
formalisms) for editing, reading and maintaining
Modelica models.

Graphical modeling, as promoted by the OMG [13],
promises to be more effective and efficient, regarding
editing, human reader perception of models, and main-
taining models compared to a traditional textual repre-
sentation. A unified, standardized graphical notation for
systems modeling and simulation will facilitate the
common understanding of models for parties involved
in the development of systems (i.e., system-engineers,
designers, and testers; software-developers, customers
or stakeholder).

Existing UML/SysML formalisms are typically
translated into (and limited to) the time-discrete or
event-based simulation of a system or software. This
limitation disappears when Modelica comes into play.
UML/SysML models will then be of a higher expres-
siveness and correctness, because they will become
executable while covering simulation of hardware and
software, with integrated continuous-time and event-
based or time-discrete behavior.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 612 DOI: 10.3384/ecp09430081

3 Background and Related Work

Some research work previously done has already iden-
tified the need for integrating UML/SysML and Mode-
lica, and has addressed integration issues to some ex-
tent. For example, [7] has identified the basic mapping
of the structural constructs of Modelica to SysML. It
also pointed out that the SysML Parametrics concept is
not sufficient for modeling the equation-based behavior
of a class. By contrast, [9] leverages the SysML Pa-
rametrics concept for the integration of continuous-time
behavior into SysML models. [8] presents a concept to
use SysML for integrating models of continuous-time
dynamic system behavior with SysML information
models representing systems engineering problems, and
provides rules for graph-based bidirectional transforma-
tion of SysML and Modelica models.

The main focus of this paper is the representation of
Modelica behavioral constructs using graphical nota-
tions and formalisms that are based on a subset of
UML, which can be translated into executable Mode-
lica code.

3.1 OMG Systems Modeling Language
(SysML)

SysML [4] is a UML profile1 and a general-purpose
systems modeling language that enables systems engi-
neers to create and manage models of engineered sys-
tems using graphical notations. SysML reuses a subset
of UML 2.1 [2] constructs and extends them by adding
new modeling elements and two new diagram types.
Through these extensions, SysML is capable of repre-
senting the specification, analysis, design, verification,
and validation of any engineered system.

MBSE promotes the usage of models as primary
engineering artifacts. However, textual requirements
are still the main vehicle for communicating and agree-
ing on system specification in a system development
process. SysML provides mechanisms to include tex-
tual requirements into models. In doing so, traceability
of textual requirements to design artifacts and test cases
is facilitated.

The logical behavior of systems is captured in
SysML through a combination of activity diagrams,
state machine diagrams, and/or interaction diagrams. In
addition, SysML includes Parametrics to support the
execution of constraint-based behavior such as con-
tinuous-time dynamics in terms of energy flow. How-
ever, the syntax and semantics of such behavioral de-
scriptions in Parametrics have been left unspecified to

1 UML profiles allow domain-specific extensions of UML
by means of stereotypes.

interoperate with other simulation and analysis model-
ing capabilities.

3.2 The Modelica Language

Modelica is an object-oriented equation-based model-
ing language primarily aimed at physical systems. The
model behavior is based on ordinary and differential
algebraic equation (OAE and DAE) systems combined
with discrete events, so-called hybrid DAEs. Such
models are ideally suited for representing physical be-
havior and the exchange of energy, signals, or other
continuous-time or discrete-time interactions between
system components.

Modelica models are similar in structure to
UML/SysML models in the sense that Modelica mod-
els consist of compositions of sub-models connected by
ports that represent energy flow (undirected) or signal
flow (directed). The models are acausal, equation-
based, and declarative. The Modelica language is de-
fined and maintained by the Modelica Association [1]
which publishes a formal specification but also pro-
vides an extensive Modelica Standard Library that in-
cludes a broad foundation of essential models covering
domains ranging from (analog and digital) electrical
systems, mechanical motion and thermal systems, to
block diagrams for control. Finally, it is worth noting
that there are several efforts within the Modelica com-
munity to develop open-source solvers, such as in the
OpenModelica project [12].

3.3 ModelicaML
This paper presents the further development of the

Modelica graphical Modeling Language (Modeli-
caML), a UML profile for Modelica. The main purpose
of ModelicaML is to enable an efficient and effective
way to create, read or understand, and maintain Mode-
lica models reusing notations that are also used for
software modeling. ModelicaML is defined as a
graphical notation that facilitates different views (com-
position, inheritance, behavior) on system models. It is
based on a subset of the OMG Unified Modeling Lan-
guage (UML) and reuses concepts from the OMG Sys-
tems Modeling Language (SysML). ModelicaML is
designed towards the generation of Modelica code from
graphical models. Since the ModelicaML profile is an
extension of the UML meta-model it can be used for
both: Modeling with standard UML and with SysML2.

UML/SysML provide the modeler with powerful
descriptive constructs at the expense of loosely defined

2 SysML itself is also a UML Profile. All stereotypes that
extend UML meta-classes are also applicable to the corre-
sponding SysML elements.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 613

semantics that are marked as “semantic variation
points” in the UML/SysML specifications. The inten-
tion of ModelicaML is to provide the modeler with
powerful executable constructs and precise execution
semantics that are based on the Modelica language.

Therefore, ModelicaML uses a limited set of the
UML, extends the UML meta-model (using the UML
profiling mechanism) with new constructs in order to
introduce missing Modelica concepts, and reuses con-
cepts from the SysML. However, like UML and
SysML, ModelicaML is only a graphical notation.
ModelicaML models are eventually translated into
Modelica code. Hence, the execution semantics are
defined by the Modelica language and ultimately by a
Modelica compiler that will translate the generated
Modelica code into an executable form.

4 Representing Modelica Structural
Constructs in ModelicaML

The class concept is the basic structural unit in Mode-
lica. Classes provide the structure for objects and con-
tain equations, which ultimately serves as the basis for
the executable simulation code. The most general kind
of class is “model”. Specialized categories of classes
such as “record”, “type”, “block”, “package”, “func-
tion” and “connector” have most of the properties of a
“model” but with restrictions and sometimes enhance-
ments.

In UML the “Class” is the main structural unit
which can have behavior. A non-behavioral concept is
the “DataType”.

The following table summarizes the mapping of the
structural Modelica constructs to UML. The details of
the associated properties of the Modelica constructs are
left out.

Table 1: Mapping of Modelica structural constructs to
UML

Modelica UML

package UML::Package

model, block UML::Class

connector, record, type UML::DataType

component of type connector UML::Port

variable, component UML::Property

extends relation UML::Generalization

connection clause UML::Connector

The mapping listed above is specified by [11] and
has been implemented as a UML profile in a the E-
clipse-based open-source tool Papyrus UML [10].
Modelica constructs are represented using stereotypes

(extensions of the UML meta-model) with required
properties (attributes) that are specific to Modelica.

It is subject to the current implementation work of
the ModelicaML editor to reflect the Modelica lan-
guage wording, so that the Modelica modeler will not
be forced to work with UML/SysML wording. Based
on this mapping it is also possible to import existing
Modelica models (or libraries) into ModelicaML mod-
els, to represent them using graphical notations and to
reuse them the same way as is done in Modelica tools.

The following figures present examples of tank sys-
tems inspired from [3], sections 12.2.3, 12.2.4 and
12.2.5. The only means to represent Modelica code
graphically is the Modelica connection diagram (see
the two tanks example on the Figure 1). A Connection
Diagram shows Modelica class components (typically
depicted as domain specific icons with connectors) of
the class and their interconnection (connect clauses) as
depicted in the figure below. The graphical notation is
defined by the Modelica modeler (e.g. the developer of
a library) and is not standardized by the language speci-
fication; it is usually specific to the domain of applica-
tion.

Figure 1. Two Tanks System example, [3] page 391.

The corresponding ModelicaML notation is based
on the UML Composite Diagram as illustrated in
Figure 2.

Figure 2. Example of ModelicaML notation
(connections)

By contrast, UML defines different types of dia-
grams, which enable different visual views on the
model data, such as inheritance, classes that are nested,
the composition of a class or interconnection of com-
ponents of a class or its defined behavior.

Moreover, the graphical notation is not specific to a
domain (although it is possible to include domain spe-
cific icons into the class compartment). It is abstracted

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 614

from the domain. Thanks to such an abstracted, unified
notation, engineers from different domains or disci-
plines will share a common understanding of the
model.

Figure 3. Example of ModelicaML notation (packages,
classes)

Figure 4. Example of ModelicaML notation (class,
components, asserts)

Figure 5. Example of ModelicaML notation
(inheritance)

In particular the inheritance (extension) graphical rep-
resentation (Figure 5) is useful if there are multiple lev-
els of inheritance.

5 Representing Modelica Behavioral
Constructs in ModelicaML

Modelica does not define any graphical notation for
representing the behavior of a class. Instead, the behav-
ior of a Modelica Class is specified by its equations or
algorithm statements (including all conditional con-
structs) which are provided as text.

In addition to basic equations or statements Mode-
lica defines conditional constructs, which are allowed
in both equation and algorithm sections, and can have
nested constructs or not.

A good match for representing conditional con-
structs in UML is the Activity Diagrams notation in-
cluding decision nodes and conditional control flow
constructs. The following figures present notations that
is used for representing Modelica conditional “if-
statement”. This notation is used for both “if/when”
statements and “if/when” equations. The execution se-
mantics of such Activity Diagrams are the same as for
the conditional statements or equations in Modelica.
The conditions are evaluated at each time instance. The
actions, presented on the diagram are not time-
consuming activities; their execution does not take any
simulation time.

Figure 6. Conditional “if-statement” in ModelicaML

Modelica is a specific language in the context of
UML/SysML. For the capturing code of specific lan-
guages UML provides opaque constructs which are
defined as “A behavior with implementation-specific
semantics.” (see [2], p.446). In UML, any opaque con-
struct has an attribute “language” (in our case it will be
set to “Modelica”) indicating how to interpret the code
that is entered into the further attribute “body”.

Since the UML is an object-oriented modeling lan-
guage (encapsulating data and behavior), the UML
meta-model defines that a classifier can have owned-
Behavior (0..*). A behavior in UML can be represented
by: State Machine, Activity, Interaction or OpaqueBe-
havior (see Figure 7).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 615

Figure 7. Extract from the UML meta model, from [2]
page 426.

A Modelica model can have (0..*) (from zero to any
number) of equation or algorithm sections, which cor-
responds to the ownedBehavior associations of a Clas-
sifier in UML. Conditional equation or algorithm state-
ments can be modeled using a subset of the UML Ac-
tivity Diagram as illustrated above. Alternatively, the
modeler may use the OpaqueBehavior for capturing
pure textual Modelica code as illustrated in the follow-
ing figure.

Figure 8. Modelica textual code in ModelicaML models

If conditional equations or algorithm statements are
modeled using UML Activity Diagrams, the actual
equations or statements are captured using UML
OpaqueAction as depicted in the following figure.

Figure 9. Modelica code in ModelicaML diagrams

[11] summarizes the mapping of the Modelica behav-
ioral constructs to the UML in detail.

6 ModelicaML Concepts Not Pro-
vided by Modelica

UML State Machines are typically used for modeling
the reactive (event-based) behavior of objects. In Mod-
elicaML the State Machines are used for modeling ex-
plicit states or modes of a system or its components.
The behavior defined by a State Machine is translated
into Modelica algorithm code. Following the principles
of a synchronous language the following restrictions
are imposed on the semantic of the State Machines as
used in ModelicaML:

 The system is at any time in a defined state (note,
that the state machines include composite and paral-
lel states, which means that it can be in multiple
sub-states at the same time)

 Events and transitions between states take no simu-
lation time. For that reason the effect actions on
transitions are not allowed.

 Any behavior that is executed when the state is en-
tered or exited takes no simulation time as well.

 Even though the system will stay in certain states
for a time the Do-behavior of a state is also not
time-consuming.

Consider the State Machine defined for the tank. De-
pending on the level of liquid in the tank (represented
by the variable “h”) we can define that the tank is
empty, partially filled or even in an overflow state.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 616

Figure 10. State Machine of the Tank

The next State Machine specifies the behavior of the
controller. It shows that only if the controller is in the
state “on” it will monitor or control the level of liquid
in tank depending on the sensor values received.

Figure 11. State Machine of the Controller

Any other behavior defined for a system can be de-
fined as being dependent on a specific explicit state of
the system. For example, the following shows how
conditional equations are modeled including the de-
pendence on the defined states. Depending on if the
controller is in the state ”controlling the level” it will
activate (the equation is not visible on the diagram, it
is: cOut.act = outCtr;) or deactivate (cOut.act = 0;) the
actuator signal.

Figure 12. Example of state-dependent equations

The generation of Modelica code from StateCharts
was already investigated previously, for example in [5].
Furthermore, [6] introduced the State Graph library for
Modelica, which has similar power compared to State-
Charts, although it has a slightly different graphical
notation. ModelicaML takes a similar approach. In ad-
dition to the limitation listed above, the current version
of the ModelicaML code generator does not support
compound transitions (transition which cross state hier-

archy borders), History, Fork/Joins, Entry/ExitPoints
and ConnectionPointReference. The limitation and
formal definition of the semantics for the State Ma-
chines and the Activity Diagrams (including time-
consuming activities) are subject to the current Modeli-
caML research work.

7 Further Concepts (under investiga-
tion by ModelicaML)

Inspired by the SysML, ModelicaML reuses the
concept of textual requirements within models. As in
the SysML it is possible to include textual requirements
into ModelicaML models and link requirements to
model artifacts. This enables traceability between tex-
tual requirements and design artifacts, and supports
impact analysis when requirements and/or the model
change. Figure 13 illustrates how textual requirements
appears graphically on diagrams in ModelicaML.

Figure 13. Example of textual requirements in
ModelicaML

In contrast to SysML, requirement is defined in Mode-
licaML as a sub-class of the UML Class which can
have behavior. It is possible to define properties and
behavior (e.g. assertions) for requirements. In doing so
it is possible to evaluate if a requirement is violated or
not during system simulation. Our current research in
this field aims at finding ways to formalize different
types of requirements and to find a flexible way to as-
sociate requirements with design models. The follow-
ing examples present some ideas.

Assume the following requirements to be imposed
on the two tanks system:

Req. 001: The level of liquid in a tank shall never ex-
ceed 80% of the tank-height.

Req. 002: The volume of tank1 shall be 0.8 m3.

The first requirement specifies a type: Tank in this
case. In order to establish the traceability between the
textual requirement and the design artifact the class
Tank is referenced from the requirement inside the
model using the requirement property “specifiesType”.
It implies that any instance of a tank must meet this
requirement. In contrast, the second requirement is a

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 617

design requirement defining the required volume of
tank 1. This requirement is imposed only on a particu-
lar instance of the type Tank. Therefore, the dot-
notation in the requirement property “specifiesObject”
is used to reference the respective instance. The “speci-
fies…” - relations are descriptive only. They are not
translated into Modelica code and do not impact the
simulation.

In order to be able to evaluate these requirements
during the system simulation requirements need to be
formalized. In the following one possible way to do so
is presented.

From the textual statement of the requirement 001
we can identify measurable properties such as: level
(current level in a tank), maxLevel (80 % max. allowed
level), tank_height (the height of a tank). Moreover, we
can define a property indicating if the requirement is
violated or not by evaluating: level > maxLevel *

tank_height. Consider the following state machine
specifying if the requirement 001 is violated or not. The
second requirement is modeled in a similar way; it is
not presented here.

Figure 14: Example of requirements behavior

The modeled requirements can now be instantiated and
their properties can be bound to the values within the
corresponding design model (TanksConnectedPI in that
case). In this example, the declarations for the
r001_tank2 (Figure 14) are:

 level = dm.tank1.h

 tank_height = dm.tank1.tank_height

Figure 15: Instantiated design model and associated
requirements

Note that requirement 001, which specifies the type
Tank, is instantiated two times (because there are two
tanks in the system).

Figure 16 shows the results of the evaluation (the
tank_height is 0.6m in this example). The requirement
001 evaluated for the tank2 (r001_tank2) was violated
two times during the simulation.

Figure 16: Example of requirements evaluation during
system simulation

Similar to the concept of textual requirements, the
modeller can define measures of effectiveness of mod-
els, which are used to record dedicated, measurable
properties of system models during simulations and can
compare them according to predefined metrics, for ex-
ample, in order to select the best potential design alter-
native.

Our future ModelicaML research aims at develop-
ing a flexible association of requirements to multiple
design alternatives in a way that requirement models
can be instantiated automatically together with the as-
sociated design models in order to be evaluated during
system simulation.

8 Modeling Support

Usually, when using a UML modeling tool, the model
elements can be created either directly in the model
browser (a tree-like representation of the classes, etc.)
or using diagrams. In both cases the model data is
stored in the model repository (see Figure 17).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 618

Figure 17: Example of a ModelicaML model browser

Diagrams only provide a view on a selected part of
the model data. Diagrams can be used only for model-
ing (i.e., capturing the data), and might be deleted3 after
the data is captured. In some cases the modeler may
decide to leave some diagrams for documentation or
communication purposes. In this case, the modeler will
need to select the data that should appear on dedicated
diagrams (depending on which data can be displayed
on a specific diagram type). An appropriate partitioning
of the model data into different diagram and diagram
types is essential in order to improve readability and to
support the modeler by automatic generation and layout
of diagrams. For example, the diagrams in figures
Figure 3, Figure 4, Figure 5, Figure 13 or Figure 15
would not need to be modeled (and arranged visually).
These can be generated from the model data.

This will prove rather difficult for the diagrams in
Figure 2, Figure 10, Figure 11 or Figure 14. Those dia-
grams will need to be modeled (arranged visually) by
the modeler. This is a good indicator to see if value is
added by spending time on a diagram.

3 Of course, any diagram can be recreated from the model
data.

9 Model Validation and Code Gen-
eration

The ModelicaML code generator that generates Mode-
lica code from the ModelicaML models is implemented
using the Acceleo Eclipse Plug-In [16], which follows
the MDA approach and the model-to-text recommenda-
tions of the OMG.

Presently, ModelicaML is implemented as a UML
Profile that can be used in any (Eclipse-based) UML2
tool. This way the modeler needs to first create a UML
element and then apply a stereotype, defined in the
ModelicaML profile, in order to represent a specific
concept or to introduce (or to specify) the semantics.
The advantage of this approach is: it allows creating or
reading ModelicaML models using any UML2 tool.
The disadvantage is: the modeling tool GUI does not
directly reflect the Modelica wording. The modeler
needs to have a basic knowledge of the UML in order
to know which stereotypes of the ModelicaML profile
should be applied to which UML elements. Moreover,
all limitations, constraints and possible inconsistencies
will have to be checked and resolved before the Mode-
lica code generation. Therefore, the ModelicaML code
generator includes a validator that checks the model
and informs the modeler about inconsistencies before
the Modelica code is generated.

10 Simulation Support (Using Open-
Modelica Environment)

In addition to the convenient way of simulating a Mod-
elica model from startTime to stopTime, in the frame of
the ModelicaML research and implementation the
OpenModelica Environment [12] was enhanced by in-
teraction simulation capabilities (similar to the Interac-
tion Library in Dymola [15] Modelica tool). It is possi-
ble to generate Modelica code directly from the Mode-
licaML models and to pass it to the OMC. A dedicated
simulation GUI has been implemented providing the
user with possibilities to interact with the Modelica
model (i.e., to change parameters at runtime) and to
observe the reaction of the system immediately on
plots. Moreover, any additional GUI (with domain spe-
cific animations or widgets) can be implemented and
connected to the simulation using the implemented
OMC interactive simulation interface. This feature will
support model debugging as well as the communicating
and discussing of the modeled system behavior to and
with any parties involved in the system development
process.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 619

11 Conclusion

This paper presents a step towards, and a proof of con-
cept for, a unified executable system modeling lan-
guage and environment using open-source UML mod-
eling (Papyrus UML) and simulation (OpenModelica)
tools.

One of our main future research activities in the
field of ModelicaML will be dedicated to developing
graphical notations for modeling any kind of equations
or statements, as well as other constructs (e.g. type- or
instance-modification) that are now captured using
strings. This will avoid the refactoring of models and
enable semantic analysis of the ModelicaML models.

In conclusion, UML/SysML and Modelica are com-
plementary languages supported by two active commu-
nities. By integrating UML/SysML and Modelica into
ModelicaML, we combine the very expressive, formal
language for differential algebraic equations and dis-
crete events of Modelica with the expressive
UML/SysML graphical notation for requirements,
structural decomposition, logical behavior, and corre-
sponding cross-cutting constructs.

In addition, the two communities are expected to
benefit from the exchange of multi-domain model li-
braries and the potential for improved and expanded
commercial and open-source tool support.

12 Acknowledgements

This work has been supported by EADS Innovation
Works, by Swedish Vinnova in the ITEA2 OPEN-
PROD project and by the Swedish Research Council
(VR).

References

[1] Modelica Association. Modelica: A Unified Ob-
ject-Oriented Language for Physical Systems
Modeling: Language Specification Version 3.0,
Sept 2007. www.modelica.org

[2] OMG. OMG Unified Modeling Language TM

(OMG UML). Superstructure Version 2.2, Feb-
ruary 2009.

[3] Fritzson P. Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

[4] OMG. OMG Systems Modeling Language
(OMG SysML™), Version 1.1, November 2008.

[5] Ferreira J. A. and Estima de Oliveira J. P., De-
partment of Mechanical Engineering, University
of Aveiro, 3810 Aveiro (PORTUGAL), Depart-
ment of Electronic Engineering, University of

Aveiro, 3810 Aveiro (PORTUGAL), MODEL-
LING HYBRID SYSTEMS USING STATE-
CHARTS AND MODELICA, J. A.

[6] M. Otter, K.-E. Arz´en, I. Dressler. StateGraph-A
Modelica Library for Hierarchical State Ma-
chines. DLR Oberpfaenhofen, Germany; Lund
Institute of Technology, Sweden. Proceedings of
the 4th International Modelica Conference, Ham-
burg. March 7-8, 200.

[7] Pop, A., and Akhvlediani, D., and Fritzson, P.
Towards Unified Systems Modeling with the
ModelicaML UML Profile. International Work-
shop on Equation-Based Object-Oriented Lan-
guages and Tools. Berlin, Germany, Linköping
University Electronic Press, 2007

[8] Peak, R., McGinnis, L., Paredis, C. Integrating
System Design with Simulation and Analysis Us-
ing SysML – Phase 1 Final Report. 2008

[9] Johnson, T. A. Integrating Models and Simula-
tions of Continuous Dynamic System Behavior
into SysML. M.S. Thesis, G.W. Wood-ruff
School of Mechanical Engineering, Georgia In-
stitute of Technology. Atlanta, GA. 2008

[10] Papyrus UML, www.papyrusuml.org

[11] Schamai W.. Modelica Modeling Language
(ModelicaML) A UML Profile for Modelica,
technical report 2009:5, EADS IW, Germany,
Linkoping University, Sweden, 2009

[12] The OpenModelica Project
www.ida.liu.se/labs/pelab/modelica/OpenModeli
ca.html

[13] Object Management Group (OMG).
www.omg.org

[14] Modelica Association. www.modelica.org

[15] Dymola (Dynamic Modeling Laboratory), Dy-
namism. www.dymola.com

[16] Acceleo, Eclipse Plug-In.
www.acceleo.org/pages/home/en

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 620

Appendix: Modelica Example Code

connector ActSignal "Signal to actuator for setting
valve position"

Real act;
end ActSignal;

connector ReadSignal "Reading fluid level"
Real val(unit = "m");

end ReadSignal;

connector LiquidFlow "Liquid flow at inlets or
outlets"

Real lflow(unit = "m3/s");
end LiquidFlow;

partial model BaseController
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference

level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

function limitValue
input Real pMin;
input Real pMax;
input Real p;
output Real pLim;

algorithm
pLim := if p>pMax then pMax

else if p<pMin then pMin
else p;

end limitValue;

model LiquidSource
LiquidFlow qOut;
parameter Real flowLevel = 0.02;

equation
qOut.lflow = if time > 150 then 3*flowLevel else

flowLevel;
end LiquidSource;

model PIcontinuousController
extends BaseController(K = 2, T = 10);
Real x "State variable of continuous PI

controller";
equation

der(x) = error/T;
outCtr = K*(error + x);

end PIcontinuousController;

model Tank
ReadSignal tSensor "Connector, sensor reading tank

level (m)";
ActSignal tActuator "Connector, actuator controlling

input flow";
LiquidFlow qIn "Connector, flow (m3/s) through input

valve";
LiquidFlow qOut "Connector, flow (m3/s) through

output valve";
parameter Real area(unit = "m2") = 0.5;
parameter Real flowGain(unit = "m2/s") = 0.05;
parameter Real minV= 0, maxV = 10; // Limits for

output valve flow
Real h(start = 0.0, unit = "m") "Tank level";

equation
assert(minV>=0,"minV - minimum Valve level must be

>= 0 ");
der(h) = (qIn.lflow - qOut.lflow)/area; // Mass

balance equation
qOut.lflow = limitValue(minV, maxV, -

flowGain*tActuator.act);
tSensor.val = h;

end Tank;

model TanksConnectedPI
LiquidSource source(flowLevel = 0.02);
Tank tank1(area = 1);
Tank tank2(area = 1.3);
PIcontinuousController piContinuous1(ref = 0.25);
PIcontinuousController piContinuous2(ref = 0.4);

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 621

Object-oriented simulation
of preemptive feedback process schedulers

Martina Maggio∗, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio 34/5, 20133 Milano, Italy
{maggio,leva}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Based on recent research, very simple discrete-time
control structures can be used to synthesise preemptive
process schedulers for multitasking systems within
a rigorous system-theoretical formalism. Doing so
virtually eliminates any heuristics, and allows for a
methodologically grounded analysis and assessment
of the achieved performances. This paper introduces a
Modelica library for the above purpose, at present still
under development, and illustrates its use with some
tests.

Keywords: Feedback scheduling; Multitasking sys-
tems; Preemptive systems.

1 Introduction

Many problems related to computing systems are be-
ing recognised and tackled as control problems [4]. A
notable example is that of process scheduling in multi-
tasking (not necessarily real-time) computing systems.
The role of the process scheduler in such systems is to
allocate the CPU usage to the running processes, so as
to guarantee properties like fairness, responsiveness,
and so forth [6]. Feedback-based techniques have been
applied to the scheduling problem [2, 3, 8] to deal with
uncertainty and disturbances, such as the behaviour of
the processes, and the availability of the resources they
may require.

In virtually the totality of the feedback schedul-
ing literature, however, the idea is concisely to “close
some loop around an existing scheduler”. Since the ob-
ject to be controlled (the “plant” to stick to the standard
terminology) includes said scheduler, in the above
context the term “actuators” takes the specific meaning
of “having the feedback controller assign the values of
some scheduling parameters” like queue lengths, pri-
ority variations, and so on, while the term “sensors”

refers to measurements of the required properties, such
as the processes’ CPU utilisation [1].

Moreover, existing schedulers are conceived by
their designers in terms of algorithms and data struc-
tures (i.e., the way computer scientists think of the
word “model”) and not of equations (i.e., the way the
same word is thought of by control scientists). Mod-
eling those schedulers is thus generally complex, but
above all it is highly unnatural with formalisms that
allow for powerful and simple analysis and synthesis
tools. Some attempts were made to devise a model for
such a scheduler (as well as other hardware and soft-
ware components) in Modelica [9]; that work however
does not include feedback policies.

This work is part of a wider research that takes com-
pletely different an attitude. Instead of acting on the
scheduler already present in the considered system,
the idea here is to replace that scheduler completely.
And correspondingly, instead of writing a model to re-
flect the scheduling algorithm, the modus operandi is
to have that algorithm emerge from the digital realisa-
tion of a controller model—a perspective shift indeed.

In other words, in this research schedulers are de-
signed exactly in the same way as a feedback con-
troller is synthesised, so as to allow expressing the
specifications by means of the usual concepts of set
point tracking, load disturbance rejection, and so on.
Thanks to the adopted formalism—that of discrete-
time linear dynamic systems, as will be briefly justi-
fied later on—the above concepts can be given a quan-
titative meaning, which is a novelty of this research
with respect to other approaches to the same problem,
where qualitativeness and heuristics play a central (al-
beit often tedious for the designer) role.

The aim of this manuscript, within the mentioned
research, is to present a small Modelica library (at
present in its first version and under continuous devel-
opment) aimed at helping the designer of a scheduling

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 622 DOI: 10.3384/ecp09430033

policy assess the behaviour of said policy by means of
simulations representing the on line system behaviour
under suitably chosen load conditions. This is another
peculiarity of this work, since the great majority of the
available literature concentrates on off line schedula-
bility analysis issues [5].

2 The modelling formalism

To set up a process scheduler in the same way as
a feedback regulator is designed it is first necessary
to select a control-theoretical formalism that admits
a clear separation between the “plant” and the “con-
troller”. The necessity of such a separation de facto
rules out the use of discrete-event models. In fact, in
the discrete-event control context, defining an open-
loop process model almost inherently calls for spec-
ifying the desired behaviour in terms of constraints
only—think for example of the supervisory control
framework—while if said behaviour is more naturally
expressed (also) as a desired sequence of events, then
only top/down approaches (where the model of the
plant and the controller live jointly right from the
beginning, however) allow to guarantee some formal
property for the closed-loop system.

In addition, in the formalism to be chosen here, the
modelled objects have to admit a direct, non ambigu-
ous realisation as algorithms. This is a further ar-
gument to avoid discrete-event frameworks such as
queue networks and Petri nets for our purposes (a
promising work on the matter however is [7]), because
their inherently asynchronous nature requires to spec-
ify “something else” in order to turn a model into an
algorithm—think, for example, of evolution rules or
similar ideas.

The next step is to define a correct partition between
the plant and the controller. The matter is addressed,
in this work, in the context of a single-processor sys-
tem, and of negligible context switch durations; both
hypotheses can be relaxed at an acceptable cost, but
keeping them in for now eases the treatise. In this
context, a physical separation between controller and
plant is extremely cumbersome to figure out, but a
time-based partition between them is on the contrary
very natural. In fact, the (one) CPU is either execut-
ing some of the scheduled processes, or the scheduling
algorithm. The complete system can thus be viewed
as a discrete-time (not sampled-signals, however) one,
with a time index being related to the scheduler inter-
ventions.

It is now necessary to state what is to be meant for

(the model of) “the plant in open loop”. In the classical
applications of the control theory, think for example of
the process or motion control domains, doing so is triv-
ial (at least conceptually). The plant (model) is a sys-
tem of differential and/or algebraic equations, stem-
ming essentially from the underlying physics, where
the inputs (the controller actions) are thought of as ex-
ogenous signals. Here, the time-based model partition
comes into play: the model of the plant in open loop
is a discrete-time system that receives as inputs the re-
sults of the “controller” algorithm execution, and re-
turns the results of the “plant” algorithm execution.

The last step, and another peculiarity of the cho-
sen modelling formalism, is that anything else but the
scheduler action is treated here as an exogenous dis-
turbance. This may appear to be a limitation, since for
example a resource request is not exogenous at all for
the computing system composed of the running pro-
cesses (meaning that it can be somehow predicted, for
example). However, although not exogenous for the
running processes (the plant), such a fact is exogenous
for the scheduler (the controller). Adopting such an
attitude, we can take profit of the extremely power-
ful idea of “disturbance” as thought of in the control
theory, i.e., as one of the fundamental reasons for the
necessity of feedback.

Consider a single-processor multitasking system
with a preemptive scheduler; let N be the number of
processes to schedule, that we assume for now con-
stant (some words on the matter will be spent later
on). Let the column vectors τp(k) ∈ℜN , ρp(k) ∈ℜN ,
b(k) ∈ℜn(k) and δb(k) ∈ℜn(k), 1≤ n(k)≤ N ∀k rep-
resent, respectively,

• the CPU times allocated to the processes in the
beginning k-th scheduling round, thus defining
(as anticipated) the meaning of k,

• the times to completion at the beginning of the k-
th scheduling round for the processes that have
a duration assigned (elements corresponding to
processes without an assigned duration will be
+∞, therefore allowing for the presence of both
batch processes and interactive ones),

• the bursts assigned by the scheduler to the pro-
cesses at the k-th scheduling round,

• the disturbances possibly acting on the schedul-
ing action during the k-th scheduling round,

where n(k) is the number of processes that the sched-
uler considers at each round (traditionally constant and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 623

equal to one—an example of aprioristic constraint that
in principle can be relaxed). Denoting by t the total
time actually elapsed from the system initialisation,
the simplest plant model one can conceive is then

 τp(k) = Sσ b(k−1)+δb(k−1)
t(k) = t(k−1)+ r1τp(k−1)

ρp(k) = max(ρp(k−1)−Sσ b(k−1)−δb(k−1), 0)
(1)

where r1 is a row vector of length N with unit ele-
ments, and Sσ ∈ Σ a N× n(k) switching matrix with
elements equal to 0 or 1 and only one 1 per column,
assigning the elements of b(k) to the correct processes.
Notice that, being n(k) bounded, set Σ is finite for any
given N.

As for variations of the process pool, a newly arriv-
ing one simply requires to increase N by one, add one
zero at the end of τp and one duration (or one +∞) at
the end of ρp, and add one row to Sσ . Incidentally,
the row position orders the processes by arrival time,
which is of interest for some existing and already used
scheduling policies. Similarly, altering the “grouping”
of the process pool in sub-pools, for example in view
of a multilevel scheduling, means acting on n(k).

In synthesis, under the sole limitation (to be possi-
bly relaxed in the future) that n be constant, adding
(and obviously removing) processes from the pool
simply means formulating a new model in the form
(1), that is initialised from the last state of the previous
one in a straightforward way. Since process arrivals or
terminations are events that occur on a time scale much
longer than that of the scheduling task, we concentrate
in this manuscript on the constant pool case.

Notice that the first two equations in (1) form a
linear, switching discrete-time dynamic system, apart
from the obvious input saturation constraint given by
the impossibility of negative bursts. The third one
is conversely nonlinear, but given the role of distur-
bances in the adopted framework, a process reaching
termination before exhausting its burst is simply mod-
elled as a negative disturbance element on that burst—
then the process is of course removed from the pool,
see above. Recalling that the relevant fact is here
that disturbances are exogenous to the scheduler only,
one can therefore safely treat the model as the linear
switching one τp(k) = Sσ b(k−1)+δb(k−1)

t(k) = t(k−1)+ r1τp(k−1)
ρp(k) = ρp(k−1)−Sσ b(k−1)−δb(k−1)

(2)

apart from the mentioned saturation issue.

3 Schedulers as controllers

3.1 Classical scheduling policies

If conditions are imposed to n and/or Sσ , some very
common existing scheduling policies are represented
by the chosen formalism entirely. For example

• n = 1 and a N-periodic Sσ produce all the pos-
sible Round Robin (RR) policies having the
(scalar) b(k) as the only control input, and ob-
viously the pure round robin if b(k) is kept con-
stant,

• n = 1 and a Sσ chosen so as to assign the CPU
to the process with the minimum row index and
a ρp greater than zero produces the First Come
First Served (FCFS) policy,

• n = 1 and a Sσ giving control to the process with
the minimum ρp yields the Shortest Remaining
Time First (SRTF) policy,

• n = 1 and a Sσ that switches according to the in-
creasing order of the initial ρp vector produces
the Shortest Job First (SJF) policy (notice that this
is the same as SRTF if no change to the process
pool occurs).

It is important to observe that in the list above the
classical “actuators” of the previous works for the
mentioned policies are evidenced, but here as entities
in a neat system-theoretical framework. Also the state
variables of the scheduler, that in the previous works
is part of the plant, are clearly defined (examples are
that required to switch Sσ in a periodic manner, or to
store the initial ρp). The chosen formalism hence al-
lows to include also rules that appear very far from it,
e.g. owing to the presence of queues. A notable ex-
ample is the so called selfish round robin (SRR), that
is represented by n = 1 and Sσ depending on a con-
troller state variable representing the time spent by the
corresponding process waiting for the CPU.

However, it is worth further stressing that in evi-
dencing the actuators, constraints had to be imposed
on the “pure” plant model, therefore including in that
model something that is actually control, not plant.
Moreover, the resulting “plant including the sched-
uler” (model) is not only switching but apparently non-
linear, which is not true for (2) (we mention the in-
put saturation issue here for the last time, as there are
plenty of methods to deal with it while reasoning for
the control synthesis in a linear context).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 624

Removing the above mentioned constraints yields
therefore two benefits. First, it is a generalisation of
current scheduling policies, in a sense that is now char-
acterised. Second, it does not put into the plant model
any element that is de facto control, and as a result
leads to a plant model that can be treated as linear—
and in any case, regarding also possible futire exten-
sions, is in nature much simpler than any other one
aiming at represent also partd of the control.

3.2 New policies within the same framework

So far, it was shown that the simple modelling frame-
work adopted here can represent classical, well known
scheduling policies as variations (better, restrictions
or specialisations) of a single discrete-time dynamic
system. The question is then immediately what can
be done if different specialisations are imposed to the
general model. In the opinion of the authors, such an
exploration opens a way toward the design of sched-
ulers as dynamic systems, the mentioned “special-
isations” qualifying (sub)classes of schedulers in a
system-theoretical (not algorithmic) taxonomy.

To illustrate the idea at the present state of the re-
search, two control strategies will be explored in the
following, that use a specialisation of the model (2)
different from the ones proposed above to replicate ex-
isting policies, and by the way introduce control struc-
tures that are widely used and very well assessed in
other contexts than scheduling.

Let τr(k) ∈ ℜ represent the actual duration of the
k-th round and let the model not take into account the
CPU time required by each process, dealing with pro-
cess termination and insertion with re-initialisation as
will be explained later on. Furthermore, let the Sσ

switching signal be an ordered sequence that starts
from the first process and proceeds to last one, and
consistently be n = N. To deal with the possibility of
non activating a process (e.g. because the scheduler
knows that it has not all the needed resources to exe-
cute) the given burst can be zero. In other words, let
the “specialisation” affect only the switching signal,
so that the result be an LTI discrete-time system that
can be controlled by an LTI control structure designed
with well assessed methods—maybe the most interest-
ing class of schedulers to study, for sure the simplest
from the control-theoretical standpoint. Doing so the
model becomes

τp(k) = b(k−1)+δb(k−1)
τr(k) = r1τp(k−1)
t(k) = t(k−1)+ r1τp(k−1)

(3)

and some remarks are in order.

• Model (3) is linear and time-invariant. Of course
negative bursts are not allowed, but that is sim-
ply a matter of input saturation, and can be tack-
led with a number of techniques. Crudely speak-
ing, the control literature has been managing con-
troller design in that way with linear models for
decades, so it can be assumed that there is no need
here for anything more complex.

• Similarly, each b + δb element cannot be nega-
tive. This rigorously means that the disturbance
is bounded in a time-varying manner, which is
however irrelevant for the controller design as far
as the disturbance is taken as totally exogenous
(i.e., assuming that b + δb could in principle be
negative one considers a set of disturbances wider
than the real one, to the apparent validity confir-
mation of the devised solutions).

• The scheduler is acting not at each process activa-
tion, but only once per round. Clearly some b el-
ements can be zero, meaning that not all the pro-
cess will actually run. Since the proposed scheme
allows to control the round duration, system re-
sponsiveness issues are implicitly addressed.

The proposed control scheme has the nested loop
structure of figure 1. Let τ◦r be the required scheduling
round duration, and let

θ
◦
p ∈ℜ

N , θ
◦
p,i ≥ 0,

N

∑
i=1

θ
◦
p,i = 1 (4)

be the vector containing the required CPU time frac-
tions to be allotted to each process.

First, consider the closed-loop system (CL1 in figure
1) having as set point the desired CPU times consumed
by each process in the current round, i.e., τ◦p(k), and as
controlled variable the CPU times actually consumed
in the same round, i.e., τp(k); the control variable is
the burst vector b(k), while δb(k) is a (vector) load
disturbance.

By choosing Rp as a diagonal integral regulator with
gain kpi, i.e., ARp = CRp = IN , BRp = kpiIN , DRP =
0N×N , one makes CL1 a (diagonal) system the 2N
eigenvalues of which are N times the couple 0.5∓√

0.25− kpi. More control on those eigenvalues could
be achieved with slightly more complex a structure
for Rp, but the choice adopted here is adequate for
this work, where the scheduling algorithm complexity
needs keeping to a minimum.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 625

Figure 1: The proposed scheme.

If τ◦p were chosen as θ ◦pτ◦r , then CL1 would con-
trol both the CPU distribution and the round duration,
but there would be two problems. First, the dynam-
ics of those two controls would be ruled by the same
eigenvalues, which can be inadequate in some cases:
for example, one may want the CPU distribution to
move smoothly from one situation to another, but the
round duration to respond very quickly to its set point,
e.g. because a change of that set point means that a
greater system responsiveness is needed immediately.
Second, and more serious, should some process be
blocked, the round duration set point could not be at-
tained.

Consider therefore the system denoted in figure 1 by
S2. Its dynamic matrix is

AS2 =
[

0N×N CRp

θ ◦pr1− IN ARp

]
(5)

With the chosen Rp, the 2N eigenvalues of (5) are
0 and 1 (with multiplicity 1 each) and N−1 times the
couple 0.5∓

√
0.25− kpi. Notice that said eigenvalues

do not depend on θ ◦p . The SISO system with input
bc and output τr seen by Rr in figure 1 has thus the
transfer function

Tr(z)
Bc(z)

=
kpi

z(z−1)
(6)

and in the following two choices are proposed for Rr.
The overall system (CL2 in figure 1) has the dy-

namic matrix

ACL2 =

DRp (θ◦p (r1−DRr r1)− IN) CRp DRp θ◦pCRr
BRp (θ◦p (r1−DRr r1)− IN) ARp BRp θ◦pCRr

−BRr r1 0N×N ARr

 (7)

The simplest idea is to choose Rr(z) as a purely pro-
portional controller, i.e., Rr(z) = krp. In this case the
2N eigenvalues of ACL2 are those of AS2 with couple
(0,1) replaced by 0.5∓

√
0.25− kpikrp. This choice

will be termed the “I+P” one from now on, with evi-
dent meaning.

In the case of a constant required CPU distribution,
the I+P scheme can assign the dynamics of τp and τr

in a (partially) independent manner, having Rr act by
means of an additive correction bc to the round CPU
times set point as computed based on the actual round
duration. If, conversely, a variable CPU distribution is
to be considered, the same scheme can be viewed as a
linear switching system with switch signal θ ◦p . How-
ever, its eigenvalues do not depend on the switching
signal, and in force of well known results there surely
exists a finite dwell time ensuring the exponential sta-
bility of the scheme as switching system.

The I+P scheme is apparently the computationally
lightest choice, allows for the simple stability state-
ment above, also permits to give the CPU distribution
and the round duration controls different dynamics,
but still has the (only) drawback that the round dura-
tion control is lost if a process stays blocked (the fol-
lowing examples illustrate the fact). In this scheme the
closed-loop transfer function from τ◦r to τr is

Tr(z)
T ◦r (z)

=
kpikrp

z2− z+ kpikrp
(8)

thus allowing for a simple choice of the parameters
(see the examples later on).

If one cannot guarantee that no persistent process
blockings arise, it is advisable to select for Rr a PI
structure, i.e., Rr(z) = krr(z− zrr)/(z−1), that can re-
cover such a situation, and leads to what will be termed
the “I+PI” scheme. In this case the 2N +1 eigenvalues
of CL2 have a long expression omitted for brevity, but
still do not depend on the switching signal if a variable
required CPU distribution has to be assumed. Hence,
the same stability considerations above apply. In the
I+PI case the closed-loop transfer function from τ◦r to
τr is

Tr(z)
T ◦r (z)

=
kpikrr(z− zrr)

z3−2z2 +(1+ kpikrr)z− kpikrrzrr
(9)

and the parameter choice is just slightly more articu-
lated (again, refer to the following examples).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 626

Figure 2: Activation sequence, in the first figure the round robin sequence is presented, in the second one the
I+P and in the third one the I+PI.

4 The SkedSim library

The objects to be modelled are the process, the pool
of processes, the scheduler, and the complete system
(the world in our terminology). Since dynamic allo-
cation of objects is not permitted, the pool will simply
be a vector of processes, i.e., a fixed number of pro-
cesses possibly being scheduled is allocated, and each
of them can be in the scheduling round or not at any
given instant.

The process does not de facto accomplish anything
for the purpose of this research, that is centered on
the scheduler’s operation; therefore the process is sim-
ply a time delay realised by a convenient use of the
modelica when clause, taking control of the CPU for a
time equal to the allotted burst plus a certain variabil-
ity, and counting the elapsed time by trivially setting
the derivative of a convenient continuous variable to
one or zero depending on the process having or not the
CPU.

The scheduler is in fact the object determining
how the switching signal is managed, hence the place
where different “actuation” policies are realised. In
this manuscript a “round robin” scheduler suffices for
all the presented policies, the difference between the
standard round robin and the I+P or I+PI schemes re-
siding only in the way the bursts are computed at the
beginning of each round.

Thus, each type of scheduler can further specialise
its operation by calling a particular scheduling func-
tion, that implements the specific way of determining

the quantities needed to turn an actuation policy into
a complete scheduling mechanism. Such a partition
between “actuation” and scheduling is consistent with
the proposed way of classifying the policies, which
in turn corresponds to the system-theoretical idea of
viewing them as particular cases of a switching signal,
the taxonomy residing precisely in how the switching
signal is managed.

Given all the above, the library organisation is very
simple and intuitive. To avoid a lengthy treatise, in the
following an excerpt of the process modelica code is
reported.

model Process
ProcessPort p; // Process/scheduler I/F
input Boolean blocked; // Variable for blockings
discrete Real startTime; // Last activation time
Real gCpuPerc; // Global cpu percentage
Real gCpuTime; // Global cpu time
Real rCpuTime; // Last round cpu time

algorithm
when edge(p.activation) then

p.running := true;
startTime := time;
reinit(rCpuTime, 0);

end when;
when time>=startTime+p.burst or

p.burst<=0 or (pre(p.running) and p.blocked)
then
p.running := false;

end when;
equation

blocked = p.blocked;
gCpuPerc = if time<=0 then 0 else gCpuTime/time;
der(gCpuTime) = if p.running then 1 else 0;
der(rCpuTime) = if p.running then 1 else 0;
p.gCpuTime = gCpuTime;
p.rCpuTime = rCpuTime;

end Process;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 627

Figure 3: Running time for processes 1, 3, 5 and 7, in the first figure the round robin sequence is presented, in
the second one the I+P and in the third one the I+PI.

Moreover,the relevant (algorithm and equation) sec-
tion of the scheduler is shown below.

algorithm
when edge(not_running[previous]) or initial() then

activation[previous]:=false;
if previous==nProcesses then

bursts := Schedulers.SchedulerFunctions
.IplusP
(nProcesses,SP_Tr,alfa,Tp,bursts);

// ...or any other scheduling function
previous := 1;
roundDuration := time - startTime;
startTime := time;
for i in 1:nProcesses loop

CPUPercPerRound[i]:=if roundDuration<=0
then 0
else Tp[i]/roundDuration;

end for;
else

previous:=previous+1;
end if;
while bursts[previous]<=0 loop

previous:=previous+1;
if previous>nProcesses then

bursts := Schedulers.SchedulerFunctions
.IplusP
(nProcesses,SP_Tr,alfa,Tp,bursts);

// ...same as above
previous:=1;
roundDuration := time - startTime;
startTime := time;
for i in 1:nProcesses loop

CPUPercPerRound[i]:=if roundDuration<=0
then 0
else Tp[i]/roundDuration;

end for;
end if;

end while;
activation[previous]:=true;
end when;

equation

for i in 1:nProcesses loop
not_running[i] = not pre(running[i]);

end for;

As can be seen, the library organisation and the
meaning of the various models are consistent with
the specific way of addressing the scheduling prob-
lem proposed in this research, and take profit of the
possibility (typical of modelica) of mixing algorith-
mic modeling and asynchronous events. The SkedSim
library will be made available to the scientific com-
munity under the terms of the GPL license as soon as
possible.

5 Simulation examples

This section presents some simulation examples,
comparing a standard round robin policy with the
two proposed feedback ones, that share the actua-
tion scheme but encompass a more powerful burst
computation mechanism. The simulations are con-
ducted with ten running processes. Processes 1, 2
and 5 block from time 10.5 to time 30.5. The
round duration set point is 2 for the I+P and I+PI
schemes (there is no equivalent in the standard, open-
loop one) while the desired percentage distribution
is {0.1,0.05,0.05,0.2,0.01,0.09,0.2,0.2,0.05,0.05}.
The quantum for the round robin scheduling is 1 time
unit.

Figure 2 shows the activation sequence (i.e., the or-
der in which the scheduler makes the processes run).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 628

Figure 4: CPU time allotted to processes 1, 3, 5 and 7, in the first figure the round robin sequence is presented,
in the second one the I+P and in the third one the I+PI.

Figure 5: CPU percentages to processes 1, 3, 5 and 7, in the first figure the I+P sequence is presented, in the
second one the I+PI.

Figure 3 shows the running signal taken from the pro-
cesses. One can see that in the round robin example
the first process was activated at time 10 with a quan-
tum of a time unit but at time 10.5 blocks, releasing
therefore the CPU, that is given to process three (the
second is blocked too). In figure 4 the times allotted to
processes 1, 3, 5 and 7 is shown; the comparison be-
tween the round robin and the feedback policies is self-
explanatory (the feedback policies allows for a “con-
trolled” distribution, while in the round robin policy
no adaptation is possible).

Finally, figures 5 and 6 depict the CPU percent-
age distribution. The first one shows the distribution
over time, while the second one reports the distribution
within the current round. It can be seen that even if the
percentage per round when the processes are blocked
is zero, in the long run the gap is filled thanks to the
feedback strategy.

6 Conclusions and future work

In this work, very simple discrete-time control struc-
tures were used to synthesise preemptive process
schedulers for multitasking systems within a rigorous
system-theoretical formalism. In particular, in this
paper a Modelica library for the above purpose, at
present still under development, was presented, and its
use was illustrated with some tests.

Based on the work done until now, the Modelica
language has shown some advantages when it comes
to modelling computing systems. First of all, it al-
lows to integrate discrete dynamics and events (like
signals from the system components) with continu-
ous evolution (i.e., the processes’ execution seen in
the real world time). Along the same line, thinking
of future extensions, not only scheduling-related con-
trol strategies can be seamlessly implemented, but it is
also possible to test their validity in the case they have

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 629

Figure 6: CPU percentages per round to processes 1, 3, 5 and 7, in the first figure the I+P sequence is presented,
in the second one the I+PI.

to be used for realising control systems connected to
the physical world (as is typically the case for embed-
ded real-time ones, a field that has been devoted much
research but is in some sense lateral with respect to this
work).

However, the present research has also highlighted
some limitations of the Modelica use for the chosen
purpose. For example, it would be of great interest
in this work to investigate the scheduling algorithm
and time performance, analysing how much time is
spent for the scheduler execution, and therefore hav-
ing a clue of the expectable system performances. For
well known motivations the Modelica language is not
conceived for such a kind of analysis, however.

For the reasons summarised above, future directions
for the presented research still need some reasoning
and discussion to be envisaged clearly, but given the
positive remarks above, other attempts will certainly
be done to overcome the mentioned limitations and
employ Modelica for the purpose sketched out herein.

References

[1] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang,
and Y. Lu. Feedback performance control in soft-
ware services. IEEE Control Systems Magazine,
23, 2003.

[2] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and
Jonathan Walpole. Analysis of a reservation-based
feedback scheduler. In Real-Time Systems Sympo-
sium, 2002. RTSS 2002. 23rd IEEE, pages 71–80,
2002.

[3] Ashvin Goel, Molly H. Shor, Jonathan Walpole,
David Steere, and Calton Pu. Using feedback con-
trol for a network and cpu resource management
application. In Proceedings of the 2001 American
Control Conference, volume 4, pages 2974–2980,
Arlington, VA, USA, 2001.

[4] J.L. Hellerstein, Y. Diao, S. Parekh, and D.M.
Tilbury. Feedback Control of Computing Systems.
Wiley, September 2004.

[5] J.C. Palencia and M. González Harbour. Schedu-
lability analysis for tasks with static and dynamic
offsets. In In Proceedings of the 19th IEEE Real-
Time Systems Symposium, pages 26–37, 1998.

[6] M. Pinedo. Scheduling Theory, Algorithms, and
Systems. Springer, third edition edition, July 2008.

[7] O.H. Roux and A.M. Déplanche. A t-time petri net
extension for real time-task scheduling modeling.
European Journal of Automation, 36, 2002.

[8] David C. Steere, Molly H. Shor, Ashvin Goel,
Jonathan Walpole, and Calton Pu. Control and
modeling issues in computer operating systems:
resource management for real-rate computer ap-
plications. In Proceedings of the 39th IEEE Con-
ference on Decision and Control, volume 3, pages
2212–2221, Sydney, NSW, Australia, 2000.

[9] F. Wagner, L. Liu, and G. Frey. Simulation of dis-
tributed automation systems in modelica. In Pro-
ceedings of the 6th International Modelica Con-
ference, Bielefeld, Germany, 2008.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 630

Building Modelica Tools using the Modelica SDK

Peter Harman Michael Tiller
deltatheta uk ltd. Emmeskay Inc.

The Technocentre, Puma Way 47119 Five Mile Road
Coventry, CV1 2TT, UK Plymouth, MI 48170, USA
peter.harman@deltatheta.com mtiller@emmeskay.com

Abstract

Modelica provides numerous opportunities for the
engineering industry to promote the reuse and ex-
change of simulation models by providing a clear
standard, open libraries and metadata support via
annotations. This opportunity is often underutilized
because full Modelica support could not be easily
incorporated into software tools without requiring
considerable resources.

This paper presents a software development kit, the
Modelica SDK, designed specifically to assist devel-
opers with integrating Modelica support into any
software tool. The philosophy behind this library is
to provide maximum extensibility to power users so
they can fully utilize the features of the Modelica
language and integrate them into their engineering
processes for maximum benefit.

The mechanisms provided for a developer to inte-
grate or extend the functionality of the tool into their
own software are discussed in detail and examples of
the extension points available and their uses are
shown.

Keywords: Modelica translator, Java, SDK, API

1 Introduction

This paper presents Modelica SDK, an implementa-
tion of Modelica available as a Java library. The
Modelica SDK is suitable for adding Modelica sup-
port to existing tools as well as developing new
Modelica tools and utilities.

Similar tools have been developed with specific
goals, such as for style checking and version control
[1] as well as translating models for us in an optimi-
zation framework [2]. Open source tools [2,3,4] do
exist which allow the developer to modify the code
to build custom tools. However this not only re-
quires detailed understanding of the underlying soft-
ware architecture in order to make such modifica-
tions but the licensing terms may also be incompati-

ble with the intended purpose of the tool. The aim of
the Modelica SDK is to cover all these use cases and
allow a broad range of applications, without burden-
ing the developer with creating and maintaining their
own implementation of Modelica and/or hindering
the developer with undesirable licensing terms.

2 Applications

The aim of this library is to enable the use of Mod-
elica in a wide range of tools and processes and, as
such, it is not possible to cover all the possible uses.
Instead, we will focus on a number of areas where
Modelica could be used in existing tools or where
the capabilities of Modelica can be extended using
new tools.

2.1 Custom Simulation Platforms

Modelica is first and foremost a modeling language
not a simulation platform. Depending on the in-
tended application, the simulation requirements may
vary greatly.

For example, in a hardware-in-the-loop (HiL) appli-
cation it is reasonable to sacrifice a certain degree of
accuracy in order to achieve real-time performance
as compared to desktop simulation. On the other
hand, for detailed design studies, the use of variable
time step integrators and careful event handling may
dictate greater focus on accuracy at the expense of
computational performance. Furthermore, depend-
ing on the simulation platform (e.g. HiL hardware,
grid computing) I/O requirements may vary (e.g. file
system access, IPC support). Finally, domain specif-
ic simulation tools, such as engine simulation tools,
multi-body tools and/or control system design tools,
often have an API for integration of user defined
models. In such cases, it may be necessary for the
code generation process to support third-party code
provided in C, C++, Fortran or some other custom
format.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 631 DOI: 10.3384/ecp09430046

For this reason, the Modelica SDK library exposes a
code generation API which allows the developer
great flexibility in controlling the code generation
process. In this way, the developer can choose to
target a wide variety of applications (e.g. Hardware-
in-the-loop, desktop simulation), control how I/O
and integration of third party code is handled and
choose in what particular programming language the
target code will be written (e.g. C, assembly, Java).

Some code generation schemes use templates or an
intermediate form [5] to provide such flexibility.
However these require an extra stage of parsing and
also may expose code the developer wishes to re-
main concealed. For this reason, the Modelica SDK
provides a set of Java interfaces allowing developers
to implement their own code generator (or subclass
the SDK provided ones) to suit their specific needs.

2.2 Parameter Management

It is often desirable to store parameters externally to
a model, either for the convenience of editing in
spreadsheets or other tools, or simply to comply with
company policies requiring the use of standardized
formats or a central database [6, 7]. By translating
these to and from Modelica records, or providing a
method of loading records from this data as de-
scribed with the path and file system package later,
the data can be referenced directly from within Mod-
elica editors by using Modelica dot-notation.

2.3 Parameter Studies and Optimization

Whether using a dedicated optimization package or a
spreadsheet, the first step of a parameter study or
optimization with a Modelica model is to identify the
parameters in the model, their default values and
units, and their maximum and minimum values if
defined. This can be obtained using the “query”
package described later.

Whether a calculated variable depends on a particu-
lar parameter is often determined by running mul-
tiple simulations in a sensitivity study. However,
using the Modelica SDK this information can be de-
termined easily from just the flattened system of eq-
uations using API calls (described later in the paper)
rather than relying on a brute force numerical ap-
proach.

Sensitivities may also be handled during a single
simulation with modified ODE solvers which require
additional code to be generated by customizing the
code generation process using the code generation
interfaces.

2.4 Issue Tracking and Version Control

The Modelica SDK also provides the foundation for
developing utilities for issue tracking and version
control. For example, Modelica aware versions of
diff and merge tools could be developed that allow
visualization of differences in the model structure
rather than just focusing on comparing lines of code.
Also, as annotations can be added, queried, modified
and removed using the SDK, these capabilities final-
ly make the valuable metadata stored in Modelica
accessible for storing additional information about
the model, e.g. relating issues (in an issue tracking
database) to particular model versions.

2.5 Plug-ins to Vertex

As the Modelica SDK is the Modelica implementa-
tion used in the Vertex [8] simulation tool, exten-
sions developed for the Modelica SDK also act as
plug-ins to the Vertex tool. In this way, any en-
hancements or features added through Modelica
SDK extension points are therefore also accessible
from Vertex. Such extensions might include adding
the ability to define new simulation targets, new
checking rules or new sources to load Modelica
models from (e.g. network servers, version control
systems).

3 Interfaces

As a software development kit the ease of integration
with different software platforms is essential. Differ-
ent means of integration have been included for dif-
ferent applications.

3.1 Java

The Modelica SDK is developed in the Java lan-
guage. This gives advantages of platform-neutrality,
convenient packaging as “jar” archive files, and “ja-
vadoc” documentation (automatically generated from
the Java source code).

The examples given in this paper were all imple-
mented in Java.

3.2 Scripting Languages

All the operations accessible to Java are also access-
ible by scripting languages running on the Java Vir-
tual Machine (JVM), creating a powerful environ-
ment for experimentation. Users of Python (Jython),
Ruby (JRuby), Groovy, Beanshell and MATLAB
can directly access the SDK classes and methods.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 632

3.3 C++ and .NET

The platform neutrality of Java is important for a
tool such as the Modelica SDK. However, many
applications are developed using other programming
languages and platforms. For this reason the key me-
thods in the SDK can be exposed to C++ or .NET
applications. Note that in such circumstances the
SDK still runs in the Java Virtual Machine, and ex-
tensions must still be written in Java.

3.4 Web Services

For complete portability a web services interface has
been developed using SOAP. SOAP clients libraries
are available in most programming languages. The
SOAP services were implemented using Axis2 [9],
which comes in both Java and C versions.

4 Capabilities

The SDK provides a Modelica 3.1 compatible parser
and object model as well as a translator implement-
ing most features of Modelica 3.1. In this section, we
will discuss the various features in the SDK and how
they impact both users and developers.

4.1 File and Path Management

For developers, the SDK handles all loading and sav-
ing of files. Classes are automatically loaded to
memory when required thereby freeing the developer
from the tedious tasks of managing memory or speci-
fying which files to load.

4.2 Parsing, Object Model and Manipulation

An important design feature of the SDK is that
loaded classes are treated as a set of “live” objects,
which can be manipulated and queried in memory
(similar to how the DOM object model is handled for
XML objects). Finding of a particular component,
annotation value or equation, is performed by tra-
versing this object-graph. Every object, whether it
represents a Modelica class, component, modifica-
tion or annotation, can have listeners added to it
which are notified of any changes. This makes the
SDK ideal for editors and other interactive tools.

Modelica classes represented using the SDK's object
model can be transformed into other representations,
e.g. written back out in Modelica syntax, using the
PrintTarget class. By supplying a custom PrintTarget
object, the developer can control the appearance and

format of the output, e.g. producing XML, HTML or
other formats.

4.3 Querying

A package is included for defining and executing
queries on Modelica classes or components. This
allows selection of components or classes which
match a specified predicate. The Apache Commons
Collections [10] library defines an interface called
Predicate with one method to evaluate whether an
object should be accepted or not. In addition to the
interface itself, a number of useful predicates are
also provided, such as selecting a component by type
or variability, or selecting a class by classes it ex-
tends from.

For selecting components there is an additional Boo-
lean flag which controls whether or not to iterate
through the hierarchy of the model. If this flag is
false, only components at the top-level of the class
are returned. If true, components from any level of
the class are considered. When selecting classes, a
similar additional argument controls whether to re-
strict queries to only models that are in memory or to
iterate over all classes found in the path (thus trigger-
ing these classes to be automatically loaded as
needed). The latter is, of course, quite slow as all
relevant files will be loaded and processed, but it can
be useful to consider all classes in the path for some
applications.

As an example, the following code selects all the
parameters from a specified class:

Predicate<ModelicaComponent> predicate =
new ComponentVariabilityPredicate(
Variability.PARAMETER);

List<ModelicaComponent> parameters =
Query.selectComponents(myClass,
predicate, true);

Similarly, the following code selects all loaded
classes that extend from Real:

Predicate<ModelicaClass> classPredicate
= new SubclassOfPredicate(“Real”);

List<ModelicaClass> realTypes =
Query.selectClasses(classPredicate,
false);

4.4 Checking

The “checking” package provides convenient me-
thods for validating a model against the Modelica
specification and reporting any issues found. The
rules provided check for a variety of different types
of issues but the real power in the checking capabili-
ties comes from the ability of developers to add their

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 633

own rules to the system (as discussed later in this
paper).

When a developer performs a check on a class, the
result is a CheckResultSet object which con-
tains the set of all results for rules the class has trig-
gered. Each result has a severity and the set as a
whole can be queried as to the highest severity result
in the set.

There are two powerful features available once a
CheckResultSet has been obtained. First, it is
possible to add a listener to be notified when a result
changes. In this way, the system can automatically
update these results as users make changes. Second,
each result provides a set of actions (extending ja-
vax.swing.Action) which can be performed to
correct the error. This feature is exploited in Vertex
to provide a “one-click” auto-correction mechanism
where applicable.

CheckResultSet crs =

CheckManager.checkClass(myClass);

if(Severity.ERROR==crs.getSeverity()) {

 // handle an error

}

4.5 Flattening and Symbolic Processing

 “Flattening” of a class, from hierarchical form to a
flat list of equations and variables, is divided into
two steps, “instantiation” and “elaboration”. The in-
stantiation process flattens the hierarchy to a set of
variables, equations, connectors and connections,
each using dot-notation. The elaboration process
performs the symbolic processing.

The symbolic processing handles over-constrained
connections [11], generates connection equations,
and divides the system by the variability of equa-
tions. For each level of variability it then assigns the
causality of the equations, and for continuous equa-
tions reduces the DAE index by differentiating se-
lected equations.

The following code fetches a class from the Modeli-
ca Standard Library, instantiates it, elaborates it and
requests the total list of equations:

ModelicaClass cc =
ModelicaClassLoader.findClass(
“Modelica.Mechanics.Rotational.Examp
les.CoupledClutches”);

Model model =
DefaultInstantiator.instantiate(cc);

model.elaborate();

List<Equation> equations =
model.getEquations();

4.6 Code Generation

As mentioned previously, the SDK includes methods
to translate a model to code. The flexible code gen-
eration architecture is provided through extension
points which are discussed in greater detail shortly.

5 Limitations

The design objective for the Modelica SDK is to
cover as much of the Modelica specification [12] as
possible. The parser and object model cover the full
3.1 specification, so operations which manipulate,
query, check or flatten classes, as discussed earlier,
operate on Modelica 3.1 code, these are tested on the
Modelica Standard Library 3.1. The current limita-
tions are in the symbolic processing and code gen-
eration sections of the tool. The current limitations
are:

• Overloaded operators are not yet supported
• Expandable connections do not yet generate

equations
• Stream connectors do not yet generate equa-

tions
• Subtasks are not yet generated and Sub-

task.decouple(x) defaults to x
• semiLinear is not optimized
• MultiBody extensions are supported but not

optimized, e.g. rooted(x) defaults to
true

• Inverse annotations are not yet supported,
currently symbolic solutions of equations
can be defined as described later

• Reducing systems of equations via methods
such as tearing is not currently performed,
though this is in development and some oth-
er optimizations are currently performed.

6 Extension Points

The SDK provides a number of operations which the
user can replace or add to with their own code. These
are referred to as extension points. Some of these
will be described here. In order to understand how
extension points work some knowledge of the Mod-
elica translation process as well as the relationship
between Modelica classes and files is required. The
extension mechanism makes use of the Java Ser-
viceLoader mechanism [13] which eases the de-
velopment of modular applications. The extension
points are defined in the SDK, but extensions can be
provided in separate modules on the Java classpath.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 634

6.1 Modelica Path

The Modelica Specification describes the relation-
ship between Modelica classes and files on the file-
system. It further describes the operation of the
Modelica path lookup mechanism for locating files
which uses URLs of the form “modelica://…” to
identify the location of files relative to Modelica de-
finitions. The SDK contains interfaces which
represent the generalized storage model (for both
source files and other types of data contained in the
package hierarchy, such as images, data, etc). Im-
plementations of these interfaces are provided for
two methods for two such storage schemes. The first
is the traditional file system based approach. The
second supports accessing code and data from an
archive file.

The archive file implementation is based upon a pro-
posal for Modelica 3.1 which allows an entire pack-
age (or collection of packages) to be bundled togeth-
er as a single file. An additional part of that same
proposal, the ability to resolve “modelica://” URL’s
to locate resources such as image or data files from
within the archive file itself, is also supported.

This is one of the most powerful features of the SDK
because Modelica code, data, images, etc. can all be
bundled into a single archive and easily distributed
(rather than stored as an elaborate directory structure
on the file system). Furthermore, this feature can be
used to create an extensible "virtual package hie-
rarchy" where additional resources are mapped to a
Modelica package structure and can thus be refe-
renced directly in Modelica code.

An example use of this feature would be the loading
of parameter data from a database. By defining two
Java classes a database table could be expressed as a
package with a series of records contained within it,
and these could be referenced within other Modelica
code.

6.2 Checking Rules

An important feature of the SDK is the ability to eva-
luate rules to check a class for validity and find er-
rors. A number of rules are built-in for checking
compatibility of a model to the Modelica Specifica-
tion. By providing an extension of the class
com.deltatheta.modelica.check.Check
Rule additional rules can be added.

A check rule has a single method, to check a class.
This method is passed a CheckResultSet object,
and is expected to add a CheckResult instance to
the set if the class fails to pass the rule.

public class UseOfPartialClassCheck
implements CheckRule {

 public void checkClass(CheckResultSet
results, ModelicaClass clazz) {

 for (ModelicaComponent component :
clazz.getComponents()) {

 try {

 ModelicaClass type =
component.getModelicaClass();

 if (type.isPartial()) {

 addResult(results,
component, type, clazz);

 }

 } catch
(ClassDefinitionNotFoundException
ex) { }

 }

 }

 private void addResult(CheckResultSet
results, final ModelicaComponent
comp, final ModelicaClass type,
final ModelicaClass clazz) {

 results.add(new
AbstractCheckResult() {

 public String getDescription() {

 return ("Component " +
comp.getName() + " in class" +
clazz.getPath() + " is of type " +
type.getPath() + " which is
partial");

 }

 public Severity getSeverity() {

 return (Severity.ERROR);

 }

 });

 }

}

6.3 Symbolic Rules

The SDK has the facility to add rules for solution of
scalar equations. This is useful for cases where a par-
ticular format of equation is known to appear regu-
larly in a modeling domain but is not solved by the
SDK, or where a user defined function has a particu-
lar solution. For example, the following code adds
the solution of a simple linear equation:

Solution.defineRule(“&y=&m*&x+&c”,

”&x:=(&y-&c)/&m”);

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 635

6.4 Code Generation

Where the SDK is being used to generate simulation
code there is a code generation stage in the transla-
tion process. In order to support the diverse range of
applications proposed this code generation must be
able to be language and platform independent. This
is achieved by the code generator itself being an ex-
tension matching a specified interface. Note there is
no built-in code generator provided in the SDK. Fur-
thermore, the specification of the code generation
interface is commercially sensitive and therefore on-
ly available to licensed developers.

7 Conclusions

Enabling a product to edit, simulate, import or ex-
tract data from Modelica models is no longer a leng-
thy process. With the availability of the Modelica
SDK such capabilities can now be rapidly developed
or integrated into existing tools. This dramatically
eases the adoption of Modelica as a standard for sys-
tems model development and exchange. Further-
more, it creates many opportunities for exploiting
currently underutilized features in Modelica (e.g.
annotations) and integrating Modelica into the engi-
neering process.

References

[1] Tiller M. “Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions”. Modelica 2003.

[2] Åkesson J., Hedin G., Ekman T., “Develop-
ment of a Modelica Compiler using Jas-
tAdd”, Seventh Workshop on Language De-
scriptions, Tools and Applications. 2007.

[3] Najafi, M., Nikoukhah, R., Steer, S., Furic, S.
“New features and new challenges in model-
ing and simulation in Scicos”. 2005 IEEE
Conference on Control Applications

[4] Fritzson, P., Aronsson, P., Lundvall, H.,
Nyström, K., Pop, A., Saldamli, L., Broman,
D. “The OpenModelica Modeling, Simula-
tion, and Development Environment”. SIMS
2005.

[5] Jonas Larsson and Peter Fritzson. “A Mod-
elica-based Format for Flexible Modelica
Code Generation and Causal Model Trans-
formations”. In Proceedings of the 5th Inter-

national Modelica Conference (Modeli-
ca'2006), Vienna, Austria, Sept. 4-5, 2006.

[6] Tiller M. “Implementation of a Generic Data
Retrieval API for Modelica”. Modelica 2005.

[7] Koehler J., Banerjee A. “Usage of Modelica
for transmission simulation at ZF”. Modelica
2005

[8] deltatheta Vertex. [online]
http://www.deltatheta.com/products/vertex/

[9] Apache Software Foundation. Apache Axis2.
[online] http://ws.apache.org/axis2/

[10] Apache Software Foundation. Commons
Collections. [online]
http://commons.apache.org/collections/

[11] Otter M., Elmqvist H., Mattsson SE. “The
New Modelica MultiBody Library”. Modeli-
ca 2003.

[12] Modelica 3.1 Specification. 2009.

[13] O’Conner J. “Creating Extensible Applica-
tions with the Java Platform”. [online]
http://java.sun.com/developer/technicalArticl
es/javase/extensible/. 2007.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 636

The Role of Modelica in a Robust Engineering Process

The Technocentre, Puma Way, Coventry, CV1 2TT, UK

Abstract

An engineering process comprises stages of design,
analysis and optimization, often with specialist tools
and engineers in each of these areas. We look at how
the interaction and communication between these
stages can be tailored to maximize the robustness of
the overall process, and what the role of Modelica is
in achieving this. This is described for industrial e
amples. We then discuss the additional requirements
of Modelica tools and libraries for such a process.

Keywords: Engineering process; simulation strat
gy; parameter management; Product Lifecycle Ma
agement (PLM)

1 Introduction

The requirements of physical modeling tools
terms of their overall structure and capabilities
and the history of their development [
discussed with the common conclusion that a co
rectly developed tool can greatly simplify the
the user by the use of features such as symbolic m
nipulation, drag-and-drop modeling and version co
trol. These however prompt the further question of
what can additionally be done for a physical mode
ing tool to have a greater influence on the engine
ing process as a whole. This paper a
this question with industrial examples and the tool
requirements these create.

2 Robust Engineering Process

2.1 A Definition

Rather than robustness of the developed produ
define a robust engineering process as one where

• Errors due to different engineers using di
ferent sets of data are not made

• Engineers do not spend time performing ca
culations just to move a design from one

The Role of Modelica in a Robust Engineering Process

Peter Harman
deltatheta uk limited

The Technocentre, Puma Way, Coventry, CV1 2TT, UK
peter.harman@deltatheta.com

An engineering process comprises stages of design,
en with specialist tools

and engineers in each of these areas. We look at how
the interaction and communication between these
stages can be tailored to maximize the robustness of
the overall process, and what the role of Modelica is

is described for industrial ex-
We then discuss the additional requirements

of Modelica tools and libraries for such a process.

simulation strate-
; parameter management; Product Lifecycle Man-

The requirements of physical modeling tools in
terms of their overall structure and capabilities [1]
and the history of their development [2] have been

clusion that a cor-
rectly developed tool can greatly simplify the job of
the user by the use of features such as symbolic ma-

eling and version con-
prompt the further question of

done for a physical model-
ing tool to have a greater influence on the engineer-

This paper attempts to study
ples and the tool

Processes

Rather than robustness of the developed product we
rocess as one where:

Errors due to different engineers using dif-
ferent sets of data are not made
Engineers do not spend time performing cal-
culations just to move a design from one

toolset to another, such as CAD to math
matical model or vice versa

• The true optimized design is found and t
fact that assumptions and objectives change
during the process is both acknowledged and
handled

Although this definition sounds like purely policy
changes, it is really a matter of communication and
data management. Figure 1 shows a comparison b
tween two engineering processes. A serial process
where stages of design and analysis follow each ot
er, with data translations between the two, and a
concurrent process where design and analysis eng
neers draw data from the same
dated with any changes made by each, and where
translation is automated. This concurrent process is
the robust process we aim to achieve, and although
in this case it may be a small improvement, conside
ing a case where more areas, such
development or test engineering, are involved in the
project, the efficiency is greatly improved.

Figure 1: Serial and Concurrent Processes

It is important to stress that this process does not i
volve engineers blindly using whatever
rently available, management of versions is critical
and as with CAD data or software version control
there must be a process of publishing / releasing f

The Role of Modelica in a Robust Engineering Process

The Technocentre, Puma Way, Coventry, CV1 2TT, UK

toolset to another, such as CAD to mathe-
matical model or vice versa

optimized design is found and the
fact that assumptions and objectives change
during the process is both acknowledged and

Although this definition sounds like purely policy
changes, it is really a matter of communication and

re 1 shows a comparison be-
tween two engineering processes. A serial process
where stages of design and analysis follow each oth-
er, with data translations between the two, and a
concurrent process where design and analysis engi-
neers draw data from the same source, which is up-
dated with any changes made by each, and where
translation is automated. This concurrent process is
the robust process we aim to achieve, and although
in this case it may be a small improvement, consider-
ing a case where more areas, such as control systems
development or test engineering, are involved in the
project, the efficiency is greatly improved.

Figure 1: Serial and Concurrent Processes

It is important to stress that this process does not in-
volve engineers blindly using whatever data is cur-
rently available, management of versions is critical
and as with CAD data or software version control
there must be a process of publishing / releasing fi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 637 DOI: 10.3384/ecp09430045

nished work and monitoring dependencies between
versions.

2.2 Modelica and PLM

An analogy can be drawn between successful intro-
duction of Modelica into an engineering process and
the introduction of Product Lifecycle Management
[3] (PLM). Modelica aims to maximize model reuse
and therefore Modelica users within a company will
be working from the same set of libraries. In the
same PLM allows all engineers in the company to
work from the same data, whether in design, manu-
facturing or purchasing.

3 Industrial Examples

We will look at two industrial examples, one where
speed of development is critical, and one where de-
velopment is shared between different organizations.

3.1 Formula 1

In Formula 1 timescales are compressed and com-
mercial success can only be gained from the most
optimized design. While a small industry, it is a clear
example of the benefits of efficient and robust design
processes and has been an example often used in the
introduction of PLM [4].

In this environment simulation is critical and is typi-
cally applied in different areas across the engineering
departments within a team. This may include CFD of
the aerodynamics, multibody modeling of the vehicle
dynamics, lap simulation, powertrain simulation,
hydraulic system simulation, control system devel-
opment and driver training simulation.

Each of these areas might use different simulation
tools and hence different models. There is a cost mo-
tivation to share models between departments in or-
der to save work, and a technical motivation in order
to ensure all departments are working from the same
assumptions. The reason for the different tools is that
the requirements of the models in these simulations
are very different, and even where the domain of the
model is related, such as between a vehicle dynamics
simulation and a lap simulation, the detail level va-
ries widely.

Modelica can be used to unify the modeling and si-
mulation across the organization as long as:

1. The Modelica environment used can gener-
ate simulation code for all the required plat-
forms.

2. The models make use of replaceable compo-
nents to achieve different detail levels with
the same parameter data.

3. The models can be parameterized directly
from design data and car setup data.

Achieving this reduces the time from a design
change or car setup change to having a running si-
mulation, and hence the time for simulation engi-
neers to feedback recommendations based on results.
Since the start of 2009 track testing during the sea-
son has been banned making simulation more criti-
cal, and it is desirable that all design changes are
successfully analyzed before racing so such a reduc-
tion in the required time to do this is important.

3.2 Automotive Tier 1

Tier 1 suppliers in the automotive industry have ever
growing responsibility for the delivery of complete
systems for the vehicle. Whilst this is fully within the
engineering capabilities of the suppliers, defining the
responsibilities for system integration often causes
issues. This becomes especially important when a
system integration issue arises during production
creating a situation of assigning blame and responsi-
bility.

By sharing systems engineering data, the Tier 1 and
OEM can speed up system integration during devel-
opment, and speed up location of faults, and hence
responsibility, with failures during production. Vir-
tual testing of the full vehicle can occur early in de-
velopment using models developed by those respon-
sible for the component development.

As an open-standard, Modelica is ideal for such shar-
ing of models. This is achievable as long as:

1. Design versions are managed and a model
can be selected that corresponds to a particu-
lar design of the system.

2. Models can easily be communicated, either
by packaging models and resources in a sin-
gle file, or by using standardized protocols
e.g. a PLM system or a Subversion version
control system.

3. Supplier and OEM intellectual property can
be protected without hiding the intention of
and operation of models.

Achieving this reduces duplication of modeling work
in both parties, ensures models are developed by
those closest to the design, and creates a collabora-
tive development.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 638

4 Requirements for Tools and Libra-
ries

The concepts discussed here are entirely feasible
within the existing Modelica tools available. Howev-
er in order to achieve the levels of efficiency, data
management and integration required to achieve the
processes mentioned there are a number of recom-
mendations for both Modelica tools and libraries.

4.1 Integration of tools

In the F1 example above one requirement was to pa-
rameterize models from design data and car setup
data. This is a wider issue where many users require
parameters sourced from spreadsheets, CAD soft-
ware and company specific software.

Much data is stored in spreadsheets as a convenient
form for viewing and performing calculations. Ra-
ther than copying data from the spreadsheet a tool
should allow model parameters to be linked to
spreadsheet cells, and updated as the spreadsheet file
is updated.

Translators from CAD to Modelica multibody mod-
els have been written [5] however to successfully
connect the two the Modelica tool would be able to
monitor the CAD data for changes and the model
would be continually updated accordingly. The CAD
data contains more than just the structure of the as-
sembly and mass and inertia data. The model should
be able to request other parameters from CAD fea-
tures e.g. the area of a piston for a hydraulic actuator.

Most engineering companies will have data stored in
a company specific manner. Following the examples
above, an F1 team will have data for setup of the car
by race engineers which will ideally be possible to
load into a simulation, an automotive tier 1 might
supply multiple customers and have data sets for
each customer which they want to keep separately to
the model itself. Tools should have an API to allow
parameterization from any data source.

4.2 Protection of models

In the Automotive Tier 1 example discussed above
one issue was protection of IPR. There are three
main solutions in this area, each with advantages,
which one is preferable will always be an area of
debate.

1. Encryption: The Modelica text is encrypted
and the tool does not allow access to it. This

has the advantage that the model structure is
preserved and optimizations can be per-
formed when it is simulated, however trac-
ing bugs when the tool will not allow access
to equations or variable names can cause
problems, and the encryption is tool-specific
and not part of the Modelica specification.

2. Compilation: The model is compiled to a
dynamic linked library (dll) that can be used
at simulation time. The MODELISAR [6]
project will define a standard for this, so the
issue of compatibility is reduced, however
compiled code is platform specific, and no
further optimizations or analysis of the mod-
el structure can be performed.

3. Obfuscation: This is a means of hiding the
details of interpreted languages, most widely
used examples being Javascript code in web
pages, by changing the names of variables
and methods and using complex syntax to
make the code unreadable but still function-
al. This has not been widely explored with
Modelica but may provide a tool-neutral al-
ternative to encryption.

4.3 Communication of models

The Modelica specification defines a filesystem
structure for storage of Modelica libraries and a
mapping between files and classes. In addition to the
Modelica code a library often requires resources
such as image files and HTML documentation. There
is a proposal for Modelica 3.2 to allow an entire li-
brary and associated resources to be stored within an
archive file similar to .zip or .jar files. This would
ease communication of models as only 1 file is re-
quired for an entire library.

An alternative approach for ensuring libraries can be
shared and transmitted would be for Modelica libra-
ries to be loaded directly from a central source e.g. a
version control or PLM system.

4.4 Modelica compliance

Release of new features in the Modelica specifica-
tion not surprisingly precedes the implementation of
them in tools. Also some features may not be rele-
vant to the focus of a particular tool and are not im-
plemented. Communication of models between dif-
ferent companies who might use different software
could be complicated by whether one Modelica tool
supports the same Modelica features as another. At

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 639

the moment there is no standard description of com-
pliance to the language specification. It would be
very useful to companies using or considering using
Modelica to be able to compare compliance to the
standard, this could be illustrated with a table of fea-
tures against whether the tool in question supports
them.

4.5 Discretization of models

Parameterization of a model from CAD and other
design data is made easier if the discretisation of the
model, that is the division of the model into individ-
ual components, matches the physical system e.g.
one physical part, and hence one CAD part, corres-
ponds to one Modelica component.

5 Conclusions

Successful adoption of Modelica can influence more
than just model development and generate improve-
ments in the engineering process as a whole. There
are actions required by engineering companies
adopting Modelica in order to achieve this, but also
actions on Modelica tool and library suppliers to aid
this. Tool integration and communication of models
are important features which must be considered. To
ease compatibility of libraries to Modelica tools, a
matrix of tool compliance to individual features of
the Modelica specification should be published.

References

[1] Tiller, M. “An Analysis of Physical Modeling
Requirements and Techniques”, SAE 2009

[2] Breitenecker, F. “Software for Modelling
and Simulation - History, Developments,
Trends and Challenges”, Simulation and Vi-
sualization 2006

[3] Stark, J. “Product Lifecycle Management
(PLM): 21st Century Paradigm for Product
Realisation”

[4] Jeffreys, M. “The Challenge of Introducing
Product Lifecycle Management in Formula 1
and lessons for other organizations and sec-
tors” . Matthew Jeffreys Consulting Ltd,
2007.

[5] Engelson, V. “Tools for Design, Interactive-
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing”,
Linköpings Universitet 2000

[6] “MODELISAR Project Profile” 2008 [on-
line]
http://www.itea2.org/public/project_leaflets/
MODELISAR_profile_oct-08.pdf

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 640

Towards a full integration of Modelica models

in the Scicos environment

Ramine Nikoukhah1 Sébastien Furic2

1INRIA Rocquencourt, France

ramine.nikoukhah@inria.fr
2LMS Imagine, France

sebastien.furic@lmsintl.com

Abstract

In this paper, we show that, provided the Modelica

language specification is enriched with the notion of

external connector, interesting applications follow,

where Modelica can be used to describe synchro-

nous event-activated blocks that communicate effi-

ciently with the “outside world”. Such blocks de-

scribed in Modelica and compiled separately can still

be connected together to form new blocks. Scicos

(www.scicos.org), a freely available modeling envi-

ronment, can make efficient use of those blocks, that

in addition enable seamlessly integration of Model-

ica into a causal environment.

Keywords: external connector; events; synchroniza-

tion

1 Introduction

Scicos is a software tool for modeling and simulation

of dynamical systems [1]. It provides a hierarchical

graphical editor for the construction of complex dy-

namical systems, a simulator and a code generator.

Scicos is distributed with the free scientific software

package ScicosLab (www.scicoslab.org).

Currently Modelica is partially supported by Scicos.

In particular it is possible to use component models

in Scicos diagrams where the dynamics of the com-

ponent has been described in Modelica [2]. This

means that, in the same diagram, sections of the

model are designed using standard Scicos blocks and

others using Modelica blocks. So far, the Modelica

section has only been used to model piecewise con-

tinuous-time, leaving all discrete-time behaviors to

the Scicos-block section [3]. This configuration, in

which Scicos and Modelica blocks co-exist in the

same environment, has been available in Scicos for a

number of years and is very similar to the Simulink/

Simscape product recently released by the Math-

works.

To go further in the integration of Modelica within

the Scicos environment, the question of discrete dy-

namics in Modelica and its synchronization with the

outside world needs to be addressed. There are two

difficulties in extending the current integration:

− Modelica is conceived to be used to model the

whole system. Except external functions and I/O

routines with very limited functionalities and un-

der restricted conditions, a Modelica model is

written entirely in the Modelica language

− the event synchronization properties in Modelica

itself are not unambiguously specified [4].

In this paper, we use the extensions proposed in [4]

to propose a solution for the full integration of Mod-

elica components in Scicos or in any other causal

simulation environment with synchronous block acti-

vation semantics.

2 Current Scicos/Modelica interac-

tion

2.1 Mixed Scicos diagrams

In a mixed Scicos diagram, the interaction between

standard Scicos and Modelica blocks is made

through mixed type blocks. These blocks have both

regular Scicos input and/or output ports (i.e., causal

ports) and Modelica connectors (i.e., acausal ports).

In the example given below, we can see that Scicos

ports are drawn as arrow heads whereas Modelica

connectors are drawn as plain rectangles. Clearly it

does not make sense to connect directly a causal port

to an acausal one, and the Scicos editor forbids it.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 641 DOI: 10.3384/ecp09430024

The interaction between the controller part of this di-

agram, which is designed using standard Scicos

blocks, and the hydraulic Modelica model is done

through two mixed-type blocks: the controlled valve

and the reservoir. In the case of the reservoir, for in-

stance, the regular output port corresponds to a level

sensor.

Figure 1: A mixed Scicos diagram including standard Sci-

cos and Modelica blocks

The way Scicos compiler deals with mixed diagrams

is to group all the Modelica blocks (including mixed

type blocks, which are written in Modelica1) and

generate the corresponding Modelica program. This

program is then compiled with Modelicac (the free

Modelica compiler distributed with Scicos), generat-

ing a C code that is transparently compiled and

linked with Scicos so that, at the end, the whole

Modelica section becomes a regular Scicos block

where its (now causal) ports correspond to the input/

output ports of the mixed block types in the original

diagrams.

Even though in Modelica the whole system should

normally be designed using the language itself, omit-

ting the description of the outside world (by only

specifying “external” input/output ports) would not

cause major difficulty, as already proven by pure

Scicos models already, which already enable sepa-

rate compilation. Since the Modelica language speci-

fication does not explicitly define interaction with

outside world, we propose here to fill that lack of

specification by defining external connectors and by

giving the rules that govern their use.

1 Despite Modelica the lack of a way to express true

“external” connectors. Typically, top-level input/out-

put declarations are specifically treated by compiler to

yield external connectors as a final result. That has

also been used in Dymola for generating Simulink

blocks.

3 Extension of the Scicos/Modelica

interaction

3.1 Activation signals

In Scicos, activation signals are used explicitly to

specify control actions. For example on Figure 1, the

time instants when the Scope block samples its input

values and displays them is specified by the activa-

tion signal (sequence of periodic events in this case

generated by the event clock) it receives through its

activation input port placed on top of the block. Ba-

sic operations on activation signals in Scicos are

used to provide periodic and non periodic clocks,

sub-sampling, conditioning, etc. Such functionalities

in Modelica are provided through special language

constructs such as sample and when, not through

signals that can be communicated through connec-

tors. Actually, Modelica is not designed in the same

spirit synchronous languages such as Scicos-the-lan-

guage are. Consider for example the simple model

below:

block Counter

 input Boolean activated;

 output Integer count(start=0);

equation

 when activated then

 count = pre(count) + 1;

 end when;

end Counter;

Modelica semantics currently impose instantaneous

equations to be activated by the detection of an edge

in Boolean conditions of “when” equations, with the

notable exception of equations guarded by the sam-

ple operator2. As a consequence, it is not possible

to separately compile a counter that increments its

value when the environment into which it will be put

simply decides it should do: testing the Boolean ex-

pression is still necessary to eventually activate the

equations. The purpose of activation signals pro-

posed by Scicos is precisely to obviate that problem:

indeed, activation signals only take one value that

gives the time instant when the model should be acti-

vated. The rest of the time, the signal is simply ab-

sent (i.e., no value is present at the model's input

port). If we make an analogy with booleans, we can

say that activation signals can only take the true

value, when they have a value3.

2 Hence the necessity to define it as a primitive of the

language.

S

P

-1-1

-1-1

den(s)

num(s)

MScope

Display

Mux

Q

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 642

Going back to our example, the optimal code typi-

cally generated for the “when” equation would be

(suppose the target language is C):

if (activated) count = count + 1;

Each time the value of activated is updated, the

simulation environment has to run the code above,

which performs the test, as explained above, and

then update count if required.

Now suppose we have an Event type (see [4]) in

Modelica to represent the type of activation signals.

Our counter could then be written:

block Counter

 input Event activated;

 output Integer count(start=0);

equation

 when activated then

 count = pre(count) + 1;

 end when;

end Counter;

We have only changed the type of the input. But the

optimal code typically generated for the “when”

equation now becomes:

count = count + 1;

No test is required since the only possible value for

activated is equivalent to the Boolean value

true: incrementing the counter is just a matter of

calling the above code, which is the responsibility of

the outer environment. Imagine a model that would

contain hundreds of (deeply nested) sub-models: the

use of activation signals would result in significant

increase in performance.

3.2 Activation ports in Modelica

Since the lack of activation signals in Modelica

makes the interaction with Scicos (and potentially

any other external causal environment) difficult, we

simply propose to define external connectors capable

of listening/emitting events.

An interesting solution would have been to reuse the

external keyword as prefix to the declaration of

external connectors as in:

external connector EventInput

 Event e;

end EventInput;

But since a compliant Modelica compiler is required

to compile code for interaction with the outer world

3 In the synchronous language Signal, the value of acti-

vation signals is denoted true and is compatible with

the Boolean type.

as soon as “toplevel” declarations of variables with

prefix input or output exist, we will simply omit

the keyword external, to remain compatible with

the current language specification. So the only addi-

tion we propose to the language is the Event type

(with accompanying operations). Interfacing with the

outer world is just a matter of special interpretation

of toplevel declarations, as usual.

For example, the following model, once compiled at

toplevel, yields a Scicos block with two input activa-

tion events and one output activation event:

block B

 input Event e1, e2;

 output Event e3;

equation

 ...

end B;

Of course, the ability to declare activation ports is far

from sufficient to enable seamless integration of

Modelica into the Scicos environment. In particular,

Scicos has to know where the events are generated

and which input/output activation ports depend on

which, in order to ensure global synchronization of

the whole model

After presenting in the next section the Event type

in more details and operations that apply to its mem-

bers, we explain the principle of model abstraction in

presence of activation events.

3.3 The Event type

The Event type is the type of all events, that is, ab-

stract objects which sole purpose is to represent acti-

vations times in hybrid models. Notice that by “acti-

vation time” we do not speak about normal Modelica

values that would represent measures of time, as pro-

vided by the pseudo-variable time: we are talking

about the domain of signals which is implicit in

Modelica, where programs only manipulate values of

signals, i.e., elements of their codomains.

As already said in previous sections, events only

have one possible value (but different domains!).

Contrary to the design choice made in the Signal lan-

guage, we do not want compatibility of Event with

Boolean (by declaring the former to be a subtype

of the latter). Instead of that, we prefer explicit con-

version in expressions when required, to avoid un-

necessary complications and user confusion. Only

“when” equations accept both events and booleans,

mainly for compatibility with existing practice.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 643

Since Event is such a degenerate type, the only op-

erations that make sense for events involve in reality

subsets of the time line, i.e., their domain4.

Creation of events corresponding to edge detection

requires the following syntax:

e = event(x >= 0.0);

The primitive event() creates an event activated

whenever its Boolean expression argument becomes

true. It should not be confused with the primitive

edge() that, in Modelica, does not generate im-

pulses (see [4]).

It is also possible to program events in the future by

specifying a delay from current time:

e1 = event(x >= 0.0);

when e1 then

 e2 = e1 + 10.0;

end when;

The equation inside the “when” reads: “e2 occurs

ten units of time after e1”.

Event synchronization, subsampling, etc., can simply

be expressed by means of “when” equations, pro-

vided their semantics are revised so that tractable

syntactic methods would be used to detect clock de-

pendency5, as explained in [6].

Modelica is now ready for true separate compilation,

as explained in the next section.

3.4 Abstraction of models having activation

ports

With the new connectors introduced here, an isolated

Modelica compiled model can be represented as fol-

lows:

Figure 2: an abstracted separately compiled Modelica

model with activation ports

4 Which is fortunate since events have been precisely in-

troduced for that purpose...

5 In other words, clock calculus would become typing.

This compiled model can be inserted and used as an

ordinary Scicos block provided an additional con-

straint is fulfilled: Scicos imposes that, in basic

blocks, output events are never synchronous with in-

put events. Fortunately, this property can be checked

at model compilation time: indeed, as mentioned

above, synchronicity can be determined syntacti-

cally.

In Scicos, input events can be synchronized. This

synchronization is imposed from the outside of the

module (so outside of the Modelica code) depending

where the input events come from. If two input

events in a model are such that, say, one of them is a

subsample of the other, then clearly the synchronic-

ity of the two events must be taken into account

within the Modelica program. For example, in the

case of the module depicted in Figure 2 above, the

activation can come from the first event, the second,

event, the third event, the simultaneous first and sec-

ond events, the simultaneous first and third events,

etc. In [4], the “switchwhen” clause was introduced

specifically to deal with this problem: that clause

simply generalizes the Modelica “when” clause by

providing a way to express constraints depending on

explicit synchronicity conditions. We propose in this

paper a more “Modelica-like” version of that con-

struct, that for clarity however requires some rudi-

mentary pattern matching feature6. Here is an exam-

ple:

match {e1, e2, e3} with

 case {-, -, *} then

 <eq1>

 <eq2>

 ...

 end case;

 case {*, -, *} then

 <eq3>

 <eq4>

 ...

 end case;

 case {*, *, * } then

 <eq5>

 <eq6>

 end case;

6 Pattern matching has already been proposed in other

Modelica-like languages: the MetaModelica language

used in the OpenModelica project features pattern

matching. See http://www.ida.liu.se/~pelab/modelica/

OpenModelica.html

 E v e n t i n p u t s

E v e n t o u t p u t s

r e g u l a r

i n p u t s

r e g u l a r

o u t p u t s

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 644

end match;

The content of one and only one case is activated de-

pending on what combination of events e1, e2 and

e3 is generated. A “case” clause is activated when-

ever the expression after match matches one of the

patterns following each case. In a pattern, “-” and

“*” denote respectively the absence and the presence

of a signal7: the first symbol corresponds to the first

event (here c1) and so on. For example if events c1

and c3 are simultaneously generated but not c2,

then the second case is activated. For this to happen,

c1 and c2 must be synchronous. By using this

clause, the Modelica code inside the module can an-

ticipate every possible combination of input events

activating it.

3.5 Composition of separately compiled models

An interesting property of separately compiled mod-

els is that they do compose. In other words, it is still

possible to connect such compiled models to build

new models without recompilation. More impor-

tantly, models that only define discrete-time signals

(by means of “when” clauses) compose without sig-

nificant loss of efficiency. This is not so surprising:

since they are undistinguishable from ordinary Sci-

cos blocks, they share the same properties (and Sci-

cos blocks do compose efficiently!).

4 Conclusion

The Modelica extensions we have proposed allow us

to integrate a larger class of Modelica models into

Scicos blocks. This functionality should be made

available in future versions of Scicos. Also, any

causal simulation environment capable of handling

activation signals (that, at runtime, only consists in

calling blocks in the right order by ensuring synchro-

nization of inputs if required) would benefit of such

extensions.

Another important consequence of our proposal is

that, implemented by tool vendors, it would lead to a

compilation scheme for pure discrete-time open

models that, for example, could be used by compo-

nent providers to produce efficient versions of li-

brary models to their clients while still preserving IP.

7 Remember that the only useful information carried out

by an event is its presence.

References

[1] S.L. Campbell, J. Chancelier, R.

Nikoukhah, Modeling and Simulation in

Scilab/Scicos, Springer 2005 - Chinese edi-

tion, BuptPress, Beijing, 2007

[2] M. Najafi, S. Furic, R. Nikoukhah, Scicos:

a general purpose modeling and simula-

tion environment, Proc. of the 4th Interna-

tional Modelica Conference, Hamburg,

2005

[3] M. Najafi and R. Nikoukhah, On the Inte-

gration of Modelica in the Modeling and

Simulation Software Scicos, Proc. of Mod-

elling, Identification and Control, 2009

[4] R. Nikoukhah, Extensions to Modelica for

efficient code generation and separate

compilation, in Proc. EOOLT Workshop at

ECOOP’07, Berlin, 2007

[5] R. Nikoukhah, Hybrid dynamics in Model-

ica: Should all events be considered syn-

chronous, in Proc. EOOLT Workshop at

ECOOP’07, Berlin, 2007

[6] R. Nikoukhah, S. Furic, Synchronous and

Asynchronous Events in Modelica: Pro-

posal for an Improved Hybrid Model, in

Proc. Modelica Conference, Bielefeld, 2008

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 645

Linear Analysis Approach for Modelica Models

Loig Allain Stéphane Neyrat Antoine Viel
LMS Imagine

La Cité Internationale, 84 quai Charles de Gaulle, F-69006 LYON

Abstract

This paper is dedicated to the Linear Analysis of dy-
namic systems represented by Modelica models. The
simulation of dynamic systems helps the engineer in
his design activities giving him a better understand-
ing of the system he is in charge. Additionally to
time-domain simulations, frequency domain analysis
provides a complementary view of the systems. This
paper gives a general overview of the Linear Analy-
sis methods that can be performed on Modelica
models using the existing facilities in LMS Imag-
ine.Lab platform. It highlights the use of Eigenval-
ues, Modals Shapes, Transfer Functions or Root Lo-
cus to fully understand the intrinsic dynamic behav-
iors of the systems, including non-linear systems.
Different multi-physics examples show how these
tools can be used practically.

Keywords: Modelica; linear analysis; eigenvalues;
modal shapes; transfer function; root locus

1 Introduction

The responsibility of any engineer is to find a techni-
cal solution to a given problem. Most issues appear-
ing around dynamics systems are related to vibra-
tions or instabilities of the control laws used to pilot
these systems. In order to analyze the response of
their systems, the engineers can use the computer
efficiency. With virtual prototypes, engineers can
explore different design options such as evaluating
the influence of parameters variations in time-
domain simulations. However, more powerful ap-
proaches such as frequency-domain analysis can re-
veal the intrinsic dynamic properties of these sys-
tems, independently from their time-domain excita-
tions, and with very few computation times. Finally,
the full understanding of the in-depth dynamic be-
havior of the systems allows making the most appro-
priate design choices with an important efficiency in
the design process (fewer iterations, then reduced
development time).

In order to improve the behaviour of the system, sev-
eral possibilities could be tested:

Some engineers could:
• perform several batch runs in the simulation tool,

changing a set of parameters and looking at the
corresponding time-responses, with quite long
CPU-times.

• launch Design Exploration tools such as Optimi-
zation, Design Of Experiments, Monte-Carlo,
Pareto Plots, … with quite long CPU-times.

Or, others engineers would prefer to:
• analyze the root locus of the system as function

of each parameter, and to check if the eigenval-
ues (real and imaginary parts, that provide natu-
ral frequency [Hz] and damping ratio [null])
move towards more stable areas.

• analyze the modal shapes in order to understand
how each mode contributes to the motion of each
output observer variable.

• analyze the transfer functions of the system, in
particular the one linking some output observer
variables to some input control variables
(O(s) / I(s)), and to check which are the condi-
tions of resonance (peaks in Bode plots for ex-
ample), when natural frequencies can be excited
by the inputs.

This paper emphasizes the Linear Analysis approach
as a very powerful method. State space representa-
tion and the Linearization process used in the LMS
Imagine.Lab AMESim tool supporting Modelica
models are presented. The second section shows
some practical applications on multi-domains sys-
tems such as mechanical, thermal and electrical
models. Finally, the Linear Analysis approach is ap-
plied to a Diesel Common Rail Injection System.
This general approach is discussed to conclude on its
benefits in system modeling.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 646 DOI: 10.3384/ecp09430097

2 Linearization Process of Nonlinear
Systems

2.1 Level and Formalism for physical modeling

Various formalisms exist to represent physical mod-
els. For example, Vangheluwe [1] proposed a classi-
fication with a multi-criteria analysis that shows that
each formalism has its advantages and its flaws.

Legend:

Figure 1: Comparison of formalisms/languages,

extract of some criterias from [1]

With the comparison of the formalisms, it then be-
comes clear that Modelica, with its high level of ab-
stract for the models description, can help the Equa-
tions formalism to fulfill non-good criteria such as
Numerical Analysis or Topology Analysis, to bring
Equations formalism combined with Modelica to the
highest values.

However, it may still be interesting to use formal-
isms such as State-Space equations or Transfer
Functions commonly used in the Control commu-
nity, to add valuable information about the system’s
dynamics (Otter [2]). Since these ways of representa-
tion are only usable in linear cases, engineers could
think this would strongly limit their applicability.
But it is not actually the case since non-linear sys-
tems can be linearized around some operating points.
It is also very useful to make analogies on complex
physical systems to represent them as simpler
equivalent linear mass-springs models. Additionally,
the utilities developed by control-specialists on the
basis of these formalisms are numerous and ex-
tremely useful (e.g., the study of dynamics and sta-
bility on Bode, Nyquist or Black-Nichols charts, the
location of Evans poles, etc.), which largely justifies
their use in the context of process control problems.

2.2 Numerical linearization of the system

One of the principal techniques for the analysis of
nonlinear system is to approximate them with a
proper linear system and then to use the linear sys-

tem theory, which is fully established since about
three decades (Russell [3]).

The very interesting point is that whereas engineer-
ing systems are never linear, they can practically be
approximated as linear, and it appears that such a
linear system description is sufficient enough around
selected operating points (N [rpm], P [bar], T [°C],
…). It is particularly true when the amplitude and
frequency of the excitation signal (the inputs) are
kept in between certain limits, which define the do-
main of linearity.

The linearization process needs the determination of
the Jacobian matrix of the system at the desired op-
erating point.

The evaluation of the [A, B, C, D] matrices is quite
equivalent to considering the linear behaviour tan-
gent to the nonlinear system in correspondence with
an operating point which has also to be an equilib-
rium point.

