
i

	
Proceedings	of	the	

8th	International	Modelica	Conference	
	
	
	
	

March	20th–22nd,	2011	
Auditorium	Centre	of	the	Technische	Universität	

Dresden,	Germany	

	
	
	
	
	
	

Christoph	Clauß	(editor)	
	
	
	
	
	
	
	
	
	

Organized	by		
Modelica	Association	and	the	Fraunhofer	IIS	EAS	

	 	

ii

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Proceedings	of	the	8th	Modelica	Conference	
	
Auditorium	Centre	of	the	Technische	Universität	Dresden,	Germany		
March	20th–22nd,	2011	
	
	
Editor:	
Christoph	Clauß	
	
	
Published	by:	
The	Modelica	Association	and	Linköping	University	Electronic	Press	
	
	
ISBN:	978‐91‐7393‐096‐3	
Linköping	Electronic	Conference	Proceedings	
ISSN:	1650‐3740	
DOI:	http://dx.doi.org/10.3384/ecp11063	
	
	
	
Copyright	©	The	Modelica	Association,	2011	

iii

Preface	
	
From	March	20th	to	22nd	2011	the	8th	international	Modelica	Conference	took	place	in	
the	Auditorium	Center	of	the	Technische	Universität	in	Dresden.		

Modelica	 is	 an	 object	 oriented,	 physical	 modelling	 language,	 which	 allows	 a	 very	
effective	description	of	different	physical	systems.	It	has	been	developed	for	the	last	15	
years.	 The	 last	Modelica	 Conferences,	 starting	 in	 Lund	 in	 2000,	 via	 Oberpfaffenhofen,	
Linköping,	Hamburg‐Harburg,	Vienna,	Bielefeld,	Como	and	now	Dresden	show,	that	the	
language	 is	 used	 in	 an	 increasing	 area	 of	 applications	 in	 industry,	 research	 and	
education.	 The	 8th	 international	 Modelica	 Conference	 in	 Dresden	 was	 with	 its	 316	
participants	from	23	different	countries	the	biggest	Modelica	Conference	until	now.	

Besides	 76	 oral	 presentations	 and	 23	 poster	 presentations	 also	 the	 possibility	 of	
interesting	discussions	to	socialize	with	new	people	was	given.	Tutorials,	to	go	more	into	
detail	 into	 about	 single	 topics	 in	 the	 Modelica	 area,	 were	 visited	 on	 Sunday,	 20th	 of	
March	 from	 already	 about	 100	 people.	 In	 the	 evening	 already	 200	 people	 joined	 the	
“Coming	Together”.	

On	Monday	 the	Conference	was	opened	by	 the	 sitting	mayor	of	Dresden,	Mr.	Dirk	
Hilbert,	 followed	by	greetings	from	Prof.	Elst,	head	of	the	Fraunhofer	IIS	EAS	and	Prof.	
Martin	Otter,	chairman	of	the	Modelica	Association.	Keynote	speeches	were	held	by	Dr.	
Peter	 Schwarz,	 formerly	 department	 manager	 at	 Fraunhofer	 IIS	 EAS,	 about	 the	
requirements	on	simulation	of	complex	heterogeneous	systems	and	by	Scott	A.	Borthoff	
from	 the	 Mitsubishi	 Electric	 Research	 Laboratories	 Cambridge	 (USA)	 about	 his	
experiences	with	the	Modelica	language	for	the	last	decade	and	future	challenges.	

The	 topics	 in	 the	 Conference	 of	 course	 were	 the	 language	 itself	 and	 its	 further	
development.	 Application‐oriented	 papers	were	 presented	 in	 the	 fields	 of	 automotive,	
mechanics	 and	 fluidic,	 power	 plants,	 electrical	 engineering,	 as	well	 as	 in	 new	 opened	
application	fields	like	building,	climate,	and	biology.	Many	papers	covered	the	Functional	
Mockup	Interface	(FMI)	which	is	an	interface	for	the	coupling	of	simulators	as	well	as	for	
the	 model	 export	 to	 support	 the	 exchange	 of	 models	 between	 different	 simulation	
environments.	 The	 papers	 reviewed	 to	 be	 the	 best	 ones	 described	 the	 application	 of	
homotopy	methods	to	improve	the	initialization	phase	of	simulations,	using	the	recently	
introduced	homotopy	operator.	

The	small	exhibition	was	an	important	conference	issue.	14	tool	vendors	as	well	as	
companies	which	 use	Modelica	 for	modelling	 tasks	 presented	 their	 products.	 Another	
important	 conference	 issue	 for	 communication	 was	 the	 conference	 dinner	 at	 “The	
Westin	Bellevue”	hotel.	The	conference	dinner	was	sponsored	by	ITI	GmbH	Dresden.				
	
	
Dresden,	April	1,	2011	
	
Dr.	Christoph	Clauß	
Program	Chair	
	 	

iv

Organizing	Committees	
Program Chair

 Dr. Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

Program Board

 Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
 Prof. Peter Fritzson, Linköping University,Linköping, Sweden
 Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany
 Dr. Michael Tiller, Emmeskay Inc., Plymouth, Michigan, USA

Program Committee

 Dr. Johan Åkesson, Lund University, Lund, Sweden
 Prof. Karl-Erik Årzén, Lund University, Lund, Sweden
 Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Bielefeld,

Germany
 Dr. John Batteh, Emmeskay Inc., Plymouth, Michigan, USA
 Dr. Ingrid Bausch-Gall, Bausch-Gall GmbH, Munich, Germany
 Daniel Bouskela, EDF R&D, Paris, France
 Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
 Prof. François E. Cellier, ETH Zürich, Zürich, Switzerland
 Mike Dempsey, Claytex Services Ltd, Leamington Spa, UK
 Prof. Gianni Ferretti, Politecnico di Milano, Milano, Italy
 Dr. Rüdiger Franke, ABB AG, Mannheim, Germany
 Dr. Rui Gao, Dassault Systèmes Japan, Nagoya, Japan
 Anton Haumer, Technical Consultant, St. Andrae-Woerdern, Austria
 Dr. Kay Juslin, VTT, Espoo, Finland
 Dr. Christian Kral, AIT Arsenal Research, Vienna, Austria
 Prof. Alberto Leva, Politecnico di Milano, Milano, Italy
 Kilian Link, Siemens AG, Erlangen, Germany
 Dr. Sven-Erik Mattsson, Dassault Systèmes, Lund, Sweden
 Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany
 Dr. Hans Olsson, Dassault Systèmes, Lund, Sweden
 Prof. Chris Paredis, Georgia Institute of Technology, Atlanta, Georgia, USA
 Prof. Peter Pepper, TU Berlin, Berlin, Germany
 Dr. Adrian Pop, Linköping University, Linköping, Sweden
 Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Hamburg, Germany
 Dr. Peter Schneider, Fraunhofer IIS, Institutsteil EAS, Dresden, Germany
 Dr. Edward D. Tate, General Motors,Detroit, Michigan, USA
 Dr. Wilhelm Tegethoff, TLK-Thermo GmbH and TU Braunschweig, Braunschweig,

Germany
 Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden
 Dr. Andreas Uhlig, ITI GmbH, Dresden, Germany
 Prof. Alfonso Urquía, UNED, Madrid, Spain
 Prof. Hans Vangheluwe, McGill University, Montreal, Canada
 Dr. Hansjürg Wiesmann, formerly ABB Corporate Research, Baden, Switzerland

v

Local Organizing Committee

 Sibylle Läßig, Fraunhofer IIS EAS, Dresden, Germany
 Kristin Majetta, Fraunhofer IIS EAS, Dresden, Germany
 André Schneider, Fraunhofer IIS EAS, Dresden, Germany
 Dr. Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

vi

Contents
Emmanuel	Chrisofakis,	Andreas	Junghanns,	Christian	Kehrer,	Anton	Rink:	Simulation‐

based	development	of	automotive	control	software	with	Modelica								1	
Edo	Drenth,	Magnus	Gäfvert:	Modelica	Delft‐Tyre	Interface		..							8	
Andreas	Deuring,	Johannes		Gerl,	Harald	Wilhelm:Multi‐Domain	Vehicle	Dynamics	

Simulation	in	Dymola		...				13	
Dietmar	Winkler,	Hege	Marie	Thoresen,	Ingvar	Andreassen,	Magamage	Anushka	

Sampath	Perera,	Rahimi	Behzad	Sharefi:	Modelling	and	Optimisation	of	Devia	
tion	in	Hydro	Power	Production		..				18	

Karin	Dietl,	Kilian	Link,	Gerhard	Schmitz:	Thermal	Separation	Library:	Examples	
of	Use		..				28	

Marco	Bonvini,	Alberto	Leva:	Scalable‐detail	modular	models	for	simulation	studies		
on	energy	efficiency		..				39	

Christian	Schulze,	Manuel	Gräber,	Michaela	Huhn,	Uwe	Grätz:	Real‐Time	Simulation		
of	Vapour	Compression	Cycles		..				48	

Alberto	Leva,	Marco	Bonvini:	Efficient	hybrid	simulation	of	autotuning	PI	controllers						56	
J.	Åkesson,	R.	Faber,	C.	D.	Laird,	K.	Prölß,	H.	Tummescheit,	S.	Velut,	Y.	Zhu:	Models	of	a	

post‐combustion	absorption	unit	for	simulation,	optimization	and	non‐linear	model	
predictive	control	schemes		...				64	

Michael	Sielemann,	Francesco	Casella,	Martin	Otter,	Christoph	Clauß,	Jonas	Eborn,		
Sven	Erik	Mattsson,	Hans	Olsson:	Robust	Initialization	of	Differential‐Algebraic		
Equations	Using	Homotopy		...				75	

Francesco	Casella,	Michael	Sielemanny,	Luca	Savoldelli:	Steady‐state	initialization	of	
object‐oriented	thermo‐fluid	models	by	homotopy	methods		..				86	

Johan	Ylikiiskilä,	Johan	Åkesson,	Claus	Führer:	Improving	Newton’s	method	for	
Initialization	of	Modelica	models		..				97	

T.	Blochwitz,	M.	Otter,	M.	Arnold,	C.	Bausch,	C.	Clauß,	H.	Elmqvist,	A.	Junghanns,		
J.	Mauss,	M.	Monteiro,	T.	Neidhold,	D.	Neumerkel,	H.	Olsson,	J.	V.	Peetz,		
S.	Wolf:	The	Functional	Mockup	Interface	for	Tool	independent	Exchange	of		
Simulation	Models		...		105	

Jens	Bastian,	Christoph	Clauß,	Susann	Wolf,	Peter	Schneider:	Master	for	Co‐	
Simulation	Using	FMI		...		115	

Andreas	Heckmann,	Stefan	Hartweg,	Ingo	Kaiser:	An	Annular	Plate	Model	in		
Arbitrary	Lagrangian‐Eulerian	Description	for	the	DLR	FlexibleBodies	Library		121	

Damien	Chapon,	Fabien	Hospital,	Guillaume	Bouchez,	Marc	Budinger:	A	Modelica‐	
Based	and	Domain‐Specific	Framework	for	Electromechanical	System	Design			133	

Jens	Frenkel,	Christian	Schubert,	Günter	Kunze,	Peter	Fritzson,	Martin	Sjölund,		
Adrian	Pop:	Towards	a	Benchmark	Suite	for	Modelica	Compilers:	Large	Models			143	

Mohsen	Torabzadeh‐Tari,	Zoheb	Muhammed	Hossain,	Peter	Fritzson,	Thomas	Richter:		
OMWeb	–	Virtual	Web‐based	Remote	Laboratory	for	Modelica	in	Engineering		
Courses		...		153	

Kristin	Majetta,	Sandra	Böhme,	Christoph	Clauß,	Peter	Schneider:	MSL	Electrical		
Spice3	‐	Status	and	Further	Development		...		160	

vii

Christian	Kral,	Anton	Haumer:	The	New	FundamentalWave	Library	for	Modeling		
Rotating	Electrical	Three	Phase	Machines		..		170	

Tilman	Bünte,	Emmanuel	Chrisofakis:	A	Driver	Model	for	Virtual	Drivetrain		
Endurance	Testing		..		180	

Torsten	Schwan,	René	Unger,	Bernard	Bäker,	Beate	Mikoleit,	Christian	Kehrer:	
Optimization‐Tool	for	local	renewable	energy	usage	in	the	connected	system:	
“Building‐eMobility”		...		189	

Thomas	Kaden,	Klaus	Janschek:	Development	of	a	Modelica	Library	for	Simulation	of	
Diffractive	Optomechatronic	Systems		...		199	

Kerstin	Bauer,	Klaus	Schneider:	Transferring	Causality	Analysis	from	Synchronous	
Programs	to	Hybrid	Programs		...		207	

Joel	Andersson,	Johan	Åkesson,	Francesco	Casella,	Moritz	Diehl:	Integration	of		
CasADi	and	JModelica.org		..		218	

Jens	Frenkel,	Günter	Kunze,	Peter	Fritzson,	Martin	Sjölund,	Adrian	Pop,	Willi	Braun:	
Towards	a	Modular	and	Accessible	Modelica	Compiler	Backend			232	

Chen	Chang,	Ding	Jianwan,	Chen	Liping,	Wu	Yizhong:	Media	Modeling	for	Distillation	
Process	with	Modelica/Mworks		...		239	

Martin	Ryhl	Kærn,		Brian	Elmegaard,	Lars	Finn	Sloth	Larsen:	Experimental	comparison		
of	the	dynamic	evaortor	response	using	homogeneous	and	slip	flow	modeling			246	

Antoine	Viel:	Strong	Coupling	of	Modelica	System‐Level	Models	with	Detailed	CFD		
Models	for	Transient	Simulation	of	Hydraulic	Components	in	their	Surrounding	
Environment	...		256	

Michael	Wetter,	Wangda	Zuo,	Thierry	Stephane	Nouidui:	Recent	Developments	of	the	
Modelica	“Buildings”	Library	for	Building	Energy	and	Control	Systems			266	

Marco	Bonvini,	Alberto	Leva:	Object‐oriented	sub‐zonal	room	models	for	energy‐	
related	building	simulation		...		276	

Manuel	Ljubijankic,	Christoph	Nytsch‐Geusen,	Jörg	Rädler,	Martin	Löffler:	Numerical	
coupling	of	Modelica	and	CFD	for	building	energy	supply	systems			286	

José	Luis		Reyes	Péres	Andreas	Heckmann,	Ingo	Kaiser:	A	Thermo‐elastic	Annular		
Plate	Model	for	the	Modeling	of	Brake	Systems		...		295	

Volker	Beuter:	An	Interface	to	the	FTire	Tire	Mode		...		304	
Ivan	Kosenko,	Il’ya	Gusev:	Implementation	of	the	Spur	Involute	Gear	Model		

on	Modelica		..		315	
Christian	Andersson,	Johan	Åkesson,	Claus	Führer,	Magnus	Gäfvert:	Import	and		

Export	of	Functional	Mock‐up	Units	in	JModelica.org		...		329	
Christian	Noll,	Torsten	Blochwitz,	Thomas	Neidhold,	Christian	Kehrer:		

Implementation	of	Modelisar	Functional	Mock‐up	Interfaces	in	SimulationX			339	
Christian	Schubert,	Thomas	Neidhold,	Günter	Kunze:	Experiences	with	the	new	FMI	

Standard	Selected	Applications	at	Dresden	University		...		344	
Sebastian	Meinke,	Friedrich	Gottelt,	Martin	Müller,	Egon	Hassel:	Modeling	of	Coal‐	

Fired	Power	Units	with	ThermoPower	Focussing	on	Start‐Up	Process			353	
Baligh	El	Hefni,	Daniel	Bouskela,	Grégory	Lebreton:	Dynamic	modelling	of	a	combined	

cycle	power	plant	with	ThermoSysPro		...		365	
Daniel	Rene		Kreuzer,	Andreas	Werner:	Implementation	of	Models	for	reheating		

processes	in	industrial	furnaces		..		376	

viii

Anton	Haumer,	Christian	Kral:	Modeling	a	Mains	connected	PWM	Converter	with		
Voltage‐Oriented	Control		...		388	

Jonathan	Brembeck,	Sebastian	Wielgos:	A	real	time	capable	battery	model	for		
electric	mobility	applications	using	optimal	estimation	methods			398	

Oliver	Chilard,	Jean‐Philippe	Tavella,	Olivier	Devaux:	Use	of	Modelica	language	to		
model	an	MV	compensated	electrical	network	and	its	protection	equipment:	
comparison	with	EMTP		...		406	

Johan	Andreasson:	The	Vehicle	Dynamics	Library:	New	Concepts	and	New	Fields	of	
Application		..		414	

Chen	Liping,	Zhao	Yan,	Zhou	Fanli,	Zhao	Jianjun,	Tian	Xianzhao:	Modeling	and		
Simulation	of	Gear	Pumps	based	on	Modelica/MWorks®		..		421	

Li	He,	Xiaolong	Wang,	Yunqing	Zhang,	Jinglai	Wu,	Liping	Chen:	Modeling	and		
Simulation	Vehicle	Air	Brake	System		..		430	

M.	Einhorn,	F.	V.	Conte,	C.	Kral,	C.	Niklas,	H.	Popp,	J.	Fleig:	A	Modelica	Library	for	
Simulation	of	Electric	Energy	Storages		..		436	

Stéphane	Velut,	Hubertus	Tummescheit:	Implementation	of	a	transmission	line		
model	for	fast	simulation	of	fluid	flow	dynamics		...		446	

Kilian	Link,	Stephanie	Vogel,	Ines	Mynttinen:	Fluid	Simulation	and	Optimization		
using	Open	Source	Tools		...		454	

Christian	Bayer,	Olaf	Enge‐Rosenblatt:	Modeling	of	hydraulic	axial	piston	pumps		
including	specific	signs	of	wear	and	tear		...		461	

Sebastian	Nowoisky,	Chi	Shen,	Clemens	Gühmann:	Detailed	Model	of	a	Hydro‐	
mechanical	Double	Clutch	Actuator	with	a	Suitable	Control	Algorithm			467	

Jonatahan	Brembeck,	Martin	Otter,	Dirk	Zimmer:	Nonlinear	Observers	based	on	the	
Functional	Mockup	Interface	with	Applications	to	Electric	Vehicles			474	

Bernhard	Thiele,	Dan	Henriksson:	Using	the	Functional	Mockup	Interface	as	an	
Intermediate	Format	in	AUTOSAR	Software	Component	Development			484	

Yongqi	Sun,	Stephanie	Vogel,	Haiko	Steuer:	Combining	Advantages	of	Specialized	
Simulation	Tools	and	Modelica	Models	using	Functional	Mock‐up	Interface	(FMI)		..		491	

Willi	Braun,	Lennart	Ochel,	Bernhard	Bachmann:	Symbolically	Derived	Jacobians		
Using	Automatic	Differentiation	–	Enhancement	of	the	OpenModelica	Compiler			495	

Dan	Henriksson,	Hilding	Elmqvist:	Cyber‐Physical	Systems	Modeling	and	Simulation		
with	Modelica		..		502	

Martin	Sjölund,	Peter	Fritzson,	Adrian	Pop:	Bootstrapping	a	Modelica	Compiler		
aiming	at	Modelica	4		..		510	

Daniel	Schlabe,	Tobias	Knostmann,	Tilman	Bünte:	A	Scade	Suite	to	Modelica		
Interface		...		522	

Roland	Samlaus,	Claudio	Hillmann,	Birgit	Demuth,	Martin	Krebs:	Towards	a	model		
driven	Modelica	IDE		..		528	

Michaela	Huhn,	Martin	Sjölund,	Wuzhu	Chen,	Christian	Schulze,	Peter	Fritzson:	Tool	
Support	for	Modelica	Real‐time	Models		...		537	

Lionel	Belmon,	Chen	Liu:	High‐speed	train	pneumatic	braking	system	with	wheel‐slide	
protection	device:	A	modeling	application	from	system	design	to	HIL	testing			549	

Sabrina	Proß,	Bernhard	Bachmann:	An	Advanced	Environment	for	Hybrid	Modeling		
and	Parameter	Identification	of	Biological	Systems		..		557	

ix

A.	Bader,	S.	Bauersfeld,	C.	Brunhuber,	R.	Pardemann,	B.	Meyer:	Modelling	of	a		
Chemical	Reactor	for	Simulation	of	a	Methanisation	Plant		..		572	

Audrey	Jardin,	Daniel	Bouskela,	Thuy	Nguyen,	Nancy	Ruel,	Eric	Thomas,	Laurent	
Chastanet,	Raphaël	Schoenig,	Sandrine	Loembé:	Modelling	of	System	Properties		
in	a	Modelica	Framework		..		579	

Daniel	Andersson,	Erik	Åberg,	Jonas	Eborn,	Jinliang	Yuan,	Bengt	Sundén:	Dynamic	
modeling	of	a	solid	oxide	fuel	cell	system	in	Modelica		...		593	

M.	Strobel,	F.	Vorpahl,	C.	Hillmann,	X.	Gu,	A.	Zuga,	U.	Wihlfahrt:	The	OnWind	Modelica	
Library	for	OffshoreWind	Turbines	–	Implementation	and	first	results			603	