Figure 2 : linearization of a nonlinear system around

two different local maximum points

Finally, a full description of the non-linear system
around various operating points can be obtained con-
sidering several times the linear description of the
non-linear system around several equilibrium operat-
ing points. Ones could imagine it would lead to a
large number of linear analysis to be done, but in
practice, only the extreme operating points, such as
an injector fully opened and an injector fully closed,
are considered.

The non-linear system may be written as:

()txf
dt

dx
,=

The linearization of these differential equations gives
the Jacobian matrix A:

∂
∂

∂
∂

∂
∂=

nx

f

x

f

x

f
A ,,,

21

L

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 647

Each term of the ith vector is evaluated, applying a
numerical perturbation to the state variable xi:

() ()

() ()

−−+

−−+

=

∂
∂

∂
∂

∂
∂

=
∂
∂

δ
δδ

δ
δδ

2

,,,,,,,,,,

2

,,,,,,,,,,

11

1111

2

1

txxxftxxxf

txxxftxxxf

x

f

x

f

x

f

x

f

NinNin

NiNi

i

n

i

i

i
LLLL

L

LLLL

M

M

The other B, C and D matrices are determined in the
same way. For an ordinary differential equation sys-
tem, the linearized system is represented under the
common A, B, C, D state-space representation:

+=

+=

DuCxy

BuAx
dt

dx

Where:

• u is the vector of the control variables

• x is the vector of the state variables

• y is the vector of the observer variables

From this control representation, it is possible to ap-
ply linear algebra algorithms to compute the eigen-
values (that are included in A matrix) representing
the system natural modes, the modal shapes of the
frequencies (eigenvectors from matrixes A and C)
representing the distribution of a frequency all along
the system, the transfer functions (linking A, B, C, D
matrices) that represent the frequency response in
magnitude and phase of an observer variable due to
the excitation of another control variable, and the
root locus (from A matrix) that represent the evolu-
tions in frequency and damping ratio of the natural
modes to some parameters changes in a
real/imaginary plot.

For differential algebraic equation (DAE) systems,
we first consider a semi-explicit DAE, as obtained
by topologically sorting the constitutive equations in
LMS Imagine.Lab AMESim:

()
()
()tuzxhy

tuzxg

tuzxf
dt

dx

,,,

,,,0

,,,

=
=

=

x (resp. z) being the differential (resp. algebraic) state
variables, in addition to the already defined input and
observer variables.

This system may be linearized around an equilibrium
point:

)3(

)2(0

)1(

uhzhxhy
dt

du
g

dt

dz
g

dt

dx
g

ufzfxf
dt

dx

uzx

uzx

uzx

⋅∇+⋅∇+⋅∇=

⋅∇+⋅∇+⋅∇=

⋅∇+⋅∇+⋅∇=

If the system index is one, then the partial Jacobian

matrix gz∇ is non-singular. Taking the Laplace
transform of (1)-(3), and introducing the augmented

state ()()TsZsX)(,=φ , the state-space equations
are given by:

() () () ()sUsBsUBsAss 10 ++= φφ

with

() ()

() ()

∇+∇∇∇−
=

∇
=

∇∇∇−∇∇∇−
∇∇

=

−

−−

gffg
B

f
B

fggfgg

ff
A

uuxz

u

zxzxxz

zx

11

0

11

0

0

As the output of the system is

() () () ()sUsDsUDsCsY 10 ++= φ

with the following additional matrix definitions

[]

01

0

=
∇=

∇∇=

D

hD

hhC

u

zx

the transfer matrix of the system is finally given by:

() ()() ()∑
=

− +−=
1

0

1

i

i
ii sUsDBAsICsY (4)

The above reasoning can be extended to higher index
systems. In this case, the equation (2) is differenti-
ated up to the index of the DAE. In the resulting lin-
earization process, higher order derivatives of the
input variables are retained, and thus the transfer ma-
trix defined by (4) is generalized by extending the
summation order up to the system index.

Finally, the linear analysis tools used for differential
algebraic equation system are the same as the ones
used for ordinary differential equation systems.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 648

3 LMS Modelica libraries overview

The LMS Modelica libraries are an in-house library
that presents several packages as shown below for
the first hierarchical level:

Figure 3: screen shot of some Imagine.Lab libraries in

the package browser

The packages are structured in functional sub-
packages (Tummescheit [7]). Some of them include
quite simple models. The intention there was mainly
to support the development of the Modelica compiler
embedded in Imagine.Lab AMESim.

Figure 4: example of Imagine.Lab library for

Electrical / Basics components

Other libraries offer more complex models. These
LMS Modelica models will be used to illustrate the
Linear Analysis approach described in the next sec-
tions.

4 Linear analysis in various physical
domains

The Linear Analysis approach can be applied to any
physical system modeled with Modelica models,
whatever are the involved domains of physics (Kar-
nopp [4]).

4.1 Mechanical systems

Let’s consider the example of the longitudinal vibra-
tions of a rod in fixed conditions. We sample the

continuous system in distributed parameters nodes
with 7 masses and 8 stiffnesses with dampers:

 Mechanical Rod

Figure 5: distributed rod in fixed conditions

We consider the Modelica model of the system, built
by connecting together the simple Modelica models
of mass elements with spring and damper elements:

model distributed_rod

parameter Integer n(fixed=true) = 7;

LMS.Mechanics.Translational.Mass mass_element[n](each

m=1.290569);

LMS.Mechanics.Translational.Spring

spring_element[n+1](each k=12692085.0);

LMS.Mechanics.Translational.Damper

damper_element[n+1](each d=1000.0);

LMS.Mechanics.Translational.Ground ground1;

LMS.Mechanics.Translational.Ground ground2;

equation

connect(ground1.q, spring_element[1].q1);

connect(ground1.q, damper_element[1].q1);

for i in 1:n loop

connect(spring_element[i].q2, mass_element[i].q);

connect(mass_element[i].q, spring_element[i+1].q1);

connect(damper_element[i].q2, mass_element[i].q);

connect(mass_element[i].q, damper_element[i+1].q1);

end for;

connect(ground2.q, spring_element[n+1].q2);

connect(ground2.q, damper_element[n+1].q2);

end distributed_rod;

Figure 6: Modelica text for the rod model

To get the modal shapes of the system, we need first
to set the mass velocities [m/s] as state observers.
This is done through the simulation tool GUI. Note
that no modification of the Modelica models within
the sketch is needed for accessing the linear analysis
settings, neither any specific library with added
blocks on the sketch. A selection list is directly avail-
able at the tool level, being in the Linear Analysis
mode:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 649

Figure 7: selection list for observer variables in Linear

Analysis mode

An additional Linear Status window summarizes all
the status (observer / control / …) of the variables in
the Modelica model:

Figure 8: Linearization Status window

These modal shapes provide the distribution of the
natural mode along the different observed parts. It is
easy to recognize here the well-known normal modal
shapes of the continuous rod system (dashed line):

Figure 9: first modal shape (f1=193 Hz, ζζζζ=2.4%) of a
mechanical rod with fixed-fixed boundary conditions

Figure 10: second modal shape (f2=379 Hz, ζζζζ=4.7%) of
a mechanical rod with fixed-fixed boundary conditions

This approach greatly helps the engineer understand-
ing which parts of the systems are involved in the
frequencies present on experimentally measured
oscillations.

4.2 Thermal systems

We start here from a yet existing Modelica model
and we will reuse it to determine the eigenvalues of
the system:

Ct

Ct

T1
T2

Rth Rth Rth

Figure 11: two thermal capacities with conductance

The Modelica model was built as an AMESim su-
percomponent to be able to mix the Modelica model
with non-Modelica (standard C) models.

Figure 12: simple Modelica thermal model connected

to non-Modelica thermal sources and signal

The Modelica text is quite simple, just calling the
Modelica components in libraries to connect them
together to get the assembled circuit of the thermal
system.

The time-response of the temperature in the thermal
capacities are the following:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 650

Figure 13: evolution of the temperatures Temp

[degree] in the two masses in time-domain

Looking at the eigenvalues shows that there are two
time constants τ:

Figure 14: eigenvalues of the thermal system

Then:

• τ1 = 1/(2π 0.002540) = 62.6 s

• τ2 = 1/(2π 0.006674) = 23.8 s

It is clear that these two time constants τ1 and τ2
directly represent the system dynamics. It is typical
to get slow dynamics for thermal systems (range is
several [s]).

Alternatively, the analysis of the eigenvalues of this
thermal model could help the engineer finding out
the best sampling for distributed thermal capacities
in his thermal model, in order to reduce the number
of states variables, still being sure that the system
dynamics are preserved and not altered by the model
reduction. This is practically very helpful.

4.3 Electromechanical systems

We now show the interest of eigenvalues analysis for
electromechanical systems. We consider there the
electrical motor of a tailgate motorized opening sys-
tem.

An electrical motor is loaded by the rotor inertia with
an external torque applied as input:

k

J

T
U

Figure 15: electrical motor with inertia and torque

The Modelica text for the electrical model is pre-
sented below:
model PermanentMagnetDCMotorWithLoad

LMS.Electrical.ElectricMotors.PermanentMagnetDCMotor

motor;

 LMS.Electrical.Sources.SignalVoltage Source;

 LMS.Mechanics.Rotational.Inertia J;

 LMS.Mechanics.Rotational.SignalTorque Tau;

LMS.Blocks.Sources.ConstantSig torque(k(fixed=false)=0.33);

LMS.Blocks.Sources.ConstantSig voltage(k(fixed=false)=13);

 LMS.Electrical.Ground g;

equation

 connect(g.p, Source.n);

 connect(g.p, motor.n);

 connect(Source.p, motor.p);

 connect(motor.rotor, J.flange_b);

 connect(J.flange_a, Tau.flange);

 connect(Tau.inputTorque, torque.outport);

 connect(Source.inputVoltage, voltage.outport);

end PermanentMagnetDCMotorWithLoad;

Figure 16: Modelica text for the model of electrical
motor with inertia and torque

When the U = 13 V voltage source is activated, the
inertia starts increasing its shaft speed up to its
steady state value. Depending on the inertia J, we
can see that the transient behavior completely dif-
fers:

Figure 17: evolution of the motor speed N [rev/min]

(top) and the armature current I [A] (bottom) in ti me-

ττττ2

3*ττττ2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 651

domain – J=3·10-6 kg.m² (green curve) and
J=15·10-6 kg.m² (blue curve)

It is commonly considered that such a system has an
electrical time-response τ1 and a mechanical time-
constant τ2. Actually, the eigenvalues reveal that
there are two separated time-constants τ1 and τ2:

Figure 18: eigenvalues of the electrical system -

J=15·10-6 kg.m²
But these considerations of time-constants being
separated are quite abusive since these two time-
constants are linked together (it is a second order
system). These two time-constants are therefore not
uncoupled. For example, considering a change in the
moment of inertia from 3·10-6 kg.m² to 15·10-6 kg.m²
would reveal that the dynamic behavior shifts from
an oscillatory mode around f = 50 Hz, well damped
ζ = 55%, to the two separated time-constants ob-
served previously. The best way to follow this
change of dynamics is to plot a Root Locus after
making batch runs with modified inertia values J
[kg.m²]:

Figure 19: Root-Locus of the electrical motor with

inertia - J =3·10-6 kg.m² to 15·10-6 kg.m²

One has to remember the corresponding time-
responses associated to the location of the eigenval-
ues:

Figure 20: root locus and typical equivalent time-

responses

It is finally easy to follow the evolution of the natural
modes (frequency f [Hz] and damping ratio ζ [% or
null]) to any change of parameters. Root Locus
analysis are very appropriate for solving optimal de-
sign issues.

5 Case Study: Diesel Common Rail
Injection System

Diesel engines need to meet reduced fuel consump-
tion and pollutants emissions. In order to reach these
targets, Diesel Common Rail injection systems have
been introduced some years ago, with various evolu-
tions of their design and architecture. Below is pre-
sented a typical Common Rail injection system with
a Bosch CP3 pump that delivers the required amount
of fuel to be injected by the injectors, depending on
the operating conditions (Nengine [rpm], Prail [bar], Trail
[°C], …).

Figure 21: Diesel Common Rail Injection System –
Bosch GmbH - Second generation with CP3 pump

J=3·10-6 kg.m²

J=3·10-6 kg.m²

J=15·10-6 kg.m²

J=15·10-6 kg.m²

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 652

Nowadays, the control strategies of injection include
multiple-injections to be able to pilot the injected
flow rate Q [mm3/ms] that directly impacts the com-
bustion in the engine cylinder:

Figure 22: Typical multiple-injection with

pre/main/post-injections

The fuel quantities [mg/stroke] to be injected are
very small with low deviations admitted from stroke
to stroke and from cylinder to cylinder. Therefore,
any pressure oscillations as the ones appearing dur-
ing the injection (typically from 800 Hz to 1000 Hz)
have to be understood and controlled, if not damped
enough. We propose below to use the Linear Analy-
sis approach on a simple injection system to demon-
strate where these frequencies come from. It pro-
vides a complementary view to time-domain analysis
such as the one proposed by Corno, Casella and All
[5] for Gasoline injection system in Modelica.

5.1 Coupling between L4 cylinders

We propose to start with a L4 engine.

Figure 23: schematics of a L4 injection system: pump

with common rail and 4 injectors

The injector is detailed below. Note that an inner
pipe is located around the injector needle, which runs
from the filter at one end up to the nozzle at the other

end. The dimensions of this inner injector line are
usually quite similar to the dimensions of the con-
necting line from the rail to the injector (∅2.4 mm –
L= 150 mm to 200 mm):

Figure 24: Common Rail Injector– cross-sectional view

The injector ends by the nozzle that delivers the
amount of fuel in the cylinders. As a first approach,
the nozzle can be modeled as a simple orifice.

Figure 25: Nozzle with injection holes

The fuel used is a standard ISO4113 diesel. The me-
dia properties are based on measurements in the
temperature range of +10 to +120°C and pressure
range of 0 to 2000 bar:

Figure 26 : ISO4113 properties – 0 to 2000 bar –
+40°C, from Chaufour and All [6]

1111
2222

3333
4444

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 653

For computing the linear state-space representation
of the injection system parts in the next section, we
will only consider the Prail = 1000 bar and T = +40 °C
operating conditions.

ISO4113
media

properties
@ +40 °C

Isentropic
bulk

modulus
[bar]

Density

 [kg/m 3]

Kine-
matic

viscosity
[cSt]

Prail = 0 bar 9 700 810 2.8

Prail =1000 bar 23 700 855 4.6

Prail =2000 bar 32 800 886 6.9
Figure 27 : ISO4113 fuel properties

The L4 injection system for the common rail with 4
injectors sub-system without the pump can be sim-
plified into the following system, the rail being con-
sidered as a distributed volume with closed-closed
boundary conditions, and the injectors with connect-
ing pipes being represented by their hydraulic iner-
tances and hydraulic stiffnesses:

I inj

V inj

Vrail/3 Vrail/3 Vrail/3

I inj I inj I inj

V inj V inj V inj

Figure 28: simplified injection system with 4 injectors

The model is based on a prototype LMS thermal-
hydraulic library which is still under development.
The components are limited to thermal-hydraulic
capacity C, resistance R and inertance I, with usual
equations. The specific point here is that the
ISO4113 Diesel properties are called from the stan-
dard Imagine.Lab AMESim Bosch properties with
external C-coded functions:

function mo_tfrhopti_

 input Real P;

 input Real T;

 input Real fluid_index;

 output Real rho;

 external "C";

end mo_tfrhopti_;

Figure 29: Modelica text for external function call of
ISO4113 media properties

Currently, the library is not finalized then its design
could be highly improved in the future.

Figure 30: example of parameters window for a

thermal-hydraulic system with the prototype library

This library is used for applying the Linear Analysis
tools. For example, the modal shapes are computed
for the first 4 natural modes. They highlight that the
4 injectors are actually coupled together, even
through the large diameter rail, since the 4 inertances
contributions are always combined together in every
modal shape. Note also that their frequencies are
very close.

1111 2222 3333 4444

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 654

Figure 31: modal shapes of the first 4 modes –

simplified injection system with 4 injectors

These values from f1 = 1010 Hz to f4 = 1384 Hz are
finally close to the oscillations observed in experi-
ments as presented in Figure 22 with a 1 ms period
for one oscillation, which corresponds to approxi-
mately 1000 Hz.

Additional transfer functions could give more infor-
mation. They could help determining if the associ-
ated gains [dB] of the nozzles pressures are impor-
tant when an excitation occurs in one cylinder. It is
indeed likely that the natural mode the closest to
where the injection occurs would be the more excited
one.

Finally, the modal shapes help understand how the
system dynamics are organized. Some hydrau-
lics/mechanics analogies (Viersma [8]) through the
hydraulic stiffness Khyd [Pa/m3] and the hydraulic
inertance Ihyd [kg/m4] would show that the rail with
the 4 injectors and connecting pipes behave as a
simple masses-springs system:

I inj

K inj

K rail/3

I inj

K inj

I inj

K inj

I inj

K inj

K rail/3 K rail/3

Figure 32: equivalent mass-spring model for common

rail with 4 injectors

For the injector with connecting line included, we
have:

()
47

23

/1027.7
104.2

4

385.0855
mkg

Area

Length
Ihydinj ⋅=

⋅

⋅=⋅=
−π

ρ

315

6

5

/1093.2
1081.0

1070023
mPa

Volume

Bulk
Khyd inj ⋅=

⋅
⋅

== −

From this equivalent model, we would find directly
the observed characteristic frequencies as:

Hz
Ihyd

Khyd
f

inj

inj 1010
1027.7

1093.2

2

1

2

1
7

15

=
⋅
⋅==

ππ

6 Conclusions

This paper demonstrated how Linear Analysis can be
used to understand the dynamic behavior of a Mode-
lica model. The view is independent from the time
excitation so that the dynamic answer of such system
can be understood for any type of excitations, with
very few associated CPU-time. After a brief theoreti-
cal overview, the Linear Analysis approach has been
applied to a series of different Modelica models to
demonstrate that it is valid on different fields of
physics, and that it can also be used for non-linear
systems with a great efficiency. Next steps would be
to highlight the use of such Linear Analysis tools in
the context of models reduction (to reduce CPU-time
to reach Real-Time performances during the
MIL/SIL/HIL process) or for the design of the Con-
trol laws of closed loop systems (including Black-
Nichols or Nyquist charts for control stability analy-
sis). Alternatively, some works around formal lin-
earization to get the Jacobian with Modelica libraries
would bring even more added-value in the lineariza-
tion process of nonlinear dynamic systems.

1111 2222 3333 4444

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 655

References

[1] “Multi-Formalism Modelling and Simula-
tion” – H. Vangheluwe, Thesis, Universiteit
Gent, Faculteit Wetenschappen, 2000-2001

[2] “The LinearSystems Library for Continuous
and Discrete Control Systems” – M. Otter,
Modelica Conference, 2006.

[3] “Mathematics of finite-dimensional control
systems: theory and design” - D. L. Russell,
Marcel Dekker, 1979.

[4] “System Dynamics – Modeling and Simula-
tion of Mechatronics Systems” - D.C. Kar-
nopp, D.L. Margolis, R.C. Rosenberg, 3rd
Edition, John Wiley & Sons Inc., 2000

[5] “Object Oriented Modeling of a Gasoline Di-
rect Injection System” - M. Corno, F.
Casella, S. M. Savaresi, R. Scattolini, Mode-
lica Conference, 2008.

[6] “Advanced Modeling of a Heavy-Truck Unit
Injector System and its Application in the
Engine Design process” - P. Chaufour, G.
Millet, M. Hedna, S. Neyrat, E. Botelle –
SAE2004-01-0020, 2004

[7] “Design and Implementation of Object-
Oriented Model Libraries using Modelica” -
H. Tummescheit, Lund, Sweden: PhD thesis,
Department of Automatic control, Lund In-
stitute of Technology, 2002.

[8] “Analysis, Synthesis and Design of Hydrau-
lic Servosystems and Pipelines"- T.J. Viers-
ma, Elsevier Scientific Publishing Company,
1980

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 656

TrueTime Network — A Network Simulation Library for

Modelica

Philip Reuterswärda, Johan Åkessona,b, Anton Cervina, Karl-Erik Årzéna
aDepartment of Automatic Control, Lund University, Sweden

bModelon AB, Sweden

Abstract

We present the TrueTime Network library for
Modelica, developed within the ITEA2 project
EUROSYSLIB. It allows for simulation of various
network protocols and is intended for use within
real-time networking. We describe some its fea-
tures and discuss implementational issues. Since
TrueTime Network is programmed in C, special
attention is given to the how Modelica’s external
function interface is used. We also discuss briefly
a future native Modelica implementation.

Keywords: Modelica; Network Simulation;

TrueTime; Real-time Control

1 Introduction

Networked systems and networked control are in-
creasingly common in many domains, e.g., in
automotive systems. Sending signals over net-
works cause delays that, depending on the net-
work protocol, can be more or less determinis-
tic. Some examples of delays are network inter-
face delays, transmission delays, propagation de-
lays, and back-off times in case of collisions on a
shared medium. In order to accurately simulate
the consequences that these delays have on the
overall system performance it is important to be
able to model the network at an appropriate level.
A too detailed network model including, e.g., the
transmission of individual bits, will make the sim-
ulation too slow. Furthermore, this level of detail
is in most cases unnecessary. A too coarse model,
e.g., to model the network as a constant delay,
will in many cases fail to capture the dynamics
introduced by the network communication.

Within the ITEA2 project EUROSYSLIB, the
Department of Automatic Control, Lund Univer-
sity is developing a Modelica network protocol li-
brary. The intended application area is real-time

networking. In these networks, the upper layers
of the ISO/OSI protocol stack are normally not
used. Hence the library only models various wired
or wireless data-link layer protocols with focus on
the MAC-access related sources of delays. The
library is based on the Matlab/Simulink toolbox
TrueTime [1] developed in the same group.

The Modelica implementation of the TrueTime
Network is based on the existing Simulink imple-
mentation of TrueTime, with some modifications.
TrueTime Network makes it possible to simulate
the sending of reals and arrays of reals over a net-
work using different network protocols. It is im-
plemented in C and used in Modelica through the
external function interface.

The organization of the paper is as follows. In
Section 2 we describe the TrueTime simulation
package for Simulink and how it models networks
and network protocols. Section 3 gives an in-
troduction to the TrueTime Network library for
Modelica from a user’s perspective. In Section
4 we discuss the implementational aspects of the
TrueTime Network library. Special attention is
given to the usage of the external function inter-
face. Section 5 discusses a future native Modelica
implementation of the library.

2 TrueTime

TrueTime [1] is a Matlab/Simulink-based simula-
tion tool that has been developed at Lund Uni-
versity since 1999. It provides models of multi-
tasking real-time kernels and local-area wired and
wireless networks that can be used in simulation
models for networked embedded control systems.
The TrueTime Network library is a Modelica port
of TrueTime’s network part. It supports six sim-
ple models of networks — CSMA/CD (Ethernet),
CSMA/AMP (CAN), Round Robin (Token Bus),
FDMA, TDMA (TTP) and Switched Ethernet.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 657 DOI: 10.3384/ecp09430058

In addition, the wireless network protocols IEEE
802.11b/g (WLAN) and 802.15.4 (ZigBee) are also
supported.

TrueTime models networks as a set of FIFO
input queues, a shared communication medium,
and a set of FIFO output queues. The queues
model the send and receive buffers in the nodes
connected to the network. A message that should
be transmitted from one node to another is placed
in one of the input queues. Messages are moved
from the input queues, into the network, and into
the output queues in an order that depends on the
simulated network protocol. A message moves be-
tween a number of different queues on its way over
the network in a fashion specified by the protocol.
The transmission time of each message depends
on the length of the message. Collisions and re-
transmissions are simulated in the relevant proto-
cols. The wireless network models also take the
path-loss of the radio signals into account, and as
such uses coordinates to specify the locations of
the nodes.

Propagation delays are not modeled, since they
are typically very small in a local area network.
Only packet-level simulation is supported, we as-
sume that higher level protocols have divided long
messages into packets.

3 Modelica Library

An overview of the library as shown in Dymola [3]
is shown in Figure 1. The TrueTime Network li-
brary supports block based modeling with several
different networks running in the same simulation.
To each implemented protocol there is a corre-
sponding block to allow for graphical modeling.
The different network settings can be changed in
the block masks. The inputs and outputs of the
network blocks are signals that are used to trigger
the sending and receiving of network packages.

Additionaly there are blocks for sending and re-
ceiving of network packages that are meant to be
connected with the network blocks, see Figure 2.
Separate blocks exist for the sending and receiv-
ing of scalars and arrays. There are also blocks
that, given an interval, sample and send a signal
periodically over the network. Finally there are
blocks representing empty nodes, these should be
connected to ground the network in case there are
nodes that do not send or receive.

The network protocols have several settings, see

Figure 1: The TrueTime Network package

e.g. Figure 3, some common to all and some spe-
cific to certain protocols. The network ID is an
unique identifier for each network. The number
of nodes in the networks must be known at the
time of compilation and are specified by the user.
The frame size and the speed of the network can
also be tuned. The loss probability determines the
probability that a message is lost in transit. Lost
messages still consume bandwidth but never ar-
rive at their destination. It is possible to set the
value of the seed for the random number genera-
tor used to calculate if a package is lost or not.
Setting of the seed makes it possible to conduct
Monte-Carlo type simulations.

The wireless protocols have some additional set-
tings. When simulating a wireless network the po-
sition of the nodes must be set. This is done either
once at initialization, or continuously throughout
the simulation in the case of a moving wireless
network node. The transmission power and sig-
nal threshold parameters determines how the wire-
less network signals will be intercepted. There
are also settings controlling the sending, resend-
ing and timing out of network packages.

3.1 Example Usage

The library comes with some examples, showing
the intended usage of the TrueTime Network li-
brary. The examples deals with control loops that

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 658

Figure 2: Blocks and external functions for send-
ing and receiving network messages

Figure 3: Parameter dialogue of the CSMA/CD
network block

are closed over networks. Examples show both
how to use a wired network, such as Ethernet,
and a wireless network protocol, e.g., WLAN. The
latter involves setting the positions of the net-
work nodes during the simulation. It is possible to
model both using blocks, see Figure 4, and stan-
dard Modelica, see Listing 1.

During the simulation it is possible to log the
various networks signal and values sent over the
network. The netwoks also log the network sched-
ule, which show when packages were sent and
when collisions happpened, see Figure 5.

4 Implementation

The original TrueTime Simulink blocks are im-
plemented as variable-step S-functions written in
C++. Internally, each block contains a pointer

model NetworkExample

CSMACD_Network

network(id=1,nbrNodes=2);

Receiver rcv1(id=1,address=1)

Receiver rcv2(id=1,address=2)

PeriodicSender snd1(id=1, address=1)

PeriodicSender snd2(id=1, address=2)

...

equation

connect(rcv1.portIn ,

network.portOut[1]);

connect(rcv2.portIn ,

network.portOut[2]);

connect(snd1.portOut ,

network.portIn [1]);

connect(snd2.portOut ,

network.portIn [2]);

...

end NetworkExample;

Listing 1: The network simulation loop

to a network structure and a discrete-event sim-
ulator. Zero-crossing functions are used to force
the solver to produce “major hits” at each inter-
nal (scheduled) or external (triggered) event. The
events include sending and receiving of messages.
Events are communicated between blocks using
trigger signals that switch value between 0 and
1. At events the network is run and network pack-
ages are moved between the FIFO queues that the
network comprises.

The C++ implementation of TrueTime was
ported to C, so that it could be used with Mod-
elica through the external function interface [2].
External objects are used to represent networks
corresponding to different protocols. Since the
external objects do not allow for member func-
tions, auxiliary external functions are used to, e.g.,
run the network and to send and receive network
packages. This hides the implementational details
from the user.

Modelica currently does not support external
states. This means that once we run the network
there is no way to roll back to a previous state.
Care must be taken when updating the network,
so that we do not run the network in the “future”.
This could happen, depending on the implementa-
tion, prior to event detection when the integrator
tries to step. The Simulink simulator has richer in-
terface to its integrator, which solves the problem
in the Simulink environment. In Modelica we ac-
complish this by careful use of the when-construct.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 659

Figure 4: Simulating a PID control loop closed
over a network

RTnetwork* nw;

int nw_id = 1;

nw = getNetworkPtr(nw_id);

Listing 2: Retrieving a network structure pointer

4.1 External Network Objects

Figure 6 shows a network protocol model in Mod-
elica. A network is implemented in dymola using
an external object representing each network pro-
tocol. It points to the external C implementation
of the network model. There is also a network
wrapper-class that handles the access to the ex-
ternal object. This is done through the functions
networkZC and runNetwork. Other external func-
tions can also access the external network model
by specifying the network ID. Externally, a pointer
to the network structure can be obtained by doing
a lookup on this number, see Listing 2.

To simulate network transmissions TrueTime
Network relies on two functions, the zero-crossing
function networkZC and runNetwork, see List-
ing 3. When a package is sent over the network,
the network does not receive the package itself. In-
stead it reads a boolean signal and triggers on the
flanks of it. When an incoming signal is received,
signaling the arrival of a new network package, the
network is run by calling runNetwork. By polling
the network using the networkZC, we know when
the network should be run the next time. If it re-
turns zero, a when-clause triggers and the trigger-

Figure 5: Simulation variables

Figure 6: Network protocol implementation

ing package is either delivered to its destination or
moved towards it through the FIFO queues that
make up the network. Dropping a package simply
means removing it from the network.

4.2 Sending and Receiving

Before triggering a signal on the send port of the
network the sending node must create a network
package and enqueue it in the external network
data structure. When a message is sent, by call-
ing the external function sendReal, see Listing 4,
a message structure is created and is inserted into
a FIFO queue. The network is accessed by doing a
lookup using the network id number. All this takes

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 660

algorithm

when change(signalIn) then

(signalOut ,schedule) :=

runNetwork(nw,nbrNodes ,time);

end when;

nextHit := networkZC(nw, time);

when (nextHit <= 0.0) then

(signalOut ,schedule) :=

runNetwork(nw,nbrNodes ,time);

end when;

Listing 3: The network simulation loop

function sendReal

input Integer id "Network id";

input Integer sender;

input Integer receiver;

input Real u "data";

...

output Real y;

external "C" y = ...

annotation(Include = ...);

end sendReal;

Listing 4: The sendReal external function

place in the external C code. At the same time, on
the Modelica side, a boolean variable representing
the input is toggled. When this happens the net-
work is run, by calling the runNetwork function.

When making its way over the network, a mes-
sage is transferred between a number of queues.
The sending and receiving of messages is event
based. How and when it is moved is determined
by the protocol model of the network that is to
be simulated. To determine when to run the
network a zero-crossing function is used. A call
to runNetwork placed within a when construct
achieves this. When the network is run, it checks
to see if any messages are to be transferred be-
tween the FIFO queues. The network also calcu-
lates the time of the next hit. This updates the
value reported by the zero-crossing function.

When a message is ready to be received, a
boolean variable is toggled. This triggers a call
to the receiveReal function, which retrieves the
message from the network. When sending and re-
ceiving arrays of data, the user specify at compile
time the length of arrays, see Listing 5.

function receiveRealArray

input Integer id "Network id";

input Integer receiver;

input Integer length;

output Real[length] y;

external "C" ...

annotation(Include = ...);

end receiveRealArray;

Listing 5: The receiveRealArray external func-
tion

5 A Native Implementation

In order to increase the transparency of the pro-
tocol implementations the network simulation en-
gine may be implemented in native Modelica,
rather than in C. Initial work following this ap-
proach was done.

The implementation was largely based on the
design of TrueTime. The basic building block
for this implementation is the RingBuffer class,
which emulates a buffer of limited size contain-
ing network messages. The network messages in
turn are represented by a record class NWMessage

and subclasses thereof for each individual proto-
col. The implementation also contains connectors
for connecting nodes to the network block, similar
to TrueTime. The connectors then contain vari-
ables corresponding to the addresses of the send-
ing and the receiving nodes, the actual data. The
connectors also carry a boolean variable which is
used to signal transmission. When this variable
is toggled, the receiving side takes appropriate ac-
tions, for example reads the message and store it
in an internal buffer. The project is still ongoing.

A particularly interesting extension of this work
would be to use ModeGraph to model the state
machines of sending and receiving nodes as well
as the protocols. In particular since network
protocols are often specified in terms of graphi-
cal state machine descriptions. Indeed, this ap-
proach would further improve the clarity and
transparency of the network protocol implemen-
tations.

6 Summary

We have presented the TrueTime Network library,
developed within the ITEA2 project EUROSYS-
LIB. The library is implemented using external
objects and we have showed key aspects of the im-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 661

plementation related to the external function in-
terface. We have also talked about a future native
Modelica implementation, which is being worked
on at the time of writing.

References

[1] Anton Cervin, Dan Henriksson, Bo Lincoln,
Johan Eker and Karl-Erik Årzén. How Does

Control Timing Affect Performance? Analy-

sis and Simulation of Timing Using Jitterbug

and TrueTime IEEE Control Systems Maga-
zine 23, 16–30, 2003.

[2] Modelica Association. Modelica - A Uni-

fied Object-Oriented Language for Physical

Systems Modeling — Language Specification

Version 3.0, 2007.

[3] Dynasim AB. Dymola - Dynamic Modeling
Laboratory. http://www.dynasim.se

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 662

Design and Implementation of Animation Post-processor Based on
ACIS and HOOPS in MWorks

Zhou Fanli1, Zhang Hehua2, Zhu Hengwei2, Gong Xiong1, Wang Boxing1, Liu Jun1, Chen Liping1,
Huang Zhengdong1

1Huazhong Univ. of Sci.&Tech., CAD Center, Wuhan, China
2Suzhou Toprank Software & Control Tech. Co. Ltd, Suzhou, China

{fanli.zhou, zhanghehuahust}@gmail.com, zhuhwei@126.com, {gongx, wangbx, liuj,
chenlp}@hustcad.com, zdhuang@hust.edu.cn

Abstract

A complete Modelica-based simulation platform
usually consists of modeling tool, compiler, analyzer,
solver and post-processor. The 3D animation func-
tion is essential to the post-processor of a platform
that supports MultiBody system simulation. Taking
advantage of the complementarity and interoperabili-
ty between graphical engines ACIS and HOOPS,
MWorks, as a new generation of multi-domain mod-
eling and simulation platform, implements the 3D
animation of its post-processor based on these two
graphical engines, and provides plentiful animation
functions.
This paper firstly presents the overall design of the
animation post-processor based on the analysis of
visual features of the standard multibody library in
Modelica; then describes its implementation, includ-
ing mechanisms of geometry creation and display,
data management and interactive interface; finally,
verifies the effectiveness of the post-processor by
some typical examples from the multibody library
and application to aircraft landing gear simulation.

Keywords: Modelica; Post-processor; 3D animation;
ACIS & HOOPS; MWorks

1 Introduction

A Modelica-based simulator usually consists of
modeling tool, compiler, analyzer, solver and post-
processor. The basic function of post-processor is to
display simulation results in curves. If a platform
supports multibody system, the 3D animation func-
tion is essential to its post-processor. The animation
post-processor is used to deal with multibody anima-
tion, including geometry creation, graphic rendering,
animation control and so on.

The popular graphic engines include PARASOLID,
OpenGL, ACIS[1], HOOPS[2], Granite, etc. None of
them has complete functions in animation. PARA-
SOLID is good at modeling and visual interaction
but has a defect in data management of complex
models due to its unclear data structure; OpenGL has
powerful graphical display and interaction functions
but is short of professional geometric library; ACIS
provides plentiful geometry modeling functions but
is weak in visual operation and interaction; HOOPS

has significant advantages in graphical display, inte-
raction and data structure but is not good at modeling.
Therefore, it's difficult to develop a powerful graphic
system based on only one graphical engine.

Some simulation platforms provide animation func-
tion for multibody systems based on VRML, but this
method is not powerful enough due to its defects in
graphical quality, kernel interfaces and geometry
library. Taking advantage of the complementarity
and interoperability between ACIS and HOOPS,
MWorks, as a new generation of multi-domain mod-
eling and simulation platforms, implements the 3D
animation of its post-processor based on these two
graphical engines. MWorks provides plentiful ani-
mation functions, which have the advantages of con-
venient human-computer interaction, good geometric
format compatibility, real-time geometric rendering,
high fidelity animation effects, powerful model man-
agement and high expandability.

2 Design Overview

2.1 Visual Features of Standard MultiBody Li-
brary in Modelica

The standard MultiBody library in Modelica 2.2.2 or
later consists of packages of World, Examples,
Forces, Frames, Interfaces, Joints, Parts, Sensors,
Types and Visualizers, as shown in Figure 2.1.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 663 DOI: 10.3384/ecp09430076

Figure 2.1 Modelica Standard MultiBody Library

Visualizers is the 3D graphic visualization package
of the MultiBody library, which includes models of
FixedShape, FixedShape2, FixedFrame, FixedArrow,
SignalArrow, Advanced.Arrow, Advanced.Double-
Arrow, Advanced.Shape, Internal.FixedLines and
Internal.Lines. The Advanced.Shape model is the
core of the Visualizers package, which gives the in-
formation about geometry construction in multibody
animation.

The geometry is created according to 7 output va-
riables in Visualizers.Advanced.Shape model, which
are Form, rxvisobj[3], ryvisobj[3], rvisobj[3], size[3],
Material and Extra. The variable Form represents the
shape of multibody part, which may have two types:
one is from the eight basic geometric elements in the
standard library: box, sphere, cylinder, cone, pipe,
beam, gearwheel and spring (see Figure 2.2); the
other is from imported geometries defined by exter-
nal geometric files, which have no unified format.
The variables of rxvisobj[3], ryvisobj[3] and rvi-
sobj[3] specify the position of model relative to the
world coordinate system. The variable size[3] de-
scribes the length, width and height of model as
shown in Figure 2.2, in which the dark blue arrow
means the length direction and the light blue arrow
means the width direction. The variable Material
depicts material properties of model including color
and specular coefficient. The variable Extra implies
additional graphic properties, which have different
meanings for different elements, as shown in Table
2.1.

Figure 2.2 Eight Basic Geometric Elements

Table 2.1 Meaning of Variable Extra
Shape Type Meaning of Variable Extra

cylinder
If Extra > 0, a black line is in-
cluded in the cylinder to show
its rotation.

cone

Extra = diameter-left-side /
diameter-right-side, i.e;

Extra = 1: cylinder;

Extra = 0: “real” cone.

pipe

Extra = outer-diameter / inner-
diameter, i.e;

Extra = 1: cylinder that is
completely hollow;

Extra = 0: cylinder without a
hole.

gearwheel
Extra is the number of teeth of
the gear.

spring

Extra is the number of wind-
ings of the spring. Additional-
ly, “height” is not the “height”
but 2*coil–width.

The geometry of every multibody part is an assembly
of different instances of the Visualizers.Ad-
vanced.Shape model. As an example, the instances
of Shape in the example model Modelica.Me-
chanics.Examples.Elementary.DoublePendulum are
shown in XML file in Figure 2.3.

Figure 2.3 Geometries of DoublePendulum

2.2 Framework

MWorks[5][6] consists of five modules: Modeling en-
vironment, Compiler, Analyzer, Solver and Post-
processor. Modeling environment allows users to
new a Modelica model by using drag-drop operation
or text. Compiler compiles models by running lexical,
syntax and semantic checks and generates flat equa-
tion systems of models. Analyzer analyzes flat equa-
tion systems from Compiler by carrying out structur-
al consistency check, variable substitution, BLT de-
composition and high index DAE reduction, and
outputs index-1 DAE equation sequences. Solver
solves the index-1 DAE equations in order and out-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 664

puts the file of simulation results. Post-processor
reads the result file and displays results in curves or
in animation.

Figure 2.4 Process of MWorks

The process of animation post-processor in MWorks
is as follows (see Figure 2.4): Firstly, post-processor
reads and parses the result file to generate informa-
tion for animation including geometric data (shape,
position, material), animation data, curve data, etc.;
Secondly, the post-processor uses ACIS to create
geometries based on geometric data, and then uses
HOOPS to render and display 3D geometric models;
Thirdly, the post-processor generates transformation
matrices of each animation frame based on anima-
tion data, which drive model to move; Finally, the
post-processor responds to user’s operations to begin

animation, stop animation, rotate or translate model
and so on.

3 Implementation

The key factors of the implementation of the anima-
tion post-processor include process of geometry
creation and display, performance of data manage-
ment and convenience of interactive interfaces.

3.1 Geometry Creation and Display

The mechanism of geometry creation and display is
the core of animation post-processor, and its design
directly affects the performance of the post-processor.
The process of creating and displaying geometry in
MWorks is shown below (see Figure 3.1):
(1) Create a top geometric model and initialize it;
(2) Check whether all parts have been created, if yes,

go to step (6), if no, go to step (3);
(3) Create a part in the top model relative to the

world coordinate system;
(4) Create a geometric entity relative to the part

coordinate system by the following steps:

Figure 3.1 Process of Geometry Creation and Display

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 665

(i) Check whether the geometry is defined by an
externally imported graphic file, if no, that is,
the geometry is a standard graphic element,
go to step (ii); if yes, go to step (iii);

(ii) Invoke the responding ACIS APIs to create
geometric entity according to the element
type of the geometry, then triangulate it and
generate HOOPS Shell (a collection of poly-
gons that forms a 3D object);

(iii) Check whether the imported file is in
HOOPS format, if no, invoke self-defined
APIs to parse the file and generate HOOPS
Shell; if yes, invoke HOOPS APIs to parse
the file and return the geometric object;

(5) Render the geometry, then go to step (2);
(6) Read the result file to generate transform matric-

es of each animation frame and save them to buf-
fer;

(7) Drive animation of the multibody model.

At present, the post-processor of MWorks can sup-
port the following formats: STL file (.stl), HOOPS
file (.hsf and .hmf), ADAMS shell file (.shl), etc.

3.2 Data Management

3.2.1 Management of Geometric Data

After reading the result file, the post-processor ob-
tains the data used for creating geometries. In order
to improve the efficiency of accessing data, the geo-
metric data of all instances of the Visualiz-
ers.Advanced.Shape model are saved in special data
structure combining map container and struct pointer.
The definition of data structure is given below:

3.2.2 Management of Model Data

The post-processor of MWorks uses tree structure to
represent model data. A Model, which represents a
multibody model, contains a number of Parts. A Part
consists of a number of Shapes, which implies an
instance of Visualizers.Advanced.Shape model (see
Figure 3.2). Meanwhile, HOOPS uses Segment to
describe model data, and one segment maps one
HOOPS key. So the key problem in management of
model data is how to build the tree structure of mod-
el using the HOOPS key.

MWorks uses C++ inheritance mechanism to build
the two-way mapping between Entity pointer and
HOOPS key by creating Entity class (all of Model,
Part and Shape are inherited from Entity). This me-
thod can effectively solve the key problem in man-
agement of model data. We can use the implementa-
tion of highlight picking up as an example: we firstly
use mouse to select certain geometric object, and
then invoke HOOPS API to obtain the HOOPS key
of that object. The corresponding entity pointer of
that object can be obtained by the two-way mapping.
We finally invoke interfaces to modify the color and
transparency of the entity, which indicates that the
object is picked up.

Model Hierarchy

Two-Way Mapping between Entity and HOOPS Key

Figure 3.2 Structures of Model Data

3.2.3 Management of Animation Data

The 3D animation can be viewed as display of a se-
quence of picture frames. The position of each part
of model has been changed once after each picture
frame is displayed, which can be represented by a
4*4 matrix, namely transformation matrix. In order
to enhance the efficiency of reading and writing
animation data, we adopt the consecutive memory
storage method (see Figure 3.3). This method stores
the data of the same type in a continuous memory
area, so that the data can be easily accessed through
its first address and block length.

Figure 3.3 Physical Structure of Animation Data

3.3 Interactive Interfaces

The animation post-processor of MWorks uses MFC
multiple document/view framework, which allows
the user to open a number of relatively independent

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 666

animation windows at the same time. The animation
interface menu provides four kinds of functions (see
Figure 3.4): (1) view splitting function to allow users
to view animation in different split views from dif-
ferent perspectives; (2) model operation function to
allow users to rotate, translate, zoom and highlight
pick up model and to change the display mode,
which can be wire-frame mode, hidden mode, pers-
pective mode and shadow mode; (3) view operation
function to allow users to change the observing view,
which can be front view, rear view, left view, right
view, upward view, downward view or axonometric
view, etc.; (4) animation control function including
the operations of starting animation, suspending
animation, reversing animation, resetting animation,
adjusting animation speed or recording animation
video.

Figure 3.4 Animation Interfaces of MWorks

4 Examples

ACIS and HOOPS-based animation post-processor
of MWorks has been successfully applied to simula-
tion of MultiBody system based on Modelica.

4.1 Examples from Standard MultiBody Li-
brary

Take model Modelica.Mechanics.MultiBody.Ex-
amples.Loops.EngineV6 as an example. The results
are shown in Figure 4.1 after the model is compiled,
analyzed and solved. Figure 4.2 shows the results of
another example of Modelica.Mechanics.Multi-
Body.Examples.Systems.RobotR3.fullRobot. In
post-processor window, the left is its axonometric
view in shadow mode, the upper-right is its front
view in hidden mode and the bottom-right is its de-
fault view.

4.2 Application in Aircraft Field

Cooperating with Commercial Aircraft Corporation
of China, Ltd., MWorks accomplished the simulation
of aircraft landing gear under various working condi-
tions. (See Figure 4.3)

Figure 4.1 Animation of Example EngineV6

Figure 4.2 Animation of Example fullRobot

Figure 4.3 Animation of Aircraft Landing Gear

5 Conclusions

Based on ACIS and HOOPS, MWorks platform im-
plements an animation post-processor for multibody
systems. It has the advantages of convenient human-
computer interaction, real-time geometric rendering,
high fidelity animation effects, powerful model data
management and good expandability, and has been

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 667

successfully applied to some practical projects. The
further work of animation post-processor of MWorks
is to support flexible multibody animation, which has
two tasks: (1) providing interface for common finite
element software such as ANSYS and ABACUS; (2)
supporting the animation of flexible body in flexible
multibody library in Modelica.

Acknowledgments

The paper was supported by National Nature Science
Foundation of China (No.60874064, No.60704019),
National Science & Technology Major Project of
China (No.2009ZX040001-015).

References

[1] ACIS online help. Spatial Technology Inc.
http://www.spatial.com.

[2] HOOPS 3D Application Framework.
HOOPS online help. Tech Soft American Inc.
http://www.hoops3d.com.

[3] Zan Wang, Chao Xu, Xiang Xue. The Visua-
lization Interaction Between ACIS and
HOOPS. Group Technology & Production
Modernization 2006, 1(23): 49 – 51.

[4] Hong-Wei Dong, Ru-Rong Zhou, Lai-Shui
zhou. Developing 3D Application Software
Based on ACIS. COMPUTER AIDED EN-
GINEERING 2002, 12 (4): 53 – 58.

[5] Ding Jianwan, Chen Liping, Zhou Fanli. A
Component-based Debugging Approach for
Detecting Structural Inconsistencies in Dec-
larative Equation based Models. Journal of
Computer Science & Technology, 2006,
21(3): 450-458

[6] FAN-LI Zhou, LI-PING Chen, YI-ZHONG
Wu, JIAN-WAN Ding, JIAN-JUN Zhao,
YUN-QING Zhang. MWorks: a Modern IDE
for Modeling and Simulation of Multidomain
Physical Systems Based on Modelica. Mod-
elica 2006, September 4th – 5th: 725-732.

[7] Bo-Xing Wang, Bo Wang, Yun-Qing Zhang.
Model Management in Complicated Mechan-
ical System Simulation Platform. Journal of
Computer-Aided Design & Computer Graph-
ics, 2004, 16(4): 820 – 825.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 668

Implementation of a Modelica Library
for Smooth Spline Approximation
Jörg Ungethüm Dirk Hülsebusch

German Aerospace Center, Institute of Vehicle Concepts
Pfaffenwaldring 38-40, 70569 Stuttgart

joerg.ungethuem@dlr.de dirk.huelsebusch@dlr.de

Abstract

In system modeling, table data interpolation is fre-
quently used for e.g. characteristic maps or as re-
placement of a complicated system. In many cases,
the available data are noisy and of limited accuracy.
It turns out, that data approximation is advantageous
against data interpolation in these cases. A Modelica
library for 1-D and 2-D spline approximation on ba-
sis of external functions is presented in this paper.
Keywords: interpolation, approximation, polynomial
splines, data tables

1 Introduction

The Modelica standard library provides table objects
for 1-D and 2-D data interpolation. However, there
are several shortcomings of these implementations:

 Table data with of more than 2 dimensions is
not supported (extension up to 4 dimensions
is presented in [1])

 Only linear and 3rd order spline interpolation
but not data approximation is supported

 Step functions cannot be modeled by stan-
dard tables as grids are required to be strictly
increasing

 2-D table data must be given on a rectangu-
lar grid. As measurement data is commonly
available only as scattered data, the actual
interpolation table must be generated by
some kind of interpolation which introduces
new inaccuracy.

 In case of inputs out of the table data range,
data is extrapolated using the nearest 2 data
points. In many real world problems this
type of data extrapolation is not suitable.

2 Approximation vs. Interpolation

In system modeling, table data are often used for
measured data or as a replacement for a complex
external calculation (e.g. media properties). In many
cases the table data are prone to random and discreti-
zation errors. In Figure 1 a simple example of 1-D
measured data is given. The discretization of the
measurement device is clearly seen in the sampled
data (U = 0.01V). Linear interpolation of these data
leads to a partially stepwise constant curve, which
obviously indicates zero gradients. Assuming a simi-
lar curve as a table based function definition this
might introduce numerical problems. Unfortunately
also cubic spline interpolation is not appropriate as
the gradient of the spline is partially opposite to the
gradient of the linear interpolation. It should be
noted, that the spline interpolation introduces nu-
merous local extrema which are not present in the
original data. Again, this might lead to numerical
trouble.
To overcome these difficulties, function approxima-
tion is occasionally used (e.g. in most media mod-
els). Unfortunately, finding suitable trial functions is

Figure 1 Linear and cubic spline interpolation of sam-
ple measured data points

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 669 DOI: 10.3384/ecp09430013

not trivial at all. Only in very simple cases polyno-
mials might be used.
Another approach is to use polynomial splines for
piecewise approximation. That is, the knots of the
generated splines are not fixed at the data points but
selected by the algorithm. By means of the smooth-
ing parameter s the smoothness of the approximation
is controlled. Setting s to zero, an interpolating spline
is constructed. Moving over to greater values of s,
the closeness is relaxed for the benefit of smooth-
ness. The smoother the approximation is the lesser
knots are needed. Cubic spline approximation in 1D
using different values for s is shown in Figure 2.

Figure 2 Cubic spline approximation of sample meas-
ured data points

3 Modelica implementation

The core routines for curve and surface fitting by
spline approximation are public available in the li-
brary DIERCKX at Netlib [2]. Splines of order 1 to 5
are supported. DIERCKX routines are written in
standard FORTRAN 77. To make them usable in the
Modelica environment, only an interface had to be
implemented. The DIERCKX library was translated
into Ansi-C by f2c (also available from Netlib) to
simplify mixed language programming.
The Modelica implementation uses the Exter-
nalObject approach. Thus, splines are objects with
constructor and destructor functions called automati-
cally exactly once before the first respectively last
use of the object. The internal representation of the
splines as Ansi-C structures is completely hidden for
the user. The spline generation involving dynamic
memory allocation is done only during object ini-
tialization. Actual data interpolation is fast and does
not involve memory allocation. As a nice feature,
DIERCKX contains routines for derivative calcula-

tion. The first order derivatives are also available as
Modelica functions. The polynomial order of the
splines can be chosen between 1 and 5 whereas even
numbers are strongly discouraged. Each data point
might be weighted individually. The total number of
spline objects is not limited nor is the size of data.
For 1-D curve data fitting of periodic curves is sup-
ported. The data for surface fitting might be supplied
on a rectangular grid in the same format that is used
in the standard interpolation tables. However, also
scattered input data are supported. In common, num-
ber and location of knots are chosen by the algorithm
but this might be overridden by a user-specified knot
selection.

4 Interfaces

The interface is designed with ease of use in mind.
Thus, for any inputs reasonable defaults are supplied.
The basic usage of 1-D curve is:

/* spline initialization */
Import C=ApproxSpline.Curve1d;
C.Type curve=C.Type(data=data, s=0.01);
…
equation

/* spline data evaluation at x y*/
y = C.eval(curve,x);

Any input arguments of the initialization routine ex-
cept of the table data are optional. The inputs are:
data[:,2-3] Data to be approximated as row

wise triples: x,y,w (w is op-
tional weight)

s = 0 Approximation smoothness
k = 3 Polynomial spline order (1..5)
periodic = false Generate periodic spline if true
x_lim[2] =
{min(data[:,1]),
max(data[:,1])}

Lower and upper limits of the
generated spline curve

t = fill(0,0) if non-zero length, t is inter-
preted as user-specified knot
selection

The order of the input data array does not matter as it
is internally sorted. However, abscissa elements must
be mutually unequal. The approximation smoothness
has to be greater or equal zero. The generated spline
approximation p(x) is found by minimizing the dis-
continuity of the kth derivation whereas the condition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 670

 sxpyw
n

i
iii

1

2)(

is still fulfilled.
Per default, the limits of a non-periodic spline curve
are set according to the minimum and maximum data
value. However, the limits might be modified by pa-
rameter xlim. This might be used e.g. for extrapola-
tion purpose. In any case, outside of the limits the
spline evaluation will return the boundary coordi-
nate.

minmin

maxmax

)()(

)()(

xxxpxp

xxxpxp

In case of periodic splines, the period is given by
)min()max(xx

The y-coordinate of xmax as well as any given limits
are ignored in this case.
If automatic knot selection is not sufficient, user
might specify knots as parameter array.
For convenience, a block interface is provided. The
block dialog is shown in Figure 3.

Figure 3 Parameter dialog of 1-D curve block

The interface of the 2-D surface is very similar to the
1-D case.

/* spline initialization */
Import S=ApproxSpline.Surf2d;

S.Type surf=S.Type(data=data, s=0.01)
…
equation

/* spline data evaluation [x,y] y*/
y = S.eval(surf,x,y);

Any input arguments of the initialization routine ex-
cept of the table data are optional. The inputs are:

rectangular=false true if input data is on rectan-
gular grid, otherwise assume
scattered data

data[:,:] Data to be approximated (ei-
ther scattered or on rectangu-
lar grid)

s = 0 Approximation smoothness
kx = 3 Polynomial order in X-dir

(1..5)
ky = 3 Polynomial order in Y-dir

(1..5)
x_lim[2] =
{min(x), max(x)}

Lower and upper limits in X-
dir of the generated spline
surface

y_lim[2] =
{min(y), max(y)}

Lower and upper limits in Y-
dir of the generated spline
surface

tx = fill(0,0) if non-zero length, tx is inter-
preted as user-specified X-dir
knot selection

ty = fill(0,0) if non-zero length, tx is inter-
preted as user-specified Y-dir
knot selection

Figure 4 Parameter dialog of 2-D surface block
The input data might be provided on a rectangular
grid or as scattered data. In the first case, the input
format is similar to the standard Modelica interpola-
tion table. In case of scattered input data, a simple
table with 3 or 4 columns has to be provided as
shown in Figure 5 whereas the 4th column is the op-
tional weight. For rectangular data it is not possible
to provide individual data point weights.

nnnnnynxnxnxnx

ny

ny

ny

wzyx

wzyx
wzyx
wzyx

zzzzx

zzzx
zzzx
yyy

2222

1111

,1,12,1,

,22,21,22

,12,11,11

210

Figure 5 Input data schemes: rectangular grid (left) ,
scattered data (right)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 671

5 Examples

As a typical example, a table based model of a turbo
compressor is used. The model of the turbo compres-
sor is built up from the equations:
The dimensionless isentropic compression work:

 1
1

1

1

2
1

2

1

p
pRTvdpY

p

p

By the use of dimensionless characteristic numbers
the model becomes independent of variable inlet
temperature and pressure. The most common charac-
teristic numbers for turbo compressors are the head
coefficient and the flow coefficient

uD

V
u

Y
2

2

4
2/

whereas u is the wheel tip speed, D is the wheel di-
ameter and V is the gas volume flow rate. The last
characteristic number used is the tip speed Mach
number, which is the ratio of tip speed and the sonic
speed of gas.

a
uMau

The core of the compressor model are two 2-D
lookup tables which maps head coefficient and tip
speed Mach number to flow coefficient and inner
efficiency.

 ui

u

Matable
Matable
,
,

In case of connecting both fluid ports with control
volumes and the rotational flange with a rotating
mass, the table inputs can be calculated directly from
dynamic states. The mass flow rate is subsequently
calculated from the flow coefficient.

1

2

4
0,max

Vm

DπuV

The shaft power might be computed by means of the
isentropic and the mechanic efficiency from mass
flow rate and isentropic compression work. How-
ever, to avoid a singularity at zero speed, it is advan-
tageous to calculate the shaft torque without intro-
ducing the mechanic power.

3
18

DiY
G

i

The model has been implemented both with standard
Modelica table interpolation as well as with ap-
proximating spline approximation. Table data were
taken from a commercial automotive air compressor.
There are 56 data points available. From these scat-
tered data, the gridded data as needed for Modelica
standard tables is generated by interpolation. As an
example, the interpolated data using a 20x20 grid is
plotted in Figure 6. The corresponding 3rd order ap-
proximating spline surface is shown in Figure 7.

Figure 6 Flow coefficient as function of tip speed Mach
number and head coefficient (mesh by interpolation,
original data points as stars)

Figure 7 Flow coefficient as function of tip speed Mach
number and head coefficient (mesh by spline approxi-
mation, original data points as stars)
The compressor model has been included into a sim-
ple test model which is shown in Figure 8. Both fluid
ports of the compressor model are connected to con-
trol volumes. The left control volume is fed through
a pipe from a boundary model. The right control vol-
ume blows off through an ideal nozzle. The com-
pressor shaft is connected to a rotating mass which is
driven by a speed-controlled torque. Starting with
zero compressor speed, the torque accelerates the

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 672

shaft up to the given rotating speed set value. Simul-
taneously the volume flow rate through the compres-
sor and the pressure in the right control volume rise.
The test model was run with both compressor im-
plementations. The comparison of flow coefficient
and inner efficiency which are calculated by table
lookup respectively spline approximation are shown
in Figure 9 and Figure 10. Obviously the spline ap-
proximation gives a smoother curve which in turn
leads to slightly better simulation performance
(Table 1)1.

Figure 8 Compressor test model setup

Figure 9 Comparison of flow coefficient

Figure 10 Comparison of inner efficiency

1 Any performance comparison was done on a double PC,
dual processor, dual core AMD Opteron, 2.21 GHz, 2.75
GB RAM running Windows XP and Dymola 7.0

Table 1 Comparison of test model performance
Standard ApproxSpline Diff

CPU-time [s] 0.094 0.079 -16%
 F-evaluations 1399 885 -37%
 H-evaluations 836 713 -15%
Jacobian-eval. 108 80 -26%

To make the equation system more difficult to solve,
another pipe is introduced in the model between the
compressor and the right control volume (Figure 11).
In this modified model the pressure ratio of the com-
pressor cannot be calculated from system states any
more. As the pressure drop of the pipe depends on its
mass flow rate, the pressure ratio of compressor in
turn depends on the mass flow rate. As a result, a
nonlinear equation system of dimension 4 after re-
duction which includes the table lookup procedure is
generated. The simulation of the model using Mode-
lica standard tables fails after approx. 0.1s simulation
time due to a Newton solver failure. Simulation of
the model using approximating splines works fine.
To get the Model with the standard tables working, a
modification of the table data is necessary. If an in-
put signal of standard tables is outside of the defined
interval, the corresponding value is determined by
extrapolation through the last or first two points of
the table. In several cases, this leads to nonsensical
results, e.g. efficiency less than zero. By adding an-
other 2 rows and columns to the table data, the ex-
trapolation can be forced to return the last or first
point of the table. Doing this makes the modified test
model solvable even with Modelica standard tables.
The comparison of the performance is shown in
Table 2.

Figure 11 Modified compressor test model setup
Table 2 Comparison of modified test model perform-
ance

Standard ApproxSpline Diff
CPU-time [s] 0.297 0.266 -10%
 F-evaluations 1128 904 -20%
 H-evaluations 786 714 -9%
Jacobian-eval. 87 82 -6%

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 673

An interesting point is to study the sensitivity against
random noise of table data. As mentioned before,
table data are frequently obtained by measurements
which are in most cases not smooth. To simulate
this, a random number is added to each table data
point:

 5.0...5.0rnd)min()max(

5.0...5.0rnd)min()max(
*

*

 iiii

The comparison of the models using these noisy ta-
ble data is shown in Table 3. The shape of the spline
surface only slightly changes in comparison to that
generated from smooth data points (Figure 12). As a
result, the simulation performance of the test model
is nearly the same as if smooth data points were used
(Table 3). In contrast the computational burden of
the model using noisy data with standard Modelica
table interpolation is much higher as if smooth data
points were used. Thus it turns out, that spline ap-
proximation is advantageous especially if the table
data is noisy.

Figure 12 Flow coefficient as function of tip speed
Mach number and head coefficient (mesh by spline
approximation, noisy data points as stars)
Table 3 Comparison of test model performance with
noisy table data

Standard ApproxSpline Diff
CPU-time [s] 0.156 0.078 -50%
 F-evaluations 2315 974 -58%
 H-evaluations 1032 731 -29%
Jacobian-eval. 210 84 -60%

Another issue with measured table data is limited
accuracy, e.g. because of the discretization error of
an A/D-converter. To show this effect, the table data
points are rounded to one digit (Figure 13). For the
standard table model, the performance is clearly
worse than with the original data. It is assumed, that
the partially zero gradient of the data points is re-

sponsible for this behaviour. The approximating
spline model is only marginal declined compared to
the model that uses the original data (Table 4).

Figure 13 Flow coefficient as function of tip speed
Mach number and head coefficient (mesh by interpola-
tion, rounded data points as stars)
Table 4 Comparison of test model performance with
rounded table data

Standard ApproxSpline Diff
CPU-time [s] 0.109 0.078 -28%
 F-evaluations 1520 924 -39%
 H-evaluations 867 714 -18%
Jacobian-eval. 129 83 -36%

6 Conclusion

A new Modelica library for data approximation with
polynomial splines in 1 and 2 dimensions is pre-
sented. Better performance compared to standard
Modelica table interpolation was found in some
cases, e.g. noisy or piecewise constant table data.
The user interface is partially similar to the standard
tables, so migration from standard interpolation ta-
bles to approximating splines should be of modest
effort. For convenience, table data might be given as
scattered data, so no external tool is necessary to
generate regular gridded data points.
The library will be made freely available.

7 Acknowledgment

Many thanks to Prof. Paul Dierckx the author of the
DIERCKX FORTAN code.

1 1.2 1.3 1.4 1.5 1.6 1.7

1.10.4

0.6
0.8

1.0

0.1
0.15

0.2
0.25
0.30
0.35

Ψ [-]

Φ
[-]

Mau [-]

1

0

1.2 1.3 1.4 1.5 1.6 1.70.4
0.6

0.8
1.0

1.2

1.1

0.1

0.2

0.3

0.4

Ψ [-]

Φ
[-]

Mau [-]

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 674

References

[1] T. Hirsch und M. Eck, “4-Dimensional Table
Interpolation with Modelica,” Proceedings of
6th International Modelica Conference 2008,
Bielefeld: 2008.

[2] P. Dierckx, Curve and Surface Fitting with
Splines, Mcgraw Hill Book Co, 1995.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 675

Point-to-Curve Constraints
and other Contact Elements

Volker Beuter
Kämmerer AG

Wettergasse 18, 35037 Marburg
v.beuter@kaemmerer-group.com

Abstract

The MultiBody package of the Modelica Standard Li-
brary (MSL) contains a Prismatic Joint model with two
Frame connectors where one frame can move with re-
spect to the other along a direction n. This can be
viewed as that the second frame can move along a
straight line fixed in the first frame. In this work a con-
straint is developed where this line is replaced by some
curve described by some suitable geometry: A Point-
to-Curve (PtCv) constraint. It turns out that there are
several options to define the orientation of the second
frame with respect to the first one. Additional degrees
of freedom are possible. These ideas can be applied
to 2D: A Point-to-Surface (PtSf) constraint . PtCv and
PtSf constraints seem to be suitable building blocks
for higher order constraints: Curve-to-Curve (CvCv)
resp. Surface-to-Surface (SfSf) constraints. As a by-
product there are some Joint models not yet available
in the MSL at all or not in that form, like an elementary
Cylindrical joint.

Keywords: point-to-curve contact; osculating cir-
cle; point-to-surface contact

1 Introduction

Part of Kämmerer’s involvement in the Eurosyslib
project[4] is the development of a package with mod-
els for building convertible car roofs. One type of
components of such a convertible roof are mechanisms
where some kind of roller can move within some-
thing like a track. When we can abstract from ef-
fects like backlash and collisions with the bearings we
can view this as a constraint with one translational de-
gree of freedom. In this abstraction a point can move
along a curve. The curve does not need to be fixed in
space, it may be moving, but it is rigid. Conceptual-
ized in Modelica MultiBody package terms this is a
model with two Frame connectors. When we describe

a roller - track component (where the track is fixed
rigidly to some other part of the mechanism) the con-
necting point is not on the idealized line of the track.
The moreover it is just a matter of the reference sys-
tem what we consider the location of the connection.
Translated to the Modelica model this means the curve
is fixed to frame_a but it does not need to go through
it. An idealized point can move along the curve. For
convenience the other connector frame_b is located at
this point on the curve.

The fact that there is just one translational degree of
freedom along the curve does not imply that the point
can move freely along the curve. There my be some
friction, damping or even applied forces. But in a first
stage we will not consider this.

Another question is if a Point-to-Curve constraint
also ought to have rotational degrees of freedom.
In the multi-body simulation program ADAMS[1] a
point-to-curve contact always has all three rotational
degrees of freedom (dofs), so it only constrains 2 trans-
lational dofs. Or think of the toddlers’ toy where
pierced pellets are beaded to a rigid wire. Here the
pellets can rotate around the center axis of their hole,
which is—again disregarding backlash—the tangen-
tial axis to the curve in the current contact point. An
idealized model of this toy would be a point to curve
constraint with two dofs: one translational dof along
the curve and one rotational dof around the tangential
axis in the contact point.

But it turns out that these additional rotational dofs
can always be modeled—once tangential orientation
along the curve can be represented—without putting
them into the PtCv model itself: An ADAMS-like 4-
dof PtCv can be built up from a PtCv without any ro-
tational dof and a spherical joint connected to it. The
mentioned toy can be modeled by a PtCv with tangen-
tial orientation with a revolute joint connected to it.
Therefore here we will abstain from further compli-
cating the models and will only consider PtCvs with-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 676 DOI: 10.3384/ecp09430047

out any rotational dof: A PtCv constraint always has
just one dof. (The idea of an additional rotational dof
is only picked up for the special case of a straight curve
in the section by-products where a cylindrical joint is
described.)

The curve of an ideal PtCv constraint may be infi-
nite or cyclic but it cannot be finite, i.e. cannot have
end points: Such end points cannot be described by
the notion of degrees of freedom. In contrast to this in
technical realizations of PtCv elements we often have
end points limiting the curve. But in most cases the
stop is realized by means of introducing a repelling
force and we can always describe a PtCv with stops
as an ideal PtCv (with an unlimited curve) with addi-
tional force elements applying a repelling force pre-
venting frame_b from leaving an admissible range of
the curve too far. This will be described in some more
detail in section PtCv with Stops.

As the Prismatic Joint from the MSL MultiBody
package can be seen as the most simple case of a PtCv
Joint, it is useful to have a look at it.

2 The Prismatic Joint

The Prismatic Joint has one translation dof in the
direction specified by the direction parameter n:
frame_b can move along a straight line trough
frame_a in direction n, i.e the set

{
es | s ∈ R3

}
where

e = n/‖n‖2 is the normalized direction vector. As n is
expressed in frame_a coordinates also the straight line
is. (Here the roles of frame_a and frame_b are inter-
changeable, but we already view the straight line as
fixed in frame_a.) Seen in this view the actual value
of the position value s determines the "contact point"
C in frame_a coordinates simply by C(s) = es. Here s
is a one dimensional position variable (a distance, but
may also become negative).

The only reasonable choice here is that both frames
have the same orientation. The global positions of the
frames is described by the equation rb = ra + T−1es
where T is the orientation matrix of frame_a and
T−1 is its inverse, which is simply the matrix trans-
posed, because orientation matrices are symmetric.
Disregarding the offset parameter s_offset we get
frame_a = frame_b iff s = 0.

The sum of the forces acting on both frames is zero:
Fa + Fb = 0. Regarding the torques at the frames we
have τa + τb + es×Fb = 0.

The tangential force, i.e. the force in direction n is
f = eFa = −eFb. As there are no frictional, damping
or applied forces in the basic Prismatic Joint model the

tangential force is zero, i.e. eFa = 0.
The question arising now is: What happens to these

location and force balance equations when the straight
line is distorted?

3 PtCv with parallel Orientation

Next we substitute the straight line by an arbitrary
smooth curve, but keep the fact that both frames main-
tain parallel oriented permanently, i.e. the equation
that both frame have the same rotation object. The
curve is fixed in frame_a but does not need to run
through it. Here we are not yet concerned with the
concrete modeling of the curve. It is just a smooth
mapping C : R→ R3. What means "smooth" here will
be elaborated later. It is not required that the curve
is parameterized by it arc length. So we now use a
variable s0 for parameterizing the curve. C(s0) is the
current contact point on the curve (in frame_a coor-
dinates). The distance to C(s0) from the initial contact
point along the curve, i.e. the arc length is denoted
by the variable s. The same is with the velocities: v0
is the curve parametrization velocity (i.e. the deriva-
tive of s0) and v is the velocity along the curve. Note
that s0 and v0 are not a physical length and velocity
but just abstract Real variables. Only if the curve is
parameterized by its arc length s = s0 holds. (An-
other case where s0 and v0 are length and velocity is
when the curve is parameterized with one of its com-
ponents, say x, i.e. when C(s0) = {s0,Cy(s0),Cz(s0)}
holds, where Cy and Cz are the projections of the con-
tact point function on y and z axis respectively. This
is called a—lacking a better name—a "linear" curve in
the PtCv package, because there is some main path in
the curve, y and z can be viewed as deviations from
this path.)

In the case of an arbitrary curve the equation rb =
ra +T−1C(s) relates the global positions of the frames.
Due to the parallel orientation of the frames their ro-
tation object are the same. As the force at a frame
is expressed in the frame coordinates we still have
Fa +Fb = 0. The balance equation for the torques now
becomes τa + τb +C(s)×Fb = 0.

The property that the force along the axis of motion
at the Prismatic Joint is zero here becomes that there
is no force in the tangential direction along the curve
in the contact point: taFa = 0 where ta is the (normal-
ized) tangential vector in the contact point in frame_a

coordinates.
A PtCv model with these equations is already suit-

able for building up an ADAMS-style PtCv by just

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 677

connecting a Spherical Joint to frame_b.

4 Orientation of the second Frame

When something is moving along a curve it is quite
natural that also the orientation of that object changes
while traveling along the curve: A cornering car is nor-
mally oriented in the current direction of travel. When
we want an object to follow a given curve we could
use the old ADAMS users’ trick of connecting the ob-
ject to the curve by means of two PtCvs like described
above in a short distance. But this has the disadvan-
tage, that the object only follows the curve approxi-
mately. The closer the distance between both PtCvs,
the better is the approximation but the more likely are
numerical problems. The moveover when we do not
need the remaining rotational dof along the axis con-
necting both PtCvs, we have to get rid of it by means
of an additional joint. (In ADAMS this is done by a
Perpendicular Joint which is not yet available in the
MSL.) All these joints result in a model with many
equations to describe such a simple mechanism.

So it seems desirable to have a tangential orientation
of the second frame directly in the PtCv model. But
here the problem arises that "tangential to the curve"
only determines one direction vector of the orienta-
tion. Even if frame_b of the PtCv is to be connected
to a revolute joint in order to introduce a rotational dof
around the tangential axis (and therefore the second
direction vector of the orientation does not matter) it
has to be determined in order to have a unique solu-
tion of the equations. There are several opportunities:
Take an arbitrary direction vector, e.g. the local z-axis
of the frame_a coordinate system. But this does not
work when the tangential vector ta gets too near to the
selected second direction vector. The other opportu-
nity is to take the direction of the normal vector to
the curve (pointing inward to a local curvature) But if
the curve locally becomes a straight line the normal
vector is not defined and special considerations have
to be taken. The moreover using the normal vector
to the curve demands a higher differentiability of the
curve. Fore these reasons both options are available
in the PtCv implementation and can be selected due to
situation by parameter.

5 PtCv with tangential Orientation

A tangential orientation of frame_b keeps the position
equation of the frames unchanged.

In order to archive a tangential orientation at least
the tangential vector to the curve in the current con-
tact point ta (in frame_a coordinates) has to be deter-
mined. For a moving contact point this can in principle
be done in Modelica by just applying the der() oper-
ator. Problems arise when the contact point is at rest,
especially at simulation start. (So to speak you have to
know where the road is going without walking.) Cur-
rently spatial derivations cannot be directly expressed
in Modelica. Therefore not only an equation for the
contact point depending on the curve parametrization
variable s0 has to be provided but also an equation for
the tangential vector. The moreover, when the nor-
mal vector to the curve is taken as the second direction
vector for defining the orientation of frame_b, also the
second derivation of the contact point function has to
be provided. (The normal vector can be determined
from this second (spatial) derivation easily.)

When ta and na are normalized vectors also the bi-
normal vector bn = ta×na is and T = {ta,na,ba} con-
stitutes the transformation matrix of the relative rota-
tion object from frame_a to frame_b.

The force and torque balance equations now
have to account for the fact that both frames
are no longer equally orientated. Forces and
torques are transformed my means of the re-

solve1 and resolve2 functions from the Model-

ica.Mechanics.Multibody.Frames package. (De-
pending on whether frame_a or frame_b is closer to
a root in the connection tree the balance equations are
expressed resolved for both frames separately in order
to improve numerical performance.)

An important observation is that the property that
there are no forces in tangential direction does no
longer hold: Even if there are no friction, damping or
applied forces there is a force acting in tangential di-
rection on a body attached at its center of mass to the
curve when the curvature of the curve changes. When
the body (with not only mass but also inertia) starts
entering a corner the rotational energy rises. Due to
the law of energy preservation the translational energy
has to be decreased for the same amount. This means
nothing but there is a breaking force acting along the
curve. (When the curvature gets less again also the an-
gular velocity and rotational energy go down again, so
the translational energy rises and there is an accelerat-
ing force. So the process is reversible: after leaving the
corner the travel velocity along the curve is the same
as before entering the curve.)

When the curve is a circle there is a direct corre-
spondence between rotational and translational energy.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 678

For any two times differentiable curve there is a unique
circle approximating the curve in the best way locally
in a given point. This circle is called the osculating
circle. Its radius is the inverse of the length of the nor-
mal vector. So the rotational velocity of a point con-
nected to the curve is the same as the one of a point on
this circle. Thus the equation relating translational and
rotational energy can be applied to any two times dif-
ferentiable curve and by differentiating this equation
an equation for the tangential force can be applied.

Figure 1: Planar curve (parabola) with osculating cir-
cle, tangential and normal vector in the contact point

The osculating circle can be visualized in the PtCv
model. For the force equations we do not need its cen-
ter coordinates and not even its radius but only its in-
verse, the curvature of the curve. This difference is
important when the curve becomes a straight line lo-
cally, so that the radius of the osculating circle gets
infinite and is not defined. The curvature simply gets
zero and does not provide a problem.

Figure 2: Osculating circle and normal vector at a 3D
curve

Depending on the situation and the relation of tan-
gential and rotational velocity this tangential force

along the curve due to changing curvature can be ne-
glected, e.g. when describing the cornering of an ICE
train. On the other hand simulations of a body with a
rather large inertia connected to a curve with parabola
shape under the influence of gravity showed that the
translational velocity is not highest in the lowest point
of the parabola (as one might have expected) but at a
symmetrical pair of points in a certain distance with a
local minimum of the velocity in the lowest point of
the parabola—where the curvature is highest.

Figure 3: Velocity of a body with high inertia sliding
freely along parabola

6 Geometry Definition

Up to now we only talked abstractly about the current
contact point C(s0), the tangential vector ta and the
normal vector na (which are derivations of the contact
point functions or are determined from derivations).
In principle it is always possible to define the con-
tact point function by its three cartesian components
in the frame_a coordinate system. But it is rather in-
convenient to define, say a helix curve with its center
line in direction n by directly providing the three curve
parametrization functions C1,C2,C3 defining the curve
in frame_a coordinates.

Therefore similar to the direction vector n in the
Prismatic Joint two direction vector parameters nx and
ny have been introduced defining a local x,y,z-system
(with the z-direction orthogonal to both nx and ny) for a
more convenient definition of the curve. E.g. a straight
line in a direction n can be defined by setting nx = n,
taking for ny any direction not parallel to n and the first
coordinate function is the identity mapping, both other
components are zero mappings.

The moreover there are model variants, where the
curve is not defined in cartesian x,y,z coordinates but
in cylinder coordinates: nx here determines the axial

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 679

direction of the cylinder. Here you have to provide the
radial and axial component of the curve. To define a
PtCv with the mentioned helix curve take nx = n, the
radial component is a constant and the axial compo-
nent a linear function with suitable slope.

Now remains the question how the cartesian or
cylindrical components of curve definitions are de-
scribed.

7 Geometry Component Definition

There are several methods of defining the x−, y− and
z− or radial and axial component of a curve definition.
There is the opportunity to use replaceable functions.
You write a function returning a single Real defining
the desired function component. This method is good
for defining geometric curves like the helix mentioned
above, but is not applicable for defining curves with
an arbitrary given shape. The moreover currently it is
required not only to implement the functions describ-
ing the curve component but also their first and second
derivations (because we need the spatial derivations of
the curve to calculate the tangential and normal vec-
tor). Therefore this method is rather of theoretical
interest to investigate the properties of an analytical
function of concern.

As apparently there was no package ready to use
we decided to implement our own cubic spline inter-
polation package. (It is not part of the PtCv package,
because splines are of course applicable in many areas
different from PtCv modeling.) Natural cubic splines
are implemented, i.e the second derivation at the def-
inition range borders are zero. A spline may have an
arbitrary number of definition points which need not
be equally spaced. Extrapolation is possible as con-
stant or linear continuation or as periodic extrapola-
tion with a repetition of the definition range infinitely
many times. Although the complete calculation of the
spline evaluation (and of the calculation of the second
derivations at the definition points) is completely im-
plemented in Modelica (like in the PtCv package, no
external functions are used) Dymola is not able to cal-
culate the derivations of the interpolation and extrapo-
lation functions itself, so the derivations had to be pro-
vided explicitly. At a PtCv with parallel orientation
using the normal vector for calculating the orientation
object time derivations up to the 4th order and spatial
derivations of the evaluation function are needed. So a
great deal of the development of the Spline package
was implementing derivations.

Depending of the type of PtCv splines for the x−,

y−, z−, radial or axial component of the curve defi-
nition can be provided. The radial spline is automati-
cally extrapolated periodically, but it is up to the user
to ensure that the lower and upper definition range bor-
der have the same radius to ensure the contact curve is
continuous. All other component splines are linearly
extrapolated. All definition splines have suitable de-
faults: The axial spline defaults to the zero spline, the
radial spline defaults to the unit radius, so the default
curve for a circular PtCv is a circle in the local y− z-
plane (orthogonal to the provided nx direction vector).
The x-spline defaults to the identity mapping, y− and
z-spline to the zero mapping. By this means in many
cases not all the definition splines have to be provided.

After we implemented our own Spline package we
discovered that there is already a package for eval-
uation of Bezier Splines[3] developed at the DLR,
Oberpfaffenhofen in 2002. (It is available under the
Modelica license.) In order to use this BSpline pack-
age we had to write extrapolation features for it. (They
were not added to the BSpline package, which was
kept unchanged, but were placed into our PtCv pack-
age.) Now also PtCvs using BSplines for the curve
definition are available in this package.

8 The PtCv Model Family

The sections above already mentioned that there are
several PtCv models with different coordinate systems
(cartesian or cylindrical) and different types the curve
component functions are defined (replaceable func-
tions, cubic splines, BSplines). All these models are
extended from one basic model in several steps.

The partial model PartialPtCv contains every-
thing common to all PtCv models. These are all pa-
rameters which are not directly related to the curve ge-
ometry definition, most of the parameters concerning
animation, the equations relating the position and ori-
entation of the two frames, the force balance equations
and the equations for the force tangential to the curve.
This model mostly uses the cartesian x,y,z-coordinate
system mentioned above. The curve parametrization
variables (e.g. s0 are defined using replaceable types
defaulting to Real, so they can be redeclared in situa-
tions, where they really mean positions and velocities,
or angles and angular velocities. What is missing here
is the equations for the current contact point C(s0), the
current tangential ta and normal vector na.

The next extension step is optional and rather in-
tended for development and debugging purposes: The
partial model PartialPtCvExtended, extended from

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 680

PartialPtCv contains variables (and visualizers) not
really needed for the PtCv contact calculation but pro-
viding useful additional information, like visualizers
for the osculating circle, the tangential and the normal
vector, the traveled distance along the curve s and vari-
ables calculating the potential, translational and rota-
tional energy for the special case that a mass with its
center of mass is connected to a curve fixed in space.

The partial model PartialCircularPtCv is in-
tended for all PtCv models using cylinder coordinates.
(This does not mean that the curve itself is circular,
like seen in the helix curve example. Therefore the
name may be changed in future versions.) This model
contains variables for transforming the cylinder co-
ordinates into the cartesian x,y,z-system of the base
model. There is a parameter revolutionLength de-
termining the length of one revolution, i.e. if revolu-
tionLength= 360 the radial and axial component are
scaled on degrees, if revolutionLength = 2π they
have to be defined in radiant. The curve parametriza-
tion variables are redeclared to angles, angular veloci-
ties and angular accelerations.

Remember in the PtCv package the term "linear"
means that the cartesian x-component of the curve
is the identity mapping, i.e. there are only possi-
ble deviations into the y- and z-direction. For this
case there is the partial model PartialLinearPtCv.
In this case the curve parametrization variable s0 is
a distance, not along the curve but along the x-axis
instead. Therefore the curve parametrization types
are redeclared to SI.Position, SI.Velocity and
SI.Acceleration. As also linear PtCvs use cartesian
coordinates no transformation is required.

The partial model PartialGeneralPtCv only re-
declares all curve parametrization types to Real, just
to prevent further redeclaration. All these three partial
models are currently extended from PartialPtCvEx-

tended in order to have the additional debugging in-
formation at hand. In a final release they may be di-
rectly extended from PartialPtCv skipping the extra
variables and visualizers.

The next step in this extension hierarchy are
the completed (non partial) PtCv models, extend-
ing from one of the three models PartialCircu-

larPtCv, PartialLinearPtCv or PartialGener-

alPtCv. Here only the parameters for defining the
curve components are declared (i.e. the replaceable
functions for the geometry definition components cur-
rently together with their derivatives or the spline or
BSpline parameters) and also the equations for deter-
mining the current contact point C(s0), the tangential

vector ta and the normal vector na, by evaluation of the
functions or the spline resp. BSpline functions.

This separation into several model layers makes it
easy to add new PtCv models with a custom geome-
try. There is even an instruction how to do so in the
package documentation. On the other hand it enables
to protect the base models by encryption in a version
to be released in future.

9 PtCvs with Stops

So far we only dealt with PtCvs with an unlimited
curve. For building a PtCv with a limited admissi-
ble range of the parametrization variable s0, we take
an existing full PtCv model and add the stops by ex-
tending it. (So we go one step further in the model
extension hierarchy.) The implementation of a PtCv
with stops has been performed exemplarily on a Lin-
ear PtCv where the curve is defined by two replaceable
functions in y- and z-direction, but it can be imple-
mented in the same way for any type of PtCv model.

It is important to note that adding stops to a PtCv
does not impose a new constraint to it, but only applies
an new additional force in tangential direction depend-
ing on the position and velocity of the contact point. If
frame_b is forced to proceed by some prescribed mo-
tion it will do, regardless of the repelling forces. They
may become huge, but as we have ideal elements noth-
ing will break the mechanism like it will happen in a
physical realization. A PtCv with stops still has one
translational dof.

The stop position is defined by two new curve
parametrization parameters stop1 and stop2. In this
way the stop position is automatically located on the
curve, namely at the positions C(stop1) and C(stop2).
In case stop1 < s0 < stop2 there is no additional force
in tangential direction.

The stop is established by applying strong repelling
forces to the point frame when it leaves the admissi-
ble parameter range. The repelling force consists of a
non-linear spring force and linear damping where the
damping coefficient is dependent on the actual pen-
etration: If s0 < stop1 holds, there is contact to the
lower stop and there is a force like the IMPACT force
defined in ADAMS with a spring and a damping in-
gredient:

F(x) =
{

max(k(x1− x)exp− cv,0) x < x1
0 else

where k is the spring stiffness, exp the stiffness expo-
nent and c = ST EP(x,x1−d,cmax,x1,0) is the current

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 681

damping coefficient depending on the position, which
returns cmax, when x < x1− d, but zero, when x > x1
and is smooth in between. This means that the damp-
ing force does not directly apply fully at the moment of
contact, but is increased from contact to a penetration
d where full damping cmax is archived. The IMPACT

and STEP functions are implemented as separate func-
tions to be used in other contexts than the PtCv stops.

The stops are visualized by cylinders with the
origins at C(stop1) and C(stop2) pointing into the
directions −tstop1 and tstop2 (out of the admissible
parametrization range) where tstop1 and tstop2 are
the tangential vectors to the curve at C(stop1) and
C(stop2). When the contact point leaves the range
stop1 < s0 < stop2 and there are contact forces, the
relevant stop visualization cylinder changes its color.

Subject to further work on this topic is to establish a
new partial model containing the stop implementation.
So a particular PtCv model with stops ought to be little
more than an extension of both the corresponding nor-
mal PtCv model (without stops) and the stop model.

9.1 Curve-to-Curve (CvCv) Constraints

A Curve-to-Curve (CvCv) constraint between two
curves is defined by the property that at any time both
curves have a common contact point and both curves
are oriented tangentially to each other. This is a local
condition. It does not require that the total shape of
the curve would admit this constellation when physi-
cally built. (The curves may cross each other at regions
away from the contact point.)

Some multi body dynamics programs (like
ADAMS) provide Curve-to-Curve constraints only
for planar curves and there is already a CvCv
constraint implementation for planar curves in the
PlanarMultiBody package [2]. But the concept of
Curve-to-Curve constraint can also be transferred to
smooth curves in 3D space.

In 2D CvCv constraint modeling when the contact
point is found the position of both curves to each other
is determined: A 2D CvCv constraint has just one
(translational) dof. Her in 3D it is plausible to admit
a rotational dof around the common tangential axis of
both curves also.

Instead of modeling a CvCv constraint elementar-
ily by stating its position and force balance equations
we follow the approach of using two PtCv constraints
connected to each other with their "point sides" to each
other with a revolute joint in between. In case no ro-
tational dof is admitted, there is a fixed rotation com-
ponent instead where is can be set if both curves are to

be oriented opposite to each other by using a rotation
angle of 180 degrees or not.

Figure 4: Diagram layer of a CvCv constraint

10 Point-to-Surface Constraints

It is quite natural to transfer the notion of a Point-to-
Curve constraint to 2D: At a Point-to-Surface (PtSf)
constraint a point can move along a smooth surface.
This means a PtSf constraint has 2 dofs. For sur-
faces constituting analytical functions there are PtSf
models with the surface described by replaceable func-
tions. For practical applications there are PtSf versions
where the surface is defined by 2D-Splines from the
AreaSpline package. Currently only the option that
the point frame is oriented parallel to the first frame
is implemented, but in future orientation tangential to
the surface will be an alternative.

Like at the PtCv models for all PtSf models there is
one common partial base model and extensions with
coordinate transformations for cylindrical and spheri-
cal coordinate systems (besides the core Cartesian co-
ordinate system) from which the specific PtSf models
are extended.

10.1 The AreaSpline Package

Here again it is straight forward to try to transfer cu-
bic spline interpolation to 2D, i.e. to return the z-
coordinate for a given (x,y) location. The spline is to
be defined on a rectangular grid (xi,y j)i=1,...m, j=1,...n.
(This can be view as a landscape, where the height
is tabulated at the points of this grid. Interpolation is
the task to calculate the height z = h(x,y) at any point
(x,y) in between, under the assumption that the land-
scape is smooth.

10.1.1 Area Spline Interpolation

The idea here is to interpolate in the x- and y-direction
rather independently. For any given x0 location the
projection f (y) = h(x0,y) can be considered a usual

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 682

cubic spline (in the y-coordinate). In case x0 is one of
the grid values (x1, ...xm) we can determine the second
derivations at these positions by solving the equations
system like in the one-dimensional case. So we can
even determine h(x0,y). (The same holds when the
y-coordinate y0 is one of (y1, ...yn): We can calculate
h(x,y0) .) To calculate the height at an arbitrary po-
sition (x,y) not matching any of the grid lines we can
first determine the definition rectangle to which (x,y)
belongs, i.e. indices i and j so that xi < x < xi+1 and
y j < y < y j+1. Now we can calculate both h(xi,y) and
h(xi+1,y). The moreover we can determine h(xi,y) for
all i = 1, ...m and consider these values as the defini-
tion points of a cubic spline in the x-coordinate. The
problem is that for calculating this spline we’d had to
solve the system of equations for this particular arbi-
trary y, i.e. at evaluation time, what would be time
consuming at larger definition grids. But as the in-
terpolation function of a spline is a 3rd order poly-
nome between definition points, the 2nd derivation is a
1st order polynome which can be linearly interpolated
easily.

The approach is now as follows: Instead of
calculating the 2nd derivations of the spline de-
fined by (xi,h(xi,y0))i=1,..m by solving a system of
equations, we take the coefficients of the splines
(xi,h(xi,y j))i=1,...m and (xi,h(xi,yi+1))i=1,...m, interpo-
late each pair linearly and take them as the coefficients
of the spline through (xi,h(xi,y))i=1,...m. By interpo-
lating this spline at x we can finally calculate h(x,y).

Here we started by working in y-direction, i.e. by
first calculating h(xi,y) and h(xi+1,y) but that is not
crucial. It can be shown that we end up at the same
result, when we calculate h(x,y j) and h(x,y j+1) first
and determine the coefficients of the spline trough
(y j,h(x,y j)) j=1,...n by linear interpolation of the coef-
ficients in the columns xi and xi+1.

This approach has two advantages:

1. All spline coefficients can be calculated once for
all when defining the spline (or when modifying
it at an event). No solving of systems of linear
equations is required at evaluation time.

2. The coefficients in x-and in y-direction can be cal-
culated independently. The moreover the coeffi-
cients in each row and column can be determined
independently. We simply can calculate the usual
coefficients of 1D splines along all the definition
grid lines. With an m×n definition grid we have
just m systems of equations of size n and n sys-
tems of size m instead of one or two big systems
of size mn or so.

Unfortunately this approach has one big disadvantage:
Although it is true, that the 2nd derivation of the in-
terpolation function between two definition points is a
first order polynome which can be linearly interpolated
without any loss of precision, we just get an approxi-
mation, when we interpolate between the 2nd deriva-
tions in y-directions at (xi,y j) and (xi,y j+1) in order to
get the value at (xi,y). Linear interpolations is exact
here only in x-direction between (xi,y j) and (xi+1,y j)
but not in y-direction.

As a result of this inexactness we have the following
effects. The interpolation function is:

1. continuous,

2. two times continuously differentiable in any point
not matching one of the definitions grid lines,

3. two times partially continuously differentiable
along the definition line grids, but in general

4. not partially differentiable when crossing the def-
inition line grids, i.e. not (totally) differentiable
at points on the grid lines.

So the resulting interpolation surface looks folded at
the definition grid lines. The distances of the defini-
tion lines are the smaller the closer the definition grid
lines get. Of course we are a lot better off than with
interpolating the definition grid just linearly.

10.1.2 Area Spline Implementation

Like at the 1D splines there is a function makeArea-

Spline to initialize a spline record by calculating the
spline coefficients like described above. In the evalu-
ation function evalAreaSpline extrapolation is pos-
sible constantly, linearly and periodically. It can be
chosen between these three options independently in
the x- and the y-direction.

Unfortunately we had to implement the 1st and 2nd
derivation of this function manually. (Higher order
derivatives were not yet needed because at the PtSf
constraints up to now only parallel orientation of the
point frame was implemented.) But on the other hand
having these time derivatives it was easy to implement
the partial derivatives into x- and y-directions that we
also needed anyway.

10.1.3 Area Spline Visualization

There is a sub-package Visualizers for displaying
area spline surfaces using the Plot3D package. An
area spline can be displayed by entering its definition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 683

data into a function call. There are variants also dis-
playing normal vectors to the surface or one of the par-
tial derivatives instead of the spline surface itself. The
definition grid lines are displayed also like in the ex-
ample below.

Figure 5: Example of Surface definition with AreaS-

pline Package

Unfortunately this package cannot be used for visu-
alizing a surface in a mytt MultiBody model with the
animation used there.

11 By-Products

In the development of the PtCv package an attempt
was made to integrate a revolute dof to a PtCv with
tangential orientation. This did not yet work properly.
But it does work in the special case that the curve is
simply a straight line. So there is a translational dof
along an axis and a rotational dof around that axis.
This is noting but a cylindrical joint. Therefore this
was turned to a separate model where the arbitrary
curve with all its parameters was reduced to a direc-
tion vector n and the hierarchy of partial models was
turned into one model.

Of course there is a Cylindrical Joint model in
the MultiBody package of the MSL, but this is com-
posed of the connection of a Prismatic and a Revo-
lute Joint. But compared to this standard implemen-
tation the Cylindrical Joint model in this package is
described directly by equations. The number of equa-
tions is about 10% less than in the standard implemen-
tation and simple test models are considerably faster.

A PtSf constraint where the surface is a plane is a

planar parallel joint, i. e. frame_b can move along a
plane through frame_a defined by two direction vec-
tors n and m. This is like the planar joint in the Multi-
Body library, but without the rotational degree of free-
dom. As such a joint is of general interest it has been
implemented as a separate model. Despite the Multi-
Body planar joint here the translation in the plane is
not modeled by two orthogonal prismatic joints but el-
ementarily.

12 Conclusions

Although especially the PtCv models are up and run-
ning the packages described in this paper are to be seen
as a work in progress. It seems valuable to incorporate
some more ideas from the PlanarMultiBody package
like providing the user with a collection of predefined
curves like circles and elipsoids. Cubic splines will be
then just one type of predefined curve. This applies
even more to the PtSf package which will become
much more usable if there would be a set of predefined
parametrizised shapes.

The original plan to develop also contact force el-
ements besides the constraints will not be addressed
anymore within the Eurosyslib project due to lack of
time but are subject to further work.

13 Acknowledgements

The PtCv (Point-to-Curve) and the PtSf (Point-to-
Surface) packages and the used geometry packages
Spline and AreaSpline have been developed as part
of the ITEA2 Eurosyslib project (WP 8.6).

References

[1] http://www.mscsoftware.com/products/adams.cfm

[2] M. Höbinger, M. Otter: PlanarMultiBody - a
Modelica Library for Planar Multi-Body Sys-
tems. Proceedings of the 5th Modelica Confer-
ence, Bielefeld, Germany, 2008, pp. 549-556

[3] Schillhuber, Gerhard, BSpline package, Copy-
right Modelica Association and DLR, 2002.

[4] http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 684

Modeling and Simulation of a Solar Tower Power Plant
with Open Volumetric Air Receiver

Nils Ahlbrink Boris Belhomme Robert Pitz-Paal
German Aerospace Center, Institute of Technical Thermodynamics

Linder Hoehe, 51147 Cologne
nils.ahlbrink@dlr.de, boris.belhomme@dlr.de, robert.pitz-paal@dlr.de

Abstract

The start-up of the PS10 power plant in Seville,
Spain, in 2007 marked the entrance of solar tower
power plants into the commercial state. Questions
about the right operational strategy, particularly dur-
ing unsteady operation states, come to the fore, and
therewith the need to carry out transient simulations
of entire tower power plants including the heliostat
field. Meeting this necessity, the presented simula-
tion approach opens the way to transient full plant
simulations of solar tower power plants. A detailed
heliostat field model was linked to a dynamic re-
ceiver model by coupling both simulation tools. A
second coupling was established to a tool hosting a
control panel of the heliostat field model. With this
simulation approach, a start-up procedure and a
tracking stop were simulated delivering different
transient behaviors of local absorber temperatures
and mass flows.
Keywords: Solar tower, modeling, tool coupling,
plant simulation

1 Introduction

A detailed analysis of a full system out of heliostat
field and receiver requires models, which represent
both parts in an adequate, strong simulation envi-
ronment. A fast raytracing tool, namely STRAL (So-
lar Tower Raytracing Laboratory) [1], is used to rep-
resent the heliostat field including optical character-
istics as well as transient heliostat tracking.
For the receiver, the object oriented modeling lan-
guage Modelica in combination with the simulation
environment Dymola is applied to develop a tran-
sient, discretized receiver model. Modelica is an ob-
ject-oriented modeling language designed for model-
ing of complex physical systems [2], [3]. Dymola
interprets the modeling language Modelica and en-
ables for convenient dynamic simulations of com-
plex systems [4]. An object-oriented model library

was developed for solar tower power plants with
open volumetric air receiver technology, including
the receiver, blowers, valves, pipes, the thermal stor-
age system, and the power block. In combination
with a heliostat field model, a complete solar tower
power plant can be simulated [5]. The library is
based on the open source Modelica library Mode-
lica_Fluid [6].
The flux density distribution on the absorber surface
of the receiver represents the physical interface be-
tween both models. To feed the receiver model with
transient flux density data, both simulation environ-
ments need to be coupled. Therefore, STRAL was
enhanced by an additional TCP/IP interface. An ad-
ditional Dymola library was developed in parallel,
enabling Dymola to communicate with STRAL via
the same interface. In a second step, an additional
tool coupling was established between STRAL and
LabView for the purpose of a superior heliostat field
control and human machine interface emulation.
The complete simulation system was tested running
on three different computers. A solar tower power
plant consisting of 153 heliostats and an open volu-
metric air receiver served as test case. The simula-
tion scenario included a start-up procedure followed
by a total heliostat field failure. During the failure
time, the heliostats stopped tracking for 12 minutes
and continued tracking afterwards.
The research results presented in this paper are part
of a project, in which mainly control and operational
strategies are developed for solar thermal power
plants with open volumetric air receiver technology
[5]. More information about the control strategy ap-
proach can be found in a related paper [7].

2 Transient system model

2.1 Heliostat field model

Like a couple of other well known flux density cal-
culation tools for heliostat fields [8], the heliostat

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 685 DOI: 10.3384/ecp09430048

field model used in STRAL [1] comprises effects as
shading and blocking of heliostats as well. Further-
more each single heliostat model comprises an indi-
vidual highly resolved heliostat geometry data set,
obtained from deflectometry measurements, and in
addition an individual transient tracking model of the
heliostat drive system, meeting the fact of limited
movement speeds and specific drive constellations.
This enables to simulate transient effects as for in-
stance during start-up procedures, aim point changes
or even worst-case scenarios as partial or total failure
of the heliostat field.
The used simulation consisted of 153 heliostats, each
with a separate model of the heliostat drive system
embedded in an external Dynamic Link Library. The
heliostat field is shown exemplary in Figure 1. The
actual azimuth rotation angle and elevation angle
represent the two state variables of the simple drive
system model. As can be seen in Equation 1, the ac-
tual axis rotation angle φact is incremented and dec-
remented respectively with a constant axis rotation
speed ωaxis until the target axis rotation angle φtar is
reached. The target axis rotation angle φtar depends
on the position of the heliostat relative to the re-
ceiver, the current sun position and on the actual aim
point assignment.

⎪
⎩

⎪
⎨

⎧

=
>Δ⋅−
<Δ⋅+

=

−

−−

−−

tartacttar

tartactaxistact

tartactaxistact

tact

if
ift
ift

ϕϕϕ
ϕϕωϕ
ϕϕωϕ

ϕ

1,

1,1,

1,1,

,

,
,
,

 (1)

It is assumed that each axis of the heliostat is moved
with a constant axis rotation speed ωaxis and effects
as for instance overshooting are not considered. The
simple approach is justified in this case since helio-
stats usually operate with very low axis rotation
speeds.

Figure 1 Heliostat field model in STRAL [1] showing
the view towards the evaluation layer and upon the
heliostat field (reduced window)

2.2 Receiver model

Depending on the purpose, the receiver can be mod-
eled in different levels of detail. In this application,
the dynamic behavior of the full receiver is the field
of interest. Thus, the individual absorber components
building the receiver are modeled in a more simpli-
fied way. Their individual temperature profile or the
absorption process are not part of the investigations.
The focus of the modeling is on the dynamic effects
of the full receiver system including start-up, shut
down and dynamic effects of an inhomogeneous flux
density distribution in time and space. The main pur-
pose of the model is to be used for analysis of tran-
sients in the receiver, for the development of control
strategies, and for the prediction of receiver behav-
ior.
Examplary, a receiver with open volumetric air re-
ceiver technology is modeled. This technology uses a
grid of absorber modules to setup a receiver. Analo-
gously, the receiver model will use a representative
number of absorber modules to model the full re-
ceiver as shown in Figure 2. A number of real ab-
sorber modules can be represented by one absorber
module in the model. A matrix of n x m modules is
set up to represent the receiver. The highest possible
discretization is the real number of absorber module.
Higher discretizations are disadvantageous, as the
focus of the receiver model lies on the dynamic ef-
fects of the complete receiver system and not on the
absorption and heat transfer processes inside the
module. It would cost additional computation time.
Using absorber modules as the smallest unit, receiv-
ers of different sizes can be simulated. Effects of up
scaling can be analyzed.
The setup of the receiver model in Dymola is shown
in Figure 3. In alternating sequence, flow and vol-
ume elements are instantiated according to [2].
Model of the absorber module
The key model of the receiver is the absorber module
model (Figure 2). Two air streams are modeled; the
first stream represents the air inside the module,
which is heated up in the absorber comb, and the
second stream represents the return air at the outside
of the module, which is lead back to ambient cooling
the receiver structure. The return are is fed back to
the receiver from the cold air side of the power plant.
The absorption process and the heat transfer in the
absorber comb have to be modeled very accurate, as
the performance of the absorber module is mainly
determined by the absorption efficiency besides mass
flow rate and air inlet temperature. However, the
complexity of the model should be as simple as

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 686

iRair2,T

iin,air,T

ambientp
outair,p

iRair,m&

iambient,m&

iout,air,T

m

n

iair,m&
iair1,T

isolid2,T

iair2,T
iair3,T

iRair1,T

isolid1,T isolid5,Tisolid4,T

isolid3,T

iabs,air,T

iloss,m&
Convectional and

conductional heat transfer

iorifice,d
iabs,T

iRair,m&

inRair,p
inRair,T

iair,m&

Figure 2: Absorber module model having 12 temperature nodes used for the receiver discretization of n x m ab-
sorber modules

Solar irradiance
[n x m]

Absorber module

Header
(Mixer)

Piping

Piping

Front
air

[n x m]

Mass
Flow
Calc

[n x m]

Volume model

Flow model

ambientp

outair,T

inRair,p
Splitter

inRair,T

outair,p
iin,air,T

()K,dpf=m RairiRair,
&

()ior,iair3,iabs,air,airiair, d,ρ,ρ,dpf=m&

()3Rair2air K,dpf=m&

()2air2air K,dpf=m&

iair3,Tiabs,air,T

[n x m]

Figure 3: Schematic receiver model in Dymola including the described absorber module model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 687

possible. Therefore, the absorption and heat transfer
processes in the absorber comb are implemented by
an efficiency interpolation matrix based on a detailed
absorber model [9]. The inputs to the interpolation
matrix are the flux density, the mass flow rate, and
the inlet temperature. The result of the interpolation
is the local efficiency from solar flux to heat ab-
sorbed in the absorber module.
Nusselt correlations are used for the heat transfer
modeling between the hot air and the absorber cup,
insulation, and the absorber pipe as well as for the
heat transfer to the return air. 1-D heat conduction is
assumed inside the solids in axial direction. In total,
the absorber module model has 12 temperature nodes
in the air streams and the solids. Depending on the
up-coming model evaluation process, the number of
nodes might be further reduced. Pressure at the
nodes is assumed to be equal to the outlet pressure
level pair,out for the main stream and the inlet pressure
level pRair,in for the return air. The pressure loss in-
side the modules is small, which results in a negligi-
ble influence on the fluid properties.
Mass flow rate distribution across receiver
Mass flow rate distribution across the receiver and
the individual mass flow rates of the modules have a
significant impact on the performance of the system.
The mass flow rates of the individual absorber mod-
ules are dependent on each other since they are
driven by a common pressure difference. The overall
mass flow rate is split up into the absorber modules
according to flow resistance of the modules. If the
flow resistance of one module changes, for example
by a changing flux density followed by an adapting
air temperature, a new mass flow rate distribution
over the receiver will establish. Thus, the absorber
modules can not be considered individually.
In the absorber modules, like shown in Figure 2, a
fixed orifice is used to adapt the mass flow rate ac-
cording to a design flux density. Larger orifices are
used in the center of the receiver as higher flux den-
sities are expected. Smaller orifices are implemented
in the less irradiated areas to achieve a desired tem-
perature profile in the receiver at least for the design
point flux density distribution. However, the orifices
are not adaptable during operation, which results in
deviant temperature profiles in off-design operating
points.
The individual mass flow rates for the main air are
modeled depending on the pressure difference Δpair,
the air densities in the absorber comb ρair,abs,i and
behind the orifice ρair3,i, and the orifice diameter dori-
fice,i.