Leo	Gall,	Kilian	Link,	Haiko	Steuer:	Modeling	of	Gas‐Particle‐Flow	and	Heat	Radiation		
in	Steam	Power	Plants		...		610	

Christian	Schallert:	Inclusion	of	Reliability	and	Safety	Analysis	Methods	in	Modelica		616	
Stephan	Seidel,	Ulrich	Donath:	Error‐free	Control	Programs	by	means	of	Graphical	

Program	Design,	Simulation‐based	Verification	and	Automatic	Code	Generation		628	
Sébastien	Furic:	Enforcing	Reliability	of	Discrete‐Time	Models	in	Modelica			638	
Peter	Harman:	Effective	Version	Control	of	Modelica	Models		...		650	
Xenofon	Floros,	Federico	Bergero,		François	E.	Cellier,	Ernesto	Kofman:	Automated	

Simulation	of	Modelica	Models	with	QSS	Methods:	The	Discontinuous	Case		657	
The‐Quan	Pham,	Alfred	Kamusella,	Holger	Neubert:	Auto‐Extraction	of	Modelica	Code	

from	Finite	Element	Analysis		or	Measurement	Data		..		668	
Daniel	Bouskela,	Audrey	Jardin,	Zakia	Benjelloun‐Touimi,	Peter	Aronsson		

Peter	Fritzson:	Modelling	of	Uncertainties	with	Modelica		..		673	
Tilman	Bünte:	Recording	of	Model	Frequency	Responses	and	Describing	Functions	in	

Modelica		...		686	

Posters	
Anton	Sodja,	Borut	Zupančič:	On	using	model	approximation	techniques	for	better	

understanding	of	models	implemented	in	Modelica		...		697	
Tolga	Kurtoglu,	Peter	Bunus,	Johan	De	Kleer,	Rahul	Rai:	Simulation‐Based	Design	of	

Aircraft	Electrical	Power	Systems		..		704	
Jiri	Kofranek,	Marek	Matejak,	Pavol	Privitzer:	HumMod	‐	Large	Scale	Physiological		

Models	in	Modelica		..		713	
Ying	Sun,	Wie	Chen,	Yunqing	Zhang,	Liping	Chen:	Modeling	and	Simulation	of	Heavy	

Truck	withMWorks	..		725	
Bart	Verbruggen,	Juan	Van	Roy,	Roel	De	Coninck,	Ruben	Baetens,	Lieve	Helsen,		

Johan	Driesen:	Object‐Oriented	Electrical	Grid	and	Photovoltaic	system	modelling		
in	Modelica		..		730	

Syed	Adeel	Asghar,	Sonia	Tariq,	Mohsen	Torabzadeh‐Tari,	Peter	Fritzson,		
Adrian	Pop,	Martin	Sjölund,	Parham	Vasaiely,	Wladimir	Schamai:	An	Open		
Source	Modelica	Graphic	Editor	Integrated	with	Electronic		Notebooks	and		
Interactive	Simulation		...		739	

Olaf	Enge‐Rosenblatt,	Christoph	Clauß,	André	Schneider,	Peter	Schneider:	Functional	
Digital	Mock‐up	and	the	Functional	Mock‐up	Interface	–	Two	Complementary	
Approaches	for	a	Comprehensive	Investigation	of	Heterogeneous	Systems			748	

x

Hubert	Thieriot,	Maroun	Nemera,	Mohsen	Torabzadeh‐Tari,	Peter	Fritzson,	Peter,		
Rajiv	Singh,	John	John	Kocherry:	Towards	Design	Optimization	with	OpenModelica	
Emphasizing	Parameter	Optimization	with	Genetic	Algorithms		..		756	

Zakia	Benjelloun‐Touimi,	Mongi	Ben	Gaid,	Julien	Bohbot, Alain	Dutoya, Hassan	Hadj‐
Amor,	Philippe	Moulin,	Houssem	Saafi,	Nicolas	Pernet:	From	Physical	Modeling		
to	Real‐Time	Simulation	:	Feed	back	on	the	use	of	Modelica	in	the	engine	control	
development	toolchain		..		763	

Oscar	Duarte:	UN‐VirtualLab	:	A	web	simulation	environment	of	OpenModelica		
models	for	educational	purposes		..		773	

Stephan	Ziegler,	Robert	Höpler:	Extending	the	IPG	CarMaker	by	FMI	Compliant	Units	..		779	
Vincenzo	Manzoni,	Francesco	Casella:	Minimal	Equation	Sets	for	Output	Computation		

in	Object‐Oriented	Models		..		784	
Vlastimil	Votrubec,	Pavel	Šidlof:	Optimization	example	of	industrial	sewing	machines	

mechanisms		..		791	
Clemens	Schlegel,	Reinhard	Finsterwalder:	Automatic	Generation	of	Graphical	User	

Interfaces	for	Simulation	of	Modelica	Models		...		796	
Mohsen	Torabzadeh‐Tari,	Martin	Sjölund,	Adrian	Pop,	Peter	Fritzson:	DrControl	—		

An	Interactive	Course	Material	for	Teaching	Control	Engineering			801	
Jörg	Frochte:	Modelica	Simulator	Compatibility	‐	Today	and	in	Future			812	
Oscar	Duarte:	A	Modelica	model	of	thermal	and	mechanical	phenomena	in	bare		

overhead	conductors		..		819	
Ming	Jiang,	Jiangang	Zhou,	Wei	Chen,	Yunqing	Zhang,	Liping	Chen:	Modeling	and	

Simulation	of	AMT	with	MWorks		..		829	
Junjie	Tang,	Jianwan	Ding,	Liping	Chen,	Xiong	Gong:	Variability	and	Type	Calculation		

for	Equation	of	Modelica	model		..		837	
Yuming	Hou,	Lingyang	Li,	Ping	He,	Yunqing	Zhang,	Liping	Chen:	Shock	Absorber		

Modeling	and	Simulation	Based	on	Modelica		..		843	
Ruben	Baetens,	Dirk	Saelens:	Integrating	occupant	behaviour	in	the	simulation	of		

coupled	electric	and	thermal	systems	in	buildings		..		847	
Ingela	Lind,	Henric	Andersson:	Model	Based	Systems	Engineering	for	Aircraft	Systems	–	

How	does	Modelica	Based	Tools	Fit?		...		856	
Emerson	Jacob	Jeganathan,	Anand	Pitchaikani,	Elavarasan	Dharumaseelan:		

Productivity	improvement	tool	for	configuration	of	Modelica	plant	models	and	
integration	with	Simulink	controller	models		...		865	

Simulation-based development of
automotive control software with Modelica

Emmanuel Chrisofakis1, Andreas Junghanns2, Christian Kehrer3, Anton Rink1

1Daimler AG, 70546 Stuttgart
2QTronic GmbH, Alt-Moabit 91a, 10559 Berlin

3ITI GmbH, Webergasse 1, 01067 Dresden
{emmanuel.chrisofakis, anton.rink}@daimler.com, andreas.junghanns@qtronic.de, kehrer@iti.de

Abstract

We present and discuss the Modelica-based develop-
ment environment currently used by Daimler to de-
velop powertrain control software for passenger cars.
Besides well calibrated vehicle models, the environ-
ment supports automotive standards such as A2L,
MDF, CAN, and XCP to integrate control software
and simulated vehicles on Windows PCs.
Keywords: automotive software development, soft-
ware in the loop

1 Introduction

More and more automotive functions are implemen-
ted using software. Hence, there is an increasing de-
mand to support the corresponding development pro-
cess using virtual, i. e. simulation-based develop-
ment environments.

Figure 1: Vehicle model as used for SiL
Virtually coupling control strategies with plant mod-
els is standard technology today, mostly using com-
mon-place tools such as Matlab/Simulink for pre-

development of control algorithms. This paper
presents technology targeted toward the late stages in
the development process, like tuning, validating and
debugging the entire controller software in closed
loop with simulated plant models. Virtualizing these
later engineering tasks requires plant models with in-
creasingly higher quality (physical effects modeled
and quality of calibration) and near-production con-
troller software (percentage of the controller soft-
ware included, parameterization using production
parameter sets and adaptation of the software to the
plant) to be coupled.
A tool-chain supporting such coupling should

• be easy to set up and use by automotive de-
velopers who are usually not computer sci-
entists

• support many of the engineering tasks usu-
ally performed with physical prototypes to
allow for front-loading

• support short turn-around times, i. e. minim-
ize the time between editing of control soft-
ware and validation of the resulting behavior
on system level to help find problems early

• provide built-in support for standards and
de-facto standards used in automotive soft-
ware development to allow cost-effective
use of existing information sources

• support distributed development and ex-
change of work products between OEMs,
suppliers, and engineering service providers.
This requires e. g. measures to protect intel-
lectual property.

• support reconfiguration of the development
tool chain, since automotive development
tools are frequently updated or replaced, e. g.
due to emerging standards, new bus proto-
cols or tool policy considerations.

In this paper, we present the simulation-based devel-
opment environment used by Daimler to develop the
powertrain control software for Mercedes passenger
cars. The tool chain presented here addresses the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

1

above demands. It is based on vehicle models imple-
mented using Modelica and processed using Simula-
tionX as a tool for the design and analysis of com-
plex systems, the FMU standard for model exchange,
MATLAB/Simulink and TargetLink as a tool for
model based development of automotive controllers
and Silver as a tool for virtual integration of control
software, application data and the simulated vehicle.

The paper is structured as follows: In the next sec-
tion, we describe why and how Modelica is used
here to create vehicle models. Section 3 describes
how such a vehicle model is then coupled with con-
trol software and what else is needed to get automot-
ive control software running in closed loop on a PC.
Section 4 describes how such a SiL setup is used to
support automotive software development, and sec-
tion 5 describes costs and benefits of setting up a
SiL.

2 Vehicle models

Daimler started around 2004 to use Modelica for
building vehicle models used for test and develop-
ment of powertrain control software via software in
the loop (SiL). For example, the members of the 7G-
Tronic transmission family have been developed this
way [1]. Ongoing projects developed within this
Modelica-based framework include dual-clutch
transmissions by Mercedes [2] and AMG [3], and
hybrid drivetrains. Basic requirement of a plant mod-
el in a SiL-environment for automatic gearboxes is
the accurate calculation of the gear shifting. In order
to achieve this goal, detailed model representation of
gearbox kinematics, clutch mechanics and hydraulic
control is essential. Therefore special Modelica lib-
raries have been developed over the years to support
transmission development.
For the development of customer specific libraries
SimulationX offers a wealth of options such as the
dedicated TypeDesigner that simplifies graphical and
textual modeling compared to traditional forms.
Based on these libraries, a well calibrated vehicle
model for a new transmission project can be setup
within just a few weeks. This short development is
partly credited to good properties of the Modelica
language, which provides outstanding support for the
reuse of component models, mainly by providing
powerful means to parametrize models and built-in
support for acausal modeling. Latter feature offers
the model developer great possibilities to calibrate
and validate his model by using measurements either
from car or from test rig since no model modifica-

tions are necessary if the measured signal is a flow or
potential quantity (e. g. torque as opposed to speed).

Figure 2: Gearset of a 7G-Tronic Transmission

Different capabilities for implementing measured
data in SimulationX and validating the Modelica
models against these data without the necessity of
using another tool in combination with further op-
tions like the VariantsWizard help to increase the ef-
fiency of model calibration. With special regard to
the needs of powertrain modeling ITI provides dif-
ferent analyzing methods, e. g. the linear system ana-
lysis or the steady state simulation.

Figure 3: Transmission hydraulics

Figures 1, 2 and 3 show typical Modelica models
used in series development projects.

Daimler uses Dymola and also SimulationX [4] to
edit and process Modelica models. Since Modelica
version 3.1 there is full compatibility of the plant
models both in Dymola 7.4 as well as in Simula-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

2

tionX 3.4. Models and libraries are stored on hard
disk as .mo files. Both tools are able to read these
files with no specific modification, i. e. they use ex-
actly the same files for displaying exactly the same
structure. Figure 4 shows a screenshot of the direct-
ory structure and the integration in every tool.
This proves that one design goal of Modelica and the
Modelica Standard Library (MSL) has been reached
now, namely to provide a tool-vendor independent
representation format for simulation models. There
are however still a few issues to be solved to fully
reach vendor independence of the MSL:

• The definition of tables in Modelica Stand-
ard Library is based on external functions.
The implementation of these functions is not
part of the library itself and has to be done
by tool vendors. In consequence of missing
specification the different implementations
are not completely compatible.

• With the exclusive usage of external func-
tions it is difficult to adapt the implementa-
tion on the requirements of the underlying
tool. The substitution of external functions
by external objects would improve the im-
plementation capabilities.

• For users of a Modelica tool it is difficult to
decide whether a used construct is compat-
ible to Modelica language specification or
not (e. g. classDirectory function). All tool
dependent extensions of Modelica language
should be marked as vendor specific similar
to existing vendor specific annotations.

• Modelica libraries often use different version
of annotations for graphical objects or attrib-
utes which are invalid in the particular con-
text (e.g. fillColor for lines). While several
tools ignore such annotations other programs
generate error messages, which can be a
little bit confusing for users and developers.
For that reason a stronger validation of an-
notations would be preferable.

To create a Software in the Loop setup, the Modelica
model is then exported. In previous years, the C code
generated by either Dymola or SimulationX from a
given Modelica model has been wrapped and com-
piled for execution by one of the SiL tools described
in Section 3. For export, special wrapper code had to
be developed for each simulation tool, and even for
each version of such a tool, which was time consum-
ing and error prone. Daimler started recently to use
the FMI [8] developed within the Modelisar project
as an export format for Modelica models. This stand-
ard is supported by the latest versions of Simula-
tionX, Dymola, and Silver. This removes the need to
maintain version and vendor specific wrapper code,
which further improves and speeds up the SiL-based
development process.

3 Getting automotive control soft-
ware into the loop

Daimler uses Silver [5] and its in-house predecessor
Backbone to virtually integrate vehicle models and
control software on Windows PCs. Tools such as Sil-
ver or Backbone are mainly needed to support vari

Figure 4: Modelica library Car in SimulationX and Dymola

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

3

ous standards and quasi-standards used for automot-
ive software development. Developers are familiar
with these standards and know how to use them.
Data is available in these formats already as part of
the existing tool chain and reuse is virtually free of
cost. Furthermore, using these data sources in the
virtual development process allows early validation
of these data sources. A virtual development envir-
onment should therefore mimic, emulate, or else how
support these standards. A few examples of how the
SiL tool supports automotive standards is shown in
Fig. 5.
Developers typically use tools such as CANape
(Vector) or INCA (ETAS) to measure signals and
calibrate (fine-tune) parameters of the control soft-
ware in the running car or on a test rig using standard
protocols such as CCP or XCP. The SiL environment
implements this protocol. Seen from a measurement
tool such as CANape, a SiL simulation behaves just
like a real car. Developers can therefore attach his fa-
vorite measurement tool to the SiL to measure and
calibrate using the same measurement masks, data
sources and procedures they are using in a real car.
Likewise, automotive developers use MDF files to
store measurements. The SiL can load and save this
file format. A measured MDF file can e. g. be used
to drive a SiL simulation.
Another example is A2L. This is a database format
used to store key information about variables and
(tunable) parameters of automotive control software.
A2L contains e. g. the address of variables in the

ECU, its physical unit, comment and scaling inform-
ation that tells how to convert the raw integer value
to a physical value. The SiL-environment reads A2L
files and uses the information to automate many
tasks, such as scaling of the integer variables of the
control software to match the physical variables of
the vehicle model.
The SiL-environment also knows how to read DBC
files. These describe how the control software com-
municates with other controllers using the CAN pro-
tocol. The SiL-environment uses this e. g. to imple-
ment rapid prototyping: Load the control software
and the DBC into the SiL tool on your laptop, con-
nect the laptop to car using a CAN card, and switch
the ECU to 'remote control' mode. The control soft-
ware running in the SiL tool controls then the corres-
ponding system of the real car, e.g. an automatic
transmission. The main advantage of such a setup is,
that it saves time. Getting the control software run-
ning in a real ECU is typically much more time con-
suming than using a SiL tool or any other tool for
rapid prototyping.
Finally, the SiL tool can process PAR and HEX files.
These files may contain calibration data, i. e. values
for all the tunable parameters of the control software.
The SiL tool knows how to load these values into the
control software running in the SiL, emulating
thereby the 'flash' process of the real ECU. In effect,
the SiL tool is actually not only running the control
software, but the fine-tuned version of the software,
which enables much more detailed investigation and
testing of the control software's performance.

Figure 5: SiL environment an its interfaces to automotive standards

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

4

Having all these standards available in the SiL eases
the task of actually getting automotive control soft-
ware running on a PC, and doing useful things with
the resulting setup. Control software is typically de-
composed into a number of so-called tasks (i. e.
functions implemented in C) that are run by an
RTOS (real-time operating system) such as OSEK.
Many tasks are periodically executed with a fixed
rate, e. g. every 10 ms. To get such tasks running in
SiL, the user has to build an adapter as shown in
Fig. 5, i. e. a little C program that implements the
Silver module API and emulates the RTOS by call-
ing each task once at every (or every 2nd, 3rd, ...)
SiL macro step. The SiL tool is shipped with the
SBS (Silver Basis Software), i. e. C sources that
make it easy to build such an adapter by adapting
template adapter code. A cheap alternative to writing
an adapter is to use the SiL tool's support for MAT-
LAB/Simulink and Realtime Workshop (RTW).
Automotive software is often developed by first cre-
ating a model of the controller using Simulink. The
model is then used to automatically generate fix-
point integer code, e. g. using tools like the Embed-
ded Coder from MathWorks, TargetLink from
dSPACE, or Ascet from ETAS (model-based devel-
opment). The SiL tool contains support for exporting
a Simulink model using RTW. The result will not
use fix-point integer but floating point arithmetic, so
it is Model-in-the-loop (MiL), as opposed to Soft-
ware-in-the-loop (SiL). This is a fast push button
solution for exporting a controller model to SiL,
which does not require any hand coding, and is
therefore attractive.

Figure 6: Software in the Loop (SiL) setup of
transmission control software and vehicle model

4 Using the system model during
automotive development

So far we have mainly described what is needed to
get automotive control software running on a Win-
dows PC, in a closed loop with the simulated
vehicle. This section describes how such a SiL setup
can then be used to support the development process.
Supported activities include

• Virtual integration: Automotive control soft-
ware for a single ECU typically consists of
dozens of software modules, developed inde-
pendently by a team of developers. Having a
SiL helps to detect problems in the interplay
of these modules early, long before an at-
tempt is made to run all the module in a real
car. For example, before releasing a new
version of his module, a developer can
quickly check on his PC whether the module
works together with the modules of other de-
velopers. To do this, he only needs access to
compiled modules (object files), not to the
sources of other modules [2]. An additional
benefit here is the isolation of developers
from the changes of others when validating
their modifications early on as his changes
are only local to his own sources. Later in-
tegration efforts build on modifications
already validated, albeit in isolation.

• Debugging: In contrast to the situation in a
real car or on a HiL test rig, simulation can
be halted in SiL. It is then possible to inspect
all variables, or to change certain values to
simulate a fault event. In conjunction with a
debugger (such as Microsoft Visual Studio),
it is even possible to set breakpoints or to
single-step through the controller code,
while staying in closed loop with the simu-
lated car. The SiL tool can also be used to
debug problems measured in a real car, if a
measurement file (MDF) is available. In this
case, simulation is driven by the measure-
ment, and the SiL complements this meas-
urement by computing the missing signals to
provide a full picture needed to debug the
problem.

• Fault simulation: Using a SiL, it is possible
to create and explore scenarios that would be
difficult or impossible to realize in a real car
or on a test rig. For example, you can simu-
late strong wind [7] or inject arbitrary com-
ponent faults into the simulation.

• Comparing versions: The SiL tool offers a
function to compare the behavior of different

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

5

software versions by comparing all signals
computed by these versions. This is e. g.
useful when checking for equivalence after
refactoring or clean up of modules.

• Scripting: A SiL simulation can be driven by
a script, written e. g. in Python. This can be
used to implement optimization procedures,
for performing tests, or to trigger self-learn-
ing algorithms that adapt the control soft-
ware to certain properties of the (simulated)
car, e. g. to compensate aging of compon-
ents.

• Systematic testing: In conjunction with the
test case generator TestWeaver, the SiL tool
allows the systematic testing of control soft-
ware. TestWeaver generates thousands of
test cases which are then executed by the SiL
tool.

• Virtual endurance testing: calculation of
load collectives for gearbox and drivetrain,
e. g. to develop and test measures for safe-
guarding of the drivetrain components.

• Application/Calibration: of the control soft-
ware on the PC.

Figure 7: A debugger attached to Silver
A typical use case of the SiL tool is shown in Fig. 7.
The test case generator TestWeaver [8] has found a
scenario where the control software of a transmission
performs a division by zero. This is clearly a bug.
The user replays the recorded scenario, with Mi-
crosoft Visual Studio attached to the SiL tool. When
the division by zero occurs, the debugger pops up as
shown in the figure, showing the line in the control-
ler source code that causes the exception.

5 Costs and benefits

Main cost factors of using the simulation-based tool
chain for automotive software development are

• development and maintenance of the simula-
tion model: Here is where modern modeling
languages and tools such as Modelica and
SimulationX help reduce costs by reuse of
components and easy parameterization

• continuous calibration efforts to keep such a
model up to date with the plant simulated:
SimulationX allows continuous enhance-
ments based on existing models and libraries
by replacing components and models of
varying complexity throughout all develop-
ment phases. Reusing models including all
interfaces necessary for calibration in com-
bination with a wide range of tool options,
e. g. VariantsWizard, COM-scripting or op-
timization tools, leads to an increasing effi-
ciency in the workflow.

• Building the adapter code for the controller
software: With the introduction of the Silver
Basic Software package, this effort is signi-
ficantly reduced.

Despite continuing cost-reduction efforts, these in-
vestments are still significant.
They are compensated by the benefits of such a Soft-
ware in the Loop setup for developing control soft-
ware, namely

• extremely fast development cycles: due to
comfortable integration of software and
vehicle components on the PC of the de-
veloper. This helps to detect problems early.

• excellent debugging and test support, e. g.
with Microsoft Visual Studio Debugger or
QTronic TestWeaver [1,2,3,6]. Found prob-
lems can be exactly reproduced as often as
needed.

• parallelize the development process: A SiL
configuration can easily be duplicated at low
cost. This way, every member of a team can
use its personal 'virtual' development envir-
onment 24 hours a day, without blocking
rare resources like HiL test rigs, or physical
prototypes.

• sharing results without sharing IP: All mem-
bers of a team exchange working results by
exchanging compiled modules (DLLs), not
sources. This helps to protect intellectual
property.

• executing others contributions without their
tools: Our SiL runs modules (simulation
models, control software) developed using

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

6

very different tools without accessing these
tools. This greatly reduces the complexity of
the SiL setups (no tool coupling).

6 Conclusion

We presented the tool chain used by Daimler for
simulation-based development of transmission con-
trol software. The environment is based on Model-
ica, provides build-in support for automotive stand-
ards, imports vehicle models via the standard FMI
and uses these models to perform closed-loop simu-
lation of automotive control software. The virtual de-
velopment environment created this way helps to
shorten development cycles, eases test and debug-
ging, helps to parallelize and hence to speed up de-
velopment and provides a convenient platform for
collaboration between Daimler's transmission devel-
opment departments and its suppliers and engineer-
ing service providers.

Acknowledgments
Our work on the FMI [8] presented here has been
funded by the Federal Ministry for Education and
Science (BMBF) within the ITEA2 project MODEL-
ISAR (Förderkennzeichen 01IS08002).

References

[1] A. Rink, E. Chrisofakis, M. Tatar: Automating
Test of Control Software - Method for Auto-
matic TestGeneration. ATZelektronik 6/2009
Volume 4, pp. 24-27.

[2] H. Brückmann, J. Strenkert, U. Keller, B. Wies-
ner, A. Junghanns: Model-based Development
of a Dual-Clutch Transmission using Rapid
Prototyping and SiL. International VDI Con-
gress Transmissions in Vehicles 2009,
Friedrichshafen, Germany, 30.06.-01-07.2009

[3] M. Hart, R. Schaich, T. Breitinger, M. Tatar:
Automated test of the AMG Speedshift DCT
control software 9th International CTI Sym-
posium Innovative Automotive Transmissions,
Berlin, 30.11. - 01.12.2010, Berlin, Germany.

[4] SimulationX, http://www.simulationx.com/
[5] Silver, http://qtronic.de/en/silver.html
[6] A. Junghanns, J. Mauss, M. Tatar: TestWeaver

- A Tool for Simulation-based Test of Mechat-
ronic Designs. 6th International Modelica Con-
ference, Bielefeld, March 3 - 4, 2008, pp. 341 -
348, 2008.

[7] Hilf, Matheis, Mauss, Rauh: Automated Simu-
lation of Scenarios to Guide the Development
of a Crosswind Stabilization Function. 6th
IFAC Symposium on Advances in Automotive
Control, Munich, Germany, July 12 - 14, 2010.

[8] FMI Specification 1.0, available for free from
http://www.functional-mockup-interface.org/

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

7

Modelica Delft-Tyre Interface

Edo Drenth Magnus Gäfvert

Modelon AB

Ideon Science Park

Lund, Sweden

edo.drenth@modelon.se magnus.gafvert@modelon.se

Abstract

The TNOi Delft-Tyre is a renowned model for the

pneumatic tire in the automotive industry based upon

the famous Magic Formula first introduced by Bakk-

er et.al. in the late eighties [1]. The name Magic

Formula seems to appear first at the 1st Delft collo-

quium on tires four years later [2]. The Magic For-

mulae themselves have evolved greatly during the

last two decades with contributions from a wide va-

riety of companies and researchers.

The Magic Formula is widely used in the automotive

(and gaming) industry because of its ease of use to

represent the complicated tire characteristics.

TNO has marketed the Magic Formula tire model as

Delft-Tyre and implemented the dynamic forces and

moments computation routines, including the exten-

sion of SWIFT [3], in a variety of multibody simula-

tion packages, like ADAMS and DADS and general

purpose simulation software Simulink
ii
.

Modelon has in close cooperation with TNO by

means of extensive benchmarks implemented the

MF-Tyre/MF-Swift in Modelica. This paper presents

the work conducted to implement the TNO tire mod-

els in Modelica which now is available as a commer-

cial library in Dymolaiii.

Keywords: Delft-Tyre, semi-empirical tire model,

Magic Formula, SWIFT-Tyre

1 Introduction

Modelica is gaining popularity as a modeling and

simulation language. In order to further increase the

number of possible applications by means of lower-

ing the threshold to embark on the Modelica route,

an interface to TNO’s MF Delft-Tyre/MF Swift has

been developed. Rather than following the object-

oriented modeling path stipulated in [5], this inter-

face creates a single wheel class that includes tire

characteristics and road-tire interface. One of the

advantages using this solution, over the referenced

one, is the well proven underlying code for force and

moment computation of the tire characteristics. The

tire model is semi-empirical and widely used in the

automotive industry due to its ease of use and corre-

lation with measured characteristics. Also, the neces-

sary tire data is relatively easy and commercially

available.

2 The models

2.1 Wheel model

The tire model used is TNO’s MF-Tyre/MF-Swift.

The MF-Tyre is solely based on the Magic Formula

and can be used in models that are used for low fre-

quency analysis (<8Hz), like exploring handling cha-

racteristics of a vehicle. The MF-Swift, that requires

a separate license from TNO, can be used in models

that are intended to be used in a higher frequency

range up to 100Hz, and thus useful in for example

ride and controller development studies. The MF-

Swift tire model includes a rigid ring that models the

tire belt and introduces additional rigid body modes

to represent tire dynamics.

Figure 1 Wheel Model in Dymola (preferred)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

8

The Modelica interface is firstly made available in

Dymola and other simulation environments are in

progress. In Dymola a wheel model (see Figure 1) is

made available that incorporates the MF-Tyre/MF-

Swift.

Figure 2 Wheel Model in Dymola

The preferred wheel model utilizes Dymola’s capa-

bilities of combining 1-DOF and 3-DOF multibody

mechanics. The wheel is mounted with two connec-

tors; a flange for the wheel spin degree of freedom

and a normal connector for the wheel hub orienta-

tion. This is a numerical efficient method to include

a power train in the complete vehicle models and

compatible with the wheel implementation in Dymo-

la Vehicle Dynamics Library, although not required

for the Dymola Delft-Tyre interface.

TNO’s Application Programming Interface, API,

does allow for different types of interface and the

straight forward interface with only one connector is

also made available (see Figure 2). In this particular

case the reference frame spins around the wheel spin

axis.

2.2 Moving road

The API of MF-Tyre/MF-Swift allows, among dif-

ferent standard supplied types of road, moving roads.

Moving roads are used to simulate for example a

four-poster rig where the tire ‘road’ interface is mov-

ing vertically. Therefore a second connector is intro-

duced in the wheel model that connects the wheel to

the moving road and only visible when moving road

is selected in the parameter dialogue.

3 Benchmark

3.1 Introduction

TNO has developed MF-Tyre/MF-Swift interfaces to

three different simulation programs themselves. The

results of these three interfaces have been thoroughly

tested with help of simple models and smart load

cases to exercise all functionality and features. The

entire virtual test program is specified in [7].

Figure 3 Single Wheel Model

In order to be allowed to release the MF-Tyre/MF-

Swift interface for Modelica, sanctioned by TNO

Automotive, models had to be made and run in Dy-

mola according to the referenced specification.

The single wheel model (see Figure 3) is run many

different ways in order to explore and verify the MF-

Tyre/MF-Swift robustness and accuracy. For exam-

ple, the tire model can be run in a steady-state mode,

such that the relaxation length is omitted. In case of a

motor cycle tire (with motor cycle tire data) the

wheel model is run with significant camber velocity

as well as spin velocity resulting in large camber to

road angles.

Also, a simple vehicle model (see Figure 4) is simu-

lated to extend the virtual tire tests. Modeling the

ply-steer and especially conicity, the tires will have

to be identified to be left- or right hand mounted.

Figure 4 Simple Vehicle Model

The vehicle model will also be used on a four poster

rig to verify the moving road interface. This four

poster rig at the same time also verifies that the im-

plemented tire model gives adequate results at stand-

still.

3.2 Execution

The created models discussed in the chapter above

had to be executed through the entire virtual exten-

sive test program specified in [7]. The simulation

results for all the different test runs will have to be

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

9

forwarded to TNO in a readable format. TNO will

compare all results with their base line results with

help of an automated process. The feedback by

means of many graphical plots is sent back to the

issuer of the simulation results. Never is the base line

disclosed in numerical readable format. Once the

simulation results match (some exceptions allowed,

see chapter below) with the base line results, the in-

terface is deemed to be implemented correctly. Expe-

riences have shown this is a tedious process.

3.3 Results

During the course of executing the benchmarks and

discussing and looping the results with TNO it be-

came apparent that the specification in some in-

stances was not concise enough and different inter-

pretations could be made. Through discussion con-

sensus was reached in all cases. In some cases the

Dymola models had to be adjusted in other cases the

specification had to be updated in order to aid future

benchmarks with other simulation programs.

For instance the benchmark specification expected so

called ‘cut-forces’ and ‘cut-torques’ between two

bodies, where this has neither standard support in

Modelica nor in Dymola. Specialized multibody si-

mulation programs may have functionality to sum all

forces and torques between two bodies, which be-

comes equivalent to cut-forces and cut-torques be-

tween two bodies. Cut-force and cut-torque sensors

had to be created and inserted in the models at the

right places.

Another discrepancy was found in one of the tests

where the simple vehicle model had to perform a

brake action on a split friction road surface. The

benchmark specified a brake torque profile as func-

tion of time, but it became apparent that a special

filtering function was used in the base line models to

accommodate brake torques (see chapter below for

detailed discussion).

4 Brake model

4.1 Introduction

As indicated in the chapter above, a discrepancy was

found between the base line vehicle model and the

Dymola vehicle model. The brake torque capacity

was specified as function of time and an example of

the front wheel brake torque capacity is depicted in

Figure 5. However, the actual brake torque is basi-

cally limited by the actual surface friction between

tire and road and the actual vertical tire force. Hence,

the actual resulting brake torque may be lower than

the brake torque capacity, which is determined by

the clamp forces, disc and pad friction and effective

disc radius (in case of a disc brake).

4.2 Actual brake torque

Mathematically the brake torque is a result of the

brake torque capacity and the external load on the

wheel by means of longitudinal tire forces. The lon-

gitudinal forces on the tire are dependent on the load

case as vertical tire force, actual surface friction and

kinetic energy of the vehicle that the tire supports.

Figure 5 Brake torque capacity (blue) and actual brake
torque (red) on front left wheel

The direction of the brake torque is also dependent

on the load case and in its simplest form the brake

torque takes the form:

��� = �����	
�(�����)

In many simulation programs the sign of the wheel

spin velocity will cause numerical difficulties. Hence

smoother sign functions are used. For example:

��� = �������ℎ(�����)

Of course such solution will distort the actual result.

Modelica allows, as a standard feature, for accurate

friction torque modeling as discussed in [8].

4.3 Results

Figure 5 through Figure 7 show some Dymola results

of the actual benchmark with the split friction brak-

ing maneuver.

0 2 4 6 8 10

-1000

-500

0

500

1000

1500

2000

MF-Tyre/MF-Swift Benchmark

T
o
rq

u
e
 [

N
m

]

Time [s]

Brake Torque Capacity Actual Brake Torque

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

10

Figure 6 Wheel spin velocity traces

Figure 5 shows a trace of the brake torque capacity

and the actual brake torque of the front left wheel. It

can clearly be seen that the brake locks after about

6.5 seconds of simulation time, because the actual

brake torque is lower than the brake torque capacity.

At around 8 seconds of simulation time the brake un-

locks a short while because the brake torque capacity

and actual brake torque are equal.

Figure 7 Traces of longitudinal tire forces

These results are also supported in the wheel spin

velocity traces of Figure 6. The wheel spin velocity

of the front left wheel becomes zero indeed after ap-

proximately 6.5 seconds of simulation time. Also, at

around 8 seconds of simulation time the wheel spins

up a split second.

For sake of reference the tire longitudinal force trac-

es are shown in Figure 7. The vehicle will actually

spin due to the yaw moment disturbance as a result

of the split surface friction and the brake forces may

switch sign.

The shown results deviate from the base line simula-

tions run in non-Modelica based other simulation

software as soon as one of the braked wheels locked,

but were deemed correct due to modeling differenc-

es.

5 Conclusions

The extensive benchmark conducted in order to ap-

prove the MF-Tyre/MF-Swift Modelica interface has

proven Modelica based simulation software Dymola

to be a great tool to perform vehicle dynamics ana-

lyses. Yet with access to the renowned Magic For-

mula based tire model as a commercial library. This

interface will leverage Modelica as simulation lan-

guage for vehicle dynamics studies.

6 Outlook

Other Modelica simulation software solutions are in

progress to adopt this interface.

References

[1] E.Bakker, L. Nyborg, H.B.Pacejka, Tyre

Modelling for Use in Vehicle Dynamics Stu-

dies; SAE 870421, 1987.

[2] H.B. Pacejka, E.Bakker, The Magic Formula

Tyre Model, 1st International Colloquium on

Tyre Models for Vehicle Dynamcis Analysis,

Delft, The Netherlands, 1991

[3] J.J.M. van Oosten, H.B. Pacejka, SWIFT-

Tyre: An accurate tyre model for ride and

handling studies also at higher frequencies

and short road wavelengths, proceedings In-

ternational ADAMS User Conference, Or-

lando, USA, 2000

[4] H.B.Pacejka, Tire and Vehcile Dynamics,

Butterworth-Heinemann, Oxford, 2002

[5] M. Andres, D. Zimmer, F.E. Cellier, Object-

Oriented Decomposition of Tire Characteris-

tics based on semi-empirical Models, pro-

ceedings of 7th International Modelica Confe-

rence, Como, Italy, 2009

[6] MF-Tyre/MF-Swift 6.1.2 Help Manual, TNO

Automotive, The Netherlands, 2010

[7] MF-Tyre/MF-Swift Tyre Benchmarks, revi-

sion 1.3, TNO Automotive, The Netherlands,

2010

[8] M. Otter, H.Elmqvist, Modeling and Real-

time Simulation of an Automatic Gearbox us-

ing Modelica, 9
th
 European Simulation Sym-

posium, Passau, Germany, 1997

i
 TNO - Netherlands Organisation for Applied Scientific
Research

0 2 4 6 8 10

-10

0

10

20

30

40

50

60

70

MF-Tyre/MF-Swift Benchmark

S
p
in

 V
e
lo

c
it
y
 [

ra
d

/s
]

Time [s]

Wheel FL Wheel FR Wheel RL Wheel RR

0 2 4 6 8 10

-8000

-6000

-4000

-2000

0

2000

4000

6000

MF-Tyre/MF-Swift Benchmark

L
o
n
g

it
u
d

in
a
l
fo

rc
e
s
 [

N
]

Time [s]

Wheel FL Wheel FR] Wheel RL Wheel RR

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

11

ii
 ADAMS, DADS and Simulink are trademarks of their re-

spective owners
iii
 Dymola is a Dassault Systèmes Modelica based simula-

tion software

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

12

Multi-Domain Vehicle Dynamics Simulation in Dymola

Andreas Deuringa Johannes Gerla Dr. Harald Wilhelmb
a Modelon GmbH München

b Audi AG Ingolstadt

andreas.deuring@modelon.com johannes.gerl@modelon.com
harald.wilhelm@audi.de

1. Abstract

In future cars, battery electric and hybrid elec-
tric drives will increasingly appear. Subsys-
tems like e.g. the steering system and the
braking system will accordingly be based on
electric power supply. This leads to new chal-
lenges as well as opportunities also in the field
of vehicle dynamics and an increased need of
multidomain simulation concepts that com-
bine multibody-based vehicle dynamics mod-
els and models of the electric and control sys-
tems. This paper includes a simulation study
of the Audi sports car e-tron with electric
power steering system using the Vehicle Dy-
namics Library from Modelon AB Sweden to
model chassis and suspensions and the
Modelica Standard Library to model the elec-
tric power steering system. The steering sys-
tem controller unit was modeled alternatively
in the Modelica Standard Library and in Mat-
lab Simulink. Dymola and Matlab Simulink
have alternatively been used as simulation
environments whereas a special focus was put
on different ways to integrate these tools ac-
cording to standard development processes in
the automotive industry. Additionally, exten-
sive validation work was invested to compare
vehicle dynamics results generated with
ADAMS/Car and the Vehicle Dynamics Li-
brary.

2. Introduction

As hybrid and electric cars can store a higher
amount of electric energy and dispose of
higher voltage levels, it stands to reason to
base subsystems like the steering system fully
on electric power supply.

Fig. 1, Design Sketch of Electric Drive Sports

Car Audi e-tron, Picture: www.audi.de
Moreover electric drive systems offer the op-
portunity to give controlled input to the wheel
torque in order to optimize the handling and
the safety of the vehicle. For example con-
cepts which provide a combination of stan-
dard propulsion technology on one axle and
electric drives on the other, offer certain po-
tential regarding handling behaviour, how-
ever, require high attention to ensure save
driving in all conditions, e.g. during recupera-
tion phases. As vehicle dynamics interfere
with the dynamics of the electric systems and
as an integrated control concept is required
that includes vehicle dynamics and drive con-
trol systems, the usage of a multidomain
simulation environment has obvious advanta-
ges compared to specialized tools with e.g.
purely signal oriented or mechanical focus. In
order to study the suitability of Dymola and
the above named libraries, within this project
a vehicle dynamics model of the Audi sports
car e-tron was set-up and extensively verified
and optimised towards an existing
ADAMS/Car model. As an example for vari-
ous electric systems, the electric steering sys-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

13

tem was added to the vehicle dynamics model.
Finally, the controller was modelled both in
Dymola and Matlab Simulink. The entire sys-
tem model was simulated within Dymola (im-
porting the controller model via Functional
Mock-up Interface [2]) and Simulink (import-
ing the Modelica based models via the stan-
dard Dymola – Simulink Interface).

3. The Vehicle Dynamics Model
Used

The model of the vehicle dynamics in terms of
the mechanical system was carried out using
the Vehicle Dynamics Library (VDL) [1]. It
contains fully detailed multibody models of
the double wishbone front and rear suspen-
sions of the car, whereas the single suspension
links are interconnected with nonlinear bush-
ing elements. In Fig. 2 the Dymola Model of
the front suspension linkage subsystem is
shown in detail. The models are based on
VDL standard templates.

Fig. 2, VDL subsystem model of the double
wishbone right linkage in Dymola and Vehi-

cle Dynamics Lib

Fig. 3 gives a showcase overview of the full
vehicle as it is graphically displayed in the
animation tool of Dymola. The focus of the
modelling work lied on the resolved rear and
front suspensions. The car body and the sub-
frames are modelled as rigid parts having six
degrees of freedom each. The structure of the
VDL-model was based on an already existing
ADAMS/Car model with comparable com-
plexity. The assembly of the VDL subsystems
with the relevant multibody data like masses,

inertias, geometry points, elasticities, damp-
ing, etc. was transferred and adopted from this
ADMAS/Car model.

Fig. 3, Graphical animation of the full vehicle

model in Dymola with focus on
the resolved suspensions

However, the ADAMS model was not real-
ised in any detail, as this was not in focus of
the project. Differences in the simulation re-
sults aroused from certain elasticities of the
suspension models that have not been taken
into consideration in the VDL, due to the wish
to work with standard templates.

4. Comparison of the VDL and
the ADAMS/Car model

To compare and validate the VDL towards the
ADAMS/Car model, experiments in the field
of suspension kinematic and compliance an-
alysis (K&C) have been set up as well as full-
vehicle handling experiments. For the K&C
tests, elasto-kinematic models have been cre-
ated, optimised and then used in identical
form in the full vehicle analysis. The results
shown exemplarily in the following two fig-
ures contain a small cutout of the entire set of
results that was achieved.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

14

Fig. 4, Front Axle K&C-Test: Toe Angle (de-

gree) vs. Wheel Travel (mm)

Fig. 5, Front Axle K&C-Test: Vertical Force

(N) vs. Wheel Travel (mm)

In summary the K&C results achieved the
expected accordance between VDL and AD-
AMS or have explainable deviance due to
differences in modelling. The quality of K&C
accordance was from a certain point on not
further optimized, as not being in the focus of
the project. E.g. the differences in the extreme
regions of Fig. 4 and Fig. 5 are due to a dif-
ferent modelling approach for the bump stop.
A typical set of entire vehicle handling ex-
periments was carried out, too. Exemplarily
for the comparison an abstract of results from
the fundamental experiments Step Steer Ma-
noeuvre and Stationary Cornering are given
in Fig. 6 and Fig. 7.
As tire model Pacejka’s magic formula was
used in both codes.