()

2b
4bΔb+(a+a-

=

d,ρ,ρ,Δpf=m

air
2

iorifice,iair3,iabs,air,airiair,
&

 (2)

The coefficients a and b are dependent on the densi-
ties, whereas factor b is as well a function of the ori-
fice diameters dorifice,i.
For the return air, a quadratic reference pressure drop
model is used.

()

Rair
RefRair,

RefRair,

RairiRair,

Δp
Δp
m

K,Δpf=m
2

=
&

&

 (3)

For both air streams, it is assumed that the pressure
difference is the same for all absorber modules.

ambientinRair,iRair,Rair

outair,ambientiair,air

p-p=Δp=Δp
p-p=Δp=Δp

 (4)

In Modelica, the receiver model is implemented ac-
cording to flow and volume elements strategy [2].
Flow elements determine the mass flow rate while
they do not store mass. Volume elements, however,
account for storage effects but not for flow calcula-
tions. In our case, the flow elements calculate the
mass flow rate out of the pressure difference accord-
ing to two adjacent volume elements. In the volume
elements, the pressure is used as a state variable. The
second state variable in the volume elements is either
the temperature or the specific enthalpy. Flow ele-
ments can have an energy balance as well.
Boundary condition at inlet of absorber module
In front of the receiver, the front air is modeled with
a volume element according to the discretization
with n x m volumes. It uses ambient pressure level.
The air inlet temperature Tair,in,i to the absorber mod-
ules is calculated. A part of the outflowing return air
can be sucked in again. The amount is defined by an
air return ratio. The other part is lost to ambient. Air
from ambient mixes with the return air. The air inlet
temperature to the absorber modules is a crucial
variable for the performance of the absorber module.
In the next step, a more detailed modeling of the ef-
fects of the air in front of the receiver will be imple-
mented for example the rise of the hot air by natural
convection.
The front air model is connected to the absorber
module model, which uses the same discretization
with n x m modules. It consists of two parts. As the
absorber module model corresponds from its purpose
to a flow model, the first block calculates the mass
flow rates for both air streams and for each absorber

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 688

module. The second block represents the described
absorber module setup having 12 temperature nodes.
The separation is used to be able to optimize the
mass flow rate distribution calculation regarding cal-
culation time in one central component in the future.
The thermal behavior of the modules can be ex-
changed separately. At the moment, the calculation
of the mass flow rate results in a very complex equa-
tion system as all flows are dependent on each other
and on the air temperature or rather the flux density.
Pressure is, as described earlier, not a state variable
in the absorber modules. The pressure change is ne-
glectable for the fluid property calculation. That way
the correct pressure difference is transferred to the
mass flow rate calculation block according to equa-
tion 4. Two temperatures, the air temperature in the
absorber comb Tair,abs,i and the air temperature behind
the orifice Tair3,i, are fed back to the temperature de-
pendent mass flow rate calculation.
Boundary condition at outlet of absorber modules
The lumped air volume behind the absorber module
in the main stream represents the header. Heat losses
are modeled by Nusselt correlations. Pressure and
specific enthalpy are the state variables for the vol-
ume for which balance equations are solved. The
mass flow rates of the individual absorber modules
are mixed in the header. It is followed by a pipe
model. On the return air side, an equivalent setup is
formed by a volume representing the air in the split-
ter and the return pipe.

2.3 Tool coupling of Dymola and STRAL

Both simulation tools, STRAL incorporating the de-
tailed heliostat field model and Dymola incorporat-
ing the complete receiver and air cycle model, are to
be used in one overall simulation. For that purpose, a
tool coupling had to be established. It works via a
TCP/IP network connection. To be able to control
the heliostat field during the simulation run, for in-
stance to modify the aim point configuration of the
heliostats, a second connection is established be-
tween STRAL and LabView as shown in Figure 4.
The tool coupling is based on a classical client server
model approach, where Dymola acts as Client, Lab-
View as Server and STRAL as Server and Client at
the same time. Therefore, a specific heliostat field
model class was implemented in Dymola, incorpo-
rating an external static library, which is linked to the
STRAL TCP/IP interface. The class makes use of the
external function interface in Modelica [10].
A simulation run is divided into an initialization
stage and a main simulation stage. During the ini-
tialization stage, the Dymola client establishes a
connection to the STRAL server and passes initial
conditions, as for instance specific receiver configu-
rations (size, expected flux density discretization).
Then, STRAL establishes a second connection to the
LabView server, acting as client. The succeeding
simulation stage is a sequence of calculations steps
with modifiable time steps defined by the Dymola
model. A model, which triggers events at specific
time instants, evokes a calculation step. The step size
of the events can be set for specific time periods.

Control Panel

Heliostat Field

DymolaTM

Aim Point
Configuration

Receiver

TCP/IP

Server

Client

LabViewTM

STRAL

Simulation
Time

Receiver
Configutation

Flux Density
DistributionSimulation

Time
1

22

3
4

Figure 4: Tool Coupling Scheme of Dymola, STRAL and LabView

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 689

At the beginning of a single calculation step, Dymola
sends a flux density calculation request to the
STRAL server. This includes the actual simulation
time and, optionally, the suns azimuth and elevation
angle. If not defined by Dymola, the sun tracjectory
can be read directly in STRAL. In the following step,
the STRAL client sends a synchronization request to
the LabView server providing the actual simulation
time as well. The LabView Heliostat Field Control
Panel Application exchanges status data of the helio-
stat field and, if needed, modifies the configuration
of the field, as for instance the current aim point as-
signment. After this procedure, the heliostat align-
ment is updated by STRAL considering the specified
drive system model of each heliostat. Then the re-
quested flux density calculation is calculated based
on STRAL’s raytracing engine. The resulting flux
density distribution is send back to the Dymola ap-
plication. Independently from the main calculation
steps, Dymola performs variable integration time
steps inside of the Dymola model.
In addition to the described standard procedure,
STRAL can calculate the next flux density distribu-
tion in advance based on the step size of the last call.
At the next calculation request, it will check the de-
sired time step, sun position and aim point configura-
tion, and compares it to the assumed next calculation
steps. That way, the next step can be calculated in
advance before Dymola actually requests the next
calculation step. No waiting time occurs for the Dy-
mola model to wait for the STRAL answer, in case
the time step and aim point configuration has not
been changed, which is normally the case.

3 Generic test case

The start-up of a power plant, consisting of the de-
scribed receiver model in Dymola and a heliostat
field model in STRAL, was simulated. A control
panel, modeled in LabView was used to interact with
the heliostat field model to be able to shift the aim
points.
The Dymola model includes the receiver, an adjust-
able heat sink to cool down the air to a design air
temperature after the receiver, and a blower. The
heat sink is implemented instead of a consumer like
a thermal storage or a steam generator. The design
return air temperature is set to 110°C. The mass flow
rate of the receiver is adjusted by the blower power.
It is increased at the beginning within one minute to
the overall design mass flow rate of 2.2 kg/s. It is
kept constant by a controller during the simulation.
Mass flow rate disturbances are caused by changes
of the air temperature in the absorber modules due to

inhomogeneous irradiation. The mass flow rate dis-
tribution is dependent on the orifice diameters as
well as the fluid properties and changes during the
simulation.
The flux density is the input to the receiver, which is
calculated by the heliostat field model. A discretiza-
tion of 6x5 absorber modules is chosen. Each of the
modules represents a matrix of 3x3 absorber mod-
ules. Thus, in total, 270 absorber modules of the real
receiver are represented by 30 absorber modules in
the model. For each of the modules, a specific orifice
diameter was chosen depending on the location in
the receiver. Larger diameters are used in the center
to take care of expected higher flux densities and
smaller diameters are implemented towards the
edges of the receiver. The orifice diameters are im-
portant for the mass flow rate distribution, but cannot
be adjusted during the simulation.
The Dymola model provides the receiver dimensions
and discretization as well as the sun azimuth and
elevation angle for the heliostat field model. The
heliostat field model is set up in STRAL. It includes
the 153 heliostats with a mirror area of 38.8 m² each.
The heliostats have a constant rotation velocity of
0.01 mrad/s for the azimuth and elevation axis. At
the beginning of the simulation, the heliostats point
towards one common standby aim point west of the
receiver surface. The aim point is shifted towards the
center of the receiver, after the design mass flow rate
is reached. The air temperatures inside the absorber
modules will increase and approach a steady state
level. At steady state level, a tracking stop of 12
minutes is simulated. The tracking stop represents
possible mistakes or failure in the heliostat field con-
trol. In this scenario, the tracking is reactivated after
12 minutes, so that the heliostat focus is adjusted to
the aim point at the center of the receiver again.
Figure 5 shows the solar irradiation, the material
temperatures of five absorber modules in one re-
ceiver row and the average air outlet temperature, as
well as the corresponding air mass flow rates. The
locations of the absorber modules are displayed.
They are positioned on the same horizontal axis in
the fourth row of the receiver.
During the simulation, the material temperatures in-
crease as the flux densities rise after shifting the aim
point to the center. The shifting process is relatively
fast compared to the temperature rise. Therefore, the
solar irradiation increase appears similar to a step
input. The temperatures increase and approach a
steady state level. The start-up takes about 15 min-
utes for a temperature change of 800 °C. In this start-
up procedure, all heliostats are shifted to one central
aim point at the same time. As demonstrated, it
causes a high temperature increase and therewith

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 690

11:00 11.10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30
0

2,5

5

7,5

10

12,5

15

Time

M
as

s
flo

w
 ra

te
 in

 g
/s

11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30
0

100

200

300

400

500

600

700

So
la

r i
rra

di
at

io
n

in
 k

W
/m

²

11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30
0

200

400

600

800

1000

Te
m

pe
ra

tu
re

 in
 °

C

Solar irradiation at 4,1
Solar irradiation at 4,2
Solar irradiation at 4,3
Solar irradiation at 4,4
Solar irradiation at 4,5

Average air outlet temperature
Material temperature at 4,1
Material temperature at 4,2
Material temperature at 4,3
Material temperature at 4,4
Material temperature at 4,5

Mass flow rate at 4,1
Mass flow rate at 4,2
Mass flow rate at 4,3
Mass flow rate at 4,4
Mass flow rate at 4,5

Figure 5: Solar irradiance, absorber material temperatures of five representative absorber modules of an open
volumetric air receiver (6x5 total receiver discretization) and the average air outlet temperature, and the corre-
sponding air mass flow rates of the five modules. The absorber modules have different orifice diameters and are
located on the eastern side (4, 1) and (4, 2), in the center (4, 3) and on the western side (4, 4) and (4, 5) of the re-
ceiver in the fourth row. One module represents a matrix of 3 x 3 absorber modules.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 691

high thermal stresses in the material. Other possible
start-up procedures can be analyzed to define a more
smooth and conservative start-up behavior.
From 12:40 ongoing, a tracking failure of 12 minutes
is simulated. The heliostats remain in a fixed posi-
tion. The focus of the irradiation moves towards the
eastern edge of the receiver. The solar irradiation
decreases immediately for the absorber module at the
western edge and in the center of the receiver. In
contrast, the irradiation on the module at the eastern
edge increases with the focus moving towards the
eastern edge. The temperatures follow the described
behavior with a short time delay. An increase of
around 70°C can be seen for the module at the east-
ern edge within some minutes. The temperature de-
creases as well, when the focus has shifted to the
outside next to the receiver. After 12 minutes, the
tracking is reactivated. The heliostats approach the
aim point at the center of the receiver very fast. The
temperatures increase to their previous level with
time delay. The temperature rise is relatively small
as the irradiation changes are manageable and a
small receiver has been analyzed. In larger receiver,
larger differences in mass flow rate and irradiation
can occur. Unfortunately, the effects of irradiation
changes are intensified.
The mass flow rate of each absorber module is de-
pendent on the orifice diameter of the module and
the air density. As the overall mass flow rate is kept
constant, the individual mass flow rate of the mod-
ules changes with the temperature. The mass flow
rates of the outer modules (4, 1) and (4, 5) decrease
after the aim point shift, as they have a smaller ori-
fice diameter as the central modules. The effect of
rising temperatures is larger.
A similar phenomenon can be seen during the track-
ing failure. The modules on the eastern side with
increasing irradiation show decreasing mass flow
rates, the ones on the western side increasing mass
flow rates until the focus of irradiation has left the
receiver area. However, this time the orifice diame-
ters are not well suited for this situation. Different
temperature levels are reached. The material tem-
perature of the module (4, 1) reaches a higher level
leading to higher thermal losses. In order to be able
to optimize the receiver behavior, adjustable orifices
or air flaps could be implemented. That way, the
mass flow rate distribution can be adjusted according
to the irradiation conditions.
The simulation of a tracking stop was chosen to
demonstrate one possible problem and its conse-
quences during operation of a heliostat field. Prob-
lems like this can lead to temperature gradients in the
receiver, which cannot be neglected. They can even
cause great damage. In this specific case, the destruc-

tive temperature levels are not reached. It might still
be necessary for other configurations to install an
emergency defocusing of the heliostat field which
still operates in case of an electrical power outage for
the heliostat field and in case the blower fails as
well.

4 Conclusions

For the first time, transient simulation of a solar
tower power plant including heliostat field and a dis-
cretized solar receiver is described. A tool coupling
was developed linking two simulation environments,
namely STRAL representing the heliostat field and
Dymola representing the receiver. Additionally, a
second coupling was established to link a heliostat
field control modeled in the LabView environment.
A detailed receiver model for the transient behavior
of an open volumetric air receiver has been devel-
oped as one part of a Modelica model library. The
structure of the absorber modules as the key compo-
nents of the receiver is discussed as well as the im-
plementation of the receiver in a Modelica model.
The simulation of a test case, comprising the start-up
procedure and a tracking failure of the entire helio-
stat field, was accomplished. Occasionally large
temperature gradients could be detected in some ab-
sorber modules of the receiver, which could lead to
critical operation conditions. These exemplary re-
sults underline the necessity to carry out transient
simulations of the entire solar tower power plant,
especially during changing operational conditions, as
for instance during start-up, failures or cloud pass-
ing.

References

[1] Belhomme, B., Pitz-Paal, R., Schwarzbözl,
P., Ulmer, S. (2009): A new fast Ray Tracing
Tool for High-Precision Simulation of Helio-
stat Fields, Journal of Solar Energy Engi-
neering, 131 (3), 2009, in Press

[2] Tummescheid, H. (2002): Design and Im-
plementation of Object-Oriented Model Li-
braries using Modelica. Thesis, Department
of Automatic Control, Lund Institute of
Technology, Lund, August 2002

[3] Modelica Association (2009): Modelica® - A
Unified Object-Oriented Language for
Physical Systems Modeling, Language
Specifications, Version 3.1, May 27th, 2009

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 692

[4] Dynasim AB (2004): Dymola Version 7.1
http://www.dynasim.se

[5] Ahlbrink, N., Alexopoulos, S., Andersson, J.,
Belhomme, B., Boura, C., Gall, J., Hirsch, T.
(2009): vICERP – The virtual Institute of
Central Receiver Power Plants: Modeling
and Simulation of an Open Volumetric Air
Receiver Power Plant. Conference Proceed-
ings, MATMOD Conference 2009, 263, Vi-
enna, February 11-13, 2009

[6] Casella, F., Otter, M., Proelss, K., Richter,
C., Tummescheid, H. (2006): The Modelica
Fluid and Media library for modeling of in-
compressible and compressible thermo-fluid
pipe networks. Conference Proceedings,
Modelica Conference 2006, 631-640, Vi-
enna, September 4-5 2006

[7] Schmitz, M., Boura, C., Ahlbrink, N., Gall,
J., Andersson, J. (2009): Optimized control
of a hot –gas cycle for solar thermal power
plants. Conference Proceedings, Modelica
Conference 2009, Como, September 20-22,
2009, in Press

[8] Garcia, P., Ferriere, A. (2008): Codes for So-
lar Flux Calculation dedicated to Central Re-
ceiver System Application: A comparative
Review, Journal of Solar Energy, 3 (2008)
189-197

[9] Hoffschmidt, B. (1997): Vergleichende Be-
wertung verschiedener Konzepte volumetri-
scher Strahlungsempfänger. Forschungs-
bericht / Deutsches Zentrum für Luft- und
Raumfahrt e.V.; 1997, 35, Köln: DLR, 1997.
212 S.: ISBN: 1434-8454; Aachen, Techni-
sche Hochschule, Diss.; Reportnr.: DLR FB
97 35

[10] Fritzson, P. (2004): Principles of object-
oriented modeling and simulation with Mod-
elica 2.1. Wiley-IEEE Press, 2004

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 693

Modelling Steam Generators
for Sodium Fast Reactor with Modelica

Franck David Annick Souyri
EDF R&D

6 quai Watier 78400 Chatou - France
franck.david@edf.fr annick.souyri@edf.fr

Guillaume Marchais
Altran Technologie

2 rue P Vaillant Couturier – 92300 Levallois Perret - France
guillaume.marchais@altran.com

Abstract

EDF is involved with CEA and AREVA in a com-
mon effort for the development of the future nuclear
reactor generations. The studies, currently performed
by the partners, concentrate on the design of Sodium
Fast Reactor types that may include different kinds
of innovative circuits and components as compared
to the SPX (Super PheniX) plant design.
Based on previous knowledge on SG developed at
EDF, with Sodium as hot fluid, and with the help of
more recent methods of modeling using the Mode-
lica libraries, a new model for the simulation of
steam generator has been developed in order to help
the designers of the heat exchangers to meet the re-
quirements for a Sodium Fast Reactor plant design.
The paper will present the current status of the model
and a comparison of the results with those of the ac-
tual SuperPhenix steam generator database.

Keywords: Power plants and energy conversion sys-
tems

1 Introduction

EDF is involved with CEA and AREVA in a com-
mon effort for the development of the future nuclear
reactor generations. The studies concentrate on the
future design of Sodium Fast Reactor types that may
include different kinds of innovative circuits and
components as compared to the previous SPX (Super
PheniX) design.
Among the numerous subjects of interest driven by
the project and technical issues, the present paper
will focus on the energy conversion system between

the reactor core, where liquid sodium is used as pri-
mary coolant, and the steam/water loop.
For safety purpose, i.e. to prevent the consequences
of an interaction between water and “primary” so-
dium in case of tube leaks, an intermediate coupling
fluid is required. The resulting design includes two
heat exchangers (Figure 1) : the intermediate heat
exchanger (IEX) and the steam generator (SG). The
SG couples the intermediate fluid with water, which
goes through a complete change of phase from liquid
water to overheated steam. It is to be noticed that,
according to the nominal power of the plant and also
for safety reasons, the duty of the heat exchangers
(IEX and SG) could be supported by a series of heat
exchangers, with the same inlet and outlet conditions
of temperature and pressure, rather than by big com-
ponents.

Primary Coolant Intermediate Steam/Water
 (Sodium) coupling fluid
Figure 1 : Global Energy transfer scheme in a Sodium
Fast Reactor

Since a final and completed design of the whole sys-
tem is not decided yet, it was important for
EDF/R&D to develop a model with the capability to
integrate any kind of evolutions of geometry or oper-
ating conditions and to assess their effects on the
energy conversion system. Also, this numerical

IEX SG

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 694 DOI: 10.3384/ecp09430051

model could offer relevant information for design
optimization (especially concerning local tempera-
ture behavior on the SG two phase flow side).
The paper presents successively:

- A description of the physical model. This is a
1D model based on equations of conservation for
mass, momentum and energy, compliant with tran-
sient analysis.

- a comparison of the results of the SG Modelica
model with previous studies based on SPX meas-
urements and calculations available at EDF.

- a preliminary assembly of modules to model the
global energy conversion system including the con-
nection of two heat exchangers (IEX and SG).

2 Motivation for the development

2.1 EDF’s prior experience with Modelica

In order to improve the efficiency of its simulation
tools while reducing their cost, EDF has chosen to
use when possible, state-of-the-art readily available
tools instead of proprietary codes developed by EDF.
The tools used should have open component librar-
ies, be able to perform static and dynamic studies,
compute steady states and solve inverse problems.
They also should not induce an excessive depend-
ency upon the tool providers. Modelica based tools
offer such characteristics. That is why they are con-
sidered as good candidates for fulfilling EDF’s
needs, i.e. modelling and simulation at the system
level for the sizing, design verification, validation
and operation of its power plants.
In order to evaluate different tools, benchmark cases
have been selected, covering the variety of studies
made at EDF. Results obtained with our models writ-
ten with Modelica language are quite satisfactory.
Validation studies of the models with Dymola have
shown good agreement with previous reference test
cases ([1], [2]).
After these first positive results, and also because of
the easy use and sharing of the Modelica models
with Dymola, EDF decided to develop its own ther-
mofluid Modelica library. The objective is to provide
the physical and technological model components
needed for steady state and dynamic simulation of
power plants under normal and incidental operating
conditions. This includes conventional nuclear and
thermal power plants, but also future nuclear and
thermal plants designs, and systems powered by re-
newable energy.

The library components must be able to describe sin-
gle and two-phase flow, with heat transfer when
needed, deal with zero and reverse flow, compressi-
ble and incompressible flow for water/steam but also
other fluids used in specific heat exchangers for ex-
ample, and smoke networks for thermal power
plants.
A Modelica library of 0D and 1D thermal hydraulics
components has been developed, based on mass,
momentum and energy balance equations, completed
with closure equations derived from empirical corre-
lations valid for the operating domain under consid-
eration. 1D models describe steam generator and
vapour lines. Empirical correlations (heat transfer,
pressure losses), adapted to the physical range of
operation of the component, have also been trans-
lated into Modelica.
The library uses a finite volume approach, based on
the staggered grid scheme for space discretization,
and the upwind scheme for the handling of flow re-
versal [3]. Both schemes are well suited for convec-
tion, which is the predominant energy transport law
within the network. Discretization is performed
along the main flow direction only (1D modelling).
The basic model components are divided into two
groups: nodes and edges. Nodes represent mixing
volumes such as tanks, boilers, splitters and mergers,
etc. They implement the mass and energy balance
equations. Edges represent flow resistant elements
such as valves, simple pressure loss pipes, etc. They
implement the momentum balance equations. The
network is built by connecting edges to nodes in or-
der to obtain a complete set of mass, energy and
momentum equations with their closure equations,
and automatically fulfil the numerical scheme
requirements. Complex library components such as
heat exchangers, evaporator pipes or steam generator
can be either developed as independent components
or built by assembling edge and node elements.
It is also important to note that EDF has chosen not
to use the Modelica inheritance mechanism, in order
to keep the readability of the model: the complete set
of equations can be found directly in the component
model itself, instead of being scattered throughout
the library when they are partially derived from su-
per-classes.

2.2 Specifications for the model

The purpose of the final model will be to represent
two heat exchangers connected with an intermediate
fluid. The fluids to be considered are sodium liquid
for the hot side at a temperature of about 500 °C and
boiling water for the cold side at a pressure of about

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 695

200 bars. The intermediate fluid could be “classi-
cally” sodium liquid as in Phenix or SuperPhenix
plants or another fluid to be decided in the future.
The main goal for the model is first to help research-
ers and pre-designers to assess the performance and
the sizes of the different exchangers involved in the
process. More over, the requirements for design of
pumps will be derived from the calculation of head
losses through the different parts of the components.
A second objective assigned to the model is to pro-
vide accurate local parameters such as velocity, tem-
perature, pressure, void fraction,… in order to check
if the parameters comply well with other concerns
like fluid-structure interaction, corrosion and so on.
In a final step, the model will have to calculate off
design situations or transients with respect to actual
physical phenomenon and could be used in connec-
tion with the entire energy conversion system.

3 Model description

3.1 Two generic modules

To meet the above requirements, it was decided to
develop separate modules for the fluids and for tube
wall between the hot side and the cold side.
For our applications, the heat exchangers compo-
nents can be considered as one dimensional with
counter-flows even though the local flow can be lo-
cally perpendicular to the tube arrays.
Concerning the steam/water size, the fluid is sup-
posed to enter at liquid sub-cooled conditions, then is
heated and goes through a complete change of phase
to become steam at super-heated conditions at the
outlet. During the process, due to the phase change,
the physical mechanisms that drive the heat transfer
and pressure are very complex and differ strongly
between the inlet and outlet of the tubes.
The complex mechanisms are represented by empiri-
cal correlations depending on geometry, direction of
the fluid and local parameters (velocities, pressure,
quality..). It appears clearly that it is necessary to
have a local description of the average physical pa-
rameters all along the tubes to represent the actual
physics.
As a result, hot side, tube wall and cold side modules
are connected together, and represent a “cell” with a
limited length (figure 2). The cells can then be con-
nected together to form the whole length of the
global heat exchanger.

Figure 2 : generic cell with two modules for fluids and
one module for the tube

The physical models employed should be able to
calculate one phase or two-phase flows within the
fluid module and heat transfers through the tube
wall.
For a fluid module, the 1D model is based on a clas-
sic set of equations for the conservation of mass,
momentum and energy (as given in equations 1,2
and 3).

() 0V. =
∂
∂

+
∂

∂
mm

m

lt
ρ

ρ
 (1)

0g.

)1(22

=−−
∂
∂

+

−+

∂
∂

+
∂

∂

mm

vl
m

vl
mm

mm

F
l
P

VV
lt

V

ρ

ρ
ρρ

ααρ
ρ

 (2)

0)1(

)1(

=Φ−

 −
−+

∂
∂

−
∂
∂

−

−+

∂
∂

+
∂

∂

mvl
m

vl
m

vl
m

vl
mmm

mm

VV
l
P

t
P

LVHV
lt

H

ρ
ρρ

αα

ρ
ρρ

ααρ
ρ

 (3)
where :
- ρ V, H and P are respectively the density, velocity,
enthalpy and pressure of the fluid. The fluid is con-
sidered as an homogenous mixture (subscript m) in
case of two-phase flow conditions.
- α is the void fraction (ratio of volume occupied by
steam on total volume of fluid). Moreover, we have
the relation : lvm ρααρρ)1(−+= (4)
where v and l indicate respectively the vapor and
liquid phase
- L is the difference of enthalpy between vapor and
liquid at saturation condition for a given pressure

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 696

- Vvl is the difference of velocity between the steam
and the liquid that results from different forces acting
on each individual phase
- Fm is set for the sum of forces (friction, viscosity,
obstacles..) acting on the mixture; g is the constant of
gravity.
- Φm represents the heat transfers between the fluid
and the tube walls. It can be expressed by the follow-
ing equation :

()[]mttm
th

m TTh
d

−=Φ
4

 (5)

where Tt and Tm are respectively the temperatures of
the tube and the fluid; dth is the thermal diameter and
htm is the heat exchange coefficient between tube the
tube and the fluid.
The 3 main unknowns solved by the solver from this
3 equations are, after a combination of equations, the
pressure P, the dynamic enthalpy Hm and the mass
flow rate Qm=ρmVm.
To characterize the two-phase mixture, it is assumed
that the phases are always at thermodynamic equilib-
rium and that the relative velocity Vvl is known
thanks to a relevant empirical correlation.
The terms Fm is given by an empirical correlations
depending on geometry and local fluid parameters.
The tube module includes a unique equation of en-
ergy balance in the tube wall (see equation (6)). The
equation links the time dependent variation of the
tube wall temperature with the surface heat fluxes on
both sides of the tube.

21.. Φ−Φ−=
∂

∂
t

T
Cp t

ttρ (6)

where Cpt is the thermal capacity of the tube and Φ1

and Φ2 the surface heat fluxes which can be written
as equation (5).
It is necessary to take account of the thermal conduc-
tivity of the tube. This is made by means of the fol-
lowing relation (to be used for in-tube side):

tw

tw
tm h

h
h

.1 Α+
= with ..

.2

 +
=Α

i

i

t

i

D
eD

Ln
D
λ

 (7)

where Di is the internal diameter of the tube and e its
thickness; htw is the heat exchange coefficient on
tube wall and λt the conductivity. A quite similar
formula adapted to outer tube sides is also required.
Finally, the thermal properties of the fluids and ma-
terials are given either by the thermodynamic tables
in the standard version of Modelica or by specific
models.

This set of equations, with the complementary as-
sumptions, was successfully used for SG modeling
with Modelica in PWR applications [1]. Further-
more, the model is also widely employed at EDF in a
3D formulation to calculate two-phase flows in SG
or reactor cores in PWR plants with a CFD compo-
nent code [4].

3.2 Closure laws

All the correlations used in our model to calculate
friction factors or heat exchange coefficients are
taken from relatively old EDF’s references [5].
Nevertheless the set of correlations used was adapted
to represent correctly the physics in a SG heated by
sodium liquid.
In this particular design, the exchanger consisted of
helically coiled tubes and the correlations take into
account these unusual features. The one phase so-
dium flows quite perpendicularly across the tube
bundle. One phase or two-phase steam water flows
inside tubes that are curved.
Since we didn’t find any indication about relative
velocities between the phases, the Vvl term is set to 0.

3.3 Input/output of the modules

The connections between the modules are as follow:
- Inlet connector of fluid modules consists of en-

thalpy and mass flow rate; outlet connector includes
the pressure variable.

- The connection of tube wall module with fluid
module exchanges the average tube temperature and
the surface heat fluxes.

4 Application to a Steam Generator
of Super Phenix

The objective of the work presented below was to
validate the capability for the model to represent cor-
rectly the behavior of an helically coiled steam gen-
erator heated with sodium.
To be more precise, one must check the correct im-
plementation of the modules, the reliability of corre-
lations by comparing the calculations with test re-
sults or calculations made with an older code that is
no longer available.
The database for the comparisons comes directly
from the test campaign performed on the SG “D” of
SPX plant at different power levels. Moreover, we
used the results of an old code to compare tempera-
ture and pressure profiles for one phase sodium flow
and two-phase steam water flow.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 697

4.1 Geometrical features and operating condi-
tions

A general view of the SG design is given in figure 3.
The SPX Steam Generator was an helically coiled
tubes heat exchanger. The sodium was flowing
downwards on the shell side whereas the water was
flowing upwards and was boiling inside the tubes of
Incoloy 800.

Figure 3 : Plan of SPX Steam Generator

Table 1 : Tube bundle data

Inner diameter 19,8 mm
Outer diameter 25,0 mm
Coil 1st diameter 1,17 m
Coil pitch 45 mm
Coil number 17
Tube number 357
Helical angle 7,45 °

The bundle was contained in an annulus of inner di-
ameter 1,125 m and external diameter 2,655 m.
Main characteristics and layout of the bundles are
presented Table1. The tube bundle is completed with
straight and curved parts to be connected to water
supply and steam outlet pipes.
The heated part covers a height of about 14,9 m and
corresponds to an average tube length of 90,9 m.
Operating conditions at nominal power during the
tests are presented Table 2.

Table 2 : Operating conditions (measured) near 100%
of nominal power

Power exchanged 724 MW
Sodium inlet temperature 518 °C
Sodium outlet temperature 343 °C
Sodium mass flow rate 3249 kg/s
Water inlet temperature 233,8 °C
Water outlet temperature 489,8 °C
Water mass flow rate 331 kg/s
Steam outlet pressure 185,4 bar

4.2 Calculation results and comparison with
tests

Beyond the instrumentation dedicated to global per-
formances and inlet and oultet flow parameters, local
instrumentation (60 thermocouples) was set at differ-
ent levels in the sodium side and at the outlet of
steam water side. The measurements were performed
by Novatome during 1986.
The two categories of measurements provide global
and local information and are used in the following
chapter for comparison with calculation results.
Nevertheless, local steam temperature measurements
were not documented in EDF’s reports and can not
be used.
However, global calculations and profiles are com-
pared with EDF’s older code that was validated with
the present data and with a 45 MW experiment [6]
having similar geometrical features.
For our simulations, a number of 20 “cells” was used
to represent the whole length of the tubes. That num-
ber is a balance between the complexity of the model
and its capability to “catch” the changes of phase and
local physical behavior.
Moreover, a specific arrangement was used to take
into account a by pass of sodium at the bottom of the
bundle (see detail Figure 4).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 698

For the two fluids, input data are temperature and
mass flow rate at the inlet and pressure at the outlet.

Figure 4 : sodium bypass arrangement

Calculation results at nominal power :
The first comparison was made for a thermal power
exchanged (724 MW) very close to the designed
nominal power (750 MW). It was necessary to
slightly adjust the calculated thermal power that was
2% under the expected one. This was achieved by
tuning the conductivity of tube material.
Figures 5 and 6 present respectively the profiles of
temperatures and steam water pressure calculated
along the tubes with EDF’s previous code. The dots
that appear in Figure 5 come from temperature ther-
mocouples located at different levels in the shell side
(i.e. where the sodium liquid flows). The comparison
was satisfactory, so we can rely on calculations with
the previous code.

Figure 5 : temperature profiles (upper curve is sodium,
lower curve is steam water) – calculated with previous
code

The steam/water temperature profile shows the dif-
ferent parts where the fluid is liquid, two-phase or
vapor. The minimum of temperature pinch appears at
the upper part of the tubes but near the beginning of
boiling section the temperature pinch is also narrow.

Figure 6 : Pressure profile on steam/water side, calcu-
lated with previous code

Unsurprisingly, the pressure profile on Figure 6
shows different slopes depending on whether one
area is liquid (left hand side), two-phase (center) or
vapor (right hand side).
Figures 7 and 8 present the calculation results of
temperatures and steam/water pressure profiles with
our Modelica current modeling.

Figure 7 : temperature profiles along the tubes with
Modela model

Figure 8 : pressure profile along the tubes with Modela
model

Temperature profiles in the SPX SG

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100
Tube length (m)

Te
m

pe
ra

tu
re

 (°
C

)

steam/water Na

Pressure profile on water side (near nominal power)

184

188

192

196

200

204

208

0 20 40 60 80 100
Tune length (m)

S
te

am
/w

at
er

 p
re

ss
ur

e
(b

ar
)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 699

As it can be seen on figures 5 and 7, the temperature
profiles compares perfectly. For the two simulations,
beginning and end of boiling sections are located at
the same tube heights.
Although the shapes of pressure profiles (figure 6
and 8) are quite similar, there is a significant differ-
ence between the values of pressure drops of about
2,5 bar. The difference is concentrated in the upper
part of the tubes at high two-phase flow quality and
beyond. That may be due to the relative velocity set
to 0 in our model or friction factors in two-phase
flow.
This difference will have to be investigated in a fu-
ture work.
Results at intermediate power exchanged (50% and
25% of nominal power):
Two other calculations were made with the same
physical assumptions and closure relation ships for
two thermal powers of 388 and 151 MW.
The calculations compare very well with the previ-
ous ones : differences of power exchanged remain
below 1,5%.

5 Toward the modeling of a complete
EI/SG system

The calculation results presented in chapter 4 are
very satisfying. It is now possible to move with con-
fidence to a more complete modeling of the coupled
system with two heat exchangers (EI and SG) as dis-
cussed in chapter 1.
Main objective for this work is first to bring out a
first geometrical design that complies with plant re-
quirements. More over, it is suggested to study other
fluids than sodium as coupling fluids.
Figure 9 presents a possible and very preliminary
architecture that couples an Intermediate Heat Ex-
changer with a Steam Generator. The intermediate
fluid can be chosen by entering the right thermo-
physical properties in the modules.
To perform this work, all useful parameters for the
geometrical design are lumped in a specific “Geome-
try” module. Each generic module will find current
geometrical parameters values in the “Geometry”
module. Moreover, the “Geometry” module contains
all the specific and coherent calculations between the
geometry features and it is used to help the designer
to find out geometrical parameters if another one is
specified.
Once all the geometric details have been set for the
model, the calculation allows to check the technical

constraints (total power exchanged, pressure drops,
local parameters such as temperatures or veloci-
ties..).

Figure 9 : architecture of coupled heat exchangers

6 Conclusions

In the framework of the studies for development of
future Sodium Fast Reactor, the Modelica library is
used, at EDF/R&D, to model the systems of heat
exchangers coupling the primary loop with sodium
to the steam/water flows by means of an intermedi-
ate coupling fluid.
The work presented here is focused on the develop-
ment of a physical model to represent a Steam Gen-

Intermediate
coupling fluid

Straight
tubes with
sodium

Helically
coiled
tubes

GV EI

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 700

erator made of helically coiled tubes and heated with
liquid sodium.
The set of equations, the closure laws and their cor-
relations form a comprehensive model that shows its
capability to calculate correctly the global heat ex-
changes and the temperatures and pressure profiles
along the tubes, as compared to SuperPhenix Steam
Generator database and previous modeling.
On this basis, the model will be used in near future to
participate in the design of the complete and coupled
system including an Intermediate Heat Exchanger
and a Steam Generator.

References

[1] Avenas C. et al, “Quasi-2D Steam
Generator Modelling with Mode-
lica”, ISC’2004, Malaga, Spain.

[2] Souyri A. et al., “Pressurized Water
Reactor Modelling with Modelica”,
6th international Modelica Confer-
ence, March 3-4, 2008, Bielefeld,
Germany

[3] Patankar S.V., “Numerical Heat
Transfer and Fluid Flow”, Hemi-
sphere Publishing Corporation,
1980.

[4] David F., “Three dimensional ther-
mal-hydraulic simulation in steam
generators with THYC Exchanger
code – Application to the UTSG
model 73/19”, NURETH9, October
3-8, San Francisco, Californie

[5] Fontaine et al., “Synthèse d’essais de
maquettes d’un générateur de vapeur
chauffé au sodium” , Nuclear energy
maturity, Paris, 1975,716-737

[6] Lecoeuvre JM et al., “Numerical si-
mulation of operation of the model
for the Super-Phenix steam generator
in non-stationary regime” , EDF,
Bulletin de la Dierction des Etudes et
Recherches, Serie A Nucleaire, Hy-
draulique, Thermique N°3, 1981, pp
27-33

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 701

Simulation of the dynamic behaviour of

steam turbines with Modelica

Juergen Birnbaum
a
, Markus Joecker

b
, Kilian Link

a
, Robert Pitz-Paal

c
, Franziska Toni

a
, Gerta

Zimmer
d

a
Siemens AG, Energy Sector, Erlangen, Germany
b
Siemens AG, Energy Sector, Finspång, Sweden

c
German Aerospace Center, Institute of Technical Thermodynamics, Cologne, Germany

d
 Siemens AG, Energy Sector, Muelheim, Germany

juergen.jb.birnbaum@siemens.com, markus.joecker@siemens.com, kilian.link@siemens.com,

robert.pitz-paal@dlr.de, franziska.toni@cbi.uni-erlangen.de, gerta.zimmer@siemens.com

Abstract

Steam turbine technology is one of the leading tech-

nologies used in electricity production since more

than one hundred years. In recent time requirements

for steam turbines have been changing slowly. Steam

turbines are not longer used in power plants with

high operation times and a high full load share only,

but are also implemented in combined cycle power

plants or solar thermal power plants. This type of

plants requires good dynamic behavior of the steam

turbine due to fast and frequent start ups and daily

cycling.

To optimize the performance of this kind of

power plants and their components it is necessary to

simulate and analyze their dynamic behavior. There-

fore, a general model approach for steam turbines

within Modelica has been developed. This model

approach is based on a general model, which can be

adjusted to the necessary model depth as described in

this paper.

Steam turbines in a solar thermal power plant

with direct steam generation must fulfill special re-

quirements regarding their dynamic behavior. Hence,

this model is applied as an example to explain the

behavior of an industrial steam turbine used in such

plants. Furthermore, this paper shows first results of

simulations with turbine models. To validate the

model, the results are compared with results from the

Siemens internal steady state calculation tool. Since

results stay within the estimated accuracy, the model

approach can be used for further calculations.

The dynamic behavior of the turbine is analyzed

by using typical solar irradiance disturbances. This

analysis shows that no critical operation points occur

within the turbine.

Keywords: solar thermal power plant, dynamic tur-

bine behavior, turbine modeling

1 Introduction

Steam turbines are typically used in different types

of power plants (e.g. fossil fired steam power plants,

nuclear power plants, combined cycle power plants,

solar thermal or biomass power plants) with different

requirements regarding their dynamic behavior.

Generally, a fossil fired steam power plant is op-

erating more than 7000h a year with the rated power

output. Therefore, the dynamic behavior of the steam

turbine is not essential for this kind of plants. Com-

bined cycle power plants normally operate in middle

load, hence the dynamic behavior of the steam tur-

bine is of main importance for the start-up proce-

dure. This aspect gained even more significance

since, due to the new grid requirements arising from

renewable electricity generation, combined cycle

power plants are also used for peak load supply.

The value of the dynamic behavior of steam tur-

bines in a solar thermal power plant has been even

rising, since daily cycling, fast start-up behavior and

good transient behavior have become essential re-

quirements. The dynamic behavior of the solar field

and of the power block, especially the steam turbine

and their interaction to bring solar thermal power

plants with direct steam generation into the market,

are questions still to be answered. As an appropriate

solution, the layout of such a plant has been analyzed

and optimized in a first step as described in [1] and

[2]. Further steps will be a dynamic analysis of the

solar field, of the turbine itself and their interactions.

Parts of this analysis are already done and described

in [3]. This paper addresses the modeling of such a

steam turbine and provides a first analysis of its dy-

namic behavior.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 702 DOI: 10.3384/ecp09430055

2 Plant configuration

The basic layout of the analyzed solar thermal power

plant with direct steam generation is shown in figure

1. It consists of a solar field, the power block based

on a Rankine-cycle and an optional thermal storage

system.

figure 1: 50MWel parabolic trough power plant with

direct steam generation

During the ITES project different power plant

configurations have been designed [2]. One of these

configurations, a plant layout for 50MWel with main

steam parameters of 500°C and 110bar, has been

chosen for the modeling of the steam turbine and the

analysis of its dynamic behavior.

The solar field is divided into four subfields, each

with an evaporator and a superheater section, and is

operated in recirculation mode. [1] provides a de-

tailed description of the solar field layout. The power

block contains a steam turbine, which is divided into

a Hp- and a Lp- turbine, a feed water preheater sec-

tion with six preheaters, the feed water pumps, the

feed water tank and a wet cooling tower. The steam

between the turbines is reheated again through a

steam-steam reheater with condensation. This study

does not focus on the optional thermal storage sys-

tem which will, therefore, not be explained within

this paper.

3 Modeling

A general model has been developed to show the

dynamic behavior of a “solar” steam turbine. This

general model can be adjusted to different turbine

types and the necessary model depth. In this exam-

ple, the “solar” steam turbine for the above described

plant layout is modeled within Modelica. The valida-

tion of the model approach is done through a com-

parison of the simulation results of this model with

results from stationary calculations by a Siemens

inhouse tool.

3.1 Modeling approach

Steam turbines consist of different components,

which are casing and shaft with the blading. Depend-

ing on the question to answer, the steam turbine has

to be modeled with a certain level of detail. There-

fore, the model has been designed in a way that al-

lows to simulate a single blading group as well as the

turbine as a whole.

The basic model, shown in figure 2, has been

built-on a turbine section, an inlet and outlet volume

and the flange. The masses for the casing and the

shaft are considered in corresponding wall models.

figure 2: basic steam turbine model

The mass flow through the turbine section is cal-

culated by using Stodola’s law [4]. Heat transfer be-

tween the steam and the casing respectively the shaft

is calculated at the inlet volume. The level of detail

for the basic model is predefined depending on the

initial values for pressure and enthalpy and the geo-

metric inputs (e.g. one basic model to model the Hp-

turbine).

3.2 Modeling of a “solar” steam turbine

Figure 1 shows a schematic drawing of a parabolic

trough power plant. However, to analyze the dy-

namic behavior of the steam turbine, it is not neces-

sary to simulate the whole power plant as long as

reasonable data for disturbances at the boundaries is

available.

Since enough data for disturbances around the

“solar” turbine had been available, reasonable

boundaries have been chosen (figure 3). The solar

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 703

field input and the mass flow at the extractions have

been chosen as boundary conditions for the Hp-

turbine. Similar boundary conditions have been se-

lected for the Lp-turbine, where, additionally, the

condenser backpressure has been selected. The mass

flow at the condensate side of the reheater is suitable

as reheater boundary condition.

figure 3: reasonable boundaries for the turbine model

Due to the chosen boundary conditions a reason-

able design for the turbine model has to be applied

which is dividing each turbine into different sections.

Each of these sections is described by the general

model. Three sections have been selected for the Hp-

turbine and five sections for the Lp-turbine. Each

section is defined from turbine inlet respectively tur-

bine extraction to the following turbine extraction.

Figure 4 shows the overall turbine model and the

division of the Hp-turbine into the three suitable sec-

tions.

figure 4: Overall turbine model and division of the

Hp-turbine into suitable turbine sections

3.3 Validation of the model

In order to validate this model, results of the station-

ary calculations by the internal Siemens tool have

been recalculated with Dymola/Modelica. Typically,

load cases from 100% load down to 40% load in

steps of 20% are calculated for this analysis. The

results for these load cases of both tools were com-

pared at the inlet of the different turbine sections and

the outlet of the Lp-turbine.

The relative failure in the calculated mass flow

through each turbine section is within +1.3% and –

0.1%; for the enthalpy it is within +0.3% and -0.2%

for all calculated load cases. Regarding pressure cal-

culation, the relative failure stays within the same

range except for the Lp-turbine inlet, leading to a

failure in the pressure calculation in every modeled

section of the Lp-turbine. Within those, the relative

failure varies over all load cases between +6.5% and

-0.1%.

This failure occurs from different calculation

methods used for the calculation of the pressure loss

over the reheater within the tools. In the Dy-

mola/Modelica model the pressure loss over the re-

heater is calculated according to a given geometry.

In contrast, within the Siemens internal calculation

tool the pressure loss in part load is calculated with

an approximation considering the design pressure

loss, the design mass flow and the actual mass flow.

Exemplary the results for the 80% load case is

shown in table 1.

table 1: Comparison of the calculation results for

80% load (turbine with reheat)

rel. Failure p in % h in % mflow in %

Hp-inlet 0.192 0.035 -0.004

1. extraction 0.474 0.055 0.023

2. extraction 0.495 0.061 0.049

Lp-inlet 2.225 0.094 0.434

3. extraction 5.706 0.292 0.434

4. extraction 5.953 0.288 0.459

5. extraction 6.081 0.273 0.494

6. extraction 0.486 -0.048 0.559

Lp-outlet -0.156 -0.032 0.677

A comparison of the pressure failure calculation

with the failure calculations of the enthalpy and the

mass flow shows a relatively high difference be-

tween the calculated pressure in Modelica and the

Siemens inhouse tool. Due to this significant differ-

ence, a turbine model without reheater has been ana-

lyzed in the same way as described above.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 704

The relative failure of the mass flow and the en-

thalpy calculation were in the same range as the rela-

tive failure calculated for these properties for the

turbine design that has been analyzed first. The rela-

tive failure of the pressure calculation over the Lp-

turbine decreased to values between +0.1% and -1%.

Hence, the different calculation methods used for

pressure loss over the reheater could be determined

as the cause for the relatively high failure in pressure

calculation (table 2).

table 2: Comparison of the calculation results for

80% load (turbine without reheat)

rel. Failure p in % h in % mflow in %

Hp-inlet 0.034 0.000 0.000

1. extraction -0.065 -0.006 -0.030

2. extraction -0.124 0.035 -0.039

Lp-inlet -0.017 0.027 -0.021

3. extraction -0.092 0.023 -0.025

4. extraction 0.014 0.022 -0.023

5. extraction -0.067 0.022 -0.017

6. extraction -0.137 0.022 0.001

Lp-outlet -0.084 0.072 0.001

Taking into account the different calculation

methods for the pressure loss of the reheater, the

comparison of results between the two calculation

tools shows a very good accuracy of the results. The

turbine model within Dymola/Modelica can, there-

fore, be used for further calculations. However, it

should be kept in mind, that the pressure loss calcu-

lation of any component used within the turbine

model must first be analyzed separately.

4 Simulation of the dynamic behav-

ior of a “solar” steam turbine

The simulation of the dynamic behavior of the tur-

bine is done for typical solar disturbances. These

disturbances are resulting in main steam parameter

disturbances. Within the ITES-Project, the German

Aerospace Center (DLR) is simulating the dynamic

behavior of the solar field for such power plants [3].

The solar field outlet data (mass flow, temperature,

enthalpy), calculated by the DLR, are used as input

data for a simulation of the dynamic behavior of the

steam turbine. The typical disturbance used for this

analysis is a step disturbance in the solar radiation

from 550W/m² down to 275W/m² over 600s (figure

5).

figure 5: typical irradiance disturbance and the corre-

sponding solar field behavior

To analyze the simulated dynamic behavior of the

turbine the standard specification for steam turbines

IEC 60045-1 is used [5].

4.1 Steam temperature limits

Looking at the steam temperature behavior of the

modeled Hp- and Lp-turbine sections one can clearly

see that the temperature disturbance is softened over

the turbine especially over the reheater (figure 6).

This behavior occurrs due to the thermal inertia of

the turbine and the reheater. Therefore, the steam

temperature limits are analyzed only for the Hp-

turbine inlet, where the highest temperature stress

occurs.

figure 6: steam temperature behavior simulated for

different modeled turbine sections

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 705

figure 7: excess steam temperature at the first mod-

eled Hp-section

A detailed analysis at the Hp-inlet shows that

temperature limits of the turbine are significantly

overshot (figure 7). The temperature limits +8K and

+14K over rated temperature must be analyzed on a

yearly basis, as done in [3], to establish, whether the

specified limits have been exceeded. The tempera-

ture limit of +28K is an absolute temperature limit.

Overshooting this temperature limit will normally

lead to a turbine trip influencing the steady electric-

ity production, or reducing the expected lifetime of

the turbine. As this limit has been exceeded for 5

minutes, this would already lead to a trip or signifi-

cant reduction in turbine lifetime.

4.2 Temperature differences between steam

and casing respectively shaft

Another limit of the turbine, which has to be fulfilled

in operation, is the temperature difference between

steam and casing respectively shaft. In case the tem-

perature difference is exceeding a certain degree, the

thermal stresses within the turbine will get too high

which will lead to a reduced lifetime of the turbine.

The temperature difference between the steam

and the shaft respectively casing is analyzed for the

Hp-inlet (figure 8) and the Lp-inlet (figure 9). The

difference between the steam temperature and the

shaft temperature of the first Hp-section as well as

the first Lp-section is below 0.4K. Like the shaft

temperature, the temperature of the casing at the first

Hp-section is nearly exactly following the steam

temperature. The temperature of the first Lp-section

casing for the analyzed disturbance is ~5.4K lower

than the steam temperature. The bigger mass of the

Lp-casing compared to the Hp-casing and the shafts

of the Hp- and Lp-turbines mainly cause this tem-

perature difference. However, all analyzed tempera-

ture differences are well below their specified limits.

figure 8: temperature difference between steam and

casing respectively shaft at first Hp-section

figure 9: temperature difference between steam and

casing respectively shaft at first Lp-section

4.3 Temperature distribution within the casing

Another characteristic for the dynamic behavior of

the turbine is the temperature distribution in the cas-

ing. If the temperature gradient from the inner to the

outer wall of the casing is too big, the thermal stress

within the casing will exceed its limits, which will

again lead to a reduced lifetime of the turbine.

Since the highest temperature stress has been

simulated for the first turbine section, the tempera-

ture distribution within the casing is analyzed for this

section. Therefore, the casing is divided into six lay-

ers each with the same mass from the inner to the

outer wall.

Figure 10 shows the maximal temperature differ-

ence of 34K between the inner and the outer wall.

The maximal tolerable temperature gradient, previ-

ously determined during first approximations, is

~50K. The determined temperature gradient stays,

therefore, well within these limits.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 706

figure 10: temperature gradient within the casing of

the first Hp-section (6 wall layers)

4.4 Pressure limits

The standard specification of the pressure distur-

bances for steam turbines defines only maximal

pressure limits [5]. The main steam pressure for the

analyzed disturbance coming from the solar field is

never exceeding the rated pressure (figure 7). Since

in the solar field no overpressure has been simulated

it is not necessary to analyze the turbine regarding its

pressure behavior.

5 Conclusions

This paper presents a model approach for the simula-

tion of the dynamic behavior of steam turbines. For

the purposes of an industrial steam turbine within a

solar thermal power plant with direct steam genera-

tion the model approach has been compared with

stationary calculations for different load points. This

comparison revealed a very high accuracy of Dy-

mola/Modelica simulations results, hence, this model

can be used for further calculations.

The analysis of the dynamic behavior of the tur-

bine within a solar thermal power plant shows that

most of the typical limits for steam turbines have not

been exceeded. The limit, which in fact has been ex-

ceeded, is the absolute temperature limit at the Hp-

turbine inlet. One possibility to control the main

steam temperature within its allowed limits is to op-

timize the solar field control strategy. Another possi-

bility has been evaluated within the ITES-project,

where a short time storage had been integrated into

the main steam path. The results of this analysis are

published in [3].

Acknowledgements

The authors would like to thank the German Ministry

for the Environment, Nature Conservation and Nu-

clear Safety for the financial support given to the

ITES project (contract No 16UM0064).

References

[1] Birnbaum J., Eck M., et al. A Direct Steam

Generation Solar Power Plant with Integrated

Thermal Storage. Las Vegas, USA: 14th

Bienial SolarPACES Symposium, 2008.

[2] Birnbaum J., Hirsch T., et al. A Concept for

Future Parabolic Trough Based Solar Ther-

mal Power Plants. Berlin, Germany: 15th In-

ternational Conference on the Properties of

Water and Steam, 2008.

[3] Birnbaum J., Feldhoff J., et al. Steam Tem-

perature Stability in a Direct Steam Genera-

tion Solar Power Plant. Berlin, Germany:

15th Bienial SolarPACES Symposium, 2009.

[4] Traupel W. Thermische Turbomaschinen II.,

3. edition. Berlin, Heidelberg, New York:

Springer Verlag, 1982.

[5] International Electronic Commission (IEC)

Steam turbines – Part 1: Specifications, IEC

60045-1. Geneva, 1991

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 707

System-Level Modeling of an ICE-powered Vehicle with
Thermoelectric Waste-Heat-Utilization

Thomas Braig Jörg Ungethüm
German Aerospace Center (DLR), Institute of Vehicle Concepts

Pfaffenwaldring 38-40, 70569 Stuttgart
thomas.braig@dlr.de joerg.ungethuem@dlr.de

Abstract

The reduction of automotive fuel consumption is a
major challenge of automotive OEMs and suppliers.
It is expected, that during the next decade the major-
ity of vehicles will still be driven by internal com-
bustion engines (ICE). As a rule of thumb about 2/3
of the fuel energy fed to the engine is converted into
heat and is used only occasionally and only partly for
heating the interior. One promising technology to
convert exhaust heat into usable electric energy is the
thermoelectric generator (TEG) [1]. As this compo-
nent has significant retroactive effects on the auto-
motive system, a system-level model of the car was
developed to calculate the net benefit of the TEG for
steady-state operating-points as well as for dynamic
driving cycles.
This paper presents a model and simulation results of
an ICE-powered vehicle with thermoelectric waste-
heat-utilization. The model uses component models
of the AlternativeVehicles-, VehicleInterfaces-, Pow-
erTrain- and YaFluid-Library.
Keywords: waste heat utilization, thermal manage-
ment, thermoelectric generator

1 Introduction

A first approach of a TEG-vehicle-model has been
presented by Eschenbach et al. on the 5th Interna-
tional Modelica Conference 2006 [3]. Meanwhile
several prototypes of thermoelectric generators have
been developed at the Institute of Vehicle Concepts
which is part of the German Aerospace Center
(DLR) (Figure 5).
Simultaneously to this hardware development the
AlternativeVehicles-Library has been enlarged and
improved. For high level system simulation of
thermo-fluid components a new library called
YaFluid-Library has been developed.

2 Model

At the current stage of development, the TEG proto-
type is not integrated into the cooling system of the
car. Cooling of the TEG is done by a separate cool-
ing cycle with an extra fender mounted cooler. For
the prototype phase of development this variant has
several advantages:
• reproducible measurements due to minimal ther-

mal interaction between the TEG and other com-
ponents (especially ICE)

• comparatively simple integration of the TEG into
a production car

• simple and flexible control of the coolant flow
due to separate coolant pump

In a future stage of development the TEG will be
integrated in the common cooling system. This inte-
gration variant has following advantages:
• the already existing coolant pump and cooler can

be used so that additional weight and aerody-
namic drag is avoided

• exhaust heat can be used to shorten the warm-up
phase

The aim of the vehicle model is to study the interac-
tions between the TEG and other subsystems and to
maximize the energetic net benefit. The TEG is part
of the exhaust system but is also connected with the
cooling medium as well as with the electric system
(Figure 1). Mainly the cooling system and the ICE
are affected by the TEG. As shown in Figure 1, ICE
and TEG are connected in parallel concerning the
cooling agent. The coolant flow through the TEG has
to be propelled by the coolant pump and the addi-
tional heat flow has to be transferred by the front
cooler to the ambient. The TEG can also affect the
ICE by an increased exhaust gas back pressure The
energetic net benefit of the TEG Pnb is the difference
between generated electric power PTEG and the sum
of the losses due to the TEG Plosses.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 708 DOI: 10.3384/ecp09430044

lossesTEGnb PPP −= (1)

rebackpressufanpumplosses PPPP ++= (2)

PTEG is calculated according equation (5). In case of
driving cycles it is more convenient to evaluate work
instead of the power.
The backpressure influences the gas-exchange proc-
ess losses as well as the exhaust residual percentage.
Obviously the exhaust pumping work increases with
increasing backpressure due to an additional heat
exchanger. However, this depends heavily on design
and control strategy of the engine. No adequate
modeling approach to quantify this retroactive effect
has been found in literature, thus this effect is still
not considered in the simulation. As the TEG is inte-
grated in the existing cooling system and the front
cooler size has not changed, the TEG doesn't cause a
higher aerodynamic drag. As the mass of the TEG is
low, the influence on the driving resistance can be
neglected. During the warm up phase the engine oil
temperature is low and therefore the engine friction
is high. As the TEG shortens the warm up time it
also reduces indirectly the engine loss. This positive
effect is still not considered in the model.

exhaust gas (eg)

electric power

cooling medium (cm)

ICE

manifold

cat. conv.

pipe

TEG

cooling system

ex
ha

us
t s

ys
te

m

. DC
DC .

electrical
system

air fuel

air

components interface variables and
physical effects

m_flow_cm, T_cm

fuel consumption, warm-
up, back pressure

m_flow_eg, T_eg

m_flow_cm, T_cm

warm-up
heat losses to ambient
heat transfer eg to cm
electric power of TEG
pressure drop

warm-up
heat transfer to ambient
coolant pump power
fan power

Figure 1 TEG interacting with other components

In the following sub chapters the vehicle, engine,
exhaust system and cooling system models will be
explained.

2.1 Vehicle model

The vehicle system model uses components of the
AlternativeVehicles-, VehicleInterfaces-, Power-
Train- and YaFluid-Library (Figure 2). The base
model is a conventional mid sized vehicle with man-
ual gearshift. The engine model has a fluidPort for
the exhaust gas flow and a heatPort for the heat flow
into the engineCooling model. EngineCooling, ex-
haustSystem and coolingSystem are connected by
the coolant flow. In one of the spitters (e) the coolant
mass flow control system is implemented.

w orld

x

y
road atmosphere

acce... engine gear

drivel...

Set1 chassis brakes

driver
contr...

exhaust gas

coolant

coolant

exhaust...

coolingS...
engineC...

coolSys...

coolSystIn

co
nt

ro
lB

us

(a) engine, (b) engineCooling, (c) exhaustSystem
with TEG, (d) coolingSystem, (e) splitter
Figure 2 Diagram of the vehicle model

2.2 Engine model

The engine model generates the required mechanical
power and calculates using a characteristic map also
the loss power as well as the fuel consumption.

This loss power (engLossQ&) is divided into one part

that heats the exhaust mass flow (engExhQ&) and an-
other part that warms up the engine block. In the en-
gineCooling model the heat flow engCoolingQ& which is
rejected from the engine block, is calculated. The
rejected heat flow consists of the parts ambient heat
flow, coolant heat flow and oil heat flow (Figure 3).
Each heat transfer coefficient is assumed constant in
this model.

engToOilntengToCoolaengToAmbengCooling QQQQ &&&& ++= (3)

(a)

(b)

(c)
(d)

(e)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 709

The thermal masses and heat transfer parameters can
be determined with engine test benches measure-
ments.
For the calculation of the generated electric power of
the TEG, exhaust mass flow and temperature are im-
portant input values. The exhaust mass flow is the
sum of the fuel flow and the air mass flow. In normal
mode the air mass rate can be calculated with the
fuel consumption and the lambda value. As at the
current state of development only spark-ignition en-
gines are concerned, stoichiometric combustion can
be assumed. In the inertia fuel shutoff mode the air
mass flow is calculated by the cylinder capacity and
the engine speed. The exhaust gas temperature is
calculated from its specific enthalpy which in turn is
calculated using the mass flow and exhaust loss
power (engExhQ&).

engToAmb

G=gEngTo...

engToCoolant

G=gEngTo...

engToOil

G=gEngTo...
oil

m = ...c = ...

engineBlock

m = ...c = ...

oilToAmb

G=gOilTo...

ambient

T=T_start
K

K

coolantTe...

K

oilTempSe...

coolant

heatPort

(a) engCoolingQ& , (b) engToAmbQ& , (c) ntengToCoolaQ& ,

(d) engToOilQ&

Figure 3 Diagram oft the EngineCooling model (modi-
fied PowerTrain WarmUpModel)

To avoid negative retroactive effects of the TEG due
to immoderate increased backpressure, at peak loads
the exhaust mass flow is partially bypassed. As the
TEG and the engine are coupled by the coolant cir-
cuit, the TEG shortens the warm-up phase and re-
duces the engine friction. In the case that the cooling
system gets to its limit, the additional heat flow from
the TEG into the coolant might not be passed to am-
bient and could lead to a further temperature rise of
the coolant and engine. In this cases the TEG should
also be bypassed.

2.3 Exhaust system model with TEG

To ensure that the light-off temperature of the cata-
lytic converter is reached within a reasonable time
after cold start, the TEG is mounted in the exhaust
system behind the catalytic converter. Any compo-
nent of conventional exhaust gas systems (manifold,
catalytic converter, pipes) does transfer significant
amounts of heat to the ambient. These heat losses
reduce the exhaust temperature and should be mini-
mized by an adequate isolation if exhaust heat is util-
ized. In the model the three components are com-
bined to a single valve, a control volume, a thermal
mass and the heat transfer to the ambient.

fluid 1: exhaust gas

fluid 2: cooling medium

exhaustAmb

vol_2b

teg

TEG

vol_2a

vol_1a vol_1b

dp_1bdp_1a

m_1a
m...c ...

m_1b
m...c ...

m_2a
m...c ...

m_2b
m...c ...

exhaustPi...

volExh...

ex
hP

ip
e

m
...

c
...

ex
hT

oA
m

b

G
=g

Ex
h.

..

ambient

T=T_start_1
K

P_teg

co
nt

ro
lB

us

thermalManag...thermalManag...

(a) combined manifold, catalytic converter and pipe,
(b) TEG
Figure 4 Diagram of the ExhaustSystem model with
TEG

2.4 Thermoelectric Generator (TEG)

The TEG is a gas-liquid heat exchanger that transfers
a heat flow from the hot exhaust gas to the cold
coolant (Figure 5). Thermoelectric material (TE) in
the wall between the hot and cold sides use the tem-
perature difference to produce an electric potential
due to the Seebeck effect. The efficiency of thermoe-
lectric material can be defined as the quotient of the
generated electric power and the heat flow at the hot
side [2].

TETETE
TE

TE
TE QP

Q
P

ηη ⋅=→= &
&

 (4)

Not the total wall surface is covered by the thermoe-
lectric material, therefore the factor cTE has to be in-
troduced to calculate the generated power of the
TEG.

(a)

(b)

(a)

(b)

(c)

(d)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 710

TETETEGTEG cQP ⋅⋅= η& (5)

h

chh

ch
TE

T
TT

ZT
T

TT

C

−
⋅−+

⋅
−

=

2
124
1

321
η

η
(6)

The heat flow TEGQ& is calculated using the P-NTU-
Method [4] and the efficiency of the thermoelectric
material TEη is interpolated from a lookup table de-
pending on the hot and cold side temperatures. The
electric current also affects the efficiency TEη . How-
ever, as a current converter is necessary anyway for
the connection to the vehicle electrical system, it is
assumed the electric current is forced to an optimum
by an appropriate control module. The material data
are not available as an equation but as a lookup table.
To increase the numeric efficiency the cubic spline
approximation provided in the ApproxSpline-Library
is used.
As indicated in the equation (6), a large temperature
difference between the hot side Th and cold side Tc of
the thermoelectric material is essential for a reason-
able good performance of the TEG. Also the trans-
ferred heat flow rises with the temperature differ-
ence. The module cold side temperature Tc is mainly
influenced by the coolant temperature that in turn
depends on the engine operation point. The module
hot side temperature depends on the exhaust tem-
perature. In general the exhaust temperature rises
with the engine load and consequently fast driving
cycles with high engine loads are more advantageous
for the generated power PTEG.

Figure 5 Exploded view of the TEG [2]

For design purposes a detailed discretized model of
the TEG is used. For system level simulation it is
more convenient to use a concentrated model of the
TEG. This model is based on a P-NTU-Method heat
exchanger model which is included in the YaFluid-
Library. Several geometries and fin types are avail-
able, e.g. louvered fin, wavy fin or offset strip fins.
Depending on the geometry several characteristic
variables are calculated, e.g. heat transfer areas,
Reynolds number, Nusselt number and Fanning fric-
tion factor.
Measuring values were available from the Institute
of Materials Research which is also part of the Ger-
man Aerospace Center (DLR). After calibrating the
model parameters measurement values and simula-
tion values fit well (Figure 6, Figure 7).

2000 4000 6000 8000 10000
2000

4000

6000

8000

10000
transfered heat flow in W

simulation

m
ea

su
re

m
en

t

Figure 6 Comparison of simulated and measured
transferred heat flow

0 50 100 150
0

50

100

150

generated electric power in W

simulation

m
ea

su
re

m
en

t

Figure 7 Comparison of simulated and measured gen-
erated electric power

coolant

TE

exhaust

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 711

2.5 Cooling system model

The amount of heat that the cooling cycle has to
transfer to the ambient is given as ntengToCoolaQ& . In
most cases, the airflow is sufficient to reject the heat
from the coolant. Only at low vehicle speed addi-
tional energy effort is necessary to force air through
the front cooler by a fan. The TEG causes an addi-
tional heat flow TEGQ& into the cooling cycle, which
is calculated in the TEG model as mentioned above.

engine

TEG

cooler

fan

pu
m

p

(a)

coolerQ&

ntengToCoolaQ&

TEGQ&

th
er

m
os

ta
t

(b)

(c)

cooler bypass

(d) (e)

(a) engineCooling, (b) exhaustSystem, (c) cooling-
System, (d) controlled valve, (e) TEG coolant outlet
Figure 8 Simplified cooling circuit

After cold start the operating temperature of the en-
gine should be reached as fast as possible. Therefore
the bypass is fully opened and almost no coolant
runs through the cooler. Between the coolant tem-
peratures lowerT and upperT the bypass is gradually
closed. If the coolant temperature exeeds the upper
temperature limit, the bypass is fully closed. Up to a
certain velocity (vFanOn) the heat transfer to ambient
can be improved by switching on the fan.

In the cooling system model the heat flow coolerQ&
from coolant to ambient is calculated (Figure 10).
Therefore the simple approach

)(ambcoolantcoolercoolercoolercooler TTGTGQ −=Δ⋅=& (7)

is used, where coolantT is the coolant temperature,

ambT is the air temperature of the ambient and coolerG
is the thermal conductance (product of the heat trans-

fer coefficient and heat transfer area). coolerG de-
pends primarily on the geometry and furthermore on
mass flows of air and coolant.
At engine peak load coolerG has to be sufficient to
reject the engine waste heat ntengToCoolaQ& to the ambi-
ent. The driving resistance of a given vehicle varies
with slope and payload. Thus, the lowest vehicle
speed at which maximum engine load is achievable
is defined by the cooler design. Figure 9 shows a
simple cooler design procedure. A simulation of the
engine waste heat flow rate in dependence of vehicle
speed at zero gradient which covers the complete
power range of the engine is done. To ascertain an
adequate thermal conduction of the cooler, the fol-
lowing assumptions were made:
• coolant mass flow and temperature are constant

• engToAmbQ& and engToOilQ& are neglected, thus

ntengToCoolaQ& = engCoolingQ&

• the air velocity through the cooler is equal to the
car velocity

Thus, coolerG depends only on the cooler air flow
which is directly linked to the car velocity. At maxi-
mum vehicle speed the cooler has to transfer the
maximum engine waste heat (Figure 9 point (a)).

() ()maxmax vQvQ ntengToCoolacooler
&& = (8)

As a worst-case approximation, it is assumed the
thermal conductance depends linear on the vehicle
velocity (line (d) in Figure 9). Cooler maps show,
that this underestimates the actual thermal conduc-
tance of real world coolers (the characteristic curve
(c) promises a higher heat transfer than the linear
approach (d) delivers).

(a)

(b)

velocity of car

ntengToCoolaQ&

TEGQ&

he
at

flo
w

coolerQ&
(c)

(d)

(e)

vFanOn

Q
co

ol
er

(v
Fa

nO
n)

Figure 9 Identification of Qcooler respective Gcooler

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 712

Thus, the cooler conductance is calculated as fol-
lows.

0)0(, ==vG vcooler (9)

coolerntengToCoolavcooler TvQvvG Δ== /)()(maxmax,
& (10)

maxmax,, /)()(vvGvvG vcoolervcooler ⋅= (11)

As a consequence of the linear approach, the heat
rejection of the cooler is insufficient at low vehicle
speed. This leads to a continuously rising coolant
temperature up to a certain temperature fanOnT where
the fan is switched on and forces the airflow through
the cooler with the velocity vfanOn.

)(,, FanOnvcoolerfancooler vvGG == (12)

⎩
⎨
⎧ >

=
)(:

:
)(

,

,

vGelse
GTT

vG
vcooler

fancoolerFanOncoolant
cooler (13)

The heat rejection is implemented in the cooler
model (Figure 10).

coolerV
ol

ambient

T=T_start

K
prescribedFl...

m_flow ...
m_flow _cm_...

cooler

coolerBypas...

coolerValve_areservoir

coolerValve_b

T_upper...
T_upper

T_low er...
T_low er

product

if junctio...
valveControl

valve_1

junction

y_upper...
y_upper

y_low er...
y_low er

co
nt
ro
lB
us

(a) pump, (b) reservoir, (c) bypass valve, (d) cooler,
(e) junction
Figure 10 Diagram of the CoolingSystem model

As indicated at Figure 8 the coolant flow through the
bypass depends on the coolant temperature (Figure
10 (e)) and the temperature limits Tlower and Tupper.
The coolant flow through the TEG has to be forced
by the coolant pump and consequently this pumping
power is considered in the energetic net benefit (eq.
(1)). It is the product of volume flow and pressure
loss divided by pump efficiency. The pressure loss is

calculated using a fitting curve on the base of meas-
urement values. Only the pressure loss of the TEG is
considered, not the pressure loss of the control valve.
The latter is determined by the pressure loss of the
engine, as the total pressure differences of both par-
allel passes are equal. To minimize the pumping
power the coolant mass flow is controlled depending
on the difference of coolant outlet temperature of the
TEG (Figure 8 (d), (e)) and the coolant outlet tem-
perature at design point (set point).

3 Simulation

For the simulation model a mid sized vehicle with an
85 kW powered gasoline engine was used (Table 1).
Whether the energetic net benefit of the TEG is posi-
tive or not depends crucially on the concrete driving
cycle and the TEG efficiency. The TEG used here is
designed for waste heat recovery at medium to high
engine load. Thus, a suitably driving cycle must be
used to achieve reasonable results. In general the
Artemis Driving Cycles show a much more realistic
daily life driving behaviors than the often used New
European Driving Cycle (NEDC) [6]. Considering
the TEG design, the Artemis motorway driving cycle
is an adequate driving cycle for this study (Figure
11).

Table 1 Parameters of the vehicle model
Parameter Value
Vehicle mass (2/3 load) 1575 kg
Engine power 85 kW at 6000 1/min
Engine displacement 1.6 l
Engine max. torque 155 Nm at 4000 1/min
TEG 1 bismuth telluride

(Bi2Te3)
TEG 2 lead telluride (PbTe)

0 200 400 600 800 1000
0

50

100

150

artemis motorway

time in s

ve
lo

ci
ty

 in
 k

m
/h

Figure 11 Velocity in the artemis motorway driving
cycle

(a) (b)

(c)

(d)

(e)
Tcoolant Tamb

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 713

Two variants of a TEG are simulated, first a state of
the art TEG with the thermoelectric material bismuth
telluride (Bi2Te3) (TEG 1) and second an improved
TEG with lead telluride (PbTe) and an enhanced heat
transfer characteristic (TEG 2).
For both TEG variants the power according eq. (1)
has been calculated and plotted. The generated elec-
tric power of the TEG has been calculated in de-
pendency on fluid mass flow rates and temperatures
as well as the geometry of the TEG. Due to the high
vehicle velocity in the Artemis motorway cycle and
consequently high heat transfer to ambient the front
cooler fan is never switched on. In this simulation
the power loss of eq. (2) is equal to the coolant
pumping power.

0 200 400 600 800 1000
0

50

100

150

200
TEG 1 motorway

time in s

po
w

er
 in

 W

Pnb PTEG Ppump

Figure 12 TEG 1 motorway: powers

 W_nb W_TEG W_pump
0

0.2

0.4

0.6

0.8

1

TEG 1 motorway

re
la

tiv
e

w
or

k
W

/W
TE

G

Figure 13 TEG 1 motorway: works

At simulation start the temperature difference be-
tween the hot and cold side of the TEG is zero, thus
the heat transfer and the generated electric power are
also zero. As the thermal mass of the coolant and
exhaust system warm up, the temperature difference
across the thermoelectric module and the generated
electric power rises.

Due to the effective control of the coolant mass flow
rate the pumping power is kept quite small in com-
parison to the generated electric power (Figure 12
and Figure 13). During the warm up time the coolant
temperature is still low. Consequently the coolant
mass flow as well as the pumping power are mini-
mal.

0 200 400 600 800 1000
0

100

200

300

400
TEG 2 motorway

time in s
po

w
er

 in
 W

Pnb PTEG Ppump

Figure 14 TEG 2 motorway: powers

 W_nb W_TEG W_pump
0

0.2

0.4

0.6

0.8

1

TEG 2 motorway

re
la

tiv
e

w
or

k
W

/W
TE

G

Figure 15 TEG 2 motorway: works

Thanks to the higher operation temperature of the
thermoelectric material lead telluride (PbTe) and the
enhanced heat transfer characteristic the TEG 2 gen-
erates up to 310 W electric power. In comparison to
the TEG 1 the net benefit work is about 70 % higher.
Due to the higher transferred heat flow the warm up
time is even more reduced. The higher heat flow
leads also to a higher coolant mass flow through the
TEG and consequently the pumping work rises. As
the pumping power rises quadratically, also the
pumping work increases disproportionately to the
generated electric energy.

 nbW TEGW pumpW

 nbW TEGW pumpW

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 714

4 Conclusions

A mid sized car equipped with a thermoelectric gen-
erator (TEG) for exhaust heat recovery has been
modeled based on the Modelica libraries Alterna-
tiveVehicles, VehicleInterfaces, PowerTrain, Ap-
proxSpline and YaFluid. The mutual interferences of
the components have been studied and on the basis
of two TEG variants the potential augmentation of
the generated net benefit power as well as the net
benefit work have been analyzed. However using
commercially available thermoelectric modules
(Bi2Te3) the TEG reaches values up to 180 W, 310
W are obtainable using lead telluride (PbTe). Im-
proved thermoelectric materials, control of coolant
and exhaust flow as well as possible reductions of
the exhaust and coolant pressure losses have a sig-
nificant potential to improve the energetic net benefit
of TEG equipped cars in future.
For the calculation of the net benefit of waste-heat-
utilization-technologies it is important not just to
focus on single components but to examine the entire
system. The AlternativeVehicles-library is suitable to
model various vehicle concepts and enables under-
standing and optimizing the whole vehicle system.

References

[1] Friedrich, Treffinger, Müller: Management
von Sekundärenergie und Energiewandlung
von Verlustwärmeströmen. ATZ/MTZ-
Konferenz – Energie, München, 2007

[2] Treffinger, Häfele, Weiler, Eder, Richter,
Mazar: Energierückgewinnung durch Wand-
lung von Abwärme in Nutzenergie (Recovery
of energy through conversion of waste heat),
Innovative Fahrzeugantriebe, Dresden, 2008

[3] Eschenbach, Ungethüm, Treffinger: Vehicle
model for transient simulation of a waste-
heat-utilisation-unit containing extended
PowerTrain and Fluid library components,
5th International Modelica Conference, Vi-
enna, 2006

[4] Shah, Sekulic: Fundamentals of Heat Ex-
changer Design, John Wiley and Sons, Ho-
boken, 2003

[5] Ungethüm, Hülsebusch: Implementation of a
Modelica Library for Smooth Spline Ap-
proximation, 7th International Modelica
Conference, Como, 2009

[6] M. André: Real-world Driving Cycles for
Measuring Cars Pollutant Emissions. Part A:

The Artemis European Driving Cycle. Insti-
tut National de Recherche surles Transports
et leur Securité (INRETS), Bron, 2004

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 715

Some aspects of the modeling of tube-and-shell heat-exchangers

Anton Sodja1 Borut Zupančič1 Janko Šink2

Fakulteta za elektrotehniko, Univerza v Ljubljani1
Tržaška 25, 1000 Ljubljana

Izoteh d.o.o.2
Brnčičeva 15b, 1000 Ljubljana

Abstract
Modern control design of large industrial plants relies
strongly on modelling, while experimentation on the
real system is extremely limited. The usable model
should be intuitive and easily reusable to model poten-
tial plant adaptations or similar plants.

In this paper some aspects of the modelling a re-
cuperator plant consisting of four heat exchangers are
presented. With the object-oriented modelling tool
Dymola, using Modelica as a modelling language, the
building of clear, intuitive and reusable model of ba-
sic, but most important plant’s blocks, heat exchang-
ers is enabled. However, the proposed model of heat
exchanger proved to be intrinsically stiff and therefor
at the moment problematic to be used as a submodel
of more complex models.

Keywords: recuperator, heat exchanger; tube-and-
shell, cross-flow, object-oriented modelling

1 Introduction
It is well known that practical constraints exists in con-
trol design of production lines, where one of the most
problematic is the limited experimentation possibili-
ties. The production line should be namely brought in
operation as fast as possible but as rarely as possible
halted for maintenance during its life-time. So there
are not many opportunities to learn about the system
through experimentation and to improve the control
design. Consequently tere is enough time merly for
tuning the controllers. Control design must be some-
how supported by modelling.

In this paper a model of recuperator is presented,
shown schematically in Fig. 1. The plant comprises
of four heat exchangers in series which are used to re-
cover waste heat from exhaust gases. The latter are
created by combustion of a mixture of the waste gases
coming from the main plant and a natural gas. The
pipe they flow through is shown in the middle of the
Fig. 1. On the secondary side of the heat exchangers

incoming gases have various purposes and destinations
in the main plant.
The flow of gases through recuperator can be manip-
ulated by flap valves and ventilators (not shown in
Fig. 1).

The recuperator plant is included in different in-
dustrial lines and can be modified according to the
needs and specifics of the plant. The model of the
process must thus be very flexible and user friendly
for a control designer. As an appropriate modelling
environment Dymola with object-oriented modelling
language Modelica [6] was chosen. Object-oriented
and acausal modelling approach simplifies modelling
process. On contrary to traditional modelling, where
model is represented by a set of functional blocks
with causal connections (inputs and outputs), object-
oriented acausal models are composed as sets of re-
lated, interacting objects (submodels) and transforma-
tion of the model in a proper form suitable for compu-
tation is left to translator. Object-oriented models thus
preserve topology of the system being modelled and
are as such more intuitive and easily reusable since
submodels do not have explicitly defined computa-
tional order.

Modelica was found as appropriate also because
free Modelica libraries from the domain of thermo-
fluids [1, 3] are available what significantly mitigates
the model development procedure.

2 Mathematical model of the heat ex-
changer

Heat exchanger is a device in which energy in the form
of heat is transferred what is usually realized by the
confinement of both fluids in some geometry in which
they are separated by a conductive material. The prop-
erties of heat exchanger are strongly dependent on ge-
ometry and material as well as on properties of both
fluids. It is known that such devices had usually non-
linear behaviour [5].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 716 DOI: 10.3384/ecp09430101

EXCHANGER 1 EXCHANGER 2

EXCHANGER 3 EXCHANGER 4

Figure 1: A scheme of the recuperation process: hot exhaust gases flow pass four heat exchangers and heat up gases used
in other part of the plant.

2.1 Model of the heat flow rate between fluids

Our aim is to build a reusable model which will en-
able better understanding of the process. So the model

Figure 2: Scheme of the cross-flow heat exchanger.

Figure 3: Flow directions in cross flow heat exchanger.

should be described by analytical equations. The
observed recuperator process comprises of shell-and-
tube cross-flow heat exchangers depicted in Fig. 2.
Particular heat exchanger consists of a bundle of tubes
with circular cross section which is inserted into a shell
so that a flow through the tubes is perpendicular to the
flow through shell as illustrated in Fig. 3. Since heat
transfer takes place across the tubes surface, the ar-
rangement of flows (geometry of the heat exchanger)
has important impact on the efficiency of the device.

However, analytical solution for shell-and-tube heat
exchanger exists only when the flows of both fluids are
parallel. They can be co-current or counter-current.
The energy balance for tube-side fluid and shell-side
fluid for a tubular counter-current heat exchanger is
given in Eq. (1) and Eq. (2) respectively. Equations

qt,i
Tt,i

qt,o
Tt,o

qs,o Ts,o

qs,i Ts,i

qt,i
Tt,i

qt,o
Tt,o

qs,i Ts,i

qs,o Ts,o

Figure 4: Scheme of the simple co-current (above) and
counter-current (below) double-pipe heat exchanger

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 717

for co-current heat exchanger are different (due to flow
direction) only in the sign of the first term on the right
side of Eq. (2).

∂

∂ t
(ρt ·Ac,t ·Ĉp,t ·Tt) =− ∂

∂ z
(ρt ·qt ·Ĉp,t ·Tt)

− U ·A
L

· (Ts −Tt)
(1)

∂

∂ t
(ρs ·Ac,s ·Ĉp,s ·Ts) =

∂

∂ z
(ρs ·qs ·Ĉp,s ·Ts)

− U ·A
L

· (Ts −Tt)
(2)

In Eq. (1) and (2) indices t and s denote quantities
of tube-side and shell-side fluid respectively; T des-
ignates mean temperature of cross section which de-
pends on time and position along the pipe’s length (z-
axis): T = T (t,z), Ac is area of the pipe’s cross section,
ρ and Ĉp are density and specific heat capacity of the
fluid respectively (also time and position dependent),
q is the mass flow, U is the overall transfer coefficient,
A is area through which heat is exchanged and L is
length of the pipes.

From Eq. (1) and (2), analytical expressions for the
temperatures of the fluids at the pipes’ outlets and heat
flow rate between the fluids can be derived [4]. How-
ever, for a cross-flow heat exchanger it is known only
that its performance is worse from counter-current and
better from co-current heat exchanger [5]. However,
no analytical expressions exists. So the following
supposition was taken into account: while the shell’s
length is relatively small in comparison to its cross
section and the flow through it is highly turbulent
(Reynolds number is of the order 105), temperature
differences across the shell are negligible and shell can
be modelled sufficiently accurate as a lumped model.
The energy balance equations are then:

∂

∂ t
(ρt ·Ac,t ·Ĉp,t ·Tt) =− ∂

∂ z
(ρt ·qt ·Ĉp,t ·Tt)

− U ·A
L

· (Ts −Tt)
(3)

d
dt

(ρs ·Vs ·Ĉp,s ·Ts) =ρs ·qs ·Ĉp,s · (Ts,i −Ts,o)

−U ·A · (Ts − T̄t)
(4)

In Eq. (4) Vs denotes the volume of the shell, Ts,i and
Ts,o temperatures of the shell-side fluid at inlet and out-
let respectively and T̄t is a mean temperature of fluid
in tube bundle at a given time.

As Modelica does not support solving partial differ-
ential equations implicitly, Eq. (3) was discretized by
a finite volume method.

2.2 Model of the wall’s heat capacity
In the proposed heat exchangers fluids in tube- and
shell-side are hot gases that passes through the ex-
changer at relatively high speed (about 15 m/s in the
shell), and their mass (and thus heat capacity) is much
smaller then the mass of the tube-bundle’s wall which
weights 3.4 tons. The influence of the wall heat ca-
pacity is thus considerable and must be included in the
model.

On the other hand, the thermal conductivity of the
wall is a few orders greater then conductivity of the
gas and was thus neglected.

In order to consider dynamics due to wall’s heat
capacity, additional equation has to be added to the
energy-balance equations Eq. (3) and Eq. (4):

∂

∂ t
(ρt ·Ac,t ·Ĉp,t ·Tt) =− ∂

∂ z
(ρt ·qt ·Ĉp,t ·Tt)

− αt ·A
L

· (Tw −Tt)
(5)

ρw ·A ·d ·Ĉp,w ·
dTw

dt
=−αt ·A(Tw − T̄t)

−αs ·A · (Tw −Ts)
(6)

d
dt

(ρs ·Vs ·Ĉp,s ·Ts) =ρs ·qs ·Ĉp,s · (Ts,i −Ts,o)

−αs ·A · (Ts −Tw)
(7)

In the new equations, index w designates quantities of
the wall, αt and αs are the convective heat transfer fac-
tors of the tube- and shell-side gas respectively and d
is thickness of the wall.

2.3 Model of the fluid dynamics
The purpose of the model is temperature dynamics
description of the recuperator. The thermal dynam-
ics of its component, heat exchanger, is described by
Eqs. (5), (6) and (7). However, some parameters, for
example, ρt , Cp,t , are not constant (or nearly constant)
in operating-temperature range, so additional relations
must be introduced. It means flow-equations derived
from the laws of mass and momentum balances (to cal-
culate mass flow and pressure respectively) and alge-
braic equations (Eqs. (8)) which determine properties
of the media. They describe relation among pressure
p, temperature T , internal energy u, enthalpy h and
density ρ .

p = p(ρ,T)
u = u(ρ,T)

h = u+
p
ρ

(8)

Eqs. (8) introduce a non-negligible nonlinearites in the
model and also increase differential algebraic equa-
tions index of the system [7].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 718

TubeDown

Shell1

TubeUp

Shell2

shellPressureDrop

tubePressureDrop

wall2

ShellInlet

TubeInlet

ShellOutlet

TubeOutlet

1wall

Figure 5: Component scheme of the heat exchanger submodel in Dymola

2.4 Model of the pressure drop
Determination of the pressure drop plays a major
role in the design of heat exchanger along with heat-
transfer coefficient [5]. However, for the control de-
sign of the observed recuperator is not very important.
Partly it is the consequence of the lack of measure-
ments of the pressure-drop dynamics. Only nominal
pressure drop at nominal volume flow rate was namely
available. So, a pressure drop ∆p of the whole pipe
(shell and tube) of the heat exchanger is modelled:

∆p = kv2 (9)

Coefficient k in Eq. (9) was calculated by inserting
nominal pressure drop and nominal velocity (derived
from nominal volume flow) into the equation.

2.5 Convective heat-transfer coefficient
The convective heat-transfer coefficient of the gas is
problematic as it is influenced by geometry of the heat
exchanger and chemical properties of the gases. Usu-
ally it is provided as an empirical expression includ-
ing Reynolds and Prandtl numbers. To keep the model
simple, the expressions in Eq. (10) and (11) (for tube-
and shell-side respectively) were found to be suffi-
cient:

αt ·dh,t

λt
= 0.040 · (Ret ·Prt)0.75 (10)

αs ·dh,s

λs
= 0.113 · (Res ·Prs)0.75 (11)

In Eq. (10) and (11) indices t and s indicate tube-
and shell-side respectively, dh is hydraulic diameter,
λ thermal conductance, Re Reynolds number and Pr
Prandtl number.

3 Implementation in Modelica
The model of the heat exchanger basically consists of
two thermally coupled pipes. So it should be built up

by two pipe submodels and intermediate heat-transfer
submodel.

3.1 Heat exchanger
As already mentioned in the introduction, many freely
available Modelica libraries for modeling thermody-
namics systems exist. In our case basic components
from the Modelica_Fluid library are used and adopted.
Here a tube bundle is described by distributed param-
eters. So a component of a pipe with distributed pa-
rameters discretized by finite volume method is taken
from the library. For the model of shell a component
of a pipe with lumped parameters from the library is
used. Thermo-fluid governing equations and proper-
ties of the media (Eq. (8)), are realized by a nested
component of the Modelica.Media library), enabling
the avoidance of flow-dynamics equations formulation
by hand. Components of the tube bundle and the shell
are connected over a wall model, what is a custom
made component simulating Eq. (6). The resulting
scheme is shown in Fig. 5.

In the Fig. 5 it can be seen that each pipe is con-
sists of three components – pipe is split in two parts
and a pressure drop component is placed inbetween.
The model of tube bundle is composed from compo-
nents TubeDown, tubePressureDrop and TubeUp com-
ponents, while shell comprises Shell1, shellPressure-
Drop and Shell2. At the outermost edges four connec-
tors are place, namely inlet and outlet for the tube and
shell. They represent interface of the heat exchanger
component.

3.2 Convective heat transfer
The mentioned components of the pipes from the
Modelica_Fluid library represent a replaceable nested
component of convective heat transfer. However, this
component can be replaced by the one including also
convective-heat-transfer coefficient from Eq. (10) and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 719

exchanger_1 exchanger_2

V

V_flow

T

X

V

V_flow

T

X

ambient

g

defaults

coupled_flaps

Figure 6: Model of the recuperator’s exchangers 1 and 2
with some periphery

Eq. (11). The code listing of our component for tube’s
convective heat transfer is the following:

model PipeHT_TubeConv
extends PartialPipeHeatTransfer;
outer input Medium.BaseProperties[n] medium;
SI.CoefficientOfHeatTransfer alpha0[n];
SI.ThermalConductivity lambda[n];
SI.PrandtlNumber Pr[n];
outer input SI.ReynoldsNumber Re[n];

equation
for i in 1:n loop
lambda[i] = Medium.thermalConductivity(medium[i]);
Pr[i] = Medium.prandtlNumber(medium[i]);
alpha[i] = lambda/d_h*0.040*(Re[i]*Pr[i])^0.75;
thermalPort[i].Q_flow=noEvent(if alpha[i] < 5 then 5
else alpha[i]*A_h/n*(thermalPort[i].T-T[i]);

end for;
thermalPort.Q_Flow=Q_flow

end PipeHT_TubeConv

The PipeHt_TubeConv is very simple component, be-
cause all the needed thermodynamic variables (ther-
mal conductivity and Prandtl number) of the medium
in Eq. (10) are computed by Modelica.Media li-
brary and some other variables (Reynolds number and
medium base properties) are computed in embedding
pipe model.

3.3 Recuperator
The model of recuperator is decomposed into subsys-
tems, i.e., heat exchangers, pipes and flaps. It means
that it is built by connecting components simulating
the subsystems.

However, certain difficulties were encountered at
the connections of pipes and heat exchangers. An im-
plicit system of nonlinear equations for pressure/flow
correlation is namely needed in the connection point
[2]. This is the consequence of the discretization of
the partial differential equations in the pipe’s model.
A staggered grid approach is used, leading to half mo-
mentum balances between the pipe’s boundary and
first and last segment (finite volume). The system of
nonlinear equations in connection points is especially
problematic at the initialization phase due to unsatis-

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30
0

100

200

300

400

500

600

700

T
em

pe
ra

tu
re

 [o C
]

Time [hours:min]

Tube−side inlet temperature
Shell−side inlet temperature

Figure 7: Temperatures of the tube- and shell-side gases at
the inlet.

factory knowledge of the pressure drop across the sys-
tem it is hard to define corresponding initial values.
The consequence is that time necessary for simulation
severely increases and in some cases a solution can not
be found.

Additional difficulties arise from the different cross-
areas of the connecting pipes (especially on the tube
side – the outlet gases are less dense then the inlet ones
and take larger volume, so the outlet pipe have larger
diameter than inlet one). This fact causes numeric
problems in the kinetic terms of the flow-equations and
special care must be taken to handle them appropri-
ately [2]. Due to numerical problems in the junctions
of the pipes the building of models from prepared heat-
exchanger and pipe (sub)models is still very tedious
task.

In Fig. 6 a model of the connected heat exchangers
1 and 2 is shown (illustrated also on the left side of
Fig. 1). It represents part of the recuperator. Tubes of
both exchangers are connected and the temperature at
the outlet of the exchanger 1 is controlled by two cou-
pled flaps which define the portion of the flow passing
through heat exchanger 2. The simulation run of the
model takes more than 10 hours, while the simulation
of the single heat exchanger finishes in a few minutes.

4 Validation
Validation of the heat exchanger model was performed
on a real measurements data (validation of the whole
recuperator is impossible due to the lack of data). The
available measurements were temperatures of the ex-
haust gases at the entrance into the shell of the heat ex-
changer and at the exit from the shell, input and output
temperatures of the tube gases as well as volume flow
through the tube. Unfortunately, volume flow through
the shell was not measured. So it was supposed to be
constant during the simulation and equal to the nomi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 720

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30
0

2000

4000

6000

8000

10000

12000

14000

Time [hours:min]

V
ol

um
e

flo
w

 th
ro

ug
h

tu
be

 [m
3 /h

]

Figure 8: Volume flow through the tube.

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30
0

50

100

150

200

250

300

350

400

450

500

T
e
m

p
e
ra

tu
re

 [o
C

]

Time [hours:min]

Simulated tube outlet temperature

Simulated shell outlet temperature

Measured tube outlet temperature

Measured shell outlet temperature

Figure 9: Comparison of the measured and temperatures
obtained by simulation of the gases at outlet of tube and
shell.

nal one.
The temperature measurements of the entering gases
into the heat exchanger are shown in Fig. 7 and mea-
surements of volume flow through tube in Fig. 8. Sim-
ulation results, i.e. temperatures of tube and shell
gases at outlet, compared with measured ones are
shown in Fig. 9.

As it can be seen in Fig. 9, response of the model
fits the measured data relatively well. The biggest dis-
crepancy is during the rise time what can be assigned
to the missing shell flow measurements. At the end
of the simulation, when the shell flow should reach its
nominal value, also the difference between measured
and calculated response is smaller.

Important property of the model is that it is rela-
tively unaffected by a sharp changes in tube flow as it
can be seen in Fig. 8 and Fig. 9. The steep changes
of the tube flow cause only little disturbances in the
temperatures at the outlet. By experimenting on the
model it was found out that it is a consequence of the
nonlinear convective heat transfer.

Nevertheless, validation of the model is not yet sat-
isfactory. It should be validated on more measure-

ments and the data should also include measurements
of the flow through the shell.

5 Conclusion
As it was shown in the paper, object-oriented acausal
modelling approach with support of freely available li-
braries offers a very rapid development of the complex
and highly nonlinear models. In the paper a model of
the heat exchanger is shown.

However, in the case of more complex case of con-
necting heat-exchanger models, many difficulties ap-
pear. Solving them makes the model unnecessarily
complicated. The numerical problems of the recupera-
tor model thus originate in the components of the Mod-
elica_Fluid library and the design of fluid connector
due to limitation of Modelica [2]. This has been im-
proved in the latest language-standard change and the
Modelica_Fluid library was reimplemented.

In our future work we plan to port our model to the
newest version of the Modelica_Fluid library which
will help us to approach our goal of creating a clear
and reusable model for control engineers. We will also
intend to acquire better measurements from the new
plants which will enable more proper validation of the
single heat exchanger model as well as the whole re-
cuperator plant.

References
[1] Elmqvist H, Tummescheit H and Otter M. Object-

Oriented Modeling of Thermo-Fluid Systems. In: Pro-
ceedings of the 3rd International Modelica Conference
2003, Linköpig, Sweden.

[2] Modelica Association, Modelica_Fluid Users Guide,
http://www.modelica.org/libraries/Modelica_Fluid,
2009.

[3] Casella F, Leva A. Modelica open library for power
plant simulation: design and experimental validation.
In: Proceedings of the 3rd International Modelica Con-
ference 2003, Linköpig, Sweden.

[4] T. W. F .Russell, A. S. Robinson and N. J. Wagner,
Mass and Heat Transfer. Cambridge University Press,
2008.

[5] T. Kupran, Heat Exchanger design handbook. Taylor &
Francis, 2000.

[6] Modelica Association, Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling.
Language Specification, version 3.0, 2007.

[7] K. Sørensen, N. Houbak, T. Condra, Solving differen-
tial–algebraic equation systems by means of index re-
duction methodology. Simulation Modelling Practice
and Theory, Simulation Modelling Practice and The-
ory. Volume 14, Issue 3. April 2006, pages 224-236.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 721

Reversed-flow models
Tomas Skoglunda

aTetra Pak Processing Systems

Ruben Rausings gata, SE-221 86 Lund, Sweden
tomas.skoglund@tetrapak.com

Abstract

Component models for bidirectional flow in process
lines were developed to account for propagation of
fluid properties and balance equations for mass, heat
and momentum. The models performed well in
simulations with flow in arbitrary direction. The
models increased the stability in simulations of cases
with short, unintentional reversed flow.
Keywords: reversed flow; bidirectional flow; process
line; property propagation; balance equations; fluid
composition; mass fraction; liquid food

1 Introduction

Fluid flow accounting for mass, thermal and
momentum balances have been modelled in Modelica
 [6] and was reported in e.g. [9] (Eborn, 2001), [10]
(Tummescheit, 2002) and [11] (Casella and Leva,
2003). The latter paper also addressed flow reversal.

A special case is liquid food process lines, e.g.
lines for production of UHT milk in dairies. Dynamic
simulation of this has been practiced during some
years by means of a Modelica-based dynamic model
library [1] (Skoglund, 2003), [2] (Skoglund and
Dejmek, 2006), [5] (Skoglund, 2007) and [12]
(Gäfvert et al, 2008). Beside the fundamental laws of
conservation, e.g. mass and heat, the model library
addressed particular characteristics of liquid food
process lines. For example dynamic propagation of
fluid properties was considered, [3] (Skoglund and
Dejmek, 2006), due to the need of simulating start-up
and shut-down with fluid changes, which are
occurring frequently in the addressed applications.

Also typical for liquid food process lines is that
flow directions in many cases are reversed. As fluid

propagation has to be considered simultaneously, it
has to be addressed in the models for correct mass
and thermal balance equation, which otherwise may
lead to non-physical behaviour and eventually cause a
crash of the simulation. This article describes how the
model library was adapted for reversed flow.

2 The “FoodProcessing” library

Since the start of the development of the
“FoddProcessing” library [1] much more work was
spent to address characteristics of liquid food process
lines. Thus a model for axial-dispersed plug flow
(ADPF) was derived [3] and some models were
extended for reaction kinetics [8]. Figure 1 shows the
library “FoodProcessing” in the Modelica tool
Dymola [7], which was also described in earlier
publications, [1], [2] and [12].

Figure 1. The “FoodProcessing” library, which has
been described earlier in [1], [2] and [12].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 722 DOI: 10.3384/ecp09430017

The library has since been used to configure many
process lines to test various performances, e.g.
product losses. Thus the arise, development and
propagation of mixing zones was simulated for
product filling and emptying in a commercial UHT
line for milk sterilization [4] (Skoglund & Dejmek,
2007). The library was also used for trouble shooting
and testing new design ideas as regards both process
design and control algorithms. Furthermore
simulation for functional test of complete process
lines with the actual control system was enabled
through further library development. Hence the
library was adapted for real-time Hardware-in-the-
loop simulation (HILS) [12]. Software for signal
communication with the control system was
developed too.

3 Reversed-flow processes

In some processes the direction of the fluid flow will
vary as the plant state shifts. Figure 2 shows a typical
case where different flow directions are normal at
different plant states, e.g. filling and emptying of
product (food medium) to/from a tank.

Lev

CxxCyy
20 m^3 LSH

Temp

LSL

Temp

C01Q0001

V01Q00...

drain1

C...cm

No...

L=
1

m

 D
=D

pi
pe

Rec_...

Rec_...

Tra_C...

Tra_C...

Figure 2. A typical case with two flow directions. The
black, bold arrows show the product (food medium)
flow at filling and emptying of the vessel.

In volumes and junctions mass and heat balances
require that the properties from the correct
connections are used in the balance equations. In
Figure 2 this is valid for the tank and three-port valve

at the bottom of the tank. Furthermore, in fluid
channels (e.g. the pipe in Figure 2) it is important that
fluid properties from the correct connection are used
for the dynamic momentum balances and friction
forces.

3.1 Transients – unintentional reversed flow

In many situations the flow direction should normally
never change. However due to transients during valve
transitions, the flow direction might be reversed for a
short period of time, This might be enough to cause
simulation problems if reversed flow is not handled
adequately in the models. Figure 3 shows an example
of that

W

M2

Hz

SC2

Tp...

Tpi...
V

103

V99

V102L=3...
 D=DPip...

L=0....
 D=D
Pip...

Rec_AO...

Rec_A...

Rec_M2...

Rec_V99
Rec_V102

Rec_V...

V1...
B...2...

V158

Rec_V158

Dra...

Tp
...

PrIn...

PrInP...

Figure 3. Example of case where the flow direction may
be reversed just during state transition in a plant. The
black, bold arrows indicate two flow directions, which
both deviate from the normal.

3.2 The problem

The problem arises when flow direction and fluid
properties not match. The problem occurs in balance
equations for mass and heat. To illustrate the problem
we can study a simple mass balance in a volume with
one port for normal flow in and one port for normal
flow out of a component. We can assume an incom-
pressible fluid with constant density flowing through
the constant volume, V, with a positive constant flow
rate, Q. This yields the following mass balance for a
certain fluid component with the mass fraction X in
the volume, thus also flowing out from the volume.

QXX
t
XV in)(−=

∂
∂

 Eq. 1

Xin is the mass fraction into the component through
the normal input port. With all variables and con-
stants positive, Eq. 1 describes a stable system where

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 723

X approaches Xin. If the flow rate changes direction,
Eq. 1 changes character to Eq. 2, which describes an
incorrect and unstable system.