Fig. 6, Full Vehicle Steady-State Cornering:

Steer Wheel Angle (degree) vs. Lat. Accelera-
tion (m/s2)

Fig. 7, Full Vehicle Step Steer: Yaw Rate (de-

gree) vs. Time (s)

In summary the full vehicle simulations are in
good accordance. It could be shown that an
industry standard vehicle dynamics model in
ADAMS can be redone with reasonable effort
and satisfying precision within a relatively
short time in a multidomain simulation tool.
Having available the model there, additional
non-mechanical systems can be added easily.
For the following investigations no further
comparisons to the ADAMS/Car model were
considered.

5. Electric Power Steering and
Controller Model

The Electric Power Steering (EPS) model was
added to the vehicle dynamics model de-
scribed above in Dymola, using elements ex-
clusively from the Modelica Standard Library.
A model of the steering controller was created
in Dymola, too, and alternatively the control-
ler was added to Dymola as a Simulink model
that was exported with the Real-Time Work-
shop using the Functional Mock-up Interface
(FMI) [2]. The FMI was defined by the
Modelisar consortium with the intention that
dynamic system models of different software
systems can be exchanged and used together
for simulation. The Functional Mock-up Unit

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

15

(FMU) essentially contains an Xml model
description and a Dynamic Link Library
(DLL).

Fig. 8, Electric Power Steering and Controller

Model in Dymola

The EPS model itself consists of mechanical
multibody, electric and control blocks. The
controller was simplified and treated as a
black box of binary code, as this is the usual
way that vehicle manufacturers receive the
model code from their system suppliers. For
this kind of pilot approach the controller was
kept as simple as necessary and was designed
just as a proportional gain. The output of the
control unit is a drive signal for the voltage of
the electric motor.
The impact of the power steering system on
the dynamic vehicle behaviour was not the
point of interest in this project and therefore
not elaborated or tuned.

6. Interface Concepts and accord-
ing Simulation Results

Dymola and Simulink models can be inter-
faced in multiple ways. For instance, the
Simulink model of a controller can be im-
ported to the Dymola model using the Func-
tional Mock-up Interface Approach proposed
by the Modelisar research project [2]. In this
case Dymola serves as the solver for the entire
system consisting of Modelica and Simulink
subsets. Alternatively Dymola models can be
exported to Simulink using e.g. the standard s-
function interface of Dymola. In this case
Simulink serves as the solver.

According to the scope of the simulation work
and the particular development process of the
user, there are motivations for both ways. For
this project, the following variants have been
applied.

Table 1, Different Interface Approaches for

the Simulation of a Vehicle
with EPS-System

Due to the multidomain approach of the simu-
lation concepts described above, in any vari-
ant multiphysical results can be studied, il-
lustrated e.g. by the analysis of the EPS motor
current in Fig. 9.

Fig. 9, Full Vehicle Step Steer: Steering Servo

Motor Current (A) vs. Time (s)

Due to the different solver technologies and
ways to derive equations from the system de-
scription, significant differences in the com-
putational performance of the studied inter-
face concepts occur for a Step Steer Ma-
noeuvre (SSM) and Steady State Cornering
Manoeuvre (SC). In all cases, however, the
simulation results are practically identical.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

16

Table 2, Simulation Performance of Different

Interface Approaches

7. Summary and Outlook

The work presented demonstrates that a re-
solved multibody model comparable to an
industry standard ADAMS model can be cre-
ated with reasonable effort in a multidomain
simulation environment like Dymola using the
Modelica approach and according specialised
libraries. Extensive validation work was in-
vested to ensure that both models lead to
comparable results.
From there on it was demonstrated that entire
mechatronic system simulation is easily pos-
sible in multidomain simulation tools, using
vehicle dynamics, electric, additional me-
chanical and control models. Manifold ways
to interface Dymola and Simulink support
flexible approaches and tool strategies to
simulate multiphysical mechatronic systems
and match the particular needs of a user’s spe-
cific development process.
It was shown that the described approaches
have the potential to cover the needs of the
upcoming challenges of e-mobility for system
design.
Additional concepts to interface multidomain
simulation tools like Dymola with control
simulation tools like Simulink are under de-
velopment at different places and promise an
even tighter integration of the required tools.

References

[1] Niklas Philipson, Johan Andreasson,
Magnus Gäfvert, Andrew Woodruff:
Heavy Vehicles Modeling with the
Vehicle Dynamics Library, Modelica
2008, March 3rd − 4th, 2008

[2] MODELISAR consortium. Functional
Mock-up Interface for Model Ex-
change. V. 1.0.
http://www.modelisar.org, 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

17

Modelica’2011

Modelling and Optimisation of Deviation in Hydro Power
Production

Telemark University College

Dietmar Winkler Hege Marie Thoresen Ingvar Andreassen
Magamage Anushka Sampath Perera Behzad Rahimi Sharefi

Abstract

In 2009 a new price system for the produced power
was introduced for Norwegian hydro power plants.
Basically a power producer gets punished if his pro-
duction deviates from the scheduled production. The
power plant is paid for the actual production: if too
much power is produced that the price for the excess
power is low. Even worse if too little power is pro-
duced the power plant has to pay a fine.
If such deviation occurs it is very important to iden-
tify components/systems that are responsible in order
to adjust the controller or replace the faulty equipment.
This paper describes the first step in problem solv-
ing, by presenting the development of a model of a
hydro power plant that shows differing power produc-
tion. The modelling part was done in Modelica R© us-
ing the HydroPlant Library1 of Modelon AB. The
model was parametrised using construction data and
validated using data from test and operation runs.

Keywords: Modelica, Hydro Power Systems, Hy-
droPlant Library, Test and Validation

1 Introduction

Several things affect the actual production in the power
plant. The turbine governor controls guide vanes in the
drum case, which in turn determines the power pro-
duction. The most important input is the set-point. In
addition it is possible to vary how sensitive the con-
troller is wrt. changes in the frequency (also known as
droop control). The droop is set by the national grid
company, Statnett in case of Norway.
The produced power also varies with the water level
in the reservoir. With a fixed guide vane opening the

1For more information on this library see: https://

modelica.org/libraries/HydroPlant

produced power increases when the reservoir level in-
creases and decreases when the level decreases. The
reservoir level is also fed to the turbine controller as
an input and the controller should in principle com-
pensate varying levels automatically.
In general, the various measurements, other inputs,
and transformed signals used as inputs to the turbine
controller, can contain uncertainties which may lead
to production deviation.
In the past it occurred that a power plant called
“Sundsbarm” which is located in Seljord, Norway has
experienced a certain power production deviation. In
order to investigate the reason for this deviation a
reference model using the Modelica modelling lan-
guage was developed and validated. With the help of
this model ideally the reason for production deviation
could be identified.

2 Main Components of a Hydro
Power System

Hydropower facilities regarding if they store water for
peak load period or not, and the way they store the
water, can be classified into several categories:

Storage Regulation (Impoundment) This is the
most common development of hydroelectric
power plants in which a dam is used to store
a large quantity of water in a big reservoir.
Potential energy of the stored water then can be
released in a controlled way.

Diversion Part of the river water is diverted into a
canal or a tunnel and is passed through the power
station and then might join the river again in the
downstream. This development can use the natu-
ral difference in height of the river at the upstream

18

and downstream locations and may not require a
dam.

Run of River In the run-of-river type, a small dam
with little impoundment of water is used. Short
tunnels (called penstocks) direct water to the
power station using the natural flow of the river.
Capacity of generating electricity in a diversion
or a run-of-river station is dependent on the
amount of water flowing in the river.

Pump Storage In pump storage development water is
pumped to a higher reservoir during periods of
low energy demand. The water is then run down
through the turbines to produce power to meet
peak demands.

Hydropower stations may also be classified by the type
of their loads into Base-Load and Peak-Load plants
[1]. The main focus of this paper will be on the Storage
Regulation (Impoundment) type of hydropower sta-
tions.

2.1 The Water Way

Figure 1 shows an example cross-section of an im-
poundment hydropower station. The water passage
starts from the upstream reservoir and ends at the
downstream pond/river. The difference of elevation
between water surfaces in the reservoir and the down-
stream pond determines the total head (gross head) of
the water in the system. Because of the energy loss in
the water passages due to friction, the effective head
of the water that can be exploited is less than the total
head.
Different parts of the water passages in this type of
power plant are described briefly.

Intake Intake is the inlet of the head race tunnel
which is equipped with Trash Rack for preventing big
solid objects from entering the tunnel and Gate Door
for isolating the tunnel for maintenance.

Head Race Tunnel or Conduit Head race tunnel
(conduit) connects the reservoir to the penstock near
the power house. It can be equipped with sand traps for
collecting sand and garbage that had passed through
the trash rack in the intake. The tunnel can be as
long as 45 km like in “Muela” power station in South
Africa [2]. It is also possible that the tunnel have inlet
branches from more than one reservoir.

Surge Tank/ Surge Shaft Surge tanks or surge
shafts might be used in different parts of the water
passage to prevent the “water hammer” effect. When
the water flowing in tunnels or pipes is accelerated
or decelerated, pressure surges are created in the wa-
terway which their magnitude may be much larger
than the nominal pressure in the waterway. This ef-
fect is known as “water hammer”. The strength of
the pressure surges depends on the value of accel-
eration/deceleration and the length of the waterway.
The waterway shall be built strong enough to with-
stand these pressure surges (often not an economical
solution) or the surge magnitude shall be limited/ con-
trolled somehow. One way for reducing the surge am-
plitudes is using surge shaft/ surge tank. Some other
means of controlling the water hammer are:

• Limiting the gate or valve closure time

• Using pressure regulator valves / relief valves lo-
cated near the turbine

Penstock A penstock (also called Pressure Shaft) is
a pipe made of concrete, steel, fiberglass, or wood that
is used to carry water from the supply sources to the
turbine. This conveyance is usually from a canal or
reservoir or from a tunnel. Penstocks may be equipped
with shut-off/isolation valves. The control valve (e.g.,
guide vanes) at the turbine side regulates the water
flow through the turbine.

Turbine Case The turbine case is the final compo-
nent of the water passage before the guide vanes and
the turbine runner. Here turbine cases for Francis tur-
bine will be described shortly.

Guide Vanes Guide vanes are located between the
turbine case and the runner of Francis turbines. These
are movable vanes that are actuated by turbine gover-
nor to control the flow rate of water through the turbine
and hence controlling the load of the turbine.

Turbine Runner Turbine runner for a Francis tur-
bine is a reaction type turbine. Instead of using a water
jet (like for impulse type turbines like Pelton turbines)
a water flow is allowed to pass through the runner.

Draft Tube Draft tubes are the final components of
the water passages of hydropower plants with Francis
and Kaplan Turbines. Draft tubes carry away the water
from turbine to the downstream channel or pond (the
tail race).

19

Figure 1: Example Schematic Diagram of an Impoundment Hydroelectric Station

Figure 2: Francis Turbine Case with Dimensions [1]

Usually spiral cases are used for delivering water to
the Francis turbine. Figure 2 shows a typical Francis
turbine and its case. In general, following considera-
tions shall be taken in design of the shape and dimen-
sions of the case and runner:

1. The cross-sectional area of the spiral case must

decrease so that the turbine runner is supplied
with water uniformly around its circumference.

2. Irrationality of the flow inside the case shall be
maintained.

2.2 The Electrical System

It follows a very brief introduction into the generator
theory.
The generator converts the mechanical energy from
the turbine into electric energy. The basic principle be-
hind a generator was discovered by Michael Faraday,
that a voltage is induced in a conductor when it moves
through a magnetic field. Faraday’s law of electromag-
netic induction is explained in equation (1):

em f =−N
dφB

dt
(1)

Where

em f = electromotive force [V]

φB = magnetic flux [Vs]

N = number of wires in the conductor

The Generator has two main parts: The rotor, which is
the rotating part, and the stator, which is the stationary
part. The rotor is delivering the magnetic field, and
the copper coils in the stator get an induced voltage
from the rotating magnetic field. There are two main
types of generators, synchronous generators and asyn-
chronous generators. The synchronous generator is
the most used generator in bigger hydro power plants.
Smaller hydro power plants may have asynchronous

20

generators, such as smaller hydro power plants which
produce up to about 5 MW.

2.2.1 Synchronous generator

The synchronous generator has a DC electric field in
the rotor. In reality, a reverted synchronous AC gen-
erator (with armature windings on its rotor) connected
at the end of the synchronous generator shaft produces
this DC current. A principal sketch of a two-pole,
single-phase synchronous generator is shown in Fig. 3.
It shows the field conductors in the rotor which makes
the magnetic field, and the stator conductor which gets
an induced voltage from the rotating magnetic field.
When the rotor turns and the poles change place, the
induced voltage in the stator is alternated. This makes
the generator produce AC (Alternating Current) volt-
age from the DC current in the rotor. The terminal
voltage of the generator can be controlled by the mag-
netising current in the rotor.

Figure 3: A 2-pole single phase synch. generator [3]

2.2.2 Power factor

The power factor is a very important subject when it
comes to electric power. When the voltage and current
are in phase (no lag) then the power factor is maxi-
mum, i.e., 1. This gives the optimal power output. The
definition of power factor is:

PF =
P
S
= cosϕ (2)

Where

S = apparent power [VA]

P = active power [W]

2.3 Control System

2.3.1 Turbine governor

The turbine governor’s main task is to control the
power output and the rotational speed of the turbine
and also to smooth out differences between generated
and consumed power at any grid load and prevailing
conditions in the water conduit [4]. At the same time
the governor also need to close down the admission at
load rejections or when a need for an emergency stop
rises. This has to be done in accordance with speci-
fied limits of rotational speed and pressure rises in the
waterway.
Deviation between power generation and consumption
in the grid will cause an acceleration or deceleration
of the rotating masses of generating units. Acceler-
ation happens in case when generation is more than
consumption. The turbine governor then will cause a
deceleration of the water flow. At the same time pres-
sure in the penstock will increase.
In order to keep the rotational speed within specified
limits at load rejections the admission – closing rate
must be equal to or higher than a given value [4]. In the
opposite way the closing rate of the admission have to
be equal or lower than a certain value in order to keep
the pressure rise in the conduit within specified limits.
The turbine governor acts in two modes: speed con-
trol and load control. Speed control mode takes place
when the generator is isolated from the grid (MCB is
open). In this mode the governor regulates the speed
of the turbine-generator with the speed set point. Load
control mode takes place when the MCB is closed. In
this mode the governor regulates the generated power
with the load set point and through a mechanism called
“droop” which is described in section 2.3.2. The gov-
ernor output signal in a Francis turbine power genera-
tion unit is applied to the guide vane servomechanism
and hence the governor controls the unit through the
guide vane position.

2.3.2 Speed Droop Control

In case of frequency increase (decrease) in the grid,
each power generation unit reduces (adds) a fix per-
centage of its total rating output power multiplied by
the amount of the change in the grid frequency’ from
(to) its output power. The amount of this power can be
calculated from equation (3):

S =
∆ f/ fN

∆P/PN
·100% (3)

21

Where

S = permanent speed droop [%]

fN = nominal frequency [Hz]

PN = nominal power [MW]

Where the permanent speed droop in equation (3) is
a percentage number which is decided by the grid ad-
ministration (e.g., Statnett in Norway). For example in
Norway for a stable operation of the electrical grid the
permanent speed droop is currently set to 10% .

2.3.3 Power/Frequency Control

In every electrical system the power needs to be pro-
duced when it is consumed. It is not possible to
store electrical energy. Energy has to be stored in
the form of reservoirs for larger power systems, and
as chemical energy (batteries) for small power sys-
tems. This means that the production system must
be sufficiently flexible to both changes in consumption
and the outcome of the production, and that the trans-
fer can be handled instantaneously, preferably with-
out consumers noticing it. For example, the national
grids in Norway, Sweden, Finland, and at Sjælland
in Denmark are all connected to one coordinated syn-
chronous grid. This means that events in one of the
sub-grids can affect the other grids in the other coun-
tries.
The frequency is a measure of how fast the machines
in the system rotate. If it becomes an increase in load
(as with any other rotating machines) the frequency
(speed) will decrease, and at load rejection the fre-
quency will rise. The controlling devices will auto-
matically perform a primary control so that it again is
a balance between production and consumption. How
much the speed decreases are influenced both by the
total torque, and by how quickly the primary control is
done.
At frequencies below 50 Hz, the total load will get
higher than the desired production and at frequencies
above 50 Hz, total load will become lower. In prac-
tice, the load varies continuously. Consequently, the
controlling devices continuously need to perform the
frequency control.
The power/frequency control is normally exacted in
two stages.

1. Primary control or primary frequency control is
simply the application of the speed droop control
as mentioned in section 2.3.2. This kind of con-
trol is applied automatically and is built into all

turbine governors. This means that when the fre-
quency deviates from the optimal 50 Hz the tur-
bine governor will increase or reduce the guide
vane opening according to the droop control set-
tings.

2. After the primary control has settled we will still
have a constant frequency deviation. This is when
the secondary control is used to compensate the
deviation with the help of the Load Frequency
Control (LFC). The LFC will simply raise or
lower the set-point so that frequency is corrected
again.

LFC is normally used in combination with Auto-
matic Generation Control (AGC) where different
generation regions are taken into account in order
to balance the power production [5]. However in-
ternationally there exist different interpretations
and implementation of the Automatic Generation
Control.

First the primary frequency control is applied.

3 Complete Dynamic Model

This section discusses the basic hydraulic theory re-
lated to hydropower plants, hydro power modelling
in the Modelica HydroPlant Library (HPL), ana-
lytical models for hydropower plant’s hydro dynam-
ics and analysis. The total system is divided into
several subsystems, namely reservoir, conduit, surge
tank, penstock, turbine, generator, and grid. The
HydroPlant Library uses digitised turbine charac-
teristics (in practise turbine characteristic is given as
a chart so called “Hill Charts” by the manufactures)
and this may lead to some uncertain results (because
some extrapolations and interpolation needed among
data points). So emphasis is put on having a good an-
alytic model for turbine. An analytical model for a
Francis turbine is proposed in [6].
In the HydroPlant Library some units (e.g., con-
duit, penstock) are divided into sub volumes also
called control volumes (CV) and each sub volume is
characterised by temperature and pressure (so called
the state of a control volume). Two Ordinary Differen-
tial Equations (ODEs) are derived from the conserva-
tion equations (i.e., mass, energy). Mass flow rate be-
tween two adjacent control volumes is governed by a
third ODE which is derived using the momentum con-
servation. The main assumption is that state is uni-
formly distributed throughout the CV. This is the so-
called “Lumped Parameter” assumption.

22

Two dynamic equations will be derived for tempera-
ture and pressure. But however more concern is given
into deriving equation in Laplace or frequency do-
main which will help to study the dynamics of the
systems. A detailed discussion is given in [6]. When
a hydropower plant is modelled (in Modelica), local
resistances (e.g., trash rack losses, bend losses) are
considered to be minor pressure losses while the ma-
jor losses are due to wall friction. So in the Mod-
elica model those minors losses are neglected, only
major wall frictional losses considered (HydroPlant
Library blocks take care of this).

4 The Sundsbarm Hydro Power
Plant

In this section only some parts of Sundsbarm Hydro
Power Plant are explained.

Francis Turbine governor The turbine governor at
Sundsbarm is a TC 200 digital turbine governor from
Kværner. It is a PID controller, and it has inputs for
frequency reference (f0) and frequency measured out
from the generator (f), as well as inputs for load ref-
erence (P0) and power measurement after the genera-
tor (P).
The set point for frequency and the permanent speed
droop are controlled and set by the operator or a over-
all control system.
The functions inside the governor at Sundsbarm and
the function of the governor used in the HydroPlant

Library are not identical. In order to obtain as similar
control of the power plant inside Modelica and the real
process at Sundsbarm these functions need to equal
each other. In order to get this similar to each other
we have looked into the block drawings and made a
simplified block drawing of the functions inside the
TC 200 governor at Sundsbarm. We then compared
this with the block drawing from the HydroPlant

Library and we obtained the controller in Fig. 4.

Figure 4: Simplified block-drawing from the turbine
governor at Sundsbarm

This structure can be reorganised to the controller
shown in Fig. 5.

Figure 5: An equivalent controller block diagram to
the one at Sundsbarm

This gives two governors:

• One with PI characteristic

• One with PD characteristic

Turbine The turbine placed at Sundsbarm is a verti-
cal Francis Turbine with a performance of 104.4 MW,
and is constructed for a nominal head (Hnom) of 460m.
The efficiency and volume flow of the turbine is calcu-
lated in the Modelica model using a look-up table.