QXX
t
XV in)(−=

∂
∂

 Eq. 2

The correct conversion of Eq.1 would be

QXXQXX
t
XV outout)()(−=−=

∂
∂

 Eq. 3

Xout is the mass fraction into the component through
the normal output port. This conditional rearrange-
ment of the equations must be handled when the flow
changes sign.

4 Reversed-flow models

The fundamental idea with the reversed-flow models
presented in this paper is to use a record containing
fluid properties declared as input and output in the
connectors. Hence there is a need for two types of
connectors “In” and “Out” to match the input with
an output and the output with an input. This sig-
nal-based approach was suggested by Casella and
Leva [11]. Thus the connectors must be connected in
pairs “In” to “Out”. Therefore all components are
modelled for a “nominal” flow direction. The conse-
quence is that some component models have to be
made in more than one version to match different
nominal flow directions. One example of that is the
three-port valve in Figure 2, a valve which in some
applications normally splits the flow and in other ap-
plications normally merges two flows. Another ex-
ample is the T-pipes in Figure 3, where two of them
normally split the flow whereas one of them normally
merges two flows.

4.1 Modelica code for connectors

A Modelica code for the nominal flow direction
“into” a component is given below.

connector ProductIn
 flow SIunits.VolumeFlowRate Q;
 SIunits.Pressure p;
 input ProductData PrData
 "Fluid data for forward flow";
 output ProductData PrDataRev
 "Fluid data for reversed flow";
end ProductIn;

In this example the thermal properties are not de-
clared as a pair of flow and cross variables. The fluid
properties are declared in the record ProductData.
In [11] the input and output handled the specific
enthalpy. In this case they include not only thermal
properties, but also density and mass fraction proper-
ties for the fluid composition as this is important to
consider in many liquid food cases (see e.g. [3])

Corresponding to the above connector is a con-
nector for the nominal flow direction “out of” a com-
ponent. The Modelica code is given below.

connector ProductOut
 flow SIunits.VolumeFlowRate Q;
 SIunits.Pressure p;
 output ProductData PrData
 "Fluid data for forward flow";
 input ProductData PrDataRev
 "Fluid data for reversed flow";
end ProductOut;

4.2 Conditional equations

As the flow direction alters, the fluid properties used
in the equations, e.g. mass fraction balance, must
swap the used data from the connectors. The follow-
ing Modelica code shows the principle used in a con-
stant volume in which the fluid (with the density
rho) is mixed ideally (instantly).

 // Connectors
ProductIn PrIn "Nominal flow in";
ProductOut PrOut "Nominal flow out";
 // Fluid data
ProductData PrData "Actual in volume";
ProductData PrInData "Actual at nominal
flow in";
ProductData PrOutData "Actual at nomi-
nal flow out";
equation
 // Propagation of fluid properties
PrInData = if PrIn.Q >= 0 then
 PrIn.PrData else PrData; // "In"
PrOutData = if PrOut.Q <= 0 then
PrData else PrOut.PrDataRev; // "Out"
PrInData.PrDataRev = PrData; // Rev. in
 // Mass balance
der(m) = PrInData.rho*PrIn.Q +
 PrOutData.rho*PrOut.Q;
 // Mass fraction balance
mX = m*PrData.X;
mFlowX = PrInData.rho*PrIn.Q*PrInData.X
 + PrOutData.rho*PrOut.Q*PrOutData.X;
der(mX) = mFlowX;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 724

5 Sensors for reversed flow

System simulations mostly need sensor models, Thus,
in a system where the fluid may flow in either of the
two directions, sensors for fluid properties must
account for that, i.e. the property (e.g. concentration
of a fluid component) must account for the flow
direction. A sensor adaptor was modelled to pick up
fluid properties from the flow path. A part of the code
for that adaptor is given below.

connector ToSensor "Connector for sen-
sors"
 output ProductData PrData;
.
.
end ToSensor;

model SensorAdaptor
 ToSensor toSensor;
 ProductIn PrIn;
 ProductOut PrOut;
 equation
 toSensor.PrData = if PrIn.Q>=0 then
 PrIn.PrData else PrIn.PrDataRev;
 .
 .
 connect(PrIn, PrOut).
end SensorAdaptor;

The sensor models have a corresponding connector to
the ToSensor to pick up the fluid properties.

6 Process examples and results

As already mentioned, reversed flow models are
required both to get correct simulation results in
systems where reversed flow takes place normally,
and to get stable simulations in situations with short,
unintentional reversed flow.

6.1 Normal situations with reversed flow

 A simple example illustrating the solution of
reversed flow models is shown in Figure 4. The
system comprises two pressure tanks, a pipe, a
centrifugal pump and two sensors for the concen-
tration of a fluid component. (In this case the sensor
adaptors are incorporated in the pipe.) Tank 1 has an
initial content of 10 m3 with a concentration of 10 %
carbohydrates, while Tank 2 has an initial content of
2 m3 with 0 % concentration. The pump M1 runs
intermittently 250 seconds with a stop time equal

long. During the pumping the fluid volumes in the
vessels will change. The levels and gas pressures will
change accordingly. The consequence is that after a
while the flow will go in the reversed direction during
the periods when the pump is stopped.

Figure 4. Example of simple system with forward and
reversed flow

The pipe model is based on mass balance as axially
dispersed plug flow (Eq. 4), and momentum balance
(Eq. 5) in an incompressible fluid.

02

2

=
∂
∂

−
∂
∂

+
∂
∂

x
CD

x
Cv

t
C

 Eq. 4

() 0=
∂
∂

++
∂
∂

+
∂

∂
x
zgp

x
p

t
v

f ρρ
 Eq. 5

Explanations of symbols are given in section 8,
Notation. Figure 5 shows the simulation result. Note;
When the fluid changes flow direction there is a time
lag − due to the transportation through the pipe −
until the “new” fluid composition reaches the sensor
at the current pipe exit. The sensors are modelled as
ideal sensors with no dynamics.

Another more realistic example, though still
simplified, is shown in Figure 6. It shows a milk
supply, a valve cluster and two tanks. Figure 7 shows
the simulation result of tank filling with milk, milk
transport from tank to tank, and water flush of a tank.

6.2 Reversed flow during transitions stability

The example in Figure 8 is used to illustrate the
problem with instability in situations with short
periods of reversed-flow without accounting for it.
The example was run both without and with models
accounting for reversed flow.

In the valve V1 the normal flow direction is from
the sources of water and juice concentrate to the out
port on the right hand side. The valve is of type
change-over and connects either of the two ports
from the sources of water or juice concentrate to the
out port. During the valve transition (after 10 s), all
three ports were connected to each other for a short
moment of time and, due to the pressures and flow
dynamics, the flow was reversed for about 1 s in the
valve port for water. The simulation results are shown
in Figure 9. In the case of models not accounting for

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 725

the reversed flow, the simulation crashed after
approximately 11.5 s (1.5 s after the valve activation).
The reason is the incorrect balance equations, due to
the reversed flow of water, which cause the non-
physical increase of temperature and sugar concen-

tration, which can be seen in the lower graphs of
Figure 9. In the case with models accounting for the
reversed flow, the temperature and sugar concen-
tration were correct and the simulation did not crash.

0 250 500 750 1000 1250 1500 1750 2000

-100

0

100

200

300

400
Flow [l/min]

0 250 500 750 1000 1250 1500 1750 2000
-2
0
2
4
6
8

10
12

Concentrations [%]: Compare Q1 with tanks

Tank1
Tank2
QT1

0 250 500 750 1000 1250 1500 1750 2000
-2
0
2
4
6
8

10
12

Concentrations [%]: Compare Q2 with tanks

Tank1
Tank2
QT2

Figure 5. Simulation result of system shown in Figure 4. The time scale is in seconds. The concentrations in the
tanks are shown in both middle and bottom figures to facilitate comparison. The locations of the sensors QT1 and
QT2 are shown in Figure 4. Note; When the fluid changes flow direction there is a time lag − due to the transpor-
tation through the pipe − until the “new” fluid composition reaches the sensor at the current pipe exit. (For clarity
in black/white print, some curves are marked directly in the graphs as a complement to the legends.)

Sensor QT1 compared with tanks

Sensor QT2 compared with tanks

Tank 1

Tank 2

QT1

Tank 1

Tank 2

QT2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 726

Figure 6. A typical, though simplified, valve cluster (the four valves: V3, V4, V5, V8) with two tanks.
A sequence of three steps is run through. 1: (green, bold, dash dotted arrow) Milk is pumped to tank T01. 2: (or-
ange, bpld, dashed arrow) The milk is pumped from tank T01 to tank T02. 3: (black, solid, bold arrow) Tank T01
is flushed with water to drain. During these three phases fluids are running in two directions through the tank
T01, the valve V3 and the pipe pipe10. Simulation results are shown in Figure 7.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 727

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-1
0
1
2
3
4
5
6
7

Volume in tanks [m3]

T01
T02

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

-400

-200

0

200

400

Flow rates into tank connections

T01 bottom
T02 bottom
T01 top

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Concdentration of cream [%]

T01
T02

Figure 7. Simulation result of system shown in Figure
6. The time scale is in seconds. (For clarity in
black/white print, the curves are marked directly in the
graphs as a complement to the legends.)

Figure 8. Simple model to illustrate problem with in-
stability due to short, unintentional reversed flow. In
the valve V1 the normal flow direction is from the
sources of water and juice concentrate. The valve is a
change-over type and connects either of the two ports
from the sources of water or juice concentrate to the
output. During the valve transition (at 10 s), all three
ports were connected to each other for a short moment
of time, which in this case caused a short moment of
reversed flow of water

0 2 4 6 8 10 12 14 16 18 20
-300
-200
-100

0
100
200
300
400
500
600
700

Flow rates [l/min]

Water (No RF)
Juice conc. (No RF)
Water (RF)
Juice conc. (RF)

0 2 4 6 8 10 12 14 16 18 20
-10

0
10
20
30
40
50
60

Sugar concentration out from valve V1 [%]

No RF
RF

0 2 4 6 8 10 12 14 16 18 20

4

8

12

16

20
Temperature out from valve V1 [°C]

No RF
RF

Figure 9. Simulation result of system shown in Figure
8. RF means “reversed flow model”. As can be seen, the
simulation without reversed-flow models was unstable
and crashed after approximately 11.5 s, which was 1.5 s
after the valve V1 was activated. (For clarity in
black/white print, some curves are marked directly in
the graphs as a complement to the legends.)

7 Conclusions

Fluid flow is often intentional bidirectional. In other
cases, in spite of the intended unidirectional flow,
unintentional reversed flow may occur during short
periods of time. Therefore, models accounting for
bidirectional fluid flow are required in many
applications. Models accounting for this must address
all properties propagating along the 1D flow
coordinate, and the fact has to be considered, that the
properties will differ in a connection point of a
component depending on the flow direction in each
moment of time.

The modelling problem is twofold; the connector
problem and the balance equation problem. In this
paper the solution was based on the input/output
connector principle with conditional use of connector
data in the heat balance, [11]. A solution, which also
includes mass fraction balances, was demonstrated in
this paper. Furthermore, models to adapt sensor
models for arbitrary flow direction was proposed and
demonstrated.

Correct and stable simulations were achieved for
flow in arbitrary direction during simulations of fluid
flow systems particularly relevant for liquid food
applications.

[l/min]

Concentration of milk fat (cream) in the tanks [%]

T01

T02

T02 bottom

T01 bottom

T01 top

T01

T02
T01

T02

Water

Juice
RF

RF

RF

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 728

8 Notation

C Volumetric concentration, kg/m3
D Dispersion coefficient in axial direction, m2/s
g Constant of gravity acceleration, approx. 9.81

m/s2

p Pressure, Pa
pf Pressure drop due to flow friction, Pa
Q Volumetric flow rate, m3/s
t Time, s
V Volume, m3
v Mean velocity over a channel cross-

sectional area, m/s
X Mass fraction of a fluid component, 1
x Axial spatial coordinate (along the fluid

channel), m
z Vertical spatial coordinate, m

Greek letters
ρ Density, kg/m3

References

[1] Skoglund, T., Simulation of Liquid Food
Processes in Modelica. Proceedings of the 3rd
International Modelica Conference 2003, 51-
58. Linköping, Sweden, November 3-4, 2003,
Organized by the Modelica Association and
Linköping University, Sweden. Available at
www.modelica.org.

[2] Skoglund, T. and Dejmek P., A model library
for dynamic simulation of liquid food process
lines. Proceedings of FOODSIM 2006, 5-12,
Naples, Italy, June 15-17, 2006, Organized by
EUROSIS.

[3] Skoglund, T. and Dejmek, P. A dynamic
object-oriented model for efficient simulation
of fluid dispersion in turbulent flow with
varying fluid properties. Chemical
Engineering Science, 2007, 62, pp. 2168-
2178.

[4] Skoglund, T. and Dejmek, P., Fuzzy
traceability – A process simulation derived
extension of the traceability concept in
continuous food processing. Trans IChem

Part C, Food and Bio products Processing,
2007, 185, pp. 1-6.

[5] Skoglund, T., Dynamic Modelling and
Simulation of Liquid Food Process Lines.
Doctoral thesis, Department of Food
Technology, Engineering and Nutrition,
Faculty of Engineering, LTH, Lund
University, Lund, Sweden, 2007. (ISBN 978-
91-976695-1-1)

[6] Modelica Association,
http://www.modelica.org

[7] Dynasim AB, http://www.dynasim.se
[8] Skoglund, T. and Dejmek, P., A dynamic

object-oriented model for efficient simulation
of microbial reduction in dispersed turbulent
flow. Journal of Food Engineering, 2008, 86,
pp. 358–369.

[9] Eborn, J. On Model Libraries for Thermo-
hydraulic Applications. Doctoral thesis,
Department of Automatic Control, Faculty of
Engineering, LTH, Lund University, Lund,
Sweden, 2001.

[10] Tummescheit, H., Design and Implementation
of Object-Oriented Model Libraries using
Modelica, Doctoral thesis, Faculty of
Engineering, LTH, Lund University, Lund,
Sweden, 2002.

[11] Casella, F. and Leva, A., Modelica open
library for power plant simulation: design and
experimental validation. Proceedings of the
3rd International Modelica Conference 2003.
Linköping, Sweden, November 3-4, 2003,
Organized by the Modelica Association and
Linköping University, Sweden. Available at
www.modelica.org.

[12] Gäfvert, M., Skoglund, T., Tummescheit H.,
Windahl, J., Wikander, H., Reuterswärd, P.,
Real-Time HWIL Simulation of Liquid Food
Process Lines. Proceedings of the 6th
International Modelica Conference 2008,
709-715. Bielefeld, Germany, March 3-4,
2008, Organized by the Modelica Association
and University of Applied Sciences,
Bielefeld, Germany. Available at
www.modelica.org.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 729

Control system design for the starch mashing phase
in the production of beer

Alberto Leva Filippo Donida
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Via Ponzio, 34/5 - 20133 Milano, Italy

Abstract

The starch mashing phase, the first one in the
brewing process, has a fundamental influence on
the quality of the final product. In particular,
a good temperature control can significantly re-
duce the product variability, and also improve
the process efficiency by (slightly) reducing the
mashing phase duration. In this work, control-
oriented models of the mashing process, including
biochemical reactions’ representation and energy
balance equations, are used to synthesise and test
some temperature control schemes. The mix of
equation- and algorithm-based modelling allowed
by Modelica allows to size the control equipment
to the (nearly) final detail, including for example
the comparison of different types of heating actu-
ators.

Keywords: brewing; process control; pro-
cess/control co-simulation

1 Introduction

Many models were proposed in the literature for
the starch mashing phase in the brewing process,
mostly with the aim of understanding the un-
derlying biochemistry, and therefore correctly siz-
ing the necessary equipment. This manuscript
continues the previous work [7], where a well-
established literature model (that given its pur-
pose however takes the mash temperature as an
exogenous variable) was complemented with suit-
able energy equations, so as to obtain a new model
suitable for simulation studies aimed at the syn-
thesis of the necessary temperature control. Based
on said model, two studies are illustrated, First,
the temperature profile typically used (that at
present comes essentially from heuristic consid-
erations) is re-designed so as to obtain the re-
quired final product composition with a (slightly)

shorter mashing phase, to the advantage of pro-
cess throughput and energy efficiency. Then, the
control system is simulated both as a continuous-
time system and including a (quasi-)replica model
of the control code: in particular, the possibility of
employing an on-off heating actuator instead of a
modulating one is investigated, so that the devised
control solution can be applied in the presence of
realistic equipment.

2 The mashing model
The mashing model used here is based on the work
by [2]. Through the enzymatic activity and the
consequent degradation of the starch, the carbo-
hydrates production is evaluated; the phenomenon
is ruled by the amount of fermentable sugars (glu-
cose, maltose, and maltotriose) that constitute the
nourishment base for the yeast during the fermen-
tation phase, and also by non-fermentable sug-
ars (dextrins), that participate in the process, as
shown by the equations later on. Through the
knowledge of the initial compound of the barley
malt (i.e., initial amount of sugar and dextrins,
starch concentration, and amylase potential) and
of the initial mash temperature, it is possible to
determine the enzymatic activity and the carbo-
hydrates concentration dynamics—see works such
as [6, 3] for deeper discussions on the matter.
The key part of the model is in the prediction

of the starch hydrolysis, since that phenomenon
determines the quantity of fermentable carbohy-
drates in the wort, and therefore the alcoholic
degree of the finally obtained beer. As for that
particular reaction, the objective of mashing is
to reach the maximal fermentable carbohydrates
productivity, subject to a convenient (and fre-
quently product-specific) specification on the fi-
nal dextrins concentration (i.e., non-fermentable
carbohydrates) so as to ensure the organoleptic

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 730 DOI: 10.3384/ecp09430083

qualities of the beer. The starch is firstly gela-
tinised, and then transformed into fermentable
sugars (sucrose, maltose, and maltotriose) and
non-fermentable sugars (dextrins) through the en-
zymatic activity. Note that also part of the dex-
trins will be transformed into fermentable sugars.
Obviously, gelatinisation is not an instanta-

neous phenomenon, since it depends on the con-
centration of the involved reactants. It therefore
depends on temperature, and if temperature is
taken as exogenous, its only dynamics comes from
mass (concentration) balances; in that framework,
the starch gelatinisation kinetic is represented as
a first-order reaction. From some experiments it
is noticed in the literature that at a given tem-
perature Tg (typically around 60◦C) a disconti-
nuity is present in the phenomenon; to deal with
that problem, the starch gelatinisation rate rg, ex-
pressed in g/kg s, is traditionally modelled by two
alternative equations, namely

rg = kg1 exp
(
−Eg1
RT

)
[Ss] for T < Tg (1)

and

rg = kg2 exp
(
−Eg2
RT

)
[Ss] for T > Tg, (2)

where [Ss] is the ungelatinised starch concentra-
tion (g/kg of mash); Eg1, Eg2 the activation en-
ergy (J/mol); kg1, and kg2 the pre-exponential fac-
tor (s−1); T the temperature (K) of the mash; Tg
the threshold temperature (K) and R the gas con-
stant (8.31J/mol K). The relationship between
the global enzymatic activity and the tempera-
ture may be represented as the composition of two
terms: the temperature effect on the specific activ-
ity of each one enzyme site, and the coupled time-
temperature effect on the denaturation of active
sites. This leads to

rdeα = kdα exp
(
−Edeα
RT

)
[Eα] (3)

and
rdeβ = kdβ exp

(
−Edeβ
RT

)
[Eβ] , (4)

where rde is the reaction rate (U/kg s) of denatu-
ration, [Eα] and [Eβ] the active site concentrations
(U/kg of mash), Edeα and Edeβ the activation en-
ergies (J/mol) for the denaturation and kdβ and
kdβ the pre-exponential factors (s−1). The global

enzyme activation rate (rac expressed in U/kg s)
can be represented by

racα = kdα exp
(−Edeα

RT

)
[Eα]aα (5)

and
racβ = kdβ exp

(−Edeβ
RT

)
[Eβ]aβ, (6)

where aα and aβ are the enzymatic site specific
activities, that can be approximated by a suitable
polynomial in the temperature range of interest
(we omit details for brevity). The chemical reac-
tions for the hydrolysis of starch and dextrins into
glucose, maltose, and maltotriose are

(C6H10O5)n+n(H2O)→ n(C6H12O6)

(C6H10O5)n+ 1
2
n(H2O)→ 1

2
n(C12H22O11)

(C6H10O5)n+ 1
3
n(H2O)→ 1

3
n(C18H32O16)

(C6H10O5)n→ x(C6H10O5)n/x

(C6H10O5)n/x+ n

x
n(H2O)→ n

x
n(C6H12O6)

(C6H10O5)n/x+ n

2x
n(H2O)→ n

2x
n(C12H22O11)

C6H10O5)n/x+ n

3x
n(H2O)→ n

3x
n(C18H32O16)

(7)
According to the reaction scheme (7) and the

specific action of alpha− and beta−amylases, the
kinetics for the gelatinised starch hydrolysis (ex-
pressed in g/kg s) into glucose, maltose, mal-
totriose and dextrins are, respectively, represented
by

rgl = kglaα [Sg] (8)

rmal = kα,malaα [Sg]+kβ,malaβ [Sg] (9)

rmlt = kmltaα [Sg] (10)

rdex = kdexaα [Sg] (11)

and similarly, the kinetics for the dextrins hydrol-
ysis is given by

ŕgl = ḱglaα [D] (12)

ŕmal = ḱα,malaα [D]+ ḱβ,malaβ [D] (13)

ŕmlt = ḱmltaα [D] (14)

where kgl, kmlt, kα,mal, kα,mal, kdex, ḱgl, ḱmlt,
ḱα,mal, ḱβ,mal are the kinetic factors (kg/U s), [D]
and [Sg] the dextrins and the gelatinised starch
concentrations (g/kg of mash), and aα and aβ

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 731

are the real activity of alpha and beta amylase
(U/kg of mash). Finally, the ordinary differential
equations

d [Ss]
dt

=−rg (15)

d [Sg]
dt

= rg− rgl− rmal− rmlt− rdex (16)

d [D]
dt

= rdex− ŕgl− ŕmal− ŕmlt (17)

d [gl]
dt

=−rgl+ ŕgl (18)

d [mal]
dt

=−rmal+ ŕmal (19)

d [mlt]
dt

=−rmlt+ ŕmlt (20)

express the carbohydrate concentration evolu-
tions.
Starting from the above work, the objective here

is to create models suitable for system studies re-
lated to control. It is therefore not appropriate
to take the mash temperature as an exogenous
variable (as is instead correct, according to the
literature, for bio-chemical only studies). On the
other hand, for our purposes the temperature dy-
namics has to be described based on the power
generations and exchanges involved in the process,
namely the heat released to the tank wall from the
external in order to warm up the mass, the heat
lost towards the external environment, and the
heat coming from the saccharification reactions.
Such an extension causes a notable increase of
the model complexity, and to maintain that com-
plexity to an acceptable level for system studies,
we have to introduce a few assumptions. In de-
tail,and quite reasonably for a system study, we
assume that the wort is perfectly mixed, with ho-
mogeneous temperature and concentrations, spe-
cific heat and density of the components are con-
stant in the considered range of temperature, and
the heat contribution of the mechanical mixing ac-
tions are negligible.
The typical commercial tanks used have very

different sizes and geometries. However, for this
study, the tank is assumed to be a vertical cylin-
der (therefore yielding results immediately suit-
able also for a home-brewing context, inciden-
tally); the exchange area (A) is the sum of the
area of the wall around the cylinder plus the area
of the bottom, and the net power entering in the
wort contained in the vessel (in W) is

Q=Qrea+Qexc (21)

where Qrea is the power generated by the mash-
ing process (obviously with its sign, as mashing is
actually an endothermic reaction), and Qexc the
power exchanged with the wall and through the
wort surface in contact with the air. The energy
equation is therefore

Q= Cmass
d(Tm)
dt

(22)

where Tm is the temperature (in K) of the mash
and Cmass is the heat capacity (in J/K) of the
mash

Cmass =MwaterCpwater+MgrainCpgrain (23)

with Mwater and Mgrain respectively the mass (in
kg) of the water and the grains, and Cpwater and
Cpgrain the specific heat (in J/kg K) of the water
and the grain. The net power exchanged by the
mash is a sum of a two terms, i.e.,

Qexc =Qmw+Qma (24)

where Qmw is the heat exchanged with the reactor
wall and Qma is the heat exchanged by the mash
in contact with the air above the mash,

Qma = UmaAsup(Text−Tm) (25)

where Uma is the overall heat transfer coefficient
(inW/m2 K) between the mash and the air above,
referred to a bulk air temperature as usual in sim-
ilar cases; Asup is the exchange area (in m2) on
the top of the mash (Asup = πr2) and Text is the
external temperature (in K) of the environment
where the tank is located, and

Qmw = UmwAwall(Twall−Tm) (26)

where Umw is the overall heat transfer coefficient
between the mash and the reactor wall; Awall is
the exchange area, and Twall is the temperature
of the reactor wall. As for the reactor wall tem-
perature, apparently another energy equation is
needed, i.e.,

Cwall
d(Twall)
dt

=Qwe−Qmw (27)

where Qwe is the heat exchanged by the wall in
contact with the external air and Cwall is the heat
capacity of the reactor wall

Cwall =MreactorCpmetal (28)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 732

with Mreactor the mass (in kg) of the reactor and
Cpmetal the specific heat (in J/kg K) of the metal
which compose the tank. The overall mashing
reaction is endothermic, thus needs heat to take
place. This heat (Qrea) is taken away from the
mash is the sum of three terms: the power gener-
ated by the glucose production Qglu, by the mal-
tose production Qmal and by the maltotriose pro-
duction Qmlt.

Qrea =Qglu+Qmal+Qmlt (29)

For brevity, we report here only the equations
for the power originating from the glucose produc-
tion; those related to maltose and maltotriose are
analogous. The power generated by a reaction is
typically in the form

Qreaction =−ReactionRate∗ReactionEnthalpy
(30)

where the enthalpy of reaction H is the sum of
the products’ enthalpies minus the reactants’ en-
thalpies.

H =Hprod−Hreac. (31)

This enthalpy is however a standard enthalpy, cal-
culated in a standard condition (atmospheric pres-
sure and 25◦C). This is not our case since the mash
temperature is variable. Thanks to the Kirchhoff’s
equation, we can calculate the reaction enthalpy
considering the condition of our process. Kirch-
hoff’s equation (for the glucose production) is rep-
resented by

Hreac =H0reac+Cglu∆T (32)

where ∆T = Tm−T0 with T0 the standard temper-
ature (25◦C) and Tm the mash temperature; Cglu
is the specific heat capacity of reaction; H0reac is
the enthalpy of the reaction in the standard con-
dition which is (looking 31) equal to

H0glu =Hfglu−Hfwater−Hfstarch (33)

As for Cglu, it is the difference between the sum
of the specific heat capacities of the products and
of the reactants (Cpprod−Cpreac), thus

Cglu = Cpglu−Cpwater−Cpstarch (34)

and of course, the same calculations can be done
also for the maltose and maltotriose production.
The main part of the Modelica implementation of
the so derived model is shown below.

//--- energy balances --------------------------------
Cmash*der(Tm) = Qmash_air + Qmash_tank + Qreact;
Cmash = Mwater*CpWater + Mgrains*CpMalt;
Qmash_air = Umash_air*SupArea*(Te - Tm);
Qmash_tank = -Qbp-Qbb;

Clat*der(Tlat) = Qbp + Qpe + Qbap;
Clat = CpMetal*MvessLat;
Qbp = LatArea *Umash_tank*(Tm - Tlat);
Qpe = LatArea *Utank_outside*(Te - Tlat);
Qbap = (pi*radO^2-pi*radI^2)*lambda_m/Lrifbp

*(Tbase-Tlat);

Cbase*der(Tbase) = Qbb + Qbe + Q_gasburner - Qbap;
Cbase= CpMetal*MvessBase;
Qbb=SupArea*Umash_tank*(Tm - Tbase);
Qbe=SupArea*Utank_outside*(Te - Tbase);

radO=radI+LatThick;
volume = radI^2*pi*level;
volume = Mwater/densWater + Mmalt/densMalto;
ContactArea = pi*radI^2 + level*radI*2*pi;
SupArea = radI^2*pi;
LatArea =level*radI*2*pi;
MvessLat=2*radI*pi*H*LatThick *densMetal;
MvessBase=radI^2*pi*BaseThick *densMetal;

//--- reaction powers --------------------------------
Qreact = Qglu + Qmal + Qmlt;
Qglu = -((Rgl + R1gl)*Mgrains)*Hglu;
Hglu = H0glu/mmGlu + Cglu*(Tm - T0);
H0glu = HfGlu - HfWater - HfStarch;
Cglu = CpGlu - CpStarch - CpWater;
Qmal = -((Rmal + R1mal)*Mgrains)*Hmal;
Hmal = H0mal/mmMal + Cmal*(Tm - T0);
H0mal = HfMal/2 - HfWater/2 - HfStarch;
Cmal = CpMal/2 - CpStarch - CpWater/2;
Qmlt = -((Rmlt + R1mlt)*Mgrains)*Hmlt;
Hmlt = H0mlt/mmMlt + Cmlt*(Tm - T0);
H0mlt = HfMlt/3 - HfWater/3 - HfStarch;
Cmlt = CpMlt/3 - CpStarch - CpWater/3;

//--- mass balances ----------------------------------
M = Mwater + Mmalt;
Mmalt = Mcarbo + Mother;
Mcarbo = Mglu + Mmal + Mmlt + MstarchGel

+ MstarchNG + Mdex;
Mother = ((1 - AmIni - GluIni - MalIni - MltIni

- DexIni)*Mgrains);
Mglu = Mgrains*glu;
Mmal = Mgrains*mal;
Mmlt = Mgrains*mlt;
MstarchGel = Mgrains*Sg;
MstarchNG = Mgrains*Ss;
Mdex = Mgrains*D;
TotProd = glu + mal + mlt + D - GluIni - MalIni

- MltIni - DexIni;

//--- sugars’ creation rates ------------------------
Rg = Kg*Ss;
Kg1 = kg1*exp(-Eg1/(R*Tm));
Kg2 = kg2*exp(-Eg2/(R*Tm));
s = arctan((Tm - Tg)*kk)/pi + 0.5;
Kg = Kg1*(1 - s) + Kg2*s;
Rgl = kgl*RealActAlfa*Sg;
Rmal = kamal*RealActAlfa*Sg + kbmal*RealActBeta*Sg;
Rmlt = kmlt*RealActAlfa*Sg;
Rdex = kdex*RealActAlfa*Sg;
R1gl = k1gl*RealActAlfa*D;
R1mal = k1amal*RealActAlfa*D + k1bmal*RealActBeta*D;
R1mlt = k1mlt*RealActAlfa*D;
der(glu) = Rgl + R1gl;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 733

der(D) = Rdex - R1gl - R1mal - R1mlt;
der(mal) = Rmal + R1mal;
der(mlt) = Rmlt + R1mlt;
der(Sg) = Rg - Rgl - Rmal - Rmlt - Rdex;
der(Ss) = -Rg;
der(Ealfa) = -RdeAlfa;
der(Ebeta) = -RdeBeta;

//--- enzimatic activities ---------------------------
RdeAlfa = KdeAlfa*exp(-EdeAlfa/(R*Tm))*Ealfa;
RdeBeta = KdeBeta*exp(-EdeBeta/(R*Tm))*Ebeta;
RealActAlfa = aalfa*Ealfa;
RealActBeta = abeta*Ebeta;
aalfa = if aalfa < 0 then 0

else if Tm < 315 then 1
else 1.3333333e-07*(Tm -300)^6 - 2.2e-05

(Tm - 300)^5+ 0.00144333333333(Tm - 300)^4
- 0.0490499999999 *(Tm - 300)^3
+ 0.92383333333122*(Tm - 300)^2
- 8.89999999997759*(Tm - 300)
+ 34.299999999904;

abeta = if abeta < 0 then 0
else if Tm < 304 then 1
else if Tm >= 304 and Tm < 336

then 0.049*Tm - 13.9
else if Tm >= 336 and Tm < 343

then -0.374*Tm + 128.23
else 0;

In accordance with the notation introduced and
used above, the reported code should be practi-
cally self-explanatory.

3 Mashing temperature control

Temperature control plays a decisive role for the
decomposition of malts, and is therefore crucial for
beer qualities such as stability and taste [5], while
bing also of interest for the overall brewing pro-
cess, see e.g. [4]. Sticking however to the mashing
process, the saccharification temperature control
should track the required set point curve (pre-
specified based on the ingredients and the desired
product characteristics, so that it can be thought
of as a recipe datum) quickly, accurately and with-
out overshoots during the temperature rise; the
same control should also exhibit good load distur-
bance rejection properties, so as to rapidly lead
the temperature back to the setpoint should the
system exhibit any error caused by external dis-
turbances.
A mashing kettle normally has a large volume,

and therefore the temperature dynamics is a lag-
dominant process. Given that, generally, many
breweries control the temperature by a standard
PID algorithm, or similar ones, the main differ-
ences residing in the actuation mechanism, see e.g.
[1]; we therefore adhere to that approach while
structuring our schemes.

The first scheme considered is a single-loop tem-
perature control. To enhance the significance of
the study, the scheme is applied to the mashing
phase, with the dimensions of the vessel compati-
ble with a home brewing case, where simple con-
trols are more likely to be used than in industrial
brewing. In the typical home brewing mashing
vessel (with a volume of say 25 litres), the avail-
able heating actuator is a gas burner, placed be-
low the vessel base, and fed through a modulating
valve (see later on for considerations on the pos-
sible use of on/off actuators, however, form more
realistic a setting); the available thermal power
from such an actuator is about 5 kW.
At first, we can introduce some slight modifi-

cations to the mashing vessel model in order to
account for the fact that heat is only released to
the bottom of the vessel. The walls exchange heat
with the external air, but also with the heated
vessel bottom. For the vessel base we thus have:

Cbase = MbaseCpMetal (35)

Cbase
d(Tbase)
dt

= Qfb+Qgasb+Qbe−Qbap(36)

with Mbase the mass (in kg) of the reactor’s base,
Tbase its temperature and Cpmetal the specific heat
(in J/kg K) of the metal which composes the tank;
Qfb is the heat exchanged between the mash and
the base; Qgasb the power contribution from the
gas burner, Qbe the heat exchanged with the ex-
ternal environment and Qbap the heat exchanged
with the tank wall. For the vessel wall, instead,
we have

Cwall = MwallCpMetal (37)

Cwall
d(Twall)
dt

= Qfw+Qwe+Qbap (38)

where Mwall is the mass of the reactor’s wall
and Twall its temperature; Qwe the heat ex-
changed with the external environment. To notice
how rightly the power Qbap pass by vessel’s base
through the wall; Qbap is the heat exchanged be-
tween the base of the vessel and the wall, written
as

Qbap = (πr2
O−πr2

I)
λm
Lrif

(Tbase−Twall) (39)

where rO and rI are respectively the internal and
external radius of the vessel, then the first term
represents the annulus formed by the difference
between the internal and external circumferences;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 734

λm the thermal conductivity of the metal (typi-
cally aluminium or steel) and Lrif the reference
length for the heat exchange. Qfb and Qfw are
given by

Qfb = UfbAbase(Tm−Tbase) (40)
Qfw = UfwAwall(Tm−Twall) (41)

where Ufb and Ufb are respectively the overall
heat transfer coefficient between the mash and
the reactor base and between the mash and the
reactor wall; Abase the area of the base given by
Abase = πr2

I and Awall the area of the wall given by
Awall = 2rIπH, with H the wort level. Finally we
have to calculate the heat exchanged by the tank
with the outside. This is the sum of two terms:

Qbe = UbeAbase(Te−Tbase) (42)
Qwe = UweAwall(Te−Twall) (43)

where Ube and Uwe are the overall heat transfer
coefficient between the base and the outside and
between the wall and the outside; Te the outside
temperature. Then, the heat lost by the mash is

Qloss =Qma−Qfb−Qfw (44)

where Qma is the heat exchanged by the mash in
contact with the air above.

Qma = UmaAsup(Text−Tm) (45)

where Uma is the overall heat transfer coefficient
(inW/m2 K) between the mash and the air above;
Asup the exchange area on top of the mash. We
assume for simplicity here that the heat released
by the burner itself to the vessel is related to the
heater command by the first order transfer func-
tion

G(s) = µ

1+Ts
(46)

Notice how simple it is, with the proposed ap-
proach, to devise quite accurate a model, easy to
parametrise with dimensional data, and suitable
for control studies. Control examples are reported
later on, using as controller blocks an analogue PI
with antiwindup, a digital PID in the ISA form
with antiwindup and tracking, and a digital ISA
PI(D) with antiwindup, tracking, and on-off (time
division) output, the Modelica code for the first
and third of said controller blocks (the second is
a mere restriction of the third) is shown below.

model PI
parameter Real CSmax=1;
parameter Real CSmin=0;
parameter Real k=0.7;
parameter Real Ti=280;
parameter Real b=0;
Real SPf;
Real xRff;
Real fbOut;

public
Modelica.Blocks.Interfaces.RealInput PV;

equation
CS = max(CSmin, min(CSmax, k*(SPf-PV) + fbOut));
Ti*der(fbOut)+fbOut= CS;
Ti*der(xRff)+xRff = (1-b)*SP;
SPf = b*SP+xRff;

public
Modelica.Blocks.Interfaces.RealInput SP;
Modelica.Blocks.Interfaces.RealOutput CS;

initial equation
SPf = SP;

end PI;
model digital2dofPID_TDO

parameter Real K = 1 "Gain";
parameter Real Ti = 10 "Integral time [s]";
parameter Real Td = 0 "Derivative time [s]";
parameter Real N = 5 "Derivative filter ratio [#]";
parameter Real b = 1 "SP weight in P action [#]";
parameter Real c = 0 "SP weight in D action [#]";
parameter Real CSmax = 100 "Maximum CS";
parameter Real CSmin = 0 "Minimum CS";
parameter Real TDsteps = 100 "TDO resolution";
parameter Real Ts = 0.1 "Sampling time [s]";
Real counter;

//protected
Real sp;
Real spo;
Real dsp;
Real pv;
Real pvo;
Real dpv;
Real dp;
Real di;
Real d;
Real dold;
Real dd;
Real cs;
Real cso;
Real dcs;
Real StepsUp;

public
input Modelica.Blocks.Interfaces.RealInput SP;
input Modelica.Blocks.Interfaces.RealInput PV;
output Modelica.Blocks.Interfaces.RealOutput CS;
Modelica.Blocks.Interfaces.RealInput TR;
Modelica.Blocks.Interfaces.BooleanInput TS;

algorithm
when sample(0,Ts/TDsteps) then

counter := counter+Ts/TDsteps;
if counter>=Ts then

// Compute control signal
counter :=0;
sp := SP;
pv := PV;
dsp := sp-spo;
dpv := pv-pvo;
if not TS then

dp := K*(b*dsp-dpv);
di := K*Ts/Ti*(sp-pv);
d := (Td*pre(d)+K*N*Td*(c*dsp-dpv))

/(if Td>0 then Td+N*Ts else 1);
dd := d-dold;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 735

dcs := dp+di+dd;
cs := cso + dcs;

else
cs := pre(TR);

end if;
if cs>CSmax then

cs:=CSmax;
end if;
if cs<CSmin then

cs:=CSmin;
end if;
spo := sp;
pvo := pv;
cso := cs;
dold := d;
StepsUp := floor

((cs-CSmin)/(CSmax-CSmin)*Ts);
end if;
CS := if (counter<StepsUp) then CSmax

else CSmin;
end when;

end digital2dofPID_TDO;

4 Simulation examples

4.1 Simulation model assessment

The first example aims at validating the model
presented above, that includes both biochemical
and energy-related phenomena, with respect to
biochemical-only ones, and considering essentially
carbohydrates’ concentrations and enzymatic ac-
tivities. To do so, the temperature is controlled
via a PI regulator acting on the heating power,
and “reasonably” tuned by hand based on some
simulated open-loop responses, and the evolution
of the variables of interest is compared to that
obtained by impressing the temperature (with no
energy equation, like in [2]) instead of giving only
its set point, and having the temperature deter-
mined by energy phenomena.
Figure 1 reports an example of such tests. As

can be seen, with a well functioning temperature
control, the relevant process variables follow the
expected behaviour closely enough, and both car-
bohydrates’ concentrations and enzymatic activi-
ties are practically identical to those obtained with
the models in [2]. The model presented here can
thus be taken as reliable for system studies aimed
at control design.

4.2 Analogue control

To further witness the obtained results, we now
present a mashing simulation where temperature
is controlled by a cascade structure, having the
heating fluid flow rate as the inner variable, in-
stead of a single loop. In figure 2 an industrial

Figure 1: Evolution of the main variables in the
gas-burner heated mash. In the first box temper-
ature of the vessel’s base, vessel’s wall and mash.
In the second box the carbohydrate evolutions and
in the third one the enzymatic activities.

tank is considered, that contains 1000kg of water
and 300kg of grains: through our control struc-
ture, we try to have the mash follow the same
temperature profile as in the previous simulation
(with quite a different plant setup, notice). Ob-
serve the good temperature evolution of the mash
in response to the reference profile, in particular
the correct rise of about 1 K/min. A fast and
constant rise of the temperature toward the set
point is considered important in mashing, which
means that the presented control is performing
definitely well. As a particular advantage of the
cascade structure, we can also show what happens
if, upstream of the valve, a significant tempera-
ture decrease occurs (before 8000 sec, from 417K
to 390K, in 10sec). We can notice how the valve
quickly reacts, thanks to the internal loop of the
cascade structure; this compensation allows the
heating jacket temperature to stay almost con-
stant, and consequently the same to be true for the
mash temperature inside the tank. After 10000
sec heating fluid temperature comes back to the
previous value. As for the heat exchanges, the
thermal energy generation and transfer that in-
fluence the mash temperature can be observed.
As shown in equations 21 and 24 the mash is af-
fected by lost heat, by the heat produced in the
saccharification reaction and by the heat exchange
through the tank wall. In figure 3 these thermal
powers are shown for the first 100min of mashing.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 736

Figure 2: Mashing cascade control.

Having such variables available can apparently be
of help for equipment sizing, and overall process
and control commissioning.

Figure 3: Thermal powers through the mash.

4.3 Analogue versus digital control and
on-off actuation

In this section we briefly present two simulated
versions of a single-loop mashing temperature con-
trol scheme, one (entirely in the continuous time)
aimed at control law commissioning and/or regu-
lator parameter tuning, the other (hybrid) at con-
trol equipment specification and assessment. The
diagram of the Modelica model used for the re-
ported test is shien in figure 4.

Figure 4: Diagram of the Modelica model used for
the simulations on analogue versus digital control,
and on-off actuation.

The controller is a PI with normalised gain of
0.6, and an integral time of 340s (the way that
tuning was achieved is irrelevant for the scope of
this manuscript). Figure 5 shows the results ob-
tained with that PI as an analogue controller and
as a digital one, with a sampling tome of 1s (suit-
able for a modulating actuator) and of 30s (suit-
able for an on-off one, managed by a time division
output as is typically done in such cases). It can
be seen that the analogue controller behaves very
well, while the other two (hybrid) simulated sys-
tems show that the situation can be successfully
managed also with the time division controller and
the on-off actuator. In addition, some differences
in the initial phase are evidenced, that are due to
the different way the antiwindup is realised in the
analogue and the digital PI. Hence, the presented
models allow for an effective simulation, actually
useful for both the control law synthesis, and the
sizing of the corresponding equipment.

Finally, figure 6 compares, through a hybrid
simulation, the PI of figure 5 with sampling time
of 30 seconds and its “time division output” ver-
sion, where the control signal is interpreted as the
duty cycle of the activation for an on-off actua-
tor, of course with a base period of 30 seconds.
Notice how the conclusions previously drawn are
confirmed by this definitely realistic simulation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 737

Figure 5: Analogue and digital mashing temperature control: set point and controlled variable (upper
plot), control signal (lower plot).

5 Conclusions and future work

Literature models of the starch mashing phase in
the brewing process were complemented with suit-
able energy balance equations, so as to make them
suitable for the design and the simulation-based
assessment of the corresponding temperature con-
trols. Models were implemented in the Model-
ica language, and verified against literature data.
Temperature control schemes were then presented,
that were set up with one of those (first princi-
ple) models, in order to illustrate the usefulness
and practical applicability of the idea. It is worth
noticing that the models are suitable for control
studies were the overall system is simulated as a
continuous-time one, and also as a hybrid one in-
cluding both time- and event-based controllers, so
as to allow both for the tuning of a control law,
and the sizing and verification of the correspond-
ing algorithm and equipment.

Future developments will include more exten-
sive use of model-based control techniques, more
extensive validations of both the models and the
control schemes developed with them, and also the
integration of model forecasts and process mea-
surements, to further improve the control perfor-
mance. The obtained results are also being ported
into the OpenModelica environment [8] to foster
their diffusion.

References
[1] E. Alvarez, J.M. Correa, J.M. Navaza, and

C. Rivero. Injection of steam into the mashing
process as alternative method for the tempera-
ture control and low-cost of production. Jour-
nal of Food Engineering, 43(4):193–196, 2000.

[2] C. Brandam, X.M. Meyer, J. Proth, P. Stre-
haiano, and H. Pingaud. An original ki-
netic model for the enzymatic hydrolysis of
starch during mashing. Biochemical Engineer-
ing Journal, 13(1):43–52, 2003.

[3] B. de Andrés-Toroa, J.M. Girón-Sierra, J.A.
López-Orozco, C. Fernández-Conte, J.M.
Peinado, and F. Garcia-Ochoa. A kinetic
model for beer production under industrial op-
erational conditions. Mathematics and Com-
puters in Simulation, 48(1):65–74, 1998.

[4] D.A. Gee and W.F. Ramirez. Optimal tem-
perature control for batch beer fermentation.
Biotechnology and Bioengineering, 31(3):224–
234, 1988.

[5] S. Jiliang, Y. Wei, and G. Dexin. Study of
compound optimal control for beer sacchari-
fication temperature. In Proc. 26th Chinese
Control Conference, pages 356–359, Zhangjia-
jie, PR China, 2007.

[6] T. Koljonen, J.J. Hämäläinena, K. Sjöholmb,
and K. Pietiläb. A model for the predic-
tion of fermentable sugar concentrations dur-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 738

Figure 6: Comparison between the discrete-time and time division output PIs: set point and controlled
variable (upper plot), control signal (lower plot).

ing mashing. Journal of Food Engineering,
26(3):329–350, 1995.

[7] A. Leva, F. Donida, and M. Bordoni. Object-
oriented modelling and simulation of starch
mashing. In Proc. 3rd IFAC Conference
on Analysis and Design of Hybrid Systems,
Zaragoza, Spain, 2009.

[8] The Open Source Modelica Consor-
tium. OpenModelica home page, 2009.
http://www.openmodelica.org.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 739

Optimal Robot Control Using Modelica and Optimica

Martin Hasta Johan Åkessona,b Anders Robertssona
a) Department of Automatic Control, LTH,

Lund University, Sweden
b) Modelon AB, Sweden

Abstract

In this paper, Modelica along with Optimica is used
to formulate and solve a minimum time optimization
problem. The problem concerns the traversal of a
given path with a robot in as short time as possible un-
der input constraints. Several problem reformulations,
increasing the chance of finding optimal solutions, are
discussed. This paper also discusses the use of these
optimal solutions for control of industrial robots. A
control structure, in which the optimal trajectories are
essential, is used on an ABB IRB140B to ensure ro-
bustness for model errors and disturbances.

Keywords: Modelica, Optimica, Optimization,

Robot Control

1 Introduction

In several robot applications such as gluing, painting
and arc welding, not only the end points but also the
path as such and the speed of traversal are strongly
connected to quality and efficiency. Optimal input tra-
jectories, minimizing the traversal time along a path,
can be found by solving an optimization problem. The
results can be used by a controller to slow down the
motion along the path rather than deviate from it, if
the robot is subject to disturbances or model errors. A
controller with ability to slow down the motion along
the path while still trying to minimize the traversal
time is a Path Velocity Controller, PVC [7]. The PVC
depends on the existence of nominal acceleration and
velocity profiles. The profiles are obtained by formu-
lating and solving a minimum time optimization prob-
lem. Modelica along with Optimica [2] can be used
to formulate optimization problems in a natural and
compact way. Modelica is used to formulate the dy-
namical system and the initial values for the optimiza-
tion problem, while the Optimica language extension
is used to impose limits on the variables and to for-
mulate the cost function and the constraints. Hence,

Modelica and Optimica provide a convenient method
for formulating and solving optimal control problems
which is necessary when using PVC.

2 Background

2.1 JModelica.org

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [4]. JMod-
elica.org features compilers supporting code genera-
tion of Modelica models to C, a C API for evaluating
model equations and their derivatives and optimization
algorithms. The compilers and the model C API has
also been interfaced with Python [9] in order to en-
able scripting and custom application development. In
order to support formulation of dynamic optimization
of Modelica models, JModelica.org supports the Op-
timica extension [3]. Optimica offers constructs for
encoding of cost functions, constraints, the optimiza-
tion interval with fixed or free end points as well as
specification of the transcription scheme.

The JModelica.org platform contains an implemen-
tation of a simultaneous optimization method based on
orthogonal collocation on finite elements [6]. Using
this method, state and input profiles are parametrized
by Lagrange polynomials, of order three and four re-
spectively, based on Radau points. This method cor-
responds to a fully implicit Runge-Kutta method, and
accordingly it possesses well known and strong stabil-
ity properties. By parametrizing the variable profiles
by polynomials, the dynamic optimization problem is
translated into a non-linear program (NLP), solved by
a numerical NLP solver. The NLP is, however, very
large. In order to efficiently find a solution to the
NLP, derivative information as well as the sparsity pat-
terns of the constraint Jacobians need to be provided to
the solver. The simultaneous optimization algorithm
has been interfaced with the large-scale NLP solver
IPOPT [13], which has been developed particularly

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 740 DOI: 10.3384/ecp09430089

to solve NLPs, arising in simultaneous dynamic op-
timization.

The choice of a simultaneous optimization algo-
rithm fits well with the properties of the dynamic opti-
mization problems treated in this paper. In particular,
simultaneous methods handle unstable systems well,
and also, state and input inequality constraints are eas-
ily incorporated.

Formulating the Minimum Time Optimization

Problem

We consider the optimization problem of traversing a
given path in as short time as possible under given in-
put constraints. The minimum time optimization prob-
lem and reformulations thereof follow the presentation
in [7]. Subsequently, we assume that a model of order
p with states qi and n inputs, τi, is available.

A model of a rigid robot can be written

τ = H(q)q̈+ v(q, q̇)+d(q)q̇+g(q), (1)

whereas a model of a flexible robot is given by

H(q)q̈+ v(q, q̇+d(q)q̇+g(q)+K(q−θ) = 0

Jθ̈ = τ +K(q−θ).
(2)

See [12] for details concerning robot modelling. Com-
mon for these models, and for the models used in work
described in this paper, are that they all can be written
on the form

τ = h(q, q̇, . . . ,q(p)) (3)

with limited inputs described by

τmin
i ≤ τi ≤ τmax

i , 1 ≤ i≤ n (4)

We further assume that a traversable path,

q(t) = f (t) (5)

is available, i.e., the path trajectories are defined in
such a way that all states can reach all points on the
prescribed path.

The objective is to traverse the path as fast as pos-
sible, i.e, minimizing the traversal time t f . By setting
the start time, t0 = 0, the time-minimum optimization
problem is formulated as

min
τ

t f = min
τ

∫ t f

0
1dt (6)

under the constraints imposed by (4) and (5), along
with boundary conditions for

q(t0), q̇(t0), . . . ,q
(p)(t0)

q(t f), q̇(t f), . . . ,q
(p)(t f)

(7)

The problem formulation consists of pn states and is
generally hard to solve. Consequently a reduction of
the number of states is desirable. The reductions are
conducted as presented in [7] and are here given for
completeness.

Reducing the Number of States

The number of dynamical states in the optimization
problem is reduced to p as described in [7]. By intro-
ducing the path parameter

s(t0) = s0 ≤ s(t) ≤ s(t f) = s f (8)

and parametrizing the path f as a function of the nom-
inal, scalar path parameter i.e., f (s), the number of
states can be reduced. Setting q = f (s) and using the
chain rule, d f

dt
= d f

ds
ds
dt

, the model given by (3) is rewrit-
ten as

τ = hs(s, ṡ, . . . ,s
(p)) (9)

In addition to (4), (9) serves as constraints for the re-
duced optimization problem. The dynamics of the op-
timization problem are now expressed as a chain of p

integrators

ds

dt
= ṡ

dṡ

dt
= s̈

...

ds(p−1)

dt
= s(p)

(10)

Following the state reduction the cost function is ex-
pressed as

min
s(p)

∫ t f

0
1dt (11)

and the boundary conditions are imposed on s and its
time derivatives

s(t0), . . . ,s
(p−1)(t0)

s(t f), . . . ,s
(p−1)(t f)

(12)

Reformulating the Optimization Problem

The number of states in the optimization problem can
be further reduced to p−1 as the problem is reformu-
lated over a fixed interval. The problem is converted
to optimization over a fixed interval by deriving a dy-
namic system in s [7]. New states x1, . . . ,xp−1 are in-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 741

troduced. They are defined as

x1 =
ṡp

p

xi =
dxi−1

ds
, i = 2, . . . , p−1

(13)

The free variable, u, in the optimization problem is
defined as u = s(p). By defining a function, g, as

g(x1) = (px1)
1/p (14)

the p-th order derivative of s is expressed as [7]

s(p) = g′(x1)g(x1)
(p−1) dxp−1

ds
+Fp(x1, . . . ,xp−1) (15)

where

Fp(x1, . . . ,xp−1) =g′′(x1)x2g(x1)g(x1)
p−2xp−1

+g′(x1)(p−2)g(x1)
p−3g′(x1)x2g(x1)xp−1

+
p−2

∑
i=1

∂Fp−1(x1, . . . ,xp−2)

∂xi
xi+1g(x1)

(16)

The constraints (9) are written as functions of s, x and
u as

τ = hx(s,x1, . . . ,xp−1,u) (17)

still subject to (4). We now have boundary conditions
for

x1(s0), . . . ,xp−1(s0)

x1(s f), . . . ,xp−1(s f) (18)

The cost function for the minimum time optimization
problem is reformulated

∫ t f

0
dt =

∫ s f

s0

1
ṡ

ds =

∫ s f

s0

(px1)
−1/pds (19)

Equations (17), (18) and (19) along with the dynamic
system

dx1

ds
= x2

dx2

ds
= x3

...

dxp−2

ds
= xp−1

dxp−1

ds
= u−Fp(x1, . . . ,xp−1)

(20)

state the full optimization problem, reformulated to a
fixed interval.

Figure 1: An ABB IRB140B. Picture from [1].

3 Modeling

The robot considered in this paper is an ABB IRB-
140B, see Figure 1. The IRB140B is a six joint serial
robot which allows an arbitrary positioning and orien-
tation within the robot’s work envelope. Due to the
mechanical structure of robots, depicted in Figure 2,
robot models in general are quite complex and non-
linear, cf., Model (1) and (2). However, the robot
model used here consists of six independent linear
models. Each of the robot’s six joints are modeled by
a linear second order model. This is possible since
the input-output relation for which the model has been
identified contains a linearizing controller. The identi-
fied models, and the models used for optimization, de-
scribe the relation between a joint’s velocity reference,
τ , and its angular position, q. The model structure is
given by (21).

Tiq̈i + q̇i = Kiτi (21)

The parameter values for each joint are displayed in
Table 1.

4 Path

A path has been recorded using so called lead-through,
a force-control mode which allows the operator to
freely move/lead the robot in the workspace, with the
IRB140B [1]. The joint angles have been parametrized

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 742

Joint Ki Ti ×10−2

1 1.031 1.907
2 1.077 2.043
3 1.061 1.913
4 1.051 1.716
5 1.062 1.791
6 1.062 1.745

Table 1: Parameters for the controlled joint model of
Eq. (21).

q1

q2

q3 q4

q5

q6

z

x

xTCP

zTCP

Figure 2: Mechanical structure of the ABB IRB140B
showing the joint angles qi. Picture from [8].

by the path parameter, s, defined between s0 = 0 and
s f = 1. The path is described by splines implemented
in Modelica as if-clauses and the derivatives of f (s)
have been calculated by derivation of the splines.

Figure 3 shows the TCP position. TCP is an abbre-
viation for Tool Center Point which is a user-defined
point on the robot’s end effector.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
640

660

680

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−100

0

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

400

500

600

x
[m

m
]

y
[m

m
]

z
[m

m
]

s

s

s

Figure 3: TCP as function of the path parameter.

5 Optimization

The goal of the optimization is to find the minimum
time acceleration profile, v2(s), and the velocity pro-

file, v1(s), to be used in the PVC, see Section 6. The
acceleration profile is defined as the acceleration along
the path expressed as a function of the nominal path
parameter i.e., v2(s) = s̈(s). The velocity profile is
defined analogous by i.e., v1(s) = ṡ(s). This can be
done if the time derivative of s, ṡ, is assumed greater
or equal to zero [7]. Formulation of the optimization
problem is done using Modelica and Optimica. Mod-
elica is used to code the constraints (17) and the dy-
namics (20), while Optimica is used to define the input
limits, (4) the boundary conditions, (18), and the cost
function, (19). The Modelica and Optimica codes are
presented in Appendix A, Listings 1 and 2. Note that
the built-in Modelica variable time is equivalent to the
path parameter s due to the reformulation. Hence, the
der()-operator is equivalent to derivation with respect
to the path parameter s.

Using the reduction techniques from Section 2 the
reformulated optimization problem considered is now
given by

min
u(s)

∫ s f

s0

1
√

2x1
ds

s.t.

x1 =
ṡ2

2
,

dx1

ds
= u

Kτ = T (f ′′(s)ṡ2 + f ′(s)u)

τmin
≤ τ ≤ τmax

x1(s0) = 0, x1(s f) = 0

ṡ≥ 0

(22)

This work was done using a predecessor of the
JModelica.org platform, see [11] and [4]. The prede-
cessor version uses AMPL as intermediate representa-
tion format and supports an early version of Optimica.
The Modelica and Optimica code is compiled by the
Optimica compiler which translates the optimization
problem into AMPL [5]. The external solver, IPOPT
[10], is then called to solve the problem.

In order for IPOPT to find an optimal solution the
occurrence of a good initial guess is crucial. Because
of the free end time, finding an optimal solution for
a general minimum time problem requires an initial
guess close to the optimal solution. The reformulation
of the optimization problem to a fixed interval is there-
fore preferable.

Finding an optimal solution for the optimization
problem (22) turns out to be feasible. But in order to
find a solution with a smooth acceleration profile the
optimization problem has to be solved in two steps.
First, the optimization problem as it is stated in (22) is

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 743

solved. This result can now be used as an initial guess
when solving a second optimization problem. In the
second optimization problem a two per cent slack on
the final time is introduced and the cost function pe-
nalizes the square integral of the input signals. This
renders smoother acceleration and velocity trajectories
which are suitable for implementation on the robot ac-
tuators while the robot still traverses the path in close
to minimum time.

6 Control System

The PVC algorithm [7] modifies the acceleration of a
new path parameter, σ , in such a way that the path,
f (σ), is not deviated from while ensuring that the in-
put limitations (4) are not violated. The algorithm uses
the nominal acceleration profile, v2(σ), as a reference
to update the path acceleration, σ̈ . The path accelera-
tion is limited to make sure that the input constraints
(4) are not violated. Moreover, the algorithm includes
internal feedback α

2 (v1(σ)2 − σ̇ 2) that makes the path
velocity, σ̇ , approach the nominal velocity, v1(σ).

A controller written on the form

τ = β1(σ)σ̈ + β2(σ , σ̇ ,q, q̇) (23)

is assumed to be available. Combining (23) with the
limits (4), it is possible to calculate the minimum and
the maximum acceleration, σ̈ i

min and σ̈ i
max, for each

joint i.

τmin
i ≤ τi = β1iσ̈ + β2i ≤ τmax

i , 1 ≤ i≤ 6 (24)

σ̈max
i (β1iβ2i) =

τmaxi −β2i
β1i

β1i > 0
τmini −β2i

β1i
β1i < 0

∞, β1i = 0

σ̈min
i (β1iβ2i) =

τmini −β2i
β1i

β1i > 0
τmaxi −β2i

β1i
β1i < 0

−∞, β1i = 0

(25)

By choosing the limits on σ̈ according to (26), the ac-
celeration along the path is chosen in order not to vio-
late the limits on the input

σ̈max(β1,β2) = min
i

σ̈max
i (β1,β2)

σ̈min(β1,β2) = max
i

σ̈max
i (β1,β2)

(26)

The PVC algorithm is given by (27). The full control

structure is presented in the block diagram in Figure 4.

dσ

dt
= σ̇

dσ̇

dt
= σ̈

ur = v2(σ)+
α

2
(v1(σ)2

− σ̇ 2)

σ̈ = sat(ur, σ̈min(β1,β2),σmax(β1,β2))

(27)

σσ̇σ̈

α
2 (v1(σ)2 − σ̇ 2)

∑
ur

v2(σ)

τ q, q̇, . . .

β1,β2

∫∫

RobotController

Limit
Calculation

Figure 4: The PVC algorithm with controller and robot

7 Simulations

The control algorithm, (27), described in Section 6
has been implemented in Simulink. In order to eval-
uate the performance of the PVC a model error was
introduced. The model error introduced was a 20%
decrease in the gain for joint 1, i.e., K̃1 = 0.8K1. Two
simulations were done using the perturbed model. In
the first simulation, the regular controller 23 was used
but the PVC was disabled, see Figure 5, whereas in the
second simulation the PVC was used together with the
controller 23. The internal feedback gain in the second
simulation was chosen to α = 500.

Optimal
trajectories Controller Robot

qre f , q̇re f . . . τ q, q̇ . . .

Figure 5: Block diagram showing the setup used in the
first simulation, without the PVC.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 744

The minimum time for traversing the path with the
unperturbed model is 10.87 seconds and with the per-
turbation the minimum time is 12.09 seconds.

In the first simulation the path was traversed with
the velocity profile obtained from the optimization.
Since there was no PVC the deviated path was tra-
versed in 10.87 seconds. In the second simulation,
with the PVC, the path was instead traversed in 12.41
seconds which is 0.32 seconds longer than the opti-
mal time for the perturbed model. The velocity along
the path, σ̇(σ), for both simulations is displayed in
Figure 6. Here one can clearly see that the PVC low-
ers the velocity along the path. When using the PVC,
the path is traversed without violating the input bound-
aries, τmin and τmax, as can be seen in Figure 8. When
not using the PVC, see Figure 9, it is obvious that the
input signal calculated by the controller is well above
the input limitations of the process. Since the input
signals are saturated at their limits this gives rise to the
deviation from the path visible in Figure 7. Figure 7
shows that perturbation mostly effects the error in y di-
rection which is due the robot’s mechanical structure
and and the traversed path.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Velocity along the path, σ̇ (σ)

σ

σ̇
(σ

)

Figure 6: Continuous line is with the PVC enabled and
dashed line is with the PVC disabled

8 Summary and Conclusions

In this paper we formulated and solved a minimum
time optimization problem for an industrial robot. Re-
formulations were done in order to obtain acceleration
and velocity profiles without having to find an initial
guess close to the optimal solution. The robot joints
were modeled with simple second order linear transfer
functions. This was possible due to the presence of lin-
earizing controllers working within the identified mod-
els. Lead-through was used to record the path which

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−20

0

20

TCP position error

x
[m

m
]

y
[m

m
]

z
[m

m
]

σ

σ

σ

Figure 7: Continuous line is with the PVC enabled and
dashed line is with the PVC disabled.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

Inputs τi(σ)

1 2

3 4

5 6

σσ

σσ

σσ

Figure 8: Input signals for the six joints with the PVC en-
abled

was represented by the joints angular positions. The
dynamical model with its constraints and boundary
conditions, the path and the cost function were done in
Modelica and Optimica. Modelica along with Optim-
ica provided an efficient and convenient way to formu-
late the dynamic optimization problem. The Optimica
formulation is both in structure and syntax close to the
mathematical description of the optimization problem
which is beneficial. The closeness to the mathematical
description facilitates the formulation of optimization
problems which makes the work less time consuming
as well as less error-prone than coding in for instance
AMPL.

The optimization results were used as nominal ac-
celeration and velocity trajectories in a PVC. The
PVC has been tested, both in simulations and on an
ABB IRB140B robot, showing that the path deviation
is small, the input limitations are not violated and that
the path traversal speed is close to the optimal. This
paper shows that Optimica is well suited for the task

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 745

0 0.2 0.4 0.6 0.8 1
−2

0

2

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

Inputs τi(σ)

1 2

3 4

5 6

σσ

σσ

σσ

Figure 9: Input signals for the six joints with the PVC dis-
abled

of finding the optimal acceleration and velocity pro-
files needed in order to use PVC.

References

[1] ABB. ABB Home Page, 2009. http://www.

abb.com/.

[2] Johan Åkesson. Tools and Languages for Op-

timization of Large-Scale Systems. PhD the-
sis, Department of Automatic Control, Lund
University, Sweden, November 2007. ISRN
LUTFD2/TFRT--1081--SE.

[3] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th

International Modelica Conference 2008. Mod-
elica Association, March 2008.

[4] Johan Åkesson, Tove Bergdahl, Magnus Gäfvert,
and Hubertus Tummescheit. Modeling and Opti-
mization with Modelica and Optimica Using the
JModelica.org Open Source Platform. In Pro-

ceedings of the 7th International Modelica Con-

ference 2009. Modelica Association, September
2009.

[5] AMPL - A Modeling Language for Mathemat-
ical Programming. AMPL Home Page, 2009.
http://www.ampl.com/.

[6] L.T. Biegler, A.M. Cervantes, and A Wächter.
Advances in simultaneous strategies for dynamic
optimization. Chemical Engineering Science,
57:575–593, 2002.

[7] Ola Dahl. Path Constrained Robot Control.
PhD thesis, Department of Automatic Control,

Lund University, Sweden, April 1992. ISRN
LUTFD2/TFRT--1038--SE.

[8] Fredrik Eriksson and Marcus Welander. Hap-
tic interface for a contact force controlled robot.
Master’s Thesis ISRN LUTFD2/TFRT--5837--
SE, Department of Automatic Control, Lund
University, Sweden, May 2009.

[9] Python Software Foundation. Python Program-
ming Language – Official Website, 2009. http:
//www.python.org/.

[10] IPOPT - Interior Point OPTimizer. IPOPT Home
Page, 2009. https://projects.coinor.

org/Ipopt.

[11] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[12] Mark W. Spong, Seth Hutchinson, and
M.Vidyasagar. Robot Modeling and Con-

trol. John Wiley & Sons, Inc, 2006.

[13] Andreas Wächter and Lorenz T. Biegler. On
the implementation of an interior-point filter
line- search algorithm for large-scale nonlin-
ear programming. Mathematical Programming,
106(1):25–58, 2006.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 746

A Modelica and Optimica Code

model Robot

// Robot inputs, tau

Real tau[6];

// Robot model gains, K

parameter Real K[6] = {1.031, 1.077, 1.061,

1.051, 1.054, 1.062};

// Robot model time constants, T

parameter Real T[6] = {0.019086, 0.020433,

0.019129, 0.017158, 0.017909, 0.017447};

// First and second derivative of s

// with respect to time

Real sd(start=0);

Real sdd;

// Auxiliary variable

Real x1;

// Optimization variable

Modelica.Blocks.Interfaces.RealInput u

// Path, f, stored as splines

Splines f;

// First and second derivative of the path f

// with respect to s

Real df[6];

Real ddf[6];

equation

K*tau = T*(ddf*sd^2 + df*u) + df*sd;

df = der(f.f);

ddf = der(df);

x1 = sd^2/2;

der(x1) = u;

// Independant variable

f.s = time;

end Robot;

Listing 1: The Modelica code for the optimization
problem in (22).

optimization OptTraj (objective=cost,

startTime=0,

finalTime=1)

// Cost function

Real cost;

// Instance of robot model

Robot robot(u(free=true));

equation

der(cost) = 1/sqrt(2*x1+1e10);

constraint

// Lower bounds on robot inputs

robot.tau >= {0.175, 0.175, 0.227,

0.314, 0.314, 0.395};

// Upper bounds on robot inputs

robot.tau <= {0.175, 0.175, 0.227,

0.314, 0.314, 0.395};

// Terminal constraint on x1

robot.x1(finalTime) = 0;

// Inequality constraint

robot.sd >= 0;

end optTraj;

Listing 2: The Optimica code for the optimization
problem in (22).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 747

Using Modelica models in real time dynamic

optimization – gradient computation

Lars Imsland∗ Pål Kittilsen Tor Steinar Schei

Cybernetica AS

7038 Trondheim, Norway

{lars.imsland,pal.kittilsen,tor.s.schei}@cybernetica.no

Abstract

This paper reports on implementation of gradi-
ent computation for real-time dynamic optimiza-
tion, where the dynamic models can be Model-
ica models. Analytical methods for gradient com-
putation based on sensitivity integration is com-
pared to finite difference-based methods. A case
study reveals that analytical methods outperforms
finite difference-methods as the number of inputs
and/or input blocks increases.

Keywords: Nonlinear Model Predictive Con-

trol, Sequential Quadratic Programming, Gradient

computation, Offshore Oil and Gas Production.

1 Introduction

Nonlinear model predictive control (NMPC) is an
advanced control technology that enables the use
of mechanistic multi-disciplinary process models
in achieving process control objectives (econom-
ical, safety, environmental). NMPC algorithms
formulate an ’open-loop’ constrained dynamic op-
timization problem, which is re-solved and re-
implemented at regular intervals to combine the
advantage of the optimal control solution with
the feedback achieved through updated informa-
tion (measurements and estimated states and pa-
rameters). The number of applications of NMPC
is increasing, especially within certain process in-
dustries [11, 4], but there is certainly potential for
further growth.

Models developed primarily for dynamic pro-
cess simulation and design are often not appro-
priate for NMPC, for example for reasons related
to numerical robustness and computational speed.

∗Also affiliated with the Norwegian University of Science

and Technology, Department of Engineering Cybernetics.

Nevertheless, issues such as modularity, reuse,
model libraries, documentation, etc., make it ad-
vantageous to use advanced modeling languages
such as Modelica also for development of predic-
tion models for NMPC. This is discussed in [7].

NMPC optimization algorithms are often Se-

quentially Quadratic Programming (SQP) algo-
rithms. That is, the NMPC nonlinear dynamic
optimization problem is discretized and solved by
applying quadratic programming sequentially to
quadratic/linear approximations of the optimiza-
tion problem, and upon numerical implementa-
tion the solution generally converges to a local
optimum. SQP algorithms for NMPC are often
classified based on how discretization is done, but
nevertheless have in common that they need (at
least) gradient information of the discretized dy-
namic optimization problem.

This paper is concerned with gradient compu-
tation for a class of NMPC optimization algo-
rithms often referred to as sequential (or single-
shooting) NMPC optimization, using Modelica
models developed in Dymola as prediction mod-
els. Of particular concern is the exploitation
of symbolic/analytical Jacobians of the Modelica
model. Furthermore, we discuss briefly the imple-
mentation of gradient computation in commercial
NMPC software such as Cybernetica Cenit [4].
Finally, we use a semi-realistic NMPC problem
from offshore oil and gas production as a case to
illustrate issues such as accuracy and efficiency in
gradient computation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 748 DOI: 10.3384/ecp09430067

2 Nonlinear Model Predictive
Control

2.1 Models

A model of the physical plant we want to con-
trol by NMPC is implemented in Modelica. The
underlying mathematical representation could be
either as (hybrid) ODE or DAEs, but here we as-
sume, mainly for simplicity, that it is formulated
as a (piecewise) continuous ODE:

ẋ= f(x,u,p), y = h(x,u,p), z = g(x,u,p), (1)

where x are states, u are manipulated inputs, p
are parameters (which might be candidates for on-
line estimation), y are measured outputs and z are
controlled (not necessarily measured) outputs.

Model-based control typically apply some es-
timation scheme, for instance a sigma-point ex-
tended Kalman-filter approach or moving horizon
estimation [12]. The task of the estimation is to
• consolidate measurements to obtain a best es-

timate of the process state,
• estimate unknown and changing parameters

(adaptation), and
• achieve zero steady state error in the desired

controlled variables (integral control).
We will not be concerned about estimation in this
paper, and assume therefore (unrealistically) that
we know all parameters and measure the state.

Note that typically, we will in addition to ma-
nipulated inputs also have other (measured) in-
puts that in essence make the system time-variant.
However, we will employ a discrete-time NMPC
formulation and are therefore only interested in
integration over one sample interval where these
inputs typically are assumed constant.

For the same reason, we are only interested in
the solution of (1) in the sense that it is used to
calculate states and outputs at the next sampling
instant. That is, we are interested in the discrete-
time system

xk+1 = xk+

∫ tk+1

tk

f(x(τ),uk,pk)dτ, (2a)

yk = h(xk,uk−1,pk−1), (2b)

zk = g(xk,uk−1,pk−1). (2c)

The integration involved is in general solved by
ODE solver routines.

For NMPC, we will use the above system for
prediction. In prediction for NMPC, we are not

concerned with the measured outputs, and disre-
gard these for now. With abuse of notation, we
will write the time-varying discrete-time NMPC
predictor system as

xk+1 = fk(xk,uk), zk = gk(xk,uk−1). (3)

2.2 NMPC optimization problem

We formulate here a simplified discrete-time
NMPC optimization problem using the model (3).
We assume the desired operating point (x,u) =
(0,0) is an equilibrium (fk(0,0) = 0, gk(0,0) = 0),
and we minimize at each sample (using present
measured/estimated state x0 as initial state for
predictions) the objective function

J(x0,u0,u1, . . . ,uN−1) =
1

2

N−1
∑

i=0

zTi+1Qzi+1 +uT

i Rui

over future manipulated inputs ui, where zi are
computed (predicted) from (3), and Q and R are
weighting matrices. Importantly, the future be-
havior is optimized subject to constraints:

zmin ≤ zk = gk(xk,uk−1)≤ zmax, k = 1, . . . ,N

umin ≤ uk ≤ umax, k = 0, . . .N −1.

The first input u0 is then implemented to the
plant.

It is important to note that the problem for-
mulation used here is simplistic, For the sake of
brevity and with little loss of generality, it does
not contain features usually contained in NMPC
software packages, such as:
• Features related to non-regulation problems

(for instance control of batch processes).
• Input blocking (for efficiency).
• Incidence points (for efficiency and feasibil-

ity).
• Control horizon longer than input horizon.
• End-point terminal weight/region (in regula-

tion, for efficiency/stability).
• Input moves instead of inputs as optimization

variables.
Further details about such issues can be found in
MPC textbooks, for instance [9].

2.3 Sequential NMPC optimization

In most cases, the (discretized) dynamic opti-
mization problem is solved using numerical al-
gorithms based on sequential quadratic program-
ming (SQP). A SQP method is an iterative

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 749

method which at each iteration makes a quadratic
approximation to the objective function and a lin-
ear approximation to the constraints, and solves
a QP to find the search direction. Then a line-
search is performed along this search direction to
find the next iterate, and the process is repeated
until convergence (or time has run out). General
purpose SQP solvers may be applied to NMPC
optimization, but it is in general advantageous to
use tailor-made SQP algorithms for NMPC appli-
cations.

The main approaches found in the literature are
usually categorized by how the dynamic optimiza-
tion problem is discretized/parametrized. The
most common method is perhaps the sequential

approach [3], which at each iteration simulates the
model using the current value of the optimization
variables (u0,u1, . . . ,uN−1) to obtain the gradient
of the objective function (and possibly the Hes-
sian), thus effectively removing the model equality
constraints and the states x1,x2, . . . ,xN as opti-
mization variables. Other methods are the simul-

taneous approach [1], and the multiple shooting

approach [2]. In this paper, a sequential approach
is taken.

3 Gradient computation in se-

quential NMPC optimization

3.1 The sensitivity (step/impulse re-
sponse) matrix

As explained above, sequential SQP approaches
to NMPC optimization sequentially simulates and
optimizes. The simulation part should calculate
the objective function- and constraint gradients
with respect to the optimization variables ui. This
is typically done via the step response matrix, or as
in the simplified exposition here, the impulse re-
sponse matrix. To avoid confusion, we will mostly
refer to this in the following as the (NMPC) sen-
sitivity matrix.

Rewrite the objective function by stacking fu-
ture inputs and outputs as

J(x0,u) =
1

2

(

zTQz+ uTRu
)

,

where u = (u0,u1, . . . ,uN−1), z = (z1, . . . ,zN), Q =
blkdiag{Q} and R = blkdiag{R}. The gradient of
the objective function is

∂J

∂u
= zTQ

∂z

∂u
+ uTR.

Similarly, the linearization of the output con-
straints are also given by the matrix Φ = ∂z

∂u
, which

we call the sensitivity matrix (which in this case
is the truncated impulse response matrix).

That is, once we have calculated the sensitiv-
ity matrix Φ, we can easily evaluate the objective
function- and constraints gradients in sequential
NMPC optimization. From this, one can argue
that gradient computation in sequential NMPC is
mostly about efficient computation of the sensitiv-
ity matrix.

The rest of this section treats calculation of the
sensitivity matrix by finite differences, and by for-
ward ODE sensitivity analysis. We remark that
one could also use adjoint sensitivity methods for
calculating the desired NMPC gradients [8]. How-
ever, for NMPC problems with a significant num-
ber of constraints, this is likely to be less efficient
than forward methods.

3.2 NMPC sensitivity matrix by finite
differences

Finding the sensitivity matrix by finite differences
is achieved by in turn perturbing each element of
all input vectors ui and simulate to find the re-
sponse in the zjs. The perturbation is typically
either one-sided (forward finite differences) or two-
sided (central finite differences), the latter taking
about twice the time but being somewhat more
accurate [10].

3.3 NMPC sensitivity matrix by sensi-
tivity integration

Assuming we have a time-varying linearization
of (3) along the trajectories:

xk+1 =Akxk+Bkuk, (4a)

zk = Ckxk+Dkuk−1, (4b)

we can calculate the sensitivity matrix which in
this simple case is as shown in eq. (5) on the bot-
tom of the following page. (The sensitivity ma-
trix shown there is the impulse response matrix,
the step response matrix is the cumulative sum of
the columns of the impulse response matrix, from
right to left.) To find the linearization (4), it is
usually most practical to calculate sensitivities of
the solution of (1) with respect to initial values
x(0) = xk and inputs uk (assumed constant over
each sample interval). Stacking these sensitivities

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 750

in matrices S and W , they are given by the fol-
lowing matrix ODEs [5]:

S :=
∂x

∂uk
: Ṡ =

∂f

∂x
S+
∂f

∂u
, S(0) = 0, (6a)

W :=
∂x

∂xk
: Ẇ =

∂f

∂x
W, W (0) = I. (6b)

We will only be interested in the sensitivities at
the end of each sample interval, which are the sys-
tem matrices in (4a):

Bk :=
∂xk+1

∂uk
= Sk+1, Ak :=

∂xk+1

∂xk
=Wk+1. (7)

Defining also Ck := ∂zk
∂xk

, Dk := ∂zk
∂uk−1

, we get the

linearized (LTV) system above. The required Ja-
cobian matrices

∂f

∂x
,
∂f

∂u
,
∂g

∂x
,
∂g

∂u

can be found from finite differences, symbolically
(for instance from a Dymola model), or by au-
tomatic differentiation methods. The two latter
should be preferred.

The sensitivity ODEs (6) are solved together
with (2a) by ODE solvers. Although the size of
S and W might be large, the fact that the sys-
tems (6) have a block-diagonal Jacobian with the
individual blocks being the Jacobian of (2a) can
and should be exploited in ODE solvers, lead-
ing to efficient computation of the ODE sensitivi-
ties [6]. (For systems with a very large number of
states and relatively few inputs/outputs, it might
be more efficient to directly integrate the elements
in the sensitivity matrix, and thus avoiding calcu-
lation of state sensitivities.)

It is important to note that the above is de-
scribed for zero order hold and no input block-
ing. For efficient implementation, it is essential to
exploit input blocking in the sensitivity computa-
tions.

4 Implementation

A software package for model-based estimation
and control (NMPC) will typically include an of-

fline part for model fitting (parameter optimiza-
tion) to data, data-based testing of estimation and
simulation-based testing of NMPC (including esti-
mation), and an online part for a complete NMPC
real-time solution (including estimation). The
workflow in taking a parametrized model (imple-
mented in Modelica/Dymola, or ’by hand’ in lower
level languages such as C) to online application
is attempted illustrated in Figure 1. A Modelica
tool (such as Dymola) will need a method for ex-
porting the models so they can be used efficiently
in the offline tool and the online system. Dymola
has the option of C-code export, which is platform
independent and gives models that are efficiently
evaluated and easily integrated with ODE/DAE-
solvers and optimizers, typically implemented in
C.

Mass- and energy
balances, etc.

• Modelica: export
ODE/DAE, build
model

• Alternatively:
’hand-code’ model
(e.g. in C)

Model

NMPC

Estimation

Online system

Model

Modeling

Model

Offline tool

• Model fitting to
measurements

• Measurements-
based testing of
estimation

• Scenario-based
testing of NMPC

Figure 1: Overview over workflow in model usage.
Data storage, data acquisition/exchange, and GUI
not shown.

NMPC software that should use analytical
methods for gradient computation, need the
discrete-time model to provide Ak, Bk, Ck and
Dk matrices (4) (typically found via sensitivity in-
tegration using the exported model, as discussed
earlier). Figure 2 indicates the data flow in a
discretized model component that is based on a

z1
z2
...
zN

=

C1B0 +D1 0 0 0 · · ·
C2A1B0 C2B1 +D2 0 0 · · ·
C3A2A1B0 C3A2B1 C3B2 +D3 0 · · ·
C4A3A2A1B0 C4A3A2B1 C4A3B2 C4B3 +D4 · · ·

...
...

...
...

. . .

u0

u1

...
uN−1

(5)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 751

continuous-time ODE Modelica/Dymola model,
using an ODE solver which implements sensitivity
integration.

Several specialized solvers for calculation
of ODE sensitivities exist. For instance,
CVODES [6] implements variable-order, variable-
step multistep ODE solvers for stiff and non-stiff
systems, with sensitivity analysis capabilities. For
efficiency of sensitivity integration, it is a signif-
icant advantage if we have symbolic ODE Jaco-
bians available, for instance from a Dymola model.

As a side-remark, for models that do not pro-
vide symbolic Jacobians, we have the option of
using automatic differentiation packages (CppAD,
ADOLC, or others). However, this typically re-
quires C++ compilation.

5 Case

5.1 Case description

In the North Sea (and on other continental
shelves), petroleum is produced by drilling wells
into the ocean bed. From the wells, typically a
stream of oil, gas and water arrives at a surface
production facility (platform or ship) which main
task is to separate the products. Oil and gas are
exported, either through pipelines or by ship. Wa-
ter is cleaned and deposited to sea or pumped back
to the reservoir.

A schematic picture (in the form of a Dymola
screendump) of such an offshore oil and gas pro-
cessing plant is given in Figure 3. Oil, gas and wa-
ter enter the plant from several sources. In reality
the sources are reservoirs connected to the pro-
duction facility through wells and pipelines. The
separators are large tanks which split the phases
oil, water and gas. The produced oil is leaving in
the lower right corner of the figure, while the gas
enters a compression train (not included in the
model) from the first and second separator (two
leftmost tanks). Water is taken off from each sep-
arator and sent to a water treatment process.

Generally, this type of process is a fairly com-
plex system in terms of numbers of components.
However, many of the components are of the same
type (mainly separators, compressors, valves, con-
trollers, in addition to minor components such
as sources, sinks, splitters, sensors, etc.), which
simplifies overall modeling and make it efficient
to reuse model components. Furthermore, con-
struction of this process model benefited signifi-

cantly from using models and concepts introduced
by the new Modelica_Fluid library. Models for
valves, sources, sinks, and sensors were used di-
rectly, whereas other models and functions in the
new library inspired the development of our own
models. For real-time efficiency reasons, we take
care to ensure that we end up with an ODE-type
model. The new stream class is an improvement
to ease the construction of models satisfying this
criteria.

In addition to the unit modes, medium mod-
els are necessary in order to calculate physical
properties like density and heat capacity, in ad-
dition to phase transitions between oil and gas.
The model should have real time capabilities, fa-
voring simple/explicit relations. For phase equi-
librium calculations, correlations of k-values (as
function of temperature, pressure and molecular
weight) were used together with a simplified rep-
resentation of the many chemical species found in
the real process. Gas density was described by a
second-order virial equation, where the model co-
efficients were fitted to an SRK-equation for the
relevant gas composition evaluated for the tem-
perature and pressure range of current interest.

The model we use as NMPC prediction model
(cf. Figure 3) has 27 states. We consider two
NMPC problem formulations, one being 2× 2 (2
MVs and 2 CVs), the other 4×4.

5.2 Issues in preparing a Dymola model
for use with a NMPC system

Before a Dymola simulation model can be used
in a NMPC system, it must be prepared. It is
worthwhile to mention some of the issues involved:

• In addition to making sure that the model
does not contain nonlinear systems of equa-
tions that must be solved to evaluate it (i.e,
the model is an ODE as explained above),
for Dymola to export symbolic Jacobians we
must of course ensure that the model is dif-
ferentiable. Especially if Modelica functions
are used extensively, this might in some cases
involve some effort.
• Dymola provides ODE-style Jacobians (A, B,
C and D matrices). Unfortunately, it seems
not possible to specify a subset of inputs
that we want to evaluate Jacobians with re-
spect to. This is especially critical for the
B-matrix. For instance, we have in the case
study a total of 9 possible MVs/DVs, all of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 752

dsmodel.c

xk, uk, pk

xk+1 =f(xk, uk, pk)

Ak, Bk

Modelica/Dymola

Initialization

Indexation

Symbolic Jacobians

Outputs

Derivatives

Initialization

model interface

x, uk, pk

ẋ = f(x, uk, pk)

∂f
∂x

, ∂f
∂u

Solver

ODE (DAE)

Sensitivities

xk, uk, pk

zk =g(xk, uk, pk)

yk =h(xk, uk, pk)

Ck = ∂g
∂x

, Dk = ∂g
∂u

Reconfiguration

model fitting, ...)

Estimation interface

Initialization

Prediction

Reconfiguration

Other interfaces

(Other estimation

algorithms, simulation,

NMPC interface

Initialization

Prediction

Figure 2: Overview over model component data flow.

which are modeled as Dymola inputs. We
have chosen to control 2 or 4 of these. This
means that we evaluate a B-matrix of dimen-
sion 27×9, instead of 27×2 or 27×4. This in-
curs considerable unnecessary complexity. If
we in addition have a considerable number of
parameters to be estimated also modeled as
Dymola inputs, this makes the situation even
worse.
• It seems the most natural way to implement

communication between a NMPC system and
the model, is to use ’top level’ Modelica in-
puts and outputs. This is usually rather
straightforward to implement for NMPC in-
puts and outputs (MVs, DVs and CVs) and
measurements, but not very flexible: The Dy-
mola C-code model interface could have been
more sophisticated when it comes to identi-
fication and indexing of inputs, outputs and
states. Furthermore, the use of top-level in-
puts and outputs can become rather awk-
ward when it comes to model parameters that
should be estimated.

6 Gradient computations ap-

plied to case

This section aims to illustrate the advan-
tages and differences between finite differences
and sensitivity-based sensitivity computations.
Strictly speaking, the results only apply to this
specific case, but we believe there is some gen-

erality in the trends reported. Issues that will be
discussed, are computational complexity (timing),
accuracy, and implementational aspects. The re-
sults are of course influenced by many factors not
investigated (i.e., kept constant) here, as for ex-
ample number of states, stiffness, exact definition
of input blocks, etc.

We use a Matlab interface to the NMPC sys-
tem, and choose to compare computational com-
plexity by measuring execution time in Matlab.
Although this has some drawbacks, it should give
a fairly accurate picture of the relative perfor-
mance. To increase the reliability, for each record-
ing of execution time we run 5 consecutive identi-
cal NMPC scenarios (with significant excitation),
and record the smallest execution time. This exe-
cution time includes the Kalman filter and NMPC
optimization, but as the gradient computation is
the most computationally expensive part, and the
other parts are independent of choice of method
for gradient computation, the difference in execu-
tion times should give a fairly good estimate of the
difference in complexity of gradient computation.

6.1 Correctness and accuracy

It is clear that using finite difference (from now
on FD) and analytic sensitivity methods based on
sensitivity integration (AS) should give the same
gradients “in the limit” (of perturbation-size and
integration tolerances). Nevertheless, it is of inter-
est to test this, also to get a feel for how large er-
rors (or differences) relaxed integration tolerances

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 753

Figure 3: Overview of an offshore oil and gas processing plant, as implemented in Dymola.

and realistic perturbations will lead to.

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

5

10

15

20

25

|A
S
 −

 A
| a

nd
 |A

F
 −

 A
| (

da
sh

ed
)

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

2

4

6

8

10

12

14

|A
F
 −

 A
S
|

Relative tolerance

Figure 4: Top: Difference between ’real’ (as found
by AS methods with tolerances of 1e-12) step re-
sponse matrix A and step response matrices for
higher tolerances. Bottom: Step response matri-
ces using AS and AF (almost) converge as toler-
ances decreases.

From Figure 4, we see that for small integration
error tolerances, the gradients found are fairly cor-
rect in both methods, but the error in the FD sen-
sitivity matrix increases much faster as the error
tolerances are increased. An important note re-

garding the implementation of the AS-method is
that we have chosen to have error control on both
states and sensitivities, not merely states. In our
experience, this can be essential to ensure accu-
rately enough sensitivities when using AS.

We do not discuss here the choice of perturba-
tion size in FD methods, as this does not differ
from the general discussion in e.g. [10]. Suffice it
to say that the general trends in Figure 4 are fairly
independent of choice of perturbation size.

It is notable that even though both methods
only give correct gradients in the limit, FD meth-
ods gives a direct approximation to the gradient
of the objective function that is actually being op-
timized (including integration errors). This can in
theory be an advantage in the line-search step of
SQP algorithms.

6.2 Computational complexity

In this section we will compare the computational
cost of different gradient computations as the
number of NMPC degrees of freedom increases.
We increase the degrees of freedom both in num-
ber of input blocks as well as number of inputs.
The cases we will compare, are gradient compu-
tation using finite differences (FD) with or with-
out using symbolic Jacobians in the ODE solver,
and analytical gradient computation using sensi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 754

tivity integration (AS), also with and without us-
ing symbolic Jacobians.

We use the same ODE tolerances in all cases,
and for sensitivity integration the sensitivities are
included in the error control. The relative time us-
age for different number of inputs and input blocks
are shown in Figure 5. In Figure 6, the experiment
is repeated for Nu= 2, but without using symbolic
Jacobians in the ODE solver.

0 5 10 15 20 25 30 35
10

0

10
1

10
2

Input blocks

T
im

e
us

ag
e

AS, N

u
 = 2

FD, N
u
 = 2

AS, N
u
 = 4

FD, N
u
 = 4

Figure 5: Relative time usage for different number
of inputs and input blocks.

0 5 10 15 20 25 30 35
10

0

10
1

10
2

Input blocks

T
im

e
us

ag
e

AS, N

u
 = 2

FD, N
u
 = 2

Figure 6: Relative time usage for different num-
ber of inputs and input blocks, without exporting
symbolic Jacobians from Dymola.

The following observations are made:
• FD grows approximately quadratically in in-

put blocks (as additional input blocks in-
curs both additional perturbations and ODE
solver resetting), while AS grows approxi-

mately linearly in input blocks (incurs only
additional ODE solver resetting). Note the
logarithmic scale in Figure 5. To the ex-
tent that this is general, this means that AS
will always outperform FD when many input
blocks are used.
• Increasing number of input blocks (leads to

more frequent ODE solver resetting) is more
expensive than increasing number of inputs
(leads to larger “sensitivity state”) when us-
ing AS. We attribute this both to the effi-
ciency of CVODES in exploiting the struc-
ture in the sensitivity equations, but also to
the next issue:
• Increasing number of inputs does not signif-

icantly increase complexity of AS. This may
be surprising, but can be explained in this
case by the fact that all ODE Jacobians are
calculated irrespectively of how many of the
inputs are actually active, as discussed in Sec-
tion 5.2. If Dymola allowed calculation of
only those Jacobians that are needed, this
could considerably speed up execution time.
• AS suffers significantly more than FD from

not having symbolical Jacobians available.

Finally, we mention that in our experience, im-
plementing Modelica-functions in C can signifi-
cantly speed up FD (not done in this case), see
also [7]. If this can be combined with export of
symbolic Jacobians, it can also speed up AS, but
to a much less extent. In other words, implement-
ing Modelica-functions in C is less important when
using AS.

7 Concluding remarks

To construct the sensitivity matrix using analyt-
ical methods becomes significantly faster than fi-
nite difference-based methods as the number of
inputs and/or input blocks increases. Therefore,
this technology is expected to be important in
NMPC systems for ’larger’ (in a NMPC context)
models. Furthermore, we expect that many of
these ’larger’ models will be implemented in high-
level languages (Modelica) rather than in lower-
level languages (C), due to issues like reuse and
modularity, but also due to availability of sym-
bolic Jacobians.

Moreover, we conclude that to use analytical
methods, we should have ODE Jacobians avail-
able. Dymola provides these for us, but it seems

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 755

we do not have the opportunity to evaluate ’par-
tial’ Jacobians, which would be a significant ad-
vantage.

We hope we have provided an incentive for de-
velopers of other Modelica-tools to generate sym-
bolic Jacobians. Using automatic differentiation
may also be possible in cases with C-code export-
type functionality, but this could have some other
drawbacks.

Acknowledgments

The authors thank StatoilHydro for providing in-
formation and input to the case study. Trond
Tollefsen is acknowledged for his contributions to
the development of the model library Cyberneti-
caLib and particularly for the implementation of
the case study model.

References

[1] L. T. Biegler, A. M. Cervantes, and A. Wächter.
Advances in simultaneous strategies for dynamic
process optimization. Chem. Eng. Sci., 57:575–
593, 2002.

[2] H. G. Bock, M. Diehl, D. B. Leineweber, and
J. P. Schlöder. A direct multiple shooting method
for real-time optimization of nonlinear DAE pro-
cesses. In F. Allgöwer and A. Zheng, editors, Non-

linear Predictive Control, volume 26 of Progress

in Systems Theory, pages 246–267. Birkhäuser,
Basel, 2000.

[3] N. M. C. de Oliveira and L. T. Biegler. An ex-
tension of newton-type algorithms for nonlinear
process control. Automatica, 31:281–286, 1995.

[4] B. A. Foss and T. S. Schei. Putting nonlinear
model predictive control into use. In Assessment

and Future Directions Nonlinear Model Predictive

Control, LNCIS 358, pages 407–417. Springer Ver-
lag, 2007.

[5] E. Hairer, S. P. Nørsett, and G. Wanner. Solv-

ing Ordinary Differential Equations I – Nonstiff

problems. Springer-Verlag, 2nd edition, 1993.

[6] A. C. Hindmarsh and R. Serban. User Docu-

mentation for CVODES v2.5.0. Center for Ap-
plied Scientific Computing, Lawrence Livermore
National Laboratory, 2006.

[7] L. Imsland, P. Kittilsen, and T. S. Schei. Model-
based optimizing control and estimation using
modelica models. In Proc. of Modelica’2008, Biele-
feld, Germany, 2008.

[8] J. B. Jørgensen. Adjoint sensitivity results for pre-
dictive control, state- and parameter-estimation
with nonlinear models. In Proceedings of the Eu-

ropean Control Conference, Kos, Greece, 2007.

[9] J. M. Maciejowski. Predictive Control with Con-

straints. Prentice-Hall, 2001.

[10] J. Nocedal and S. J. Wright. Numerical Optimiza-

tion. Springer-Verlag, New York, 2006.

[11] S. J. Qin and T. A. Badgwell. A survey of indus-
trial model predictive control technology. Control

Engineering Practice, 11:733–764, 2003.

[12] T. S. Schei. On-line estimation for process control
and optimization applications. Journal of Process

Control, 18:821–828, 2008.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 756

Multiple-Shooting Optimization using

the JModelica.org Platform

Jens Rantil* Johan Åkesson†‡ Claus Führer* Magnus Gäfvert‡

** Department of Numerical Analysis, Lund University
† Department of Automatic Control, Lund University

*† Lund University ‡ Modelon AB
Sölvegatan 18 Ideon Science Park

SE-22100 Lund, Sweden SE-22370 Lund, Sweden
E-mail: claus@maths.lth.se E-mail: info@modelon.se

Abstract

Dynamic optimization addresses the problem of find-
ing the minimum of a cost function subject to a con-
straint comprised of a system of differential equations.
There are many algorithms to numerically solve such
optimization problems. One such algorithm is multi-

ple shooting. This paper reports an implementation of
a multiple shooting algorithm in Python. The imple-
mentation is based on the open source platform JMod-
elica.org, the integrator SUNDIALS and the opti-
mization algorithm scipy_slsqp. The JModelica.org
platform supports model descriptions encoded in the
Modelica language and optimization specifications ex-
pressed in the extension Optimica. The Modelica/Op-
timica combination provides simple means to express
complex optimization problems in a compact and user-
oriented manner. The JModelica.org platform in turn
translates the high-level descriptions into efficient C
code which can compiled and linked with Python. As
a result, the numerical packages available for Python
can be used to develop custom applications based on
Modelica/Optimica specifications. An example is pro-
vided to illustrate the capabilities of the method.

Keywords: optimization; optimal control; parame-

ter optimization; Modelica; Optimica; JModelica.org

1 Introduction

Dynamic optimization problems arise naturally in a
wide range of applications and domains. Common ex-
amples are parameter optimization problems, design
optimization, and optimal control. The key property

of a dynamic optimization problem, which also makes
such a problem hard to solve, is that it includes a con-
straint in form of a system of differential equations.

In this paper, we present an implementation of a
particular numerical method for solving dynamic opti-
mization problems, namely multiple shooting, [4, 20,
5]. In essence, a multiple shooting algorithm consists
of an integrator for simulation of the system dynam-
ics and evaluation of the cost function, and an opti-
mization algorithm which tunes the optimization pa-
rameters of the problem. The Python language [17]
was selected for implementation of the multiple shoot-
ing algorithm. Python has several advantages in the
context of scientific computing, since there are sev-
eral packages for high performance computing avail-
able, including Numpy [14] and Scipy [6]. Also, the
package Matplotlib [9] provides methods for data vi-
sualization in a MATLAB-like manner. The main ad-
vantage is, however, that Python is a full-fledged high-
level programming language offering strong support
for generic concepts such as object-orientation and
functional programming. Further more, Python has
bindings to other languages, e.g, C and Fortran, which
are common implementation languages for numerical
algorithms. Accordingly, Python is commonly used as
glue language in applications which integrate differ-
ent algorithms. A common way to interface C code
with Python is ctypes [7], which is based on load-
ing of dynamically linked libraries. For the multiple
shooting algorithm, Python is a suitable choice since it
allows the majority of the computationally expensive
subtasks to be delegated to precompiled C and Fortran
codes.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 757 DOI: 10.3384/ecp09430066

The implementation of the multiple shooting algo-
rithm is based on the JModelica.org open source plat-
form, [1]. JModelica.org offers support for dynamic
models formulated in Modelica [21] and optimization
specifications given in Optimica [2]. JModelica.org
also has a Python-based execution API for the evalu-
ation of the model equations, which has been used in
this work. The purpose of this work is twofold. Firstly,
solution of dynamic optimization problems by means
of a multiple shooting algorithm adds to the function-
ality of the JModelica.org platform. Secondly, the al-
gorithm provides an example of how different algo-
rithms can be integrated with the JModelica.org model
interface to create new algorithms.

2 Background

2.1 Modelica and Optimica

Modelica is a high-level language for encoding of
complex heterogeneous physical systems, supporting
object oriented concepts such as classes, components
and inheritance. Also, text-book style declarative
equations can be expressed as well as acausal com-
ponent connections representing physical interfaces.
While Modelica offers strong support for modeling of
physical systems, the language lacks important con-
structs needed when formulating dynamic optimiza-
tion problems, notably cost functions, constraints, and
a mechanism to select inputs and parameters to opti-
mize. In order to strengthen the optimization capa-
bilities of Modelica, the Optimica extension has been
proposed, [2]. Optimica adds to Modelica a small
number of constructs, which enable the user to conve-
niently specify dynamic optimization problems based
on Modelica models.

In the context of dynamic optimization, the use of
high-level description formats is particularly attrac-
tive, since the interfaces of algorithms for solution of
such programs are typically written in C or Fortran.
Implementing the optimization formulation for such
an algorithm may require a significant effort. In ad-
dition, once finalized, the implementation is typically
difficult to reuse with another algorithm. The JMod-
elica.org platform offers compilers for transforming
Modelica/Optimica specifications into efficient C code
which in turn may be interfaced with algorithms for
dynamic optimization. The user may then focus on
formulation of the actual problem at hand instead of
attending to the details of encoding it to fit the require-
ments of a particular algorithm.

2.2 Dynamic optimization

Dynamic optimization problems may be formulated in
many different ways, under different assumptions. In
this paper, we assume that the problem is stated on the
following form:

min
p,u

Φ(x(t f ;u, p), p)

subject to

ẋ = f (x,u, p)

(1)

where x is the system state, u are the inputs and p are
free parameters in the optimization. The cost function
is here assumed to be of Mayer type, that is, a function
of the terminal state values and the parameters are min-
imized1. The influence of the control variable u is im-
plicit through x. The state x is governed by an ordinary
differential equation (ODE). Indeed, this formulation
is somewhat limited. In particular, the dynamics of
physical systems are often described by differential al-
gebraic equations (DAEs). Also, inequality constraints
representing, e.g., bounds on states and inputs are of-
ten present. However, the formulation given above is
indeed general enough to demonstrate the concept of
the multiple shooting algorithm.

There are three main classes of dynamic optimiza-
tion problems, namely parameter optimization, opti-
mal control and parameter identification.

In parameter optimization, p is a vector containing
a finite number of parameters. The goal is to find a pa-
rameter vector p that minimizes Φ(x(t f ; p), p). p can
both contain model parameters and/or initial states of
the model. An example of a parameter optimization
problem would be to find the optimal wheel radius and
tire thickness in a car to minimize the noise in the com-
partment.

In optimal control, the goal is to find a function u(t)
that minimizes Φ(x(t f ;u)). This is usually done by
discretization of u, for example by means of piecewise
constant profiles or splines. Such an approximation
transforms the original problem into a parameter opti-
mization problem. An example of an optimal control
problem would be to minimize the fuel consumption
for a satellite moving from the moon to the earth.

Thirdly, in parameter identification, the objective is
to fit a model to existing measurements. Typically,
a perfect fit is usually not possible to obtain, due to
the presence of measurement noise. Instead, the best

1Notice that a Lagrange type cost function, i.e., a function of
the inputs, states and parameters integrated of the optimization in-
terval can be cast into a Mayer cost function by introducing an
additional state.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 758

Figure 1: Shooting procedure.

fit according to some criteria penalizing the deviation
between the model outputs and the measurements is
sought.

2.3 Numerical methods for dynamic opti-

mization

There are two main branches within the family of di-
rect methods for dynamic optimization. Sequential

methods rely on state of the art numerical integra-
tors, typically also capable of computing state sensitiv-
ities, and on standard nonlinear programming (NLP)
codes. The controls are then usually approximated
by piece-wise polynomials (often piecewise constant
functions), which render the controls to be parameter-
ized by a finite number of parameters. These parame-
ters are then optimized. Simultaneous methods, on the
other hand, are based on collocation, and approximate
both the state and the control variables by means of
piece-wise polynomials, see [3] for an overview. This
strategy requires a fine-grained discretization of the
states, in order to approximate the dynamic constraint
with sufficient accuracy. Accordingly, the NLPs re-
sulting from application of simultaneous methods are
very large, but also sparse. In order to solve large-
scale problems, the structure of the problem needs to
be explored.