Generator and Main Circuit Breaker In Sunds-
barm there is one generator delivered by “National In-
dustri” Drammen, Norway. The nominal performance
is 118MVA and the nominal frequency is 50Hz. The
number of generator poles is 12. Inertia momentum
of the generator is given by Alstom and is equal to
850,000Kg.m2.

Reservoir The reservoir type for the Sundsbarm
plant is an impoundment dam. This means that the
water source has a water storage that makes it possi-
ble to store energy in the reservoir. The lake Sunds-
barmsvatn is used as a reservoir. Other lakes are con-
nected to Sundsbarmsvatn, to lead more water through
the power plant. The other lakes are not modelled, be-
cause they are not connected directly to the conduit
channel or to the penstock.
The Sundsbarm lake is approximately 12.5km long
and 0.75km wide. These approximate sizes of the
reservoir are used in the model, because normal op-
eration conditions are of interest, not the level of water
varying over a long period in Sundsbarmsvatn.

Conduit channel The conduit channel consists of
the intake at the reservoir, Sundsbarmsvatn, a trash
rack, and an intake gate. Just before the penstock

23

there is another trash rack, a surge shaft and an emer-
gency valve. There is an additional small intake called
Finndalsåi that is connected directly to the conduit
channel but was not included in the model.

Penstock The penstock for Sundsbarm hydro power
plant consists of a steel pipe inside a tunnel. The pen-
stock is 600 meters long and is tilted 45◦. The start of
the penstock is at 541.5m above sea level and the end
of the penstock is at 112.5m above sea level. Diameter
of the penstock is about 3 meters.

Surge shaft The surge shaft for Sundsbarm hydro
power plant is a pipe or tunnel with a length L of about
138m which is tilted by 67.5◦.

Outflow tunnel The outflow tunnel consists of a
rough tunnel that goes from the draft tube at the tur-
bine and to the output reservoir. The outlet tunnel has
its lowest elevation closest to the draft tube at 107.5m.
At the end of the tunnel the elevation is 4.5m higher,
at 112m above sea level.

Reservoir at outlet The reservoir at the outlet is the
river in Seljord. The reservoir model used here is
also the Fixed_HT model together with a model of the
reservoir. The Fixed HT model has an infinite volume
with prescribed water height and temperature. The
level at the outlet reservoir is 123m above sea level.

4.1 Modelica Model of Sundsbarm Power
Plant

Putting all the different parts together using the com-
ponents from the HydroPlant Library and filling in
their respective parameters we gain the complete dy-
namic model as shown in Fig. 6.

5 Test & Results

5.1 Validation of the Model

5.1.1 Consistency of Turbine Parameters

The first attempt in validating the model is to com-
pare the turbine response with the performance test re-
sults which are included in measurements done back
in 1993 [7]. This is done to ensure that the parameters
entered into the turbine model (e.g., nominal power,
flow rate, Mechanical efficiency) are consistent with
the turbine data table values.

For validating the consistency of the turbine model a
simple model as shown in Fig. 7 was created.

Figure 7: Model for simulation of the turbine consis-
tency

This model is simulated for different guide vane open-
ings given by the measurements from 1993 [7]. The
frequency is kept equal to the nominal value in all of
the simulations. In each simulation the constant pres-
sure drop across the turbine is set to be equal to the
value corresponding to the relevant guide vane open-
ing.

5.1.2 Step Response Simulations

For this simulation the model shown in the Fig. 8 is
used in which the input command is directly applied
to the guide vane.

Figure 8: Test model for applying step changes in the
guide vane input

Fig. 9 shows the step response of the model for a posi-
tive step change at time t = 500sec and then a negative
step change applied at t = 1500sec. For this simula-
tion the relative pipe roughness of the conduit and the
outflow tunnel is set to 0.065 as found from calcula-
tions. The relative pipe roughness of the penstock is
set to 0.003. The guide vane servomotor opening time
is limited to 20sec (full range opening) and its closing

24

Figure 6: Complete model of Sundsbarm Power Plant modelled using the HydroPlant Library

time is limited to 2.5sec. This effect can be seen in
the guide vane opening in the Fig. 9. Because of this
difference, the magnitude of the surge pressure at the
turbine inlet is greater when the guide vane closes al-
though the magnitude of negative change in guide vane
opening is smaller.

5.2 Linearisation of the Model

Dymola can linearise nonlinear models around their
steady state operating point. In this section a linear
model will be obtained for the hydropower model that
can be further analysed and used for design in the
MATLAB environment. For this reason the model in
Dymola needs some adjustments. Fig. 10 shows the
resulting model.
After loading the steady state condition of the model in
Dymola, a random noise input is used for linearising
the model. The reduced order of the linearised state
space model is 58.

5.2.1 Applications of the Linearised Model

The linearised model can be used for implement-
ing more advanced control methods like the ones de-
scribed in [8]. The model shown in Fig. 10 is specially
taylored to be used for such control schemes:

• For saving number of state variables just fixed
sources are used to model reservoires.

Figure 10: Adjustments done to the model before lin-
earisation

• For having a time invariant dynamics, the load in
the grid block is set to be constant and then the
changes in the grid is modeled merely by adding
a random disturbance signal to the grid balance.

25

Figure 9: Step response (Relative pipe roughness of conduit and outflow tunnel=0.065 and Relative pipe rough-
ness of penstock=0.003)

• The same opening and closing rate limites are
considered for guide vane operation for better lin-
earity. Additional rate for guide vane opening
may be implemented in the controller.

• For having a strict constraint on the power gener-
ation/grid frequency values (to satisfy droop re-
quirements) a combination of these variables are
selected as output of the model and this combina-
tion can be used as a feedback for the controller.

• Other quantities (like pressure in different loca-
tions) can be selected as additional outputs to en-
force constraints on the system state variables by
controller. These constraints can be applied by
advanced methods like Model Predictive Control.
This can be considered as a future work.

6 Conclusions

In this paper the theory of hydro power systems was
briefly presented. Based on dimensions and specifica-
tions, as well as structure drawings, (from Skagerak
Energy’s archive) a dynamic model of the Sunds-
barm power station was created using the HydroPlant
Library of Modelon AB.
At the time of writing only operational data of the

power station were available. Therefore the model was
tested against friction values from pressure measure-
ments at the conduit channel. Obviously with the more
data points, a better model can be obtained. The data
available do not cover the complete operational range
of the guide van opening and the flow rate of the tur-
bine. The relative wall roughness for the conduit was
calculated from the measurement data. The model was
then tested with the calculated roughness to verify that
the same friction loss can be reproduced and the result
was comparable. This means that steady state calcula-
tions in the HydroPlant Library are reliable.
Finally suggestion was made for implementation of a
model predictive controller as part of a future work.
A linear model had to be made in order to develop
a MPC. The linear model had additional outputs for
pressure in penstock and draft tube. Therefore a MPC
controller could have these output constraints for pres-
sure in penstock and the draft tube, which is believed
that gives safer and more optimised control of the
Sundsbarm power plant.
Other improvements that could have been imple-
mented for the plant is to have power feedback for the
turbine governor at the grid connection, instead at the
generator terminals. This means correcting the power
set point with measurements at the delivery point of
the power to the grid. This way the power produc-

26

tion will have less deviation since the power readings
for the grid operator are at the grid. This will al-
low the power plant to consider the loss of approx.
0.5 MW from the transformer, cables, and own power
consumption, when adding a set-point for the plant.

7 Acknowledgements

This paper is based on the project report “Modeling
and Optimization of Deviation in Hydro Power Pro-
duction” within the course “SCE4006” at Telemark
University College created by the students Hege Marie
Thoresen, Ingvar Andreassen, Magamage Anushka
Sampath Perera, and Behzad Rahimi Sharefi (also
named as co-authors of this paper).
The project was done in cooperation with Skagerak
Energi Porsgrunn, Norway. Many thanks to Jane Berit
Solvi as contact person at Skagerak Energi.

References

[1] C. Warnick, Hydropower Engineering. Prentice-
Hall, Inc, 1984.

[2] L. Arthur, “Lesotho highlands water project.,” in
ICE Proceedings, Civil Engineering ., 1997.

[3] Encyclopædia Britannica Online, “Syn-
chronous Generator.” http://www.

britannica.com/EBchecked/media/1393/

Elementary-synchronous-generator, jan
2011.

[4] A. Kjølle, “Hydropower in norway – mechanical
equipment,” tech. rep., NTNU, Trondheim, Nor-
way, 2001.

[5] P. Kundur, Power System Stability and Control,
vol. 1, ch. 9, p. 377ff. McGraw-Hill Inc., 1994.

[6] D. Stuksrud, “System dynamics in Hydropower
Plants,” tech. rep., NTNU, Trondheim, 1998.

[7] Kværner-Energy, “Sundsbarm Kraftverk Ter-
modynamisk Virkningsgradsmåling,” tech. rep.,
Kværner-Energy, 1993.

[8] N. Kishor, R. Saini, and S. Singh, “A review on
hydropower plant models and control,” Renewable
and Sustainable Energy Reviews, vol. 11, no. 5,
pp. 776 – 796, 2007.

27

Thermal Separation Library: Examples of Use

Karin Dietl∗ Kilian Link† Gerhard Schmitz‡

Abstract

This paper deals with the Thermal Separation Library,
which is intended to be used for absorption and rec-
tification processes. Two example calculations show
how the simulation speed can be increased by choos-
ing the right way to set up the equations. One example
refers to the ordering of the substances in the substance
vector and one refers to the modelling of equilibrium
processes. An example of use presented is the CO2

absorption in a post-combustion carbon capture plant.
The transient simulation results are compared to mea-
surement data obtained in a Siemens pilot plant.

Keywords: thermal separation, carbon capture, ab-
sorption / desorption

1 Introduction

Dynamic analysis of thermal separation processes
gains in importance, be it in batch processing, system
control, start-up strategies or shut down behaviour in
continuous processing ([9]).

General modelling approaches for these problems
(or a part of these problems) have been reported
in literature. READYS ([16]) as well as a model
developed in [12] can be used for dynamic simulation
of equilibrium columns. A model which considers
dynamic simulation of multiphase systems is pre-
sented in [2]. [11] describes steady-state and dynamic
non-equilibrium models. A tool for dynamic process
simulation - DIVA - is proposed by [5], which has
a sequential simulation approach. DYNSIM was
developed by [3] and is a tool for design and analysis
of chemical processes. In [13] a modelling language
gPROMS is proposed to model combined lumped and
distributed systems which was then successfully used
in several publications in order to model separation
processes (e.g. [23]).

∗Hamburg University of Technology, karin.dietl@tuhh.de
†Siemens, kilian.link@siemens.com
‡Hamburg University of Technology, schmitz@tuhh.de

The developed models have been tested on several
different processes, mostly on a single column. There
are also examples where more complex system designs
are presented ([6]).

The aim of this paper is to describe a modelling
library which can be used for flexible modelling and
simulation of complex separation systems. As an ex-
ample a fully integrated absorption/desorption loop for
carbon capture is simulated. Simulation results will be
compared to measurement data obtained in a Siemens
pilot plant. The process is shown in figure 5 and will
be discussed in more detail in section 4.1.

2 Modelling Approach

It is commonly agreed on that when developing a
model of multicomponent system including chemical
reactions, a simple equilibrium-based model which ne-
glects mass transfer, is often not sufficient and a more
physical approach - the rate-based approach ([18]) - is
needed (e.g. [19], [17], [10]). The simulation models
are built using the object-oriented Thermal Separation
Library ([8]) which was developed in order to model
dynamic absorption and rectification processes.

2.1 Model equations

2.1.1 Balance equations

The balance equations are established separately for
the vapour and liquid bulk phase as described in [8].
There is therefore a mole balance for each compo-
nent i of vapour and liquid phase. Additionally there
should also be summation equations in the bulk phases
(∑i yi = 1 and∑i xi = 1). However, in general systems
of ordinary differential equations can be more easily
solved than differential algebraic equations and intro-
ducing a differential equation instead of an algebraic
equation is rewarded with faster computation times.
Therefore these two algebraic equations are replaced
by the total amount of substance balance for vapour
and liquid phase.
For liquid and vapour phase there is one energy bal-
ance each (see [8]).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

28

Nomenclature

A heat transfer area
a specific area
c concentration
H Henry coefficient
k mass transfer coefficient
M molar mass
Ṅ molar flow rate
n number of discrete elements
nS no. of substances which are in both phases
nliq

S , nvap
S number of liquid / vapour substances

[R] rate matrix for mass transfer coefficients
T temperature
u specific inner energy
x liquid composition
y vapour composition
Z factor for equilibrium stage

Greek symbols
εvap,ε liq vapour or liquid hold up
[Γ] thermodynamic correction matrix
γ activity coefficient
φ fugacity coefficient
Subscripts
i componenti
j stagej
r reaction
Superscripts
liq liquid
sat saturation
vap vapour
∗ thermodynamic equilibrium
Abbreviations
nLF number of liquid feeds
nVF number of vapour feeds

2.1.2 Rate Equations

In [8] the molar flow rates at stagej over the phase
boundary are calculated as

~̇Ni, j = ki, j ·a j · (~ci, j − ~c∗i, j) (1)

This approach however is only valid for binary sys-
tems, and using the concentration difference as driv-
ing force is only applicable for isothermic condi-
tions. Therefore this was replaced by the more general
Maxwell-Stefan equations as described by [22]:

~̇Nvap
j = Ṅvap

total, j ·~y j +cvap
j ·a j · [R

vap
j]−1

· [Γvap
j] · (~y j −~y∗j)

(2)

~̇Nliq
j = Ṅliq

total, j ·~x j +cliq
j ·a j · [R

liq
j]−1

· [Γliq
j] · (~x j −~x∗j)

(3)

The thermodynamic correction matrices[Γ] are nec-
essary, since here the difference of the mole fraction
as driving force is used and not the difference in the
chemical potential. The[Γ]-matrices contain the com-
position derivatives of the activity coefficient (liquid)
or fugacity coefficient (vapour), which can be found
for several activity coefficent models in [21]. The[R]-
matrices are calculated using the binary mass transfer
coefficients. How to obtain the[R]-matrices via the bi-
nary mass transfer coefficients is described in detail in
[22].
The total molar flow rates in (2) and (3) are obtained
by summing the molar flow rates for each component.

It is also important to note that the vectores~̇Nvap
j and

~̇Nliq
j in eq. (2) and (3) contain only the molar flow rate

Ṅj,i of nvap
S −1 andnliq

S −1 substances respectively, that
is this equation is not established for every substance.
The missing equations are the summation equations at
the phase boundary:

∑
i

y∗i = 1 , ∑
i

x∗i = 1 (4)

2.1.3 Inert Substances

An equation describing the thermodynamic equilib-
rium does only exist for thenS components, which ex-
ist in both phases, but not for inert substances. The
missing equations for the inert substances are obtained
by setting the molar flow rate over the phase boundary
of the inert substances to zero:

Ṅvap
i, j = 0

Ṅliq
i, j + Ṅfilm

r,i, j = 0

}

if substancei is inert (5)

2.2 Numerical Solutions

In order to solve the resulting system of differential-
algebraic equations using numerical integration, as
many state variables as differential equations are
needed. For the columns, the following variables are
chosen as state variables:cvap

j,i , cliq
j,i , uvap

j , uliq
j , εvap

j and
Tvap

j (or Mvap
j which is as suitable), withj = 1...n and

i = 1...nvap
S or i = 1...nliq

S respectively. Using this set

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

29

of state variables, all other variables can be calculated
via algebraic relations. Intensive rather than extensive
quantities were chosen as state variables, since the dif-
ferential equations were set up using these intensive
variables.

2.3 Library Structure

The library structure of the column models is repre-
sented in figure 1 which shows a class diagram of
the library. The three different column types (packed
column, tray column, spray column) all inhert from
FeedStage (which is denoted with an arrow pointing
at the parent class). TheFeedStage-model inherits
from the BaseStage-model which contains the bal-
ance equations and some of the constitutive equations
for n discrete elements. It also contains instances of
the medium models, the reaction models etc. These
models are declared as replaceable, where replaceabil-
ity is denoted using a dotted line with a diamond.
The extending column classes supply the geometry,
the instances of the pressure loss and liquid holdup
model, the heat transfer model between the two phases
and the mass transfer models. Each column type is
structured the same way; but only the structure of the
packed column is shown in the diagram due to read-
ability.

3 Examples

As stated in the introduction it should be possible to
model and simulate a complex separation process us-
ing the Thermal Separation Library. In the following a
complete absorption/desorption loop is presented. Be-
fore doing so some small examples show how a dif-
ferent writing of the modelling equations can increase
simulation speed.

3.1 Ordering of Substances in Medium
Model

In general any order of the substances in the medium
model can be chosen. However since for a non-
equilibrium model the equations for the molar flow
rates eq. (2) and (3) exist only fornvap

S −1 andnliq
S −1

substances respectively, and the molar flow rate for the
last substance in the medium model is defined via the
summation equations (4), the ordering becomes im-
portant in case the fraction of the last substance be-
comes very small (in the order of the tolerance of the
numerical solver). In this case the calculation can be-
come very slow and the composition of the last sub-

stance at phase boundary may even be calculated to be
negative. This is known as cancellation problem (see
e.g. [4]). Figure 2 shows an example for the absorption
of N2 and O2 in H2O. The simulation time decreases
by the factor 5 if not O2 is the last substance in the
medium model.
So it can be stated having substances with very low
concentrations at the last place in the substance vec-
tor decreases simulation speed. If this is not possible
(i.e. no substance is always large enough to be suit-
able as last component) it is also possible to apply the
Maxwell-Stefan equations to all components and om-
mit the summation equations at the phase boundary.
This also reduces the CPU-time, but in some test cases
the sums of the mole fractions at the phase boundary
were observed to deviate about 10% from 1.

0 20 40 60 80 100
0

50

100

150

200

Time (s)

C
P

U
 ti

m
e

(s
)

N
2
, H

2
O, O

2

N
2
, O

2
, H

2
O

Figure 2: Influence of the ordering of the substances in
the medium model. Simulation speed is increased, if
in the liquid phase a substance with a high mole frac-
tion (H2O) is the last substance in the medium model
(i.e. the CPU time for simulation is smaller).

3.2 Equilibrium Model

As stated in chapter 2 the stages were modelled as non-
equilibrium stages, i.e. mass transfer is taken into ac-
count. However sometimes it is advantageous to de-
scribe the separation column using equilibrium stages,
e.g. if no suitable correlations for the mass transfer are
available.
There are basically two different approaches to model
such an equilibrium stage: The first possibility is to
implement a new set of equations which describe the
equilibrium stage. However the additional algebraic
constraint of the compositions at phase boundary and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

30

3n+ nLF

nVF nLF

3n+ nVF

Interfacial

Area

Interfacial

Area Corr.

Equilibrium Constant

Heat Transfer

Corr.

Pressure

Loss Corr.

R Liquid R Vapour Pressure

Loss

Wall

Models

Geometry

Liquid

Holdup

Wall

Model

Heat

Transfer

Holdup

CorrMass Transfer Corr.

Liquid Vapour

Reaction Models Liq. Medium Models Vap. Medium Models

Reaction Medium Liquid Medium Vapour

Base Stage

Feed Stage

Tray ColumnPacked ColumnSpray Column

Vapour Port In Vapour Port Out Liquid Port In Liquid Port Out Heat Port

Correlations for

φ φsat γ

φφ φsat γ

Thermodynamic FactorΓliq Thermodynamic FactorΓvap

Figure 1: UML class diagram of an absorption or rectification process. The arrow denotes inheritance,
i.e. FeedStage inherits fromBaseStage only. The line with the diamond denotes composition. Dotted lines
mean that the object is replaceable. The composition of spray column and tray column are analogue to the
composition of the packed column.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

31

in the bulk phase being equal result in a large nonlin-
ear system of equations.
The second possiblity is to approach the thermody-
namic equilibrium (xi → x∗i) using the non-equilibrium
equations and increasing the binary mass transfer co-
efficients to infinity. Using this approach the system is
less strongly coupled, but still it has to be noted that
the equations (2) to (4) introduce a high non-linearity
to the system. Together with a very high value for the
binary mass transfer coefficients, necessary in order to
approach equilibrium, the computation time can be-
come very large (see figure 3). Since the equation (2)
- (4) do not give any information for the equilibrium
model they are replaced by the much more simpler
eq. (6)-(7):

Ṅvap
j,i = Zvap

j,i · (y j,i −y∗j,i) (6)

Ṅliq
j,i = Zliq

j,i · (x j,i −x∗j,i) (7)

wereZ is an adjustable factor. IfZ approaches in-
finity, the difference between the composition at the
phase boundary and in the bulk phase vanishes and
equilibrium is attained. A very high value forZ lead to
a very accurate result. An indicator for the accuracy is
the difference of the composition at the phase bound-
ary to the composition in the bulk phase. This dif-
ference should become zero for an equilibrium model.
However for a very high value forZ, the computation
time may become very large or - even worse - there
are convergence problems with the nonlinear solver.
Since a optimal value forZ, which leads to an accept-
able compromise between computing time and accu-
racy is not constant during simulation,Z is continu-
ously adapted to minimize the difference between bulk
and phase boundary composition using the equations
of a simple PI controller.
Equations (6) and (7) are then replaced by equations
(8) and (9), whereZ are functions of the error(y j,i −

y∗j,i) and (x j,i − x∗j,i) respectively and some controller
parameters which are constant during simulation.