2.3.1 Sequential shooting methods

In a sequential method, the control variables are pa-
rameterized by a finite number of parameters, for ex-
ample by using a piece-wise polynomial approxima-
tion of u. Given fixed values of the parameters, the
cost function of the optimization problem (1) can be
evaluated simply by integrating the dynamic system.
The parameters may then, in turn, be updated by an
optimization algorithm, and the procedure is repeated,
as illustrated in Figure 1. When the optimization algo-
rithm terminates, the optimal parameter configuration
is returned. Since the parameters determine the control
profiles, which are then used to compute x(t f), the cost
function can be written as Φ(x(t f ;u(p), p), p) = Φ(p).

The infinite dimensional optimization problem is thus
transformed into a finite dimensional problem. For
these reasons, sequential methods are also referred to
as control parameterization methods. For a thorough
description of single shooting algorithms, see [22].

Typically, the convergence of an optimization algo-
rithm can be improved by providing it with gradients
of the cost function with respect to the parameters.
While finite differences is a simple method for obtain-
ing gradients, it is not well suited for in this particular
application due to scaling problems and limited accu-
racy, [19]. Taking the full derivative of the cost func-
tion Φ(x(t f ;u(p), p), p) = Φ(p), we obtain

dΦ

dp

∣∣∣∣
t f

=
∂Φ

∂x

T ∂x

∂ p

∣∣∣∣∣
t f

. (2)

While ∂Φ
∂x is usually straightforward to compute, the

quantity ∂x
∂ p

= xp, referred to as the state sensitivity

with respect to the parameter p, needs attention. A
common approach for computing state sensitivities is
derived by differentiating the differential equation ẋ =
f (x,u, p) with respect to p:

d

dp

dx

dt
=

d

dp
f (x,u, p) (3)

⇒
d

dt

(
∂x

∂ p

)
=

∂ f

∂x

∂x

∂ p
+

∂ f

∂u

∂u

∂ p
+

∂ f

∂ p
(4)

which gives the sensitivity equations

ẋp(t) =
∂ f

∂x
xp(t)+

∂ f

∂u

∂u

∂ p
+

∂ f

∂ p
. (5)

This suggests a method for computing derivatives by
solving results a matrix valued differential equation. If
the number of states of the system is nx and the num-
ber of parameters is np, then nx× np additional equa-
tions must be integrated. This operation is computa-
tionally expensive, although the efficiency of the inte-
gration can be increased by exploring the structure of
the sensitivity equations. There is also software avail-
able which supports integration of the sensitivity equa-
tions, for example DASPK, [13] and SUNDIALS [18].

2.3.2 Multiple shooting

An extension of the single shooting algorithm is mul-
tiple shooting. In a multiple shooting algorithm, the
optimization interval [t0, t f] is divided into a number of
subintervals [ti, ti+1], see Figure 2. New optimization
variables corresponding to the initial conditions for the
states in each subinterval, are then introduced. This

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 759

t

x(t)

t1 t2 t3 t4

x1

x2 x3
x4

d1 d2 d3

Seg.1 Seg.2 Seg.3 Seg.4

Figure 2: In a multiple shooting method, the control
horizon is divided into a number of segments, which
are integrated independently.

enables the dynamics, as well as the sensitivity matri-
ces, to be computed independently in each segment. In
order to enforce continuity of the state profiles, equal-
ity constraints are introduced in the optimization prob-
lem which ensure that the defects, di = x(t+i+1)−x(t−i+1)
are equal to zero.

In an optimization loop some of the intermediate
control profiles u and parameter values p may get un-
physical values. This can result in stability problems,
when numerical integration has to be performed over
longer time intervals. Also the computed sensitivity
matrices may become unreliable. This is the advantage
of multiple shooting algorithms compared to the sin-
gle shooting algorithm. If the integration is performed
over shorter intervals the numerical stability proper-
ties of the algorithm are improved. Another advantage
of multiple shooting algorithms is that state inequality
constraints can be more easily accommodated. Since
the initial states in each segment are optimization vari-
ables, algebraic inequality constraints can be enforced
for the states variables at the segment junctions. How-
ever, it has to be emphasized, that only the state vari-
ables at the segment junctions, ti, can be restricted by
inequality constraints.

2.4 The JModelica platform

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [1]. JModel-
ica.org features compilers supporting code generation
of Modelica models to C, a C API for evaluating model
equations and their derivatives and optimization algo-
rithms. The compilers and the model C API have also
been interfaced with Python in order to enable script-
ing and custom application development. In order to
support formulation of dynamic optimization of Mod-
elica models, JModelica.org supports the Optimica ex-
tension [2] of the Modelica language. Optimica offers
constructs for encoding of cost functions, constraints,
the optimization interval with fixed or free end points

as well as the specification of the transcription scheme.
The C API providing functions for evaluating the

model equations, cost function and constraints is enti-
tled the JModelica.org Model Interface (JMI). The C
code generated by the compiler front-end is compiled
with a runtime library into a shared object file which
in turn is loaded into Python, using the ctypes library.
The JMI C functions can then be conveniently called
from a Python shell or script. In addition, the input
and return types of the C functions (typically pointers
to vectors of double type) are mapped onto the types
used by the Numpy package. This approach grants
for a seamless integration between JMI and algorithms
and data structures provided by Numpy and Scipy.

3 Implementation

As described in Section 2.3.2, a multiple shooting
algorithm relies on a simulation algorithm, prefer-
able capable of computing sensitivities, and a numer-
ical optimization algorithm for algebraic optimization
problems. The remaining part of the multiple shooting
algorithm then consists of providing a non-linear pro-
gram (NLP) to the optimization algorithm and to in-
voke the simulation algorithm in order to obtain func-
tion evaluations and derivative information. This part
also includes representation of parameterized control
signals, to keep track of optimization parameters, and
to interface with the model execution API.

The simulation algorithm SUNDIALS [8, 18] was
chosen for integration of the system dynamics. SUN-
DIALS is a high-quality integration package which
is the latest evolution of a branch of ODE and DAE
solvers including, e.g., DASSL. SUNDIALS contains
a set of integration methods based on variable step
size variable order multi-step methods using either the
backward differentiation formula (BDF) or the more
accurate Adams-Moulton formulae. BDF methods are
well known for their good numerical stability proper-
ties for highly damped problems. In the context of this
work, SUNDIALS has two major advantages. Firstly,
it supports computation of sensitivity matrices. Sec-
ondly, there is a freely available Python interface for
SUNDIALS; PySUNDIALS [16].

As for the optimization algorithm, the method
scipy_slsqp was used, which is a Python wrap of
the sequential quadratic programming algorithm [11].
This method is one of a variety of optimiza-
tion algorithms interfaced by the Python package
OpenOpt [12], which is a package that provides a uni-
fied interface to a large number of optimization algo-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 760

Figure 3: Architecture of the multiple shooting algo-
rithm.

rithms.
The architecture of the algorithm is depicted in Fig-

ure 3. SUNDIALS is implemented in C, and inter-
faced to Python by the PySUNDIALS package. In or-
der to provide convenient means to simulate models
compiled with the JModelica.org compilers, an inter-
face between PySUNDIALS and the Python wrappers
of the JMI functions has been developed. This inter-
face also supports computation of sensitivities, which
is needed by the multiple shooting algorithm. Compu-
tation of sensitivities requires a slightly more complex
setup than simulation, since in the former case, the
sensitivity parameters need to be specified. SUNDI-
ALS can make use of Jacobians provided by a model
execution interface. As for simulation, the Jacobian
of the right hand side of the ODE with respect to the
states is required, and it is also standard for simula-
tion oriented interfaces to provide such a function. In
the case of sensitivity computations, however, the Ja-
cobians with respect also to the inputs (in the case of
an optimal control problem) and the parameters are re-
quired. These Jacobians are also available in the JMI
interface. In the first implementation of the multiple
shooting algorithm, Jacobians are not propagated to
SUNDIALS. Rather, this is left for future improve-
ments.

The main task of the multiple shooting algorithm
is to provide call-back functions for evaluation of the
cost function and constraints to the optimization al-
gorithm. At this level, the optimization problem is a
purely algebraic NLP; the dynamic part is handled by
SUNDIALS and is in effect hidden from the optimizer.

OpenOpt provides standardized interfaces to differ-
ent classes of optimization problems. Amongst them
is a class which supports non-linear cost functions,

Tank 2Tank 1

Tank 3 Tank 4

u1
u2

γ1 γ2

1− γ1 1− γ2

Pump 1
Pump 2

Figure 4: A schematic picture of the quadruple tank
process

equality constraints, and bounded optimization vari-
ables. OpenOpt also interfaces a number of different
solvers which support this class of problems. This ap-
proach makes it trivial to test different optimization
algorithms with very minor changes to the code. In
essence, the OpenOpt interface requires Python func-
tions for evaluation of the cost function, the constraints
and, if available, their derivatives. These functions, in
turn, invoke integration and sensitivity computation by
means of SUNDIALS. Also, functions in JMI are di-
rectly invoked, e.g., to evaluate the cost function. In ef-
fect, the multiple shooting algorithm provides an inter-
face between the optimization algorithm on one hand
and the simulation of the dynamic system and associ-
ated sensitivities on the other hand.

4 An Example

The quadruple-tank laboratory process, see Figure 4,
has been used to demonstrate the multiple shooting al-
gorithm. The model presented here is derived in [10].
The process consists of four tanks, organized in pairs
(left and right), where water from the two upper tanks
flows into the two lower tanks. A pump is used to pour
water into the upper left tank and the lower right tank.
A valve with fixed position is used to allocate pump
capacity to the upper and lower tank respectively. A

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 761

Table 1: Parameter values of the Quadruple Tank

Parameters Values Unit
A1,A3 2.8e-3 [m2]
A2,A4 3.2e-3 [m2]
a1,a3 7.1e-6 [m2]
a2,a4 5.7e-6 [m2]
k1,k2 3.14e-6, 3.29e-6 [m3/Vs]
γ1,γ2 0.7, 0.7
g 9.81 [m/s2]

second pump is used to pour water into the upper right
tank and lower left tank. The control variables are the
pump voltages. Let the states of the system be defined
by the water levels of the tanks (expressed in m) x1,
x2, x3 and x4 respectively. The maximum level of each
tank is 20 cm. The dynamics of the system is given by

ẋ1 = −
a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1k1

A1
u1

ẋ2 = −
a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2k2

A2
u2

ẋ3 = −
a3

A3

√
2gx3 +

(1− γ2)k2

A3
u2

ẋ4 = −
a4

A4

√
2gx4 +

(1− γ1)k1

A4
u1

(6)

where the Ai:s and the ai:s represent the cross sec-
tion area of the tanks and the holes respectively. The
parameters γi:s determine the position of the valves
which control the flow rate to the upper and lower
tanks respectively. The control signals are given by
the the ui:s. Numerical values of the parameters are
given in Table 1.

We consider two different stationary operation
points corresponding to constant control inputs and
where ẋ = 0. The first operating point, call it
A, is defined by the control inputs uA1 = uA2 =
2.0, and the second, call it B, is defined by uB1 =
uB2 = 2.5. The corresponding stationary state val-
ues are xA = (0.041,0.066,0.0039,0.0056) and xB =
(0.064,0.10,0.0062,0.0087). Based on the operating
points A and B, the following optimal control problem
is defined:

min
u(t)

∫ t f

0
α

4

∑
i=1

(xi(t)− xBi)
2 +

2

∑
i=1

(ui(t)−uBi)
2dt (7)

where α is a constant weight. Notice that this cost
function is not on the form (1) and can therefore not
be directly implemented. Instead, an additional state,

optimization QuadTank_Opt

(objective = x_5(finalTime),

startTime = 0, finalTime = 50)

import SI = Modelica.SIunits;

/ / Process parameters parameter

SI.Area A1=2.8e3, A2=3.2e3,

A3=2.8e3, A4=3.2e3;

parameter SI.Area a1=7.1e6, a2=5.7e6,

a3=7.1e6, a4=5.7e6;

parameter SI.Acceleration g=9.81;

parameter Real k1_nmp(unit="m/s/V") =

3.14e6,

k2_nmp(unit="m/s/V") =

3.29e6;

parameter Real g1_nmp=0.70, g2_nmp=0.70;

/ / I n i t i a l tank leve ls

parameter SI.Length x1_0 = 0.04102638;

parameter SI.Length x2_0 = 0.06607553;

parameter SI.Length x3_0 = 0.00393984;

parameter SI.Length x4_0 = 0.00556818;

/ / Reference values

parameter SI.Length x1_r = 0.06410371;

parameter SI.Length x2_r = 0.10324302;

parameter SI.Length x3_r = 0.006156;

parameter SI.Length x4_r = 0.00870028;

parameter SI.Voltage u1_r = 2.5;

parameter SI.Voltage u2_r = 2.5;

/ / Tank leve ls

SI.Length x1(start=x1_0);

SI.Length x2(start=x2_0);

SI.Length x3(start=x3_0);

SI.Length x4(start=x4_0);

/ / Inputs

input SI.Voltage u1(free=true);

input SI.Voltage u2(free=true);

/ / Cost function weight parameter

Real alpha = 40000;

Real x_5(start=0);

equation

der(x1) = a1/A1*sqrt(2*g*x1) +

a3/A1*sqrt(2*g*x3)

+ g1_nmp*k1_nmp/A1*u1;

der(x2) = a2/A2*sqrt(2*g*x2) +

a4/A2*sqrt(2*g*x4) +

g2_nmp*k2_nmp/A2*u2;

der(x3) = a3/A3*sqrt(2*g*x3)

+ (1g2_nmp)*k2_nmp/A3*u2;

der(x4) = a4/A4*sqrt(2*g*x4) +

(1g1_nmp)*k1_nmp/A4*u1;

der(x_5) = alpha*((x1_r x1)^2 +

(x2_r x2)^2 +

(x3_r x3)^2 +

(x4_r x4)^2) +

(u1_r u1)^2 +

(u2_r u2)^2;

end QuadTank_Opt;

Listing 1: An Optimica specification of the quadruple
tank optimization problem.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 762

Figure 5: Optimal state profiles

Figure 6: Optimal control profiles

x5, is introduced. The additional state is governed by
the differential equation

ẋ5 = α
4

∑
i=1

(xi(t)− xBi)
2 +

2

∑
i=1

(ui(t)−uBi)
2 (8)

The optimization criteria may now be written as

min
u(t)

x5(t f) (9)

The initial state values are assumed to be fixed and
equal to xA. Hence, the optimal control problem is de-
fined as to transfer the state of the system from operat-
ing point A to operating point B. The Optimica spec-
ification for the optimal control problem is given in
Listing 1.

The problem was solved using the multiple shoot-
ing algorithm, with the control signal parameterized

to be constant over ten interval. Correspondingly, the
number of intervals in the multiple shooting algorithm
was set to ten. The optimization parameters, i.e., the
control variable values in the ten elements and the ini-
tial state values in elements 2-9, were initialized in the
following way. First, the control inputs were set to
u1 = u2 = 2.5, and the dynamics was simulated over
the optimization interval. The control variable values
were then all set to 2.5 and the initial state values of
each interval were initialized from the simulated state
profiles.

The optimal state profiles are shown in Figure 5.
The upper plot shows the levels in the lower tanks,
where x1 corresponds to the solid curve and x2 cor-
responds to the dashed curve. The lower plot shows
the levels in the upper tanks; x3 in solid and x4 in
dashed. Also, the target values corresponding to oper-
ating point B are represented by the dash dotted lines.
As can be seen, the state profiles approach the target
values. The optimal control profiles are shown in 6,
where u1 is given in the upper plot and u2 in the lower
plot. As expected, the control signals approach the sta-
tionary values corresponding to operating point B.

5 Summary and future work

In this paper, an implementation of a multiple shoot-
ing algorithm has been presented. The implementa-
tion is done in Python and is based on the JMod-
elica.org open source platform, the numerical inte-
gration package SUNDIALS and the optimization al-
gorithm scipy_slsqp. It has been shown how the
JModelica.org Python interface, providing access to
functions for evaluation of the model equations, can
be explored in order to develop custom algorithms in
Python.

There are several improvements that would increase
the applicability of the algorithm. The control vari-
able parameterization is currently limited to one con-
stant value per multiple shooting element. Implement-
ing support for arbitrarily many elements in the pa-
rameterization of control variables as well as support
for piecewise linear control profiles would be suitable
extensions. The performance of the algorithm may
be further improved by providing high accuracy Jaco-
bians, available in JMI, to SUNDIALS. In addition,
extending the sensitivity analysis of SUNDIALS to
support discontinuities, see [15], would enable opti-
mization of hybrid systems.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 763

References

[1] J. Åkesson, T. Bergdahl, M. Gäfvert, and
H. Tummescheit. The JModelica.org Open
Source Platform. In 7th International Modelica

Conference 2009. Modelica Association, 2009.

[2] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th

International Modelica Conference 2008. Mod-
elica Association, March 2008.

[3] L.T. Biegler, A.M. Cervantes, and A Wachter.
Advances in simultaneous strategies for dynamic
optimization. Chemical Engineering Science,
57:575–593, 2002.

[4] H.G. Bock and K. J. Plitt. A multiple shooting
algorithm for direct solution of optimal control
problems. In Ninth IFAC world congress, Bu-
dapest, 1984.

[5] R. Bulirch. Die Mehrzielmethode zur nu-
merischen Lösung von nichtlinearen Randw-
ertproblemen und Aufgaben der optimalen
Steuerung. Technical report, Carl-Cranz-
Gesellschaft, 1971.

[6] Inc. Enthought. SciPy, 2009. http://www.

scipy.org/.

[7] Python Software Foundation. ctypes: A for-
eign function library for Python, 2009. http:

//docs.python.org/library/ctypes.html.

[8] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L.
Lee, R. Serban, D. E. Shumaker, and C. S. Wood-
ward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Trans.

Math. Softw., 31(3):363–396, 2005.

[9] J. Hunter, D. Dale, and M. Droettboom. mat-
plotlib: python plotting, 2009. http://

matplotlib.sourceforge.net/.

[10] Karl Henrik Johansson. Relay Feedback and

Multivariable Control. PhD thesis, Department
of Automatic Control, Lund Institute of Technol-
ogy, Sweden, September 1997.

[11] Dieter Kraft. TOMP - Fortran modules for opti-
mal control calculations. ACM Transactions on

Mathematical Software, 20(3):262–281, 1994.

[12] Dmitrey L. Kroshko. OpenOpt Home Page,
2009. http://www.openopt.org/Welcome.

[13] T. Maly and L. R. Petzold. Numerical meth-
ods and software for sensitivity analysis of
differential-algebraic systems. Applied Numer-

ical Mathematics, 20(1-2):57–82, 1996.

[14] T. Oliphant. Numpy Home Page, 2009. http:

//numpy.scipy.org/.

[15] A. Pfeiffer. Numerische Sensitivitätsanalyse un-

stetiger multidisziplinärer Modelle mit Anwen-

dungen in der gradientenbasierten Optimierung

(Numerical sensitivity analysis of discontinuous

multidisciplinary models with applications in

gradient based optimization). PhD thesis, Martin
Luther University Halle-Wittenberg, 2008.

[16] Open Source Project. Pysundials.
http://pysundials.sourceforge.net,
May 2009.

[17] Open Source Project. Python programming lan-
guage. http://www.python.org, May 2009.

[18] Open Source Project. Suite of nonlinear and dif-
ferential/algebraic equation solvers (sundials).
http://www.llnl.gov/casc/sundials/,
May 2009.

[19] O. Rosen and R. Luus. Evaluation of gradients
for piecewise constant optimal control. Comput.

chem. Engng., 15(4):273–281, 1991.

[20] J. Stoer and R. Bulirsch. Introduction to Numer-

ical Analysis. Springer-Verlag, New York and
Berlin, 1980.

[21] The Modelica Association. The Modelica As-
sociation Home Page, 2007. http://www.

modelica.org.

[22] V. Vassiliadis. Computational solution of

dynamic optimization problem with general

differential-algebraic constraints. PhD thesis,
Imperial Collage, London, UK, 1993.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 764

Symbolic Model Reduction Applied to Realtime Simulation of a
Construction Machine

Lars Mikelsons1 Hongchao Ji1 Thorsten Brandt1 Oliver Lenord2
1 Institute for Mechatronics and System Dynamics , University of Duisburg-Essen, Germany

2 Bosch Rexroth AG, Germany
{mikelsons,ji,brandt}@imech.de

Abstract

The vehicle response of construction machines
strongly depends on the tuning of the control system
in interaction with the drive system. A compromise
between performance and comfort needs to be found
to fulfill the operators requirements on a high usability
of the machine. In order to achieve an optimal behav-
ior Hardware-in-the-Loop simulation techniques offer
a suitable approach to determine the overall behavior
in advance. Prerequisition is a realtime capable simu-
lation model of the considered system. Therefore, in
this paper the mathematical model of the system is au-
tomatically adapted by symbolic model reduction al-
gorithms in order to match real-time requirements on
a given hardware. Inputs to the automatic reduction al-
gorithm are the complex mathematical system model,
the desired realtime cycle and the number of floating
operations per second (flops), which can be realized
by the chosen target hardware. The outputs of the al-
gorithm are the automatically reduced model, which
is guaranteed to run in realtime on the target hard-
ware and the maximal model error for the test scenario.
In this paper, the reduction procedure is demonstrated
for the complex hydromechanical model of a so-called
skid steer loader. Summarizing, the proposed proce-
dure of symbolic model reduction helps to reduce the
developing phase of mechatronic prototypes dramati-
cally as the adaptation of the system model with re-
spect to the target hardware is completely automated.
Keywords: symbolic model reduction, realtime, con-
struction maschines, object oriented modelling

1 Introduction

Nowadays many complex systems are modeled in ob-
ject oriented simulation tools like for example Dy-
mola [4] or SimulationX, which base on Modelica
[5] and hence generate a symbolic representation of

the emerging DAE system. Having a symbolic rep-
resentation at hand, the equations can be manipu-
lated, simplified or even reduced. While algorithms
for simplification and index reduction are already im-
plemented in those simulation tools, not much atten-
tion has been paid to symbolic reduction techniques
[2, 13]. Though, they are a very powerful tool for au-
tomated generation of less complex models [9]. Sym-
bolic reduction techniques were first used in analog
circuit design [2] and based on the DC-analysis of non-
linear analog circuits. These techniques were extended
to the reduction of arbitrary DAE-systems in [12, 13].
Hence, symbolic reduction techniques can be used for
the modeling and design of mechatronic systems [10].
Examining a complex physical system like construc-
tion maschines in many cases only one model is not
sufficient. Often a very accurate model is required in
order to analyze certain physical effects, while at the
same time a model for realtime simulation is required.
Here symbolic reduction techniques come into play.
Up to now symbolic reduction techniques lower the
complexity (and therefore the level of detail) of the
model until a user defined error bound is reached. In
this contribution this approach is extended in order to
obtain models which are usable for realtime simulation
on a given realtime target in a given realtime cycle.
In section 2 symbolic reduction techniques are briefly
introduced and extended for realtime reduction. After
that the approach is applied to a construction machine
called skid steer loader. In section 3 the MathModelica
[6] model of the skid steer loader is presented, while
in section 4 the reduction results are given. The paper
closes with a conclusion and an outlook in section 5.

2 Symbolic Reduction Techniques

The basic idea of symbolic model reduction tech-
niques is to identify those terms of a DAE (or ODE)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 765 DOI: 10.3384/ecp09430136

Symbolic Equations Scenario

Ranking

Perform Next Reduction

Inside Error Bound

Decouple EquationsUndo Last Reduction

Error Bound

No Yes

Figure 1: Scheme of the Reduction Algorithm

system, whose influence on the solution of the system
is minor, and to perform a reduction on them (e.g. to
neglect them). The algorithm consists of two steps,
see for example [10] and [13]. First a specific reduc-
tion technique is chosen. Afterwards the relevance of
each term for the solution of the DAE-System is esti-
mated in the so called “ranking”. Then the terms are
sorted in increasing order with respect to their influ-
ence on the solution in order to perform the reductions
as long as the solution of the reduced DAE-System re-
mains within a user-defined error boundε [13]. This
basic idea is extended in section 2.4 in order to obtain
reduced models, which can be simulated in realtime on
a given realtime target. Possible reduction techniques
are neglecting terms, setting terms to constants, lin-
earization of terms or symmetry considerations. While
the first three reductions are operations on terms of the
DAE-System, the last one operates on variables and is
explained later on. A scheme of the symbolic reduc-
tion algorithm is shown in Fig.1 for a chosen reduc-
tion technique. Given a scenario (system inputs,initial
states and parameters) and an error bound, the algo-
rithm starts with the ranking. Afterwards it is checked
whether the reductions lead to an error inside the error
bounds, beginning with the smallest. Finally, a less
detailed model, performing within the prescribed error
bounds results.
Let now

F : Ω× I 7→R
m (1)

be differentiable, whereΩ ⊂ R
n×R

n is an open set.
Then

F(x, ẋ, t) = 0 (2)

is called DAE-system if∂F
∂ ẋ is singular. Furthermore,

let F be given in expanded form

Fi(x, ẋ, t) =
l1i

∑
k=1

t1
ki
(x, ẋ, t), 1≤ i ≤ m, (3)

wherel1
i is the number of terms inFi andt1

ki
denotes

thek-th term inFi . Each term in the first levelt1
ki

may
consist of a functionf 1

ki
, whose argument is a sum of

l2
ki

second level subtermst2
ki

(1≤ i ≤ l2
ki
)

t1
ki
(x, ẋ, t) = f 1

ki
(

l2ki

∑
k=1

t2
ki
(x, ẋ, t)), (4)

and so on. Here level indicates the hierarchy of argu-
ments nested into each other in each single summand.
Then the setT i is the set of all terms in thei-th level.
The manipulation of a term is called reduction in the
following. Consequently, for the set of all reductions
K i for one reduction technique in a leveli, it holds

∣∣T i
∣∣ =

∣∣K i
∣∣ . (5)

For κ ∈ K

Fκ = 0 (6)

is the DAE-system emerging from the reductionκ.
Then for DAE-systems of the form of Eq. 2

F(x, ẋ, t,u) = 0 (7)

with system inputsu, a scenario is the set of a vector
field defined on the intervalI for the system inputs,
the initial values and the parameters. Furthermore,
N (F(x, ẋ, t),u) is the solution of Eq. 2 computed by
a numerical integratorN at nodest1, . . . , tN. The so-
lution

y =

[
yout

ȳ

]
= N (F(x, ẋ, t),u) (8)

consists of two components. Inyout the nout output
variables are contained, whilēy consists of the remain-
ing internal variables.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 766

2.1 Reduction Techniques

As already mentioned above possible reduction tech-
niques are the neglecting terms (Uneg), setting terms to
constants (Uconst), symmetry considerations (Usym) or
the simplification of piecewise functions. In this con-
tribution only Uneg is chosen. Certainly, the easiest
manipulation of a term is neglecting it. UsingUconst

for each term a constant has to be chosen. Usually
the mean value throughout the simulation is employed.
Clearly, this mean value has to be determined before.
At first sight, this looks like a drawback, but a refer-
ence simulation is essential for the ranking anyway as
will be seen in the next section. However, other val-
ues than the mean value are thinkable. ChoosingUsym

at first variables which have similar values through-
out the simulation are sought. Alternatively variables,
which are expected to be similar can be flagged. For
two similar variables every occurrence of the first vari-
able (or its derivative) is substituted by the second vari-
able (or its derivative). Consequently, now one equa-
tion can be canceled. A reasonable choice is that equa-
tion which leads to smallest error.

2.2 Ranking

In [12] different ranking algorithms are proposed. In
this contribution only the so called One-Step Rank-
ing will be discussed. In general a ranking procedure
estimates the influence of a reduction on the solution
of a DAE (or ODE) system. A reasonable measure
for the influence of a reduction is the error emerging
from the reduction. In order to get a good estimate
of that error a reference solutiony⋆ is required. The
crux of the matter is that the quality of the estimate
increases with the duration of the ranking procedure.
Hence, a ranking procedure should be a good compro-
mise between computation time and accuracy. Math-
ematically speaking a ranking procedureR maps two
DAE-systems on a real value, estimating the error be-
tween their solutions. Apparently, perfect accuracy
can be achieved by the use of simulations. Though,
this would lead to very high computation costs.

One-Step Ranking Typically, computing the solu-
tion of a DAE-system, at each time step a non-linear
system of equations is iteratively solved. Usually the
solution of the preceding time step is used as the ini-
tial value for the solution of the system of non-linear
equations at the next time-step. For the computation
of the solution of Eq.6, the reference solutiony⋆ at
the corresponding time steps can be used for the ini-

tial values. Now, additionally limiting the iterations to
one, a estimate of the solution of Eq.6ŷ is obtained.
Consequently

Rstep(F,κ) = ‖y⋆
out− ŷout‖ (9)

is computed. The one-step ranking usually delivers a
good compromise between accuracy and runtime.

2.3 Term Cancellation

In the term cancellation procedure the ranking is used,
to perform as many reductions as possible, while pre-
serving the desired accuracy. Hence, reductions are
performed as long as the error of the reduced model
remains within the error boundε. The error emerg-
ing from the reductions is measured only at thenout

output variables. Thus,ε has dimensionnout. To per-
form as many reductions as possible, it is beneficial to
start with those reductions, which lead to a small error.
Thus, first the set of reductionsK is sorted in ascend-
ing order depending on the ranking, resulting inKsort.
Now, one possibility is to check one reduction ofKsort

after the other. This is done by checking the computed
solution of the reduced DAE-system for staying within
the error boundε. However, this method can be accel-
erated by the use of clusters [11]. Using clusters, the
set of reductionsKsort is divided intos disjunct sub-
sets

Ksort =
s⋃

i=1

Si , (10)

where

S = [S1, . . . ,Ss]. (11)

Each clusterSi contains reductions leading to a simi-
lar estimated error (for example up to a factor of 10).
Now the clusters are checked one after another, be-
ginning with S1 containing the reductions leading to
the smallest estimated error. Thus, multiple reduc-
tions can be verified by one simulation. If a clusterSi

can not be verified (the reductions ofSi lead to errors
greater than the error boundε), Si is divided disjunct
into two clustersS 1

i andS 2
i . The term cancellation

procedure then continues withS k
i (1 ≤ k ≤ 2). The

whole reduction algorithm is shown in algorithm 1 for
a reduction techniqueU , a ranking procedureR, a
numerical integratorN and a certain levelk. Here for
a reductionκ ∈ K , κ−1 undoes the reduction.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 767

2.4 Symbolic Reduction for Realtime Pur-
poses

In this contribution the algorithm described above is
extended in order to obtain models, which can be
used for realtime simulation on a given realtime target
within a given realtime cycle. To simulate a model in
realtime it must be guaranteed that one integration step
can be computed within a realtime cycle, i.e., the worst
case run time for one integration step has to be smaller
than the realtime cycle. Hence, two quantities are im-
portant. First the maximal number of required floating
point operations (FLOPs) for one integration step and
second the number of FLOPs, which can be computed
on the realtime target in one second (FLOP/s). The
number of required FLOPs depends onF and the inte-
gration method used. Clearly, for realtime purposes a
fixed step solver has to be chosen. Then the maximal
number of required FLOPsσreq (using a BDF method)
can be expressed as

σreq = nBDF
iter (neval(σF +σJ +σdJ)+σLSE)+σevent.

(12)

Here, nBDF
iter denotes the maximal number of Newton

iterations during one integration step,neval denotes the
number of required function and jacobian evaluations
(depending on the order of the method),σF denotes the
required number of FLOPs for one evaluation ofF, σJ

denotes the required number FLOPs for one evaluation
of ∂F

∂x , σdJ denotes the required number FLOPs for one

evaluation of∂F
∂ ẋ andσLSE is the number of required

FLOPs for the solution of the emerging system of lin-
ear equations within every Newton iteration. Further-
more,σEvent denotes the maximal number of required
FLOPs for the event-handling (finding new consistent
initial values), which has to be considered since an es-
timate for the worst case runtime is demanded. One
common approach to calculate new consistent initial
values is the “event iteration” [7]. Having a DAE sys-
tem with nevent zero functions at hand, the maximal
number of required FLOPs forσevent then reads

σevent= 2nevent·nevent
iter · (σF +σJevent), (13)

wherenevent
iter denotes the maximal number of Newton

iterations during the event-handling andσJevent denotes
the number of required FLOPs for one evaluation of
the jacobian ofF with respect to the unknowns dur-
ing the event-handling. The required FLOPs for table
lookup are included inσF , σJ, σdJ andσevent. With
this knowledge the maximal number of FLOPs for one
integration step can be computed, while the number of

FLOP/s of the realtime target can be easily measured.
Since no longer an error bound, but an upper bound
for the number of FLOPs for one integration step is
given, the term cancellation procedure has to be mod-
ified. In the modified term cancellation procedure no
simulations are performed. After the ranking the re-
ductions are performed as long as the maximal num-
ber of required FLOPs is greater than the upper bound
for the FLOPs. Hence, this time no clustering is used,
since no verification-simulations are performed and
thus clustering would be quite inefficient. Clearly, here
a very accurate ranking procedure is demanded, other-
wise reductions with a small estimated error leading to
a high error could be performed. In this contribution
the one-step ranking is simply extended to a three-step
ranking, which means that three Newton iterations are
allowed. Moreover, the computed ranking value is di-
vided by the number of required FLOPs for one eval-
uation of the term under consideration. Thus, among
reductions with a similar ranking value, those which
need many FLOPs are favored.
As can be seen in Eq.12 the dimension ofF has big in-
fluence on the number of required FLOPs for one inte-
gration step, since the complexity for solving a system
of linear equations of dimensionk is of ordero(k3).
Hence, after each reduction it is checked whetherF
got decoupled. More precisely, it is checked whether
the DAE system may be written as

[
F1(x1, ẋ1, t)
F2(x2, ẋ2, t)

]
= 0, (14)

whereyout only depends onx1. In this caseF2 andx2

can be canceled out of the DAE system.

3 Modeling of the Skid-Steer Loader

The skid-steer loader (Figure 2) is a small high ma-
neuverable vehicle that is usually used in locations
where maneuverability and turning space are severely
restricted. The high degree of maneuverability is due
to their method of steering which is so-called skid
steering. They are typically four-wheel drive vehi-
cles with the left-side drive wheels independent of the
right-side drive wheels. By having each side indepen-
dent of the other, wheel speed and direction of rotation
of the wheels determine the direction the loader will
turn. The drive system on the skid-steer loaders has
no mechanical transmission. Instead it uses a combi-
nation of hydraulic pumps and motors, the hydrostatic
drive system, to drive the wheels as well as the work-
ing hydraulic mechanisms. It generally comprises a

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 768

diesel engine having its output shaft coupled to a pair
of variable displacement pumps. The output of each
pump is connected to the respective hydraulic motor,
which operates independent chain transmissions and
drives on the vehicle. From the modeling point of

Figure 2: Skid-Steer Loader

view, the skid-steer loader comprises mainly the fol-
lowing parts: hydraulic control unit, diesel engine,
hydrostatic drive system, working hydraulic mecha-
nisms, tire-road contact and chassis. Due to simplicity
there are some limitations concerning the modeling:

• the dynamical effects are only considered in the
longitudinal direction.

• the working hydraulic mechanisms are simplified
as a rigid body.

Based on these two limitations, the chassis together
with the working hydraulics is modeled as a sliding
mass. All the other parts are introduced in the follow-
ing.

3.1 Hydrostatic Drive System

The hydrostatic drive system is constructed using a
variable displacement pump to drive a constant dis-
placement motor. In this closed circuit, a charge pump
is needed to replenish fluids lost and to provide a min-
imum pressure in the return line. A low-pressure re-
lief valve is used to control the discharged pressure.
There are two more relief valves to limit the pressure
in the high pressure line. Furthermore, a pair of check
valves are used to restrict the flow direction. In order to
model the hydrostatic drive system, a simplehydraulic
library was built in MathModelica. After modeling all
the necessary components, the hydrostatic drive sys-
tem can be easily obtained. Due to space limitations
details are neglected here.

0

M

nnidle nmax

maximum torque

drag torque

n∗

M∗
max

M∗
drag

Figure 3: Characteristic Curves of the Engine

3.2 Hydraulic Control Unit

The skid-steer loader is controlled by two joysticks
and one foot throttle. The left-hand joystick controls
the speed and direction, and the right-hand joystick
controls the loader arm. Furthermore, the input sig-
nal of the foot throttle can effect the transformation of
the input of the two joysticks. The signal itself is only
sampled by the trigger in the control unit. In the Math-
Modelica model the left-hand joystick is modeled as
two paralleled signal sources namely the driving and
steering signal. The right-hand joystick is not nec-
essary to model since the working hydraulic mecha-
nisms are considered as a rigid body. Hence the input
signals of the hydraulic control unit are driving and
steering signals as well as throttle. The output sig-
nals of the control unit control the swivel angles of hy-
draulic variable pumps in the hydrostatic drive system
and the sampled throttle signal to drive the diesel en-
gine. The transformation behavior of the control unit
can be described by three characteristic curves. Two
curves characterize the relations between swivel angle
and the steering and driving signal respectively. An-
other curve illustrates the effects of driving signals on
the steering signals. All these three curves are identi-
fied by measurement. In addition, there are some lim-
iters in the control unit to limit the output signals. For
example, an amplitude limiter is used to restrict the
swivel angle and a rate limiter is used to limit the driv-
ing maneuver.

3.3 Engine

The engine used in the skid-steer loader is a diesel
engine. It serves to drive the two hydrostatic drive
systems. The input of this diesel engine is the foot
throttle, which can be normalized in the interval[0,1].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 769

Since there are no different pedal levels, the foot throt-
tle is proportional to the rotational speed of the en-
gine. The idle rotational speed which is the speed
when the throttle is 0 is 1000rpm and the maximum ro-
tational speed which is the speed when the throttle is 1
is 3200rpm. The relationship between rotational speed
and the generated driving torque can be described by
two characteristic curves, namely, the maximum and
drag torque with respect to the rotational speed. Fig-
ure 3 shows the two characteristic curves. The driving
torqueM∗ when the rotational speed isn∗ is calculated
by

M∗(n∗) = M∗
max−M∗

drag (15)

The dynamical behavior of the engine is also approxi-
mated by a PT2 system. The speed control is realized
by a PID-controller.

3.4 Tire

For the reason of skid steering which causes the high
dynamical effects in the lateral direction, the normal
tire model of a skid-steer loader can be very complex.
As only the longitudinal dynamics is considered here,
a simplified one dimensional tire model is sufficient to
describe these effects. Figure 4 shows the free body

v

Fx

Fz

ω

rdyn

MaMr

n

Figure 4: Forces and Moments on the Tire

diagram. All the necessary velocities, forces and mo-
ments are depicted. The circumferential velocity of the
wheel is

v = ω · rdyn (16)

whereω is the angular velocity of the wheel andrdyn

is the effective rolling radius. The rotational motion
the wheel can be described by

Jω̇ = Ma−Fx rdyn−Fzn (17)

The wheels are driven by the driving torqueMa. The
distribution of the tire load is normally not unit in the
contact patch. Thus the supporting forceFz acted not

in the middle and generated a rolling resistance torque
Mr . The distance from the acting point to the middle
is called pneumatic trailn.

Mr = Fzn (18)

The longitudinal forceFx is calculated with the longi-
tudinal slipsx. The longitudinal slip is defined by

sx =
vP

ω · r
=

ω · r −v
ω · r

(19)

There exist already some tire models describing the
mathematical function between these two variables.
For example, the magic formula tire model with a pure
mathematical description based on the experiment re-
sults [1], and the physical HSRI tire model with lower
computational efforts. In this work the static HSRI tire
model was used. The longitudinal forceFx is described
in the following equation.

Fx =

Cxsx

1−sx
sR ≤ 0.5

Cxsx

1−sx
·
sR−0.5

s2
R

sR > 0.5
(20)

The longitudinal stiffnessCx is a parameter depending
on the properties of the tire. It is defined as the lin-
earization of the force-slip relation atsx = 0 andα = 0.

Cx =
∂F
∂sx

∣∣∣∣∣
sx→0

(21)

The variablesR is an indicator to identify the linear or
non-linear tire behavior, which can be calculated by

sR =

√
(Cxsx)2 +(Cα α)2

µ Fz(1−|sx|)
(22)

The friction factorµ is defined as

µ = µ0(1−Asvx

√
s2
x +(tanα)2) (23)

where, As is the adhesion reduction factor, which
gives As = 0.011s/m for adhesion coefficientsµ0 ∈

[0.53,1.05]. µ0 can be estimated for different road sur-
faces. In this section, the introduction of the HSRI tire
model enhanced on the mathematical equations. For a
more detailed and physical description see [3].

3.5 Driver

The driver modeled here is simply a source of input
signals. The output signals from the driver are ex-
actly the same as the inputs of the control unit, namely,
steering, driving and throttle signals. Some standard
maneuvers were included in this model, such as, the
ramp, step and start-stop driving maneuvers.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 770

3.6 Air Resistance

Air resistance describes the influence of the environ-
ment. A drag force can be generated by the wind. The
equation is as follow.

Fdrag = cwAρ (vx−vwind)
2 (24)

3.7 Overall System

The overall system of the skid-steer loader is obtained
by coupling all these sub-systems: drive, hydraulic
control unit, engine, hydrostatic drive system, air re-
sistance and the mechanical parts. The acausality of
the Modelica language enables the comfort connec-
tions between the sub-systems. Figure 5 shows the
object diagram of the skid-steer loader in MathMod-
elica.

Figure 5: Object Diagram of the Skid-Steer Loader

4 Simulation Results

The symbolic reduction algorithms are implemented
in Matlab using the the Maple Toolbox for Matlab.
The DAE-system of the previous described model was
imported via a MathML interface. Using the Mathe-
matica interface of MathModelica the flat model can
be exported to Mathematica and then translated into
MathML. The emerging DAE systems are solved us-
ing a fixed step BDF method of second order.
In this section, the results for two reductions are given.
First the model of the skid-steer loader is reduced us-
ing an error bound as stopping criteria. Second the
same model is reduced by the extended algorithm for
realtime purposes using a maximum number of FLOPs
as stopping criteria. Both reductions are performed
under a standard start-stop-start-stop straight driving
maneuver. Moreover, the longitudinal acceleration is
chosen as output variable.

4.1 Reduction with Error Bound

Original Error Bound

Number of Equations 69 48

Maximum FLOPs per step 3.42×106 1.19×106

Maximum absolute error · · · 0.2851

Maximum relative error · · · 7.58%

Table 1: Comparison of Original Model and Reduced
Model with Error Bound

As presented in Section 2, an error bound for the
output variable must be provided for the reduction.
Here an error bound of 0.3m/s2 is set for the longitu-
dinal accelerationax. The ranking is computed using
the one-step ranking procedure. Negligence of terms
is the only reduction technique chosen in this example.
Figure 6 shows the nearly overlaying curves of the
longitudinal accelerationax of the original and the re-
duced model from the reduced model. It can be seen
that the maximum error of 0.2851m/s2 occurs at the
acceleration peaks, where the longitudinal accelera-
tion of the reduced model is slightly higher than the
acceleration of the original model. The reduction of

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3
Longitudinal Acceleration

Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Original
Reduced

Figure 6: Simulation Results of Output Variable in Re-
duction with Error Bound

complexity of the DAE-systems can be seen in Ta-
ble 4.1. The number of equations is reduced from 69
to 48, corresponding to a reduction of approximately
30%. Moreover, the maximum required FLOPs for
one integration step is reduced by approximately 65%.
Thus, the computation time is accelerated by a factor

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 771

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1
Swivel Angle

Time [s]

N
om

in
al

 A
ng

le
 (

0−
1)

 [−
]

Original
Reduced

(a) Swivel Angle of Pump

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400
Rotational Speed of Engine

Time [s]

V
el

oc
ity

 [r
pm

]

Original
Reduced

(b) Rotational Speed of Engine

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7 Pressure Drop

Time [s]

P
re

ss
ur

e
[p

a]

Original
Reduced

(c) Pressure Drop

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Longitudinal Velocity

Time [s]

V
el

oc
ity

 [m
/s

]

Original
Reduced

(d) Longitudinal Velocity

Figure 7: Simulation Results of System Variables in Reduction with Error Bound

of three.
According to the reduction algorithms described be-
fore, only the error of the output variable is considered
during the reduction. In Figure 7, some other system
variables are plotted. The simulation results of the re-
duced model of those variables are also very close to
the original model. That implies that not only the lon-
gitudinal acceleration but also another important dy-
namical effects are conserved during the reduction.

4.2 Realtime Reduction

In the previous section the original model was reduced
until a given error bound was (nearly) reached. Thus,
simulating the reduced model will require less time
than simulating the original model. In practice models
often have to run in realtime environments. For such
applications the previously obtained model is more or
less worthless, since no worst case runtime for one in-
tegration step is known. In this section the original
model is reduced in order to obtain a model, which
can be simulated in realtime on a given realtime tar-
get in a given realtime cycle. Hence, instead of pro-
viding an error bound, a realtime target as well as a

realtime cycle is provided for the realtime reduction.
The realtime target is assumed to be able to perform
1× 109 FLOP/s, which corresponds roughly to Pen-
tium III. The realtime cycle is chosen as 2ms. Thus,
2×106 are the maximal available FLOPs for one in-
tegration step. The results from the reduced model for

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3
Longitudinal Acceleration

Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Original
Realtime

Figure 8: Comparison of Realtime Reduction

realtime purpose are shown shown by the almost iden-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 772

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1
Swivel Angle

Time [s]

N
om

in
al

 A
ng

le
 (

0−
1)

 [−
]

Original
Realtime

(a) Swivel Angle of Pump

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400
Rotational Speed of Engine

Time [s]

V
el

oc
ity

 [r
pm

]

Original
Realtime

(b) Rotational Speed of Engine

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7 Pressure Drop

Time [s]

P
re

ss
ur

e
[p

a]

Original
Realtime

(c) Pressure Drop

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Longitudinal Velocity

Time [s]

V
el

oc
ity

 [m
/s

]

Original
Realtime

(d) Longitudinal Velocity

Figure 9: Simulation Results of System Variables in Reduction for Realtime

tical curves in 8. Nevertheless they are quite different
from the previous reduced model. Again the maximal
absolute error of 0.1111m/s2 occurs at the the acceler-
ation peaks, but this time the longitudinal acceleration
of the reduced model is slightly lower than the accel-
eration of the original model. The FLOPs for one inte-
gration step is reduced by a factor of 1.8 to 1.92×106.
Noteworthy, reducing the original model by a factor
of 3 is possible without significant loss of accuracy as
can be seen in the previous section. Figure 9 shows
other relevant system variables. It can be observed that
the reduced model is in very good agreement with the
original model for all shown system variables. There-
fore, again the relevant physical effects are conserved.

5 Conclusion and Outlook

In this contribution a reduction algorithm is extended
in order to generate models for realtime purposes.
While up to now an error bound was used as stopping
criteria, the extended algorithm uses a maximum num-
ber of flops for one integration step as stopping crite-
ria. Furthermore, in this contribution the new approach

is applied to the model of a construction machine. The
generated model is in quite good agreement with the
original model at a computational effort, which is con-
siderably lower. In this contribution only the longitu-
dinal dynamics is considered. In the near future the
model will be extended by lateral and vertical motion.
Moreover, the implementation of the generated mod-
els on a realtime target is part of current work.
The presented reduction method takes into account
only one scenario. This strongly limits the guaranteed
validity of the model. In [8] it has been tried to over-
come this drawback by using interval arithmétics. Un-
fortunately, this approach works only for rather sim-
ple systems. Therefore, the scenario has to be chosen
quite carefully and can thus be a worst case scenario
for example. In future works it shall be investigated
how one or multiple scenarios can be chosen system-
atically such that the desired effects remain.
Since a quite accurate ranking is required for the re-

altime reduction, here the one-step ranking was ex-
tended to a three step ranking. Currently, a reliable
ranking procedure based on a sensivity analysis is de-
veloped. The new ranking procedure is expected to be

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 773

Original Realtime

Number of Equations 69 57

Maximum FLOPs per step 3.42×106 1.92×106

Maximum absolute error · · · 0.1111

Maximum relative error · · · 2.58%

Table 2: Comparison of Original Model and Reduced
Model for Realtime Purpose

more time efficient, since modern solvers like DASPK
offer a sensitivity analysis during the integration and
hence the ranking can be computed together with the
reference solution.

References

[1] E. Bakker, L. Nyborg, and H. Pacejka. Tyre
modelling for use in vehicle dynamics studies.
In Society of Automotive Engineers international
congress and expo, volume 23, 1987.

[2] C. Borchers. Symbolic behavioral model gener-
ation of nonlinear analog circuits.Circuits and
Systems II: Analog and Digital Signal Process-
ing, IEEE Transactions on [see also Circuits and
Systems II: Express Briefs, IEEE Transactions
on], 45(10):1362–1371, 1998.

[3] H. Dugoff, P.S. Fancher, and L. Segel. Tire Per-
fomance Characteristics Affecting Vehicle Char-
acteristics to Steering and Braking Control In-
puts. Technical report, Highway Safety Research
Institute, University of Michigan, 1969.

[4] H. Elmqvist, D. Brück, and M. Otter. Dymola-
User’s Manual. Dynasim AB, Research Park
Ideon, Lund, Sweden, 1995.

[5] P. Fritzson and V. Engelson. Modelica-a uni-
fied object-oriented language for system model-
ing and simulation.Lecture Notes in Computer
Science, 1445:67–90, 1998.

[6] P. Fritzson, J. Gunnarsson, and M. Jirstrand.
MathModelica-an extensible modeling and sim-
ulation environment with integrated graphics and
literate programming.Proceedings of the 2nd In-
ternational Modelica Conference, pages 18–19,
2002.

[7] H. Lundvall, P. Fritzson, and B. Bachmann.
Event Handling in the OpenModelica Compiler
and Runtime System.Linköping University Elec-
tronic Press, 2006.

[8] L. Mikelsons and T. Brandt. Symbolic Model
Reduction for Interval-Valued Scenarios.To ap-
pear in Proceedings of the ASME 2009 Inter-
national Design Engineering Technical Confer-
ences and Computers and Information in Engi-
neering Conference, 2009.

[9] L. Mikelsons, M. Unterreiner, and T. Brandt.
Generation of Continuously Adjustable Vehi-
cle Models using Symbolic Reduction Methods.
To appear in ECCOMAS Multibody Dynamics,
2009.

[10] R. Sommer, T. Halfmann, and J. Broz. Au-
tomated behavioral modeling and analytical
model-order reduction by application of sym-
bolic circuit analysis for multi-physical sys-
tems. Simulation Modelling Practice and The-
ory, 2008.

[11] T. Wichmann. Computer aided generation of ap-
proximate DAE systems for symbolic analog cir-
cuit design.Proc. Annual Meeting GAMM, 2000.

[12] T. Wichmann. Transient Ranking Methods for
the Simplification of Nonlinear DAE Systems in
Analog Circuit Design. PAMM, 2(1):448–449,
2003.

[13] T. Wichmann. Symbolische Reduktionsver-
fahren für nichtlineare DAE-Systeme.Berichte
aus der Mathematik. Shaker Verlag, Aachen,
Germany, 2004.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 774

Modelica and Dymola for education in vehicle
dynamics at KTH

J. Edrén, M. Jonasson, A. Nilsson, A. Rehnberg, F. Svahn, A. S. Trigell
KTH Vehicle Dynamics, SE-100 44 Stockholm, Sweden
edren@kth.se, mjonass2@volvocars.com, andnil@kth.se,

adamrb@kth.se, fsvahn@kth.se, annika@kth.se

Abstract

Dymola and Modelica have been used in research at
KTH Vehicle Dynamics since 2000. With the intro-
duction of new templates and standard components,
Modelica has become increasingly accessible for
researchers and students in the field of vehicle dy-
namics and therefore a project was initiated to evalu-
ate its usefulness as an educational tool. The general
idea is to introduce Dymola in smaller assignments,
aiming to familiarise the students with the basic
functions of the tool while demonstrating its use
through simulation examples. Four exercises were
studied: a truck braking system model, a friction disc
clutch model, a controllable torque clutch model and
a combined driver and vehicle model. The conclu-
sions from this pilot study were that Dymola offers
several ways to enhance the quality of vehicle engi-
neering education, mainly due to the ease of model-
ling and the rich animation functions which make the
simulation exercises more interesting.

Keywords: Vehicle Dynamics; Education; Dymola;
Modelica.

1 Introduction

Dymola and Modelica have been used at KTH Vehi-
cle Dynamics for research work since 2000, see for
example [1]. With the Vehicle Dynamics Library [2]
(VDL) available, Modelica has become far more ac-
cessible for both researchers and students in the field
of vehicle dynamics. Because of this, a project was
initiated in order to evaluate the current state of Dy-
mola and Modelica as tools for wider use in educa-
tion at the division. The work presented in this paper
was realized as a part of a PhD course, where one of
the tasks was to design dedicated exercises to illus-
trate fundamentals of vehicle dynamics for students.

The strategy for educational introduction of Dy-
mola is to introduce it in different student assign-

ments during the final year of education. Four such
assignments are described. Generally, the exercises
focus on a specific vehicle component or function
and uses the features of Dymola to expand the mod-
elling to a wider perspective, thus providing a sys-
tems view of vehicle elements while also demon-
strating the use of model-based design in vehicle
engineering. The specific exercises are described in
greater detail in the following sections.

2 Simulation of an automobile clutch

In an introductory course in vehicle engineering
given at KTH, the students are analysing an automo-
bile friction disc clutch during a vehicle start proce-
dure. The purpose is to study the basic behaviour of
the clutch and its effects on the dynamics of the ve-
hicle during vehicle start. The fundamentals of the
dynamic system that is analysed are shown in fig-
ure 1.

Figure 1: Fundamental driveline model.

Here, J1 represents the inertia of the car engine, ac-
celerated by the constant engine torque Me. The iner-
tia J2 represents the translating mass of the vehicle,
transformed here to a rotating inertia. Thus, the rota-
tion of J2 corresponds to the motion of the car. The
clutch itself is described by the constant torque MK,
applied between the inertias. External loads such as
aerodynamic or rolling resistance are neglected. In
the initial position, J1 is rotating at a given angular
velocity while J2 is stationary. At start-up, slipping

J2 ω2 J1 ω1

Me
MK

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 775 DOI: 10.3384/ecp09430112

will occur in the clutch until the angular velocity of
J2 matches that of J1.

The equations of motion of this basic setup are
straightforward and can be solved analytically. The
angular velocities of J1 and J2 during the start proce-
dure can be seen in figure 2.

0 0.5 1 1.5
0

1000

2000

3000

4000

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
pm

]

ω1
ω2

Figure 2: Angular velocities at vehicle start.

The initial, analytical study of the simplified baseline
helps to provide a starting point and a basic under-
standing of the clutch and driveline dynamics. This
also establishes good simulation practice as the ana-
lytical results serve as a base for comparison with
later, more complex simulation models.

After analysing the fundamentals of the clutch
and driveline, the students move on to simulating the
system using rotational components from the Mode-
lica standard library. This way, a simple but expand-
able model is built from the ground using physical
components. Figure 3 shows the system described in
figure 1, as modelled in Dymola.

Figure 3: Basic driveline model in Dymola.

With the basic system set up, the analysis can be ex-
panded to cover more complex aspects of the drive-
line dynamics. Firstly, the clutch model is modified
so that the clutch torque is not constant, but ramped
from zero to the maximum value in a given time,
thus more accurately representing the behaviour of a
driver. This makes it possible to study the effects on

torque ramping time on the vehicle start, by means of
engine rpm and vehicle motion.

Another interesting aspect is the effect of drive-
line flexibility. Because of the elasticity of the drive-
shaft, oscillations in the powertrain will occur during
vehicle start, leading to a longitudinal vibration in
the vehicle known as “shuffle”, considered detrimen-
tal to ride comfort. Using Modelica, adding a flexible
element to the driveline is straightforward and makes
it possible to study shuffle vibrations. This expands
the initial analysis to include ride comfort aspects as
well as vehicle performance.

In the driveline, nonlinearities will also occur in
the form of backlashes in the vehicle transmission.
Because of backlash, the vehicle will experience a
sharp peak in angular acceleration at start up. This is
known as “shunt” and is experienced as a longitudi-
nal jerk by vehicle occupants. As the next step in
modelling, a backlash element is added to the model,
in series with the gearbox and driveline components.
With this added functionality, shunt effects in the
driveline can be studied and the effect of backlash
parameters on shunt magnitude can be studied. The
complete model can be seen in figure 4.

Figure 4: Extended driveline modelling in Dymola.

Figure 5 shows a simulation of clutch engagement
with elasticity and backlash included. Compared to
figure 2, the ramped onset of clutch torque is seen in
the gradual retardation of ω1 beginning at 0.5 sec-
onds. Also, some ripple is visible in ω2 at the same
instant, caused by the backlash and flexibility.

The driveline shunt and shuffle can be seen more
clearly by further examining the angular acceleration
of J2. This is shown in figure 6, where the shunt ac-
celeration and subsequent oscillation can be ob-
served, in this case occurring at the time of clutch
lockup.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 776

Figure 5: Simulation output from extended model.

Figure 6: Angular acceleration of J2.

This example of a student exercise shows one possi-
bility to use Modelica in education of vehicle engi-
neering. Using the Modelica open library, added
complexity can be added to the driveline model
without the tedium of lengthy derivations. This
makes it possible to simulate a more complete model
and thereby provide a deeper insight in the actual
driveline dynamics and how it affects vehicle behav-
iour. However, the equations and algorithms of the
model remain accessible because of the open source
code and straightforward design of the components.
Thus, an understanding of the underlying equations
can be maintained although the model itself is made
more complex.

3 Simulation of a truck braking sys-
tem

The task in this assignment, given in the basic
ground vehicle engineering course at KTH, is to de-
sign the braking system for a truck. It has previously
been solved analytically with a tool selected by the
student, typically Matlab or Excel. Dymola in addi-
tion gives the students a virtual testing environment
for verification of their result as well as improved
understanding.

The goal of the exercise is to design a braking
system for a regular 4x2 truck to pass legal require-
ments. To handle both loaded and un-loaded condi-
tion, the brake system will need to have a brake pres-
sure regulating valve. Individual vehicle parameters
are set for each student. Solving this assignment is of
course possible to do with Matlab alone, but together
with Dymola the problem is more easily grasped.
The idea is to utilize Dymola for virtual testing to
visualize for example why it is unwanted to have the
rear wheels to lock up.

The whole simulation experiment is based upon
the vehicle dynamics library, and is assembled at the
highest level. To set up the model all the parameters
needed is propagated to be accessible at this level, as
seen in figure 7.

Figure 7: Top level view of the braking experiment.

The Dymola experiment template consists of a truck
chassis together with a simple braking system. How-
ever using the Dymola model will require some addi-
tional calculations, setting up the model to the cor-
rect mass and weight distribution. These calculations

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 777

are fairly basic but essential. The Dymola model as a
multi body model is very close to the real world as to
estimate the total mass and centre of gravity. The
idea is to measure axle weights during standstill and
at a constant acceleration or deceleration using the
multibody model shown in figure 8. From these
measurements the total mass and centre of gravity
position can be calculated and the model fine tuned.
The brake system is put together with exactly the
same simple calculations as given in the main task,
using gain-blocks. After this point the student will
have a good reference to compare against when de-
signing the brake system. One can also see the com-
plexity and difficulties that follow, when beginning
the study of more and more complex models that are
closer to reality.

Figure 8: Simulation model used to calculate mass

and centre of gravity position.

4 Torque on demand unit

This exercise aims to give an insight in advanced
modelling and simulation software and its usage as a
powerful tool during the development of a vehicle
transmission. The vehicle component selected for the
exercise, referred to as a torque-on-demand unit
(TOD), is a controllable coupling, which is used to
distribute propulsion torque between front and rear
axle and simultaneously allow for a difference in
angular front and rear axle rotational speeds. Classi-
cally, TOD systems have gained a lot of attention
due to their ability to improve traction, see fore ex-
ample [3,4]. This exercise describes the fundamental
functions provided by the TOD and put particular
attention to energy consumption and vehicle stabil-
ity. Emphasise is put on simulation rather than mod-
elling.

The underlying didactic strategy behind this TOD
exercise is based on three steps; "Explore", "Exe-
cute" and "Evaluate". Necessary qualifications re-

quired are basic knowledge in vehicle dynamics and
Dymola. Additionally, before the students start the
exercise, they need to read a short description of the
TOD and how it functions.

4.1 Explore

This step aims to provide an understanding of the
physics behind the models and students are tempted
to open and explore vehicle and subsystem models in
Dymola. Emphasis is put on understanding the flow
of torque from combustion engine to the hubs. In
particular, the students are asked to study the equa-
tions for the differentials, which constitute a clear
example of that only a few equations are able to de-
scribe a relatively complex component. Finally, the
students briefly explore the devises modelled for
measuring torque, angular speeds and power. This
part brings an extra understanding of the physics of
the system.

4.2 Execute

This step lets the students execute simulations in ex-
isting experiments in Dymola. The experiment is
based of an urban driving cycle of 18 minutes. The
driver gets instructions to drive through the cycle,
which means that the driver is forced to follow a de-
sired steering wheel angle and a vehicle velocity. At
a particular global position, the vehicle is exposed to
split friction while cornering (see figure 9), which
threaten vehicle stability. The simulation is repeated
with and without the TOD engaged.

 Figure 9: Test drive on split-μ with a controllable
clutch.

4.3 Evaluate

The evaluation concerns the energy consumption of
the driveline, and in particular, the extra energy con-
sumption caused by friction losses of the four wheel
driveline. Power losses are analysed for the individ-
ual driveline parts. Finally, an investigation in depth
of the split friction event is also made for driveline

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 778

torque distribution and vehicle behaviour. Since one
of the most important TOD control goals is to main-
tain a relatively similar front and rear axle speeds,
those will be checked (see figure 10).

5 Model reduction

This exercise focuses on analysis by means of lin-
earisation and model-reduction. A complex vehicle
model, with and without driver in the loop, is linear-
ised and the results are analyzed using Bode dia-
grams. Additionally, virtual experiments are per-
formed to find parameter values for simplified mod-
els. The nonlinear model is modelled in Dymola,
using the Vehicle Dynamics Library (VDL), and the
frequency analysis is done in Matlab.

The exercise lets the students learn about how to
use the linearisation function in Dymola and also
performing virtual experiments to find parameter
values of a simple planar single track (bicycle)
model. The first part consists of linearising a com-
plex vehicle model from VDL and importing the re-
sulting state space form into Matlab for Bode plot
analysis. In the second part the VDL model is simu

lated during specific manoeuvres to determine pa-
rameter values for the bicycle model. The bicycle
model is then implemented in Matlab and a compari-
son is made with the complex model through Bode
plots. The last part concerns linearisation of a driver-
vehicle combination in Dymola where some parame-

ters of the driver model are varied and the results
analyzed in Matlab, again with the use of frequency
response diagrams.

The emphasis of this exercise is analysis of vehi-
cle dynamics and not modelling in Dymola. The stu-
dents are therefore not required to have extensive
knowledge of Dymola beforehand. It will, however,
give the students an introduction into some advanced
usage of the program. To make the exercise as effi-
cient and equal as possible for the students it is sug-
gested that the teachers prepares the required models
in a package in advance, and that a tutorial is pro-
duced with detailed guidance through the different
steps. The students should at this stage not be ham-
pered by difficulties of finding and utilizing the dif-
ferent features of the program. Questions about the
vehicle dynamical aspect of the exercise should be
interspersed throughout the tutorial, which the stu-
dents present to the teacher afterwards.

5.1 Linearisation of vehicle model

The first task is to use Dymola to linearise a complex
vehicle model and import it into Matlab in the form
of a state space model. Of interest in characterizing
the handling properties of a vehicle is typically to
study the response of the lateral acceleration and yaw
angular velocity (yaw rate) to inputs from the steer-
ing wheel. The model is therefore going to be ana-
lyzed through a frequency response diagram.

Figure 10: Input and output speeds of the controllable clutch as the vehicle is passing a split-μ section

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 779

From the VDL the model LEK Pacejka02 is chosen.
It represents a small compact car and has 134 states
in its dynamical description. The kinematics of the
suspension is detailed, including variable toe- and
camber angles. The tyre model is a Pacejka Magic
Formula model which is suitable for handling analy-
sis.

An input and output has to be defined for the ve-
hicle model to enable frequency response analysis.
Based on the OpenLoopDriver model of the VDL,
two version of the model are prepared with steering
wheel angle as input and lateral acceleration and yaw
rate as output respectively. Figure 11 shows one of
the models. As can be seen in the figure a constant
term is added to the steering angle input to account
for an offset in the neutral position of the steering
wheel caused by an asymmetry in the steering sys-
tem.

Figure 11: Driver model with defined input/output.

The Linearize command in Dymola uses the initial
values of a simulation to linearise about. Therefore it
is suggested that a short straight ahead driving simu-
lation is performed where after the command im-
portInitial(); on the command line loads the terminal
values of the simulation as initial conditions. Thus
linearisation around a steady state condition is as-
sured. The Linearize command is then found from
the Simulation menu. In this process, a file named
dslin.mat is generated that contains the linearised
model. Use tloadlin.m found in the Dymola search
path to import the linearised model into Matlab:

> [A,B,C,D,xName,uName,yName] =
tloadlin('dslin');

State space systems of the imported matrixes are
made with the ss-function:

> ss_sys=ss(A,B,C,D);

If the system has several outputs and only one of
them is to be used for the state space system, limit C
and D to one of the rows (output parameter index can
be identified with yName).

After linearisation and creation of state space sys-
tems, Bode plots can be generated and used for
analysis, e.g. with the Matlab function:

> bode(ss_sys).

5.2 Determination of parameters

The second task is to find parameter values for a
two-degree-of-freedom bicycle model which corre-
sponds to the complex model. The governing differ-
ential equations are seen in equation 1,

R

sz

sy

xzxz

x
x

xy

iJ
fC
mi
C

v

vJ
CbCf

vJ
bCfC

mv
bCfC

v
mv

CC
v

δ
ψψ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

+−

+−
+−

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
12

12

34
2

12
2

3412

34123412

&&&

&

(1),

where vy is the later velocity, ψ the yaw angle, C12
and C34 the cornering stiffness front and back, m the
total mass of the vehicle, vx the longitudinal speed, f
and b the distance from centre of gravity to front and
rear axle respectively, Jz the moment of inertia
around the vertical axis of the vehicle, is the steering
ratio and δR the steering wheel angle.

The value of L, i.e. f+b, is given to the students.
Jz of the sprung mass of the vehicle is also given.
However, the students are asked to make back-of-
the-envelope calculations of the additional moment
of inertia of the unsprung masses. To find the rest of
the parameter values a couple of simulations are per-
formed with the vehicle model. First a straight ahead
drive is used to find the normal forces on each tyre,
from which f and b can be calculated. Then, a steady
state cornering simulation is performed with a small
steering angle. From the lateral forces and body slip
angle the cornering stiffness coefficients can be cal-
culated. The effective steering ratio is measured by
making a sinusoidal steering simulation with the
ground friction set to a small positive number (zero
does not work numerically) and then comparing the
steering wheel angle to the wheel angles.

These virtual experiments can principally be done
with a real vehicle as well. The measurement equip-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 780

ment needed is four scales, accelerometers and a de-
vice to measure body slip angle. The lateral tyre
forces can be calculated from the lateral acceleration.

5.3 Analysis of linearised models

Identifying the A, B, C and D matrices of the bicycle
model makes the two models ready for a compara-
tive analysis. The frequency response of the two
models can be compared for different speeds and the
students should note for what frequency range the
simple model is a good approximation for the com-
plex model. Figure 12 shows an example of a Bode
diagram of the two models with the yaw rate as the
output. It can be noted that the bicycle model starts
to deviate from the complex model in phase already
at 1 rad/s and in magnitude at about 4 rad/s, but that
the shape of the curves are quite accurate up to about
70 rad/s. Students should also note that the simple
bicycle model is unable to capture the local peak in
phase at about 100 rad/s.

5.4 Driver model analysis

The objective of the last exercise is to study effects
of changed parameters in a driver model. A linearisa-
tion of an existing nonlinear driver-vehicle model is
done in order to analyze Bode diagrams of the gen-
erated linear model. None of the existing driver

model experiments in the current VDL is suitable for
analysis without modifications, but the main part of
these modifications can be done in advance to shift
focus from modelling to analysis. Here a tutorial is
suggested to guide the students for the remaining
modelling and analysis, since this can improve the
understanding of the driver model components with
only a small amount of additional effort. A tutorial
approach should, compared to an exercise where the
student has to solve the modification problem by him
or her self, not only be quicker but should also result
in identical baseline models for analysis. This gives
the students equal opportunities to do analysis with
the models.

5.5 Assembling the driver-vehicle model

One of the existing experiments in VDL, the Clos-
edLoopDriver, is used here after it has been modified
to enable input of the preview point position and
output of (at least) the position of the vehicle. The
model is later linearised around zero steering wheel
angle, so that the longitudinal distance from the ve-
hicle to the preview point can be assumed to be rela-
tively equal for both global and vehicle coordinates.

0

0.1

0.2

0.3

0.4
Bode Diagram

M
ag

ni
tu

de

10
-1

10
0

10
1

10
2

-150

-100

-50

0

Frequency (rad/sec)

P
ha

se
 (

de
g)

Figure 12: Bode diagram of the complex linear model (solid) and simple bicycle model (dashed). The output
is here the yaw rate and input is the steering wheel angle.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 781

 Hence we can use only the lateral component of the
preview point and vehicle position as input and out-
put respectively, and thus limit the number of inputs
and outputs to two. The use of global reference for
both input and output enable analysis of how well
the driver-vehicle system will follow the path de-
scribed by the preview point. To simplify the model,
the driver in the ClosedLoopDriver is replaced with a
constant speed driver based on the ClosedLoopLat-
eral template. The tracker in the template is modified
to allow direct input of lateral position into the steer-
ing control calculation since the standard path input
taken from spatial time independent coordinates. Di-
rect input of preview point position in vehicle refer-
ence frame into the tracker is required for active
modification of the preview point position.

At the experiment level, the LEK Pacejka02 ve-
hicle is selected again. In the chassis, the parameter
summary resolve point is changed from the centre of
the front axis to the vehicle centre of gravity. It is
also necessary to specify an approximation of the
steering wheel gear ratio to be used by the driver
model, and this can be done in the experiment with
given data or experimental results.

For the correct input to the tracker block in the
driver model, a new text layer block is added with
the coordinate transformation from global reference
to the vehicle front axis, which requires adding sen-
sors to the top level of the experiment (see fig-
ure 13). Possibility to change the preview time is
also added as an input to the transformation block.
One input has to be added to the experiment, the lat-
eral position of the preview point. Several outputs
can be added, i.e. the lateral position of the vehicle
that will be used here for analysis of how the driver-
vehicle system responds to movement of the preview
point.

Figure 13: Top level view of driver-vehicle

experiment.

5.6 Analysis of linearised model

With the model modified it is now possible to export
the model for analysis. The system can now be set to
different states in the experiments, e.g.:

- In the vehicle, set the velocity to a chosen value

to use for the linearisation.
- In the top level of the experiment, change the

preview time to analyze the effect of different
path tracking strategies.

- Change the steering wheel gear ratio in the
driver model to analyze effects of driver inter-
pretation of the vehicle characteristics.

The model can be linearised and exported after the
experiment simulation has been executed in the same
way as described in Section 2.1. The students should
analyze the default setup of the driver model first,
e.g. with accurate information about the vehicle at a
selected speed, and then try different values to study
the effects of the parameters. Bode plots of three dif-
ferent selected preview times are presented in fig-
ure 14. The resonance peak is seen to grow for de-
creasing preview time, which would indicate that the
system becomes more nervous.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 782

-80

-60

-40

-20

0

20
M

ag
ni

tu
de

 (d
B)

10
-1

10
0

10
1

10
2

90

180

270

360

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)
Figure 14: Bode diagram of linearised model, using steering wheel gear ratio 19, speed 30 m/s, preview time

0.8 (solid), 0.4 (dashed) and 0.2 s (dash-dotted).

6 Conclusions

The evaluation during the course of this project has
shown that Dymola and VDL offer many ways to
enhance the learning of vehicle engineering. The
physical based modelling makes it easy to replace or
add components, while the hierarchical structure and
icon based model layout give the user a clear over-
view of the different subsystems and their
interconnections. Animations also help to visualise
results and clearify physical behaviourThe VDL also
contains example models which can be used to per-
form virtual experiments as a substitute for real life
experiments that might be too expensive or time con-
suming for a student course. Modifying the example
models and experiments is also easy, making it
straightforward to design student exercises showing
various aspect of vehicle dynamics.

The problems with Dymola include the somewhat
crude tools for analysis, sometimes making it
necessary to export models or simulation results to
other tools such as Matlab. Also, the documentation
can be found inadequate when confronted with cer-
tain problems such as the linearisation process.

References

[1] Andreasson J., Möller A., Otter M.: Model-
ing of a Racing Car with Modelicas Multi-
body Library, in Proceedings of the Modelica
Workshop, 2000.

[2] Andreasson, J., Gäfvert M.: The Vehicle Dy-
namics Library – Overview and Applica-
tions, in Proceedings of the 5th international
Modelica Conference, 2005.

[3] Mäki R.: Wet Clutch Tribology - Friction
Characteristics in Limited Slip Differentials,
doctorial thesis, Luleå University of Tech-
nology, Sweden, 2005.

[4] Piyabongkarn D., Lew J.Y., Rajamani R.,
Grogg J.A. and Yuan Q.: On the use of
Torque-biasing Systems for Electronic Sta-
bility Control, IEEE transaction on control
systems technology, Vol. 15, No. 3, pp. 581-
589, 2007.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 783

On the link between Architectural Description Models and Modelica

Analyses Models

Damien Chapon Guillaume Bouchez

Airbus France

316 Route de Bayonne 31060 Toulouse

{damien.chapon,guillaume.bouchez}@airbus.com

Abstract

When designing complex systems such as Aircraft,

harmonizing the way we describe and analyze sys-

tems physical architectures is important in order to

reduce costs, lead-time, and to increase systems ma-

turity at entry into service. As Modelica has interest-

ing multi-domain modeling capabilities, we define a

harmonization approach that is based on the use of

Modelica in an Integrated Development Environ-

ment.

Keywords: Modelica; UML; Domain specific lan-

guage; Topcased; Physical Architecture;

1 Introduction

Airbus is a designer and integrator of systems. Air-

bus imagines the system’ concepts, designs, and spe-

cifies the system so that suppliers can manufacture it.

Those systems have the granularity levels as those

considered within the ATA aeronautical classifica-

tion of aircraft systems (e.g. ATA 27: flight control

system, ATA 24: Electrical power generation sys-

tem, ATA 32: Landing gear). Following a System

Engineering Process (SEP), the stakeholders’ needs,

requirements, and constraints are transformed into a

system architecture solution. For purpose of illustra-

tion, a generic SEP, the IEEE 1220 standard [1] is

used in this document. The figure 1 depicts the sub

processes of the IEEE 1220 SEP and shows how

they iterate to produce a consistent set of require-

ments, functional arrangements, and design solu-

tions. As depicted in this figure, one of the main out-

puts of this SEP is the verified physical architecture.

Indeed during the synthesis and design verification

phases, the functional architecture is translated into a

physical architecture that provides an arrangement of

system elements, their decomposition, interfaces (in-

ternal and external), and design constraints, to satisfy

stakeholder expectations as defined in the require-

ments baseline.

Figure 1 - IEEE 1220 Systems Engineering Process

Harmonizing the way we define and analyze system

physical architectures is obviously a recurrent preoc-

cupation when designing complex and critical sys-

tems because this is a mean to reduce costs, lead-

time, and to increase systems maturity at entry into

service. Modelica [2, 3] is a multi-domain and multi-

paradigm modeling language for component-oriented

modeling of complex systems that is well suited for

physical and multi-domain physical analyses.

In this article we want to define recommendations in

order to bring harmonization to the system physical

architecture description and analyses process by

promoting a model-based approach. Therefore this

document is organized as follows. The second sec-

tion is devoted to a deep explanation of the system

physical architecture description and analyses phases

in order to understand their particularities and to de-

fine recommendations for our model-based ap-

proach. In the third part we present some related

works within the Modelica community and comment

them with regards to our recommendations. Then in

the fourth section we present the capabilities that

need to be part of an Integrated Development Envi-

ronment (IDE) in order to support our harmonization

initiative. We also introduce Topcased, an integrated

open source System/Software engineering toolkit

that is a good candidate to support our work. Finally

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 784 DOI: 10.3384/ecp09430079

in the fifth section we present an example of a do-

main specific UML profile that we have created with

the meta-modeling capabilities of Topcased.

2 System physical architecture de-

scription and analyses process

The figure 2 depicts more precisely the system phys-

ical architecture description and analyses process and

exhibits the relations between the main products of

this process.

Figure 2 - System Physical Architecture description

and analyses process

2.1 Separation between the system physical ar-

chitecture description and analyses steps

As depicted in the figure 2 the physical architecture

provides information (e.g. parameter, topology) to

create the analyses models. Then simulations are run

on the analyses models to get simulations results and

exploit them to draw conclusions about the physical

architecture. This process is iterated until the physi-

cal architecture satisfies all the requirements cap-

tured from the operational perspective (users’ needs)

and also defined in the functional architecture (e.g.

safety, reliability, reuse, maintainability, perfor-

mance, design constraints), with all the constraints

imposed by the physical laws (e.g. aerodynamic

forces, thermal dissipation, power consumption.) and

with cost reduction constraints. Therefore the link

between the architectural description step and the

analyses step is very close. However it is better not

to mix these two steps into the same modeling lan-

guage or tools. Indeed their intended goals are not

the same. The architectural description step defines

the topological arrangement of the system compo-

nents, how they are connected, and stores data, e.g.

parameters, about the systems being designed whe-

reas during the analyses step the information stored

in the architecture is used to build analyses models in

order to run simulations and to draw conclusions

about the system physical architecture. This separa-

tion is sometimes very explicit; e.g. these two tasks

are sometimes performed by different people or even

subcontracted.

2.2 Physical architecture description

In order to identify good practices for the physical

architecture description we use the IEEE Std 1471

[4]. This standard provides definitions and a meta-

model for the description of architecture. The Figure

3 depicts the part of the metamodel that is relevant

for our needs.

Figure 3 - IEEE 1471 conceptual model for architec-

tural description

This metamodel state that a system architecture is

described by an architectural description organized

into one or more views and that each of them are

conformed to a viewpoint. The central notion of

viewpoint is defined as “the conventions by which a

view is created, depicted, and analyzed. The view-

point determines the languages (including notations,

model, or product types) to be used to describe the

view, and any associated modeling methods or ana-

lyses techniques to be applied to these representa-

tions of the view. These languages and techniques

are used to yield results relevant to the concerns ad-

dressed by the viewpoints”. This standard also re-

commends using the considerations and the concerns

of the stakeholders as the inputs for the viewpoints

selection. Obviously the systems designers are

among the system stakeholders and one of their con-

siderations is to have languages for describing the

views that are customized for their job. A way of

doing so is to encapsulate within the language some

part of the domain knowledge. The domain know-

ledge is the good rules, good practices, and the expe-

riences of the system designers in a technological

field, a domain (e.g. a domain specific iconography).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 785

2.3 Modeling languages for describing systems

physical architectures

As explained above, modeling languages are needed

in order to describe systems physical architectures.

Depending on the systems being designed, the stake-

holders and their concerns, different alternatives are

available:

1. To use existing modeling languages. Among

the most popular is UML, [5] (Unified Mod-

eling Language), a standardized general-

purpose modeling language in the field of

software engineering. UML includes a set of

graphical notation techniques to create ab-

stract models of specific systems. Another

solution when designing complex system is

SysML[6] (Systems Modeling Language), a

UML profile for systems engineering.

2. To customize existing modeling languages.

When a specific syntax or a more precise

semantic is needed for a specific system be-

ing designed, a solution is to use the exten-

sion mechanism of UML to create a domain

specific UML profile. A profile is used to

extend the UML metamodel by using three

basic mechanisms: stereotypes, tagged val-

ues and constraints added in OCL (Object

Constraint Language).

3. To create new Domain Specific Languages

(DSLs). This solution allows customizing

the modeling languages to cope totally with

the needed specificity of each viewpoint.

Creating a DSL can be worthwhile if the

language allows expressing a particular type

of problems or solutions more clearly than

pre-existing languages would allow, and if

the type of problem in question reappears

sufficiently often.

However as defined in the IEEE 1471, the stake-

holders to whom the architectural description is ad-

dressed are responsible for the choice of the model-

ing languages to be used. Whatever this choice is,

what is really important is to have the modeling and

meta-modeling framework to create, customize

and/or use the chosen architectural modeling lan-

guages.

2.4 Languages and tools to support the analys-

es steps

Different analyses are performed during this process.

We can classify these analyses into two categories:

 Trade studies: to evaluate different architec-

tural alternatives against performance, cost,

schedule, and risk implications. These ana-

lyses include parametric sensitivity analyses,

Monte-Carlo analyses or optimizations.

 Verification activities: to ensure the confor-

mity of the design with respects to functional

architecture and the higher-level require-

ments. These analyses include direct simula-

tions, formal proofs or robustness analyses.

In order to support all the analyses performed during

the design of all the ATA systems of an aircraft,

there exists a huge variety of system modeling lan-

guages and tools. We consider Modelica only as one

of these modeling languages. We want to use the

multi-domain modeling capabilities of Modelica eve-

rywhere it is possible in order to bring some harmo-

nization to the wide variety of languages and tools.

However let’s remark that Modelica cannot obvious-

ly replace all the system modeling languages and

tools used when designing complex and critical sys-

tems because it cannot support all the different ana-

lyses required when designing complex systems.

2.5 Recommendations for harmonizing this

process

During the four previous subsections we exhibit

some features that allow us to identify recommenda-

tions in order to define a model-based approach in an

Integrated Development Environment (IDE) for

harmonizing the physical architecture description

and analyses process. The IDE should include mod-

eling and meta-modeling capabilities to create, cus-

tomize and/or use the chosen architectural modeling

languages. Then, as Modelica can bring some har-

monization, the IDE should include the capabilities

to use Modelica model, either by including a textual

editor, a graphical editor, and a simulator into the

IDE or by allowing the use of an external Modelica

tool. The IDE should also include the capabilities to

use other analyses languages and tools that are rele-

vant for the system being designed, or in other words

the IDE should not be only Modelica-centric. Finally

the physical architecture description and analyses

steps should not be mixed. The IDE should rather

provide or allow defining some links (e.g. Model

transformation, data exchange) between the physical

architecture description step and analyses step.

3 Related Work

Several attempts to integrate or link Modelica with

UML or SysML have been launch within the Mod-

elica community:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 786

 ModelicaML by A. Pop and P. Fritzson [7];

 A mapping between SysML and Modelica

by T. Johnson and C. Paredis [8];

 UmlH by C. Nytsch-Geusen [9].

These are three very interesting and promising works

but from our viewpoint they don’t yet satisfy all the

needed features that we exhibit in the section 2.5.

Moreover the authors of ModelicaML argue in the

following paper [10], for a development direction of

ModelicaML that creates a small core with well-

defined semantics, instead of the current version that

is based on an extension of SysML. We agree with

the fact that UML is too big and semantically un-

sound to be used to describe efficiently systems

physical architectures. We differ from the vision of

ModelicaML because we do not think that an Inte-

grated Whole Product Modeling based on Modelica

is the right solution. Modelica should be considered

as an analyses tool among others and we propose

rather to have an IDE that contains the capabilities to

define customized physical architectures languages

(e.g. notations, data model, semantics, and domain

rules) that could be formally link with analyses activ-

ities based on models expressed with Modelica and

other analyses tools, in a model-based fashion.

4 Using the model-based capabilities

and services of Topcased

Topcased [11] is an integrated open source Sys-

tem/Software engineering toolkit compliant with the

requirements of critical and embedded applications.

It covers the stages from requirements analysis to

implementation, as well as some transversal activi-

ties like anomaly management, version control, and

requirements traceability. Topcased principles are

based on Model Driven Engineering and therefore

provide:

 Meta-modeling capabilities to describe all

the modeling languages in a common

framework;

 A model bus to access easily to the various

tools;

 Model transformations capabilities to relate

the various models and adapt models to the

various tools involved in a project;

 Generative programming capability to easily

produce both textual and graphical model

editors.

We focus in this article on Topcased because it owns

all the model-based capabilities and services that are

expected to deploy our harmonization initiative.

What is important is the use of these capabilities and

services, not the use of Topcased. However Top-

cased is a good solution because it provides a sys-

tem-engineering platform that owns expected servic-

es for critical embedded systems, like configuration

management and traceability.

4.1 Topcased as a Meta-modeling tool

Topcased relies on the Eclipse platform [12]. With

regard to the four-layer meta-model architecture of

the OMG’s Meta-Object Facility [13], the M3 meta-

modeling language used in Topcased is Ecore, pro-

vided by the EMF [14] (Eclipse Modeling Frame-

work) project. Topcased is therefore strongly model-

oriented. Indeed TOPCASED provides model edi-

tors, model checkers and model transformations ca-

pabilities, but is also itself based on modeling and

code generation. With Topcased it is possible to use

existing modeling language such as UML or SysML,

customize domain specific UML profile, or create

new DSL with their graphical editors using the EMF

and the Graphical Modeling Framework (GMF)[15].

For illustrating the meta-modeling capabilities of

Topcased, an example of a domain specific profile

for the description of aircraft on-board power sys-

tems architecture is given in the section five of this

article.

4.2 Providing a Modelica enabler and system

physical analyses capabilities in Topcased

The meta-modeling capabilities can also be applied

to provide editors for some of the analyses tools

needed to perform trade studies, verification activi-

ties or other specific analyses on the systems physi-

cal architectures. Providing an enabler to Modelica

in Topcased with graphical and textual editors and a

Modelica simulator is a way to bring some harmoni-

zation to the physical architecture description and

analyses process. In this perspective an interesting

work has been done for the Modelica Development

Tooling (MDT) [16]. MDT is a collection of plug-ins

for Eclipse and can therefore be plugged into Top-

cased. It provides an environment for working with

Modelica projects and integrates the OpenModelica

compiler to provide support for various features, for

example package and class browsing and code com-

pletion. However the MDT lacks for the moment a

graphical editor for Modelica models.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 787

4.3 Linking the physical architectural models

to the analyses models

As defined earlier, we do not recommend mixing the

physical architecture description step and the analys-

es step because these are separated tasks with differ-

ent objectives. However as depicted in the figure 2

these two tasks are closely linked because the physi-

cal architecture provides information (e.g. parameter,

topology) to create the analyses models and in re-

turn, simulations are run on analyses models during

the analyses step to get simulations results and draw

conclusions about the physical architecture. This

process is iterative and therefore the link between the

architectural models and analyses models is crucial.

In this perspective Topcased provides a model bus

that could be useful to access easily to the various

analyses tools. Another potential idea is close to the

mapping between SysML and Modelica realized by

T. Johnson and C. Paredis. But as we mentioned ear-

lier we don’t want to impose in our framework a

predefined architectural modeling language such as

SysML. So the idea is rather to use the meta-

modeling capabilities of Topcased in order to create

domain specific UML profile. Then a mapping be-

tween these architectural modeling languages and

analyses languages (e.g. Modelica) could be realized

and finally the model transformation capabilities of

Topcased could be used to link the physical architec-

ture description step and the analyses step.

5 Illustrating the meta-modeling ca-

pabilities of Topcased - A UML

profile for the description of air-

craft on-board electrical power sys-

tems

In order to illustrate the meta-modeling capabilities

of Topcased we have customized a UML profile for

the description of aircraft on-board power systems

architecture. The role of this profile is to store topo-

logical and parametric data that are relevant for the

system stakeholders. This domain specific UML pro-

file encapsulates a small part of the needed domain

specific knowledge. Please remark that this profile is

not intended to be usable as it is. It has only been

created in order to illustrate how to customize a do-

main specific UML profile with the meta-modeling

capabilities of Topcased and should be improved

greatly to be usable. Our profile extends the UML

metamodel by using three basic mechanisms:

 Stereotypes. These are extensions of already

existing elements in order to define new

types specific to the domain.

 Tagged values. These are extra properties

that can be added to UML elements in order

to specify additional information.

 Constraints. These enable to specify well-

formedness rules and restrictions on model

elements.

We define new types for the elements of the aircraft

on-board power systems architecture by stereotyping

the Class metaclass. Following the same idea we de-

fine new types for the topological connections be-

tween the elements of the architecture by stereotyp-

ing the Association metaclass. The figure 4 depicts

the stereotypes used in our profile.

Figure 4 – New stereotype for the Aircraft On Board

Electrical Power Systems architecture

Black arrows denote an extension of the targeted

metaclass and white arrows denote inheritance be-

tween the stereotypes. A tagged value has been add-

ed to the Power User in order to add a new property

for this new stereotype. Several others could have

been added for the other stereotypes and shared by

the inheritance mechanism between stereotypes.

Then constraint written in OCL can be used to speci-

fy well-formedness rules. An example of well-

formedness rule could be that you cannot draw an

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 788

association between two classes of stereotype <<En-

gines>>. OCL can also be used in various ways to

specify the stereotypes more precisely such as con-

straining property values or specifying dependencies

between values of different properties of elements.

Another mean in order to customize a domain specif-

ic UML profile is to adapt the visual aspects of the

different elements with icon and symbol that are fa-

miliar and more intuitive for the systems stakehold-

ers.

6 Conclusion

In this document we have focused on the system

physical architecture description and analyses

process. We have defined recommendations in order

to build a model-based approach for harmonizing

this process. As Modelica has interesting multi-

domain modeling capabilities, this approach is based

on the use of Modelica model in an Integrated De-

velopment Environment. However this IDE should

also include the capabilities to use other analyses

languages and tools that are relevant for the system

being designed and should not been only Modelica-

centric. We recommend also that the IDE include

modeling and meta-modeling capabilities to create,

customize and/or use architectural modeling lan-

guages in a model-based fashion with models trans-

formations or model bus services in order to provide

links between the physical architecture description

step and the analyses step. As a consequence of these

recommendations we have presented Topcased, an

integrated open source System/Software engineering

toolkit compliant with the requirements of critical

and embedded systems. Indeed Topcased owns all

the model-based capabilities and services that are

expected to deploy our harmonization initiative. Fi-

nally we have illustrate the meta-modeling capabili-

ties of Topcased with customized domain specific

UML profile for the description of Aircraft On-

Board Power Systems architecture.

References

[1] T. Doran. IEEE 1220: for practical

systems engineering. IEEE Comput-

er, Vol.39, No. 5, May 2006.

[2] P. Fritzson. Principles of Object-

Oriented Modeling and Simulation

with Modelica 2.1, 940 pp., Wiley-

IEEE Press, 2004.

[3] The Modelica Association.

http://www.modelica.org/

[4] R. Hilliard, IEEE-Std-1471-2000

Recommended Practice for Architec-

tural Description of Software-

Intensive Systems. IEEE. 2000.

[5] OMG. UML. http://www.uml.org/

[6] OMG. SysML.

http://www.sysml.org/

[7] A. Pop, D. Akhlevidiani, and P.

Fritzson. Towards Unified System

Modeling with the ModelicaML

UML Profile. EOOLT’2007. July

2007.

[8] T. Johnson, C.J.J. Paredis, R. Burk-

hart, Integrating Models and Simula-

tions of Continuous Dynamics into

SysML. Modelica 2008.

[9] Christoph Nytsch-Geusen. The use

of the UML within the modelling

process of Modelica-models.

EOOLT.

[10] J. Guy Süß, P. Fritzson, A. Pop. The

Impreciseness of UML and Implica-

tions for ModelicaML. EOOLT

[11] P. Farail, P. Gaufillet, A. Canals, C.

Le Camus, D. Sciamma, P. Michel,

X. Crégut, M. Pantel. The TOP-

CASED project: a Toolkit in Open

source for Critical Aeronautic Sys-

tEms Design. ERTS 2006.

[12] Eclipse. http://www.eclipse.org/

[13] OMG's Meta Object Facility.

http://www.omg.org/mof/

[14] Eclipse Modeling Framework

Project.

http://www.eclipse.org/modeling/em

f/

[15] Graphical Modeling Framework.

http://www.eclipse.org/modeling/gm

f/

[16] H. Tummescheit. Design and Im-

plementation of Object-Oriented

Model Libraries using Modelica.

Lund, Sweden: PhD thesis, Depart-

ment of Automatic control, Lund In-

stitute of Technology, 2002.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 789

Model based Virtual Startup of Automation Systems

Uwe Schob (uwe.schob@iwu.fraunhofer.de), Ralf Böttcher,

Fraunhofer IWU,

Reichenhainer Straße 88, 09126 Chemnitz

Torsten Blochwitz, Olaf Oelsner, ITI GmbH Dresden

Marek Winter, USK Karl Utz Sondermaschinenbau GmbH Limbach-Oberfrohna

Abstract

This paper deals with the model generation for

automation systems. A generic solution is presented,

which analyses existing Computer Aided Engineer-

ing (CAE) documents and thereof automatically gen-

erates simulation models. They are described as

Modelica models and use a special library, custom-

ized for the automation branch. It contains common

elements which can be parameterized with very few

efforts. Additional components for the communica-

tion to the control are available. They support several

widely accepted technologies like OPC, Profibus,

Profinet, analog and digital signals.

The generation process focuses on being as auto-

mated as possible. It is a general approach, which

could be applied to various types of simulation with

different levels of detail. Its integration into a soft-

ware prototype shows the feasibility and provides

first practical feedback.

Keywords:

Automation; Model Generation; Machine-

simulation; Modeling; CAE-analysis; Virtual Startup

1 Introduction

Global product diversification increases the demand

for more flexible and thus more complex manufac-

turing plants. Reducing their time to market is of

utmost priority in order to remain competitive. De-

veloping and deploying highly automated machines

is a most demanding task requiring specialists from

different domains. Plans for the mechanical con-

struction, the electrical diagrams as well as control

programs are created under deadline pressure fol-

lowed by the assembly and startup phase.

Several trends arose to meet the above mentioned

requirements. The introduction of high level para-

digms to restructure the development process itself

may be considered as the most future-oriented solu-

tion as seen in [1, 2, 3]. Software tools implementing

these ideas are based on unified data models to sim-

plify the inter-domain associations [4, 5]. Another

method of supporting the machine development is

the extensive use of simulation to improve the design

quality. Simulations may be applied to verify early

design decisions and help finding flaws [6].

2 Motivation

A common practice in plant development is simulat-

ing the machines or parts thereof. Such virtual ma-

chines are used to verify control programs and thus

increase their overall quality in an early stage. This

method is called virtual startup and may already be

performed without real machine hardware, leading to

a reduction of the time needed for the real machine

deployment as stated by Wünsch [7].

This assumption is only true, if the time needed to

create simulation models does not surpass the ex-

pected gain at a later phase. Especially in the field of

special purpose machines, where only few repetitive

systems are constructed, the task of model generation

is too time consuming. This is also stressed by Ber-

gert in [8]. The task of creating the machine model is

regarded as additional work to the normal develop-

ment and creates error prone solutions.

As stated above, the idea of virtual startup lacks op-

timizations allowing its application to broader areas.

To meet the problem of the time consuming model

generation task, one has to be reminded that most of

the required information already exists. It is con-

tained in the construction and manufacturing plans,

e.g. Computer Aided Design (CAD) drawings and

circuit diagrams, which are available in digitalized

form. They are stored and managed in various CAE,

Enterprise Resource Planning and office applica-

tions.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 790 DOI: 10.3384/ecp09430120

One feasible solution is to use readily available inter-

faces of the domain-specific applications as data ac-

cess. They provide the data in digitalized and reus-

able form. As stated in [9], the interoperability be-

tween software systems is a matter of designing ap-

propriate adapters, which translate one set of data

elements into another one.

3 State of the art

3.1 Machine development

The process of developing a machine or a whole

plant consists of several phases as seen in Fig. 1.

These are mainly, the mechanical construction, the

electrical, pneumatic and/or hydraulic design as well

as control programming. According to actual guide-

lines, the phases should be performed in a parallel

way to reduce overall-time and inter-domain errors

[1]. Despite the obvious advantages, the idea of a

holistic mechatronic design is far away from being

common knowledge or a widely accepted method.

Each domain-specialist performs his respective tasks

for himself with his favored software tools. His re-

sults remain independent unless they are communi-

cated to other engineers, often in an informal man-

ner. The outcome is a set of different electronic

CAE-documents, for example CAD-drawings, circuit

diagrams, pneumatic plans as well as control pro-

grams, whose association is as good as the previous

inter-domain communication was.

Figure 1: Machine development process

3.2 Assembly and startup

By using the generated assembly documents, the

commissioning of the required components and

products begins. Depending on the product delivery

times, the machine is being assembled more or less

in time. As soon as the first functional parts are as-

sembled and electrical connected, its startup begins.

Design flaws, wiring mistakes, non-documented

changes and even programming mistakes mostly

manifest in the startup phase. Beginning at this step,

the domain specific decisions are forced to work to-

gether and thus often highlight inconsistencies. A

missing sensor for process-control might lead to

changes in the mechanical structure of the machine

as well as its wiring and the control program. Most

of all, these late corrections take a lot more time than

they would have required during the design-time.

3.3 Simulation

A commonly accepted method to reduce design

flaws and inter-domain problems is to simulate the

desired system or parts thereof. Depending on envis-

aged results, different kinds of simulation are used.

They range from finite-elements-method to test me-

chanical strain over multi-body-systems to calculate

kinematic behavior of geometric bodies and up to

behavior-simulation of whole machines. Simulation

may take place as soon, as the first specifications are

available. Based on parts of the assembly documents,

simulation models may be defined. Results are used

for dimensioning machine parts or to verify its func-

tionality.

3.4 Virtual startup

A behavioral model of a machine used for simulation

is called a virtual machine. Virtual startup is the

process of driving a virtual machine or plant model

with real control hardware, as defined by [8]. Cur-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 791

rently available commercial tools like WinMOD or

Virtuos [10, 11] emphasize the importance of early

control program tests as their main goal. One of the

main hindrances of a wide acceptance is the addi-

tional effort of creating the simulation models [12].

Repeating machine parts, the heavy use of pre-

defined library components and modification of ex-

isting simulation models allow savings in the model-

ing effort.

The remaining effort is still considerably and re-

quires engineers, which are familiar with all ma-

chine-aspects expected within the simulation results.

This counts especially in the field of special purpose

machines, where the repeated construction of the

same machine is more than unusual.

Unfortunately, no currently available tool allows a

sophisticated reuse of CAE-documents from all de-

sign phases as a base for simulation models.

4 Solution

4.1 Starting point

The software tools currently used for documenting

the different design phases are manifold. They do not

share a common data depository nor are they able to

export their content into a universal data format.

However, most of them include application pro-

gramming interfaces (API), which provide a limited

access to their internal data structures [13, 14]. This

can be used to algorithmically acquire a subset of the

available information, which is contained in the

CAE-documents. Each design domain provides a

different set of information.

The mechanical construction defines, of which parts

a machine is composed and how they are intercon-

nected. It focuses on the geometric design of bodies.

Additionally, their assembly hierarchy is defined by

various constraints.

The electrical construction determines, by which

means electrical energy is transformed into useful

energy. Actuators manipulate the work piece and

sensors provide feedback about it. Every machine

component that needs electrical energy has to be

documented in circuit diagrams.

Similar to the electric are the pneumatic and hydrau-

lic constructions. They also transform source energy

into useful energy. Only the sources, pressurized air

respective pressurized fluid, are different. The result-

ing diagrams and schematics contain all machine

parts, which are connected by tubes.

By relating these data sources to each other, the ma-

jor part of the machine behavior can be estimated.

Nevertheless, these data source are not sufficient to

form a complete simulation model. Some associa-

tions are often undocumented, as they are trivial no-

ticeable with a human understanding of the machine.

For instance, the relation of a linear drive in a circuit

diagram and its geometric representation in a CAD-

drawing is algorithmically not obvious. Even the

positioning of sensors within the machine is seldom

to be found in CAE-documents. In order to being

able to generate a meaningful simulation model, ad-

ditional data needs to be supplied manually.

Relating the different data sources takes place as part

of a data analysis resulting in groups of logical con-

nected objects. Each of them is then to be translated

into a behavioral identical simulation element. By

this translation, simulation models representing the

supplied data sources are created. Fig. 2 shows this

translation process in a simplified form.

Figure 2: Transforming data sources

4.2 Transformation process

Looking into the transformation process in more de-

tail reveals four separate steps as shown in Fig. 3.

Their starting point are the different data sources,

which are preferably supplied automatically. Partial

information needs to be fed manually.

1) The data acquisition targets the available CAE-

documents. A program module uses the APIs of

each involved software tool to read out the raw

information, a user has previously entered during

his normal workflow. The output represents the

actual state of the machine being developed.

2) During the mapping, the raw information parts

are analyzed and grouped based on their resource

mark, defined by [15]. Through them, logical

connected units can be recognized. For instance,

an electric relay in the circuit diagrams is repre-

sented by a conductor and one or more switches

which all share a similar resource mark.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 792

3) The manual input is a necessary step which re-

quires information by the user. The informal data

exchanged through the inter-domain coordina-

tion, as shown in Fig. 1, has to be formalized. A

functional decomposition of the machine is pro-

vided as the desired machine development state.

This will be supplemented by simulation-

parameters not otherwise available. Additional

associations are created between actuators and

their respective geometric object, thus allowing a

3D-visualization during simulation based on the

CAD-drawings.

4) The final step in creating a simulation model is

the consistency check. It is performed based on

the nominal and the actual machine development

state. A comparison shows common mistakes

such as:

a) specified but not yet realized machine func-

tions

b) designed but unspecified functions

c) wiring and tubing changes not consistent

with the specification

d) possible communication / wiring problems

between control program and connected ac-

tuators and sensors.

The results are reported to the user as recom-

mendation. Updating the data sources in this de-

velopment stage is optional regarding the gen-

eration of a simulation model. Nevertheless

would a later error search be simplified, if obvi-

ous design flaws are removed.

In addition, the consistent logical elements are

mapped to ready Modelica elements. By trying

to apply rules of a larger set to an analyzed logi-

cal group, a corresponding Modelica library

element can be found. The rule set to be used

depends on the complexity of the logical group

and the available element library. Different kinds

of mapping rules may apply:

a) Exactly one circuit element is matched with

exactly one simulation element.

b) Exactly one circuit element is matched with

two or more simulation elements. This helps

expressing more complex circuit elements

through a combination of several simple

simulation elements.

c) Two or more electric (or pneumatic) ele-

ments are mapped to a single simulation

element.

d) A set of circuit elements is matched by an-

other set of simulation elements.

e) Defining the rule set responsible for a map-

ping is a one-time task. It might be reused

for following machine developments, as long

as no additional unmapped electrical com-

ponents exist in the CAE documents.

Figure 3: Transformation process in detail

4.3 Simulation usage

An important impact on the allowed simulation

model complexity is the application purpose. The

main goal of this work is the virtual startup of a ma-

chine by using its real control program. Although the

programming of programmable logic controls (PLC)

is standardized in [16] not all control vendors con-

form to it. Additionally, various hardware dependant

features are proprietary, thus making it difficult to

simulate the control itself in software. Based on this

assumption, hardware-in-the-loop is the means of

choice for the simulation usage. The interface be-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 793

tween the virtual machine and the real control hard-

ware are the PLCs input and output signals. An ex-

emplary signal flow through a circuit diagram is

shown in Fig. 4.

In order to feign a real machine to the control, the

simulation has to meet several requirements:

1) All output signals written by the control need to

be used within the simulation. Respective need

all input signals read by the control to be pro-

vided as actual simulation outputs.

2) The simulation must not progress faster than the

real control.

3) The complexity of the simulation model has to

be chosen to be as time-efficient as possible.