Ṅvap
j,i = Zvap

j,i (y j,i −y∗j,i ,contr. parameter) · (y j,i −y∗j,i)

(8)

Ṅliq
j,i = Zliq

j,i (x j,i −x∗j,i ,contr. parameter) · (x j,i −x∗j,i)

(9)

Figures 3 and 4 show that using eq. (6) and (7)
(solid line) or eq. (8) and (9) (dotted line) instead
of eq. (2), (3) and (4) (dashed line) lead to a lower
computation time and a higher accuracy of the result.
Adapting the variableZ during the simulation using a
PI controller (dotted line) further increases accuracy

0 20 40 60 80 100
0

200

400

600

800

Time (s)

C
P

U
 ti

m
e

(s
)

eq. (2) − (5)
eq. (6), (7)
eq. (8), (9)

Figure 3: Computation time using three different sets
of equations to model an equilibrium stage. The first
set uses exactly the same equations as for a non-
equilibrium model (eq. (2) to (4)) with a constant,
but high mass transfer coefficient. The second and
third set use simplified yet sufficient detailed equations
which increases simulation speed.

without increasing the computation time, compared to
eq. (6) and (7) whereZ is constant.
In this example, the first set of equations has more
time states than the last two (178 scalars instead of
162 scalars; for eight stages) but about the same
amount of time varying variables (around 12000). The
size of the nonlinear system of equations obtained by
Dymola is higher, for the first set of equations: eight
blocks of 20 iterations variables are necessary instead
of eight blocks of 15 iteration variables (the other
blocks are identical with lesser iteration variables.

The same approach is also chosen when reaction
equilibrium should be assumed: in this case the con-
troller minimizes the difference between the reaction
equilibrium constant and the product of the activities.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

32

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

−3

Time (s)

y* −
 y

bu
lk
 (

m
ol

/m
ol

)

eq. (2) − (5)

eq. (6), (7)

eq. (8), (9)

Figure 4: Largest difference iny∗− y using three dif-
ferent sets of equations to model an equilibrium stage.

4 Dynamic Analysis of CO2 Capture
Plant

4.1 Plant Layout and Data

The simulation of the carbon capture plant refers to
the same pilot plant as presented in [7]. It is a slip-
stream pilot plant operating under real conditions. The
absorber as a diameter of approx. DN200 and the ab-
sorber height is approx. 35 m. The plant layout is
shown in figure 5.

RICH

SOLVENT

TANK

A
B

S
O

R
B

E
R

G
A

S

C
O

O
L

E
R D

E
S

O
R

B
E

R

COOLING

WATER

CO
2

FLUE GAS

INLET

R
E

B
O

IL
E

R

FLUE GAS

OUTLET

COOLING

WATER

Figure 5: Carbon capture pilot plant as it can be found
in [7].

The plant consists basically of a flue gas cooler, an
absorber and a desorber (see figure 5). The flue gas
first enters the flue gas cooler, where it is cooled down

Table 1: Physical properties and other parameters

Property Reference

Pressure loss vapour [20]
Interfacial heat transfer coeff. Chilton-Colburn
Mass transfer coefficient [15]
Liquid holdup [14]
Diffusion coeff. vapour [1]
Interfacial area [15]

using pure water. In the absorber, the saturated flue
gas is then brought in contact with a liquid containing
a high amount of dissolved amino acid salt. Here, the
CO2 is absorbed by the liquid and nearly CO2-free gas
leaves the absorber. The loaded liquid is now heated
up in a heat exchanger before it enters the desorber,
where the CO2 is stripped from the liquid using
water vapour, which is obtained in a thermosyphon.
The gas leaving the desorber (containing water and
CO2) is cooled down and such water is removed via
condensation. The pure CO2 is then liquified and
stored; the pure water is fed back to the desorber.
The now unloaded liquid from the desorber bottom
is partly evaporated in a thermosyphon and partly led
back to the absorber via two heat exchangers in order
to cool down to the absorber temperature.
The solvent used is an amino-acid salt solution, as
described in [7]. The underlying chemical reaction
is shown in figure 6. In the model, it is assumed
that reaction takes place in the film only and reaction
kinetics are not considered.

Table 1 provides an overview of the most important
physical properties.

4.2 Thermodynamic equilibrium

4.2.1 Phase equilibrium CO2

A very simple approach proposed by Siemens was
choosen to model the phase equilibrium of CO2 be-
tween liquid and gas phase. This approach combines
the dissolution of CO2 in the liquid and the stepwise
reaction with the dissolved salt to the final product
in a single phase equilibrium equation. The main
advantage is that only very few components in the
liquid phase have to be modelled, namely H2O, the
dissolved salt called AAS (amino acid salt) and the
final reaction product. All reaction intermediate prod-
ucts as well as dissolved molecular CO2 in the liquid
phase have not to be considered, the latter due to the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

33

Figure 6: Reaction scheme in the amino acid salt solution, as presented in [7]

assumption that the reaction is nearly instantenous and
the CO2 concentration in the liquid is negligible. This
means that if a molar flow ratėNCO2 of gaseous CO2
crosses the phase boundary, a source term increases
the molar quantity of the reaction product and a sink
term decreases the molar quantity of the educts (H2O,
AAS) such accounting for the stoichiometrics.
Since CO2 is nonexistent in the model of the liquid
phase the phase equilibrium is described using the
CO2 vapour mole fraction on the one side and the
mole fraction of the reaction product on the other side:

p·yCO2 =
xProduct

1+xProduct
·H(T) · γ(T,xProduct) (10)

The Henry coefficientH is temperature dependent and
the activity coefficientγ is additionally dependent on
the concentration of the product in solvent. For both
coefficients Siemens provides a correlation, which are
as follows:

lnH = a+
b
T

(11)

lnγ = e(c+d·T+e·T2)
·

xProduct

1+xProduct
(12)

The parametersa, b, c, d, e have been adjusted using
measurement data.
It has to be stated that this approach has drawbacks
concerning the accurateness of the results, neverthe-
less they are all in the right order of magnitude and
the main factors influencing the result are considered.
This approach is therefore suitable for dynamic simu-
lation, where the dynamics are in the focus of the study
and a high simulation speed is needed but very correct
steady-state results are not of such importance.

4.2.2 Phase equilibrium water

The water equilibrium is calculated using

p·yH2O = xH2O · psat
· γ ·φsat (13)

For the calculation of the water saturation pressure,
the saturation pressure of pure water is multiplied by
a factor smaller 1 to match the higher saturation tem-
perature. The activity coefficientγ is set equal to one,
even though it should be smaller than one in reality.
At Siemens steady-state calculations were performed
using AspenPlus where much more detailed medium
models than the ones here where used. These Aspen-
Plus calculations revealed that the activity coefficient
did not differ significantly from one in the considered
temperature and concentration range. Therefore, since
the proposed modelling of the thermodynamic equi-
librium is anyway not suitable in order to obtain very
accurate steady-state results, setting the water activity
coefficient equal to one does not increase the overall
error very much.

4.3 Medium models

4.3.1 Gas mediums

Both gases, the flue gas, consisting of N2, CO2, O2

and H2O and the CO2-water vapour mixture in the
desorber, are modelled as ideal gas, even though this
assumption is more questionable for the CO2-water
vapour mixture, due to the high water vapour content
(about 70%-90%) at the saturation temperature of wa-
ter (around 100◦C). However the error due to differ-
ences in density and enthalpy are not important.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

34

4.3.2 Liquid mediums

The pure water in the flue gas cooler is modelled us-
ing the waterIF97 medium model from the Modelica
Standard Library.
The solvent is also modelled based on the water IF97
standard, but density and heat capacity are adjusted to
match the solvent values (for a solvent containing ap-
prox. 30 weight -% AAS). All solvent medium proper-
ties are temperature and in parts also pressure depen-
dent, but independent of composition.
As stated in 4.2.2 the solvent model consists only
of three components in order to increase simulation
speed.

4.4 Simulation results

In this section the simulation results are presented
and compared to measurement data obtained in the
Siemens pilot plant.
Two different test cases are investigated:

• Test case 1: Increase of Flue gas flow rate from
75% to 100% at t = 0 min.

• Test case 2: Decrease of steam flow rate at re-
boiler from 90% to 75% at t = 0 min.

Figure 7 - 9 show the comparision between simula-
tion and measurements of test case 1. All temperatures
are plotted referring to an arbitrary reference tempera-
ture. The CO2 mass flow rate is described in percent,
whereas 100% is arbitrarily set to the measurement
value obtained at t=0 min. It can be seen that the
steady-state results differ, which is due to the very
simplified modelling of the thermodynamic equilib-
rium. The dynamic response between simulation and
measurement are quite similar, even though in the
simulation the new steady-state is obtained after a
shorter time.

For test case 2 the comparision between simulation
and measurements are shown in figure 10 - 14 . Again,
all temperatures are plotted referring to an arbitrary
reference temperature. As for test case 1 the steady-
state results differ, but the dynamic behaviour is simi-
lar. In figure 12 not only the measured CO2 mass flow
rate at the desorber outlet is plotted, but also the mass
flow rate of the absorbed CO2 in the absorber. The
latter value was obtained from measurement data, us-
ing measured mass flow rates, temperatures and vol-
ume fractions at the absorber in- and outlet. These two
mass flow rates should be equal in steady-state (which

0 20 40 60
−1

0

1

2

3

4

5

6

7

8

Time (min)

(T
liq ou

t −
 T

re
f)

in
 K

, A
bs

or
be

r

simulation
measurement

Figure 7: Liquid outlet temp., absorber (test case 1)

0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

Time (min)

x C
O

2, A
bs

or
be

r
ou

tle
t

simulation
measurement

Figure 8: CO2 outlet mole fraction (test case 1)

0 20 40 60
92

94

96

98

100

102

104

106

108

Time (min)

ṁ
C
O

2
in

%
,
d
es

o
rb

er
o
u
tl

et

simulation
measurement

Figure 9: CO2 mass flow rate, desorber (test case 1)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

35

0 20 40 60
2

3

4

5

6

7

8

Time (min)

(T
liq ou

t −
 T

re
f)

in
 K

, A
bs

or
be

r

simulation
measurement

Figure 10: Liquid outlet temp., absorber (test case 2)

0 20 40 60
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (min)

x C
O

2, A
bs

or
be

r
ou

tle
t

simulation
measurement

Figure 11: CO2 outlet mole fraction (test case 2)

0 20 40 60
70

75

80

85

90

95

100

105

Time (min)

m
do

t C
O

2 in
 %

desorber (meas.)
absorber (meas.)
desorber (sim.)
absorber (sim.)

Figure 12: CO2 mass flow rate (test case 2)

was the case in test case 1), however there is a dif-
ference of about 20%. Since this difference does not
occur in the simulation, it explaines why measurement
and simulation fit well for the CO2 mass flow rate at
the desorber outlet, but not for the CO2 mole fractions
in the absorber and consequently not for the amount of
CO2 absorbed.

0 20 40 60
53

54

55

56

57

58

59

Time (min)

(T
liq ou

t −
 T

re
f)

in
 K

, d
es

or
be

r

simulation
measurement

Figure 13: Liquid outlet temp., desorber (test case 2)

0 20 40 60
43

44

45

46

47

48

49

50

Time (min)

(T
va

p
ou

t −
 T

re
f)

in
 K

, D
es

or
be

r

simulation
measurement

Figure 14: Vapour outlet temp., desorber (test case 2)

5 Summary

This work proposed a Modelica-library model for dy-
namic simulation of tray and packed columns for sep-
arations processes such as absorption and rectification.
It is shown that it is advantageous to describe an equi-
librium model using modified equations of the non-
equilibrium model. Also the influence of the ordering

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

36

of the substances in the medium vector was shown.
It was also shown that using the Thermal Separa-
tion Library a complex system, namely an absorp-
tion/desorption loop for carbon capture is modelled
and simulated dynamically. The simulation results
were compared to measurement data obtained in a
Siemens pilot plant. It showed good agreement, even
though there were differences in the stationary results
which is due to the very simplified modelling of the
thermodynamic equilibrium.

References

[1] Edward N. Fuller, Paul D. Schettler, and
J. Calvin Giddings. A new method for predicition
of binary gas-phase diffusion coefficients.Indus-
trial and Engineering Chemistry, 58(5):19–27,
May 1966.

[2] R. Gani, Thomas S. Jespen, and Eduardo S.
Perez-Cisneros. A generalized reactive sep-
aration unit model. modelling and simulation
aspects. Computers Chemical Engineering,
22(Supplement):363–370, 1998.

[3] R. Gani, Esben L. Sorensen, and Jens Perre-
gaard. Design and analysis of chemical pro-
cesses through DYNSIM.Ind. Eng. Chem. Res.,
31:244–254, 1992.

[4] David Goldberg. What every computer scien-
tist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–48, March
1991.

[5] P. Holl, W. Marquardt, and E. D. Gilles. DIVA -
a powerful tool for dynamic process simulation.
Computers chem. Engng, 12(5):421–426, 1988.

[6] Bernhard Hüpen and E. Kenig. Rigorose
modellierung und simulation von chemisorp-
tionsprozessen. Chemie Ingenieur Technik,
77(11):1792–1798, 2005.

[7] Tobias Jockenhoevel, Ruediger Schneider, and
Helmut Rode. Development of an economic
post-combustion carbon capture process.Energy
Procedia, 1:1043–1050, 2009.

[8] Andreas Joos, Karin Dietl, and Gerhard Schmitz.
Thermal separation: An approach for a model-
ica library for absorption, adsorption and recti-
fication. In Francesco Casella, editor,Proceed-
ings of the 7th International Modelica Confer-

ence, Linköping Electronic Conference Proceed-
ings, pages 804–813. Linköping University Elec-
tronic Press, September 2009.

[9] E. Kenig. Complementary modelling of fluid
separation process.Chemical Engineering Re-
search and Design, 86:1059–1072, 2008.

[10] E. Kenig, Kaj Jakobsson, Peter Banik, Juhani
Aittamaa, and Andrzej Gorak. An integrated tool
for synthesis and design of reactive distillation.
Chemical Engineering Science, 54:1347–1352,
1999.

[11] Hendrik A. Kooijman.Dynamic Nonequilibrium
Column Simulation. PhD thesis, Clarkson Uni-
versity, 1995.

[12] J. M. Le Lann, J. Albet, X. Joulia, and
B. Koehret. A multipurpose dynamic simulation
system for multicomponent distillation columns.
Computer Applications in Chemical Engineer-
ing, pages 355–359, 1990.

[13] M. Oh and Constantinos C. Pantelides. A mod-
elling and simulation language for combinend
lumped and distributed parameter systems.Com-
puters chem. Engng, 20(6/7):611–633, 1996.

[14] J. Antonio Rocha, J. L. Bravo, and J. R. Fair. Dis-
tillation columns containing structured packings:
A comprehensive model for their performance 1.
hydraulic models.Ind. Eng. Chem. Res., 32:641–
651, 1993.

[15] J. Antonio Rocha, J. L. Bravo, and J. R. Fair. Dis-
tillation columns containing structured packings:
A comprehensive model for their performance.
2. mass transfer model.Ind. Eng. Chem. Res.,
35:1660–1667, 1996.

[16] C. A. Ruiz, M. S. Basualdo, and N. J. Scenna.
Reactive distillation dynamic simulation.Insti-
tution of Chemical Engineers, pages 363–378,
1995.

[17] M. Schenk, R. Gani, D. Bogle, and E. N. Pis-
tikopoulos. A hybrid modelling approach for
separation systems involving distillation.Trans
IChemE, 77:519–534, 1999.

[18] J. D. Seader. The rate-based approach for mod-
eling staged separation.Chemical Engineering
Progress, pages 41–49, 1989.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

37

[19] M. S. Sivasubramanian and Joseph F. Boston.
The heat and mass transfer rate-based approach
for modeling multicomponent separation pro-
cesses.Computer Applications in Chemical En-
gineering, pages 331–336, 1990.

[20] J. Stichlmair, J. L. Bravo, and J. R. Fair. General
model for predicition or pressure drop and capac-
ity of countercurrent gas/liquid packed columns.
Gas Separation & Purification, 3:19–28, March
1989.

[21] Ross Taylor and Hendrik A. Kooijman. Compo-
sition derivatives of activity coefficient models.
Chem. Eng. Comm., 102:87–106, 1991.

[22] Ross Taylor and R. Krishna.Multicomponent
mass transfer. John Wiley & Sons, Inc., 1993.

[23] M. L. Winkel, L. C. Zullo, P. J. T. Verheijen,
and Constantinos C. Pantelides. Modelling and
simulation of the operation of an industrial batch
plant using gPROMS.Computers chem. Engng,
19:571–576, 1995.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

38

Scalable-detail modular models
for simulation studies on energy efficiency

Marco Bonvini∗, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio 34/5, 20133 Milano, Italy
{bonvini,leva}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Simulation is widely used to assess and/or improve the
energy efficiency of both existing and new buildings.
Such an analysis has to account for heterogeneous phe-
nomena efficiently, to manage components in a modu-
lar manner, and (which is seldom addressed in a struc-
tured way) to scale the detail level in all or part of the
model, based on the particular simulation goal. In this
manuscript, a proposal is formulated on how to struc-
ture a Modelica library so as to satisfy such a need.

Keywords: Building simulation; energy optimisa-
tion; object-oriented modelling; modular modelling;
scalable detail.

1 Introduction

At each step of the design or refurbishing of a building,
decisions need taking, based on some goal and on the
state of the project, i.e., the decisions taken in the past.
Like any engineering process, building (re)design is in
fact a cyclic activity, where any choice has to be recon-
sidered when its effects – no matter how later observed
– are found to be unsatisfactory.

Most of the mentioned decisions are complex, how-
ever, and to gather the necessary information for them,
simulation is often the only viable way to go. In an
ideal world, a simulation model should thus be avail-
able on the engineer’s desk throughout the project,
ready to help for complex decisions like a pocket cal-
culator helps for simple computations. It should be
possible to simulate the project at any time, irrespec-
tive of what was already fully designed, and what con-
versely was only specified in terms of the boundary
conditions provided for the rest of the overall sys-
tem. It should also be possible to move back and forth
among the complexity levels implicitly defined above,
in the case some past decision needs re-discussing.

Moreover, as the project moves toward its maturity –
and the model becomes correspondingly complicated
– one should still have the possibility of replacing parts
of said model with simpler ones, so as to improve sim-
ulation speed when only some aspects of the building’s
behaviour need investigating. And of course, the ef-
fort required to create the simulation model and keep
it aligned to the project must be reasonable, i.e., ade-
quately compensated by design quality improvements.

Such an approach to simulation is very different
from those adopted by typical engineering tools. Most
are domain-specific (e.g., electrical, Energy System or
ES, Computational Fluid Dynamics or CFD, and so
forth), or have limited flexibility (e.g., there is a library
of pre-built “boiler” models and creating a new one is
very far from trivial), or do not allow for a structured
management of the models and simulations within a
project, or any combination thereof. Needless to say,
adopting the Object-Oriented Modelling and Simula-
tion (OOMS) paradigm, and in particular the Modelica
language, is a very promising idea.

In fact, several Modelica libraries for building sim-
ulation already exist [1, 2, 5]. However, the use of
such libraries as a decision aid along the evolution of
a project still experiences some difficulties. This work
presents the authors’ opinion on the matter, and pro-
poses a possible modus operandi to solve the encoun-
tered problems.

2 Problem statement

Traditionally, the (re)design of a building is treated
as the partially disjoint (explanations follow) design
of its “subsystems”. Although there is no standard-
ised nomenclature, in fact, virtually the totality of en-
gineering tools broadly distinguish (a) the “building”
stricto sensu or “containment”, i.e., walls, doors, win-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

39

dows and so on, (b) the contained air volumes, possi-
bly divided in zones, (c) the Heating, Ventilation and
Air Conditioning (HVAC) system, (d) automation and
control systems, and (e) energy sources/sinks owing to
the building utilisation, e.g., the heat released by oc-
cupants, industrial machines, or whatever is installed.
The subsystems’ interaction is accounted for by hav-
ing some of them provide boundary conditions for the
design of some other.

This is apparently very far from a really integrated
approach, whence the term “partially disjoint” applied
above to current design practices, but tools that address
the simulation of all (or at least part) of the subsystems
in a coordinated way are at present little more than
research objects [3, 5, 4].

There is more than one reason for such a scenario.
The most widely acknowledged one is given by the
very different issues posed by the various subsystems.
For example, control system models are made of ori-
ented blocks and may need sometimes a continuous-
time and sometimes a digital representation depend-
ing on the simulation purpose; models for HVAC,
conversely, live invariantly in the continuous-time do-
main, but are typically zero- or one-dimensional, while
models of phenomena that occur in continua such as
a wall or an air volume often cannot avoid three-
dimensional spatial distributions.

However, at least another reason needs mention-
ing. During its design, a building is looked at by
various professionals, each one considering one or a
few subsystems, and adopting a specific schematisa-
tion, ranging from 2D or 3D CAD drawings to pip-
ing diagrams, electrical schemes, and so forth. Ap-
parently none of those schematisations is suitable for
system-level modelling, which means that some new
ones need introducing—whence a further difficulty.