4) The signal-transmission to and from the control

must not influence the control program

Although the control hardware is a hard real-time

system, the virtual startup itself does not strictly re-

quires it. Of course, if the simulation is working in a

soft real-time mode, its average calculation time

should not exceed the controls cycle time. Exceeding

the cycle time is critical for the validity of the simu-

lation results only if the control is performing opera-

tions, depending on strictly timed feedback.

PLC output

Electric

switch
Pneumatic

switch

Pneumatic

actuator

Electric

sensor

PLC input

Figure 4: Signal flow

4.4 A customized Modelica library

Although various Modelica libraries exist, the above

mentioned requirements of runtime optimized simu-

lation elements need to be met. Respecting and mod-

eling all physical effects is possible, but not neces-

sarily relevant. A new library was created to incorpo-

rate machine devices modeled more behavioral than

physical. It was named after and designed for the

special needs of the automation branch. An excerpt

is shown in Fig. 5.

The desired level of detail of each model element

was chosen element-wise, depending on the devices

real functionality. By initially creating all basic ele-

ments, such as relays and switches, more complex

devices could be built upon them. A later described

machine example was created through the normal

development process and taken as reference for fill-

ing the automation library. It contains pneumatic and

electric elements and is still being extended.

Figure 5: Overview of the automation library

5 Implementation

5.1 Connected tools

During a current research project, the mentioned

resolution is being implemented. A difficult decision

had to be made, which software tools are to be used.

A market survey revealed several CAE-tools, whose

features were roughly similar, concerning the do-

main specific development requirements. By exam-

ining the available API-functionality according to

their flexibility and complexity, the choice felt on the

most promising tools:

1) Autodesk Inventor as CAD software,

2) EPlan Electric P8 and its Fluid-addon as tool for

designing circuit and pneumatic diagrams and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 794

3) ITI SimulationX as modeling and simulation tool

[17].

The missing connection between all these software

tools was a program module, which managed the

transformation process and its underlying data

sources. In consequence, a standalone application

(CADSIMA, Fig. 6) was developed, that was able to

connect and handle the data flow from and to each

API. In addition it can be used as coordination tool

between the domain specific design steps, through

which necessary informal data is acquired.

Figure 6: Screenshot of newly tool Cadsima

The nominal state can be entered by the user and is

stored in a database. This allows the distributed ac-

cess to the project data. CADSIMA creates a Simula-

tionX model based on the results of the mapping and

consistency checks.

5.2 Analysis and mapping example

The general data analysis and mapping into model

elements have been implemented for the selected

software tools. Their internal data structures showed

a diversity of objects, whose properties need to be

evaluated in detail during the analysis. The resulting

mapping mechanism and corresponding rules are

derived thereof and explained in the following para-

graph.

Raw data objects

Regrouped simulation

elementVisual input circuit diagram

Figure 7: Mapping example

Fig. 7 shows the analysis and mapping of a pneu-

matic monostable 3/2-way valve. A visual inspection

of the corresponding circuit diagram page displays

one element with two visual resource marks. The

internal data model reveals that it contains 5 separate

objects:

1) the valve itself with resource mark V101.01,

2) a spring on the right side,

3) a manual reset at the left upper side,

4) a pneumatic trigger on the left side,

5) an electric trigger at left side with the different

resource mark Y101.01 and

6) a reference to an inductor at another page, which

represents the wired element.

A rule to find such valves looks for each of the 6

elements and if found, signals the creation of the cor-

responding simulation element. Wires and tubes are

stored as connections between pins in the circuit dia-

grams. They are also mapped to pins of the simulated

pneumatic valve.

5.3 A first use case

Current work focuses on providing the resources to

transform small machines or parts thereof. The re-

sources meant are appropriate library elements and

defining rule sets for them. This work is a necessary

step prior to transforming actual CAE documents.

The reference project of a pick and place handling

machine, as shown in Fig. 8, contains 3 separately

controlled axes and a not displayed conveyer. Look-

ing at the mechanical characteristic, it contains about

30 mechanical parts. Its circuit and pneumatic dia-

grams include on 87 pages roughly 170 articles rep-

resented by more than 1300 separate symbols. About

25% of these symbols are only for a display purpose

and not actually wired to other components. Unfor-

tunately, as worst case every remaining symbol

needs to be transformed into a simulation element.

Figure 8: Handling machine for pick and place

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 795

5.4 Virtual startup

A setup for a virtual startup contains a real control,

without additional peripheral equipment and a pc

running the generated simulation model. The pc will

communicate with the control hardware via OPC,

overwrites the controls inputs and reads its outputs.

No additional hardware as the above mentioned is

required, although actual displays or human machine

interfaces can be connected to the control hardware,

if desired. The control program itself needs a minor

change to accept the missing peripheral equipment.

The programs write and read access is not influenced

by it. Despite that, the program remains identical to

the one used in the real machine.

During the simulation run, the control programmer is

connected to the real control hardware as well. He

performs the same startup steps as with a real ma-

chine. Its current state can be inspected through the

simulator and its built-in signal-visualizations. Inter-

active changes are available through overwriting run-

time parameters.

6 Conclusions and Outlook

This article described a method, which transforms an

input data set, e.g. the circuit diagram of a manufac-

turing system, to an output data set, e.g. a simulation

model of the same machine. It detailed the structure

of the source data model, the components to which

they will be transformed and finally, how a simula-

tion run can be performed. The target model library

consists of Modelica elements combined with com-

munication components which are used for a hard-

ware-in-the-loop simulation.

This approach drastically reduces the effort in creat-

ing machine models and thus enables even the spe-

cial purpose machine manufacturer to use the virtual

startup. A system test for validating the control pro-

gram may be undertaken prior to assembly of the

real machine.

Actual outcomes for the startup phase, e.g. higher

program quality or shortened startup time, and for

the machine development process as whole are out-

standing. Hence, future works should focus on pro-

viding reliable feedback about the methods effec-

tiveness in the field of application.

Experiments on measuring the numerical perform-

ance of larger machine models should be undertaken

prior to extending the automation library to support

more complex development projects. The usage of a

faster communication protocol and appropriate hard-

ware, e. g. Profibus or Profinet, would allow a better

integration of feedback controlled systems working

with smaller cycle times.

This work originated in the cooperation of the com-

panies USK Karl Utz Sondermaschinenbau GmbH

Limbach-Oberfrohna, ITI GmbH Dresden and the

Fraunhofer Institute for Machine Tools and Forming

Technology IWU during the joint research project

“Depromes”, funded by the Sächsische Aufbaubank.

References

[1] Verein Deutscher Ingenieure: VDI 2206 -

Entwicklungsmethodik für mechatronische

Systeme, Juni 2004.

[2] J. Bathelt: Entwicklungsmethodik für SPS-

gesteuerte mechatronische Systeme, ETH

Zürich, 2006.

[3] CADsys: FOD - Prozesskettenübergreifende

Produktkonfiguration, online, 2006.

[4] Verein deutscher Maschinen- und Anlagen-

bauer: Baukastenbasiertes Engineering mit

Föderal, 2004.

[5] B. Grimm et al.: Universelles Datenaus-

tauschformat, A&D Kompendium, 2008.

[6] M. Ehrenstraßer et al.: Virtuelle Werkzeug-

maschinen für die Simulation, wt

Werkstattstechnik online, Jahrgang 92 (2002)

[7] G. Wünsch: Methoden für die virtuelle Inbe-

triebnahme automatisierter Produktionsyste-

me, Technische Universität München, 2007.

[8] M. Bergert and C. Diedrich: Durchgängige

Verhaltensmodellierung von Betriebsmitteln

zur Erzeugung digitaler Simulationsmodelle

von Fertigungssystemen, in Automation

Kongress, 2008.

[9] U. Schob: Werkzeuge und Methoden zur me-

chatronischen Modellierung von Produkti-

onsanlagen, Technische Universität Chem-

nitz, 2007

[10] Mewes & Partner GmbH: WinMOD, online,

http://www.mewes-partner.de/www/eng/,

2009

[11] ISG Industrielle Steuerungstechnik GmbH:

ISG-virtuos, online, http://www.isg-

stuttgart.de/virtuos.html?&L=1, 2009

[12] G. Reinhart: Teilautomatisierter Aufbau von

Simulationsmodellen, wt Werkstattstechnik

online, Jahrgang 97 (2007)

[13] EPLAN Software & Service GmbH & Co.

KG.: EPLAN API 1.0, application documen-

tation, 2006

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 796

[14] Autodesk Inc.: Autodesk Inventor API, ap-

plication documentation, 2004

[15] Deutsches Institut für Normung: DIN EN

61346-2 Industrielle Systeme, Anlagen und

Ausrüstungen und Industrieprodukte - Struk-

turierungsprinzipien und Referenzkennzeich-

nung, 2000

[16] International Electronical Commission: IEC

61131-3 Programmable controllers - Part 3:

Programming languages, 2003

[17] ITI GmbH: SimulationX, online,

http://www.iti.de/cms/en/simulationx.html,

2009

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 797

Advanced simulation methods
for heat pump systems

Kristian Huchtemann Dirk Müller
Institute for Energy Efficient Buildings and Indoor Climate
E.ON Energy Research Center, RWTH Aachen University

Jägerstraße 17/19, 52066 Aachen, Germany
khuchtemann@eonerc.rwth-aachen.de

Abstract

Within the use of renewable energies in buildings sev-
eral dynamic influences and interactions have to be re-
garded. For example, the performance of heat pump
systems depends sensitively on weather or geological
effects as well as on building and user behaviour. An
energetic optimization requires an intelligent coupling
and control of all components of the building services
installation, the building envelope and the influences
mentioned.

The Modelica libraries developed at the Institute for
Energy Efficient Buildings and Indoor Climate allow
a detailed analysis of the overall system including the
various influences and interactions.

Keywords: building simulation; heat pump; build-
ing services installation

1 Introduction

The building sector is getting more and more into the
spotlight of energy efficiency programs considering its
great portion to the overall energy consumption and its
huge potential for energy savings. As every existing
and new building is a unique system, adaptable sim-
ulation tools are required to calculate and predict its
energy demand.

For example heat pumps offer a huge potential of
energy savings compared to classic heating devices
in buildings. Possible savings depend on the perfor-
mance of the heat pump, which is described through
the Seasonal Performance Factor β :

β =
Quse

Wel
(1)

Quse is the generated heat during one year and Wel is
the electrical energy demand of the compressor and the
auxiliary drives [1]. In practice, identical heat pump

types often achieve very different performance factors.
The reasons for that are generally known - the control
system and the ground source heat exchanger have a
significant impact on the system. For example, heat
source temperatures or needed supply temperatures of
the heating system influence the performance. Thus
an analysis of the heat pump performance requires an
analysis not of the heat pump alone but of the overall
system. A sample scheme in figure 1 shows the most
important components of heat pump systems.

Figure 1: Sample scheme of a heat pump system.

The Modelica libraries developed at the Institute for
Energy Efficient Buildings and Indoor Climate allow a
detailed modelling of the whole thermo-hydraulic sys-
tem including the heat source, heat pump, water stor-
ages and heat sink - the building. User behaviours are
being implemented as well as weather data, control
and geologic models. In this way, all relevant influ-
ences on the heat pump performance are regarded, sen-
sitivity analyses are accomplished and control strate-
gies are examined.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 798 DOI: 10.3384/ecp09430043

2 Building Library

The building models represent structural effects and
user influences [2]. They are compatible with the
building services installation models described below.
The library contains multilayer walls, windows and
doors including the phenomena involved such as heat
conduction, convection and radiation. A room model
is shown in figure 2. The air volume of the room is cal-
culated by the medium models of the Modelica.Media
library. User influences are described by internal heat
loads and variable air exchange. The library includes
an extensive weather model based on test reference
year data of the German Meteorological Service, offer-
ing boundary conditions for the simulation. The model
calculates the ambient temperature, air pressure, hu-
midity and solar exposure rates on arbitrarily sighted
surfaces.

Figure 2: Model of a sample room.

3 Building Services Installation Li-
brary

The building services installation library contains ba-
sic components of building services installations, such
as pumps, pipes, boilers, heaters and valves. It uses
medium models of the Modelica.Media and compo-
nents of the Modelica_Fluid libraries. Simple compo-
nents calculate state changes of fluid by look-up tables,
more complex models use finite volume methods and
empiric correlations [2]. Pipes, heat exchangers and
thermally activated building parts are implemented in

the latter way. Figure 3 shows a simple heating circuit
containing some models of the library.

Figure 3: Model of a simple heating circuit.

4 Heat Pump System Library

For the purpose of modeling heat pump systems, the
existing libraries are complemented by a new library.
It includes different heat pump models, storage mod-
els, ground source heat exchangers and ground models
as well as controllers.

4.1 Heat Pump Model

The heat pump model is implemented as a black box
model consisting of two heat exchangers that are con-
nected to a module that calculates the heat flows and
compressor power by look-up tables using manufac-
turer data. Generally this data is given at working
points standardised by [3]. The more working points
are given the better the real heat pump’s dynamic be-
haviour is reproduced. The basic working scheme of
this black-box model is shown in figure 4.

Figure 4: Scheme of the table based heat pump model.

A more detailed model implementing the refrigerant
circuit is being developed using external fluid proper-
ties by the ExternalMedia library [4].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 799

4.2 Ground Source Heat Exchanger Model

Ground source heat exchangers serve as heat source
for the heat pump system. They are using either the
upper ground’s or the relatively deep ground’s (up to
200 m depth) heat capacity.

The models describe coaxial pipes as well as u-
formed pipes discretised in axial direction connected
to a ground model. The ground model is an axially
and radially discretised volume enclosing the bore-
hole. At the borders of the simulated ground volume
a boundary condition is assumed. In figure 5 a coax-
ial pipe is modeled and a constant temperature is as-
sumed as boundary condition in a certain radius to the
borehole. The pipe model can also be initialised with
an increasing temperature representing the geothermal
coefficient. The boundary condition is then adapted
accordingly.

Figure 5: Model of a coaxial pipe connected to a
ground model with constant temperature boundary
condition.

The simulation of such a model with a given heat
extraction time series taken from field test data leads
to a funnel-shaped distribution of temperature in the
surrounding ground (see figure 6). Ground-water flow
can strongly influence such distributions of tempera-
ture. That is why more complex ground models are
being developed following the example of the software
SHEMAT [5].

Figure 6: Simulation results: Temperature field in the
profile of the ground model.

4.3 Stratified Storage Model

Storages are important components of the heat pump
system. They are used to handle variable heating de-
mand or serve as drinking water storages. A wide
range of different storage types exist, such as storages
with heat exchangers, combined buffer and drinking
water storages as well as stratified water storages. Ba-
sically, every storage has to be modeled separately.

However, a unified modeling can be done for simple
buffer storages, that generally consist of a fluid vol-
ume with several fluid inlets and outlets. To imple-
ment stratification inside this volume, the buffer stor-
age model consists of several fluid volumes represent-
ing fluid layers (see figure 7).

Figure 7: Model of the stratified buffer storage.

The layers are connected to each other allowing heat
and fluid flow. Buoyancy effects are regarded by an
effective heat conductance λe f f depending on the tem-
perature differences between the layers:

λe f f = λwater if Tn > Tn+1 (2)

λe f f = λwater +λturbulent if Tn ≤ Tn+1 (3)

The turbulent heat conductance is a function of the
layer thickness, its temperature and the temperature
difference to the above layer and is based on the work
of Viskanta et al. [6]. The buffer storage model
has fluid inlets and outlets in the top and bottom lay-
ers. The quality of stratification in the specific storage
can be fitted by choosing the number of layers in the
model.

4.4 Validation of Models

A validation of library components is done using
the data from a field study in Germany recorded by

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 800

the Fraunhofer Institute for Solar Energy Systems in
Freiburg, which was initiated by the E.ON Energie
AG. The field study is recording time series of tem-
perature and volume flows at several points of the re-
garded heat pump systems. This data is taken as input
to the components or combined components. This way
the model’s reaction can be compared to the behaviour
of the real component.

This is done for the table-based heat pump model
in the set-up shown in figure 8. Figure 9 shows the
results for two different heat pump types, that means
two different data sets. The error gets up to 10 % in
few models under certain circumstances, but generally
the heat pump behaviour can be simulated well by the
manufacturers’ data.

Figure 8: Validation of the heat pump model.

Figure 9: Comparison of simulated heat pump power
to field test data.

Other components are validated analogously. For
the validation of ground source heat exchanger mod-
els the field test data is complemented by thermal re-
sponse test data.

5 Combined Simulation

As mentioned in the beginning, the combined simula-
tion of the thermal building behaviour, the hydraulic
components, weather- and user influences and, in case
of geothermal heat pumps, geothermal heat exchang-
ers and ground models is required to describe the main

influences on the performance of the heating system.
Figure 10 shows a model according to the sample heat
pump system in figure 1.

Figure 10: Model of the total system.

The simulation results of different temperatures oc-
curring in the system are displayed in figure 11. The
ambient temperature (TA) is a given time series from
field test data. At ambient temperatures above 15 ◦C
the heating is turned off by the controller, so that the
buffer storage is not discharged. During that time the
top and bottom buffer storage temperatures (TBS,t and
TBS,b) decline because of storage heat losses. The re-
action of the evaporator and condenser temperature on
the water side (TE and TC) are shown, too. The high-
est peaks of the condenser temperature occur when the
drinking water storage is charged. The brine temper-
atures (TFlow and TReturn) show an effect of short term
rebound of ground temperature during the turn-off in-
terval of the heat pump. A room temperature (TR) of
20 ◦C can be ensured throughout the whole day.

Figure 11: Simulation results of different temperatures
of the total system.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 801

6 Analyses of the heat pump system

A sensitivity analysis is done, varying the volume of
the buffer storage. Results are shown in figure 12. The
heat pump power is displayed for the time of 24 hours
each for a January and April day using a small and a
big buffer storage. Small volumes mean smaller heat
losses but also a high number of operating intervals.
This has to be avoided to ensure the heat pump’s life-
time.

Figure 12: Simulation results: Heat Pump electric
power.

For a January day with a high and constant heating
demand a small buffer storage cannot ensure the tem-
peratures required by the heating system. The tem-
perature in the buffer storage gets low faster than the
heat pump is allowed to turn on again by the control-
ling system. Minimum turn-off intervals are imple-
mented in the controls. With a large buffer storage the
required supply temperatures can be ensured and a re-
duced amount of operating intervals can be achieved.

These results are summarized in figures 13 and 14.
They show the number of operating intervals and the
heat pump work for one month for different tested vol-
umes. The reference volume (750 l) is set to 100 % in
each chart and represents the volume of a reference
field test object’s buffer storage. The results show a
lower heat pump work using smaller buffer storages,
because of storage heat losses being smaller. But a
strong increase of operating intervals can be observed,
too.

Figure 13: Simulation results: Heat pump working in-
tervals (four week simulation each).

Figure 14: Simulation results: Heat pump electric
work (four week simulation each).

7 Summary and Outlook

The system models regarded in this paper describe the
heat source, the heat pump system including valves,
storages and controls and the building as heat sink,
including the building envelope, air volume and user
influences. Analyses are made to detect possible en-
hancements for heat pump systems. The focus lies on
the analyses of different system arrangements and con-
trol strategies.

The presented libraries and components allow a de-
tailed energetic modeling and simulation of single and
multi-family houses. User defined buildings and build-
ing services installations can be modeled taking into
account the diversity of such systems in reality.

The heat pump system library is currently being ex-
tended by more detailed models. A detailed heat pump
model will describe the heat pump refrigerant circuit.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 802

The ground source heat exchanger models will be en-
hanced, allowing the simulation of ground source heat
exchanger fields and of ground-water flow.

8 Acknowledgement

The authors would like to thank the E.ON gGmbH
for the project’s promotion. Thanks are also given to
E.ON Energie and the Fraunhofer Institute for Solar
Energy Systems for cooperation and transmission of
field test data.

References

[1] VDI-Richtlinie 4650: Calculation of heat pumps
- simplified method for the calculation of the sea-
sonal performance factor of heat pumps. Verein
Deutscher Ingenieure, Düsseldorf, 2009.

[2] A. Hoh, T. Haase, T. Tschirner, D. Müller. A
combined thermo-hydraulic approach to simu-
lation of active building components applying
Modelica. In Proc. of 4th International Modelica
Conference, Hamburg, March 2005.

[3] DIN EN 255-3 Luftkonditionierer, Flüssigkeit-
skühlsätze und Wärmepumpen mit elektrisch
angetriebenen Verdichtern - Heizen. Deutsches
Institut für Normung e.V., Berlin, 2007.

[4] F. Casella, C.Richter. ExternalMedia: A Library
for Easy Re-Use of External Fluid Property Code
in Modelica. In Proc. of 6th International Model-
ica Conference, pages 157-161, Bielefeld, March
2008.

[5] C. Clauser Numerical Simulation of Reactive
Flow in Hot Aquifers Using Shemat/Processing
Shemat. Berlin, Heidelberg, Springer Publishing,
2003.

[6] Viskanta et al. Interferometric Observations of
the Temperature Structure in Water Cooled or
Heated from Above, Advances in Water Re-
sources, Vol. 1, No. 2, 1977

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 803

Thermal Separation: An Approach for a Modelica Library for
Absorption, Adsorption and Rectification

Andreas Joos∗ Karin Dietl† Gerhard Schmitz‡

Hamburg University of Technology
Institute of Thermo-Fluid Dynamics§, Applied Thermodynamics

21071 Hamburg, Germany

Abstract

Due to its objected-oriented design Modelica is pre-
destinated to describe chemical engineering unit oper-
ations. Still only few activity on this field is published.
This paper introduces a library which covers three of
four major thermal seperation processes: absorption,
adsorption and rectification.

Additionally an extension of the ExternalMedia li-
brary is presented that allows the connection to ther-
modynamic and physical property packages for two
phase mixtures. Also a possible forecast to an imple-
mentation of a CAPE-OPEN interface is made, allow-
ing the use of a plurality of established chemical data
packages.

Keywords: Thermal Separation, Separation Col-
umn, ExternalMedia, Heat and Mass Transfer

1 Introduction

Global warming has become a major issue in society
and politics. The reduction of CO2-emission of power
plants plays an important role when talking about re-
duction of CO2-emission. One possibility is to remove
the CO2 from the exhaust gas via absorption, liquefy it
and store it underground. In order to optimize this pro-
cess dynamic modeling is very important since for ex-
ample the composition of the exhaust gases vary dur-
ing operation. Whereas there exist already libraries
for the dynamic modeling of power plants (like for
instance the free Modelica library ThermoPower [2]),
Modelica models to model the CO2 - separation pro-
cess have not been found in literature.

However not only CO2 - separation is an interesting
topic of dynamic modeling but also other separation

∗email: andreas.joos@tu-harburg.de, Tel.:+49 40 42878 3079
†email: karin.dietl@tu-harburg.de
‡email: schmitz@tu-harburg.de, Tel.:+49 40 42878 3144
§http://www.tu-harburg.de/tt

processes like adsorption or rectification. A dynamic
analysis of such processes gains in importance as dy-
namic process strategies becoming more popular, be it
in batch processing or start-up strategies in continuous
processing. Since ad- and absorption as well as recti-
fication have much in common from a modeling point
of view, the development of a combined separation li-
brary is proposed. The fourth common separation pro-
cess, extraction, differs from the other processes and
is therefore not considered up to now.

2 Modeling

2.1 Library Structure

The library structure can be seen in figure 1 which
shows a class diagram of the library. There exist three
different models: one of the packed column, one of
the tray column and one of the spray column. They
all extend fromBaseStageVL. This base class con-
tains the mole and energy balances forn stages, an
instance of thePhaseBoundary-model and of the
medium models as well as the instances of the con-
nector classes. The extending classes supply the ge-
ometry, the instances of the pressure loss model, the
heat transfer model between the two phases and the
mass transfer model. Each column type is structured
the same; but only the structure of the packed column
is shown in the diagram. For each column type a dif-
ferent class exists. They differ in the models which
they allow to replace their base classes. This prevents
the user to choose for example in a tray column a pres-
sure loss model developed for a packed column.

2.2 Interfaces

Columns can be connected to other columns or to fluid
sources or sinks using connectors. The connector for
the vapour flow takes the volume flow rate as flow vari-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 804 DOI: 10.3384/ecp09430102

Figure 1: UML class diagram of an absorption or rectificationprocess. The arrow denotes inheritance, the line
with the diamond denotes composition. Dotted lines mean that the object is replaceable. The composition of
spray column and tray column are analogue to the compositionof the packed column. However, this is not
shown in the class diagram due to readability.

able and the pressure as potential variable and tem-
perature, molar concentration and composition as in-
/outputs. The connectors for the liquid flow are the
same, only the pressure as potential variable is re-
placed by the height. Each column also contains a heat
port to account for heat losses to ambiance.

2.3 Assumptions

The following assumptions hold for the modeling:

• discretization only in axial direction

• counterflow of vapour and liquid flow

• no entrainment of the liquid with the vapour

• tray columns: noraining through the plates

• reaction, if any, takes place in the liquid phase

• spray columns: drops move only in axial direc-
tion

• spray columns: no coalescence or splitting of
drops

• no accumulation in gas and liquid films

• no second liquid phase possible

2.4 Modeling of one discrete element

One major design criterion of the library is to take into
account heat and mass transfer between the phases; i.e.
consideration of non-equilibrium states; equilibrium is
only attained at the phase boundary. This is illustrated
in figure 2: Therefore the balance equations for heat
as well as for mass have to be written in each discrete
element for every phase, so a molar flux tends to elimi-
nate the difference between actual compositionxA and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 805

equilibrium compositionx∗A and a heat flux tends to
equal the vapor temperatureTv and the temperature of
the liquid phaseTl . Even though in general the temper-
ature of vapour and liquid phase are almost the same,
the introduction of a heat flow ratėQt between the two
phases makes sense, since it simplifies the calculation.

The BaseStage-model containsn discrete ele-
ments for which mole and energy balances are estab-
lished.

Figure 2: Sketch of the control volumes and the phase
boundary

The mole balance for the stagej and the component
i of the vapour phase and the liquid phase respectively
are as follows:

V · ε ·
d
d t

(εv, j ·cv,i, j) =

V̇j−1 ·cv,i, j−1−V̇j ·cv,i, j + Ṅv,t,i, j

(1)

V · ε ·
d
d t

(εl , j ·cl ,i, j) =

L̇ j+1 ·cl ,i, j+1− L̇ j ·cl ,i, j + Ṅl ,t,i, j + Ṅreaction,i, j

(2)

Since no mass is accumulated in the gas or liquid
film, the molar fluxes sum up to zero:

Ṅv,t,i, j + Ṅl ,t,i, j = 0 (3)

The vectorsṄv,t, j and Ṅl ,t, j contain the molar flux of
each component. If the component is entering the con-
trol volume, the sign is positive, otherwise negative.

The energy balance is also established for the two
phases separately. Solid material in the column (trays
and packing material) are supposed to have the same
temperature as the liquid phase. Heat transfer to am-
biance also takes place via the liquid phase. Thus for

the elementj the energy balance for the liquid phase
becomes:

V · ε ·
d
d t

(εl , j ·ul , j)+V ·ρs ·cs ·
d Tl

d t
=

L̇ j+1 ·hl , j+1− L̇ j ·hl , j − Q̇wall, j

+Q̇t + ḢfromV, j − ḢfromL, j

(4)

and for the vapour phase:

V · ε ·
d
d t

(εv, j ·uv, j) = V̇j−1 ·hv, j−1−V̇j ·hv, j

+Q̇t + ḢfromL, j − ḢfromV, j

(5)

Using the medium models, the molar specific in-
ner energies and enthalpies are calculated for a certain
temperature, pressure and mole fraction. The volume
specific inner energies and enthalpies are then calcu-
lated using the concentration, for example:

ul , j =
nS

∑
i=1

cl ,i, j ·u
m
l , j (6)

Together with the molar flux over the phase bound-
ary there is also an enthalpy flux over the phase bound-
ary. Since obviously the composition of the con-
densing vapour stream differs from the composition
of the vapour bulk phase a second instance of the
vapour medium, calledmediumVapourTransfer
exists. In there the thermodynamic properties
of the transfer vapour stream are calculated, us-
ing temperature and pressure of the bulk phase
but the composition of the transfer stream. The
liquid is treated accordingly. The specific en-
thalpy obtained bymediumVapourTransfer and
mediumLiquidTransfer is used to calculate the
two enthalpy flows,ḢfromV, j andḢfromL, j .

Additionally to the differential equations above,
there exist also a differential equation for the liquid
mass of each element:

V ·
d
d t

(εl , j ·ρl , j) = L̇ j+1 ·ρl , j+1− L̇ j ·ρl , j

+
nS

∑
i=1

Ṅl ,t,i, j ·Ml , j

(7)

2.5 Mass Transfer and Phase Equilibrium

The molar flow rate which transfers the phase bound-
ary is calculated using the mass transfer resistance on
the liquid and the vapour side and the equilibrium con-
centration at the phase boundary. However the deter-
mination of the mass transfer coefficient and of the
mass transfer area (especially for tray columns) can be

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 806

very difficult and the result very inaccurate. Therefore
often equilibrium is assumed on every stage. The num-
bernof discrete elements for spray and packed column
is then calculated asn= H/HETP, where HETP is the
height equivalent to one theoretical plate. For the tray
columns, equilibrium is assumed on every tray. The
deviation from equilibrium is then taken into account
using the Murphree tray efficiencyηMurphree:

ηMurphree,i, j =
yi, j −yi, j−1

y∗i, j −yi, j−1
(8)

The thermodynamic equilibrium at the phase
boundary is generally calculated using

y∗j,i · p j ·φv, j,i = x∗j,i · γ j,i ·φl , j,i · psat
j,i (9)

This equation is valid in case the pressure is not ex-
tremely high, since the Poyinting-factor is neglected.
For the activity coefficientγ up to now Margules two-
suffix equation, Wilson-equation and NRTL-equation
are implemented. If the fugacity coefficientφv is not
supposed to be 1, it can be calculated using the virial
equation or a cubic equation of state after Redlich-
Kwong (see for example [10]). In absorption pro-
cesses the simpler Henry’s law is often used. The equi-
librium using Henry’s law becomes:

y∗j,i · p j ·φv, j,i = x∗j,i ·Hej,i (10)

The temperature dependency of the Henry-constant He
is taken into account. The user can decide for each
component whether equation (9) or (10) is used.

If mass transfer is taken into account the transfer
molar flow rate is calculated using the difference be-
tween the concentration on the phase boundary and the
bulk concentration. The molar vapour flow becomes:

Ṅv,t,i, j = −kv,i, j ·A · (cbulk
v,i, j −c∗v,i, j) (11)

For the liquid molar flow rate additionally an enhance-
ment factor is introduced:

Ṅl ,t,i, j = −Ei, j ·kl ,i, j ·A · (cbulk
l ,i, j −c∗l ,i, j) (12)

The enhancement factorE can be used if chemical re-
action occurs. If for example the absorbed gas reacts
with one or more liquid components, the mass transfer
is enhanced due to the reaction. This influence is very
important for fast reactions, where the reaction takes
place in the liquid film. For slow reactions, which take
place in the liquid bulk phase, the mass transport is
only influenced indirectly and the enhancement fac-
tor becomes 1. The determination of the enhancement

factor can become very complex, especially if paral-
lel reactions interact with each other. An overview
can be found in [13]. In this library the equations
for the following cases are implemented: irreversible
first order reaction, pseudo-irreversible first order re-
action, reversible reactions of type A↔ P, A ↔ 2P
and A+B↔ P. Also parallel, non-interacting reactions
can be taken into account.

The liquid and vapour mass transfer coefficient for
tray columns is calculated by correlations proposed by
[12]. The interfacial area can be calculated for drop
regime and emulsion regime; for the regime in be-
tween an interpolation, also proposed by [12], is used,
using the ratio vapour load / maximum vapour load.
For packed columns the interfacial area is simply the
area of the packing material. The liquid and vapour
mass transfer coefficients can either be calculated by
the correlation from Onda or by using the Sherwood-
number from Wesselingh (see for example [7]).

2.6 Liquid and Vapour Flow Rate

For different column types different equations for the
liquid volume flow rate have to be used. The equations
are directly implemented in the column model. Tray
and packed column account for the case where at sim-
ulation start no liquid is in the column. In this case the
outgoing liquid flow ratėL is zero, unless the height of
the liquid on the tray gets higher than the weir height
(tray column) or the packing material is fully wetted
(packed column). For a spray column it is assumed
that if liquid enters the column, instantaneously liquid
is also leaving. Hereby the liquid volume flow rate
may change over the column height, but the number
of drops per second remains the same. Therefore the
liquid volume flow rate for the spray column is simply:

L̇ j = vdrop, j ·A · εl (13)

The velocity of one liquid drop can be obtained by a
simple balance of forces on one liquid drop [8] and de-
pends on vapour and liquid density, vapour viscosity,
vapour velocity and the diameter of the liquid drop at
the inlet. For the tray column the equation from [12]
was used:

L̇ j =

 lw · εl ,2ph, j ·

(
(hj−hw)·g1/3

1.45

)3/2
if h > hw

0 else

(14)

lw denotes the weir length andεl ,2ph the liquid frac-
tion in the two-phase regime on the tray.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 807

For packed columns the liquid volume flow rate is
0, as long as the packing material is not yet wetted,
otherwise

L̇ j =

√(εl , j

0.555

)3
·
g· ε4.65

a
·A · ε · εl , j ·50 (15)

As for the liquid flow rate, also for the determina-
tion of the vapour flow rate different equations for the
different column types have to be used. In all cases,
the momentum balances are formed across the seg-
ment boundaries (staggered grid), as was proposed by
[3]. The used pressure drop correlations for the three
column types are written below:
Tray column:

p j − p j+1 =

(
V̇j

Afree

)2

·ζ ·
ρv, j

2
+h j · εl ,2ph, j ·ρv ·g

(16)

Spray column:

p j − p j+1 =

(
V̇j

Afree

)2

·
ρv, j

2
·λ ·

h j

d
(17)

Packed column:

p j − p j+1 =
1
8

ζ
(

V̇j

Afree

)2

·

(
6εl

dL
+a

)
·

ρv, j ·h j

(ε − εl)4.65

(18)

Since the staggered grid approach is used, for the
pressure differencepin − p1 and for the pressure dif-
ferencepn − pn+1 the height of the discrete element,
h, is divided by 2.

In order to make things easier for the nonlinear
solver, the equations are written in the forṁVj = ...;
only for the inlet volume flow rate the equation re-
mainspin = f kt

(
V̇in, p1,etc.

)
.

3 Media Modeling

3.1 Physical and Thermodynamic Property
Package

A very important part when modeling separation pro-
cesses are the medium models. As shown in figure 1,
models for a liquid and a gas phase as well as a model
for the equilibrium at the phase boundary are neces-
sary.

The Modelica Standard Library provides the
Modelica.Media package. This package provides
medium models of ideal mixtures of ideal gases and
liquids. If this phase behavior is not adequate for the

modeled process other medium models are needed.
Since implementing the mediums of interest in Mod-
elica is very time consuming and complex, an exter-
nal media interface to existing physical and thermody-
namic property packages is preferable in such a case.
Casella and Richter proposed the ExternalMedia li-
brary in order to include external fluid property code,
[4]. As an example this library provides the interface
to FluidProp of TU Delft [6] which is itself an inter-
face to different medium databases.

The ExternalMedia library however only provides
access to multi-phase pure substances but not for
multi-phase-multi-component mediums. Since the au-
thors of the ExternalMedia library provided access to
the C++ interface, this interface was changed in order
to have access to the mixtures also.

Figure 3 shows a class diagram of the modified in-
terface layer consisting of C++ objects. Beside the
TwoPhaseMedium a TwoPhaseMixture object
was introduced to handle the extra functionality that is
needed to compute the properties of a mixture in con-
trast to a pure substance. To make the new object to fit
in the library structure and to preserve the present in-
terface some of the existing classes had to be changed.
Most of these changes were expansions of the for-
mer function templates to accept parameter for the
mixtures likenComp for the number of components.
The additional parameters were located at the end of
the argument list of each functions and given default
values. For example the classTwoPhaseMedium
could remain unchanged, although arguments were
added to functions inBaseTwoPhaseMedium al-
lowing TwoPhaseMixture to inherit. To access the
mixture properties via theTwoPhaseMixture ob-
ject functions were added to the ModelicaExternal-
MediaLib front-end and the C interface layer.

Using two phase mixtures from theNIST Refer-
ence Fluid Thermodynamic and Transport Properties
Database(REFPROP) [9] with the ExternalMedia li-
brary by the FluidProp interface shaped up to be quite
inappropriate. First the calculation of properties from
pressure, enthalpy and composition are quite slow,
about 50ms per function call. This leads due to sev-
eral hundred to thousand function calls per time step
to very large simulation times. Second some functions
seem to be discontinuous, which can cause the simula-
tion to crash. Both of these facts are disadvantageous
above all in iterations of the non-linear solver.

However it would be a very useful tool not only
for this library to have an interface to external media
packages which are designed for process simulation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 808

BaseTwoPhaseMedium

COFESolver

BaseSolver

TwoPhaseMixture

SolverMapMediumMap

FluidPropSolver

FluidConstants

TwoPhaseMediumProperties

TwoPhaseMedium

n n

Medium Solver

Figure 3: UML class diagram of the changed ExternalMedia C++layer. A dotted box indicates a rewritten
class. A new class is marked with a gray filled box or a black box, if it is in the planning stages.

For this purpose the interface standardCAPE-OPEN
[1] has been developed by theCAPE-OPEN Labora-
tories Networkat the beginning of this decade. [11]
describe the use of such an interface to use thermo-
dynamic and property data from an external tool in a
Modelica model of a distillation column.

There are several commercial process engineering
tools, which use this interface to exchange unit oper-
ation models or thermodynamic and physical property
packages. One interesting tool is the free-of-charge
COCO simulation environment [5], which contains
TEA (COCO’s Thermodynamics for Engineering Ap-
plications). TEA contains routines to calculate mul-
tiphase mixture properties. It also can access other
property packages by theCAPE-OPENinterface. So
there is the plan to implement a new solver object
COFESolver to accessTEAfrom the ExternalMedia
library. This would allow Modelica models to access
a wide range of simulation approved thermodynamic
and physical property packages.

3.2 Non-equilibrium Modeling

One major problem using property packages of mix-
tures is that thermodynamic equilibrium is always as-
sumed. That is for a certain compositionxmix (see
figure 4) the medium is decomposed in two phases
with the equilibrium mole fractionsx∗A andy∗A . There-

fore the thermodynamic properties like for instance the
specific enthalpy for liquid and for vapor phase corre-
spond the equilibrium compositions. However as in
non-equilibrium models mass transfer is taken into ac-
count in one stage the medium is not decomposed in
a liquid phase withx∗A and a vapor phasey∗A but in a
liquid phase withxA and a vapor phase withyA .

But most media models are not able to provide
for instance the specific enthalpy at a temperatureϑ∗

and a liquid compositionxA , since in equilibrium the
medium would not be single phase at these conditions.

0 0.5 1

te
m

p
er

a
tu

re

mole fraction of substance A

y
A

y
*

A

x
A

x
*

A

x
mix

ϑ∗

Figure 4: Decomposition of a mixture with mole frac-
tion xmix into two phases with the compositionx∗A and
y∗A (mass and thermal equilibrium) orxA andyA (only
thermal equilibrium between the two phases)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 809

For the current library the problem was solved in
a way that the mixing of the different media is per-
formed in the medium interface, so it is independent
whether the properties are calculated in a Modelica
model or external code. The mixing is performed
ideal, where in case of a liquid phase for all compo-
nents, whose bubble temperature is below the actual
temperature, the enthalpy at boiling point is used. i.e.
the enthalpy of liquid phase with a composition cor-
responding to a point in the two phase regionxA is
computed the following way:

hl = xA ·h′A +(1−xA) ·hB (19)

If the enthalpy of a vapor phase is computed, for all
components, whose dew temperature is above the ac-
tual temperature, the enthalpy at dew point is used. So
the vapor composition results in:

hv = yA ·hA +(1−yA) ·h′′B (20)

This introduces however an error in the thermophysi-
cal properties and a careful failure analysis has to be
done before using the results.

4 Example of Use

In this section one example of use is presented. As
an example the purification of flue gas of a waste in-
cineration plant was chosen, since in this case media
from ModelicaMedia can be used after some small
modifications. The flue gas consists of a mixture of
N2, O2, H2O, CO2, SO2, HF and HCl. In a first ab-
sorber this flue gas is brought in contact with water
in order to primarily remove HF and HCl. This ab-
sorber is modelled. The flue gas enters the absorber at
the bottom, with a temperature well above 100◦C; the
water enters the column at the top, with a temperature
around 50◦C. The absorber is a spray absorber, i.e. the
necessary contact area is achieved by spraying small
droplets of liquid in the air stream. The gases are then
absorbed by the water, whereas water evaporates. At
the column outlet a part of the liquid is purged, the rest
is mixed with pure water and re-used. Such a system
was for example also investigated by [8].

All gaseous components, beside N2 and O2 dissoci-
ate in the liquid phase. In this example, only the dis-
sociation of SO2 is considered, since here the dissoci-
ation is strongest. The reaction equation is as follows:

SO2aq+H2O⇐⇒ H+ +HSO−
3 (21)

Figure 5: Modelling of a HF-HCl - absorber

For all gaseous components besides H2O equa-
tion (10) is used for the calculation of the phase equi-
librium (where the Henry-coefficient was calculated
temperature dependent), for water equation (9) is used.
The components H+ and HSO−3 do only exist in the
vapour phase. Please note: not much emphasis was
put on the task to gather all necessary parameters of all
components (for example the necessary coefficients in
order to calculate the temperature dependency of the
Henry-constant). In this case reasonable assumptions
were used. This example shall show in the first place
that the simulation works and that it gives reasonable
results.

0 50 100 150 200

30

40

50

60

70

80

time in s

ϑ
in

◦
C

Figure 6: Vapour temperatures in the column (black
lines) and temperature of fresh water (blue dot-and-
dashed line) and water at column inlet (red dashed
line)

In this example the vapour flow inlet is halved at
t = 100s once steady state is obtained. Some results
are shown in the following figures. Figure 6 shows the
vapour temperature some of the stages. The highest

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 810

0 50 100 150 200
0

1

2

3

4

5

6

time in s

c
in

m
ol

/m
3

Figure 7: Liquid concentration of SO2 (black ◦), H+

(blue⋄) and HSO−3 (red⊲)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

time in s

y
in

m
ol

/m
ol

Figure 8: Vapour concentration of SO2 (black), HCl
(blue) and HF (red) at column inlet (solid) and column
outlet (dashed)

temperature correspond to stage 1. The vapour en-
ters the column at 144◦C, the fresh liquid water has
a temperature of 50◦C (blue dot-and-dashed line) the
temperature of the recycled liquid water is denoted by
the red dashed line (here, 80% of the water is recy-
cled). Obviously the vapour temperature goes down
when the vapour flow is reduced.

In figure 7 the concentration in the liquid of SO2,
H+ and HSO−3 is shown. As can be seen in the reac-
tion equation, the concentration of H+ and HSO−3 are
equal. The ratio ofcH+ · cHSO−

3
to cSO2 correspond to

the equilibrium constant of the reaction.
Figure 8 finally shows the vapour concentration of

the components to separate at the column inlet (solid
line) as well as at the column outlet (dashed line). The
concentration of HCl and HF at the column inlet are
equal.

5 Conclusion & Outlook

This paper proposed a Modelica-library for the mod-
eling of simulation processes. The different column
types can be used: spray, packed and tray column. All
columns extend from the same base class where the
mass and energy balance is established for the liquid
as well as for the vapour phase. This also allows to
calculate non-equilibrium states, where the thermody-
namic equilibrium only exists at the phase boundary.
The molar flow rate which results due to the differ-
ence between bulk concentration and the concentration
at the phase boundary is calculated using empirical
equations for mass transfer coefficients and interfacial
area. However it is also possible to use an equilibrium
model. In this case the Murphree tray efficiency can
be used in order to describe the deviation from equi-
librium in tray columns.

In order to avoid the implementation of medium
models in Modelica, theExternalMedia from
[4] was adapted to account also for multi-phase -
multi-component mixtures. Since it turned out that
the databases which can be easily accessed by the
ExternalMedia are not suitable for process simu-
lation, it is proposed to allow the use of the CAPO-
OPEN interface standard since this would give ac-
cess to thermodynamic and physical property pack-
ages more suitable for process simulation.

Nomenclature

A inner cross-sectional area of the column in m2

Afree solid-free cross-sectional area in m2

a specific area in m2/m3

c concentration in mol/m3

c heat capacity in J/kg/K

d diameter of the column in m

E enhancement factor in

g gravitational acceleration in m/s2

Ḣ enthalpy flow rate in W

h height of one discrete element in m

h specific enthalpy in mol/m3

k mass transfer coefficient in m/s

L̇ liquid volume flow rate in m3/s

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 811

M molar mass in kg/mol

Ṅ molar flow rate in mol/s

n number of discrete elements

nS number of substances

p pressure in Pa

Q̇ heat flow rate in W

T temperature in K

t time in s

u specific inner energy in mol/m3

V̇ vapour volume flow rate in m3/s

V volume of one element in m3

v velocity in m/s

x liquid composition in mol/mol

y vapour composition in mol/mol

Greek symbols

ε hold up in mol/mol

ε void fraction

ηMurphree tray efficieny of Murphree

γ activity coefficient

φ fugacity coefficient

ρ density in kg/m3

ϑ temperature in◦C

ζ drag factor

Subscripts

fromL coming from liquid phase

fromV coming from vapour phase

i componenti

j stagej

l liquid

s solid

t transfer

v vapour

Superscripts

bulk bulk phase

m molar

sat saturation

′ property at bubble point

′′ property at dew point

∗ equilibrium

References

[1] The CAPE-OPEN Laboratories Network.
http://www.colan.org/, visited on
August 2009.

[2] Casella, Francesco and Alberto Leva:Modelica
open library for power plant simulation: de-
sign and experimental validation. In Proceedings
Modelica Conference 2003, pages 41–50, 2003.

[3] Casella, Francesco, Martin Otter, Katrin Prölß,
Christoph Richter, and Hubertus Tummescheit:
The Modelica Fluid and Media library for
modeling of incompressible and compressible
thermo-fluid pipe networks. In Proceedings
Modelica Conference 2006, pages 631–640,
2006.

[4] Casella, Francesco and Christoph Richter:Exter-
nalMedia: A Library for Easy Re-Use of Exter-
nal Fluid Property Code in Modelica. In Pro-
ceedings Modelica Conference 2008, pages 157–
161, 2008.

[5] COCO: cape open to cape open simulation envi-
ronment. http://www.cocosimulator.
org, visited on August 2009.

[6] FluidProp: Software for the calculation of ther-
mophysical properties of fluids. http://
fluidprop.tudelft.nl/, visited on Jan-
uary 2009.

[7] Goedecke, Ralf (editor): Fluid-
Verfahrenstechnik. Wiley-VCH, 2006.

[8] Malzkorn, Rainer:Simulation eines Rauchgass-
prühwäschwers mit aufwärts gerichteten Düsen.
PhD thesis, Ruhr-Universität Bochum, 1999.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 812

[9] NIST Reference Fluid Thermodynamic and
Transport Properties Database. http://
www.nist.gov/srd/nist23.htm, visited
on June 2009.

[10] Reid and Prausnitz:The Properties of Gases &
Liquids. McGraw-Hill, 4th edition, 1987.

[11] Sandrock, Carl and Philip L. de Vaal:Dynamic
simulation of Chemical Engineering systems us-
ing OpenModelica and CAPE-OPEN. In Je-
zowski, J. and J. Thullie (editors):19th European
Symposium on Computer Aided Process Engi-
neering - ESCAPE19. Elsevier B.V./Ltd., 2009.

[12] Stichlmair, Johann:Grundlagen der Dimensio-
nierung des Gas/Flüssigkeits-Kontaktapparates
Bodenkolonne. Verlag Chemie, 1978.

[13] Swaaij, W.P.M. van and G.F. Versteeg:Mass
Transfer Accompanied With Complex Reversible
Chemical Reactions In Gas-Liquid Systems:
An Overview. Chemical Engineering Science,
47:3181–3195, 1992.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 813

Modeling of Rotary Kilns
and Application to Limestone Calcination

Uwe Küssel1 Dirk Abel1 Matthias Schumacher2 Martin Weng2

1RWTH Aachen University, Institute of Automatic Control
Steinbachstraße 54A, D-52074 Aachen

2Aixprocess, Process and Fluid Engineering
Alfonsstrasse 44, D-52070 Aachen

Abstract

This paper presents the one dimensional modeling of
rotary kilns used for energy intensive production pro-
cesses. Raw material is fed into an inclined rotating
kiln and heated by counter current gas flow. Chemical
reactions take place in the bed of raw material as well
as in the gas phase. Heat and mass transfer between
the bed and the gas phase are implemented. Also the
heat transfer to the environment is taken into account.
As a benchmark, the process of limestone calcination
is chosen. Results are compared with computational
fluid dynamic simulations.

Keywords: CaCO3, calcination, CFD comparison,
kilns, limestone, rotary kilns, simulation

1 Introduction

Unhydrated lime is used as a raw material for many
products in chemical industry. The limestone calci-
nation, as an energy intensive production process for
unhydrated lime, is often performed in continuously
operating rotary kilns. Until today, the process is man-
ually operated and despite existing approaches the use
of automatic control is very uncommon. Due to the hot
and dusty atmosphere inside the drum, thermodynamic
states used as controlled variables by an expert system
are hardly measurable in a reliable way. In heat driven
chemical production processes such as limestone pro-
duction measured data like a temperature as one ther-
modynamic variable of the process (often most easily
to measure) is not sufficient to estimate the chemical
rate of degradation of CaCO3. To overcome this prob-
lem dynamic physical and chemical models can be ap-
plied to predict the behavior of dependent measures.
By comparing the results of the modeling to current
plant measurements the states of independent variables

become available to close the control loop. To be ap-
plicable to an expert system, the very complex model
of the process has to be capable of real-time operation
anyway and thus, several assumptions and simplifica-
tions have to be done.

As a first step to the automatic control of continu-
ously operating rotary kilns, a detailed model of this
process is developed. The model abstracts from re-
ality by assuming one dimensional (1-D) counter cur-
rent flow of the raw material phase (bed phase) and the
gas phase. The bed and gas phase are surrounded by
a combination of isolating refractory and steel shells.
Two reactions are implemented, one for the production
of heat and one for the calcination itself. Methane is
oxidized in the gas phase in order to supply the neces-
sary energy to the process and limestone is calcinated
in the bed phase consuming energy due to an endother-
mic degradation process. Heat and mass transfer take
place between the counter current flows and the envi-
ronment. The paper is structured as follows: In chapter
2 the abstraction to 1-D counter current flow is shown.
Additionally, the mechanisms of reactions and heat
transfer are described. In chapter 3 the computational
results with Dymola are analyzed in detail. For vali-
dation, the results are compared to computational fluid
dynamics (CFD) simulations in chapter 4. Chapter 5
concludes the paper with an outlook of future investi-
gation.

2 Modeling of rotary kilns

The rotary kiln is modeled using a 1-D approach. The
flows of gas and bed phase are counter current. The
rotary kiln itself consists of an isolation and a steel
shell. This abstraction is depicted in Figure 1.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 814 DOI: 10.3384/ecp09430084

Figure 1: Rotary kiln with 1-D balance element

2.1 Modeling of the gas phase

The gas phase model is based on the DynamicPipe
model of the Modelica fluid library [1]. It is extended
by dynamically changing cross sectional areas due to
bed heights. Replaceable models of radiative and con-
vectional heat transfer are integrated and will be dis-
cussed in section 2.6. In addition, the gas phase is
equipped with a replaceable chemical reaction model
in order to cover the oxidation of mixed gaseous hy-
drocarbons (i.e. in this case Methane only), details are
covered in section 2.5.

The balancing equations with a dynamic momen-
tum balance are formulated in [2]. Using a finite vol-
ume approximation and setting the momentum bal-
ance to be static, the equations (1)-(3), corresponding
to a single slice used in the DynamicPipe model, are
derived. To avoid obscurity, additional equations cov-
ering multi-component media are not given in this for-
mulation.

dmi

dt
= ṁi+ 1

2
+ ṁi− 1

2
+ ⋅ ⋅ ⋅ (1)

0 =
ṁ2

i+ 1
2

Ai+ 1
2

pi+ 1
2

−
ṁ2

i− 1
2

Ai− 1
2

pi− 1
2

(2)

+Ai

(
pi+ 1

2
− pi− 1

2

)
−FFFV −Aiρigδ z

dUi

dt
= Ḣi+ 1

2
+ Ḣi− 1

2
(3)

+viAi

(
pi− 1

2
− pi+ 1

2

)
+ ⋅ ⋅ ⋅

for slice i = 1, . . . ,n

Source terms for heat, namely radiational and con-
vectional contributions, are added to the right hand
side (RHS) of the energy balance in equation (3). Mass
transfer between bed and gas phase due to degradation
of CaCO3 (releases CO2) and changes in the compo-
sition of the gas phase due to the oxidation of gaseous

hydrocarbons are added to the RHS of the mass bal-
ance in equation (1). Including the heat of formation
of all components implicitly adds the contribution of
chemical reactions to the energy balance while only
considering mass balance changes. For the longitudi-
nal gas flow and the heat transfer standard connectors
are used. For the gaseous exchange between gas and
bed signal oriented connectors for each direction are
designed using the same exchange medium (O2, CO,
CO2, H2O).

All cross sectional areas, and hence corresponding
volumes, in these equations are dynamically changed
due to changes in bed height. Therefore, the informa-
tion of the bed’s cross sectional area is transmitted via
input output relation to the gas phase. Finally, data
on gas phase properties are provided for other compo-
nents by an output connector.

2.2 Modeling of the bed phase

The bed phase is modeled by mass and energy bal-
ances.

dmi

dt
= ṁi+ 1

2
+ ṁi− 1

2
+ ⋅ ⋅ ⋅ (4)

with ṁi+ 1
2
= ρiV̇i+ 1

2

dUi

dt
= Ḣi+ 1

2
+ Ḣi− 1

2
+ ⋅ ⋅ ⋅ (5)

Heat and mass transfer is included similarly to gas
phase modelling via source terms to the RHS of the
balance equations. The transport of material through
the rotary kiln is specified by equation (6), which is
commonly known as Kramers equation [5].

V̇i+ 1
2
=

4
3

πωR3
(

tanα

sinβ
− dhi

dx
cotβ

)(
2

hi

R
− h2

i

R2

) 3
2

(6)
The volume flow rate is a function of the rotation

frequency ω , the inner radius of the pipe R, the inclina-
tion of the kiln α , the materials angle of repose β , the
height of material h and the corresponding gradient dh

dx .
This differential equation in terms of the height is sim-
plified by rearranging and approximating the height
and the corresponding gradient with the equations (7)
to (9).

hi = R− (Rcos(ϕi/2)) (7)
dhi

dx
= (R/2)sin(ϕi/2)

dϕi

dx
(8)

dϕi

dx
≈ (ϕi+1−ϕi)/(L/n) (9)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 815

The mid point angle of the bed phase is denoted by
ϕ , the length of the rotary kiln by L and n is the number
of slices in the rotary kiln. All geometric details for
gas and bed phase are calculated using the mid point
angle. The calculation of ϕi = f (Ai) is presented in
section 2.4.

2.3 Modeling of the shells

The isolation and steel shells are modeled by an en-
ergy balance for the corresponding material volume
resulting from the 1-D balancing elements. Heat trans-
fer, and hence the temperature profile, is realized using
Fourier’s relation for heat conduction in solid material.
In principle, the shells are structured as grids consist-
ing of heat capacitors and thermal conductors likewise
modeled in the modelica standard package. Heat trans-
fer is possible in two directions, namely longitudinally
and transversely to the flow direction in the rotary kiln.
Geometric and material properties are parameters of
the model. Standard heat connectors are used.

2.4 Mid point angle approximation

All geometric properties for gas and bed phase can
easily be calculated using the mid point angle ϕ of the
bed phase. Nevertheless, the angle has to be calculated
from the cross sectional area of the bed phase, which
is a direct result of the mass balance in every bed slice
of the rotary kiln. This is shown in equation (10).

Ai = (mi/ρi)/(L/n) (10)

The relation between the cross sectional area Ai of
a single slice and the mid point angle ϕi is implicitly
given with the equations (11)-(12).

0 = −P+(ϕi− sinϕi) (11)

P = 2Ai/R2 (12)

In order to avoid additional nonlinear equations, the
relationship given with equation (11) is numerically
solved for ϕ in a range of P between 1.25 ⋅ 10−5 and
2π . The corresponding pairs are then used for a least
square fit in order to find a good approximation for
ϕ = f (P). The function ϕ = f (P) is given with equa-
tion (13).

ϕ = a0 log(P)+a1 (1/P)+a2P
1
2

+a3P+a4P2 +a5P3 +a6P4 (13)

+a7P5 +a8P6 +a9

The error between the approximation and original
data pairs is given in Figure 2.

Figure 2: Approximation error for ϕ = f (P)

The adapted relationship ϕ = f (P) is implemented
as a function and integrated in both the gas and bed
phase in order to calculate the mid point angle and
subsequently all geometric characteristics of the rotary
kiln.

2.5 Mechanism of chemical reactions

The replaceable chemical reaction model is designed
as a reactant limited elementary reaction using an Ar-
rhenius type approach for the reaction kinetics. The
reaction kinetics approach is shown with the equation
(14).

k = B ⋅T n ⋅ e−
Ea
R⋅T (14)

The preexponential coefficient B, the activation en-
ergy Ea and n are free parameters which will be used
to fit the model to CFD simulation data. Generally
speaking, this fit is necessary since, on the one hand,
no reliable chemical reaction data is available for such
a set up of coupled ideal reactors and, on the other
hand, the model is not able to cope with local condi-
tions due to low resolution and the lack of adequate
models. For example, the oxidation of mixed gaseous
hydrocarbons (i.e. in this case CH4 only) is mass trans-
fer limited and therefore, an ideal mixed reactor needs
to be adapted using the averaged chemical reaction ki-
netics.

The rate of degradation (massflow) for each com-
ponent is calculated using the relationship given with
equation (15).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 816

ṁ j = kV λ jM j

k=1

∑
l

Cλk
k (15)

In this relationship, the velocity of reaction k is cou-
pled with the volume of the reaction element V , the
molar mass M and the stoichiometric cofficient λ for
each component (index j over all components). The
approach is reactant limited assuming an elementary
reaction order. Hence, the molar density C to the
power of the stoichiometric coefficient λ sums up over
all reactants k of a reaction.

For the bed phase, the degradation of CaCO3 is im-
plemented. The chemical reaction is given with equa-
tion (16).

CaCO3 =⇒CaO+CO2 (16)

Energy is chemically provided by the combustion of
CH4, equation (17) holds.

CH4 +2O2 =⇒CO2 +2H2O (17)

In principle, various reactions are possible, as long
as the defined medium covers all components and the
stoichiometric coefficients are defined.

2.6 Mechanisms of heat transfer

For the heat transfer between the gas and bed phase
as well as the isolation shell convectional and radia-
tional mechanisms are implemented. For convectional
heat transfer between the gas and its corresponding ex-
change partner, the heat transfer coefficient α is de-
pendent on the Reynolds number Re, the Prandtl num-
ber Pr and the Nusselt number Nu. The general con-
vectional heat transfer equation in terms of α is shown
with equation (18).

Q̇conv 1↔2 = α12A12 (T1−T2) (18)

Various heat transfer models for the gas phase solid
interaction are implemented in the Modelica fluid
library [1]. Additionally, two relationships for Nusselt
numbers are given in [10]. The equations are shown
with (19) and (20).

Nu =
ξ/8(Re−1000)Pr

1+12.7
√

ξ/8
(
Pr2/3

) [1+
(

Dh

L

) 2
3
]
(19)

ξ = (1.82 ⋅ log10(Re)−1.64)−2 (20)

2300 < Re < 106, Dh/L < 1

Within small deviations in the range of Pr,
0.5 < Pr < 1.5, the simplified equation (21) can be
used.

Nu = 0.0214
(
Re0.8−100

)
Pr0.4

[
1+
(

Dh

L

) 2
3
]
(21)

All the models calculate α in a similar range from
8−10 W/m2K.

Convectional heat transfer between the bed phase
and the isolation is also realized with the heat trans-
fer coefficient α and equation (18). α is calculated
from various process parameters using two different
approaches which are described in detail in [8]. Typi-
cal values are said to be 50≤ α ≤ 200 W/m2K

Also, models with constant α are possible to
choose. The heat transfer models are designed to be
replaceable in order to enable the choice between dif-
ferent heat transfer mechanisms as described above.

Radiation between the bed, the gas and the isolation
is modeled using equation (22).

Q̇rad 1↔2 = ε12A12σ
(
T 4

1 −T 4
2
)

(22)

The referenced area for radiational heat transfer be-
tween transfer object 1 and 2 is given with A12. The
emissivity coefficient ε12 relates the visibilty between
area A12 and A21 and the emissivity of corresponding
objects. There are three emissivity coefficients to be
calculated, namely wall→ bed (wb), wall→ gas (wg)
and bed → gas (bg). The formulas for calculating
these coefficients are given with equation (23) to (26).

εwb =
εwεb (1− εg)

U
(23)

εwg =
εwεg (1+Φ(1− εg)(1− εb))

U
(24)

εbg =
εbεg (1+Φ(1− εg)(1− εw))

U
(25)

U = 1− (1− εg)(1− εw)

(1−Φ(1− (1− εb)(1− εg))) (26)

The variable Φ is defined as the ratio between the
free bed area (surface) and the free isolation area. De-
tails about the derivation can be found in [4]. The
values of emissivity are almost constant over length x
and temperature T with εwb = 0.184, εwg = 0.695 and
εbg = 0.615.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 817

3 Computational results

The model is designed and numerically integrated
within the Dymola modeling environment. The set up
is depicted in the Figure 3.

Figure 3: Dymola model of a rotary kiln

The black and the grey objects denote the steel and
isolation shell, respectively, with different geometric
and material parameters. Inside the pipe, there is
counter current flow of the gas phase (blue element)
and the bed phase (limestone material, grey element).
Different mechansims for heat and mass transfer as
well as chemical reactions are chosen as described
earlier in this paper. Further components, e.g. crust
of semi liquefied limestone, can be added but are not
modeled in this contribution.

The calcination process (degradation of CaCO3) is
shown in Figure 4.

The system is initialized at 273.15 K and atmo-
spheric pressure (time [s]: 0-3000). In a next step, the
system is brought to the operating point by increasing
temperature of the incoming mass flows of the bed and
the gas phase (time [s]: 3000-13000). This procedure
is followed by the intial increase of the combustion
gas massflow (time [s]: 13000-250000, massflow step
[kg/s]: 0.1-1.2692). It is clear to see that the rate of
CaCO3 degradation intensifies as the temperature in-
creases. A second step to the combustion gas massflow
is applied after 300000 seconds (massflow step [kg/s]:
1.2692-2.5392). Again, the degradation of CaCO3 in-
creases. The increase of degradation, while applying
these steps to the combustion gas flow, is due to the

Figure 4: Degradation of CaCO3 through calcination

increase of temperature and the endothermic character
of the calcination reaction. The increase of tempera-
ture for the main components of the rotary kiln (steel,
isolation, gas and bed phase) is depicted in Figure 5

Figure 5: Temperature of steel, isolation, bed and gas
phase

While the gas phase (red) responds extremely fast
to the step in combustion gas massflow, the bed phase
(yellow) is slower. The isolation (turquoise) and steel
(blue) shell are even slower in their step response. The
different time constants of the process can be recog-
nized by an exemplary inspection of Figure 6 to 7.

It is easy to observe the small time constant of the
gas response lying in the range of 10-200 seconds.

For the isolation shell, the time constant of reponse
lies in the range of 20000-30000 seconds. This ex-
plains the stiffness of the system and the necessity of
stiff numerical solvers for simulations. Furthermore,
these time constants correspond to the known time
constants from process industry, which implies that

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 818

Figure 6: Temperature response of gas phase due to
combustion gas step

Figure 7: Temperature response of isolation due to
combustion gas step

the dynamical behaviour of the model reliably rep-
resents the calcination process. Although the steady
state values of the operating point also correspond to
the known values from process industry, this modeling
approach is justified even more by comparing its val-
ues to CFD simulation results in the following chapter.

4 Comparison to CFD simulations

Computational fluid dynamics (CFD) is a widely ac-
cepted tool for the detailed description of gaseous
combustion phenomena occurring within a rotary kiln
[6],[3]. Unfortunately, it does neither allow for the
modeling of transport of the solid bed nor for the theo-
retical description of the chemical reactions therein. In
the current work, different sub-models have been inte-
grated in the commercial CFD code Fluent in order to
model the dynamics of the granular flow of the lime-

stone particles and the coupling of gas and solid phase.
Since this work mainly focuses on the 1-D model of
the limestone calcination process, only a short sum-
mary of the models used in the CFD simulations will
be given here.

4.1 Introduction of the CFD rotary kiln
model

The three dimensional computational domain of the
freeboard in the kiln is bounded by the refractory and
the surface of the solid bed. The methane burner ex-
tends into the kiln on one end of the drum (Figure 8).

Figure 8: 3-D computational domain of the limestone
rotary kiln

Steady state conservation equations of the com-
pressible gas flow are solved considering the realiz-
able k-ε-model for turbulent effects in the gas phase.
Transport of four separate species (O2, CH4, CO2 and
H2O) is calculated explicitly in the gas phase, while
the fifth one (N2) sums to unity. Combustion rates
of methane oxidization are assumed to be limited by
the mixing of turbulent eddies and thus, the eddy-
dissipation model is used to predict reaction rates of
the volumetric reactions in the gas phase. Energy
transport phenomena include conduction, convection
and radiation (P-1 model), while the latter plays the
major role in rotary kiln processes. Absorption of the
gas mixture is mainly affected by the product con-
stituents of the gas (CO2 and H2O). Therefore the
wsggm-cell-based model is applied to calculate the lo-
cal absorption coefficient of the gas mixture. A sig-
nificant amount of energy discharges into the environ-
ment. Conduction driven heat transfer through the re-
fractory is being calculated explicitly by applying a
computational grid to this region also. On the outer

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 819

surface of the kiln two heat transfer mechanisms are
considered: convection and radiation.

Thermal coupling between gas and solid phase is re-
alized by setting a temperature profile on the bed sur-
face. For this purpose mass, species and energy con-
servation equations within the particulate solid bed are
solved by implementing a mathematical submodel for
the solid bed. Since it has recently been proven, that
axial mixing can be neglected in industrial rotary kiln
processes, transport of the solid bed can be simplified
by assuming a plug flow [9]. Additionally the bed is
assumed to be well mixed locally in any given cross
section.

Limestone calcination can be modeled as a shrink-
ing core process with surface reaction control accord-
ing to equation (27) [7].

dmCaCO3

dt
=−k0 exp

(
− EA

RTp

)
⋅4π r2

p Np MCaCO3

(27)
Herein rp and Np represent the mean particle ra-

dius and the total number of limestone particles, re-
spectively. CO2 released by the calcination reaction is
assumed to be transported instantaneously to the hot
flow by neglecting any transport resistance in the solid
bed. It is released in the computational space of the
hot gas flow by adding mass and species sources in the
cells adjacent to the bed surface.

In Figure 9 the contour plot of the local gas tem-
perature on the center plane is shown as an exemplary
result of the CFD simulations.

Figure 9: Contour plot of the local gas temperature on
the center plane in [K]

In order to justify the 1-D abstraction of the process
modeled within the Dymola environment, the compu-
tational results are compared to the highly resolute re-
sults of the CFD simulations. For this purpose, volume
based average values Θ̄V, j of the CFD simulation data
are calculated for a discrete number of slices in the gas
phase. Due to the strongly anisotropic flow field in the
vicinity of the burner mass and velocity weighted av-
erage has to be applied for the potential variables. This
is shown in equation (28).

Θ̄V, j =
∑Ncells

Θi ρi Ai vi,ax

∑Ncells
ρi Ai vi,ax

(28)

In equation (28), Vi as the volume of each single
cell inside the discrete slice and vi,ax as the local axial
velocity of the gas mixture are used to calculate the
volume based average of slice j for each scalar Θ.

Since plug flow has been assumed in the clinker bed,
equation (28) can be simplified to the volume weighted
average for all potential variables in the solid phase as
given in equation (29).

Θ̄
s
V, j =

∑Ncells
ΘiVi

∑Ncells
Vi

(29)

In contrast, flow variables such as reaction rates
need to be integrated within each single control vol-
ume in the gas and in the solid domain, respectively.
For these data equation (30) is valid.

ΘV, j = ∑
Ncells

Θi (30)

4.2 Comparison

Geometrical parameters and boundary conditions are
chosen to be equal in both simulation environments.
In addition, the free chemical reaction parameters
(B,n,Ea) for adapting the model are fitted to CFD sim-
ulation data by applying a least square fit using equa-
tion (15). Therefore, the CFD simulation data are con-
centrated in larger 1-D cells by applying the above de-
scribed weighting functions. After model adaption via
least square fit, a Dymola simulation to steady state is
performed. The simulated data from the Dymola simu-
lation environment are then compared to the weighted,
concentrated CFD simulation data. The essential val-
ues of the process are compared. This includes tem-
perature profile of gas and bed phase, molar densities
of O2 and CH4 in the gas phase as well as molar den-
sity of CaCO3 in the bed phase (controlled variable for
future model predictive control).

Figure 10 shows the temperature profiles of the gas
phase for Dymola and CFD simulation.

In the next figure (Figure 11), the consumption of
O2 and CH4 is depicted.

The figures show a similar behaviour of the gas
phase in both simulation environments. For the error
e holds e < 2%. On first inspection, this seems to be
a good result. Nevertheless, the more relevant data for
intended controlling of the rotary kiln process is the
temperature and the concentration of components in

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 820

Figure 10: Comparison of gas phase temperature

Figure 11: Comparison of gas phase molar density of
O2 and CH4

the bed phase. Figure 12 shows the temperature of the
bed phase.

Despite the different scaling of the graph, for the er-
ror e holds e < 3%. The next figure (Figure 13) shows
the degradation of CaCO3 in the bed phase using the
molar density as depicted variable. The maximum er-
ror for the molar density of CaCO3 is e = 6.6%. Al-
though this value is slightly higher than the previous
errors, the 1-D modeling approach is successfully ap-
plied. Various alternative values of the process were
compared, yielding to the same outcome. The main
advantage of the 1-D modeling approach is the pos-
siblity of faster simulations while deviations are kept
small enough in the scope of robustness in terms of ob-
server based model predictive control. While the simu-
lation until convergence in the CFD environment takes
up to several days, the simulation of the Dymola model
takes seconds to minutes depending on the change of
input variables. Another enormous advantage of the 1-

Figure 12: Comparison of bed phase temperature

Figure 13: Comparison of bed phase molar density of
CaCO3

D modeling approach is the use of the 1st principles for
physical abstraction. Since the identified data based
models are only valid in the range of measured data,
the nonlinear 1-D model of the rotary kiln will have a
wider range of validation. Furthermore, the simulated
data sets are always open to physical interpretation and
hence, are easier to check for plausibility.

5 Outlook

In a first step, the complex counter current flow pro-
cess of rotary kilns is modeled and applied to the lime-
stone degradation. First results show reasonable be-
haviour of the process physics. The comparison to
CFD simulation data confirms these results. The es-
sential process parameters are compared and the errors
are small enough to allow for application in observer
based model predictive control application. In addi-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 821

tion, the modeling approach has a lower computational
burden and results in linearizations which are capable
of real-time application in an expert system.

For the future, details in both models will be refined
in order to get even better results. Furthermore, the
model is going to be enhanced with a particle burner
and applied to the chemically more complex cement
production process. The task of automatic least square
fit for the free chemical parameters of the model will
be enhanced in order to cover the more complex ce-
ment production process. A detailed report on both
topics will soon be published. Alongside with the en-
hanced model, linearizations of the nonlinear model in
desired operating points will be derived. Using these
linearizations, an observer for immeasurable process
values will be established. Furthermore, a model pre-
dictive control will be designed in order to hold a de-
sired operating point of the plant.

References

[1] F. Casella, H. Tummescheit, and M. Otter.
Modelica fluid library
www.modelica.org/libraries/
modelica_fluid/releases/1.0, 2009.

[2] H. Elmqvist, H. Tummescheit, and M. Otter.
Object-oriented modeling of thermo-fluid sys-
tems. Modelica Association, November 2003.

[3] M. Georgallis, P. Nowak, M. Salcudean, and
I.S. Gartshore. Modelling the rotary lime kiln.
Canadian Journal of Chemical Engineering,
83(2):212–223, 2005.

[4] R. Jeschar, R. Alt, and E. Specht. Grundlagen
der Wärmeübertragung. Viola-Jescher Verlag,
1990.

[5] H. Kramers and P. Croockewit. The passage
of granular solids through inclined rotary kilns.
Chemical Engineering Science, 1(6):259–265,
1952.

[6] F. Marias, H. Roustan, and A. Pichat. Modelling
of a rotary kiln for the pyrolysis of aluminium
waste. Chemical Engineering Science, 60:4609–
4622, 2005.

[7] K.S. Mujumdar, K.V. Ganesh, S.B. Kulkarni,
and V.V. Ranade. Rotary cement kiln simulator
(rocks): Integrated modeling of pre-heater, cal-
ciner, kiln and clinker cooler. Chemical Engi-
neering Science, 62:2590–2607, 2007.

[8] A. Queck. Untersuchung des gas- und wand-
seitigen Wärmetransportes in die Schüttung von
Drehrohröfen. PhD thesis, Otto-von-Guericke-
Universität Magdeburg, 2002.

[9] R.G. Sheritt, J. Chaouki, A. Mehrotra, and L. Be-
hie. Axial dispersion in the three-dimensional
mixing of particles in a rotating drum reactor.
Chemical Engineering Science, 58(2):401–415,
2003.

[10] VDI-Gesellschaft Verfahrenstechnik und
Chemieingeniuerwesen, editor. VDI-
Wärmeatlas. Springer, 8th edition, 1997.

6 Acknowledgement

The authors gratefully thank the Federal Ministry
of Education and Research for funding BMBF 3257
MoProOpt. Furthermore, we highly appreciate
the supervision by the Project Management Agency
Forschungszentrum Karlsruhe (PTKA).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 822

Implementation of an Extended Vehicle Model Architecture in
Modelica for Hybrid Vehicle Modeling: Development and Applications

John Batteh Michael Tiller
Emmeskay, Inc.

Plymouth, Michigan USA
jbatteh@emmeskay.com mtiller@emmeskay.com

Abstract

This paper outlines the development and implemen-
tation of a vehicle model architecture for hybrid ve-
hicle modeling. The architecture is based on the Ve-
hicleInterfaces library with significant extensions to
enable more flexible, configurable implementations
for hybrid vehicle applications. Additional elements
are added to the interfaces and architecture to allow
more flexible electrical system modeling and more
detailed thermal modeling. Four different hybrid
vehicles are implemented as sample applications us-
ing the newly-developed architecture. The scheme
and canonical library structure for the component,
subsystem, and system models is also discussed to
document a mechanism for user-friendly handling of
parameterized models and fully-implemented models
in a complex model architecture with extensive
model data. Models and simulation results are
shown for the Toyota Prius, Lexus RX400h, a con-
cept hybrid sedan, and a concept hybrid sport utility
vehicle (SUV). Extensions to VehicleInterfaces are
also proposed to enhance the library to include addi-
tional features to improve support for future conven-
tional and hybrid vehicle modeling efforts.

Keywords: hybrid vehicles; vehicle modeling; model
architecture; VehicleInterfaces

1 Introduction

Since the introduction of the Toyota Prius in the U.S.
in 2000, hybrid vehicles have been gradually gaining
acceptance in the U.S. as more consumers become
aware of fuel economy and the effect of atmospheric
CO2 on climate change. While existing tax credits
and government incentives have provided some sti-
mulus for hybrid vehicle purchases, the overall share
of hybrid vehicles in the light duty segment is still
less than 2% as shown in Figure 1. However, hybrid
vehicle share is expected to increase substantially
over the next 10 years as more manufacturers intro-

duce hybridized vehicles. The share of hybrid ve-
hicles is projected to reach nearly 9% in 2015 as
shown in Figure 1.

Figure 1. Projected US hybrid vehicle sales

Given the accelerated introduction of hybrid vehicle
models over the next several years, there is an in-
creasing need to develop analytic tools to reduce de-
velopment time for these vehicles which are signifi-
cantly more complex than conventional vehicles.
These analytic tools can be used to assess the impact
of different hybrid architectures, size/design the
components, perform tradeoff and robustness stu-
dies, provide component specifications based on ve-
hicle targets, and develop/optimize the control strat-
egy and subsequent calibration to balance vehicle
attributes.

Modelica has been used extensively for vehicle sys-
tem modeling [2]-[6]. With a growing list of com-
mercial, free, and internally-developed OEM pro-
prietary model libraries, the need for a unifying ve-
hicle model architecture was quickly realized. The
purpose of a standardized model architecture is to
provide consistent interfaces and system decomposi-
tion to promote plug-n-play interoperability between
libraries. The first vehicle modeling architecture in
Modelica was VMA [7]. Released in 2003, VMA
was based on a Ford-internal architecture. After ad-
ditional feedback from library vendors and end users,
VMA was subsequently modified and released as the
VehicleInterfaces library in 2006 [8]. The objective
of VehicleInterfaces is to provide an open architec-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 823 DOI: 10.3384/ecp09430109

ture to support configurable modeling of both con-
ventional and hybrid vehicles. The library has been
used as the starting point for several vehicle model-
ing applications [6] and is still under development.

This paper outlines the development and implemen-
tation of an extended vehicle model architecture
based on VehicleInterfaces with additional en-
hancements to better support hybrid vehicle model-
ing. Extensions have been made to the interfaces
and additional components added to the architecture
to enable more flexible, configurable implementa-
tions for hybrid vehicle applications. Four different
hybrid vehicles, namely the Toyota Prius, Lexus
RX400h, a concept hybrid sedan and SUV, are im-
plemented as sample applications using the newly-
developed architecture. Sample drive cycle simula-
tions are shown for the four vehicles. The scheme
and canonical library structure for the component,
subsystem, and system models is also discussed to
document a mechanism for user-friendly handling of
parameterized models and fully-implemented models
in a complex model architecture with extensive
model data. Finally, extensions to VehicleInterfaces
are proposed to enhance the library for future con-
ventional and hybrid vehicle modeling efforts.

2 Architecture Development

2.1 VehicleInterfaces Examples

The VehicleInterfaces library includes example
model architectures for many different types of ve-
hicles, including conventional and hybrid vehicles.
Example architectures from VehicleInterfaces 1.1 are
shown in Figure 2 for a conventional (a), PowerSplit
hybrid (b), and series hybrid (c) vehicle.

While the conventional vehicle architecture seems
quite suitable, the two hybrid vehicle architectures
do not appear to offer a similar system decomposi-
tion to enable modeling flexibility at the system lev-
el. In particular, these example hybrid architectures
do not appear to implement a formal electrical sub-
system nor are the elements of the hybrid drivetrain
grouped at the subsystem level. These features are
required to support plug-n-play modeling at the sys-
tem level with model components of varying level of
detail. It should be noted that the hybrid vehicle ar-
chitectures are appropriate for some model imple-
mentations but simply may not provide enough flex-
ibility for models of varying level of detail with mi-
nimal changes to the top-level architecture.

(a) Conventional vehicle

(b) PowerSplit hybrid

(c) Series hybrid

Figure 2. Example architectures for conventional and
hybrid vehicles from the VehicleInterfaces library

2.2 New Architecture

Given the observations noted in the previous section
regarding the example architectures in Vehicle Inter-
faces 1.1, a new architecture was developed based on
the following design criteria:

• Extension from VehicleInterfaces design to
maximize compatibility with existing model
libraries

• Single model architecture that supports both
conventional and hybrid vehicle models

• Additional support for electrical and thermal
systems

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 824

To meet the design criteria above, the extended ve-
hicle architecture shown in Figure 3 was developed.
There are several interface models from the Vehic-
leInterfaces library which required little or no mod-
ification. These models include the driver, world,
road, and atmosphere components. The remaining
interfaces are either modified or newly-added and
will be discussed in detail next.

Figure 3. Model architecture

To support the proliferation of electrical components
throughout modern vehicle subsystems, an electrical
bus connector was added to the accessories, power-
plant, transmission, driveline, chassis, and brakes
subsystems. The electrical bus is an expandable
connector that supports both single and multivoltage
representations of the vehicle electrical system. Note
that it is not required to terminate the electrical con-
nection in component implementations which do not
interact with the electrical system. As a result, no
special provisions must be made for handling elec-
trical connections in subsystem models that do not
interact with the electrical bus.

In an effort to formalize the electrical subsystem, a
new component is added for the electrical power
network. The electrical power network is meant to
represent the source of electrical power for the ve-
hicle. Implementations of this subsystem could in-
clude a single battery, multiple batteries, power con-
verters, and other components that provide and trans-
form electrical power for use by the other subsys-
tems.

A thermal bus was added to several components in
the architecture. The thermal bus is also imple-
mented as an expandable connector. The thermal
bus was added to the electrical power network and
accessory subsystems to facilitate modeling of the
HVAC system for both vehicle and electrical system

cooling. It should be noted that the thermal bus
could also be added to the other vehicle subsystems
to support thermal modeling of the engine, transmis-
sion, driveline, chassis, and brakes as shown in Sec-
tion 6. A new cabin component was added to sup-
port thermal modeling of the cabin environment. A
new thermal network component was added to pro-
vide the thermal linkages between the various inte-
racting thermal components. These linkages could
include cooling provided from the HVAC compo-
nents in the accessories to the electrical power net-
work and cabin components, thermal pathways be-
tween the electrical power network and the cabin,
and thermal linkages between the vehicle and ex-
ternal environment. The addition of the thermal
network component provides additional flexibility to
modify the thermal routing between components
without requiring modification of the models that
implement the thermal capacitances.

The design of the electrical and thermal networks
decouples the mechanical, electrical and thermal ar-
chitectures. In this way, the electrical power and
thermal network subsystem models allow complete
different architectures for those subsystems to be
implemented in a way that is orthogonal to the me-
chanical architecture.

With the ability to internally ground the reaction tor-
ques in the various component models in the Mod-
elica Standard library, the impact of the various
models on the powertrain mounts is often easily
overlooked. Thus, powertrain mounts were also add-
ed to the vehicle architecture to encourage considera-
tion of the impact of the drivetrain on the mounting
system.

To support modeling of the vehicle control strategy,
a controller network component was added to the
vehicle architecture. The controller network can
support both a single and distributed controller archi-
tecture as shown in the interfaces in Figure 4. Note
the vehicle system controller which interacts with the
driver interface and component controllers. Sample
component controllers are engine, transmission, bat-
tery, driveline, climate control, motor, generator, etc.
depending on the vehicle architecture. The function-
al form of these controllers is flexible enough that
they can be mapped to hardware control units if de-
sired. The controller network interface is flexible
and configurable to allow the addition of other con-
trollers, implementation of controllers of varying
levels of detail, and controller implementations na-
tively in Modelica along with external implementa-
tions such as C code and Simulink.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 825

Figure 4. Distributed controller network interfaces

3 Canonical Library Structure

Despite the formal Modelica language features for
model configuration, managing model variants and
parameter data is a challenge in complex, hierarchic-
al models. The challenge exists not only for the ini-
tial library developer but also subsequent model de-
velopers and end users. This section describes a ca-
nonical library structure implemented as part of the
vehicle architecture and implementation effort. This
structure was implemented in an effort to satisfy the
needs of the model developer while balancing usabil-
ity concerns for the end user. The guiding principles
behind this structure are as follows:

• Promote object-oriented modeling of plant
and controller subsystems by composition
from reusable, parameterized components

• Provide a model package structure consistent
with the model architecture and within
which it is easy to find existing models and
place new models

• Parameterize models at all levels (subsys-
tem, component, and primitive) to promote
model reuse

• Clearly separate generic, parameterized
models from specific model implementations

• Implement a data model that preserves the
integrity of parameter data throughout the
model life cycle

The key design element of the canonical library
structure is the separation and clear distinction be-
tween parameterized models and model implementa-
tions. Parameterized models include all relevant eq-

uations for simulation but do not specify any design
parameter values. Model implementations extend
from the parameterized models and provide the pa-
rameter design values. In this structure, explicit
model implementations exist as named, fully-
specified entities in the package hierarchy rather than
ad hoc implementations created by specifying para-
meter values at instantiation. The advantages of
named model implementations are as follows:

• No need for separate data package hierarchy
as parameter data is specified directly in
model implementations

• Implemented models clearly separated for
model users

• Fully specified implementations consistently
used in architecture, component tests, etc.
without requiring any additional data to be
provided by user

• Parameterization clearly identified as a task
at creation of implementation model and not
model instantiation

• Integrity of parameter data in model imple-
mentations can be maintained based on de-
sign choices initiated by model developer

• Implementations offer true plug-n-play ca-
pability in architecture without requiring
subsequent modifications, thus integrating
nicely with the replaceable concept in Mod-
elica and tool implementations including
multiple redeclares

The following figures show a sample implementation
of the canonical library structure. Figure 5 shows the
top level package structure which contains the inter-
faces package and the packages for the paramete-
rized models. These packages can include additional
subpackages to further classify the parameterized
models. Note that these packages do not contain any
implementations. Figure 6 shows the vehicle im-
plementations package with implementations for the
Prius and Lexus RX400h. An exploded view of the
Prius implementation package is shown in Figure 7.

Figure 5. Top level package structure

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 826

Figure 6. Vehicle implementations package structure

for Toyota Prius and Lexus RX400h

Figure 7. Toyota Prius implementation

To support this library structure, two different types
of parameterization are defined: parameterized mod-
el and configurable models. The characteristics of a
parameterized model are defined as follows:

• Parameters declared in public section of
Modelica model

• Can include instantiation of non-replaceable
models

• Model can be instantiated
• Parameter values provided at instantiation

and parameters can be propagated to higher
level model

• Parameter values can be modified by higher
level component

• Parameter values can be modified after com-
pilation

The characteristics of a configurable model are as
follows:

• Parameters declared in protected section of
Modelica model

• Can include instantiation of replaceable
components

• Model denoted as “partial” to indicate that it
is not complete and can only be instantiated
as a replaceable component in another model

• Explicit model implementations which are
stored in the package hierarchy are required

• Model implementations are created by ex-
tending from the configurable model, pro-
viding parameter data, and selecting imple-
mentations for other configurable models

• Model implementations can be used directly
in other models or tests

• Parameter values cannot be modified by
higher level components at instantiation

• Parameter values can be modified after com-
pilation

Ultimately, the type of parameterization used is de-
fined by the model developer when the model is
created. Some factors to be considered are the com-
plexity of the parameter data, desired integrity of the
parameter data, and the anticipated usage of the
model. It should be noted that virtually all the mod-
els in the Modelica Standard Library are paramete-
rized models according to the characteristics above.
Figure 8 shows a sample configurable transmission
subsystem model. This model is comprised of two
replaceable configurable models for the tor-
que_converter and gearbox components and
one parameterized model for the inertia component.

Figure 8. Sample configurable model

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 827

4 Hybrid Vehicle Implementations

Using the newly developed architecture, four sample
vehicle implementations were created. The imple-
mented models include the Toyota Prius, Lexus
RX400h, and concept versions of a hybrid sedan and
SUV. While the vehicle model architecture obvious-
ly supports models of varying level of detail and a
wide range of engineering analyses, these implemen-
tations were focused on drive cycle simulations for
fuel economy. The parameterization data for these
models was collected from available publications in
the open literature and from the last publicly-
available version of ADVISOR [9].

The vehicle model implementations include the fol-
lowing subsystem representations:

• Accessories including performance-oriented
model of vehicle air-conditioning system

• Mapped engine model
• Various implementations of conventional

and hybrid transmissions with motors, gear
seats, clutches, etc.

• Rigid front wheel drive (FWD) drivelines
• Vehicle chassis with lumped vehicle inertia,

no-slip tires, and loads for aerodynamic drag
and rolling resistance

• Simple brakes with prescribed actuation
• Dual voltage electrical power networks with

fixed capacity battery models including bat-
tery thermal response

• Thermal networks including routing for bat-
tery and cabin cooling

• Lumped cabin models for vehicle cooling
• Controller network implementations includ-

ing vehicle system, engine, transmission,
battery, motor, generator, climate, and brake
controllers

• Driver models based on drive cycles with
capability to run both forward and backward
models

The acausal nature of the Modelica modeling lan-
guage enables several nice features of the model ar-
chitecture:

• Ability to run both forward and backward
drive cycle simulations with change only to
the driver model (assuming underlying mod-
el is invertible)

• Ability to use model inversion to implement
control features

• Ability to re-use physical, validated models
across subsystems and applications

• Ability to plug-n-play models of varying
level of detail to enable a wide range of en-
gineering analyses to support model-based
engineering over the entire product devel-
opment process

4.1 Toyota Prius

The vehicle model implementation for the parallel
hybrid Toyota Prius is shown in Figure 9. The im-
plementation of the transmission subsystem for the
PowerSplit transmission contains the motor, genera-
tor, and gearing components consistent with the hy-
brid transmission delineation in the Toyota drivetrain
schematic [10] shown in Figure 10.

Figure 9. Toyota Prius model

Figure 10. Toyota Prius drivetrain schematic [10]

4.2 Lexus RX400h

The vehicle model implementation for the Lexus
RX400h is shown in Figure 11. Like the Toyota
Prius, the Lexus RX400h is a parallel hybrid vehicle
with a PowerSplit transmission. The drivetrain
schematic in Figure 10 is applicable to the Lexus
RX400h as well.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 828

Figure 11. Lexus RX400h model

4.3 Concept Hybrid Sedan

The vehicle model implementation for a concept hy-
brid sedan with a parallel hybrid architecture is
shown in Figure 12.

Figure 12. Concept hybrid sedan model

4.4 Concept Hybrid SUV

The vehicle model implementation for a concept hy-
brid SUV with a parallel architecture is shown in
Figure 13.

Figure 13. Concept hybrid SUV model

5 Drive Cycle Simulations

Sample drive cycle results from the four vehicle im-
plementations are shown in this section. Fuel con-
sumption data in L/100km is shown in Figure 14 for
the four vehicles. The drive cycle is a proprietary
cycle developed based on real-world driving over a
range of conditions of interest to hybrid vehicle de-
velopment.

(a) Toyota Prius

(b) Lexus RX400h

(c) Concept hybrid sedan

(d) Concept hybrid SUV

Figure 14. Fuel economy simulations

While every attempt was made to incorporate actual
vehicle parameter data into the simulations, certain
key parameters and component specifications were
not available and thus were implemented based on
the authors’ best engineering judgment or based on
appropriate scaling from existing data. In addition,
drive cycle fuel consumption is highly dependent on
the implementation and calibration of the vehicle
control strategy. While control strategies were im-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 829

plemented for all four vehicles, these strategies may
not be representative of the actual, proprietary con-
trol strategies for the production vehicles. Thus, the
fuel economy results should be viewed as representa-
tive only. Furthermore, it should be noted that there
is no experimental data with which to compare the
model as these vehicles either do not exist yet in
hardware or were not actually driven over this drive
cycle. However, the results appear reasonable and
follow the expected trends.

Figure 15 shows some additional signals from the
Prius drive cycle simulations. The top graph shows
the speeds of the engine, motor, and generator during
the drive cycle. The bottom graph shows the state of
charge (SOC) in the high voltage battery. The result-
ing battery dynamics include the contributions of the
vehicle system and battery control characteristics and
charge/discharge due to driving requirements and
regenerative braking.

(a) Device speeds

(b) Battery state of charge

Figure 15. Prius drive cycle results: device speeds and
battery state of charge

6 Extensions to VehicleInterfaces

The VehicleInterfaces library [8] provides a solid
architecture to support vehicle system modeling. The
library offers substantial flexibility in modeling the
mechanical (both 1D and 3D) and control system
interactions in the vehicle. Based on the extensions
to the library implemented as part of this work, this

section proposes additions to VehicleInterfaces to
enable improved support for future vehicle modeling
efforts.

6.1 Electrical Modeling

Electrification of nearly all major vehicle subsystems
in both conventional and hybrid vehicles necessitates
system leveling modeling of electrical systems. Cur-
rently VehicleInterfaces does not include electrical
connectors and interactions at the subsystem level.
The following extensions to VehicleInterfaces would
improve the library’s ability to support vehicle mod-
eling including electrical system effects:

• Addition of expandable electrical bus to all
major vehicle physical subsystems as shown
in Figure 16

• Addition of electrical power network subsys-
tem to serve as architecture placeholder for
electrical energy sources, converters, etc.
which distribute electrical power via the ex-
pandable electrical bus to other vehicle sub-
systems

These extensions eliminate the need to extend the
existing interfaces in VehicleInterfaces simply to add
an electrical bus. In addition, the formal inclusion of
an electrical system will natively allow modeling of
hybrid vehicle architectures in a standardized archi-
tecture as shown in Figure 16 without having to add
electrical components in an ad hoc way to the top-
level architecture.

6.2 Thermal Modeling

System level thermal modeling is another key ele-
ment of vehicle system modeling. Currently Vehic-
leInterfaces does not include thermal interactions at
the subsystem level. The extended vehicle model
architecture shown in Figure 3 includes the addition
of an expandable thermal bus to a few top level sub-
system components. As mentioned in Section 2.2,
the most flexible implementation would include the
addition of the thermal bus to all major vehicle sub-
systems as shown in Figure 16. Including an ex-
pandable thermal bus eliminates the need to extend
the existing interfaces in VehicleInterfaces simply to
accommodate thermal modeling. The thermal net-
work and cabin subsystems are an integral part of the
thermal architecture for the simulations shown in
Section 5 but could be omitted from a standard archi-
tecture in an effort to minimize top level subsystems.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 830

Figure 16. Sample extended architecture

7 Conclusions

This paper documents the development and imple-
mentation of an extended vehicle model architecture
for hybrid vehicle modeling. This architecture is
based on VehicleInterfaces and more easily enables
flexible, configurable modeling of different hybrid
vehicle configurations without the need for several
different architectures. Additional elements have
been added to the interfaces and architecture to allow
more flexible electrical system modeling and more
detailed thermal modeling. To illustrate the usage of
this architecture, four different hybrid vehicles have
been implemented and sample drive cycle simula-
tions results shown. The canonical library structure
implemented in this work has proven very capable of
handling model development and implementation of
model variants in a user-friendly way that integrates
well with the formal model configuration language
elements in Modelica. The canonical library struc-
ture has been discussed in detail along with a sample
package implementation for the vehicle implementa-
tions shown in this work. Extensions to VehicleIn-
terfaces have been proposed to improve the library
for future vehicle modeling efforts.

Acknowledgements

The authors would like to acknowledge Hubertus
Tummescheit and Magnus Gafvert from Modelon for
initially proposing the scheme and canonical library
structure implemented in this paper. Their contribu-
tions and insights were extremely valuable and are
gratefully acknowledged.

References

[1] J.D. Power Automotive Forecasting, “US
Hybrid-Electric Vehicle Sales Forecast Q3
2008”, 2008.

[2] Tiller, M., Tobler, W.E., and Kuang, M.,
“Evaluating Engine Contributions to HEV
Driveline Vibrations”, Proceedings of 2nd In-
ternational Modelica Conference, pp. 19-24,
2002.
http://www.modelica.org/events/Conference2
002/papers/p03_Tiller.pdf

[3] Laine, L. and Andreasson, J., “Modelling of
Generic Hybrid Electric Vehicles”, Proceed-
ings of 3rd International Modelica Confe-
rence, pp. 87-94, 2003.
http://www.modelica.org/events/Conference2
003/papers/h26_Laine.pdf

[4] Hellgren, J., “Modelling of Hybrid Electric
Vehicles in Modelica for Virtual Prototyp-
ing”, Proceedings of 2nd International Mod-
elica Conference, pp. 247-256, 2002.
http://www.modelica.org/events/Conference2
002/papers/p32_Hellgren.pdf

[5] Simic, D., Giuliani, H., Kral, C., Gragger, J.,
“Simulation of Hybrid Electric Vehicles”,
Proceedings of 5th International Modelica
Conference, pp. 25-31, 2006.
http://www.modelica.org/events/modelica20
06/Proceedings/sessions/Session1b1.pdf

[6] Simic, D., and Bauml, T., “Implementation
of Hybrid Electric Vehicles Using VehicleIn-
terfaces and the SmartElectricDrives Libra-
ries”, Proceedings of the 6th International
Modelica Conference, pp. 557-563, 2008.
http://www.modelica.org/events/modelica20
08/Proceedings/sessions/session5c.pdf

[7] Tiller, M., Bowles, P., and Dempsey, M.,
“Development of a Vehicle Modeling Archi-
tecture in Modelica”, Proceedings of 3rd In-
ternational Modelica Conference, pp. 75-86,
2003.
http://www.modelica.org/events/Conference2
003/papers/h32_vehicle_Tiller.pdf

[8] Dempsey, M., Gafvert, M., Harman, P., Kral,
C., Otter, M., and Treffinger, P., “Coordi-
nated Automotive Libraries for Vehicle Sys-
tem Models”, Proceedings of 5th International
Modelica Conference, pp. 33-41, 2006.
http://www.modelica.org/events/modelica20
06/Proceedings/sessions/Session1b2.pdf

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 831

[9] National Renewable Energy Laboratory
(NREL), “Advisor documentation”,
www.ctts.nrel.gov, 2002.

[10] Toyota Motor Corporation, “Toyota Hybrid
System II: Hybrid Transmission”, 2009.

http://www2.toyota.co.jp/en/tech/environmen
t/ths2/hybrid.html

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 832

Interfacing Abaqus with Dymola:
A High Fidelity Anti-Lock Brake System Simulation

Brad Schofield Harish Surendranath Magnus Gäfvert Victor Oancea
Modelon AB, Ideon Science Park, SE-22370 Lund, Sweden

{brad.schofield, magnus.gafvert}@modelon.se
Dassault Systèmes Simulia Corp., 166 Valley Street, Providence, RI 02909

{harish.surendranath, victor.oancea}@3ds.com

Abstract

Accurate simulation of anti-lock braking systems
(ABS) requires detailed models of several subsystems
in different physical domains. The most important
subsystems are the hydraulic brake system, the tire
and the control algorithm. The creation of detailed
models of each subsystem in a single modeling tool
may be difficult if not impossible. To overcome this,
co-simulation may be used to combine the strengths
of different tools. In this article, co-simulation be-
tween Dymola and Abaqus is used to investigate the
performance of an ABS algorithm with a highly de-
tailed finite-element tire model. The brake system hy-
draulics along with the control algorithm are simulated
in Dymola while the tire model, the wheel, the braking
caliper and the contact with the road are simulated in
Abaqus.

While computationally more expensive than a tradi-
tional modeling approach when a semi-analytical tire
model (such as the Magic Formula model) may be
used to model the tire and tire road interaction, the ap-
proach described in this paper includes a fair amount
of details when modeling of the tread, the tire plies, the
wire reinforcements in the tire and the contact with the
road. The necessary data is exchanged between the
two applications using the co-simulation capabilities
available in Abaqus and the .DLL option in Dymola.
Sensors in Abaqus provide information about the me-
chanical state of the system such as forward transla-
tional velocity, angular velocity/acceleration and the
free rolling effective radius. This information is com-
municated to Dymola at frequent simulation time in-
tervals at runtime. Dymola uses this information as in-
puts and computes the brake caliper clamp force. This
force is communicated in turn to Abaqus which deter-
mines the force on the brake rotor.

Keywords: Anti-lock Brake Systems, Dymola,

Abaqus, Hydraulics, Finite elements, Automotive Con-
trol, Co-simulation

1 Introduction

Modeling automotive systems very often necessitates
modeling in multiple physical domains. The Model-
ica language is a natural choice for such multi-domain
modeling, but for situations in which very high reso-
lution is required, or where physically-derived mod-
els are not available, other tools such as finite-element
modeling may be more appropriate. In such situations,
co-simulation may be used to combine the strengths
of different modeling tools to achieve the desired level
of accuracy. In this paper, co-simulation between Dy-
mola and Abaqus is used to investigate the effects of
ABS braking with a highly detailed finite-element tire
model.

In the investigation, a single wheel setup was used.
For simplicity, suspension components are not mod-
eled. Dymola was used for the implementation of the
brake system hydraulics model as well as the control
algorithm, and Abaqus was used for the tire and brake
rotor models. The signals necessary for ABS control
are passed from Abaqus to Dymola, and the Dymola
model provides a brake caliper clamp force output.

2 Brake System Modeling in Dymola

For the co-simulation, the hydraulic braking system as
well as the control algorithm were implemented in Dy-
mola. Hydraulic components from the HyLib library
are used. The braking system consists of a single brake
caliper cylinder, connected to a master cylinder via a
three port valve. The three port valve is set up to have
three modes of operation: a pressure increase mode
in which the master cylinder is connected to the slave,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 833 DOI: 10.3384/ecp09430110

a hold mode in which all ports are disconnected, and
a pressure decrease mode in which the slave cylinder
is connected to a tank. A return circuit is not mod-
eled. This system represents the simplest form of pro-
duction ABS implementation in which brake fluid is
not returned to the master cylinder during braking, but
rather after the braking event has taken place.

Figure 1: Diagram view of the brake system hydraulics
and control model in Dymola

2.1 Control Algorithm

Control is performed by modulating the position of the
three port valve depending on wheel acceleration and
slip. The algorithm is based on that described in the
Bosch Automotive Handbook [1], and is modeled as
a state machine. The required inputs to the controller
are wheel angular velocityω , angular acceleratioṅω ,
rolling radiusr and hub longitudinal velocityvx. The
input signals to the controller are sampled with period
Ts = 1ms. The longitudinal slip is calculated as

λ =
vx − rω

vx

The ABS is triggered when the wheel deceleration
falls below the prescribed threshold−a. Pressure
is then held until the slip exceeds a thresholdλT ,
at which point pressure is dropped for a given time.
Pressure is the held until a positive accelerationA is
reached, at which point pressure is increased until the
acceleration drops toa. At this point pressure is in-
creased slowly via alternate hold and increase com-
mands. This allows the ‘peak’ of the friction character-
istic to be traversed slowly, before the unstable side is

reached. The cycle begins again once the−a accelera-
tion threshold is crossed. The controller is deactivated
for longitudinal velocities under a prescribed level. In
addition, a timeout parameter is used to reset the ABS
algorithm if it remains in any one state for extended
periods. This is necessary to prevent the controller be-
coming ‘locked’ in any state when ABS action is no
longer required.

The aim of the algorithm is essentially to move
quickly away form the region of the slip character-
istic corresponding to unstable slip dynamics, and to
maximize the time spent near the the friction peak (to
improve braking performance).

Rule-based control algorithms such as the one de-
scribed here often suffer from problems such as large
numbers of tuning parameters, lack of robustness to
process variations and difficult stability and perfor-
mance analysis. Model-based approaches often lead to
more manageable systems with fewer tuning parame-
ters and greater reusability. Nevertheless, rule-based
algorithms are widespread in production systems. A
model-based approach to ABS control design is de-
scribed in [3].

3 Tire, road and brake model in
Abaqus

Figure 2: Animation of tire, road and brake model in
Abaqus

The wheel, the tire, and the braking caliper-rotor
subassembly are modeled in the finite element soft-
ware Abaqus. There most important ingredient in the
Abaqus model is the detailed modeling of the tire. The
Abaqus software is used by a large number of tire
manufacturers to study tire responses spanning steady
state, braking or abuse type loading conditions such as
curb hitting or driving over a pothole. The finite el-
ement tire models the tread, plies and wire reinforce-
ments in the actual tire. The tire is first pressurized

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 834

and placed in contact with the road under the weight
corresponding to that wheel (quarter car). While a flat
road was depicted above, Abaqus modeling of more
complex road geometries such as uneven cobblestone
roads is readily available. A steady state transport
analysis is performed next in Abaqus/Standard (im-
plicit integration) to compute the state of stress and de-
formation in the tire corresponding to a given forward
velocity before any braking is applied. Optionally, a
cornering radius can be specified as well. The contact
pressures between the tire and the road corresponding
to this configuration are depicted below.

Figure 3: Brake disc model in Abaqus

The deformations and stresses in the tire are
then imported in Abaqus/Explicit (explicit integra-
tion) which is used for the actual braking analysis via
co-simulation with Dymola. Abaqus/Explicit solves
for most of the mechanics in the analysis to update
the current state of stress and deformation in the
tire. Sensor information such as wheel angular veloc-
ity/accelerations are communicated at runtime at fre-
quent simulation intervals to Dymola which computes
the brake caliper cylinder pressure for effective brak-
ing. The braking pressure is then communicated back
to Abaqus/Explicit which applies this pressure to the
brake caliper cylinder depicted below. The brake pads
are pressed against the brake rotor to produce a break-
ing torque that decelerates the single wheel-brake sub-
assembly.

The total number of degrees of freedom in the
Abaqus model is about 125000 which are basically
nodal translations and rotations.

4 Simulation of Single-Wheel Brak-
ing in Dymola

In order to test the ABS system in Dymola, a single-
wheel test rig was constructed using components from
the VehicleDynamics library, see Figure 4. Only lon-

gitudinal dynamics were modeled. A ‘Magic Formula’
tire model was used.

Figure 4: Animation of single-wheel test rig used for
simulation in Dymola

The rig was simulated with an initial velocity of
10m/s, and a brake pedal force ramp was applied. Fig-
ure 5 shows the state of the controller during the simu-
lation. The rapid switching represents the slow build-
up mode, achieved by alternating between hold and
increase positions of the three port valve. The brake
caliper clamp force is illustrated in Figure 6. In Fig-
ure 7 the hub fore-aft velocity and wheel circumfer-
ential velocity are shown. The wheel circumferential
velocity is computed by multiplying the wheel angular
velocity by the effective rolling radius.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9
ABS controller state

time [s]

st
at

e

Figure 5: The ABS controller state during simulation
of single-wheel braking in Dymola.

5 Co-simulation Setup

The physical system modeled with Abaqus is fur-
nished (in Abaqus) with sensors and actuators to cre-
ate what is commonly referred to as the Plant. The

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 835

0 0.5 1 1.5 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4 Brake caliper clamp force

time [s]

fo
rc

e
[N

]

Figure 6: The brake caliper clamping force during
simulation in Dymola.

0 0.5 1 1.5 2
−2

0

2

4

6

8

10

12

time [s]

ve
lo

ci
ty

 [m
/s

]

Hub and wheel velocities

Hub velocity
Wheel circumferential velocity

Figure 7: Hub velocity and wheel angular velocity dur-
ing simulation in Dymola.

sensor data computed by Abaqus is passed to Dymola
(the controller) which computes the needed actuation
to drive the physical system in the desired state. The
translational velocity, angular velocity, angular accel-
eration and the free rolling radius of the tire are de-
fined as the sensors in Abaqus. The actuator (com-
puted in Dymola during co-simulation) is the clamp
force to push the brake pads against the brake disc.
The solution in Abaqus/Explicit uses a central differ-
ence method to compute the equilibrium condition of
the physical system at timet + δ t based on the equi-
librium conditions at timet. One of the fundamental
requirements of the central difference scheme is that
the time stepδ t be smaller than a critical value, known
as the stable time increment. In this particular appli-
cation, the value of stable time increment is close to 3
microseconds. Note that this is significantly below the
required time increment in Dymola which is on the
order of milliseconds. The co-simulation procedure

analysis requires significantly more computational re-
sources than a standalone Dymola run. This is pri-
marily due to the fact that finite element computations
in this application are computationally very intensive
given the required small time increment size and the
number of solution variables involved. Consequently,
given that the number of unknowns is roughly 125000
in the Abaqus model and roughly 585000 increments
are required to complete the 2.0 seconds of simula-
tion time, the computational cost of the co-simulation
is dominated by far by the cost of the finite element
analysis. In this particular case, the analysis was run
using 8 CPUs on a HP BL460 Intel Xeon Dual Core
3Ghz Linux 64 bit computer and required 237 minutes
to complete. By contrast, the Dymola job required less
than a minute of actual computational time to complete
on a 32 bit Windows computer using only one CPU.
Dymola with the .dll option is used. A C++ driver
uses the API for the .dll to advance the computations
in the ABS model.

The Abaqus co-simulation capabilities include vari-
ous co-simulation rendezvousing schemes. It is not the
purpose of this paper to review the algorithmic nature
of these schemes as they are described in [2]. Given
the time incrementation in Abaqus/Explicit requires a
far smaller time increment than Dymola and that the
required 3 microseconds time increment is far smaller
than the sampling frequency of sensors used in ABS
systems, a simple non-iterative co-simulation scheme
is used:

• Each Abaqus increment sensor information is
computed (Hub velocity, free rolling radius, an-
gular velocity and angular acceleration) and then
communicated to Dymola via a socket-based in-
terface.

• Dymola (with the .dll option) is run via a driver
that uses the API to the .dll to advance the sim-
ulation time in Dymola. The sensor informa-
tion from Abaqus is read in as inputs to Dy-
mola. Dymola integrates in time with a time
step size equal to the Abaqus/Explicit time in-
crement (roughly 3 microseconds) which is far
smaller then what Dymola would require for an
accurate integration. Actuators computed in Dy-
mola (brake caliper pressure) are communicated
back to Abaqus which applies this freshly com-
puted load as the load for the next increment.

• The process is repeated until the simulation time
is exhausted.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 836

The co-simulation process was also run with an even
smaller time increment (2 microseconds) to check
whether the results change. The results were virtually
identical.

6 Co-simulation Results

In this section the results of the co-simulation using are
presented, and compared to the results obtained using
the simple tire model in Dymola. It should be noted
that no re-tuning of the ABS control algorithm was
performed for the co-simulation. It is highly likely that
performance could be improved considerably by re-
tuning the controller with the Abaqus wheel model.

6.1 Parameter selection

The primary aim of the investigation was to test the
co-simulation interface between Dymola and Abaqus
on a relevant industrial example. In particular, due to
the extremely large differences in complexity of the
tire models in Dymola and Abaqus, it was not ex-
pected that the co-simulation results would be quan-
titatively very similar. To this end only a rudimentary
synchronization of parameter values between the Dy-
mola and Abaqus brake and wheel models was per-
formed. Wheel and brake rotor diameters are similar
but not exactly equal. Tire force-slip characteristics
are close, but the stiffnesses differ slightly.

In the Dymola brake model, the braking moment is
obtained using the clamping force, an effective radius
and a friction model. The Abaqus brake model uses
a nonuniform pressure distribution on the brake pads,
making a comparison with the effective radius of the
Dymola model difficult.

Figure 8 shows the hub and circumferential veloci-
ties during the co-simulation. The slip is initially large,
but the controller is able to prevent wheel lock. Fig-
ure 9 shows the brake caliper clamping force during
co-simulation. The rapid force build-up and release
phases are clearly visible.

6.2 Comparison between co-simulation and
Dymola

Figure 10 shows the hub and circumferential veloci-
ties in the co-simulation and Dymola-only simulation
respectively. The qualitative behavior is clearly sim-
ilar. The controller is more effective in the Dymola-
only simulation, maintaining lower slip. This is to be
expected as the controller was tuned using the Dymola
tire model.

4.5 5 5.5 6
−2

0

2

4

6

8

10

12

time [s]

ve
lo

ci
ty

 [m
/s

]

Hub and wheel velocities

Hub velocity
Wheel circumferential velocity

Figure 8: The hub velocity and wheel circumferential
velocity during co-simulation.

4.5 5 5.5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4 Brake caliper clamp force

time [s]

fo
rc

e
[N

]

Figure 9: The brake caliper clamping force during co-
simulation.

Figure 11 shows a comparison of the brake caliper
clamping forces in the co-simulation and Dymola-only
simulation. The forces are very similar. The resultant
longitudinal tire forces are compared in Figure 12. The
tire force results from the co-simulation had consider-
able high-frequency content, as may be expected from
a high-fidelity model. For the comparison the results
were low-pass filtered with a bandwidth of 100Hz.

During the initial braking the tire forces are very
similar. A larger slip is developed in the co-simulation
leading to lower tire forces. The oscillations seen af-
ter roughly 1.3 seconds are due to the test rig coming
to a standstill. This behavior is observed in both the
co-simulation and the Dymola-only simulation.

7 Conclusions

In this article, co-simulation is used to study anti-lock
braking control using a high-fidelity tire model. Dy-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 837

0 0.5 1 1.5 2
−2

0

2

4

6

8

10

12

time [s]

ve
lo

ci
ty

 [m
/s

]
Hub and wheel velocities

Hub velocity (co−sim)
Hub velocity (Dymola)
Wheel circumferential velocity (co−sim)
Wheel circumferential velocity (Dymola)

Figure 10: The hub velocities and wheel circumferen-
tial velocities during co-simulation and Dymola-only
simulation.

0 0.5 1 1.5 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

time [s]

fo
rc

e
[N

]

Brake caliper clamp force

Clamp force (co−sim)
Clamp force (Dymola)

Figure 11: The brake caliper clamping forces during
co-simulation and Dymola-only simulation.

mola is used to implement a realistic hydraulic brak-
ing circuit using existing components from the HyLib
library. The control algorithm is also implemented in
Dymola. Abaqus is used to implement very high fi-
delity tire, road and brake rotor models.

The co-simulation results presented here are prelim-
inary in the sense that controller tuning was performed
using a much simpler tire model in Dymola. No re-
tuning was performed for the co-simulation. As pre-
viously mentioned, the tire characteristics and brake
model parameters were not exactly the same for the
Dymola and Abaqus models. Nevertheless, the ABS
controller was capable of preventing wheel lock in the
co-simulation with the high-fidelity wheel model.

This example illustrates how co-simulation be-
tween different packages may extend the realism of
system-level simulations. The multi-domain modeling
strengths of Dymola are combined with the compu-

0 0.5 1 1.5 2
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000
Tire force

time [s]

fo
rc

e
[N

]

Tire force (co−sim)
Tire force (Dymola)

Figure 12: The tire longitudinal forces during co-
simulation and Dymola-only simulation. The result
for the cosimulation was low-pass filtered with 100Hz
bandwidth.

tational power of Abaqus to provide a level of detail
which would be extremely time-consuming to achieve
with a single tool.

As this was a preliminary investigation, there is con-
siderable scope for future work. In particular, tuning
of the ABS controller using the Abaqus is expected to
yield large performance increases. In addition, sim-
ulation with a full vehicle model in Abaqus is also
planned. Successful co-simulation of an ABS sys-
tem with a full vehicle model would then allow high-
fidelity simulations of vehicle dynamics controllers to
be performed.

References

[1] Horst Bauer, editor.Bosch Automotive Handbook.
Robert Bosch GmbH, 4th edition, October 1996.

[2] Dassault Systèmes Simulia Corp.Abaqus Analysis
User’s Manual, 2009. Version 6.9.

[3] Stefan Solyom, Anders Rantzer, and Jens Lüde-
mann. Synthesis of a model-based tire slip con-
troller. Vehicle System Dynamics, 41(6):477–511,
June 2004.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 838

Real-time Drive Cycle Simulation of Automotive Climate Control Sys-
tem

Anand Pitchaikani, Kingsly Jebakumar S, Shankar Venkataraman, S. A. Sundaresan
Emmeskay, Inc

47119 Five Mile Road, Plymouth, MI 48170, USA
anandp@emmeskay.com kingsly@emmeskay.com sasundaresan@emmeskay.com

Abstract

Technologies like hardware-in-the-loop simula-
tion (HILS) can play a significant role in reducing
the product development life cycle. An essential re-
quirement for HILS is the availability of system
models that are capable of running in real-time. This
paper demonstrates a closed loop real-time simula-
tion of a vehicle with a climate control system model
developed in Modelica. This paper details the model-
ing aspects of the vehicle system and climate control
system using the object-oriented, acausal modeling
language Modelica. To demonstrate the real-time
simulation capabilities of the developed models, they
were integrated with a controller model developed in
the Simulink environment and the integrated model
was then simulated in an Opal-RT real-time environ-
ment. This paper describes the models developed
and the tool-chain used to achieve real-time simula-
tion. The real-time simulation results as well as the
performance results are also presented. This paper
demonstrates Modelica’s capabilities in creating
models for real-time vehicle climate control system
simulations.
Keywords: climate control system; vapor cycle;
closed-loop simulation; real-time simulation;

1 Introduction

The development of system simulation models
for vehicle as well as the air-conditioning system is
extensively described in various previous works [1, 2
and 4]. The challenge lies in developing these mod-
els so as to balance the need for real time capability
and reasonable accuracy. The real-time closed-loop
simulation of the plant model along with the control-
ler model is a major validation milestone in the con-
troller development process.

A conventional internal combustion engine
powered vehicle is considered in this work. The sys-
tem includes an engine driven compressor and a va-

por compression refrigeration cycle based Heating,
Ventilation and Air-Conditioning (HVAC) system.
Models for vehicle subsystems and climate control
system subsystems are required to study the impact
of the vehicle climate control system over a simu-
lated drive cycle. The vehicle subsystems (engine,
transmission, drive train, chassis and accessory
drive) and the HVAC components (compressor, con-
denser, evaporator and expansion valve) need to be
modeled. The literature reports the development of
models for HVAC components [1, 2]. The accuracy
levels of these reported models differ as they address
different needs like design of climate control system
or simulation of overall vehicle with climate control
system. Though the real-time simulation of Model-
ica® models was demonstrated successfully for
vehicle system models [4], it has not been reported
for a vehicle model with climate control system. The
real time simulation of vehicle model with climate
control system components will help the developers
of the climate system controllers by enabling Hard-
ware-in-the-Loop simulation of varying complexit-
ies. Different controller hardware can be tested with
these real time models on an HILS platform.

The controller model was available as Simulink®
S-function along with the object code. The as-
sembled vehicle and climate control system models
in Modelica were converted to a Simulink C-file S-
function using Dymola® [9]. The plant and control-
ler S-function models were integrated in the Sim-
ulink environment. This closed loop model consist-
ing of the two S-functions was downloaded to Opal-
RT’s [11] target processor. The controller model was
simulated in the target itself due to non-availability
of the controller hardware. This real time simulation
verified the real time capability of the developed
plant models as well as ability of the controller to
achieve the control targets. This takes the overall
controller development process one step closer to
closed loop HIL simulation.

Though literature is available for such real time
simulations using Modelica models [5] in other do-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 839 DOI: 10.3384/ecp09430007

mains, there is very little reported in the area of
HVAC system. A HVAC system is a multi-domain
system straddling mechanics, fluid mechanics and
thermal engineering.

In this paper the details involved in modeling the
vehicle as well as the climate control system com-
ponents are described. The simulation was carried
out by parameterizing the vehicle and climate control
system to represent a conventional mid sized sedan.

2 Tool-chain

The plant models were developed using the Mod-
elica language in the Dymola 6.1 environment. The
development re-used most of the components from
the Modelica Standard Library (MSL). The special
needs were satisfied by creating additional custom
models in Modelica. The Dymola-Simulink interface
is used to create the S-function of the developed
plant models. The controller S-function and plant
model S-function are integrated in MATLAB®
R2006b version. The integrated model is converted
to a real-time model by using RT-LAB™ 8.1.7. This
real-time model is downloaded into the TestDrive™
system that operates on QNX® 6.3. The real-time
simulation is carried out in the above mentioned
TestDrive system. The above tools were used based
on their applicability to the automotive domain.

3 Plant Models

The goal of this work was to model a convention-
al engine driven vehicle with engine driven HVAC
system. The vehicle subsystems (driver, controller,
engine, transmission and chassis) and the vehicle air-
conditioning subsystems (compressor drive, HVAC
systems, cabin and atmosphere) are modeled in this
work. Most of these models are developed using
simple formulations keeping the real-time require-
ments in mind. The overall plant model architecture
(Figure 1) in Modelica is made such that all the main
subsystems are replaceable. This architecture
provides flexibility to choose different implementa-
tions for each subsystem. In this way, the same mod-
el can be configured to model different vehicle sys-
tems easily. However, only the real-time capable
configuration is described in this paper.

Figure 1 System Architecture

3.1 Vehicle System Models

3.1.1 Driver
The driver model generates the input signals like

throttle, brake and clutch commands. The driver
model takes advantage of the acausal nature of the
Modelica language for setting up the inverse prob-
lem: taking the drive cycle vehicle speed command
as input and then computing the clutch, accelerator
pedal and brake pedal commands required to follow
the desired drive cycle input. In other words, the
model is “backward driven” (at least with respect to
the longitudinal vehicle dynamics). The model is
built with the capability of idling the engine when
the vehicle is at rest. These driver command signals
are sent to the controller through the driver bus.

3.1.2 Controller
The controller model processes the driver com-

mands and plant sensor outputs and generates control
signals for the engine, transmission and the HVAC
system. As a simple engine model is used in this
study, the engine control logic is a simple pass
through in the controller model. The climate system
controller is a part of the controller model. The con-
trol signals are sent to the plant through the system
bus. The system bus is an expandable connector
from which all other components can access the re-
quired control signals. In the case of a “forward-driv-
en” model, the controller model would quite be com-
plex and play an important role in driver inputs like
throttle, brake, clutch and gear command. Because
of the “backward driven” driveline model, most of
the complexity in the controller model is related to
control of the HVAC components.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 840

3.1.3 Engine
The engine model delivers torque based on com-

manded throttle from the driver. This model incor-
porates performance maps in the form of look-up
tables. The torque-speed map which provides a min-
imum and maximum limit of the torque for every
speed is used where minimum corresponds to 0
throttle and maximum corresponds to 1 throttle. The
fuel consumption map is based on the torque and
speed. This formulation will be very useful for fuel
economy studies. Also such minimal data will be
very easy to get for parameterizing any type of en-
gine.

3.1.4 Transmission
The transmission model is a six-speed manual

type encompassing clutch, synchronizers and final
drive. The gear, clutch and inertia models of MSL
are used to construct the transmission model. The
current gear selection is given by a gear-shift map
based on throttle command and engine speed. A
simple gear selector model is included in the trans-
mission model. This model includes a shift map that
consists of threshold speed limits for upshifts and
downshifts, at the given throttle. Based on the
throttle and engine speed, the gear selector will se-
lect a gear number and engage the appropriate syn-
chronizer. The final drive is modeled as a simple
gear. A simple clutch model is used to represent the
clutch that engages and disengages the engine from
the driveline. This model will capture the torque ra-
tio introduced by the transmission and effective iner-
tia of the transmission based on the gear engaged.

3.1.5 Chassis
The chassis model handles the longitudinal dy-

namics of the vehicle by modeling vehicle mass,
aerodynamic drag and rolling resistance. The driver
brake command is converted to brake torque and is
sent to the wheels. Drag and rolling resistance are
modeled using representative equations. The chassis
model gets the torque generated in the engine model
through the transmission and final drive. The vehicle
speed from the chassis model is put on to the system
bus.

3.2 Climate Control System Models

The climate control model includes the cabin, at-
mosphere, auxiliary drive and HVAC components as
shown in Figure 2. The climate control components
handle air flow as well as refrigerant flow. Expand-
able HVAC connectors are used in the subsystem

level so that the separate interfaces used for air and
refrigerant are not visible at the top-most level.

blow er

mixer

inlet_door

refCycle

compres...

cabin_air_out

cabin_air_in

system_bus system_bus

system_bus

atm_outsystem_bus

atm_in

compres...

heater
_c...

Figure 2 Climate Control System Models

3.2.1 Cabin
The single zone cabin is modeled as a closed

thermal volume surrounded by a metal frame mass.
Solar heating effects are included in the model. The
amount of solar heating will vary with the ambient
conditions chosen for the simulation. The heat capa-
city of the cabin metal mass is captured in the model.
The heat transfer from metal frame to the interior is
through convection. For typical closed cabin climate
control systems, it was felt that relative humidity ef-
fects will not be significant and hence were not
modeled. Air flow inside the cabin is modeled using
custom made air flow connectors.

3.2.2 Atmosphere
The atmosphere is modeled as an infinite source-

sink model which fixes the vehicle ambient condi-
tions like temperature, pressure, air density etc. This
reference data is used in the HVAC models to com-
pute the heat transfer and related variables associated
with air flow over the condenser and evaporator. For
the sake of simplicity, the mass flow rate of air that
blows over the condenser is set as a constant in the
atmosphere model itself. The mass flow rate of air
that blows over the evaporator will be fixed by the
blower model and the atmosphere or the cabin will
supply that air flow based on the recirculation com-
mand.

3.2.3 Auxiliary Drive
The auxiliary drive model captures the gearing

and clutch between the engine shaft and the HVAC
compressor drive shaft. It represents the engine-driv-
en compressor configuration in which a portion of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 841

the engine power is used to drive the HVAC com-
pressor. The compressor off signal from the climate
system controller will disengage the clutch modeled
in the auxiliary drive. This model captures the load
applied by the HVAC system on the engine which is
crucial in estimating the fuel economy accurately.

3.2.4 HVAC
The HVAC components form the core of the cli-

mate control system. They include models for refri-
geration cycle, refrigerant properties, blower, inlet
door and heater as shown in Figure 2 and Figure 3.
The refrigeration cycle models include the vapor-
cycle refrigeration components like evaporator, ex-
pansion valve, condenser and compressor. The refri-
gerant expansion, compression and heat transfer pro-
cesses have been captured in the models. The refri-
gerant flow and air flow interact thermally by using
thermal connectors of MSL.

compre...
f ixed=0

inertia

J=0.1

damper

d=0.05

expan...

Condenser

Evaporator

PID

PID

Ti=1e6

add

-1

+1
add

+
+1

-1

const1

k=210e3

pres...

f lange_a

Vd

Figure 3 HVAC Components

3.2.4.1 Compressor
HVAC compressor is modeled using isentropic

relationships as shown below. Compressor is charac-
terized by its volumetric efficiency and isentropic ef-
ficiency. Provision has been given to vary its dis-
placement volume as required.

For model robustness we ensured that the com-
pressor model could handle the following special
conditions:
• Suction pressure greater than discharge pressure
• Negative compressor speed

suctiondvVm ρη
π

ω
2

=

()

−

−
=

−

1
12

1
γ

γ

γηπ η
γ η rVPM

mechisen

dsuctionv Where

m - Refrigerant flow rate (kg/s)
ω - Compressor rotational speed (rad/s)
ρsuction – Refrigerant density at suction side (kg/m3)
M – compressor torque (Nm)
r – Pressure ratio
Psuction – Suction pressure (N/m2)
γ – Ratio of specific heat capacities of the refriger-
ant
Vd – Displacement volume (m3)
ηv – Volumetric efficiency
ηisen – Isentropic efficiency
ηmech – Mechanical efficiency

3.2.4.2 Condenser and Evaporator
The condenser and evaporator are modeled as

lumped volume elements to emulate the heat ex-
change between the refrigerant medium and air (see
Figure 4). This model incorporates the two important
heat exchange mechanisms as given below.
• Convection between refrigerant and pipe wall
• Convection between pipe wall and air

The convective heat transfer coefficients on the
refrigerant side are estimated based on the refrigerant
quality and other thermal coefficients [7]. The pipe
wall heat capacity is captured in the model. The con-
vective heat transfer coefficient is modeled to have
two values – one for low air mass flow rates and an-
other for high air mass flow rates. The pressure loss
inside the heat exchangers is assumed to be negli-
gible and hence the entire heat exchanger volume is
lumped into a single volume. We accepted these as-
sumptions as reasonable in order to achieve real-time
performance.

tw oPort...

heatCapacitor

C

Figure 4 Condenser and Evaporator
The processes modeled in the condenser and

evaporator volume models can be summarized as be-
low.

Refrigerant volume

Air volume

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 842

oi
vol mm

dt
dm

 −=

()() ()volwiooii
volvolvolvol TTAUhmhm

dt
vPhmd

−+−=
−

() ()TTAUTTAU
dt

dTC wiwambo
w −−−= Where

mvol – Mass of refrigerant in the volume (kg)
mi – Refrigerant inlet mass flow rate (kg/s)
mo – Refrigerant outlet mass flow rate (kg/s)
hvol – Specific enthalpy of refrigerant in the
volume(J/kg)
Pvol – Pressure of refrigerant in the volume (N.m2)
νvol – Specific volume of refrigerant in the volume
(m3/kg)
hi – Specific enthalpy of incoming refrigerant flow
(J/kg)
ho – Specific enthalpy of outgoing refrigerant flow
(J/kg)
Ui – Refrigerant side convection heat transfer coeffi-
cient (W/m2K)
Uo – Air side convection heat transfer coefficient (W/
m2K)
Tvol – Refrigerant temperature in the volume (K)
Tw – Pipe wall temperature (K)
Tamb – Ambient air temperature (K)
C – Specific heat capacity of pipe (J/K)

3.2.4.3 Expansion Valve
The expansion valve is modeled based on empir-

ical relationship for flow as a function of pressure
drop [3]. It can handle the choked mass flow based
on sub-cooled entry conditions. The expansion valve
is modeled as a variable area flow device. The valve
area is an input to the model. A PID controller is
used to control the flow area to maintain near con-
stant suction pressure. This will ensure a proper
functioning of the compressor model.

3.2.4.4 Refrigerant Properties
The refrigerant type considered in this work is

R134a. The refrigerant properties are generated us-
ing property relationship curves available in the liter-
ature [6] and used in the evaporator and condenser
models. The refrigerant properties were represented
by data tables created from the complex empirical
relationships (see Figure 5). The tables specify the
enthalpy, pressure and quality (mass fraction) for the
given density and temperature. The resulting model
is computationally less intensive and hence capable
for real-time simulation.

Figure 5 R134a Enthalpy Vs Temperature

3.2.4.5 Blower
The blower delivers the air required by the cabin.

Blower mass flow rate is computed by a 2-D look-up
table based on fan setting and outlet door position.
Both of these inputs are set by the climate system
controller. The blower blows the air over the evapor-
ator. The data driven model for the blower is chosen
keeping the real time requirements in mind.

3.2.4.6 Inlet door
The inlet door can re-circulate air from the cabin

or take fresh air intake. The inlet door model takes in
a Boolean signal which indicates the recirculation
setting ON or OFF. Based on the re-circulation com-
mand from the climate system controller, this door
model allows the fresh air to enter into the cabin or
re-circulates the cabin air back to the cabin through
the blower.

3.2.4.7 Heater
The heater core element of the HVAC system

takes heat from the engine coolant and heats the air
going into the cabin. The amount of heating can be
regulated by adjusting the mixer door that controls
the amount of air flow that gets exposed to the heat-
er. The exposed and unexposed air mixes in the re-
gion next to the heater. The heating effect of the
heater core is implemented using an efficiency term.
This heat flow efficiency is given by a look-up table
based on the mixer door open ratio. The heater core
will be at a temperature dictated by the coolant tem-
perature. The rate at which the air flow gets heated
by the heater is controlled by a time constant and the
heater efficiency term.

En
th

al
py

 (J
/k

g)

Temperature (K)

Various densities

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 843

3.3 Testing of Models

The vehicle subsystems and the climate control
system models are integrated in the Dymola environ-
ment and fundamental validation tests checks were
performed. The vehicle was run at a constant speed
and the HVAC compressor was switched on and off.
The effect of this switching was observed in the cab-
in temperature. In another test, the time required by
the cabin to reach a target temperature at a particular
ambient condition with the vehicle being stationary
was determined. These tests helped to ascertain the
fidelity of the models developed and the correspond-
ing parameterization made.

4 Real-time Adaptations

The HVAC components models can become very
complex. The calculation of the refrigerant proper-
ties in the HVAC component models is itself a com-
putationally expensive calculation. The equations
used in the reference [6] are highly non-linear. When
the property calculations are written as non-linear
functions, differentiating these functions becomes a
significant issue. To overcome this problem, tables
were made that take density and temperature of the
refrigerant as inputs and output the enthalpy, pres-
sure and vapor quality. The condenser and evaporat-
or models can be constructed using an array of refri-
gerant volumes and refrigerant flow resistance mod-
els. Such models were found to be computationally
very complex. To avoid this complexity and the as-
sociated computational effort, the condenser and
evaporator were modeled as single volumes after it
was found that the results that were produced with
the vehicle model were satisfactory. It was ensured
that all the vehicle subsystem models were of the ap-
propriate level of detail to characterize the actual
vehicle.

5 Climate System Controller Model

The climate system controller model was avail-
able as a Simulink S-function. The controller exer-
cises its control action over various components of
the HVAC system to maintain the cabin at a set tem-
perature. As the controller is of production standard,
only the object code of the source was available. A
successful integrated simulation of the developed
plant models with the controller itself will mark a
milestone. There were no details available about the
precise control logic used in the controller. The in-
tegration is done based on the available information

like input/output signals list of the controller. In
many cases, the plant model developer may not get
access to the source code of the controller. This
method of using the object code for the controller
will be very useful in such cases. Except for a few
definition files (headers), the object code (binary)
was sufficient to download the controller model
along with the plant models into the target processor/
machine.

6 Real-time Simulation

The first level target of achieving a closed loop
simulation of the developed models is accomplished
by performing a dynamic simulation of plant and the
controller in Simulink. The next level will make sure
that the plant models developed in Modelica can be
directly used in any Hardware-in-the-Loop testing.
There are many practical scenarios where the climate
system controller hardware needs to be tested in a
real vehicle environment which might not always be
possible. This validation testing will trigger the need
for HIL simulation where the developed climate sys-
tem controller hardware will run with the vehicle and
climate system components as models in a real-time
environment.

Figure 6 Turn around time of the model
The simulations were carried out for Japanese 10-

15 mode drive cycle data. The most important metric
to be measured for judging the real time capability of
models is turn around time. The turn around time for
this simulation is well below the chosen sample time
of 10 ms as seen in Figure 6. The plant model results
are shown for two different ambient conditions of
40°C and -10°C. In both the conditions, the control-
ler is able to bring the cabin to the set temperature of
25°C. In the 40°C case, the HVAC compressor is

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 844

switched on and off to control the temperature to
25°C (See Figure 7).

Figure 7 Results for 40°C ambient case
In the -10°C case, the heater comes in to play and

heats the ambient air to the required 25°C. In this
case, the HVAC compressor was hardly switched on
by the controller (see Figure 8).

Figure 8 Results for -10°C ambient case

7 Conclusions

The exercise of running the closed loop model es-
tablishes the compatibility between the developed
Modelica plant models with the chosen controller.
The closed loop simulation is very beneficial for the
following reasons:
• Validation of control strategies and functionality

of control elements like heater, inlet door, etc.
• Comparison of different control strategies
• Fuel economy prediction

The real-time simulation of this integrated model
in the TestDrive platform confirms that the de-
veloped models are amenable to Hardware-in-the-
Loop simulations. It can be said that the level of fi-
delity that is captured in these plant models is suffi-
cient for testing climate control logic, fuel economy
studies and alternate vehicle configuration sensitiv-
ity. These models in the TestDrive hardware can be
tested with any climate system controller with suit-
able input/output connections. In terms of plant mod-
eling, the scope can be increased to add an e-HVAC
powered by a battery instead of an engine. The im-
pact of e-HVAC on conventional and hybrid vehicles
can also be studied.

8 Acknowledgment

This work in parts was supported by Mr. Yutaka
Kato of NEAT Co. Ltd., Japan and Dr. Yasunori
Yokojima. Authors wish to thank Dr. Michael Tiller
for his guidance and support throughout this work.

References

[1] Öner ARICI, Song-Lin YANG, Daniel
HUANG and Emin ÖKER. Computer Model
for Automobile Climate Control System
Simulation and Application. Int.J. Applied
Thermodynamics, Vol.2, (No.2), pp. 59-68,
June-1999.

[2] Torge Pfafferott and Gerhard Schmitz. Im-
plementation of a Modelica Library for Sim-
ulation of Refrigeration Systems. pp. 197-
206. Proceedings of the 3rd International
Modelica Conference, Linköping, November
3-4, 2003.

[3] Kim, Y. 1993. Two-Phase Flow of HCFC-22
and HFC-134a Through Short-tube Orifices.
Ph.D. dissertation, Texas A&M University.

[4] Hilding Elmqvist, Sven Erik Mattsson, Hans
Olsson, Johan Andreasson, Martin Otter,
Christian Schweiger and Dag Brück. Real-
time Simulation of Detailed Automotive
Models. pp. 29-38. Proceedings of the 3rd In-
ternational Modelica Conference, Linköping,
November 3-4, 2003.

[5] J. Bäckman and M. Edvall. Using Modelica
and Control Systems for Real-time Simula-
tions in the Pulp. pp. 579-583. Proceedings
of the 4th International Modelica Confer-
ence, Hamburg, March 7-8, 2005.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 845

[6] Tillner-Roth, R., Baehr, H.D. An internation-
al standard equation of state for the thermo-
dynamic properties of 1,1,1,2-tetrafluoroeth-
ane (HFC-134a) for temperatures from 170 K
to 455 K at pressures up to 70 MPa. J. Phys.
Chem. Ref. Data 26 (1994) 657-729.

[7] Corberan, J.M. and Melon, M.G. 1998. Mod-
eling of plate finned tube evaporators and
condensers working with R134a, Int. J. Re-
frigeration, Vol. 21, No. 4, pp. 273-284.

[8] M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publish-
ers, ISBN 0-7923-7367-7

[9] Dymola. Dynamic Modeling Laboratory,
Dynasim AB, Lund, Sweden, http://www.-
Dynasim.se

[10] Modelica, http://www.Modelica.org.
[11] OPAL-RT, http://www.opal-rt.com.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 846

The AdvancedMachines Library:
Loss Models for Electric Machines

Anton Haumer Christian Kral Hansjörg Kapeller Thomas Bäuml Johannes V. Gragger
Austrian Institute of Technology

Giefinggasse 2, 1210 Vienna, Austria
anton.haumer@ait.ac.at

Abstract

This paper presents how losses of electric machines
are modeled as an extension of the Mode-
lica.Electrical.Machines library. The
theoretical background of the different loss models is
elaborated and a Modelica implementation – the Ad-
vancedMachines Library – is presented. Additional
examples demonstrate the usage of the library.
Keywords: electric machines, losses, loss models

1 Introduction

Especially for simulations with the goal to determine
energy consumption of a system – e.g. an electric
vehicle – over a given load cycle, consideration of
losses as well as the variation of losses with respect
to load, speed and temperature is indispensable.
Since the Modelica Standard Library (MSL) Mode-
lica.Electrical.Machines provides only
basic machine models which only take copper losses
caused by constant winding resistor models into ac-
count, an extension of these machine models is de-
sired.
The different losses that have to be considered are
described in [5], [6], [7]:

• Copper losses in stator and rotor windings
respectively rotor cage: These losses are
coupled with voltage drops; they vary with
the current flowing through the winding and
are temperature dependent. Though the rotor
cage of an asynchronous induction machine
or even the winding may be built of another
conductor material like brass or aluminum,
these losses are usually called “copper
losses”.

• Brush losses model the losses caused by the
voltage drop across brushes, as needed for
DC machines and slipring motors.

• Core losses in stator and rotor iron core:
They vary with the quality of the used iron
sheets as well as with magnetic flux and fre-
quency of the magnetic field.

• Friction losses summarize friction at the sur-
face of the rotor, at the bearings as well as
windage losses caused by cooling fans that
are mounted on the machine’s shaft. They
are dependent on speed.

• Stray load losses are difficult to compute
and/or measure with reasonable effort [9].
Therefore their magnitude is defined in stan-
dards ([6], [7]), but no hints are given for
their variation with speed. In [8] the different
sources of stray load losses are explained,
which allows to define the variability of
these losses with respect to current and
speed.

Since copper losses are temperature dependent, it is
necessary to provide the actual operation temperature
of the windings. This can be done by connecting a
thermal ambient model which calculates the operat-
ing temperatures depending on the actual losses [2].
The simplest thermal ambient model considers con-
stant operating temperatures, however.
Although other than copper losses are not tempera-
ture dependent, thermal connectors for all losses are
included in order to provide a proper implementation
which dissipates all losses, enabling a correct energy
balance. They are needed for coupling a detailed
thermal model to the electrical machine model.

2 Loss Models

2.1 Copper Losses

These losses are modeled by temperature dependent
resistances:

()()refOperationrefrefOperation TTRR −⋅+⋅= α1 (1)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 847 DOI: 10.3384/ecp09430103

where refα identifies the linear temperature coeffi-
cient of the specific material, with respect to the ref-
erence temperature refT :

()15.2931 20

20

−⋅+
=

°

°

refC

C
ref Tα

αα (2)

The losses are calculated by ivploss ⋅= where i
identifies the current flowing through the resistor and

iRv Operation ⋅= indicates the voltage drop across the
component. Losses are dissipated to the component’s
thermal connector.

2.2 Brush Losses

The voltage drop v across brushes is considered to be
independent of the current i. Nevertheless, the volt-
age drop changes its direction according to the direc-
tion of the current flow. In order to avoid numerical
problems, we have to define a linear transition
around zero according to Fig. 1. The voltage drop v
is shown as a multiple of the nominal voltage drop V,
whereas the parameter I defines the transition range
of the current i.

Fig. 1 Characteristic of the voltage drop across brushes

2.3 Core Losses

Changes of the magnetic field cause losses in the
iron core which can be separated into hysteresis
losses and eddy current losses. In order to avoid ex-
cessive eddy currents, the iron stack is built from
sheet iron.
Assume we know the ratio of hysteresis losses Hr
with respect to the total core losses for a reference
point of operation. According to [14] the core losses
can be expressed depending on angular frequency, ω,
and flux respectively voltage, v:

2

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⋅⋅=

ref
H

ref
Href v

vrrpp
ω

ω
 (3)

Therefore core losses can be modeled as a frequency
dependent conductor:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⋅⋅= H

ref
H

ref

ref rr
v
p

G 12 ω
ω

 (4)

The core loss model can be connected either to the
airgap model, or to the terminals.
Since the frequency of remagnetization, i.e. the ve-
locity of the changes of the magnetic field, cannot be
detected in Modelica so easily, the hysteresis losses
are neglected in the first implementation (0=Hr).

Fig. 2 Voltage versus angular velocity

Fig. 3 Core losses versus angular velocity with parameter
rH (ratioHysteresis).

However, we should know the influence of this sim-
plification. Fig. 2 shows the typical dependency of
voltage on angular velocity for a variable speed
drive. For such a voltage/frequency relationship the
characteristic of core losses dependent on angular
velocity is shown in Fig. 3. In the region of constant

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 848

flux (w/wRef<1), the core losses are underesti-
mated, and in the region of field weakening
(w/wRef>1), the core losses are overestimated.
However, determining the correct velocity of the
changes of the magnet field will be subject for fur-
ther investigations.

2.4 Friction Losses

Friction losses are caused by different phenomena:
• The rotor surface rotates relative to the sur-

rounding medium, normally air.
• The moving parts of the bearings cannot ro-

tate frictionless.
• Cooling fans mounted on the machine shaft

require torque respectively power to drive
the medium, normally air. This amount of
power is called windage loss.

All friction losses depend on speed, therefore they
are calculated by the following equations:

For Linearωω > :

 ()
1−

⋅⋅=
ω

ω
ω

ω
ωτ

power

refref

refp
sign (5)

For LinearLinear ωωω +≤≤− :

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

−

Linear

power

ref

Linear

ref

refp
ω

ω
ω

ω
ω

τ
ω 1

 (6)

A linearization around zero speed is defined by
Linearω for stability reasons, according to Fig. 4.

Fig. 4 Friction torque versus angular velocity

2.5 Stray Load Losses

Since stray load losses cannot be computed or meas-
ured with reasonable effort, their magnitude is de-
fined in standards ([6], [7]). Unfortunately these
standards deal with machines connected to a constant
grid, operating at nearly constant speed. Therefore
the results presented in [8] were taken as a basis to
define the variability with respect to speed:

12 −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

ω

ω
ω

ω
τ

power

refrefref

ref

I
ip

 (7)

The stray load losses are defined by reference power
at reference conditions refI and refω . For induction

machines i respectively refI designate the magni-

tude of the current phasor divided by 2 .
The dependency of stray load losses on speed is
modeled with the exponent ωpower .

Since a voltage drop associated with the stray load
losses seems to be unphysical, they are modeled as a
braking torque according to [7] acting on the shaft.
Again, the stray load losses ωτ ⋅=p are dissipated
to the component’s thermal connector.
For stability reasons, a similar linearization as for the
friction losses (6) can be implemented additionally.

2.6 Thermal Connectors and Ambients

In order to provide operation temperatures to copper
loss models, as well as to establish a proper power
balance, all loss models are provided with thermal
connectors Modelica.Thermal.Heat-
Transfer.Interfaces.HeatPort.
Each ready-to-use machine model instantiates a ma-
chine-specific super-port, containing heat ports for
all loss models which are in turn connected to that
super-port. From outside, this super-port has to be
connected to an ambient model, which collects all
losses as well as provides all operation temperatures.
This implementation allows comfortable and flexible
usage.
The simplest ambient models provide constant oper-
ating temperatures, as set by the user via parameters.
More sophisticated ambient models contain detailed
thermal model of the corresponding machine – simu-
lating the actual component temperatures dependent
on losses and cooling conditions. Such sophisticated
models are planned for future releases.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 849

3 The AdvancedMachines Library

3.1 Structure of the Library

Fig. 5 Structure of the Advanced Machines Library

Besides a User’s Guide and Examples, ready-to-use
machine models with appropriate ambients as ex-
plained in 3.2 are provided. The loss models instanti-
ated by the ready-to-use machine models are struc-
tured in 3 packages:

• Common to AC and DC machines
o Friction losses
o Parameter records

• Used by 3-phase AC machines
o Temp. dependent resistor
o Core loss model
o Stray load loss model
o Symmetrical squirrel cage
o Asymmetric damper cage
o Parameter records

• Used by DC machines
o Temp. dependent resistor
o Core loss model
o Stray load loss model
o Brush loss model
o Parameter records

3.2 Ready-to-use Machine Models

Fig. 6 Ready-to-use machine models and ambients

The AdvancedMachines library implements models
for the same machine types as Mode-
lica.Electrical.Machines, additionally
taking losses into account:

• Asynchronous induction machines:
o with squirrel cage
o with slipring rotor

• Synchronous induction machines:
o with permanent magnets
o with electrical excitation
o with reluctance rotor

• DC machines:
o with permanent magnets
o with electrical excitation
o with series excitation

The ambient models provide either constant or pre-
scribed temperatures with signal inputs, both for AC
induction machines and DC machines. The user has
to set the appropriate machine type by means of
Boolean parameters, e.g. for an asynchronous induc-
tion machine with squirrel cage:

• useRotor=true
• useRotorCage=true
• useExcitation=false

to enable the appropriate heat ports in the super-port.
Future releases might split up these ambient models
for more convenient usage, providing a specific am-
bient model for each machine type.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 850

3.3 Parameterization

In order to avoid name conflicts respectively clumsy
naming for the loss parameters, like Ra_Rref or
Rref_Ra, all parameters needed for a specific loss
model are aggregated in records:

Fig. 7 Parameter record of temperature dependent resistor

Fig. 8 Parameters of the temperature dependent resistor
These records allow to access parameters in an ob-
ject oriented way, e.g. as ra.R.Rref.
Additionally, all parameters for a loss model are
propagated by a single propagation of the appropri-
ate parameter record, which allows convenient ex-
change and testing of different parameter settings.
The parameters of many loss models (Fric-
tionLosses, CoreLosses, StrayLoadLosses) require to
specify a reference value for the losses and corre-
sponding reference conditions (like reference speed).
In many cases the user knows these values from
manufacturer data or from test protocols, but wants
to specify consistent parameter sets [12]. Consistent
parameter sets means that the specified reference
losses are dissipated exactly in the reference point of
operation. Unfortunately, the specification of the
reference point of operation (like nominal load)
might be incomplete, e.g. with unknown voltage at
the core loss model.
To help the user to define consistent parameter sets,
a future release of the library will provide a parame-
ter record for each ready-to-use machine model, cal-
culating the missing reference values initially.

4 Simulation Examples

4.1 DC Permanent Magnet Machine

This example investigates the impact of losses on the
behavior of a DC permanent magnet machine, based
on the default machine data used in the MSL:

Standard
Machine

Advanced
Machine

Armature voltage 100 100 V
Armature current 100 100 A
Nominal speed 1425.0 1417.5 rpm
Inner voltage 95 94.5 V
Armature resistance 0.05000 0.03864 Ω
Temperature coefficient n/a 0.00392 1/K
Reference temperature 95 20 °C
Operation temperature n/a 95 °C
Brush Voltage drop 0 0.5 V
Linear transition current n/a 1 A
Core Losses 0 200 W
Reference voltage n/a 94.5 V
Reference speed n/a 1417.5 rpm
Stray Load Losses 0 50 W
Reference current n/a 100 A
Reference speed n/a 1417.5 rpm
Friction Losses 0 100 W
Reference speed n/a 1417.5 rpm
Electrical Input 10,000.00 10,000.00 W
Armature Losses 500.00 500.00 W
Brush Losses 0.00 50.00 W
Core Losses 0.00 200.00 W
Stray Load Losses 0.00 50.00 W
Friction Losses 0.00 100.00 W
Mechanical Ouput 9,500.00 9,100.00 W
Nominal Torque 63.66 61.30 Nm
Table 1 Parameters of both DC PM machines

The inner voltage at the airgap can be calculated as:
ω⋅=⋅−−= kIRVVV aoperationaBrushai , (8)

The magnet design of both models is considered to
be the same. Since the inner voltage Vi of the Ad-
vancedMachine is lower than that of the Standard-
Machine due to the brush voltage drop, the nominal
speed of the AdvancedMachine has to be lower than
that of the StandardMachine. Note that the nominal
torque of the AdvancedMachine is lower than that of
the StandardMachine at the same electrical input,
due to the losses.
Both machines are started on voltage ramp
(Fig. 9) with a duration of 0.8 s, starting at 0.2 s. At
t=1.5 s a torque step (respective nominal torque for
each model) is applied.
The final stationary resulting speed (Fig. 10) meets
the values of Table 1. Both armature currents shown

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 851

in Fig. 11 reach 100 A according to Table 1, but dif-
ferences can bee seen during transient operation.

Fig. 9 Starting both DC permanent magnet machines

Fig. 10 Comparing speed of both machines

Fig. 11 Comparing armature currents of both machines

4.2 Asynchronous Induction Machine with
Squirrel Cage

In order to validate the loss models, an asynchronous
induction machine with squirrel cage (AIMC) is
simulated for different partial loads. The results are
compared with measurements of a 18.5 kW 4-pole
standard motor (Table 2). The motor is of totally en-

closed fan cooled design (Fig. 12), the rotor cage is
made of aluminum (Fig. 13).
Nominal output 18,500 W
Nominal voltage 400 V
Connection delta
Nominal freuqency 50 Hz
Table 2 Nominal parameters of the AIMC

Fig. 12 The AIMC at the test bench

Fig. 13 Die cast aluminium rotor of the AIMC
Stator resistance / phase 0.560 Ω
Temperature coefficient 0.00392 1/K
Reference temperature 20 °C
Operation temperature 90 °C
Stator leakage reactance 1.520 Ω
Main reactance 66.400 Ω
Rotor leakage reactance 2.310 Ω
Rotor resistance / phase 0.420 Ω
Temperature coefficient 0.00400 1/K
Reference temperature 20 °C
Operation temperature 90 °C
Table 3 Impedances of the AIMC
 rotor impedances with respect to the stator

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 852

The impedances (Table 3) were taken from the re-
sults of a conventional design program, the losses
(Table 4) were taken from a type test protocol.
The voltage drop across the core loss conductance
for nominal operation (Vcore = 375.7 V) was iterated
with the model shown in Fig. 14, which was used to
obtain the results, too.
Stator current 32.85 A
Power factor 0.898
Speed 1462.5 rpm
Electrical input 20,443.95 W
Stator copper losses 770.13 W
Core losses 410.00 W
Rotor copper losses 481.60 W
Stray load losses 102.22 W
Friction losses 180.00 W
Mechanical output 18,500.00 W
Efficiency 90.49%
Nominal Torque 120.79 Nm
Table 4 Nominal operation of the AIMC

Fig. 14 Simulation model of the AIMC
The asynchronous induction machine is started at
nominal speed and fed from a constant grid with
nominal voltage and frequency. The load torque is
controlled to achieve the desired mechanical power.
After the initial transients have vanished, the set
point for the mechanical power is raised with a very
slow ramp to achieve quasi-stationary operation.
The comparison of measurement and simulation re-
sults (Fig. 15 – Fig. 17) shows very good coinci-
dence which proofs the validity of the presented load
models. Remaining differences can be explained due
to measurement uncertainty, the fact that the calcu-
lated impedances used for parameterization do not
match that of the real machine exactly which gives
rise to deviations mainly in reactive power and last
but not least the fact that the test protocol calculates

the losses slightly different from the presented loss
models.

Fig. 15 Current of the AIMC,
 simulation results compared with measurements

Fig. 16 Speed of the AIMC,
 simulation results compared with measurements

Fig. 17 Power factor and efficiency of the AIMC,
 simulation results compared with measurements

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 853

5 Conclusions and Outlook

The design of a Modelica library for electric ma-
chines with detailed loss models has been presented.
The structure of the different loss models – copper
losses, brush losses, core losses, friction and stray
load losses – has been discussed in detail. Further-
more, the usage of the library has been presented
with two examples, one of them providing a com-
parison between simulated and measured losses.
It is planned to release the library as a supplement
for the SmartElectricDrives Library [4]. In this con-
text also quasi-stationary models are of interest. As
soon as it is possible to achieve a stable implementa-
tion of quasi-stationary machine models – which de-
pends on the implementation of complex numbers in
Modelica – as described in [3], the loss models will
be adapted for the quasi-stationary machine models.
In future releases simple thermal models of electric
machines will be offered. Additionally, the impact of
coupling electric and thermal models will be investi-
gated. Since the time constants of the electric and the
thermal part are different, co-simulation could be
considered to improve simulation performance.

References

[1] C. Kral, A. Haumer, Modelica libraries for dc
machines, three phase and polyphase ma-
chines. 4th International Modelica Conference
2005, Hamburg, Germany

[2] C. Kral, A. Haumer, M. Plainer, Simulation
of a thermal model of a surface cooled squir-
rel cage induction machine by means of the
SimpleFlow-library. 4th International Mode-
lica Conference 2005, Hamburg, Germany

[3] A. Haumer, C. Kral, J. Gragger, H. Kapeller,
Quasi-Stationary Modeling and Simulation
of Electrical Circuits using Complex Phasors.
6th International Modelica Conference 2008,
Bielefeld, Germany

[4] J. Gragger, H. Giuliani, C. Kral, T. Bäuml,
H. Kapeller, F. Pirker, The SmartElectric-
Drives Library – Powerful Models for Fast
Simulation of Electric Drives. 5th Interna-
tional Modelica Conference 2006, Vienna,
Austria

[5] H. Kleinrath, Grundlagen elektrischer Ma-
schinen, Akademische Verlagsgesellschaft,
Wiesbaden, 1975

[6] Standard EN 60034-2, Verfahren zur Be-
stimmung der Verluste und des Wirkungs-
grades von drehenden elektrischen Maschi-
nen aus Prüfungen

[7] IEEE Standard 112, IEEE standard test pro-
cedure for polyphase induction motors and
generators

[8] W. Lang, Über die Bemessung verlustarmer
Asynchronmotoren mit Käfigläufer für Puls-
umrichterspeisung, Doctoral Thesis, Techni-
cal University of Vienna, 1984

[9] M. Aoulkadi, A. Binder, When Loads Stray:
Evaluation of Different Methods to Deter-
mine Stray Load Losses in Induction Ma-
chines, IEEE Industrial Electronics Maga-
zine, 2008, Vol. 2, No. 1, p. 21-30

[10] H. Spaeth, Elektrische Maschinen - Eine Ein-
führung in die Theorie des Betriebsverhal-
tens, Springer-Verlag, Berlin-Heidelberg-
New York, 1973

[11] K.P. Kovac, I. Racz, Transiente Vorgänge in
Wechselstrommaschinen, Band I, Verlag der
Ungarischen Akademie der Wissenschaften,
Budapest 1959

[12] C. Kral, A. Haumer, Consistent Equivalent
Circuit Parameters of Induction Motors for
the Calculation of Partial Load Efficiencies.
IEEE International Symposium on Industrial
Electronics, ISIE, Cambridge, United King-
dom, 2008

[13] M. Schelch, Motor-Pre-Calculator, Diploma
Thesis, Technikum Wien, Vienna, 2005

[14] D. Lin, P. Zhou, W. Fu, Z. Badics,
Z. Cendes, A dynamic core loss model for
soft ferromagnetic and power ferrite materi-
als in transient finite element analysis, Con-
ference Proceedings COMPUMAG, 2003

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 854

A Modelica Library
for High-Voltage AC Circuit-Breaker Modeling

Jörg Lehmann1 Daniel Ohlsson2 Hansjürg Wiesmann1

1ABB Switzerland Ltd., Corporate Research
Segelhofstrasse 1K, CH-5405 Baden-Dättwil, Switzerland

2ABB Switzerland Ltd., High-Voltage Products
Fabrikstrasse 13a, CH-5400 Baden, Switzerland

{joerg.lehmann,daniel.ohlsson,hansjuerg.wiesmann}@ch.abb.com

Abstract

The efficient simulation of the current interruption
phase in high-voltage circuit breakers is routinely per-
formed based on integral models for the gas dynamics
and the arc physics. We present a Modelica framework
for such a model. Based on Modelica.Media, a ther-
modynamic library for the required temperature and
pressure range has been developed. Making use of the
latest Modelica.Fluid library and the new streams
concept, a library for the gas dynamics and the arc
physics in such systems has been implemented.

Keywords: Circuit breakers; Thermodynamics and
fluid dynamics of gases and plasmas.

1 Introduction

A high-voltage circuit breaker is a protection device in
electrical power systems. It is able to switch between
a conducting and an insulating state in the time frame
of tens of milliseconds without losing its functionality.
As a conductor the circuit breaker carries currents of
several kA with minimal electrical losses. When an
electrical fault occurs, the breaker can interrupt short-
circuit currents of around 100kA, resulting in an en-
ergy input from a burning arc of around 1MJ. A cir-
cuit breaker has a lifetime exceeding 30 years and is
operational between ambient temperatures of −50 ◦C
and +40 ◦C, depending on its rating.

In the breaker chamber of the circuit breaker
(see Fig. 1), the current is interrupted by separating
two electrical contacts. During this phase, a high-
temperature plasma arc is formed. The dissipated en-
ergy is radiated from the arc to the surrounding nozzles
and leads to the ablation of material from the nozzle

Figure 1: Breaker chamber inside of a high-voltage
AC circuit breaker. The arc between the electrical con-
tacts is formed in the central part.

walls. This creates a flow of hot gas into an expan-
sion volume with a typical size of some liters. When
the pressure in this volume becomes high enough, the
flow reverses. The gas flowing back extinguishes the
hot plasma at the next zero crossing of the AC current,
thus preventing a possible arc re-ignition. This is the
so-called self-blast principle where the arc energy is
used to extinguish the arc itself instead of achieving
the same “blowing” effect by mechanical compression
only.

The tuning of this process for optimal current-
interruption capabilities is one of the main goals in
circuit breaker design. In order to model this process,
one needs to combine a broad range of fields such as
plasma physics, thermodynamics, fluid dynamics and
mechanics. In this context, simulation methods are
routinely employed. Since more exact computational-
fluid-dynamics methods typically require very long
calculation times, integral models based on mass and
energy conservation laws are still routinely used in the
development process. The core of these models is the
description of the arc in the high-current phase [1], i.e.,
the conversion of the electrical energy input in mass

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 855 DOI: 10.3384/ecp09430049

and thermal energy.
There are no public simulation tools for circuit

breaker design available. Thus, the alternatives are
either to adapt a commercial tool or to create an in-
house tool from scratch. Previously, ABB has used
such an in-house tool written in C. Although it is based
on a well-structured, object-oriented design, incorpo-
rating changes requires a very detailed understanding
of the C code, in particular in the model for the plasma
arc, which forms the the most important and complex
part. Moving the focus from software to model devel-
opment, thereby enabling a faster development cycle,
the idea was thus to replace the present tool by an im-
plementation based on the Modelica language.

2 Modelica libraries

With the standard Modelica.Media and
Modelica.Fluid [2, 3] libraries, Modelica pro-
vides a solid base for the implementation of integral
fluid-dynamics models.

Here, we present a library framework which, on
top of these libraries, implements the necessary com-
ponents for the description of a high-voltage circuit-
breaker. The goal is to focus on two aspects which
are of general interest: (i) A regularization procedure
for flow reversals. (ii) The switching between different
states within the arc model, which is necessary due to
dynamical changes in the flow topology.

2.1 Thermodynamic data at high tempera-
tures and pressures

The electrical arc which is formed after opening the
contacts is a high-temperature plasma consisting of a
mixture of SF6 used as insulation-gas and vaporized
PTFE (Teflon) ablated from the nozzle walls. Both
thermodynamic and transport data for this mixture are
needed for a temperature range of up to several tens
of thousands of Kelvins and pressures of up to sev-
eral tens of bars. Except for temperatures below about
1200K, the insulation medium is not a single-species
gas consisting of neutral SF6 molecules. Instead, it is
composed of various ionization and dissociation prod-
ucts of SF6 and additionally electrons. The composi-
tion of this mixture is strongly dependent on temper-
ature. The same holds true for PTFE and other insu-
lation gases. A rigorous treatment as a many-particle
mixture in the spirit of the Modelica.Media library
is cumbersome in many respects. A more efficient
way to handle the complicated mixture is to treat both

SF6 and PTFE as “effective” gases, i.e., formally as
one-particle gases and their mixture as a two-particle
mixture. This becomes possible if the thermodynamic
and transport properties are known as a function of
the state variables pressure p and temperature T or
equivalent quantities. The functional dependence re-
flects the complicated composition at higher tempera-
tures which is the consequence of a large number of
different scattering processes. This precludes an ap-
proach as used in the Modelica.Media library, where
the thermodynamic quantities like density, enthalpy,
etc. are expressed as polynomials in the state variables
pressure, temperature and composition [4]. Instead
our implementation interpolates these quantities from
tabulated data. As an example we depict in Fig. 2 the
specific heat of SF6 and PTFE as a function of temper-
ature. The pronounced peaks around 2000-4000K re-
flect the various ionization and dissociation processes.

Figure 2: Specific heat of SF6 (blue line) and PTFE
(red line) as a function of temperature for a fixed pres-
sure of 1bar.

The table data are obtained from a separate, sophis-
ticated program. Thermodynamic properties in local
thermodynamic equilibrium are calculated as a func-
tion of pressure and temperature by minimization of
the Gibbs potential [5]. This involves the calculation
of particle densities of all involved species as a func-
tion of p, T and composition as well as their chemi-
cal potentials. The calculation of transport properties,
in particular the electrical and thermal conductivity as
well as the viscosity is based on the Chapman-Enskog
approximation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 856

Figure 3: Basic model structure: Arc zone connected
via three flow constrictions to the two exhausts and the
expansion volume.

2.2 Gas dynamics and arc physics

The model for the gas dynamics, i.e., the fluid
mechanics part of the simulation is based on the
Modelica.Fluid library with the new streams con-
cept of the Modelica 3.1 specification [3]. Figure 3
depicts the basic model structure: The arc zone in the
center is connected via three flow constrictions to the
two exhausts and the expansion volume.

The description of the exhausts and the expansion
volume relies on the standard ideal mixing volume
contained in the fluid library. The models for the flow
constrictions and the arc zone will be described in the
following sections as they are not implemented in the
standard library.

2.2.1 Model for flow constrictions

The models contained in the fluid library describe the
flow of a fluid through pipes in the presence of various
friction mechanisms. We, however, are interested in
the flow of gases at high velocities, even up to sonic
speeds. Then, friction effects can be neglected to a
good approximation and the flow is isentropic. The
corresponding physical model will be given below. In
order to achieve a robust treatment of flow-reversal sit-
uations, the dependence of the mass flow on the pres-
sure drop needs to be regularized. We will describe
in detail the approach we have taken, in particular, be-
cause it is of general interest and can be applied to
other flow problems, as well.

For the model of the flow constriction, we assume
a one-dimensional, isentropic flow of a compressible,
polytropic gas [6], for which the mass flow ṁ (up to a

sign) is given by

ṁ = Aρup cup

√
2

γup−1

[
r

2
γup − r

γup+1
γup

]
(1a)

for r > [2/(γup +1)]γup/(γup−1) and

ṁ = Aρup cup

(
2

γup +1

) γup+1
2(γup−1)

(1b)

otherwise (choked nozzle). Here, ρup, cup and γup
denote upstream values of the gas density, speed of
sound and isentropic coefficient, respectively, r =
pdown/pup ≤ 1 is the ratio between down- and up-
stream pressures, and A is the minimal cross-section
of the constriction.

For small pressure differences between up- and
downstream, Eq. (1a) behaves asymptotically as

ṁ = Aρup cup

√
2

γup

pup− pdown

pup

×
[

1+O
(pup− pdown

pup

)]
. (2)

Here, the prefactor of the square-root singularity de-
pends on upstream properties, and hence undergoes a
discontinuous change in the case of a flow reversal.
When implementing the model (1) in Modelica, this
behavior has to be regularized in order to prevent in-
stabilities of the solver near flow reversals.

The Modelica.Fluid library contains helper func-
tions for such regularizations based on a polynomial
interpolation scheme. Such schemes, however, have
to be carefully adapted in order to guarantee mono-
tonicity of the mass flow as a function of the pres-
sure difference. This leads to quite intricate case dis-
tinctions for the coefficients of the polynomials. We
have instead chosen a regularization scheme that al-
lows one to more easily ensure the monotonicity prop-
erty. To introduce this scheme, we use the notation +
and − for the two ports of the flow constriction and
write the mass flow as a function of the pressure dif-
ference ∆p = p+− p− in the form

ṁ(∆p) =

{
ṁ+(∆p) for ∆p≥ 0
−ṁ−(∆p) for ∆p < 0 ,

(3)

where ṁ± denotes the mass flow (1) with the respec-
tive upstream quantities. In particular, the pressure ra-
tio r is replaced by r± = 1∓∆p/p±, where ± is the
sign of ∆p.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 857

Instead of the exact flow function (3), we now con-
sider a regularization of the form

ṁ(∆p) =

{
ṁ+[κ+(∆p)] for ∆p≥ 0
−ṁ−[κ−(∆p)] for ∆p < 0 ,

(4)

where we only require that the functions κ±(∆p) are
(i) monotonic, (ii) vanish at zero, κ±(0) = 0, and (iii)
behave as the identity for large magnitudes of the pres-
sure difference, i.e.,

κ±(∆p)∼ ∆p for |∆p| � δ p . (5)

Here, the pressure δ p is a parameter determining the
size of the regularized region. The behavior for small
∆p is used to regularize the flow. Requiring, for in-
stance, continuous differentiability at ∆p = 0, we im-
pose the condition

lim
∆p→0−

{
ṁ′−[κ−(∆p)]κ ′−(∆p)

}
=

lim
∆p→0+

{
ṁ′+[κ+(∆p)]κ ′+(∆p)

}
, (6)

where the prime denotes differentiation with respect
to the argument of the function. Note that this relation
implies that the functions κ±(∆p) vanish sufficiently
fast for ∆p→ 0 in order to remove the singularity of
the derivative of the mass flow.

As can be readily verified, all requirements stated in
the previous paragraph are fulfilled by the choice

κ±(∆p) =
|∆p|∆p
|∆p|+δ p±

(7)

with

δ p± =
ρ± c± p∓
ρ∓ c∓ p±

√
γ∓
γ±

δ p (8)

where ρ±, etc. denote the corresponding quantities at
the respective port.

In Fig. 4, we show a comparison of the regularized
flow with the original flow (1), which also shows the
substantial change around flow reversal which occurs
when the two temperatures T+ and T− differ strongly.
The inset of this figure shows the regularization around
flow reversal on a scale of the order of δ p.

2.2.2 Electrical arc model

The most important and at the same time most com-
plex component of the library consists of models for
the description of the electrical arc and the surround-
ing vapor phase, which are formed after separating the

−
0
.0

5
0

−0.01 0 0.01

−3

−2

−1

0

1

ṁ
[k

g/
s]

−10 −5 0 5 10

∆p[bar]

original
regularized

Figure 4: Mass flow of SF6 across a flow constriction
as a function of the pressure difference between the
two ports. The flow (1) (solid line) is compared with
its regularized version (4) (dashed line). Inset: Mag-
nification of the behavior around flow reversal. The
pressure p+ = 10 bar is kept fixed, δ p = 0.05 bar and
the temperatures are T− = 3000 ◦C and T+ = 25 ◦C.

electrical contacts in the circuit breaker. The impor-
tance of the arc process comes from the fact that it pro-
vides the conversion of the dissipated electrical power
into mass and energy, which are then injected into the
rest of the system.1

Figure 5 shows sketches of the arc zone with the
surrounding nozzles for two different times during the
breaking cycle. Comparing with Fig. 3, one can iden-
tify the outlets to the expansion volume (in the mid-
dle) and to the two exhaust volumes (on the left and
right). Furthermore, one can see the two electrical
contacts: the fixed tulip on the left-hand side and the
moving plug on the right-hand side. Between these
contacts, the electrical arc is formed. Schematically
we show the plasma arc (in yellow-orange) which car-
ries the electrical current. It roughly has the form of
a cylinder of length Larc and radius Rarc and consists
of a plasma with typical temperatures of the order of
Tarc ≈ 20000K. The plasma arc is surrounded by a
zone of colder vapor (blue) with Tvapor ≈ 4000K. The
color gradient indicates the pressure distribution along
the arc axis, which exhibits several pressure maxima
corresponding to stagnation planes of the gas flow.

The integral description of the gas dynamics we use
in our Modelica model, is based on such a two-zone
model of a cylindrical arc surrounded by a vapor layer.
As main parameters we provide geometric quantities,
i.e., the length of the arc region as well as the radius
of the surrounding nozzle, and the electrical current

1A part of the power is also lost in the form of radiation that
leaves the system.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 858

Figure 5: Schematic picture of the arc zone for two
positions of the plug near the initial (top panel) and
final (bottom panel) configuration in the interruption
process.

which is imposed on the arc. Furthermore, the pressure
in the volumes connected to the arc zone is needed.
Our current model, which relies on a purely steady-
state description of the arc, then calculates from these
quantities the arc radius, the temperatures in the arc
and vapor zones, the stagnation point pressures and
the position of the stagnation planes. Our model con-
tains an implicit system of non-linear equations relat-
ing these quantities. From the solution of this system,
one then obtains the amount of PTFE ablated from the
nozzle walls into the arc zone and thus the mass pro-
duction in the system. Taking into account the position
of the stagnation planes, one can calculate the distri-
bution of the convective mass and energy fluxes in the
three volumes connected to the arc zone.

More details of the arc model can be found in
Ref. [1]. In the next paragraphs, we discuss two of
the main issues we encountered when transferring this
arc model from a C-based, algorithmic implementa-
tion into an equation-based form.

First, looking at Fig. 5, one can observe that the
topology of the arc model changes along the break-
ing cycle. Initially (see top panel), the arc is only

burning in a region between the left and middle out-
let, while later (bottom panel) also the right outlet is
directly connected to the arc. In order to map this sit-
uation to a Modelica model, we connect together two
separate arc zones, which in the middle form a three-
way connection to the expansion volume. At contact
separation, when the arc ignites, we first “turn on” the
left arc zone. Only later, when the plug has moved
sufficiently far enough to the right, we switch on the
right arc zone. When an arc zone is “turned off”, an
arbitrary amount of gas can still flow across it with-
out any pressure drop. This effectively eliminates any
influence of the arc zone on the flow problem.

A second issue concerns the reliable convergence of
the solutions of the non-linear system of equations for
the arc towards the physically correct solution. This
becomes particularly problematic when turning on an
arc zone. At such a switch event, the Modelica lan-
guage unfortunately does not allow specifying suit-
able initial conditions for the non-linear solver. Con-
sequently, we had to resort to a different route: Even
when an arc zone is not active, we still solve the sys-
tem of arc equations. The various arc parameters are
restricted to an appropriate range. In particular, they
become continuous as a function of time, guaranteeing
convergence of the iterative solution procedure. When
the corresponding arc zone is turned on, we couple the
arc zone model, i.e., the mass and energy fluxes and
the allowed pressure drop, into the rest of the system.
Here, we use an appropriate smoothing method.

2.3 Mechanics

As mentioned above, the current interruption process
requires the mechanical separation of two electrical
contacts. The mechanical motion can be strongly in-
fluenced by the pressure buildup in the breaker cham-
ber. In these cases, the motion cannot be described
by a predefined travel curve. Instead, the mechani-
cal dynamics has to be modeled and coupled to the
fluid-dynamics system. This has been realized by us-
ing Modelica.Mechanics as a base. An alternative
is also to simulate, in a co-simulation setup, the me-
chanical system in a separate tool. Here, we used a
named-pipe based interface to MSC.ADAMS.

3 Conclusions

With the Modelica based implementation of the
breaker simulation tool, we have been able to re-
place the previously used C based tool by a mod-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 859

0

5

10

15

F
[k

N
]

0 5 10 15 20 25

t[ms]

0

25

50

75

p
[b

ar
]

0

20000

40000
T

[K
]

Tarc

Tvapor

Figure 6: Simulation results from a complete breaker
model. Top panel: Temperatures in the arc and the
surrounding vapor zones. The two maxima reflect the
sinusoidal variation of the imposed current. After arc
extinction at t = 19ms, the temperatures in the model
stay constant. Middle panel: Pressure in the expansion
volume. Bottom panel: Reaction force on the mechan-
ical drive. The time is measured from contact separa-
tion.

ern, more flexible implementation, which also pro-
vides the users with a more powerful simulation en-
vironment. A result for a complete breaker model is
shown in Fig. 6. Of particular interest for dimension-
ing the breaker is the pressure buildup in the expan-
sion volume (middle panel) and the reaction force on
the drive (bottom panel). In contrast to more elab-
orate computational-fluid-dynamics simulations, the
fast computation times for obtaining these results en-
able a rapid determination of the essential design pa-
rameters for the breaker layout with a reasonably good
predictive power.

The transformation of a model written in C into an
equation-based formulation was not as straightforward
as we expected initially. In particular, achieving robust
convergence of the solution of the non-linear system of
arc equations, which is crucial for reliable use of the
tool, turned out to be rather demanding. Here, it would
be advantageous if the Modelica language provided

the necessary means for an explicit, direct control of
the non-linear solver, particularly the initial conditions
for the iterative solution process after state events.

4 Acknowledgments

We thank Frank Kassubek for a useful suggestion re-
garding the flow-reversal regularization procedure and
Fredrik N. Jansson for his work on the co-simulation
interface.

References

[1] M. Claessens et al., Progress in circuit-breaker
modelling with respect to ablation controlled
arcs, pressure build-up and performance limits,
CIGRE report 13-112 (1994).

[2] F. Casella et al., The Modelica Fluid and Me-
dia library for modeling of incompressible and
compressible thermo-fluid pipe networks, in Pro-
ceedings of the 5th International Modelica Con-
ference (Modelica Association, Vienna, 2006).

[3] R. Franke et al., Standardization of thermo-fluid
modeling in Modelica Fluid 1.0, in Proceed-
ings of the 7th International Modelica Confer-
ence (Modelica Association, 2009).

[4] B.J. McBride, M.J. Zehe and S. Gordon, NASA
Glenn Coefficients for Calculating Thermody-
namic Properties of Individual Species, NASA
report TP-2002-211556 (2002).

[5] G. Speckhofer et al., A consistent set of thermo-
dynamic properties and transport coefficients for
high temperature plasmas, in Proceedings of the
14th International Symposium On Plasma Chem-
istry, edited by M. Hrabosky, M. Konrad and V.
Kopecky (Institute of Plasma Physics, Prague,
1999), Vol. 1, p. 269.

[6] L.D. Landau and E.M. Lifshitz, Fluid Mechanics
(Butterworth-Heinemann, Oxford, 1987).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 860

Model of a Squirrel Cage Induction Machine with Interbar
Conductances

Christian Kral Anton Haumer Bernhard Kubicek Oliver Winter
Austrian Institute of Technology

Giefinggasse 2, 1210 Vienna, Austria

Abstract

Conventional models of squirrel cage induction
machines do not consider interbar currents. For the
accurate numerical investigation of electrical rotor
asymmetries interbar currents have to be modeled. A
mathematical model of such a machine with interbar
conductances is presented in this paper. An approach
for the parametrization of the interbar conductances is
introduced and discussed.

Keywords: Squirrel cage induction machines, elec-
trical rotor asymmetries, interbar currents, machine
model

1 Introduction

The electric conductors in the squirrel cage of an in-
duction machine – the rotor bars and end rings – are
usually either made of copper or aluminum. For die
cast rotors the conducting material is not electrically
insulated from the sheet iron due to the casting pro-
cess. Even if copper and aluminum have a much
greater electric conductivity than the sheet iron, some
fractions of the rotor currents may flow through the
rotor teeth, directly from bar to bar.
In mains supplied induction machines the rotor bars
are usuallyskewed, i.e., the bars are twisted in tangen-
tial direction (Fig. 1 and 2) . Due to the skewing of the
rotor bars the following effects occur:

1. Torque saddle points due to harmonic magnetic
field waves can be avoided [1–3]

2. The torque speed characteristic and performance
of the machine changes [4,5]

3. Axial pull of the rotor caused by the tangential
component of the bar currents

(a) unskewed rotor sheets (b) skewed rotor sheets

Figure 1: Rotor core of an induction machine

(a) unskewed cage (b) skewed cage

Figure 2: Squirrel cage of an induction machine, con-
sisting of rotor core and a skewed or unskewed cage
(bars and end rings)

4. Currents are flowing from bar to bar through the
sheet iron – the so calledinterbar currents

Interbar currents significantly arise in the case of bro-
ken rotor bars or end ring segments. The intermittence
of the electric conductance of either a bar or end ring
segment causes the current to flow through alternative
paths – in the sheet iron from bar to bar.
For the numerical investigation of interbar currents in
squirrel cage induction machines finite element meth-
ods are usually applied [6–8]. Alternatively, models
based on equivalent circuits can be developed to inves-
tigate the operational behavior of machines with inter-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 861 DOI: 10.3384/ecp09430003

bar currents. In such models the skewing of rotor bars
can be considered by means of skewing factors applied
to the calculation of the mutual inductances between
stator and rotor [9, 10]. Interbar currents of electri-
cally asymmetrical rotor cages are yet more complex
to model since the rotor has to be discretized in axial
direction. A Modelica model considering such axial
discretization is presented in this paper. To be more
precise: the presented model takes interbar conduc-
tances into account which in turn conduct the interbar
currents.

2 Model Structure

The proposed induction machine model with interbar
currents is derived from theExtendedMachineslibrary
which was presented in [11]. TheExtendedMachines
library includes a model of the stator and rotor wind-
ing topology, core, friction and stray-load losses, an
air gap model and thermal connectors for the coupling
with a thermal model or environment. From this li-
brary the air gap, cage and winding function mod-
els are extended and modified such way that an axial
discretization including interbar conductances is mod-
eled.
A diagram of the proposed machine model is de-
picted in Fig. 3. The stator network considers
the stator resistance (rs), the stator stray induc-
tance (lssigma) and the air gap model (airgap),
which can be seen as electromechanical power con-
verter. Stray-load losses (strayLoad), core losses
(coreStray andcoreTerminal, respectively, for
alternate use, depending on the model character) and
friction losses (friction) are also taken into ac-
count. On the rotor side a multiphase squirrel cage
(cage) is modeled. Each leg of the rotor phases
has to be grounded (ground). Stator and rotor
inertia (intertiaStator, inertiaRotor) are
connected with the air gap model and the shaft end
(flange) and housing (support) connector, re-
spectively.
Any symmetric or asymmetric stator winding topology
(windingStator) can be considered by specifying
the location of the begin and end of each turn – for
each phase. Details about the modeling of the stator
winding topology are explained in [11]. The topology
of the rotor cage is fully symmetrical and formed of the
periodic structure of bars and end rings as depicted in
Fig. 2. Electrical rotor asymmetries are model by mod-
ified rotor bar and end ring resistances. The topology
model of the squirrel cage is presented in section 3.

Figure 3: Modelica diagram of the proposed induction
machine with interbar conductances

3 Cage Model

The presented cage model (cage) takes skewed rotor
bars and interbar conductances into account. The in-
terbar conductances are modeled in such a way, that
each rotor bar is axially discretized and each interme-
diate node of two adjacent bars is connected by an
an interbar conductance. A sketch of the rotor net-
work model is presented in Fig. 4. This modeling ap-
proach does not consider current paths through the ro-
tor yoke [12], which seems to be a reasonable simpli-
fication.
The voltages induced in the rotor meshes are calcu-
lated in the air gap model which is presented in sec-
tion 4. These induced voltages are the terminal volt-
agesv[m] of the cage model in Fig. 3. The currents as-
sociated with the multiphase ports of the cage model,
i[m], are rotor mesh currents.
The cage consists ofNr rotor bars and thusNr is also
the number of end ring segments on both sides – the
drive end (indexa) and the non drive end (indexb). In
axial direction each rotor bar is subdivided intoni +1
segments. The rotor bar segments are tangentially con-
nected by interbar conductancesGi[m]. In axial direc-
tion the rotor is thus modeled byni interbar conduc-
tors. Each of these conductors represents the conduc-
tance of the sheet iron including the contact conduc-
tance. Due to this structure the rotor cage consists of
(ni +1)Nr +1 elementary meshes, which are indicated

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 862

ieb non drive end

ib[j]

Reb[j] Leb[j]

Lb[j+1]

Rb[j+1]

ib[j+1]

Lb[j+Nr+2]

Rb[j+Nr+2]

ib[j+Nr +2]

Lb[j+Nr+1]

Rb[j+Nr+1]

ib[j+Nr+1]

Rb[j+1]

Reb[j+1] Leb[j+1]

Lb[j+2]

ib[j+2]

Rb[j+2]

Reb[j+2] Leb[j+2]

Lb[j+3]

Rb[j+3]

ib[j+3]

Lb[j+Nr+3]

Rb[j+Nr+3]

ib[j+Nr +3]

Rb[j]

Lb[j]

Gi[j+1] Gi[j+2]

Lb[j+Nr]

Rb[j+Nr]

Gi[j+Nr] Gi[j+Nr+1] Gi[j+Nr+2]

ib[j+Nr]

Gi[j] i i[j] i i[j+1] i i[j+2]

i[i+Nr +1] i[i+Nr +2]

i[i+1] i[i+2]

i i[j+Nr] i i[j+Nr +1] i i[j+Nr +2]

ir [i]

ir [i+2Nr]

ir [i+(ni−1)Nr]

ir [i+Nr]

αk(b)(a)

Rea[j] Lea[j]

Lb[j+niNr+1]

Rb[j+niNr+1]

ib[j+niNr+1]

Rea[j+2] Lea[j+2]

Lb[j+niNr +3]

Rb[j+niNr +3]

ib[j+niNr +3]

Rea[j+1] Lea[j+1]

Lb[j+niNr +2]

ib[j+niNr +2]

Gi[j+(ni−1)Nr] Gi[j+(ni−1)Nr+1] Gi[j+(ni+2)Nr]

Rb[j+niNr]

Lb[j+niNr]

Rb[j+niNr +2]

ib[j+niNr]

drive end

i[i+niNr] i[i+niNr+1] i[i+niNr +2]

i i[j+(ni−1)Nr+1]i i[j+(ni−1)Nr]
i i[j+(ni−1)Nr+2]

i[i]

i[i+Nr]

Figure 4: (a) Equivalent circuit of rotor cage with interbarconductances; (b) location of size of skewed rotor
loops, skewing angleαk

in gray in Fig. 4. For these elementary meshes the
voltage equations have to be modeled.
The rotor voltage equation of the elementary mesh
along the end ring on the non drive end yields

0 =
Nr

∑
m=1

(
Reb[m](i[m] + ieb)+Leb[m]

d(i[m] + ieb)

dt

)
.

(1)

From the remaining rotor meshes two different types
of meshes have to be distinguished. Anend ring mesh,
is formed by one end ring segment, two bar segments
and one interbar conductance. Anintermediate mesh
is formed of two bar segments and two interbar con-
ductances. The indices of the meshes and the currents,
respectively, are numbered in ascending order from
left to right and from the non drive end to the drive
end.
The rotor voltage equations for the end ring meshes of

the non drive end are

0 = v[m] +Rb[m]ib[m] +Lb[m]

dib[m]

dt

−Rb[m+1]ib[m+1] −Lb[m+1]

dib[m+1]

dt

+Reb[m](i[m] + ieb)+Leb[m]

d(ir [m] + ieb)

dt
−

i i[m]

Gi[m]
,

(2)

for m∈ [1,2, . . . ,(ni +1)Nr].

For the intermediate meshes the voltage equations are

0 = v[m] +Rb[m]ib[m] +Lb[m]

dib[m]

dt

−Rb[m+1]ib[m+1] −Lb[m+1]

dib[m+1]

dt

−
i i[m]

Gi[m]
+

i i[m−Nr]

Gi[m−Nr]
, (3)

for m∈ [Nr +1,Nr +2, . . . ,niNr].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 863

The remaining end ring meshes on the drive end are

0 = v[m] +Rb[m]ib[m] +Lb[m]

dib[m]

dt

−Rb[m+1]ib[m+1] −Lb[m+1]

dib[m+1]

dt

+Rea[m−niNr]i[m] +Lea[m−niNr]

di[m]

dt
+

i i[m−Nr]

Gi[m−Nr]
, (4)

for m∈ [niNr +1,niNr +2, . . . ,(ni +1)Nr].

For the interbar currents the following equations

i i[j] = i[j+Nr] − i[j] (5)

apply for j ∈ [1,2, . . . ,niNr]. Additionally, the bar cur-
rents and the mesh currents are related by

ib[j] = i[j+1] − i[i+Nr] (6)

ib[i+k] = i[i+k] − i[i+k−1] (7)

and j = Nr(n− 1) with n ∈ [1,2, . . . ,ni + 1], andk ∈

[2,3, . . . ,Nr].

4 Air Gap Model

In the air gap model (airgap) the magnetic coupling
of the ms phase stator winding and theNr phase ro-
tor cage (or winding) is modeled. Due to the axial
segmentation of the rotor bars, the air gap model and
the cage model are coupled through a multiphase con-
nector with(ni +1)Nr phases. The magnetic coupling
between the windings of the stator and rotor is deter-
mined by the respective number of turns and the actual
location of the turns with respect to each other. The
relationship between the induced stator voltages,vs[l],
and the induced rotor voltages,vr [m], and the respective
currentsis[l] andir [m] is expressed by

vs[j] =
3

∑
l=1

Lss[j,l]
dis[l]
dt

+
(ni+1)Nir

∑
m=1

d
dt

(
Lsr[j,m]ir [m]

)
, (8)

vr [m] =
3

∑
j=1

d
dt

(
Lrs[m, j]is[j]

)
+

(ni+1)Nr

∑
n=1

Lrr [m,n]

dir [n]

dt
, (9)

whereLss[j,l] are the stator inductances,

Lsr[j,m] = Lrs[m, j] (10)

are the mutual stator and rotor inductances, andLrr [m,n]

are the rotor inductances of the machine.
For the stator it is assumed that the complex winding
factor,ξs[j], and the number of turns,ws[j], can be de-
termined for each phase based on the exact topology

of each phase winding [13]. For the rotor cage the
number of turns is equal to one,

wr [m] = 1 (11)

and the complex winding factor,

ξr [m] = sin

(
πp
Nr

)
e−j2πpm/Nr , (12)

is formed of the chording factor of two adjacent ro-
tor bars, and the tangential location of the respective
rotor mesh – assuming it were unskewed. In order to
consider the skewing of the rotor bars accordingly, the
tangential displacement of the rotor meshes belonging
to two particular rotor bars, is modeled by a complex
displacement factor,δr [m]. The inductances in (8) and
(9) can thus be expressed as

Lss[j,l] = Lws[j]ws[l]Re(ξs[j]ξ∗s[l]), (13)

Lsr[j,m] = Lws[j]wr [m]ζr [m]Re(ξs[j]ξ∗r [m]δr [m]e
jγm), (14)

Lrr [m,n] = Lwr [m]wr [n]ζr [m]ζr [n]Re(ξr [m]ξ∗r [j]δr [m]δ∗r [n]),

(15)

whereL is the base inductance of one turn with a width
equal to one pole pair. In this equations the expression

ζr [m] =

{
1

2ni
if m refers to an end ring mesh

1
ni

if m refers to an intermediate mesh
(16)

applies, which determines the axial length of each end
ring or intermediate mesh. The axial length of each
mesh is modeled such way, that two bar segments of
equal lengthe contribute to one interbar conductor
(Fig. 5). Expression (16) is also used to determine the
resistances and stray inductances of the bar segments
with respect to the total bar resistance and stray induc-
tance, respectively.
In the induction machine model of Fig. 3 the wind-
ing factors of the stator winding and the rotor cage
are determined by the modelswindingStator and
windingRotor, respectively. These models com-
pute the winding factors, number of turns, displace-
ment factors and (16) and propagate them to the air
gap model. The input parameters are the skewing an-
gle αk (Fig. 4), the number of phases and the remain-
ing topology data of the stator winding.
The electromagnetic torque of the induction machine
is

Te =
3

∑
j=1

(ni+1)Nr

∑
m=1

∂Lsr[j,m]

∂γm
is[j]ir [m], (17)

and applies to the stator and rotor inertia, with inverse
signs, however. In this equationγm indicates the elec-
trical angle of the rotor with respect to the stator.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 864

Gi[j]

Gi[Nr + j]

Gi[2Nr + j]

e

e

e

e

e

e

bar segment

bar segment

bar segment

end ring mesh

intermediate mesh

intermediate mesh

bar segment

end ring mesh

non drive end

drive end

Figure 5: Sketch of two skewed rotor bars withni = 3
interbar conductances: two equal bar segments (length
e) contribute to one interbar segment; this results in
different bar segment lengths for end ring meshes and
intermediate meshes

5 Practical Application

5.1 Model Development and Compilation

The model was developed with Dymola 6.0b and the
C code was compiled in parallel on a 64 bit Linux
cluster. The compilation and execution times of the
models very much rely on the number of interbar seg-
ments,ni . Two different simulations were carried out
for the casesni = 4 andni = 9. For the second case
a newer version of the Gnu C Compiler (GCC) had
to be used in order to keep the compilation time in
a reasonable range. The compilation of one model
required approximately 8 GB memory and took one
hour. Hence, a 64 bit GCC version was use to com-
pile the 32 bit files. The simulation model was used
in a project where 25 different machine configurations
were investigated. Since the different configurations
could be investigated independently the compilations
and simulations were performed in parallel on differ-
ent nodes on the Linux cluster.

For each model a total (real time) simulation time span
of 12.5 s was performed. The casesni = 4 andni = 9
required 10 and 72 hours of CPU time, respectively.
For the computation of each simulation in the project,
a total of approximately 7000 hours of CPU time accu-
mulated. During the comparison of these two cases it
turned out, thatni = 9 shows only a slight increase of
accuracy and is not necessary for most investigations.

Figure 6: Squirrel cage rotor with respect to the con-
figuration with one broken rotor bar (segment)

5.2 Parametrization of the Model

For the investigated project, the regular induction ma-
chine parameters were determined from a electromag-
netic design tool. This way the resistances and stray
inductances of the bars and end ring were calculated.
The design tool does not calculate the interbar conduc-
tances, however, since these quantities very much rely
on the manufacturing process and the contact conduc-
tances between the conductor and the sheet iron. In
practice, the interbar resistances between two bars can
usually not be measured without destroying the rotor
cage [14–17].
Significant interbar currents arise in the rotor if one
bar or end ring of the machine is broken. There-
fore the configuration of one broken bar (Fig. 6) and
one broken end ring segment (Fig. 7) are investigated.
In order to compare measurement and simulations a
method has to be applied which allows assessment
of the effects caused by a broken rotor bar or end
ring segment. Such a method is the Vienna Moni-
toring Method (VMM), originally introduced in 1997
[18–20]. The VMM calculates a fault indicator which
is related with the fault extent. Interbar currents de-
teriorate the fault indicator and thus the comparison
of measurement and simulation results can be used to
parametrize the interbar conductances. In this context
it is assumed that the interbar conductances of the en-
tire rotor topology are equal

Gi[m] =
Giref

ni
(18)

for m∈ [1,2, . . . ,niNr].
Measurement and simulations results for the two in-
vestigated configurations andni = 4 are depicted in
Fig. 8:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 865

Figure 7: Squirrel cage rotor with respect to the config-
uration with one broken (removed) end ring segment

0

0.01

0.02

0.03

0.04

0.05

1e3 1e6 1e9

fa
ul

ti
nd

ic
at

or

Giref [1/Ω]

broken end ring
broken bar

Figure 8: Fault indicator of the VMM versus interbar
conductanceGiref

• Broken end ring segment: The measured fault in-
dicator is shown as horizontal dashed line. The
simulation result to match decreases with increas-
ing total interbar conductanceGiref. The intersec-
tion of the simulation and measurement results
indicates well parametrized simulation model.

• Broken rotor bar: The fault indicator obtained by
measurements is depicted as horizontal solid line.
The intersection of this line with the simulation
result leads to a solution close to the one obtained
for one broken end ring segment.

From the two intersection points of Fig. 8 an average
value ofGiref = 2.3×105 1

Ω is obtained, which satisfies
the required accuracy of both fault configurations. If
the two intersection points were much further apart,
this would indicate that the simulation model is not
reflecting the real machine behavior.

6 Conclusions

This paper presents a mathematical model of a squir-
rel cage induction machine with interbar conductances
and skewed rotor bars. For this purpose each rotor bar
is axially subdivided into bar sections which are tan-
gentially connected by interbar conductors. This way
a discretized rotor topology model is developed. The
Modelica models including equations of the air gap
and cage are presented in detail.
The simulation model was used in a project where
the impact of interbar currents, in combination with
electrical rotor asymmetries are studied. In order to
parametrize the interbar conductances two different
fault configurations are investigated by measurements
and simulations. The obtained parameter of the total
interbar conductance confirms that the proposed simu-
lation model leads to reasonable results and accurately
reflects real machine behavior under rotor fault condi-
tions.

References

[1] R. Weppler, “Ein Beitrag zur Berechnung von
Asynchronmotoren mit nichtisoliertem Läufer-
käfig,” Archiv für Elektrotechnik, vol. 50, pp.
238–252, 1966.

[2] J. Stèpina, “Oberwelleneinflüsse, Quer-
ströme und unsymmetrische Sättigung in der
programmierten Berechnung von Einphasen-
Asynchronmotoren,” Siemens-Zeitschrift, vol.
46, pp. 819–824, 1972.

[3] J. Stepina, “Querstroeme in Kaefiglaeufern,”
e&i, vol. 92, pp. 8–14, 1973.

[4] W. Neuhaus and R. Weppler, “Einfluß der Quer-
ströme auf die Drehmomentkennlinie polum-
schaltbarer Käfigläufermotoren,” ETZ-A, vol.
88,3, pp. 80–84, 1967.

[5] Y. Kawase, T. Yamaguchi, Zhipeng Tu, N. Toida,
N. Minoshima, and K. Hashimoto, “Effects of
skew angle of rotor in squirrel-cage induction
motor on torque and loss characteristics,”IEEE
Transactions on Magnetics, vol. 45, no. 3, pp.
1700–1703, March 2009.

[6] G. H. Müller and C. F. Landy, “Finite element
analysis of field distribution of squirrel cage in-
duction motors having broken rotor bars and in-
terbar currents,”Proceedings of the International

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 866

Conference on Electrical Machines, ICEM, pp.
577–581, 1994.

[7] S. L. Ho, H. L. Li, and W. N. Fu, “Inclusion of in-
terbar currents in a network- field coupled time-s
tepping finite-element model of skewed-rotor in-
duction motors,” IEEE Transactions On Mag-
netics, vol. 35, no. 5, pp. 4218–4225, September
1999.

[8] Katsumi Yamazaki and Yuta Watanabe, “Inter-
bar current analysis of induction motors using 3-
d finite-element method considering lamination
of rotor core,” IEEE Transactions On Magnet-
ics, vol. 42, no. 4, pp. 1287–1290, April 2006.

[9] G. Müller, Elektrische Maschinen - Grundlagen,
Aufbau und Wirkungsweise, VEB Verlag Tech-
nik, Berlin, 4 edition, 1977.

[10] S.E. Zouzou, A. Ghoggal, A. Aboubou,
M. Sahraoui, and H. Razik, “Modeling of
induction machines with skewed rotor slots
dedicated to rotor faults,”SDEMPED, 2005.

[11] C. Kral and A. Haumer, “Simulation of electrical
rotor asymmetries in squirrel cage induction ma-
chines with the extendedmachines library,”In-
ternational Modelica Conference, 6th, Bielefeld,
Germany, , no. ID140, pp. 351–359, 2008.

[12] David G. Dorrell, Piotr J. Holik, Patrick Lom-
bard, Hans-Jørgen Thougaard, and Finn Jensen,
“A multisliced finite-element model for induc-
tion machines incorporating interbar current,”
IEEE Transactions on Industry Applications, vol.
45, no. 1, pp. 131–141, 2009.

[13] C. Kral and A. Haumer, “Modelica libraries for
DC machines, three phase and polyphase ma-
chines,”International Modelica Conference, 4th,
Hamburg, Germany, pp. 549–558, 2005.

[14] S. Williamson, C. Y. Poh, and A. C. Smith,
“Estimation of the inter-bar resistance of a cast
cage rotor,” IEEE International Electric Ma-
chines and Drives Conference, IEMDC, Wiscon-
sin, USA, vol. 2, pp. 1286–1291, 2003.

[15] D. G. Dorrell, T. J. E. Miller, and C. B. Ras-
mussen, “Inter-bar currents in induction ma-
chines,” IEEE Transactions on Industry Appli-
cations, vol. 39, no. 3, pp. 677–684, May-June
2003.

[16] D. Gersh, A. C. Smith, and A. Samuelson, “Mea-
surement of inter-bar resistance in cage rotors,”
Conference Proceedings of the Eighth Interna-
tional IEE Conference on Electrical Machines
and Drives, EMD, , no. 444, pp. 253–257, 1997.

[17] R. F. Walliser and C. F. Landy, “Assessment of
interbar currents in double cage induction motors
with broken rotor bars,” IEEE Transactions on
Energy Conversion, pp. 159–164, 1994.

[18] R. Wieser, C. Kral, F. Pirker, and M. Schag-
ginger, “On-line rotor cage monitoring of in-
verter fed induction machines, experimental re-
sults,” Conference Proceedings of the First
International IEEE Symposium on Diagnostics
of Electrical Machines, Power Electronics and
Drives, SDEMPED, pp. 15–22, 1997.

[19] R. Wieser, C. Kral, F. Pirker, and M. Schaggin-
ger, “Rotor fault detection of inverter fed induc-
tion machines including experimental results,”
Seventh European Conference on Power Elec-
tronics and Applications, EPE, vol. 2, pp. 2532–
2538, 1997.

[20] R. Wieser, C. Kral, F. Pirker, and M. Schaggin-
ger, “On-line rotor cage monitoring of inverter-
fed induction machines by means of an improved
method,” IEEE Transactions on Power Electron-
ics, vol. 14, no. 5, pp. 858–865, September 1999.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 867

Enforcing model composability in Modelica

Sébastien Furic1

1LMS Imagine, France

sebastien.furic@lmsintl.com

Abstract

Modelica provides intuitive constructs to create and

group model definitions. However, models them-

selves do not compose. In other words, the connec-

tion of type-compatible and locally balanced sub-

models does not generally yield a valid (e.g., bal-

anced, structurally non-singular) model. Starting

from simple examples of such invalid models (result-

ing from commonly encountered situations when us-

ing Modelica), this paper explains how those prob-

lems could be avoided by introducing a safer notion

of physical connector, similar in some aspects to the

VHDL-AMS notion of terminal. An extension of the

notion of connection is also presented, providing

new opportunities to make efficient use of ideal

models in Modelica.

Keywords: model composition; high-level physical

connector; effort variable; flow variable; connection

graph; effort graph; flow graph

1 Introduction

A commonly encountered situation in Modelica

when defining models by connection of submodels

representing well-identified part of the whole design

is that, even if each submodel has been checked for

the absence of structural inconsistency, there is no

guarantee that the result is itself structurally consis-

tent. One may argue that this situation is normal

since some combinations of models are “not physi-

cal”. However, in the acausal modeling world, we

know that one has to be careful about the “not physi-

cal” argument: for instance, “high-index” problems

also are “not physical” from a certain point of view.

But every experienced Modelica user knows that

models yielding systems having non-minimal state

can be given a meaning, and the result of accepting

those models does not make Modelica an “every-

thing runs anyway” simulation language: models still

have well-defined semantics and Modelica can be

used to express hard problems directly, without need

for user assistance.

We claim that, given a proper notion of model com-

position (by generalizing the semantics of connec-

tions), we can, as in the case of models having non-

minimal state mentioned above, give a sound mean-

ing to a larger class of assemblies of type-compatible

Modelica submodels. And fortunately the result is

still not an “everything runs anyway” simulation lan-

guage, but a more powerful one, where new kinds of

models can be easily defined, offering Modelica new

valuable possibilities.

2 Modelica modeling annoyances

Reading the documentation of the Modelica Standard

Library reveals implicit assumptions made here and

there, leading to difficulties when one has to use

models in a given discipline. Let's consider for in-

stance the Electrical library1: in the documentation

we can read this definition of Modelica.Electri-

cal.Analog.Basic.Ground:

“Ground of an electrical circuit. The potential at the

ground node2 is zero. Every electrical circuit has to

contain at least one ground object.”

The last sentence is rather confusing for the new-

comer: why should every electrical model contain a

“ground node”? After all, we all remember having in

the past built paper-and-pencil electrical circuits

without ground but for which it was possible to at-

tribute unambiguously a meaning. Worse, the sen-

tence seems to imply that sometimes more than one

ground submodel has to be used: how many exactly

for a given problem? And where to place them on the

circuit? Let's make some experiments...

1 In the present paper, we will focus on the electrical do-

main, because models are often simple yet general

enough to illustrate our thesis.

2 Notice the use of “node”.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 868 DOI: 10.3384/ecp09430023

2.1 A first example

Sometimes using Modelica results in frustrating ex-

periences for the newcomer: even a simple R circuit

may not simulate! Figure 1 below shows the diagram

of such a circuit built under Scicos3:

Figure 1: A naive R circuit

The system seems to be well defined: a voltage

source imposes a voltage difference between the pins

of a resistor and the resistor imposes the current

flowing into the circuit. We can verify that by in-

specting the equivalent “flat” model that, according

to Modelica semantics, is:

model RCircuit

 Real src.p.v;

 Real src.p.i;

 Real src.n.v;

 Real src.n.i;

 Real src.v;

 Real src.i;

 Real res.p.v;

 Real res.p.i;

 Real res.n.v;

 Real res.n.i;

 Real res.v;

 Real res.i;

equation // generated by Source

 src.v = src.p.v - src.n.v;

 src.p.i + src.n.i = 0;

 src.i = src.p.i;

 src.v = 220 * sin(314.15 * time);

equation // generated by Resistor

 res.v = res.p.v - res.n.v;

 res.p.i + res.n.i = 0;

 res.i = res.p.i;

 res.v = 1000 * res.i;

equation // connection equations

 src.n.v = res.n.v;

 res.p.v = src.p.v;

 src.n.i + res.n.i = 0;

 res.p.i + src.p.i = 0;

3 Freely available modeling tool with Modelica capabili-

ties (http://www.scicos.org).

end Rcircuit;

That system captures the required constraints. Indeed

from:

src.v = src.p.v - src.n.v;

res.v = res.p.v - res.n.v;

src.n.v = res.n.v;

res.p.v = src.p.v;

we deduce, as expected, that:

src.v = res.v;

And then, from:

res.v = 1000 * res.i;

src.v = 220 * sin(314.15 * time);

we found that:

res.i = 0.220 * sin(314.15 * time);

Then by exploiting:

res.i = res.p.i;

res.p.i + src.p.i = 0;

src.i = src.p.i;

we deduce that:

src.i = -res.i;

Everything seems fine... However the simulation of

that simple model fails miserably. Why? The careful

reader may have noticed that, in order to resolve the

above system for the “variables of interest” (src.v,

res.v, src.i and res.i), we did not use all the

constraints. If we would have done so, we would

have found that the unused constraints:

src.n.i + res.n.i = 0;

src.p.i + src.n.i = 0;

res.p.i + res.n.i = 0;

coupled with the fact that:

res.i = res.p.i;

src.i = src.p.i;

would have lead to an over-constrained (but consis-

tent) system of equations having five equations and

only four unknowns. Also, we did not solve the sys-

tem for all the variables: src.p.v, src.n.v,

res.p.v and res.n.v remain undetermined.

Trying to determine their value leads to the opposite

problem we encountered while solving for the flow

variables: the subsystem is under-constrained.

From the mathematical analysis point of view, our

system has a singular jacobian matrix. However,

that singularity is not the result of unfortunate values

taken by the coefficients of the matrix: even the inci-

dence matrix4 of the system is singular.

4 A matrix having the same size as the jacobian matrix,

and whose coefficients indicate eventual contributions

of each variable to the corresponding jacobian matrix

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 869

Like many other newcomers the user that built the

model on Figure 1 would probably be said that

she/he has overlooked the advice given in the docu-

mentation of Modelica.Electrical.Analog.Basic.-

Ground: indeed, adding a ground submodel to the

circuit would have saved the situation by introducing

the missing voltage equations and one degree of free-

dom for the current needed for the calculation of all

the absolute voltages (that we don't need to know)

and “outgoing currents” (that we don't need to know

too).

Things learned from that error are:

� using Modelica libraries implies learning (some-

times implicit) rules that are not enforced at the

language level

� Modelica forces users to give equations to com-

pute unneeded quantities

2.2 Ideal models

Another look at the documentation that comes with

the Electrical library reveals that the ground sub-

model is not the only one that carries out structural

modeling assumptions. For instance, the description

of Modelica.Electrical.Analog.Ideal.IdealOpen-

ingSwitch includes the following warning:

“In order to prevent singularities during switching,

the opened switch has a (very low) conductance Goff

and the closed switch has a (very low) resistance

Ron. The limiting case is also allowed, i.e., the resis-

tance Ron of the closed switch could be exactly zero

and the conductance Goff of the open switch could

be also exactly zero. Note, there are circuits, where

a description with zero Ron or zero Goff is not possi-

ble.”

It is legitimate to ask oneself what is a low conduc-

tance (resp. low resistance). Also, which are those

circuits that disallow zero Ron and/or zero Roff?

The difficulty when one has to determine the appro-

priate conductance (resp. resistance) of a nearly-ideal

opening switch is that the answer depends both on

the circuit itself and on the compiler/solver pair.

Consider a model having several switches in parallel

(for instance, a model of a fault-tolerant circuit in a

nuclear plant): it is well-known that the two-pin

model equivalent to those switches put together is a

variable resistor whose resistance is given by the

product of the variable resistances of the individual

switches divided by the sum of those same resis-

coefficient: zero indicates no contribution and one in-

dicates a (possibly null) contribution.

tances. It follows that small (resp. big) values of the

individual resistances may lead to tiny (resp. huge)

values for the resistance of the equivalent two-pin

model. This implies that for large electrical models,

where one cannot predict the sequences of openings/

closings of switches, it is nearly impossible to deter-

mine with a high degree of confidence a suitable

value for the resistances of the switches, even if one

got the complete source code describing the circuit

model.

Concerning circuits where a description with zero

Ron or zero Goff is not possible, experimenting a lit-

tle with the language rapidly convinces us that the

connection of the graph of linked model instances is

a key property, and it brings us back to the problem

of effort reference depicted in section 2.1: each con-

nected component of a circuit has to contain one

Ground instance. Consider the following circuit:

Figure 2: A circuit with switches

In this circuit, the two coupled opening switches

control the connection of two subcircuits: when the

switches are closed the capacitor is charged, and

when the switches are opened, the capacitor dis-

charges itself through the resistor connected in paral-

lel with it.