Moreover, the designed diagrams tend to reach their
final detail in a very few steps: for example a heating
system may be specified as a P&ID, but then it is typ-
ically drawn in its complete layout, and more or less
same is true for structures, walls, shadings, and so on.

As any expert knows, the development and mainte-
nance of a simulation model follows a completely dif-
ferent path, especially if the model is conceived as a
design decision aid. It must not be necessary to know
much building details before being able to perform the
first simulation, contrary to what one may be led to
think, based on how most Modelica libraries on this
matter (including those developed by the authors, of
course) are structured.

In synthesis, our opinion is that structuring a Mod-

elica library for building simulation as a decision aid,
is better done based on the detail levels one needs
throughout a study. It should be stressed, for the sake
of clarity, that we are dealing with the structuring of a
library, not (necessarily) of models built from it. The
aim is to facilitate the construction of said models in
the most effective way to follow the project cycle. Of
course, after such a structuring, most of the connector
abstraction work will go on in the traditional way, but
the aspect just mentioned remains the key one.

3 A library structuring proposal

As anticipated, simulation-based analysis needs con-
ducting at different levels of detail. This remark can
lead to a library structuring, which we propose to carry
out in three steps.

3.1 Step 1

The first step is to define and qualify the mentioned
detail levels. In this work we define four ones, cor-
responding to the basic questions encountered along a
building project. Of course the matter is more articu-
lated, and one could consider defining more levels, or
further customising them based on the needs of some
particular class of applications. For each defined level,
we point out

• the purpose, i.e., what type of analysis it is con-
ceived for;

• the hypotheses under which its models are valid;

• the analysis protocol, i.e., how the intended anal-
ysis is to be performed;

• the structural limitations, i.e., what facts the mod-
els are by construction unable to capture, and thus
are implicitly considered neglectable in the in-
tended analysis;

• the practice-based limitations, i.e., for example,
what the models could in principle represent, but
it is not convenient/cost-effective to have repre-
sented;

• and finally the (main) decision-making useful-
ness of the models.

Level 0
Purpose: determine/verify the overall first-cut energy
needs on a static basis.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

40

Hypotheses: the (single) internal air temperature fol-
lows the prescribed, constant set point; thermal capac-
ities are disregarded; external ambient conditions are
fixed; air renovation and exogenous energy sources are
fixed based on the assumed utilisation.
Analysis protocol: a (static) simulation is done for
each relevant scenario (e.g. a best and a worst case
are defined for each climatic period in a year) and then
results are combined in a straightforward manner.
Structural limitations: no dynamic phenomenon (due
e.g. to heat storage) is accounted for, the source of the
required energy is not discussed, no cost model is cor-
respondingly introduced.
Practice-based limitations: it is generally inconve-
nient to introduce at this stage detailed models of the
building containment (e.g., shading devices), whence
a further source of approximation.
Decision-making usefulness: first overall assessment
of the energy needs; possibility of evaluating high-
level alternatives (e.g., it is already possible to roughly
estimate the benefits of a certain type of insulation).

Note, incidentally, that level 0 is similar to that of
(basic) energy certification analyses.

Level 1
Purpose: determine the overall energy needs account-
ing for internal thermal zones and heat storages in the
containment.
Hypotheses: same as level 0 but with various inter-
nal air zones’ temperatures, that follow the prescribed
set points (here not constant) possibly filtered through
some low-order dynamics to account for the control
system’s action, or at most with simplified descriptions
of local controls; also, containment thermal capacities
are considered.
Analysis protocol: same as level 0 except that here
simulations are apparently dynamic.
Structural limitations: here too the source of the re-
quired energy is not considered (i.e., only the energy
need is modelled, irrespective of the used mix of avail-
able sources), and no cost model is introduced.
Practice-based limitations: at this stage it can make
sense to use detailed models of the building contain-
ment, while precise hypotheses on the control system’s
behaviour may be premature.
Decision-making usefulness: dynamic assessment of
the energy needs, and possibility of evaluating high-
level alternatives also regarding energy storages (e.g.
the slower thermal behaviour typically induced by in-
sulation is evidenced, and the temperature set point
profiles can be discussed accordingly).

Level 2
Purpose: size/design/assess the energy system (ES)
and discuss the energy mix.
Hypotheses: same as level 1 but air zones’ thermal ca-
pacities are considered and the zone-level control sys-
tem is introduced, including a reasonably detailed de-
scription of its physical realisation.
Analysis protocol: same as level 1.
Structural limitations: here the energy sources come
into play but no detailed model of the generating de-
vices (e.g. boilers) is used yet.
Practice-based limitations: at this stage reasonably
detailed models of both the building containment and
the zone-level control system are advised, while hy-
potheses on the energy sources are still coarse.
Decision-making usefulness: dynamic assessment of
the ES and the zone-level controls capability of fulfill-
ing the energy needs, including the discussion of pos-
sible alternatives (e.g. for the control system structur-
ing and the energy mix) assuming an ideal behaviour
of the energy sources.

Level 3
Purpose: size/design/assess the energy sources and
the integrated control system, possibly including costs
Hypotheses: same as level 2 but more detailed models
of the energy sources, and possibly the central con-
trols, are introduced.
Analysis protocol: same as level 2.
Structural and practice-based limitations: conceptu-
ally this is the most detailed model possible with the
available information, the only limitations come from
errors in said information.
Decision-making usefulness: dynamic assessment of
the integrated central and zone-level controls, possi-
ble optimisation of the set point curves based on cost
considerations.

3.2 Step 2

The second step is to observe that the same detail lev-
els above can be viewed from the model components’
standpoint, resulting in the definition of which phe-
nomena to represent, and how, in each of them. A
synthetic list is given below.

Level 0
Containment elements: thermal conductances, pos-
sibly computed based on stratigraphies; correlations
for solar radiation captation and exchanges with
air/sky/terrain.
Internal air: a single prescribed temperature (sce-
nario-based).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

41

External ambient condition and solar radiation: pre-
scribed (scenario-based).
Air renovation: prescribed flow rates (scenario-
based).
ES: absent.
Exogenous energy sources (e.g. from machines, inhab-
itants, and so forth): fixed powers (scenario-based).
Control system: absent.

Level 1
Containment elements: same as level 0 but thermal ca-
pacities are introduced.
Internal air: a prescribed temperature per zone, pos-
sibly dynamically filtered (scenario-based), or some
very simple description of local controls (but not of
their physical realisation).
External ambient condition and solar radiation: same
as level 0.
Air renovation: same as level 0.
ES: absent.
Exogenous energy sources: prescribed powers vari-
able in time (scenario-based).
Control system: de facto absent if its action is sum-
marised in the set point filters’ time constants, or ex-
tremely simplified, see above.

Level 2
Containment elements: same as level 1.
Internal air: thermal capacities (possibly Mollier-
based descriptions if humidity needs considering).
External ambient condition and solar radiation: same
as level 1.
Air renovation: governed by the control system.
ES: piping and HVAC elements present, energy
sources assumed to behave ideally (e.g. a boiler deliv-
ers the required flow rate at the required temperature).
Exogenous energy sources: same as level 1.
Control system: zonal controls represented, central
ones idealised (in accordance with the partial ES rep-
resentation).

Level 3
Containment elements: same as level 2.
Internal air: same as level 2.
External ambient condition and solar radiation: same
as level 2.
Air renovation: same as level 2.
ES: same as level 2 but models for the energy sources
are introduced.
Exogenous energy sources: same as level 2.
Control system: both central and zonal controls
represented.

3.3 Step 3

The final step is to structure the library so that each
component, preserving the physical interfaces, be de-
scribed by different models depending on the required
detail level. For example, in the following, wall or air
models have the same connectors, but their equations
change with the detail level, while the energy system
model grows with said level, being firstly a mere im-
pressed power, then piping and exchangers with pre-
scribed water inlet conditions, then the complete cir-
cuit. Given the scope of this work, the matter is dis-
cussed in the next section, based on a representative
example that synthetically covers all the detail levels.

4 Application

This section illustrates how, along the proposed ap-
proach, scalable-detail models are able to support a
designer through the phases of a typical project. For
simplicity, the addressed design refers to the tempera-
ture control of a single room. The room is 3×3×2.5 m
in size, surrounded by walls of 0.4 m thickness. Con-
cerning the walls, their thermal conductivity is 1.91
W/(mK), their density is 2400 kg/m3 and their ther-
mal capacity is 880 J/(kgK). The convective heat
transfer coefficient between the walls and the air of the
room is 5 W/(m2K), while that between walls and the
environment is 10 W/(m2K). The temperature of the
environment that surrounds the room is kept constant
at 10 ◦C. The design objective is to maintain the air
temperature in the room at 20 ◦C.

4.1 Level 0: overall static energy needs as-
sessment

In this phase, the designer’s question is “how much
power is needed in order to maintain the room (or a
building) at a certain temperature level, given the en-
velope transmittance and assigned environmental con-
ditions?” The answer to this (level 0) question can be
obtained by static models such as that of figure 1.

At this level, transients are neglected, and heat flow
rates are computed based only on thermal conduction
and convection at steady state, when the temperature
of the room has reached the desired value.

There is not the space here to enter into Modelica
details. Suffice however to say that in figure (1) the
air model (white cube) is a mere heat capacity, the
wall models are multilayer thermal resistances plus an
additional heat capacity, that when evaluated as pa-
rameter causes the Fourier-based heat transfer law to

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

42

Figure 1: (Level 0) static analysis of the room only,
considered as a mass of air at constant temperature
T = 20◦C.

switch from dynamic to static in the case of zero ca-
pacity. Walls are connected to the air with two con-
nectors: one simply carries the temperature as effort
and the heat rate as flow variable, while the second
conveys information about the air velocity for the sub-
zonal room model mentioned later on: needless to say,
such information is not used at the detail level of this
section. The “T” block on the upper right side simply
prescribes the temperature on its temperature/heat rate
connector.

4.2 Level 1: dynamic energy needs assess-
ment and local controls

According to the static model of figure (1), the power
needed to maintain this steady state condition is
647.79 W . Scaling up the level of detail, this first re-
sult can be compared with a dynamic simulation.

Figure 2: (Level 1) dynamic analysis of the room only,
plus local controls. At this stage walls and air within
the room are dynamic models. A simple control sys-
tem, that directly injects power in the room, is intro-
duced.

At this level, see figure (2), heat storages are con-
sidered, therefore heat capacity of walls and air are

included. A very simple control system is also intro-
duced at the local level, while the conditions of the
heating water centrally supplied are still impressed.
The presented analysis is therefore de facto a level 1
one, and local controls are represented: the case where
controls are conversely idealised is here skipped for
brevity. The Modelica elements of figure (2) are the
same as those of figure (1), plus a block prescribing the
heat rate on its connector (near the centre) and an an-
tiwindup, continuous-time PI controller (on the left).

Figure (4) shows the temperature transient, while
figure (5) reports the power supplied by the control
system to the room in order to maintain the prescribed
temperature. This analysis shows that at steady state
the amount of power predicted by the static analysis
was correct, and the peak of power asked to the heating
system in order to satisfy a certain response is higher
than the final value (about 745W). It is clear that this
analysis is more complete than the previous one, be-
cause without considering dynamic effects (i.e., sizing
the equipment based on information provided by static
models only) the risk of incorrectly estimating the real
needs is notoriously high.

4.3 Level 2: the energy system is brought in

At this point the question is “How does the energy
(heating) system need to be sized and controlled in
order to provide the required power to the system?”
Such a question can be answered by further detailing
the model as indicated before, but of the focus is set
on the energy system exclusively, one could detail that
system and at the same time scale down the level of
complexity of the room, for example re-considering
it as a mass of air at constant temperature (the worst
case is when the temperature of the room has reached
its maximum, i.e., the Set Point value of 20◦C).

Figure 3: Level 2 (simplified) analysis of the heater
only.

Figure (3) shows the new scheme. As anticipated

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

43

Figure 4: (Level 1) temperature of the air within the room (K).

Figure 5: (Level 1) power supplied to the room (W).

the accent is posed on the heating system, that is not
merely considered as an ideal heat flux injected in the
room, as it was before. Given a certain quantity of hot
water (assumed to be at 75◦C) coming into the heater,
its characteristics are investigated in order to release a
certain power to the air.

In figure (3), the heating system is represented by
a lumped-parameter model of the heater (an exchang-
ing tube plus a metal mass), a pump described by a
head/flow characteristic, and a source and a sink node
prescribing respectively the heating fluid pressure and
temperature, and the discharge pressure. Connectors
allow for compatibility with lower-detail models, ap-
parently.

Of course the so obtained results need checking
against the full level-2 model, which is however omit-
ted here for brevity. Notice however how the level of
detail can be scaled in a non-uniform way through-
out the model: the proposed level definition is there-
fore just a guideline, that the flexibility of the object-
oriented approach allows the analyst to tailor accord-

ing to the particular question needing an answer.

4.4 Level 3: complete model

After sizing the main components that compose the
system, the overall (level 3) model can be set up and
simulated. At this level (fig. 6) both the dynamics of
the room and of the heating system are taken into ac-
count, and also the central controls are represented. In
fact, as can be seen, the heating system now includes
a model of the boiler, accounting for the water heat
balance and having as input the fuel flow rate, while
the combustion process is not described and simply re-
placed by a fixed power released to the water and com-
puted as the fuel flow times its heating value. Option-
ally a static efficiency curve can be introduced, which
is however a useless detail in the context of this work.

The purpose of this analysis is the tuning of the con-
trol system. As a consequence, at this level the de-
signer can verify that the sizing decisions previously
taken are correct (and if not go back and size again).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

44

Figure 6: (Level 3) dynamic analysis of the room to-
gether with the heating system.

The tuning of the control system is done on a simple
but reliable model that reflects all the dynamics that
are part of the system (heating system, air and walls).
The controller defined at this level may be used in
more detailed descriptions.

4.5 More detail when needed

To further show the flexibility of the proposed modus
operandi, one may need to reach even deeper levels of
detail with respect to the main ones envisaged above.
For example, up to now, the air within the room has al-
ways been treated as a unique entity (zero-dimensional
model) and thus it had the same temperature, pressure,
and so on, in every point. If necessary, the proposed
model structuring allows to introduce more realistic
approximations, for example based on a grid of sub-
volumes.

Figure 7: Dynamic analysis of the room together with
the heating system. In this case the room is not consid-
ered as a single volume but is split into a coarse grid
of sub-volumes.

With such a model it is possible to describe the mo-
tion of the air within the room, and more important, the
temperature distribution within it. So, having a (more)
detailed description of the temperature distribution of

the air contained in the room, problems like that of po-
sitioning the heater and the sensor in different places
may be tackled. Notice that in figure (7) the heating
system is described at an intermediate level (heater but
no boiler); of course any variation is possible.

Results in figure (8) and (9) evidence how position-
ing the sensor in different places may vary the be-
haviour of the overall system. In particular, in the first
case, the sensor is positioned on the left wall (the one
where the heater too is placed), while in the second
one, the sensor is on the opposite wall. In the first case
the temperature is clearly underestimated, while in the
other one it is overestimated, with the apparent con-
sequences on transients and consumption. Simulating
for 24 hours, in fact, the energy consumed in the mod-
els is 15.31 kWh against 13.85 kWh with a difference
of 1.46 kWh. Such differences, when computing the
overall consumption of a building over a year, may be
significant.

On a similar front, one may want to describe in
greater details (preserving the interface, of course) the
energetically active components. To show an example,
we report the model of the boiler in figure 6.

model Boiler_scalableDetail
parameter Time Tcl=5 "Closed loop time constant for ideal control";
parameter Time Thc=20 "Free cooling time constant for ideal control";
parameter Real Kpi=1 "PI gain";
parameter Time Tipi=10 "PI integral time";
parameter Power Phmax=30000 "Max heating power";
parameter Volume V=0.1 "Volume";
parameter SpecificHeatCapacity cp=4186 "Heating fluid cp";
parameter Density ro=1000 "Heating fluid density";
parameter CelsiusTemperature Tstart=25 "Initial fluid temp";
parameter Real eta0=0.6 "Min efficiency";
parameter Real eta1=0.9 "mMx efficiency";
parameter Real HH=48e6 "Fuel LHV";
parameter Real Nm3_kg = 1.3942 "Nm3/kg ratio (default methane)";
parameter Integer detailLevel=0 "Detail level";
Modelica.Blocks.Interfaces.RealInput To;
Interfaces.pwTinlet inlet; // connectors with pressure and flowrate
Interfaces.pwToutlet outlet;
Modelica.Blocks.Interfaces.BooleanInput ON;
Modelica.Blocks.Interfaces.RealOutput Pc;
Modelica.Blocks.Interfaces.RealOutput Ec;
Real Ph; // Heating power
Real eta; // Efficiency
Real wc; // Fuel flowrate
Real Nm3tot(start=0); // Accumulated fuel consumption in Nm3

protected
CelsiusTemperature Tfoic(start=Tstart) "Outlet temp, ideal ctrl";
Real PIfb(start=0) "Internal signal for PI antiwindup";

equation
inlet.p = outlet.p;
inlet.w+outlet.w = 0;
cp*ro*V*der(outlet.T) = inlet.w*cp*inlet.T+outlet.w*cp*outlet.T+Ph;
eta = noEvent(max(eta0,

min(eta1,eta0+(eta1-eta0)*Ph/Phmax)));
Pc = Ph/eta;
Pc = wc*HH;
der(Ec) = Pc;
der(Nm3tot) = wc*Nm3_kg;
if detailLevel==0 then
// Detail 0: ideal control of outlet temperature
// NOTE: this implies no Ph saturation, hence Ph may become negative;
// use this detail only for very first-cut studies and beware if
// energy use estimates are involved

outlet.T = Tfoic;
PIfb = 0;
if ON then

Tfoic+Tcl*der(Tfoic) = To;
else

Tfoic+Thc*der(Tfoic) = inlet.T;
end if;

elseif detailLevel==1 then
// Detail 1: PI control of outlet temp, no high Ph saturation (low only)

Tfoic = Tstart;
if ON then

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

45

Figure 8: Measured (controlled) room temperature with different sensor positions (K).

Ph = noEvent(max(0.0,Kpi*(To-outlet.T)+PIfb));
Ph = PIfb+Tipi*der(PIfb);

else
Ph = 0;
PIfb+0.01*Tipi*der(PIfb) = 0; // quick reset

end if;
elseif detailLevel==2 then
// Detail 2: PI control of outlet temp, both high and low Ph saturation

Tfoic = Tstart;
if ON then

Ph = noEvent(min(Phmax,max(0.0,Kpi*(To-outlet.T)+PIfb)));
Ph = PIfb+Tipi*der(PIfb);

else
Ph = 0;
PIfb+0.01*Tipi*der(PIfb) = 0; // quick reset

end if;
end if;
// ...further levels of detail are clearly possible (combustion,...)

end Boiler_scalableDetail;

Notice how the same model can be used for sizing
the equipment and assessing the central controls, con-
sistently with the proposed way of using the simulation
tool along the evolution of a project. Also, the use of
convenient top-level parameters allows to use a single
model, tailoring the detail level of its parts as needed.
Of course the same result could have been obtained by
exploiting model replaceability, but in the opinion of
the authors, keeping all of a component’s behaviour
within a single model enhances readability (although
of course the matter is largely subjective).

5 Conclusions

The use of object-oriented models throughout a
project relative to building energy efficiency was dis-
cussed. Based on the authors’ experience, one major
weakness of most approaches to date is the lack of a
library structuring conceived so as to follow the nec-

essary modifications of the required detail level, in all
or part of the model, with the maximum ease of use on
the part of the designer.

Along such a reasoning, a library structuring was
proposed, and preliminarily demonstrated by apply-
ing it to quite simple case, yet complete enough to
be a representative example. According to such ini-
tial results, it appears that a research effort specifically
aimed at an effective library structuring as perceived
by the user when managing models along a project,
can be very beneficial for a better acceptance of the
object-oriented paradigm, and a better exploitation of
its possibilities.

Ongoing research is on the realisation of a complete
library based on the envisaged structuring, both inte-
grating the available wealth of literature results, and
introducing ad hoc models simplifications, especially
in a view to easing the task of aligning models of dif-
ferent detail levels with the minimum effort.

References

[1] F. Felgner, S. Agustina, R. Caldera Bohigas,
R.Merz, and L. Litz. Simulation of thermal build-
ing behaviour in Modelica. Oberpfaffenhofen,
Germany, 2002.

[2] F. Felgner, R. Merz, and L. Litz. Modular mod-
elling of thermal building behaviour using Mod-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

46

Figure 9: Power consumption with different sensor positions (W).

elica. Mathematical and computer modelling of
dynamical systems, 12(1):35–49, 2006.

[3] M. Janak. Coupling building energy and lighting
simulation. Kyoto, Japan, 2000.

[4] M. Wetter. Modelica-based modeling and simula-
tion to support research and development in build-
ing energy and control systems. Journal of Build-
ing Performance Simulation, 2(1):143–161, 2009.