What happens if we use ideal switches? If both

switches are opened, we get two subcircuits, one of

them having no Ground instance attached. We are

then in the same situation as depicted in Figure 1: the

solver fails due to the structurally singular jacobian

matrix. But if we add a Ground instance as in Fig-

ure 3 below, the simulation can be run... until both

switches are closed, in which case we have a con-

nected graph of model instances with two effort ref-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 870

erences. Removing the added Ground instance and

forcing the switches to remain closed allows the

model to be simulated. So we are in a situation

where, in order to be able to simulate our model, we

have either to put or to remove a Ground instance

from the circuit, depending on the state of the

switches.

Figure 3: A modified version of the circuit with switches

The conclusion from experiments with ideal models

could be that one should avoid using them because

they lead to under- and over-constrained subsystems

of equations. This is not the correct conclusion in our

opinion: we think that ideal models are extremely

useful in some situations (e.g., where one needs to

save computation effort for instance) and that the

modeling language should be able to properly handle

them by yielding simulation code that conforms to

our expectations.

2.3 Connection variables

Note: Without loss of generality, we deliberately

consider here the simple pattern of a main model

built out of submodels connected together. Submod-

els themselves are supposed to contain only simple

equations (i.e., equalities). Indeed, the purpose of

this paper is not to discuss multiple ways to build

Modelica models but to illustrate problems with the

current approach, based on use of first-class con-

nection variables.

Information exchange between models in Modelica

is usually performed by means of connectors and

connections. Connectors are aggregations of connec-

tion variables, divided into flow and potential vari-

ables. The connection of several compatible connec-

tors expresses constraints between connection vari-

ables that match:

� values of potential variables have to be equal

� values of flow variables have to sum to zero

A special case exists for unconnected connectors:

� values of potential variables are not constrained

� values of flow variables have to be zero

From the outside of submodels point of view, Mod-

elica provides a rather high-level construct (connec-

tion equations) to express connections of models

without having to manipulate connection variables

directly. That approach offers several advantages:

� the code reflects the topology of the model, so

the code is easy to understand

� it is possible to add a new branch to a model

without having to worry about the consequences

on the new connection constraints, so the code is

easy to extend

� it is impossible to break fundamental invariants

attached to both kinds of connection variables,

so the code is robust

In contrast, from the inside of submodels point of

view, things are not as simple and clear: users have

to manipulate connection variables directly, and, as a

consequence, nothing prevents them to violate fun-

damental invariants such as flow preservation.

Worse: the compiler has no way to prove that models

preserve those invariants since, inside submodels,

everything is ultimately an ordinary equation.

That situation is a bit odd: after all, why not having

the counterpart of connection equations inside sub-

models? Having a construct that would handle con-

nection variables automatically the way connect

does outside submodels not only would help users to

write correct (and machine-checkable) models, but

also would lead to more general models. Indeed, the

fundamental problem with the connection variable

approach is that it depends on the assumption that

connection variables always exist in the sense that

there is always enough constraints in the model to

define all of them. That assumption is false, as

demonstrated in the previous sections, and the goal

of ground-like models (to be provided by users!) is

precisely to compensate the lack of potential con-

straints and the excess of flow constraints that arise

naturally in connection variable-based semantics.

At this point, it is legitimate to ask ourselves why not

simply make connection variables second-class citi-

zens of the language and let higher-level constructs

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 871

directly deal with them. Indeed, this would be a solu-

tion: if for instance the compiler would introduce

connection variables on demand (i.e., just as many

connection variables as necessary to solve the prob-

lem for variables of interest) we would avoid the

problems encountered so far. But let's think a bit

more about those connection variables: what kind of

information do they carry under the assumption that

you can't directly access them? The answer is rather

simple: nothing meaningful for the user. In conse-

quence, the thesis we develop in this paper goes even

further: we simply advocate a language with no con-

nection variables at all in the physical domain.

3 Proposal for an enhanced Modelica

approach

3.1 The example of VHDL-AMS

Several modeling languages already adopted a theo-

retical model with no connection variables5. Among

them, VHDL-AMS[2] is probably the most famous

one in the Modelica community. In this section, we

present an quick overview of the way VHDL-AMS

handles connection of analog submodels.

VHDL-AMS defines terminals to represent physical

connection points (the equivalent of Modelica con-

nectors, in the analog domain). A terminal is de-

clared to be of a given nature, i.e., energy domain.

Here is an example of declaration of an electrical na-

ture:

subtype voltage is real;

subtype current is real;

nature electrical is

 voltage across

 current through

 ground reference;

The first two lines are just for convenience: they de-

fine two subtypes of real (the equivalent of Model-

ica's Real type) used to represent voltages and cur-

rents, respectively. More interesting is the declara-

tion of electrical:

� voltage across declares the across type as-

sociated with electrical

� current through declares the through type

associated with electrical

5 Simscape, from The MathWorksTM, offers an interme-

diate level of abstraction (connection variables are vis-

ible as port attributes) but users are strongly encour-

aged not to use them directly.

� ground reference names the reference ter-

minal, a special terminal that holds the reference

potential associated with electrical

We can observe that no name is introduced for nei-

ther the across type nor the through type. Only

ground, the name of the reference terminal, is in-

troduced by the definition of electrical: in

VHDL-AMS there is no need to introduce any

ground submodel since the ground is a connection

point, not a submodel6.

Natures can be used to define terminals using the fol-

lowing syntax:

terminal p, n: electrical;

The above line declares two terminals p and n hav-

ing electrical nature. How do we access across

and through values held by the terminals in VHDL-

AMS? Here is the trick: we cannot. As written

above, terminals only represent physical connection

points and, as such, they do not stand for placehold-

ers for any kind of connection variables. The only

way offered by VHDL-AMS to access across and

through quantities inside the equivalent of submodels

is by means of branch quantity declarations:

quantity

 v across

 i through

 p to n;

The above declaration reads as follow:

� v across declares a variable having the across

type of p and n, that holds the value of the volt-

age difference between p and n

� i through declares a variable having the

through type of p and n, that holds the value of

the current that flows from p to n

We can notice in the declaration above that nothing

requires the existence of any kind of connection vari-

able, as expected. Indeed, the declaration really just

states that:

� the across quantity between p and n can be ref-

ered to as “v”

� the through quantity flowing from p to n can be

refered to as “i”

Branch quantity declarations coupled with port maps

(the equivalent of Modelica's connection equations

in VHDL-AMS) define a connection graph that is

used to elaborate the missing constraints in VHDL-

AMS models. Which advantages do they provide

over the Modelica approach? First, inside submodels,

6 Remember footnote 2.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 872

we get the conciseness and the clarity already offered

outside submodels in Modelica by means of connec-

tion equations: the code is easy to read, easy to main-

tain and more robust (compare the branch quantity

declaration given above in VHDL-AMS with the

definition of partial “two-pin” submodels in Model-

ica libraries). Second (and the most important re-

garding the subject of this paper), thanks to those

high-level constructs, a VHDL-AMS compiler has

a global view of the whole connection graph:

� concerning potentials: where a Modelica com-

piler only knows locally that absolute potentials

in a connection set should be equal, a VHDL-

AMS compiler also knows which loop(s) of the

connection graph a given potential contributes to

(this allows circuits as in Figure 1 to be success-

fully compiled)

� concerning flows: where a Modelica compiler

only knows what happens locally in a connection

set, a VHDL-AMS compiler also knows how

flows traverse submodels (since, inside submod-

els, flows are explicitly declared as such) and,

consequently, how flows traverse the whole con-

nection graph.

The strength of VHDL-AMS regarding analog mod-

eling comes precisely from that global view of the

connection graph: a VHDL-AMS compiler can

fully apply both Kirchhoff laws7 to the whole sys-

tem whereas a Modelica compiler can only apply the

first one, and moreover, only partially (actually, to

each connection set). It follows that a VHDL-AMS

compiler can provide the exact number of missing

constraints to solve the whole system without intro-

ducing any connection variable and without resorting

to the “manual adjustments” (e.g., positioning

ground-like submodels) required by Modelica.

Undeniably, VHDL-AMS outperforms Modelica

here. Alas, there are still some limitations: models

such as depicted in Figure 3 still remain impossible

to define... The reason is that VHDL-AMS require-

ments for solvability (see [2]) impose one equation

to be present in ideal switches, so users have to state

explicitly that the current flowing through the sub-

model is zero when in “open” mode8. Global flow

7 The first law, also called Kirchhoff's junction rule,

states that the directed sum of the flows at every node

of a circuit is zero. The second law, also called Kirch-

hoff's loop (or mesh) rule, states that the directed sum

of the efforts around any closed circuit is zero.

8 VHDL-AMS features generate statements to generate

constraints conditionally, so one might hope to use

analysis finds that our VHDL-AMS model with two

switches is well-structured whereas two constraints

may dynamically impose the value of the flow on the

same branch of the circuit. We are in the same situa-

tion encountered in Modelica while solving the sim-

ple R circuit: under some switching conditions, the

incidence matrix of the system is singular.

We conclude from those observations that having

high-level constructs such as VHDL-AMS branch

quantity declarations in an acausal modeling lan-

guage greatly enhances expressiveness. However,

that approach, even if better than what Modelica cur-

rently provides, does not suffice to resolve all the is-

sues. In the next sections, starting from a variant of

branch quantity declarations seen above, we propose

an enhancement over VHDL-AMS, that solves the

issues encountered in models involving ideal sub-

models.

3.2 High-level physical connectors

In order to benefit from the full power of global con-

nection graph analysis in Modelica, we need to be

able to define the equivalent of VHDL-AMS termi-

nals and branch quantities. In the case of electrical

modeling, it would give something like:

type Voltage = Real(unit="V");

type Current = Real(unit="A");

connector Pin

 across Voltage;

 through Current;

end Pin;

Several comments need to be made at this point.

First, unlike in VHDL-AMS, we do not begin by

defining a nature to be subsequently used in terminal

or branch quantity declaration. Instead, we define di-

rectly a high-level physical connector for the physi-

cal domain of interest. This avoids introducing too

many new language constructs (and keywords) while

still remaining general enough, as we will see below.

Second, we impose that any high-level physical con-

nector contains exactly one across type definition

and its associated through type definition. It is how-

ever possible to add traditional connection variables,

parameters, etc., in the same connector definition, in

the pure Modelica spirit. Also, high-level physical

connectors can be aggregated into enclosing connec-

them here... Alas, the switching condition is dynamic

in our case and generate statements are limited to static

cases. Also, we don't know, at submodel creation time,

under which condition constraints have to be present

(or not).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 873

tors, like any other kind of Modelica connector.

Third, the careful reader may have noticed that we

did not define any reference connector when defin-

ing Pin above. The main reason is that we don't

want to pollute name spaces with new names, espe-

cially when context always permits to disambiguate

the code. Indeed, references to the reference connec-

tor always occur in a connection statement. For obvi-

ous reasons, we impose that at least one of the con-

nected entities has to be an instance of a compatible

connector type9 other than the reference connector.

In consequence, we propose that the keyword ref-

erence, used in any connection statement in place

of a connector reference, represents the ad-hoc type-

compatible reference connector.

3.3 Connections and effort/flow variables

In order to conveniently express connections in a

natural Modelica style, we propose the usage of the

keyword connect to be extended in two ways:

� applied to high-level physical connectors10, it is

used to express that its arguments have to be

considered as the same physical connection

point, or node

� applied to more than two connector references, it

enables users to enhance readability of connec-

tion statements by allowing local connection sets

to be expressed directly11

We also propose to declare the equivalent of branch

quantities by means of two separate constructs:

across(v, p, n);

through(i, p, n);

The first line reads “v denotes the potential differ-

ence between p and n”: it is used to declare an effort

variable (the first argument) holding the effort dif-

ference measured between the “plus” and “minus”

connectors denoted respectively by its second and

third arguments. Notice that we do not declare the

type of v: instead we impose that at least one of the

two connector arguments to across has to refer-

ence a user-defined instance of a high-level physical

connector, so the type can be deduced from context

(it is of course the across type of the corresponding

9 Remember that Modelica features a structural type

system.

10 Of course having compatible types, which actually

means “same types” here due to type invariance im-

posed by acausal semantics.

11 This should not preclude connection sets to be split

over several connection statements, however.

high-level physical connector type). Similarly to

across, through introduces a new variable, but

in that case the introduced flow variable holds the

flow quantity flowing from the “plus” connector to

the “minus” connector12.

3.4 Sources and sensors

Our theoretical model is not yet expressive enough:

pure sources and pure sensors are missing. The rai-

son d'être of those entities is to enforce conceptual

decoupling of the effort/flow world from the signal

world by enabling users to express input/output con-

straints between both worlds. This eases documenta-

tion, model analysis and debugging.

Sources and sensors are defined by means of tees.

The proposed syntax for sources, or input tees, is:

across(input v_in, p, n);

through(input i_in, p, n);

The two lines above introduce respectively and effort

source and a flow source. The corresponding

effort/flow is constrained from the outside world by

means of the type-compatible input connector signal

whose name follows input. Similarly, the syntax

for sensors, or output tees, is:

across(output v_out, p, n);

through(output i_out, p, n);

Unsurprisingly, the two lines above introduce re-

spectively an effort sensor and a flow sensor. The

type-compatible output connector signal is con-

strained by the corresponding effort/flow.

The theoretical model introduced here differs from

VHDL-AMS's one: in particular, we allow the decla-

ration of pure effort sources, whereas VHDL-AMS

forbids them13. At this point, we have just defined a

variant (with minor enhancements) of what VHDL-

AMS already proposes, but we still have to solve the

issues encountered with the use of ideal submodels.

3.5 Conditional connections

We have seen in previous sections that submodels

such as ideal switches introduce dynamic structural

singularities (i.e., the incidence matrix of the system

12 Notice that the decoupling of across and through vari-

able declarations enables decoupled sign conventions.

13 That limitation of VHDL-AMS probably has its roots

in the way structural sets of equations (i.e., VHDL-

AMS's equivalent of connection equations) are re-

quired to be elaborated: by means of an application of

the Modified Nodal Analysis (see [3]).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 874

becomes singular under some circumstances that

happen at unpredictable times during simulation).

This suggests that a possible way to circumvent

those problems could be to dynamically adjust the

constraints to be solved instead of trying to hide nu-

merical problems into equations that, as a result, in-

troduce stiffnesses and numerical singularities into

systems of equations. We then propose here a gener-

alization of connection equations called conditional

connections and explain why this kind of construct

can be used to solve issues encountered so far.

Conditional connections are just guarded connect

statements in Modelica programs: syntactically, we

simply allow connect statements to appear in a

branch of a conditional statement14. The semantics

are naturally generalized to allow dynamic changes

in the connection graph of a model: whenever a con-

ditional construct activates a connect statement dur-

ing simulation, the connection constraints get up-

dated in accordance. Here is the code of an ideal

switch using conditional connections:

model Switch

 Pin p, n;

 input Boolean on;

equation

 if on then

 connect(p, n);

 end if;

end Switch;

It is interesting to notice that the “if” clause above is

not “balanced”. Indeed, its only purpose is to specify

conditions under which the topology of the physical

connection graph of models containing instances of

Switch changes15.

It is straightforward to see why conditional connec-

tions solve issues encountered with the use of ideal

switches. Indeed, models such as Switch above do

introduce equations only on demand16, to satisfy both

Kirchhoff's laws: we have just defined a dynamic

version of an elaboration method à la VHDL-AMS.

It follows that, for instance, having several closed

14 When and if clauses should be equally considered here.

But due to the lack of a rigorous hybrid theoretical

model in Modelica currently, we will focus on contin-

uous-time equations and if clauses only in the focus of

this paper.

15 After all, since our aim is to equip Modelica with com-

posable submodels, it is not so surprising that compo-

sition statements themselves do not require balancing

constraints!

16 In particular, a model composed of ideal switches only

does not contains any variable nor equation.

switches in parallel or several open switches on the

same branch of a circuit is no longer a problem, pro-

vided we know how to cope with more general con-

nection constraints. An elaboration algorithm that

satisfies those requirements is presented in the next

section.

4 Generation of connection equations

4.1 Physical connection graphs, across graphs

and flow graphs

Across declarations and through declarations not

only introduce a new identifiers, they also introduce

new edges in a structure called a physical connection

graph of the model. That directed graph is built as

follow:

� vertices represent connection sets of high-level

physical connectors17 of the original model

� edges represent either across declarations or

through declarations of the original model. Di-

rection information is preserved: edges are di-

rected from the connection set which the positive

high-level physical connector belongs to to the

connection set which the negative high-level

physical belongs to. Also, causality is preserved,

i.e., input/output information associated with

tees is represented in the graph

It is important to notice that physical connection

graphs are not explicit in the original model struc-

ture. However, they can be seen as a kind of dual of

the original model structure considered as a graph,

for a given configuration of conditional connections:

vertices in the original model (i.e., submodels con-

taining only simple equations) are used to build

edges in the physical connection graph, and, con-

versely, edges in the original model (introduced by

means of connect) are used to build vertices in the

physical connection graph. Notice also that we asso-

ciate exactly one physical connection graph with a

model for each configuration of the conditional con-

nections. This implies that physical connection

graphs are generally disconnected: indeed, the asso-

ciated model may eventually contain transformers

and gyrators, and make use of several physical do-

mains, for example.

A physical connection graph can be seen as the su-

perimposition of two simpler graphs having the same

17 The reference connector is view as an ordinary con-

nector here.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 875

vertices: the effort graph and the flow graph. Edges

of the effort (resp., flow) graph represent across

(resp., through) declarations of the original model.

Figure 4 below shows a representation of the con-

nection graph corresponding to the model in Figure

1.

Figure 4: a simple connection graph

The effort graph is represented at the top of the fig-

ure and the flow graph at the bottom. Blue vertices

represent connection sets (shared between both the

effort graph and the flow graph). Directed edges be-

tween two blue vertices represent across or flow def-

initions, depending on the nature of the subgraph

they belong to. For information, relations between

coupled effort and flow variables are represented by

dashed arrow-ended curves labelled with the corre-

sponding explicit equations.

4.2 Elaboration algorithm

The elaboration algorithm we propose in this paper

operates by determining effort constraints and flow

constraints independently. Notice that since we want

to enable dynamic changes in the topology of the

connection graph associated with a model, the algo-

rithm should be applied to each configuration re-

quired by the simulation18.

Effort constraints are determined this way:

� for each connected component of the effort

graph, perform a depth-first traversal with mark-

ing

18 Typically, each time the branch of a conditional equa-

tion becomes active. But a simulation environment

may optimize simulation time by anticipating configu-

rations, by caching old configurations, etc. Those opti-

mization strategies are beyond the scope of this paper.

� for each detected loop, generate the sum-to-

zero of effort variables along the loop by fol-

lowing this sign convention: effort variables

associated with edges oriented in the direc-

tion of the loop traversal are counted as posi-

tive and the other ones as negative.

Flow constraints are determined this way:

� for each connected component of the flow graph,

perform a depth-first traversal with marking

� for each detected loop with at least two ver-

tices19, generate, if not already done20, the

sum-to-zero of flow variables at each vertex

along the loop until all the variables of the

loop have been used at least once. The fol-

lowing sign convention is used for summa-

tion: flow variables associated with incom-

ing edges are counted as positive and the

other ones as negative

� generate equations constraining flow variables

associated with edges that do not belong to any

loop to have a null value.

The proof of the algorithm is omited but we give

here the general idea behind it:

� a loop of length n where each pair of high-level

physical connectors is connected exactly by one

across definition and one through definition in

the physical connection graph yields 1 effort

constraint (the directed sum of effort variables

equals zero) and n - 1 flow constraints (the di-

rected sum of flow variables is generated at each

vertex but one21)

� it follows that the final system of equations has

2n unknowns (n effort variables and n flow vari-

ables) and 2n equations (n equations explicitly

given by the user, as required by balancing con-

straints, and n equations automatically intro-

duced by the elaboration algorithm).

5 Example

In order to illustrate the power of high-level physical

connectors, let's try to define the model depicted in

Figure 2. We will reuse the definitions of Pin and

19 Loops with only one node should not yield flow con-

straints.

20 Since the same vertex may belong to several loops.

21 Flow variables associated with the ignored vertex have

been already used in equations associated with its

neighbors, so no equation is generated for that vertex.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 876

Switch previously introduced in 3.2 and 3.5, re-

spectively. The model also requires the definition of

a voltage source, a resistor and a capacitor. They are

given here:

model VoltageSource

 constant Real PI = acos(-1);

 parameter Real V0;

 Pin p, n;

 across(v, p, n);

 through(i, p, n);

equation

 v = V0 * sin(2 * PI * 50 * time);

end VoltageSource;

model Resistor

 parameter Real R;

 Pin p, n;

 across(v, p, n);

 through(i, p, n);

equation

 v = R * i;

end Resistor;

model Capacitor

 parameter Real C;

 Pin p, n;

 across(v, p, n);

 through(i, p, n);

equation

 C * der(v) = i;

end Capacitor;

Notice the conciseness of those definitions, thanks to

the use of high-level physical connectors: no inheri-

tance from an abstract TwoPin class is needed.

Also, the respective roles of v and i are explicit in

the code: this greatly helps understanding the physics

behind submodels. The VoltageSource sub-

model deserves a special comment: despite the ab-

sence of i in the equation of the submodel, we have

to define it because otherwise it would make the sub-

model a pure voltage source and, as a consequence,

the current would not traverse it. Since we want a

two-pin-like submodel, we have to define the

effort/flow pair of variables.

Just for fun, we can also define a (useless) ground

submodel:

model Ground

 Pin p;

equation

 connect(p, reference);

end Ground;

Notice that, contrary to Modelica's traditional ground

submodel, our ground submodel does not introduce

any explicit equation (nor any variable at all) in

models into which it is used.

The circuit (with logic of switches omited) can then

be defined as:

model Circuit

 Ground gnd;

 VoltageSource src(V0=50);

 Resistor res1(R=1000);

 Resistor res2(R=100);

 Capacitor cap(C=0.01);

 Switch sw1(on=...), sw2(on=...);

 ...

equation

 connect(gnd.p, src.p, res1.p);

 connect(src.n, sw1.p);

 connect(sw1.n, cap.p, res2.p);

 connect(cap.n, res2.n, sw2.p);

 connect(sw2.n, res1.n);

 ...

end Circuit;

We will study the two possible configurations where,

respectively, both switches are open and both

switches are closed.

The first configuration yields the physical connection

graph depicted in Figure 5 below. Both effort and

flow graph have the same topology because we only

used two-pin-like submodels to hold user-defined

equations.

Figure 5: physical connection graph corresponding to

model in Figure 2 in "open" mode

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 877

Applying the elaboration algorithm to the physical

connection graph gives for instance (depending on

the order into which vertices are examined):

cap.v - res2.v = 0;

src.i = 0;

res1.i = 0;

cap.i + res2.i = 0;

Only one effort constraint has been created, since the

effort graph only has one loop. Three flow con-

straints have been created: two for the the leftmost

subgraph (which contains no loop) and one for the

rightmost subgraph (which is a loop with two ver-

tices). We finally get a system with eight unknowns

and eight equations once the four explicit equations

are merged with the automatically generated ones.

The second configuration yields the physical connec-

tion graph depicted in Figure 6 below.

Figure 6: physical connection graph corresponding to

model in Figure 2 in "closed" mode

Applied to that graph, our elaboration algorithm

gives for instance:

res1.v - res2.v - src.v = 0;

res2.v - cap.v = 0;

-src.i - res1.i = 0;

cap.i + res2.i + res1.i = 0;

Again, a system with eight unknowns and eight

equations is finally produced. Two effort constraints

and two flow constraints have been generated, one

for each loop in both the effort graph and the flow

graph.

It is interesting to notice that in both cases only eight

equations are produced where the equivalent tradi-

tional Modelica program would have produced 38

equations! (each two-pin-like submodel introduces

six variables and the ground submodel, two). Also,

equations generated by our algorithm always corre-

spond to physical properties of the model: instead of

obfuscating the final system of equations like tradi-

tional connection equations do, equations generated

by our algorithm may be helpful to users to analyse

their models, and, eventually, to debug them.

6 Conclusion

In this paper, we have proposed a solution to enforce

composability of Modelica submodels: any composi-

tion of (possibly ideal) submodels that is physically

sound now yields a non-singular system of equa-

tions. Now it would be interesting to exploit the ad-

ditional syntactic information offered by our pro-

posal to better statically typecheck models: it should

help detecting errors more accurately than a solution

based on traditional Modelica connectors, especially

if coupled with a method that would take incidence

information into account22. Also, and more impor-

tantly, we hope that, coupled with a rigorous hybrid

theoretical model, our proposal would serve as a ba-

sis to get rid of several special-purpose or composi-

tion-unfriendly features of Modelica designed to

cope with limitations in expressiveness, especially

the recent Stream proposal but also the Overcon-

strained Connection-Based Equation Systems pro-

posal, among others23. Another interesting applica-

tion would be a type system that would be powerful

enough to ensure true “plug compatibility”: separate

compilation of submodels would become possible

and intellectual property protection would directly

benefit from that.

22 Notice that explicit incidence information does not vi-

olate intellectual property!

23 As the first sentence of the Revised5 Report on the Al-

gorithmic Language Scheme nicely says: “Program-

ming languages should be designed not by piling fea-

ture on top of feature, but by removing the weaknesses

and restrictions that make additional features appear

necessary.”

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 878

7 Acknowledgments

This work is part of the contribution of LMS to the

ITEA2 European project OpenProd24. Many thanks

to my colleagues from LMS Imagine for their help

and suggestions, especially El Djillali Talbi, Antoine

Viel, Loig Allain, Yohan Broussaud, Olivier Broca

and Denis Fargeton. Also, many thanks to Michael

Tiller from Emmeskay, Wilfrid Marquis-Favre from

INSA-Lyon and David Broman from Linköping Uni-

versity: discussions with them are always extremely

valuable.

References

[1] The Modelica Association, Model-

ica Standard Library 3.0, PDF Doc-

umentation, available at

http://www.modelica.org/libraries/M

odelica/releases/3.0.1/ModelicaStan-

dardLibrary_3_0_Documentation.zip

[2] P. J. Ashenden, G. D. Peterson, D.

A. Teegarden, The System Design-

er's Guide to VHDL-AMS � Ana-

log, Mixed-Signal, and Mixed-

Technology Modeling, Systems On

Silicon, Morgan Kaufmann, 2003,

ISBN 1-55860-749-8

[3] C. Tischendorf, Topological Index

Calculation of DAEs in Circuit

Simulation, 1997

[4] G. Dauphin-Tanguy, Les bond

graphs, HERMES Science Europe

Ltd, 2000, ISBN 2-7462-0158-5

[5] P.J.L. Cuijpers, J.F. Broenink, P.J.

Mosterman, Constitutive Hybrid

Processes: a Process-Algebraic Se-

mantics for Hybrid Bond Graphs, in

SIMULATION, Vol. 84, Issue 7, pp

339-358, 2008

24 See http://www.ida.liu.se/~pelab/OpenProd/

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 879

Module-Preserving Compilation of Modelica Models

Dirk Zimmer

Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland

dzimmer@inf.ethz.ch

Abstract

Large Modelica models pose serious problems for compi-

lation and simulation. The standard process for the compi-

lation of Modelica models is insufficient since it requires

the flattening of the system and generates thereby overly

large executables. In this paper we elaborate the concept

of module-preserving compilation. This technique aims to

generate more compact executables and thereby shall en-

able the simulation of very large systems in the future. To

this end, we introduce an appropriate terminology and

design a set of data structures and algorithms that enable

the embedment of module preservation into the translation

of Modelica models. This paper represents theoretical

work only and aims to open up a fruitful discussion on this

topic. Keywords: Flattening; Translation; Causalization.

1 Motivation

The object-oriented modeling paradigm of Modelica

promotes a modular design of systems. Simple Mod-

elica models are thereby composed in order to form a

complex, hierarchically structured top-model. The

individual submodels are mostly stated in declarative

non-causal form. This is a prerequisite for their gen-

eral applicability. Whereas the declarative form ben-

efits the usability, it prevents the models from being

directly “executed.” Hence, the models must be

translated into a computationally feasible form (e.g.

an executable program), mostly for the purpose of

time integration.

Figure 1: Compilation stages of Modelica code

Figure 1 represents a common compilation scheme

that is shared by typical Modelica translators like

Dymola [3] or OpenModelica [4]. We see that

Modelica models are getting instantiated in the mid-

dle stage of the compilation process. The instantia-

tion is carried out in a flattened form. This means

that the hierarchic structure is destroyed and that the

resulting system represents one large system of equa-

tions.

The process of flattening benefits further tasks of the

compilation process. First of all, it enables the re-

moval of alias variables (that mostly result from the

objects’ interfaces) and thereby reduces the system

size. The process of causalization is able to handle

algebraic loops that extend over many different sub-

models. State selection and index reduction reduce

the dimension for the numerical ODE solver. By

these and other means the overall system can be sig-

nificantly simplified and the resulting code is com-

petitive to the best manually coded simulations.

Unfortunately, the process of flattening also has its

deficiencies. It gets problematic for very large sys-

tems. Since the model is always processed as a

whole, it does hardly scale and gets increasingly in-

efficient for large models. Also the generated code

starts to lack in quality. It gets overly large and con-

tains many redundant parts.

To get a better understanding of the problem, let us

look at an example. The Verification Package for

Modelica Spice 2.1 [2] includes the model of a four

bit adder (c.f. figure 2). Because it is modeled down

to the layer of single bipolar junction transistors, the

model is very detailed and indeed very large: it con-

tains in total 481’915 scalar equations. Dymola

(v7.2) fails in the attempt to simulate this model. The

translation needed almost 1 GB of RAM and finally

generated an 88MB executable. Its simulation in

Dymola failed in the simulation-environment.

Whereas the final reason of breakdown is most prob-

ably a minor bug that could be corrected, we shall

not overlook that there is a serious issue with very

large models. This is by no means specific to Dy-

mola, it is a principal problem concerning the gen-

eral processing of languages like Modelica.

Large models contain often a high degree of redun-

dancy, and the larger they get, the more redundant

they typically are. This rule of thumb also applies to

our example model. The four-bit adder contains 2

two-bit adders. The two-bit adder contains 2 one-bit

adders and each one-bit adder circuit contains 9

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 880 DOI: 10.3384/ecp09430028

1

2

3

4

5
6 7 8 9 10

15

11

12

13

14

+-

VT1

+-

VT3

+-

VT4

+-

VT5

+-

VT6

+-

VT7

+-

VT8

Ground1 Ground2

+ -

VC1=5

R1

R=1000
R2

R=1000

R3

R=1000

R4

R=1000
R5

R=1000

+-

VT2

Ground1

Ground2

Ground3

R1

R=4000

R2

R=1600

R
3

R
=
1
3
0 R

4

R
=
1
0
0
0

1 x

Q1

1 x

Q2

1 x

Q3

1 x

Q4 D
1

D
2

D3

c1

c2

c3

c4

qb

qb

ix

ix

Conne...

Conne...

Qni

Rb

R=RB

C0

k=0

qb

k=1

Cbx

+ -

Rc

R=RC

D
s

c

Re

R=RE

S
w

1

T_nom

T=Tnom

K

Sw 2

+
-

V
s
u

b
=

...

grd

B

C

E

h
e

a
tP

o
rt

S

(a) four-bit adder (b) NAND (c) BJT

Figure 2: Model diagram of the four bit adder and two of its components

NANDs. The NAND gate itself consists in 4 bipolar

junction transistors (BJTs) plus 3 diodes. Conse-

quently, the four-bit adder contains 36 NANDs, i.e.,

144 BJTs plus 108 diodes.

On the modeling layer, this redundancy is not a prob-

lem, since the number of individual modules is far

lower than the number of their corresponding in-

stances. On the computational level, all the hundreds

of instances get flattened and corresponding code is

generated for each of them. In direct consequence,

the code gets large, bulky, and redundant.

It is an evident question to ask: If hundreds of sub-

model instances share the same equations, can they

not share (at least partly) the same code? And can

this code be modularized in form of a function? It is

the aim of this paper to examine how and when a

given modularization on the modeling layer can be

preserved and mapped to code modules in the final

executable. This shall provide future benefits for

both the speed of the translation and the size of the

executable.

2 Modules and their Representation

Most readers will be very familiar with the typical

process of module creation. It is mostly applied to a

structure that occurs several times in a system. It can

be described by 5 steps:

1. Extract all the elements you want to put into

your module from one occurrence of your struc-

ture.

2. Determine all the variables that are part of your

module, and separate this set of variables into

two distinct sets: The set of local variables that

occur in your module only and the set of inter-

face variables that are also being used elsewhere.

3. Form an interface for your model given the cor-

responding set of interface variables.

4. Replace all occurrences of your structure by in-

stances of your module (e.g. sub-model declara-

tions or function calls, respectively).

5. Connect the interface of your module with the

corresponding variables.

This way of modularization can be applied to trans-

form code segments into functions but also to group

clusters of equations into a Modelica model. Hence

modules are a common concept for both the source

and target of a Modelica compiler.

On the modeling layer, the modular design is given

by the modeler. A module is represented by a Mode-

lica model and it consists essentially in an unordered

set of equations. In order to form meaningful mod-

ules, the modeler aspires to create sub-models that

form a semantic entity and offer a preferably small

interface that wraps a more complex inner part.

The target of the compilation is program code. That

is an (ordered) list of statements. These statements

are mostly computations of operators and value as-

signments. If several pieces of code share equivalent

sub-lists of statements (again, disregarding the nam-

ing of variables), these statements can be modular-

ized. Such a code module is typically represented as

a function.

Module-preserving compilation aspires a mapping

between the modules on the model level and the po-

tential modules on the code level. In concrete terms:

how and when can a Modelica model or a part of it

be translated into a function of an imperative pro-

gramming language?

3 Entities of Modularization

In principle, any arbitrary code segment can be mod-

ularized, but to gain any advantage, the subpart

needs to occur frequently in the main code and it

needs a feasible interface. One might attempt to find

such suitable subparts in the flattened code by pat-

tern-finding algorithms, but this approach is hardly

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 881

product

add

+1

+1

add

+

+1

+1

sin

sin

a

c

b

x

y

u
v

product

add

+1

+1

add

+

+1

+1

sin

sin

a

c

b

x

y

u
v

product

add

+1

+1

add

+

+1

+1

sin

sin

a

c

b

x

y

u
v

(a) (b) (c)

x:=a*b

y:=b+c

v:=sin(u)

u:=x

c:=v

x:=a*b

u:=x

v:=sin(u)

c:=v

y:=b+c

x:=a*b

y:=b+c

v:=sin(u)

u:=y

a:=v

y:=b+c

u:=x

v:=sin(u)

a:=v

x:=a*b

x:=a*b

y:=b+c

u:=x

v:=sin(u)

Figure 3: A causal block in different contexts with the corresponding code.

promising since this is a computationally demanding

task. It can be expected to fail for very large systems

when modularization is needed the most.

The hierarchic structure of the equation-based model

gives us a priori information about those patterns that

may occur frequently in the resulting code. In order

to use this information, we have to know about the

requirements for the translation of a sub-model into a

function.

A typical model in the Modelica library has a non-

causal interface with non-causal equations. Hence,

many models (like the model of a mechanical rod)

can be causalized in many different forms that all

require a different code for the computation. Thus,

code can only be shared for model instances of the

same causality.

However, thinking that causal models can be directly

transformed into code, is misleading. Figure 3 (a)

and (b) present a simple counterexample. The corre-

sponding code for the presented models is placed

underneath the modeling diagrams. We see that the

same causal block (blue) not only yields different

code, also its code separates into two parts. Hence it

cannot be expressed by a single function.

The problem is that causality only gives rise to a par-

tial order, but the transformation into code requires

an absolute order. The fact that the variable x is de-

termined by a and b and that y is determined by b

and c does not say anything about the order between

x and y. This might be stipulated by the remaining

system as in (a) and (b), but it might be left for

choosing as well as in (c).

The causal relations between assignments are best

expressed by a causality graph G(E,V). This is a di-

rected acyclic graph where the vertices VG corre-

spond to the assignments. The edges EG are formed

by those pairs of assignments (s1, s2) where v is a

variable of s2 and determined by s1. Examples of

such causality graphs are placed beside the code

segment in figure 3.

Those assignments belonging to a certain model M

induce a sub-graph GM of G. We are interested in a

very specific form of sub-graphs:

Definition 1:

• A vertex-induced sub-graph G’ of G is called

path-complete iff all paths in G between any ver-

tex pair (s1’, s2’) in G’ are also included in G’.

Path-complete sub-graphs are of high interest to us

because each one of them can be translated into a

separate cohesive program segment and thereby can

be modularized into a function.

Any vertex-induced sub-graph GM can be decom-

posed into a set of path-complete sub-graphs {GE1,

GE2, …}, but since there are many such decomposi-

tions, we need to specify further restrictions to derive

a unique decomposition. First of all, we demand the

decomposition to be minimal in the sense that the

decomposition contains no pair (GEa, GEb) that can be

merged to another path-complete sub-graph.

Since G is a directed acyclic graph, any minimal de-

composition into path-complete sub-graphs is given

an absolute order by G. There may now be vertices

of GM that cannot be uniquely assigned to one of the

decomposition’s sub-graphs. If we define these ver-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 882

tices to be assigned to the sub-graph of the lowest

order, we get a unique decomposition. We denote

this as the busy, minimal decomposition into path-

complete sub-graphs. Fortunately, this decomposi-

tion can be derived incrementally, as will be de-

scribed in section 5.2.

We recognize that the code for any model M may be

split into several entities E1, E2, … that represent co-

hesive code segments and that such a decomposition

into program segments can be uniquely determined.

Thus, we define:

Definitions 2 and 3:

• A causal entity E of a model M represents a list

of vertices of a sub-graph GE that results out of

the busy, minimal decomposition of GM into pat-

complete sub-graphs. The order of the list E is

partially determined by the underlying directed

graph GE.

• A causal interface IE of a causal entity E repre-

sents a pair of variable sets. The first set contains

the input variables that are formed by the ingo-

ing edges from G to the sub-graph GE. Corre-

spondingly, the second set is formed by the out-

going edges and represents the output variables.

The causalization of a model can now be precisely

defined by the causal signature:

Definition 4:

• The causal signature SM is a complete list of

causal interfaces IE for all causal entities E be-

longing to a given model M. The list determines

the order of the corresponding causal entities.

For illustration, let us look at the causal signatures

from Figure 3. Each model has a different one:

(a) [({a, b},{x}) ,({c},{y})]

(b) [({b, c},{y}) ,({a},{x})]

(c) [({a, b, c}, {x, y})]

We have seen that (a) and (b) require different code.

They also have different causal signatures with dif-

ferent causal entities. We further recognize that each

pair corresponds to a block of code, hence to a po-

tential function. Code that is generated for (c) shall

not be used for (a) and (b), but not necessarily vice

versa. Code for (a) and code for (b) would be usable

also for (c). Thus, we define the terms sub- and su-

per-signature:

Defintion 5:

• A causal signature SM is sub-signature of an-

other causal signature SM’ over the same

model if SM can be transformed into SM’ by

merging
1

subsequent pairs of the list. SM’ is

then defined as a super-signature of SM.

Example: The signature [({a, b, c}, {x, y})] from ex-

ample (c) is a super-signature for both (a) and (b).
 1

Sub-models that share the same causal entities can

share the same code. The number of causal entities

corresponds thereby to the number of separate code

blocks that could be turned into functions. In order to

reuse code efficiently, one may decide to replace the

code of one causal entity by the code of one or sev-

eral entities that originate from a model instance that

has a causal sub-signature.

Example: If the causal signature of 2(a) occurs fre-

quently, the compiler may decide to create two code

modules in form of the functions f1 and f2:

function f1(a,b)

 x := a*b;

 return (x);

end

function f2(b,c)

 y := b+c;

 return (y);

end

 If the causal signature of 2(c) occurs only once, the

corresponding code may now be formulated using

these modules by the segment:

 x := f1(a,b)

 y := f2(b,c)

4 Which entities shall be preserved?

Let us look at the academic example of figure 4. It

contains a lot of addition blocks and hence a com-

piler might be tempted to create a code module

(function) for the block. However, this is obviously

not a good idea. Modularization of the correspondent

causal entity will decrease the performance and qual-

ity of the code in this case.

adder1

+1

+1

adder1

+

+1

+1

adder2

+1

+1

adder2

+

+1

+1

adder3

+1

+1

adder3

+

+1

+1

adder4

+1

+1

adder4

+

+1

+1

adder5

+1

+1

adder5

+

+1

+1

Figure 4: A bad example for remodularization

The reason for this is that the modularization of a

causal entity needs to provide its interface (in con-

crete terms: function parameters and return value).

Once implemented, it is hardly possible to optimize

across the interface, and hence the systems cannot be

simplified. Auxiliary or alias variables cannot be

1
 Please regard: The merging of two causal entities corre-

sponds to the merging of its causal entities, and hence

variables can get removed from the interfaces.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 883

removed out of the system. Furthermore, the simple

additions are replaced by more costly function calls.

We see that preserving modules per se does not im-

prove the code. It is a tool that demands proper ap-

plication.

Modularization is not for free, it incurs additional

cost. Memory is needed to define the interface of the

function. Computational time is needed for the as-

signment of the interface values and the correspond-

ing function call.

Thus, the modularization of causal entities is only

meaningful, if the additional computational cost is

marginal to the cost of the function and if the mem-

ory cost of the interface is compensated for by the

memory savings that are attained by replacement of

multiple instances through function calls. Let us

therefore make a distinction between the inner and

outer complexity of a model.

4.1 Inner complexity of a module

Definitions 6 and 7:

• The inner computational complexity Ci,E of a

causal entity E is the total amount of all memory

assignments and basic computations from code

that corresponds to E.

• The inner data complexity Di,E is the total amount

of local data that is required for those computa-

tion.

Since both definitions for the inner complexity refer

to the actual code, their estimates are dependent on

the simplification mechanisms of the preceding

compilation stages.

Attaining a fair estimate for Di,E is actually unprob-

lematic. However, its complexity may depend on the

modularization of potential sub-entities. Estimates

for Ci,E, can be difficult to obtain when the number of

computations is unsure, for instance, an iterative

solver has to be applied in order to solve a non-linear

equation system. Fortunately, it turns out that a de-

termination of Ci,E is not necessary.

4.2 Outer complexity of a module

Definitions 8 and 9:

• The outer computational complexity Co,E of a

module is the amount of all memory assignments

and basic computations that refer to data of its

interface and to data outside the module.

• The outer data complexity Do,E of a module is the

total amount of data in its interface, defined by

IE.

Knowing the interface of a potential code module

means knowing about its outer complexity. How-

ever, the interface may contain more than intuition

suggests. The interface variables of the correspond-

ing equation-based model M are not the only mem-

bers of the interface. If the causal entity E represents

only a part of the model M, auxiliary variables will

be added to the interface. Furthermore, if the causal

entity defines integrators and hence possesses state

variables, these state variables have to be part of the

interface as well, since they are determined by the

global algorithm for synchronous time integration.

The same is true for variables that trigger events.

They are also part of the interface, since their values

must be accessible to the event finding algorithms.

Variables that form the simulation output are not

necessarily part of the interface. The tracking of the

correspondent data can be done within a code mod-

ule.

The distinction between inner and outer complexity

is however dependent on the computational frame-

work that will embed the resulting code. Here, we

assumed a typical environment for synchronous time

integration, but in a different computational frame-

work like QSS [5], the integrators and event triggers

are local and the corresponding variables do not be-

long to the outer complexity.

4.3 Frequency of entities

There is no incentive to turn any causal entity E into

a code module, if there is only one instance of it. The

number of occurrences NE is therefore a crucial crite-

rion. It influences cost and benefit of the modulariza-

tion.

The cost of modularization is:

• Additional computational cost: NE Co, E

• Additional data complexity required: Do, E

The benefit of modularization is:

• Saved computational cost: 0

• Saved data complexity: (NE -1) Di,E

Let μ be a coefficient that translates the computa-

tional complexity into data complexity. It needs to be

determined by experience, but mostly it will be cho-

sen in such a way that μ∙Co,E is close to Do,E. Now we

can compare the overall cost with the total benefit:

NE Di,E > NE μ Co,E + Do,E + Di,E

Consequently, let R be the fraction:

R = (μ∙Co,M + DE/ NE) / Di,E

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 884

A modularization becomes profitable if R < 1. This

implies that μ∙Co,E must be smaller than Di,E. Further-

more we see that the inner computational complexity

is irrelevant. If we presume that μ∙Co,E equals Do,E, the

computational complexity can be neglected entirely.

One of the difficulties of modularization is that a

causal entity E for a model M may contain a sub-

entity E’ from a sub-model M’ of M. The inner data

complexity Di,E is then dependent on the potential

modularization of E’. If E’ forms a module of its

own, Di,E obtains a lower value, and E itself is less

likely to be modularized. Hence the module preser-

vation of sub-models influences the modularization

of its super-models. Fortunately, Modelica enforces a

strict model hierarchy, implying that models cannot

be sub-models of themselves. This will simplify the

further analysis in section 5, but first let us look at an

example.

4.4 Example

$$$
**

$

$

~~
~~

$

* *

$

*

$

$

*

$

*

$

*

$

~~
~~

$

*

~~
~~

$

*

~~
~~

$

*

~~
~~

$

*

~~
~~

$

*

Figure 5: Simple model of an electric energy market

with producer models.

Figure 5 presents a very simple model of an electric

energy market. The electric power originates from 5

nuclear power plants and 6 hydropower plants. Each

of the power plants has its own parameters, and the

hydropower plants are dependent on the waterflow

from its rivers. Furthermore, one of the nuclear pow-

er plants is state owned and works for a fixed-price

scenario whereas all other power plants compete on

the free market. The actual model of the market is

placed in the center and determines the price from

the current balance of supply and demand.

The diagram represents the top model. Its implemen-

tation is based on the system dynamics library [1].

The overall model contains about 1100 variables,

whereby 800 of them represent alias variables. The

multiple power plants are an obvious target for mod-

ularization. Let us therefore examine their causal

signatures.

A hydropower plant produces a certain amount of

power given its current state. The price is determined

by the market. The current price influences the mon-

etary profit or loss of the plant and hence drives a

controller that aims at maximizing the profit. Each

hydropower plant possesses two state variables: the

desired outflow f and the current water level w. Its

behavior is controlled by the inputs the inflow i and

the current price $. The power p forms the output.

Without knowing much of the interior we can deter-

mine the causal signature that is shared by all six

hydropower plants:

[({f , w, i },{ p, dw/dt }),({$, w },{df/dt})]

We see that state and derivatives have become part

of the causal interfaces. Furthermore we need two

code modules to compute the model of the power

plant. Also the nuclear power plants demand two

code modules although their causal signature is sim-

pler since it has only one state: the current produc-

tion level l:

[({l},{ p}),({$, l },{dl/dt})]

The state owned nuclear power plant is an exception

though. Its signature is a super-signature of the other

plants:

[({l, $},{ p, dl/dt })]

Table 1 presents the ratio R for all four causal enti-

ties. 3 of the 5 entities are suited for modularization

and so the overall data complexity can be reduced to

roughly 50%.

Table 1: Analysis of causal entities

Entity Do,E Di,E NE R

({f , w, i },{ p, dw/dt }) 5 10 6 0.75

({$, w },{df/dt}) 3 12 6 0.46

({l},{ p}) 2 1 4 2.75

({$, l },{dl/dt}) 3 14 4 0.51

({l, $},{ p, dl/dt }) 4 15 1 1.53

5 Revised compilation process

The proposed methods so far are feasible to apply an

analysis to an already flattened model and to opti-

mize the resulting code by modularization. But the

flattening alone can represent an unaffordable task,

and hence the modularization shall be integrated in

all of the important stages of the compilation proc-

ess.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 885

5.1 Preparation

In a first preparatory stage, we attempt to estimate R

for any causal entity E of a model M from the non-

causalized Modelica model itself. The idea is to get

rid of all the small models that contain just a few

equations. Therefore, this analysis does not need to

be pursued for large models. The inner and outer

data complexity of the corresponding Modelica

model enables an estimation value Ř = Ďo,M / Ďi,M that

mostly is a lower bound for the effective R of its

causal entities. This is because causalization reduces

the inner complexity mostly more than the outer

complexity, and the split into causal entities mostly

increases the overall interface. Furthermore NE is

assumed to be infinite.

Sub-models with Ř < 1 are not expected to contain

modules that are valuable to preserve. The same is

true for sub-models that occur only once. All other

models are put into the set Ω, and their causal entities

may form modules of the program code. Please re-

gard that equations of models that are not in Ω can

still become part of a code module if any of their

super-models is in Ω. Hence the selection criterion

for Ω can be chosen even stricter than suggested.

5.2 Instantiation and Causalization

In the classic scheme, all models get instantiated first

and then causalized. For very large systems this pro-

cedure is not feasible anymore. Ideally, the process

of module preservation shall be implemented in such

a way that the full flattening of the model can be

avoided. Thus we propose to instantiate and causal-

ize in several alternating iterations.

To this end, the models are being instantiated into a

buffer of fixed size. When the capacity limit is

reached, the equations in the buffer are causalized as

much as possible. Those equations that could be cau-

salized are transformed into assignments and added

to the causality graph G. Last, the buffer is cleared

and the non-causalized equations are put aside for a

latter iteration.

In order to causalize the whole system, many sweeps

over the buffer may be required. During the whole

process, the causality graph G is constantly growing.

When an assignment s of a model M in Ω is added, G

and the induced sub-graph GM grow by one vertex. A

decomposition {GE1, GE2, …, GEn} into path-complete

sub-graphs will be affected in two possible ways:

• a causal entity is enlarged G’Ek = GEk + s (the en-

tity that is of lowest order in G, in case there are

several options).

• else, the new vertex forms a new causal entity

GE(n+1) = s.

This procedure will lead to a busy, minimal decom-

position into path-complete sub-graphs. We further

recognize that existing causal entities can just grow,

but they will not be cut or merged. This is very im-

portant because this means that we can track all enti-

ties: When a common causal entity in the graph GE

exceeds a certain threshold size, we can decide to

modularize GE in the graph by storing it separately.

In this way, we can avoid to store the complete cau-

sality graph in plain form. This does not mean that

the corresponding causal entity will form a code

module. This modularization within the causality

graph is a separate mechanism that is suggested in

order to save a potentially substantial amount of

memory.

5.3 Model hierarchy

At the end of the causalization, we have a complete

causality graph where larger common parts share the

memory. The graph contains a potentially large

number of causal entities that all have to be analyzed

for a potential modularization. This analysis has to

be executed in a certain order: A model may have

instances with different causal signatures. Some of

these signatures may be super-signatures of others.

This will influence the modularization of the sub-

signatures, and thus all causal entities belonging to a

model have to be analyzed at once.

Furthermore, the modularization of an entity of a

model M may influence the modularization of an

entity in any of M’s super-models (remember section

4.3). Therefore we have to execute the analysis ac-

cording to the model hierarchy starting with the low-

est models first.

The term model hierarchy might be misleading since

it suggests a tree-like structure. In fact, a Modelica

model hierarchy can also be represented by a di-

rected acyclic graph that gives rise to a partial order

on its models representing the vertices of the graph.

The bottom-up procedure can therefore be imple-

mented as a (breadth first) graph traversal.

5.4 Modularization

For each model M in Ω, we built up a prefix tree of

its causal signatures, where each node owns a coun-

ter, and the branches denote the corresponding causal

entity E. A path from the root to a leaf then repre-

sents a causal signature SM of a model instance. Fig-

ure 6 presents an exemplary prefix tree for the block

model of figure 3.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 886

Figure 6: Prefix tree of causal entities

We want to find out, which causal entities are profit-

able to modularize. To this end, we have to consider

the super-signatures first (right branch in figure 6).

We can either create an extra causal entity for a su-

per-signature or re-use existing ones. In general, this

is a hard optimization problem. For our purposes a

simple heuristic procedure shall be sufficient:

• Let E0 be the first causal entity of the super sig-

nature SM0 for the signatures S1…Sn and let E1 …

En be their corresponding first causal entity.

• We find the best R: Rmin = min { R(E1) … R(En) }

• If R(E0) > Rmin we decide to split the super-

signature and integrate it into the path that be-

longs to Rmin.

• At last, we mask out the root and repeat this

process recursively for all sub-trees.

If we assume the values out of column 1 from table

2, the prefix tree of figure 6 will transform into the

one depicted in figure 7. Assuming the values of col-

umn 2 will cause no changes in the original tree.

Table 2: Scenarios for super-signatures

Finally, we can compute R for all causal entities of

the prefix tree and either chose to modularize the

code or not, given the criteria from section 4.3.

Please remember that in order to compute R, sym-

bolic simplifications should take place beforehand.

- 9 -

- 8 -

- 8 -

({a,b},{x})

({c},{y})

- 1 -

({b,c},{y})

- 1 -

({a},{x})

Figure 7: Prefix tree of causal entities

5.5 Summary and run-time efficiency

Step 1: Preparation

Estimate Ř for all models and enter selected models into

the set Ω.

Step 2: Instantiation and causalization

Install a buffer of limited capacity.

While there are non-causalized equations do

 Fill buffer with non-causalized equations.

 Attempt to causalize them.

Reject non-causalized equations for future iterations.

 Track causal entities for the models in Ω.

 Store larger entities separately.

end

Step 3: Modularization

For all models M in Ω.

in order of the model hierarchy do

 Built up the prefix tree of causal signatures for M.

Simplify the code of the corresponding causal enti-

ties.

 Manage occurring super-signatures.

Compute R for all remaining entities and decide to

modularize the entity if R < 1.

end

It is important to note that none of these processes has to

solve an NP-hard optimization task. The precise algo-

rithmic efficiency depends on the concrete implementa-

tion. However, let us look at the causality graph. If we

(realistically) suppose a maximum number of variables in

an equation, the memory demand is linear to the size of

the system and even less than linear if modularization can

be applied. The fact that the code modules can be created

ad-hoc helps to keep the memory demand small. The most

expensive algorithm that works on this graph is the step-

wise causalization. In worst case, it will lead to a quad-

ratic run-time.

6 Further issues

The implementation of a mechanism for re-

modularization has implications for other processes

in the compilation. In the following, we investigate

the most important points that need to be concerned:

6.1 Algebraic loops

A proper implementation of module-preserving

compilation requires that the process of model in-

stantiation and causalization is conducted in several

iterations. As long as the model contains no alge-

braic loop and/or requires index reduction, this is a

 Assumption 1 Assumption 2

R({a, b, c}, {x, y}) 1.2 0.8

R ({a, b},{x}) 0.6 0.85

R ({b, c},{x}) 1.8 2.0

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 887

non-issue. For instance, the complete domain of sys-

tem dynamics is mostly non-critical.

However, many systems cannot be represented in

lower triangular form and thus a block lower triangu-

lar (BLT) form is typically aspired. A standard algo-

rithms for this purpose, the Dulmage-Mendelsohn

permutation, [7,8] cannot always be applied since it

assumes that the whole system is readily available.

This is not naturally the case for very large systems.

Other algorithms for a BLT transformation are there-

fore required that are able to cope with local infor-

mation only. It is possible in doing so by applying a

tearing method directly on the whole system that

identifies the corresponding blocks of equations (de-

noted as algebraic loops) later on. Such mechanism

have already been developed (although for another

purpose) in the SOL framework [9,10].

In general, the tearing will be needed for the efficient

solution of the algebraic loops. A tearing method

selects (using certain heuristics) a sufficient number

of tearing variables and assumes them to be known.

Now the algebraic loop can be causalized and an

equal number of residual equations results. In order

to solve the system, an iterative numerical solver is

typically applied. We need to investigate how modu-

larization can be applied for the torn system of equa-

tions.

For causal entities there are two cases that need to be

considered with respect to algebraic loops:

• Causal entities that contain a complete algebraic

loop. This is in principal unproblematic. The

code can be wrapped like any other code. How-

ever, depending on the heuristics, it is not guar-

anteed that equivalent models will be torn in an

equivalent way. This is still a serious issue.

• Causal entities that are only part of a loop. The

modularization of such entities is in general not

very meaningful. They may contain residuals or

tearing variables that would enlarge the interface

of these entities. Furthermore the entities may

contain additional computations that are not nec-

essary to compute the residuals. These increase

the computational effort and (what is worse) may

not be fail-safe with respect to the numerical

solver.

6.2 Symbolic Differentiation

The mechanisms for index reduction (see [7]), but

also the application of iterative solvers may require

the differentiation of subparts of the equation system.

In the case of index-reduction the differentiation of-

ten generates algebraic loops.

The differentiation adds new equations to the system.

Whereas there are given models for the original set

of equations there are no models for the differenti-

ated equations and hence no modularization can take

place on differentiated subparts of the system.

We therefore propose that differentiated equations

become part of their original model can therefore

also be part of causal entities. However, this topic

also needs further investigation.

6.3 Pre-compilation and re-modularization

Causal entities map to an enclosed code segment (i.e.

a function) that of course can be provided also in

pre-compiled form. Hence an M&S-environment

may decide to maintain a library of precompiled

code from the most frequently used causal entities.

The underlying motivation is to decrease the compile

time.

There remains doubt that pre-compilation will repre-

sent an effective means. It could as well be that the

reading from the disc is slower than the actual com-

pilation process. Only for very large code segments

pre-compilation will be profitable for sure. Such

code segments would correspond to sub-models that

are not only large but also hardly decomposable into

further sub-models. Otherwise the smaller sub-

models will be modularized and the large model

shrinks in its inner data complexity. Ideal vehicle

models in a traffic simulation could be one such ex-

ample.

6.4 Modeling requirements

Module-preserving compilation requires that the

provided model owns a suitable hierarchic structure

and this needs to be provided by the modeler. Since

the compilation by itself is not able to detect any pat-

terns or to form feasible substructures the most prin-

ciple rule of information processing applies: garbage

in – garbage out. Badly structured or flat models

cannot be handled efficiently. An implementation of

a finite-element mesh within Modelica would repre-

sent one such example.

7 Conclusions

The concept of module-preserving compilation bases

on the observation that a causalized model can be

decomposed into a list of causal entities whose inter-

faces form the causal signature. Each causal entity

corresponds thereby to a potential code module. Re-

garding the outer and inner complexity of a potential

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 888

code module we could derive a criterion for the se-

lection of appropriate code modules.

The integration of module preservation in the trans-

lation process is clearly a non-trivial task that in-

volves a whole bunch of issues. The model hierarchy

needs to be taken into account. Furthermore we sug-

gest managing the different causal entities in form of

prefix trees. Methods for tearing and state selection

need to be provided that do not require the complete

system to be readily available.

Module-preserving compilation represents not more

than one tool to optimize code and hence it cannot

solve all problems. It will fail for flat or unstructured

models and it may be difficult to apply if there are

huge algebraic loops.

Nevertheless, there are many suitable examples like

the large electric circuits of figure 2. We also pre-

sented a model based on system dynamics (figure 5).

Although this example is still quite small, module

preservation is expected to decrease the code com-

plexity already substantially. Evidently, much larger

models of an energy market can be envisioned with

much more elaborated models. A model of the com-

plete European grid could be one example. Such a

model would contain several thousands of power

plants and many different market places. For such

large models, module preservation becomes a vital

tool in order to enable a simulation of the system at

all.

Our proposal for module-preserving compilation

aims to be a general approach for a wide range of

models. It is however possible to simplify the out-

lined procedure significantly if we can make certain

assumptions about the model structure or require

additional hints or help from the modeler himself.

Such an approach will lose generality but might be

better achievable in a practical implementation.

References

[1] Cellier, F. E.: World3 in Modelica: Creating Sys-

tem Dynamics Models in the Modelica Frame-

work. In: Proc. 6th Interna-tional Modelica Con-

ference, Bielefeld, Germany (2008) Vol.2 393-

400.

[2] Cellier, F.E., C. Clauß, A. Urquía: Electronic Cir-

cuit Modeling and Simulation in Modelica. In:

Proc. 6th Eurosim Congress on Modelling and

Simulation, Ljubljana, Slovenia (2007) Vol.2, 1-

10.

[3] Dynasim AB, Dymola Users’ Manual, Version

6.0, Lund, Sweden, 2006.

[4] Fritzson, P., P. Aronsson, H. Lundvall, K.

Nyström, A. Pop, L. Saldamli D. Broman: The

OpenModelica Modeling, Simulation, and Soft-

ware Development Environment. In: Simulation

News Europe (2005) 44/45.

[5] Kofman, E., S. Junco: Quantised State Systems:

A DEVS Approach for Continuous Systems Si-

mulation. In: Transactions of SCS, (2001) 18(3),

pp.123-132.

[6] Pantelides, C.: The Consistent Initialization of

Differential-Algebraic Systems. In: SIAM J. Sci.

and Stat. Comput. (1988) Vol 9, No. 2, 213-231.

[7] Pothen, A., Chin-Ju Fan: Computing the Block

Triangular Form of a Sparse Matrix. In: ACM

Transactions on Mathematical Software (1990)

Vol 16, No. 4 303-324.

[8] Tarjan, R.: Depth-first search and linear graph al-

gorithms. In: SIAM Journal on Computing.

(1972) Bd. 1, No. 2, 146-160.

[9] Zimmer, D.: Introducing Sol: A General Meth-

odology for Equation-Based Modeling of Vari-

able-Structure Systems In: Proc. 6th International

Modelica Conference, Bielefeld, Germany,

(2008) Vol.1, 47-56

[10] Zimmer, D.: Enhancing Modelica towards vari-

able structure systems. In: Proceedings of the 1st

International Workshop on Equation-Based Ob-

ject-Oriented Languages and Tools (EOOLT),

Berlin, Germany (2007) 61-70

Biography

Dirk Zimmer received his MS degree

in computer science from the Swiss

Federal Institute of Technology (ETH)

Zurich in 2006. He gained additional

experience in Modelica and in the field

of modeling mechanical systems during

an internship at the German Aerospace

Center DLR 2005. Dirk Zimmer is

currently pursuing a PhD degree with a

dissertation related to computer simulation and modeling

under the guidance of Profs. François E. Cellier and Wal-

ter Gander. His current research interests focus on the

simulation and modeling of physical systems with a dy-

namically changing structure. To this end, the Sol-project

was founded in 2007 together with F.E. Cellier and the

support of the Swiss National Science Foundation.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 889

Extendable Physical Unit Checking with Understandable
Error Reporting

Peter Aronsson1 David Broman2

1MathCore Engineering AB, Teknikringen 1F

SE-58330 Linköping, Sweden, peter.aronsson@mathcore.com
2Dept. of Computer & Information Science, Linköping University, davbr@ida.liu.se

Abstract

Dimensional analysis and physical unit checking are
important tools for helping users to detect and cor-
rect mistakes in dynamic mathematical models. To
make tools useful in a broad range of domains, it is
important to also support other units than the SI
standard. For instance, such units are common in
biochemical or financial modeling. Furthermore, if
two or more units turn out be in conflict after check-
ing, it is vital that the reported unit information is
given in an understandable format for the user, e.g.,
“N.m” should preferably be shown instead of
“m2.kg.s-2”, even if they represent the same unit.
Presently, there is no standardized solution to handle
these problems for Modelica models. The contribu-
tion presented in this paper is twofold. Firstly, we
propose an extension to the Modelica language that
makes it possible for a library designer to define both
new base units and derived units within Modelica
models and packets. Today this information is im-
plicitly defined in the specification. Secondly, we
describe and analyze a solution to the problem of
presenting units to users in a more convenient way,
based on an algorithm using Mixed Integer Pro-
gramming (MIP). Both solutions are implemented,
tested, and illustrated with several examples.

Keywords: dimensional analysis, unit checking, di-
mensions, error reporting, language design

1 Introduction

Modelica is a full fledged object-oriented equation-
based modeling language. However, its expressive-
ness can sometimes lead to models containing errors
that are hard to detect and isolate [3].

One important area where modeling errors can
give devastating consequences is inconsistency of
physical units and dimensions within equations and

component connections. We have earlier proposed a
design and made a prototype implementation for di-
mensional inference and unit consistency check-
ing [1] in the MathModelica [7] and OpenModelica [9]
tools. Such checking will help the users by reporting
at compile time if they have made a unit inconsis-
tency error in their model. However, this becomes
less useful when modeling something that cannot be
expressed in the dimensions as defined by the SI
standard. This is a common scenario for biochemical
modeling based on the SBML standard [12]. Such
models frequently use the non-standard dimension
“Item” for counting, e.g., molecules. MathModelica
has a translator tool [2] for translating SBML models
into Modelica (and vice versa). To make the transla-
tion tool more robust, user defined units should be
considered in the dimensional analysis too. Another
example is in financial applications, where it is re-
quired to use the dimension “money”.

It is also a problem that the system of units (and
potential extensions) is not described in the Modelica
language standard, i.e., the language specification
only specifies how to parse unit expressions, not
what the units mean, or how the checking should be
performed. This may result in that tools from differ-
ent vendors are not compatible, where some tools
accept certain Modelica libraries, while others reject
them due to unit inconsistency.

Another problem is how to present the resulting
units (e.g. from unit inference) to the user, when one
or more units are inconsistent. For instance, present-
ing the unit “m2.kg.s-2A-1” to the user is not very
understandable. Instead, the tool should translate this
into a more appropriate derived unit (or combination
of derived units and base units), like “Wb” or per-
haps “V.s”. The preferred choice of these two might
be different depending on domain and context. For
instance, if this unit is reported in a domain of Mag-
netic models, “Wb” might be preferred, but if it is
reported in a context where only units “V”, “A” and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 890 DOI: 10.3384/ecp09430027

“Ohm” are used it is probably more appropriate to
use “V.s”. The presentation should not only contain
standard SI units, but also extended units defined by
the user and these could also be selected by regard-
ing domain and context information.

In this paper we propose a solution to these prob-
lems by specifying both base units and derived units
in a generic way, so that new dimensions easily can
be added. We propose this as an extension to the
Modelica language so that different Modelica tools
can behave alike. At the same time, the library de-
veloper is also given a more powerful mechanism for
specifying nonstandard units in a uniform way. Sec-
tion 2 presents the proposed Modelica language ex-
tension that enables the model user to describe both
base units and derived units. In Section 3 we show a
new method of how a tool can interpret the dimen-
sional units inferred by the type checker and presents
unit errors to the user in a more readable form. This
is done by formulating a mixed integer programming
(MIP) problem that will select more appropriate
units depending on both context and potentially also
user preferences. We have made an implementation
and an evaluation in the MathModelica and Open-
Modelica tools, described in Section 4. Finally, Sec-
tion 5 contains related work and Section 6 concludes
the paper.

2 Extendable Unit Definitions

The Modelica specification [10] includes a section
describing the syntax of unit expressions, i.e., how
for example an expression such as "kg.m/s2"
should be parsed. However, besides a reference to
ISO standard 31/0-1992, no information is given re-
garding the semantics of how to perform the actual
unit checking. This general openness of the specifi-
cation makes it possible for different tool vendors to
implement their own way of handling unit checking,
giving implementation freedom, but also limits the
possibility for models to be exchanged and treated in
the same way by different tools.

Instead of letting a reference to an ISO standard
define the meaning of base units (e.g. “V” and “s”)
and derived units (e.g. “N.m”), we propose in this
section that the definition should be stated directly in
the source code of Modelica classes. Possible bene-
fits with this approach are:

• Tools from different tool vendors use and inter-
pret exactly the same set of unit definitions.

• Besides the standard SI units, it is easy for users
and library developers to add both new base and
derived units for a particular library.

Our goal is that both this work with extendable unit
definition and our previous work on general unit
checking should form a foundation for a new seman-
tic description of units in the Modelica specification.
Even though we today have a running test implemen-
tation, the work is still at an early stage, and more
work on formalizing the semantics is required for
inclusion in the specification. Moreover, our inten-
sion is not that unit checking should be a core part of
the specification. Instead, we propose that such a
language feature should be defined as an optional
module in the specification, enabling tool vendors to
explicitly choose and officially state if the function-
ality of such a module is supported.

2.1 Requirements

We have during the design work of extendable unit
definitions for Modelica considered the following
requirements:

• Backwards compatibility. Models designed with
the earlier definitions where the meaning of units
was implicit, should also work in a new envi-
ronment where the units are defined by the li-
brary developer.

• Only library definitions. Both base units and de-
rived units should be able to be added by library
developers, i.e., the tools should not have any
prior knowledge about defined units.

• Declarative and easy to use. The new extension
for defining new units must be declarative in the
sense that the order of definitions should not
matter. It must also be easy to use, e.g., defined
units should be stated in a user friendly format
such as “N.m”; not using its unit vector format.

• Weights for different domains. It should be pos-
sible to prioritize certain units for a specific do-
main, to enable better error reporting.

• Prefixes are pre-defined. Prefixes, such as “m”
for milli and “k” for kilo are pre-defined in the
specification, i.e., these are not extendable.

Following these requirements, an overview of our
design proposal is outlined in the following three
subsections.

2.2 Informal Syntax

Adding new syntax to a language is the least interest-
ing and challenging issue from a language design
point of view, but results nevertheless often in large

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 891

debates at design meetings. Hence, the following
proposed syntax is only for presentation purpose and
can most likely be changed in a version that is ac-
cepted for inclusion in the Modelica specification.

We introduce a new keyword defineunit,
which is used both for defining new base units and
derived units. For example, to define the three first
base units of the SI-system, the following lines can
be added to an arbitrary Modelica class.

defineunit m;

defineunit kg;

defineunit s;

Derived units are defined by combining base units or
other derived units. For example, to define the de-
rived unit Newton, the following line is added.

defineunit N(exp="m.kg.s-2");

The expression consists here only of base units. The
syntax of the unit expression is the same as the syn-
tax specified in the current Modelica standard. How-
ever, it would be very inconvenient if the derived
units always must be defined using base units.
Hence, we allow expressions also to include other
derived units. For example, this line would define the
derived unit Pascal:

defineunit Pa(exp="N/m2");

Note that both a derived unit (N) and a base unit (m)
are used in the unit expression.

There is also an optional parameter weight that
can be used for specifying how important an unit is
in the domain. This is used by the algorithm pre-
sented in Section 3 for better error reporting. If no
weight argument is specified, a default value of 1 is
used. The weight can also be specified explicitly by
using a named parameter. For example

defineunit Pa(exp="N/m2", weight=2);

states that Pascal is a unit that is more important in
this library and will therefore have higher priority
when used in error reporting.

2.3 Formal Syntax

The defineunit extension can be defined in the
EBNF grammar of the Modelica specification, by
adding the following production:

unit_clause :

 defineunit IDENT

["(" named_arguments ")"]

The unit_clause is then used inside the element
production as follows:

element :

 unit_clause |

 ...

Where ... mean the rest of the right side of the
original element production.

2.4 Informal Semantics Overview

The semantics of the extendable unit definition is not
intended to be described in detail here. Instead, the
intent is to give a brief overview of how a compiler
can treat the unit definitions. A more complete and
formalized description is postponed as future work in
conjunction with a language extension proposal for
the Modelica language design group.

From the syntax description, it is clear that unit
definitions can be placed anywhere in the element
section of a class. Hence, units can be defined within
any restricted class, e.g., packages, models, and
functions. When checking equations and/or state-
ments within a model, two passes are performed. In
the first pass, all components and sub-components of
the model are traversed and unit definitions col-
lected. This includes searching both the components’
scope and their parents’ scope. In the second pass,
the ordinary instantiation/elaboration takes place.
During this elaboration, equations and statements are
checked for unit consistency using the unit defini-
tions collected in the first pass.

The order of how the unit definitions are collected
in the first pass is not important. If the set of unit
definitions contains several elements with the same
unit name, it is an error if their respective unit ex-
pressions are different. For example, if Newton (N)
is defined more than once, each definition must have
the same expression, i.e., "m.kg.s-2" . After
elimination of identical unit definitions, the resulting
set of unit definitions is used to generate an internal
normalized representation of units. Following the
approach outlined in our previous work [1], each unit
is then represented in a vector format. To be able to
generate this normalized form, it is required that all
definitions and dependences between derived units
and base units form a directed acyclic graph (DAG).
Hence, derived units are not allowed to be defined so
that they form cyclic structures. If such a cyclic
structure is detected, an error should be reported. For
example, the following definitions should be re-
jected:

defineunit U1(exp="m.U2");

defineunit U2(exp="U3/s");

defineunit U3(exp="U1.kg");

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 892

If several unit definitions exist with the same
name and expression, but with different weights,
these weights are used later in pass two for better
error reporting. The weights for unit definitions with
the same unit name are multiplied together, forming
the new weight. For example, if the following defini-
tions of Pascal exist:

defineunit Pa(exp="N/m2", weight=1.5);

defineunit Pa(exp="N/m2", weight=2);

The resulting unit definition is:

defineunit Pa(exp="N/m2", weight=3);

In the current implementation a library must redefine
all types that should be treated with a different
weight factor. For example, if a library would like to
have higher weights on Pascal, types that are using
Pa, such as Pressure , must be redefined in the
library. The main rationale for this design choice is
better performance of the instantiation/elaboration
process of the compiler.

3 Reporting Units

The unit checker described in previous work [1] uses
a vector of seven rational numbers; one for each di-
mension. The reason for using rational numbers is to
be able to handle a sqrt function or exponents of
arbitrary rational numbers, e.g., x^(2/3), which is
very commonly used in engineering equations. In
this work, the length of this vector is determined by
the number of dimensions added to the system. The
library developer adds all definitions of base units
and derived units to the standard library, including
the standard SI units (see Section 2). Every unit is
thus described by a vector of at least 7 elements. For
instance, the unit Watt (“W”) corresponding to the
base units “m2.kg.s-3” is described by the vector
(2,1,-3,0,0,0,0). The problem is, given a sought unit
with dimension vector dimt (the target unit), to find a
linear combination of units (both derived and base)
that matches the dimension vector dimt. But, in order
to select more appropriate units we should prefer
units that are close to the target unit. Also, we should
prefer to use derived units instead of base units, as
this will probably be closer to what an engineer ex-
pects.

As a first attempt, we can formulate the problem as:

For a target unit, t, that has dimensional vector dimt

)dim)dim(1(
1

 where

minimize

1
t

j
j

NU

j
jj j

w
pxp −+=∑

=

t

NU

j
jxj dim)dim(subject to

1

=∑
=

Where

• NU is the number of units (base and derived)

• wj is a real number > 0

• dim(j) is the dimensional vector for the j:th
unit

• xj is the sought exponent for each unit

• |v| is the L2 norm of vector v

This formulation works fine as long as xj is a posi-
tive integer value. If negative values were allowed
those would contribute negatively to the objective,
and thus favor negative exponents over positive
ones. So, to allow negative exponents in units we
must handle them separately. This can be done by
instead setting up the problem as:

NUjjNUj

NUjww

j
w

p

xp

jNUj

t
j

j

NU

j
jj

<<−=+

<<=

−+=

+

=
∑

1,)dim()dim(

1,

)dim)dim(1(
1

 where

 minimize
2

1

t

NU

j
jxj dim)dim(subject to

2

1

=∑
=

With the formulation above we double the problem
size and represent negative exponents with a set of
separate variables. The weights for the newly intro-
duced variables are identical to its positive corre-
spondent exponent, and the dimensional vector is
negated.

If the dimensional units only were described with
Integers (e.g. as done in Dymola v.7 [5]), this formu-
lation would be sufficient. However, because we al-
low Rational numbers as exponents and because it is
most likely that derived units should be expressed
only by integers, we need to reformulate the prob-
lem. We let the variables of base units be of type
Real (or preferably rational) and the derived units be
of type integer, thus leading to a mixed integer pro-
gramming problem.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 893

3.1 Example

Let us consider an example. For simplicity we limit
the example to use three base units (m,s,kg) and de-
fine four derived units according to Table 1 below.

Unit Vector representation

m (1,0,0)

kg (0,1,0)

s (0,0,1)

N (1,1,-2)

Pa (-1,1,-2)

J (2,1,-2)

W (2,1,-3)

Table 1. A subset of the SI units.

Suppose that a unit of a certain term is inferred to
“m.kg2.s-3”, corresponding to the vector representa-
tion (1,2,-3).. If we use (1,1,1,1,1,1,1) as weight vec-
tor the problem becomes:

 x p minimize

tm dim x subject to =

−−−−−
−−−−−
−−−−−

=

32221003222100

11110101111010

22110012211001

m

()63433438319172361211113

1+=p

()3,2,1dim −=t

The m matrix sets up the constraints for the dimen-
sions, the first seven columns corresponds to the val-
ues in Table 1 above, and the seven last columns are
their negated values. The criteria vector p gives the
weight for each variable as the distance of the di-
mension vector of that dimension to the target di-
mension plus one. The reason for adding one to the
distance is to be able to control that even selecting a
perfect match can be avoided by using weights. For

instance, the first element has a value of 131+
since the distance (norm) from (1,0,0) to (1,2,-3) plus
one is

131+ (1+ 222)30()20()11(−−+−+−).

When solving this problem it will give the values:
(0,1,0,1,0,0,0,0,0,1,0,0,0,0)

which correspond to the unit “kg.s-1.N”.

By adjusting the weight vector different results are
obtained. For instance, if we increase the weight only
for “Pa” the results instead become:

(0,0,1,0,1,1,0,0,0,0,0,0,0,0)

which correspond to unit “s.Pa.J”, i.e. it prefers to
use unit “Pa” in the result.

3.2 Use of Rational Numbers

So far we have not used any rational numbers in our
examples. So how does rational numbers affect the
proposed solution?

Since we formulated the problem as a MIP (Mixed
Integer Programming), it can allow both integer vari-
ables and real variables. The idea is to limit the de-
rived units to integer values, so that units like “W-
(1/3)” are not produced. Otherwise it will be hard for
the user to find out what is missing to correct the
error, since the user himself has to translate the de-
rived units into base units and then apply the expo-
nent.

As an example we will take the unit “W(1/2)”,
which corresponds to the unit vector (1,1/2,-
3/2,0,0,0,0) The solution when derived units are in-
tegers and base units are reals becomes: “kg-
(1/2).s(1/2).N”. If the problem is solved with all
variables as real values1 the solution is instead:
“N(1/2).Gy(1/4)” which is much harder for a user to
interpret.

An alternative formulation could be to instead for-
mulate the linear programming problem using only
integers, by multiplying the base unit vector by the
greatest common divisor among the rational num-
bers, and then solve the corresponding integer linear
programming (ILP) problem. The solution must then
be divided by the greatest common divisor. The
problem with this formulation is that it can not guar-
antee that derived units are only expressed in integer
exponents. For example, given the unit vector
(5/2,3/2,-9/2,0,0,0,0), the corresponding MIP solu-
tion becomes “m-1/2.kg-1/2.s-1/2.N.J”. However,
transforming to ILP gives “Pa.J.W.Gy”, which re-
sults in “Pa(1/2).J(1/2).W(1/2).Gy(1/2)”, which is
hard for a user to understand.

3.3 Adjusting Weights According to Context

As illustrated by the example above, the weights for
each unit can be modified to control the solution.
This can be used to guide the solver into selecting
units that are preferred for a given context. For in-
stance, let us consider a simple equation for calculat-
ing the power:

2RIP =

1 The real values are ”Rationalized” before presentation
by approximation to rational numbers with small integers.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 894

Suppose the variables P and I have defined units of
“W” and “A” respectively. The resistance is inferred
to “m2.kg.s-2.A-2” elsewhere (i.e. missing a s-1 to
be “Ohm”). If this problem is solved it will regard-
less of weights result in “Wb”, since that will result
in a perfect match, giving the lowest cost (since the
distance is zero, the cost will be1/wj). However, a
user might be more familiar if units closer to “W”
and “A” is used. By adjusting the weights (increas-
ing “W” and “A”, and decreasing the weight of the
rest of the derived units so they are smaller than
weights of base units), the result instead becomes:
“s-1.A-2.W”. Of course, if it instead is evident from
the context that Ohm is the preferred unit, we could
decrease its weight and increase the rest of the de-
rived units, resulting in: “s-1.Ohm”.

In conclusion, the resulting unit can be controlled
by modifying the weights of derived units. To find
out the weights one could look at the current context
the unit is defined in. For instance, in an electrical
component that does not have any units from the
magnetic domain declared, the weights of the units
“Wb”,”T” and “H” could be decreased.

The possibility we have chosen is to let the library
developers themselves define the weights according
to their preferred units. This is the suggested ap-
proach described in Section 2.

3.4 Minimizing the Number of Used Derived
Units

One problem with the proposed solution is that the
same minimal value can be obtained by either select-
ing a mixture of several derived units or by selecting
multiples of only one derived unit. For example, let
us consider the unit vector for “Ohm3”, which corre-
sponds to the vector (6,3,-9,-6,0,0,0). With ones as
weight, the result becomes “F-1.Ohm.H”; this is not
preferable. If weights of units are adjusted according
to previous section this might be avoided, but it is
not always the case that a context of units may help
(the context may be empty).

An alternative is to make an automated adjustment
on the units to try to minimize the use of derived
units. This can be expressed by the following algo-
rithm:

1. Run the MIP problem with standard weights
(or user preferred weights).

2. If several derived units are reported, increase
weight on one of them and rerun MIP prob-
lem. If less derived units are reported, keep
the adjusted weight and repeat 2, otherwise

try next derived unit. Repeat until all derived
units reported has been tried.

Let us try this idea on our example. As stated above
the first run of the problem gave “F-1.Ohm.H” as
result. We first increase the weight of “F” and rerun.
This gives “Ohm3” as we expect. Same result is also
given if we increase weight for “H”. However, if we
increase the weight of “Ohm”, the result becomes
“F-1.S-1.H”, which is clearly not a good choice.

4 Implementation and Evaluation

A prototype for reporting units has been imple-
mented in Mathematica and a full implementation is
now completed in the MathModelica/OpenModelica
frontend.

4.1 Testing the Modelica Standard Library

The unit checking and error reporting functionality
have been tested in MathModelica on the Modelica
Standard library v 2.2.1, which is the latest version
where unit checking corrections (based on Dymola
version 7.0 unit checking functionality) of the library
have not been performed. The unit checker reported
the same problems as Dymola did on version 2.2.1
and after applying the corrections made in version
2.2.2, the affected models passed the unit check. This
gives an indication of that both tools behave cor-
rectly, or at least they behave in the same manner.

However, there are some cases in the standard li-
brary where Dymola does not report unit errors, but
MathModelica and OpenModelica does. One such
case is the use of the built-in exp function, which is
used in e.g. Semiconductor models in the Electrical
package. The problem can be illustrated with this
simple model:

model UnitProblem

 Real i(unit="A");

 Real v(unit="V") = 2.4;

equation

 i = exp(v);

end UnitProblem;

Dymola does not report any errors for this model,
even though the exp function should have a dimen-
sionless argument and give a dimensionless return
value. Thus, since the MSL is primarily developed
with Dymola, the unit conversion corrections that are
done for other models are not done for models con-
taining exp , log , and other dimensionless built-in

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 895

functions. This is also reflected in the Modelica.
Math library where these functions are declared as
unspecified unit with e.g., input Real x; in-
stead of dimensionless, using input
Real x(unit=”1”);

To correct these defects we propose to make the ex-
ponent function, logarithm function, and others, that
are dimensionless to be declared with unit “1” in the
MSL, and that the usage of these functions in the
library are corrected so a dimensionless unit is
passed and returned from these functions.

4.2 Unit Extendibility

The unit extendibility has been tested and evaluated
by adding unit definitions (defineunit) for all SI
base units and derived units according to [5]. These
definitions have been added to SIunits.mo in the
Modelica standard library. Preliminary tests show
that this approach is backwards compatible com-
pared to having these definitions built-in, i.e., unit
checking works as expected even if the SI units are
defined in the standard library. Models have also
been tested, where additional base units (e.g. a cur-
rency base unit of “USD”) were added.

4.3 Usability of Error Reporting

Preliminary tests have been conducted for evaluating
the usability and readability of errors when different
weights are used in different libraries. However, fur-
ther more comprehensive tests must be performed in
the future to verify that the reported units are indeed
understandable.

5 Related Work

Unit checking exists in several Modelica tools, such
as Dymola [9] and Simulation X [6]. There are also
unit checking and dimensional analysis in other non
Modelica related tools and languages. See the “Fu-
ture work” section in previous paper [1] for these
references.

To our knowledge, no earlier work has been pub-
lished on how to select units for presentation. Tools
with unit checking have for certain some way of se-
lecting which units to present to the user but the
method of how this is done is not clearly stated, and
the user can not affect the outcome as is suggested in
this paper.

6 Conclusions

We have showed a new method of solving the prob-
lem of presenting inferred and inconsistent units by
the unit checker in a format that is more understand-
able for the user. The method is based on forming a
mixed integer programming (MIP) problem to decide
which base units and derived units to use in the
communication with the user. We have also pro-
posed an extension to the Modelica language, where
unit definitions can be stated within any restricted
class, making it possible to define new user defined
units that are not part of the standard SI units.

A prototype has been implemented in Mathe-
matica, followed by a complete implementation in
MathModelica and OpenModelica. The same unit
errors on the Modelica standard library that Dymola
have detected were also reported by our tool, but we
also detected more inconsistent units, and proposed
further corrections of the standard library.

7 Acknowledgements

This research was funded by CUGS (National
Graduate School in Computer Science), MathCore
Engineering, the Swedish Research Council (VR),
and the Biobridge project supported by the European
Commission in the sixth framework programme.

References

[1] D. Broman, P. Aronsson, P. Fritzson, “De-
sign Considerations for Dimensional Infer-
ence and Unit Consistency Checking in
Modelica”, 6Th International Modelica Con-
ference, March 3-4, 2008, Bielefeld, Ger-
many.

[2] J. Brugård et. Al, “Creating a Bridge between
Modelica and the Systems Biology Commu-
nity”, 7th International Modelica Conference,
Como, Italy, 2009.

[3] Peter Bunus, “Debugging Techniques for
Equation-Based Languages”. Ph.D. Thesis.
Department of Computer and Information
Science. Linköping University. 2004.

[4] Bureau international des poids et mesures
(BIPM). Le Système international d’unités,
The International System of Units. Organisa-
tion intergouvermentale de la Convention du
Mètre, 8th Edition.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 896

[5] Dynasim. Dymola version 7.0
http://www.dynasim.com [Last access: Au-
gust 23, 2009].

[6] ITI. SimulationX. http://www.iti.de/
 [Last access: August 20, 2009].

[7] MathCore. MathModelica
http://www.mathcore.com [Last access: Au-
gust 23, 2009].

[8] Mathematica. Wolfram Research Inc.
http://www.wolfram.com. [Last access: Au-
gust 23, 2009]

[9] S.-E. Mattson, H. Elmqvist, “Unit Checking
and Quantity Conservation”, 6Th International
Modelica Conference, March 3-4, 2008,
Bielefeld, Germany.

[10] Modelica Association. “Modelica - A Uni-
fied Object-Oriented Language for Physical
Systems Modeling Language Specification
Version 3.1” 2009. Available from
http://www.modelica.org.

[11] The OpenModelica Project. Available from:
http://www.openmodelica.org

[12] Systems Biology Markup Language
(SBML), Available from:
http://www.sbml.org

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 897

	Session MoAT1: Automotive 1
	Imke Lisa Krueger, Martin Sievers, Gerhard Schmitz: Thermal Modeling of Automotive Lithium Ion Cells Using the Finite Elements Method in Modelica
	Markus Andres, Dirk Zimmer, François E. Cellier: Object-Oriented Decomposition of Tire Characteristics Based on Semi-Empirical Models
	Thomas Lienhard Schmitt, Dirk Zimmer, François E. Cellier: A Virtual Motorcycle Rider Based on Automatic Controller Design

	Session MoAT2: Optimal Control and Optimization 1: Methods
	Johan Åkesson, Tove Bergdahl, Magnus Gäfvert, Hubertus Tummescheit: Modeling and Optimization with Modelica and Optimica Using the JModelica.org Open Source Platform
	Jan Poland, Alf J. Isaksson, Peter Aronsson: Building and Solving Nonlinear Optimal Control and Estimation Problems
	Atya Elsheikh, Katharina Nöh, Eric von Lieres: Improving Convergence of Derivative-Based Parameter Estimation with Multi-Start Parameter Clustering Based on DAE Decomposition

	Session MoAT3: Power Plants and Energy Conversion Systems 1
	Kevin Davies, Robert M. Moore, Guido Bender: Model Library of Polymer Electrolyte Membrane Fuel Cells for System Hardware and Control Design
	Kevin Davies, Comas L. Haynes, Christiaan J.J. Paredis: Modeling Diffusion and Reaction Processes of Fuel Cells within Modelica
	Sindy Heil, Christian Brunhuber, Kilian Link, Julia Kittel, Bernd Meyer: Dynamic Modelling of CO2-removal units for an IGCC power plant

	Session MoAT4: Non-Conventional Modelling Paradigms in Modelica
	François E. Cellier, Victorino Sanz: Mixed Quantitative and Qualitative Simulation in Modelica
	Victorino Sanz, Alfonso Urquia Moraleda, Sebastián Dormido: Parallel DEVS and Process-Oriented Modeling in Modelica

	Session MoBT1: Thermodynamic and Fluid Systems 1
	Rüdiger Franke, Francesco Casella, Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson, Martin Otter, Michael Sielemann: Stream Connectors – an Extension of Modelica for Device-Oriented Modeling of Convective Transport Phenomena
	Rüdiger Franke, Francesco Casella, Martin Otter, Katrin Prölss, Michael Sielemann, Michael Wetter: Standardization of Thermo-Fluid Modeling in Modelica.Fluid
	Thorben Vahlenkamp, Stefan Wischhusen: FluidDissipation for Applications a Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems
	François E. Cellier, Jürgen Greifeneder: Modeling Chemical Reactions in Modelica by Use of Multi-Thermo-Bonds

	Session MoBT2: Aerospace
	Niccolo Cymbalist, Chahé Adourian, Marc-André Lauriault: Modelica Library for Improved Spacecraft Resource Budgeting
	Gianpietro Di Rito, Roberto Galatolo: Modelling and simulation of a fault-tolerant electrical motor for aerospace servovalves with Modelica
	Loig Allain, Marc Budinger, Jonathan Liscouet, Yvan Lefèvre, Julien Fontchastagner, Abdelli Abdenour: Preliminary Design of Electromechanical Actuators with Modelica
	Jianjun Zhao, Ziqiang Li, Jianwan Ding, Liping Chen, Qifu Wang, Qing Lu, Hongxin Wang, Shuang Wu: Hardware-In-The-Loop Simulation of Aircraft Thrust Reverser Hydraulic System in Modelica

	Session MoBT3: Modelica Tools and Language Design 1
	Martin Sjölund, Peter Fritzson: An OpenModelica Java External Function Interface Supporting MetaProgramming
	Peter Fritzson, Pavol Privitzer, Martin Sjölund, Adrian Pop: Towards a Text Generation Template Language for Modelica
	George Giorgidze, Henrik Nilsson: Higher-Order Non-Causal Modelling and Simulation of Structurally Dynamic Systems
	Hans Olsson, Martin Otter, Hilding Elmqvist, Dag Brück: Operator Overloading in Modelica 3.1

	Session MoBT4: Symbolic/Numerical Methods
	Dirk Zimmer: An Application of Sol on Variable-Structure Systems with Higher Index
	Andreas Uhlig, Torsten Blochwitz, Uwe Schnabel, Tobias Nähring: Initial Value Calculation for DAEs with Higher Index
	Francesco Casella, Filippo Donida, Johan Åkesson: An XML Representation of DAE Systems Obtained from Modelica Models
	Martina Maggio, Kristian Stavåker, Filippo Donida, Francesco Casella, Peter Fritzson: Parallel Simulation of Equation-Based Object-Oriented Models with Quantized State Systems on a GPU

	Session MoCT1: Mechanical and Multibody Systems 1
	Isolde Dressler, Johannes Schiffer, Anders Robertsson: Modeling and Control of a Parallel Robot Using Modelica
	Franciscus Leendert Johannes van der Linden, Pedro Henrique Vazques de Souza Silva: Modelling and Simulating the Efficiency and Elasticity of Gearboxes
	Tobias Zaiczek, Olaf Enge-Rosenblatt: Performance Analysis of Von Mises' Motor Calculus within Modelica
	Ivan Kosenko, Evgeniy Aleksandrov: Implementation of the Contensou-Erismann Model of Friction in Frame of the Hertz Contact Problem on Modelica

	Session MoCT2: Air Conditioning and Climate Control 1
	Norbert Stulgies, Manuel Graeber, Wilhelm Tegethoff, Sven Försterling: Evaluation of Different Compressor Control Concepts for a Swash Plate Compressor
	Christian Tischendorf, Denise Janotte, Ricardo Fiorenzano de Albuquerque, Wilhelm Tegethoff: Investigation of Energy Dissipation in an Ejector Refrigeration Cycle
	Christian Flessner, Stefan Petersen, Felix Ziegler: Simulation of an Absorption Chiller Based on a Physical Model
	Roland Kossel, Nils Christian Strupp, Wilhelm Tegethoff: Effects of Tool Coupling on Transient Simulation of a Mobile Air-Conditioning Cycle

	Session MoCT3: Power Plants and Energy Conversion Systems 2
	Julia Kittel, Frank Hannemann, Friedemann Mehlhose, Sindy Heil, Bernd Meyer: Dynamic Modelling of the Heat Transfer into the Cooling Screen of the SFGT-Gasifier
	Manuel Ljubijankic, Christoph Nytsch-Geusen, Steffen Unger: Modelling of Complex Thermal Energy Supply Systems Based on the Modelica-Library FluidFlow
	Kilian Link, Haiko Steuer, Axel Butterlin: Deficiencies of Modelica and Its Simulation Environments for Large Fluid Systems
	Javier Bonilla, Lidia Roca, Luis José Yebra, Sebastián Dormido: Real-Time Simulation of CESA-I Central Receiver Solar Thermal Power Plant

	Session MoCT4: Real-Time and Embedded Systems
	Hilding Elmqvist, Martin Otter, Dan Henriksson, Bernhard Thiele, Sven Erik Mattsson: Modelica for Embedded Systems
	Martin Otter, Martin Malmheden, Hilding Elmqvist, Sven Erik Mattsson, Charlotta Johnsson: A New Formalism for Modeling of Reactive and Hybrid Systems
	Marco Bonvini, Filippo Donida, Alberto Leva: Modelica As a Design Tool for Hardware-In-The-Loop Simulation
	Torsten Blochwitz, Thomas Beutlich: Real-Time Simulation of Modelica-Based Models

	Session TuBT2: Air Conditioning and Climate Control 2
	Michael Wetter: Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems
	Boris Michaelsen, Joerg Eiden: HumanComfort Modelica-Library Thermal Comfort in Buildings and Mobile Applications
	Zhu Wang, Kristian Tuszynski, Hubertus Tummescheit, Ales Alajbegovic: Integrated Thermal Management Simulation: Evaluating the Effect of Underhood Recirculation Flows on AC-System Performance

	Session TuBT3: Automotive 2
	Alessandro Picarelli, Mike Dempsey: Investigating the Multibody Dynamics of the Complete Powertrain System
	Clemens Schlegel, Andreas Hösl, Sergej Diel: Detailed Loss Modelling of Vehicle Gearboxes
	Anand Pitchaikani, Kiran Kumar Koppu, Shankar Venkataraman, Michael M Tiller, John Batteh: Powertrain Torsional Vibration System Model Development in Modelica for NVH Studies

	Session TuBT4: Hybrid Systems, Systems Biology and Biological Models
	Sabrina Proß, Bernhard Bachmann: A Petri Net Library for Modeling Hybrid Systems in OpenModelica
	Sabrina Proß, Bernhard Bachmann, Ralf Hofestädt, Karsten Niehaus, Rainer Ueckerdt, Frank-Jörg Vorhölter, Petra Lutter: Modeling a Bacterium's Life: A Petri-Net Library in Modelica
	Jan Brugård, Marta Cascante, Gunnar Cedersund, Vitaly Selivanov, Elin Nyman, Daniel Hedberg, Alex Gómez-Garrido, Dieter Maier, Peter Strålfors: Creating a Bridge between Modelica and the Systems Biology Community

	Session TuBT5: Optimal Control and Optimization 2: Applications
	Pontus Giselsson, Johan Åkesson, Anders Robertsson: Optimization of a Pendulum System Using Optimica and Modelica
	Jan Gall, Dirk Abel, Nils Ahlbrink, Robert Pitz-Paal, Joel A E Andersson, Moritz Diehl, Cristiano Teixeira Boura, Mark Schmitz, Bernhard Hoffschmidt: Optimized Control of Hot-Gas Cycle for Solar Thermal Power Plants
	Hansjörg Kapeller, Dragan Simic: Feedback Loop Optimization for a Distillation System by Applying C-Code Controllers with Dymola

	Session TuCT2: Thermodynamic and Fluid Systems 2
	Andreas Stückle: Modelling of High Temperature Storage Systems for Latent Heat
	Corinna Leonhardt, Dirk Müller: Modelling of Residential Heating Systems Using a Phase Change Material Storage System
	Corey Bolduc, Chahé Adourian: Rapid Thermal Analysis of Rigid Three-Dimensional Bodies with the Use of Modelica Physical Modelling Language
	Helmut Kühnelt, Thomas Bäuml, Anton Haumer: SoundDuctFlow: A Modelica Library for Modeling Acoustics and Flow in Duct Networks

	Session TuCT3: Mechanical and Multibody Systems 2
	Regis Plateaux, Olivia Penas, Faïda Mhenni, Jean-Yves Choley, Alain Riviere: Introduction of the 3D Geometrical Constraints in Modelica
	Jens Frenkel, Christian Schubert, Guenther Kunze, Kristian Jankov: Using Modelica for Interactive Simulations of Technical Systems in a Virtual Reality Environment
	Tobias Bellmann: Interactive Simulations and Advanced Visualization with Modelica
	Hilding Elmqvist, Sven Erik Mattsson, Christophe Chapuis: Redundancies in Multibody Systems and Automatic Coupling of CATIA and Modelica

	Session TuCT4: Electronic Circuits
	Kristin Majetta, Christoph Clauss, Matthias Franke, Peter Schneider: Improvement of MSL Electrical Analog Library
	Kristin Majetta, Sandra Boehme, Christoph Clauss, Peter Schneider: SPICE3 Modelica Library
	Loig Allain, Asma Merdassi, Laurent Gerbaud, Seddik Bacha: Automatic Modelling of Power Electronic Converter, Average Model Construction and Modelica Model Generation
	Behrouz Roumizadeh, Jean-Yves Choley, Regis Plateaux, Olivia Penas, Alain Riviere: Pre-Designing an Electronic Card Using a Multi-Domain Models Approach with DYMOLA

	Session TuCT5: Computer-Aided Control System Design
	Marcus Baur, Martin Otter, Bernhard Thiele: Modelica Libraries for Linear Control Systems
	Johan Åkesson, Ulf Nordström, Hilding Elmqvist: Dymola and Modelica_EmbeddedSystems in Teaching - Experiences from a Project Course
	Wladimir Schamai, Peter Fritzson, Christiaan J.J. Paredis, Adrian Pop: Towards Unified System Modeling and Simulation with ModelicaML: Modeling of Executable Behavior Using Graphical Notations
	Martina Maggio, Alberto Leva: Object-Oriented Simulation of Preemptive Feedback Process Schedulers

	Session TuDT1: Poster session
	Peter Harman, Michael M Tiller: Building Modelica Tools Using the Modelica SDK
	Peter Harman: The Role of Modelica in a Robust Engineering Process
	Ramine Nikoukhah, Sébastien Furic: Towards a Full Integration of Modelica Models in the Scicos Environment
	Loig Allain, Stéphane Neyrat, Antoine Viel: Linear Analysis Approach for Modelica Models
	Philip Reuterswärd, Johan Åkesson, Anton Cervin, Karl-Erik Arzen: TrueTime Network - a Network Simulation Library for Modelica
	Fanli Zhou, Hehua Zhang, Hengwei Zhu, Xiong Gong, Boxing Wang, Jun Liu, Liping Chen, Zhengdong Huang: Design and Implementation of Animation Post-Processor Based on ACIS and HOOPS in MWorks
	Jörg Ungethüm, Dirk Hülsebusch: Implementation of a Modelica Library for Smooth Spline Approximation
	Volker Beuter: Point-To-Curve Constraints and Other Contact Elements
	Nils Ahlbrink, Boris Belhomme, Robert Pitz-Paal: Modeling and Simulation of a Solar Tower Power Plant with Open Volumetric Air Receiver
	Franck David, Annick Souyri, Guillaume Marchais: Modelling Steam Generators for Sodium Fast Reactor with Modelica
	Juergen Birnbaum, Markus Jöcker, Kilian Link, Robert Pitz-Paal, Franziska Toni, Gerta Zimmer: Simulation of the Dynamic Behavior of Steam Turbines with Modelica
	Thomas Braig, Jörg Ungethüm: System-Level Modeling of an ICE-Powered Vehicle with Thermoelectric Waste-Heat-Utilization
	Anton Sodja, Borut Zupancic, Janko Šink: Some Aspects of the Tube-And-Shell Heat-Exchangers Modelling
	Tomas Skoglund: Reversed-Flow Models
	Alberto Leva, Filippo Donida: Control System Design for the Starch Mashing Phase in the Production of Beer
	Martin Hast, Johan Åkesson, Anders Robertsson: Optimal Robot Control Using Modelica and Optimica
	Lars Imsland, Pål Kittilsen, Tor Steinar Schei: Using Modelica Models in Real Time Dynamic Optimization – Gradient Computation
	Jens Rantil, Johan Åkesson, Claus Führer, Magnus Gäfvert: Multiple-Shooting Optimization Using the JModelica.org Platform
	Lars Mikelsons, Hongchao Ji, Thorsten Brandt, Oliver Lenord: Symbolic Model Reduction Applied to Realtime Simulation of Construction Machines
	Johannes Edrén, Mats Jonasson, Andreas Nilsson, Adam Rehnberg, Fredrik Svahn, Annika Stensson Trigell: Modelica and Dymola for Vehicle Dynamics Applications at KTH
	Damien Chapon, Guillaume Bouchez: On the Link between Architectural Description Models and Modelica Analyses Models
	Uwe Schob, Ralf Böttcher, Torsten Blochwitz, Olaf Oelsner, Marek Winter: Model Based Virtual Startup of Automation Systems

	Session TuET2: Thermodynamic and Fluid Systems 3
	Kristian Huchtemann, Dirk Müller: Advanced Simulation Methods for Heat Pump Systems
	Andreas Joos, Karin Dietl, Gerhard Schmitz: Thermal Separation: An Approach for a Modelica Library for Absorption, Adsorption and Rectification
	Uwe Kuessel, Dirk Abel, Matthias Schumacher, Martin Weng: Modeling of Rotary Kilns and Application to Limestone Calcination

	Session TuET3: Automotive 3
	John Batteh, Michael M Tiller: Implementation of an Extended Vehicle Model Architecture in Modelica for Hybrid Vehicle Modeling: Development and Applications
	Brad Schofield, Harish Surendranath, Magnus Gäfvert, Victor Oancea: Interfacing Abaqus with Dymola: A High Fidelity Anti-Lock Brake System Simulation
	Anand Pitchaikani, Kingsly Jebakumar S, Shankar Venkataraman, S A Sundaresan: Real-Time Drive Cycle Simulation of Automotive Climate Control System Model

	Session TuET4: Electrical Drives and Power Systems
	Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V Gragger: The AdvancedMachines Library: Loss Models for Electric Machines
	Jörg Lehmann, Daniel Ohlsson, Hansjürg Wiesmann: A Modelica Library for High-Voltage AC Circuit-Breaker Modeling
	Christian Kral, Anton Haumer, Bernhard Kubicek, Oliver Winter: Model of a Squirrel Cage Induction Machine with Interbar Conductances

	Session TuET5: Modelica Tools and Language Design 2
	Sébastien Furic: Enforcing Model Composability in Modelica
	Dirk Zimmer: Module-Preserving Compilation of Modelica Models
	Peter Aronsson, David Broman: Extendable Physical Unit Checking with Understandable Error Reporting