[5] M. Wetter. Modelica library for building heating,
ventilation and air-conditioning systems. Como,
Italy, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

47

Real-Time Simulation of Vapour Compression Cycles

Christian Schulze
TLK-Thermo GmbH,

Hans-Sommer-Str. 5, 38106 Braunschweig, Germany
C.Schulze@TLK-Thermo.de

Manuel Gräber
Technische Universität Braunschweig, Institut für Thermodynamik

Hans-Sommer-Str. 5, 38106 Braunschweig, Germany

Michaela Huhn
Technische Universität Clausthal, Institut für Informatik
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

Uwe Grätz
ITI GmbH

Webergasse 1, 01067 Dresden, Germany

Abstract

This paper shows a tool chain of a set of ready-to-
use tools and libraries that enables the dynamic
real-time simulation of vapour compression cycles.
A new approach for calculation of fluid proper-
ties and numeric efficient component models are
applied. As an Hardware in the Loop applica-
tion a vapour compression cycle is exported to
Scale -RT [5] using SimulationX [11] and connected
to a hardware PI-Controller in order to realize a
superheating control.
Keywords: Real-Time Simulation, Vapour Com-

pression Cycle, Tool Chain

1 Introduction

Whereas so far simulation aimed for conceptual
validation in the early concept phase, nowadays
we find an increasing need for real-time simulation
or even real-time execution of models on micro-
controllers. For example Hardware in the Loop
(HiL) is an important technique for testing hard-
ware controllers in a simulated environment. It
enables the evaluation of a controller on very un-
likely test cases which can be implemented eas-
ily using simulation, which applies also for vapour
compression cycles.

Model-based controllers for a vapour compres-
sion cycle can be developed on the basis of a Mod-
elica model. Take the following approaches: A
simulation executed on those controllers may on
the one hand be used to replace some sensor sig-
nals by simulation results; on the other hand the
failure of a sensor may be detected by comparing
the sensor signals with the simulation results. Fur-
thermore nonlinear model predictive control can
be developed based on those Modelica models.

The numeric efficiency of the models and the
fluid property calculation methods limits the com-
plexity of the whole model due to the limited cal-
culation speed of the CPU. In case accurate system
modelling is needed the numeric efficiency of the
component models and the fluid property calcula-
tion methods should be improved.

For the application on vapour compression cy-
cles until now there is no numeric efficient ready-
to-use tool chain presented that enables efficient
simulation of those systems under varying circum-
stances. In this paper we present a part of the
model library and the tool chain developed by the
4 authors of this paper.

The presented tool chain bases on a model li-
brary of thermal components, a fluid property li-
brary, various simulators and hardware environ-
ments as well as a profiling method.

This tool chain and the libraries are exemplified

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

48

on a R -407C heat pump cycle with a hardware
PI-controller as superheating control, using Simu-
lationX as a compiler and Scale -RT as hardware.

2 Real-Time Fluid Property
Library

Profiling results of various thermodynamic sys-
tems show that the calculation of fluid properties
has a major impact on the model runtime, so the
calculation methods for fluid properties must be
reconsidered. These results have been gained from
the profiling method of the presented tool chain
[20]. This method is briefly described in section 4.

For modelling of thermodynamic systems it is
usually necessary to have access to the properties
of the used media. There is a large number of
methods to calculate fluid properties starting from
the perfect gas theory to the fundamental equa-
tions of state. Those methods differ in the under-
lying theory, calculation speed, precision, amount
of data needed and internal consistency.

For many dynamic simulations of vapour com-
pression cycles a very high precision of the fluid
properties is needed to describe the correct pres-
sure levels as well as the correct temperature curve
over the heat exchanger length, especially when
modelling a superheating control. E.g. the en-
thalpy of evaporation and the vapour pressure
curve have a high influence on those results but
they are drawn from the whole fluids property de-
scription. Due to this reason fundamental equa-
tions of state are employed frequently for simula-
tion of thermodynamic systems like these.

The Helmholtz Potential can be calculated from
a fundamental equation of state as a function of
density and temperature what from every thermo-
dynamic state variable can be drawn from it. As
physical processes often are described by enthalpy
differences and pressure differences, the calculated
state points frequently are given by pressure and
specific enthalpy.

Using a fundamental equation of state the cal-
culation of fluid properties at a given pressure and
specific enthalpy requires a numerical solving pro-
cess. As a result of this, simulations based on fun-
damental equations of state require a varying CPU
work load at a high level and should be avoided for
real-time application.

This paper different approach for calculation of
fluid properties: instead of Modelica the calcula-

tion methods are implemented in C. This way the
the solving methods and solver parameters may
be adapted suitable for this application therefore
performance is gained. As depicted in figure 7 the
fluid property calculation source code is added to
the model source code after the export from Sim-
ulationX before compiling.

In order to decrease the CPU work load caused
by the fluid property calculation other methods
instead of fundamental equations of state can be
used. In the following we concentrate on calcula-
tion methods that are not based on an equation of
state.

Fluid properties can be tabulated and interpo-
lated linearly on the basis of equation (1). This
way the CPU work load can be reduced signif-
icantly but the precision of the results between
two tabulated grid points is poor due to the lin-
ear approximation. As a countermeasure the dis-
tance between two tabulated grid points must be
reduced to a minimum so the amount of data is
very high. Either the thermodynamic properties
or the results and derivatives of a thermodynamic
potential [1] can be tabulated.

T (p, h) =
1∑

i=0

1∑
j=0

aijp
ihj (1)

In addition to the precision of a single value the
internal consistency of linearly interpolated data
between different values is poor, too. For exam-
ple if temperature and the specific heat capacity
are tabulated then the specific heat capacity cal-
culated from the difference quotient of two tem-
peratures differs from the linear interpolated heat
capacity. So

∫
cpdT does not approach ∆h and

hence the energy balance may be violated depend-
ing on the model equations.

Spline interpolation is another way to close the
gap between to tabulated grid points. Spline in-
terpolation requires the tabulation of the spline
function coefficients (see equation (2)). These co-
efficients can be calculated from the tabulated grid
points under the constraint that the results during
transition from one set of coefficients to another set
of coefficients must be continuously differentiable.
This technique is discussed and exemplified for the
properties of Water by Kunick [12].

T (p, h) =
3∑

i=0

3∑
j=0

aijp
ihj (2)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

49

0
10
20
30
40
50
60
70
80
90

100 250 400 550 700

pr
es

su
re

[b
ar

]

specific enthalpy [kJ/kg]

at maximum <0,07K

Figure 1: Deviation of temperature compared with
Refprop for R -407C PPF.

This paper uses another approach for calcula-
tion of one and two phase fluid properties. The
basic idea is a functional fit for the enthalpy de-
pendency at various pressure levels in combination
with a linear interpolation between those fit func-
tions [21]. This may be interpreted as an array
of curves, whereas the gaps between two curves
are closed via linear interpolation. Figure 1 shows
the error of the temperature calculated from this
method compared to the results from Refprop [15]
R -407C Pseudo Pure Fluid [14].

0

20

40

60

80

100 250 400 550 700

pr
es

su
re

[b
ar

]

specific enthalpy [kJ/kg]

C
A B

T40bar(h)

T20bar(h)

T31bar(250 kJ/kg)

Figure 2: A fluid property is interpolated linearly
between the fit equation at upper and lower pres-
sure level, using one set of coefficients for each re-
gion A, B and C per pressure level.

Figure 2 illustrates the method of calculating
fluid properties using equation (3): The coeffi-
cients for the fit equation are tabled for about 200
pressure levels from the triple point up to 85 bars,
but the number of pressure levels will be reduced
in future. A separate set of coefficients is needed
for each region A, B and C. The outstanding fea-

ture of this method compared to the simple linear
interpolation is its significantly improved consis-
tency and the reduction of required data.

T (p, h) = Tpi(h) (3)

+
Tpj (h) − Tpi(h)

pj − pi
(p− pi)

3 Component Library for Real-
Time Applications

TLK-Thermo GmbH and the Institut für Thermo-
dynamik of TU Braunschweig develop and main-
tain the Modelica library TIL [19, 8]. This is a
component library for modelling complex thermo-
dynamic systems such as heat-pumps, air condi-
tioning and refrigeration cycles as well as organic
rankine cycles, and TIL has been used in various
academic and industrial research projects. Com-
bined with the real-time fluid property library de-
scribed in section 2 a lot of systems modelled with
TIL can already be run on real-time hardware.
Of course, model complexity has to be adapted
to the specific needs. For example complex pres-
sure drop and heat transfer correlations will lead
to too large computational effort. In this section
we will shortly introduce TIL and give an outlook
on further model development for real-time appli-
cations.

The distinction of different fluid types is a basic
design concept of TIL. E.g. there are three valves,
one for incompressible liquids, one for ideal gases
and another one for refrigerants. Each model can
be adapted to the specific physical behaviour. The
fluid properties of in incompressible liquid only de-
pend on the temperature, so these models are sim-
pler compared to those of the refrigerant.

3.1 Heat Exchangers

Figure 3 shows the four different heat ex-
changer modelling approaches implemented in
TIL. Whereas the finite volume and moving
boundary approach are designed for dynamic sim-
ulation, the NTU-Method and finite differences
approach simplify the dynamic behavior of the sys-
tem.

Heat exchanger models based on finite volumes
can give a good picture of the real physical be-
haviour inside. The more cells are used to describe

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

50

Heat Exchanger Approaches

Dynamic Quasi-Stationary

Moving Boundary

Finite Volumes

NTU-Method

Finite Differences

geometry summary

Figure 3: Four Heat Exchanger modelling Ap-
proaches implemented in TIL sharing the same
interface for fluid properties, pressure drop, heat
transfer, geometry and summaries.

the heat exchanger the more detailed will this pic-
ture will be. Of course a high number of cells
causes a high CPU work load. The general struc-
ture of the implemented heat exchanger is shown
in figure 4.

1 2 nCells

Refrigerant

Wall

Liquid

Figure 4: Finite Volume Tube and Tube Heat Ex-
changer Model based on cell models

In case of an Tube And Tube Heat Exchanger
the wall, the refrigerant and the liquid are dis-
cretized one dimensionally into the same number
of cells as depicted in figure 4. As a simplifica-
tion the pressure change dp

dt in the cells at the
same pressure level is set equal as described by
Lemke [13]. As a result of this the there is only
one continuous time state for the pressure at one
pressure level and the CPU work load is reduced
significantly.

For dynamic simulation of heat exchangers the
moving boundary approach is the second ap-

proach. The Heat Exchanger is lumped into 3
cells, a cell covering the superheated region, one
covering the two phase region and another one
covering the subcooled region [9]. The lengths of
those cells change dynamically, so a suitable heat
transfer correlation can be implemented for each
section. The precision increases significantly com-
pared to finite volumes with a small number of
cells.

The third approach for very fast stationary sim-
ulation of heat exchangers is based on the NTU-
Method (Number of Transfer Units) [10]. Assum-
ing that the transient effects of heat and mass
transfer are negligible the resulting equation sys-
tem is very small and can be solved quickly. In
many cases a stationary model of a vapour com-
pression cycle enables sufficient description of the
system behaviour.

The fourth heat exchanger modelling approach
is based on the finite difference method. In this
approach derivatives of differential equations for
temperatures and mass factions are approximated
using finite difference equations. The model is op-
timized for fast steady state solution at high spa-
tial resolutions and detailed modelling of heat and
mass transfer processes [22].

3.2 Efficiency based Compressor

In the compressor model used for the case study of
this paper the outlet state is calculated from the
number of rotations per second, the displacement,
the volumetric and the isentropic efficiency.

V̇ = ρin · n · displacement · ηvol (4)

hout = hin +
hisen − hin

ηisen
(5)

3.3 Valve

The Valve is based on Bernoulli’s equation. The
transition from positive to negative mass flow is
smoothed.

ṁ =
√

2ρin (pin − pout) (6)

3.4 Filling Station

The filling station is a component to control the
total mass of refrigerant inside the vapour com-
pression cycle. The mass inside the cycle cannot

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

51

be set directly at initialization but this component
enables the correction of the mass during simula-
tion.

3.5 Ideal Separator

0%

20%

40%

60%

80%

100%

st
ea

m
 m

as
s f

ra
ct

io
n

at

ou
tle

t [
kg

/k
g]

filling level [m³/m³]
10% 90%

liquid outlet

gas outlet

Figure 5: Ideal Separator Characteristic

The ideal separator is a component with a preset
volume having 2 outlets and is used to separate liq-
uid and vapour, the characteristic is illustrated in
figure 5. In case of a filling level greater than 90%
liquid refrigerant will come out of the gas outlet.
Between 10% and 90% filling level the separation
of liquid and vapour is done perfectly. In case of
a filling level below 10% gaseous refrigerant will
come out of the liquid outlet. The transition at
10% and 90% filling level is smoothed and hence
continuously differentiable.

4 Tool Chain

Many real-time platforms are available to support
HiL and RCP such as dSPACE [6], RT-LAB/QNX
[17], NI-Veristand [16] or Scale -RT [5]. Scale -RT
is a Real Time Operating System based on Linux
using the Xenomai Kernel extension running on
common desktop PCs. For interaction with the
real world, IO-Hardware has to be installed. The
RT-Environment used in the case study is a com-
mon Desktop PC with a Intel Core2Duo E8400
@3GHz, 4 GB RAM, Scale -RT 5.1.2 and two NI
PCIe-6259 as IO-Interface.

Usually Real Time Operating Systems execute
a real-time application with a higher priority. The
processing of hardware events and the execution
of non real-time applications is delayed [7].

Simple IO-Block based controller models can i.e.
be created in tools like Matlab Simulink or the

open source project SciCos [3]. Those models can
easily be exported to real-time targets. To export
Modelica models to a real-time target including
external C-Source this external source code has to
be added to exported source code before compiling
it.

Additional blocks or interfaces have to be im-
plemented into the simulation environment as in-
terfaces to the IO-Hardware. To access the IO-
Hardware those blocks have to be instanced and
configured in the model.

Depending on the Real Time Operating System
(RTOS) tools like Matlab Simulink or SimulationX
may either have to offer a hardware driver for each
hardware IO-Interface card or can use an internal
driver framework of the RTOS. Whereas NI Veri-
stand provides a simulation and hardware frame-
work Scale -RT version 4.x does not provide such
a framework. Since version 5.x of Scale -RT a new
model framework has been implemented.

SimulationX 3.4 provides access to several IO
hardware interfaces for Scale -RT 4.x but unfor-
tunately it did not support the NI PCIe -6259
multi -IO driver for the comedi driver interface [4]
yet. This interface has now been added to Simu-
lationX and will soon be available.

On real-time targets usually a fixed step solver is
used to integrate the differential algebraic equation
system of the whole model. If the calculation time
needed exceeds the fixed solver step size an overrun
is caused. Depending on the Real Time Operating
System this may terminate the simulation. The
algebraic loops are solved using a modified Newton
solver.

Sim
ulationX

D
ym

ola

Modelica

Matlab Simulink

RT-Environment

Modelica

RT-Environment

Figure 6: SimulationX enables direct Export to
RT-Environment.

In contrast to Dymola SimulationX enables the
direct export to a real-time environment in ad-
dition to the export via Matlab Simulink / Real
Time Workshop as illustrated in Figure 6. The
Real Time Workshop is used by many tools as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

52

export interface to real time environments. De-
tails on the export of models from SimulationX
to Scale -RT and the optimization performed on it
are described in [2].

Profiling Data

SimulationX

Scale-RT

Model
Source Code

Fluid Properties

Profiling Methods

Profiling App.

Figure 7: The instrumented model sends profiling
data to a secondary application which saves that
data

A Profiling method as presented in [20] has been
added to this tool chain as well. Profiling of ther-
modynamic models on the real-time target itself
reveals possible weaknesses of the exported model.
The process of instrumentation and data saving for
the profiling methods is depicted in figure 7. The
source code of the exported model has to be modi-
fied, on the Real Time Operating System the time-
consuming task of saving the data to the hard disk
is done by a secondary non real-time application.
This profiling method enables a general analysis of
the DAE System.

5 Case Study: PI-Controlled
R -407C-Cycle

In this section an exemplary application of the
above discussed research results is described. We
look at a R -407C water to water heat pump cycle.
An electric expansion valve and a PI-controller are
used to control superheating at evaporator outlet.
Real-time simulation experiments are used to tune
control parameters.

5.1 Model description

As starting point a model of the vapour compres-
sion cycle is built up using the libraries described
in sections 2 and 3.

Although finite volumes cause a high CPU work
load we decided to use heat exchangers based of 7

finite volumes each, in contrast to Pitchaikani et
al. [18] using just one cell. The pressure drop in
the heat exchangers is assumed to be negligible.

The model’s graphical representation is shown
in Figure 8.

Figure 8: Diagramm of heat pump Modelica
model.

Basically the cycle consists of compressor, con-
trolled expansion valve, separator, condenser and
evaporator. Superheating is measured at evapo-
rator refrigerant outlet and transmitted to a PI-
controller, which computes the expansion valve’s
opening, according to

u = K

(
(y − ys) +

1

τ

∫
y − ysdt

)
, (7)

where u is the relative valve opening, and y− ys
denotes the difference of measured superheating
to its set point. Proportional gain K and integral
time τ are constant parameters. Suitable values
for these parameters are obtained by simulation
experiments on a normal PC using the Modelica
tool SimulationX. The next step is to use a real
hardware controller and connect it to real-time
simulated cycle.

5.2 Real-time experiment

The vapour compression cycle model runs on a
Scale -RT real-time computer system. A hardware
PI-controller is connected via I/O-Boards. Super-
heating and valve opening are transformed to ana-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

53

integration step size 1ms
sample rate 10ms

number of continuous time states 60
number of integer variables 509

number of real variables 1811
number of external objects (refrigerant properties) 30

sizes of nonlinear systems of equations 2, 3, 9, 11, 3, 1, 9, 11
number of linear systems of equations (size 1) 120

model runtime on RT Environment ≈ 2.5ms

Table 1: Detailed Information about the exported Model

5,5
6

6,5
7

7,5
8

8,5
9

0 20 40 60

Su
pe

rh
ea

tin
g

[K
]

Time [s]

Figure 9: Superheating at evaporator refrigerant
outlet.

logue voltage signals. Now, the closed-loop per-
formance can be tested under different boundary
conditions.

Figure 9 and 10 show an example result. Start-
ing from steady-state condition – superheating is
close to its set point of 6K – a step of −5K is ap-
plied to the water temperature at evaporator inlet.
The systems response is an immediate increase of
the superheating and the controller reacts by open-
ing the expansion valve. After one oscillation su-
perheating setpoint is reached again.

6 Conclusion

In this paper a ready-to-use set of libraries as part
of a tools chain for real time simulation applica-
tions is presented. The TIL Library as well as the
TEMO fluid property library are used in this tool
chain and exported to Real Time Operating Sys-
tems using SimulationX.

As one major contributor to the real time ca-
pability of the tool chain a new method for calcu-
lation of fluid properties of two-phase refrigerants

6
6,2
6,4
6,6
6,8

7
7,2
7,4
7,6

0 20 40 60

V
al

ve
 a

re
a

[m
m

²]

Time [s]

Figure 10: Opening area of expansion valve.

is developed and exemplified for R -407C, further-
more other interpolation based calculation meth-
ods are described. Four different implemented ap-
proaches for heat exchanger modelling – Finite
Volumes, Moving Boundary, NTU-Method and Fi-
nite Differences – are presented.

Finally as one exemplary case study of the tool
chain a numeric efficient and accurate modelling
of a vapour compression cycle is presented.

7 Acknowledgement

Most part of this work has been funded by the
German Federal Ministry of Education and Re-
search (BMBF) in the project TEMO (grant
01|S08013C).

References

[1] Trond Andresen. Mathematical modelica of
CO2 based heat pumping systems. PhD thesis,
Norwegian University of Science and Technol-
ogy, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

54

[2] Torsten Blochwitz and Thomas Beutlich.
Real-time simulation of Modelica-based mod-
els. In Proc. 7th Modelica Conference, pages
386–392. The Modelica Association, 2009.

[3] Roberto Bucher and Silvano Balemi.
Scilab/Scicos and Linux RTAI - A uni-
fied approach. In Proceedings of the IEEE
Conference on Control Applications, Toronto,
Canada, August 2005.

[4] COMEDI. Linux Control and Measurement
Device Interface, 2011. URL http://www.
comedi.org.

[5] Cosateq GmbH & Co. KG. Scale-RT, 2010.
URL http://www.scale-rt.com/.

[6] dSPACE GmbH. dSPACE, 2011. URL http:
//www.dSPACE.com/.

[7] Philippe Gerum. The XENOMAI Project -
Implementing a RTOS emulation framework
on GNU/Linux. Technical report, 2002.

[8] M. Gräber, K. Kosowski, C. Richter, and
W. Tegethoff. Modelling of heat pumps with
an object-oriented model library for thermo-
dynamic systems. Mathematical and Com-
puter Modelling of Dynamical Systems, 16:
195–209, 2010.

[9] M. Gräber, N. C. Strupp, and W. Tegeth-
off. Moving Boundary Heat Exchanger
Model and Validation Procedure. In EU-
ROSIM Congress on Modelling and Simula-
tion, Prague, 2010.

[10] F. P. Incropera, D. P. DeWitt, T. L. Bergman,
and A. S. Lavine. Fundamentals of Heat and
Mass Transfer. John Wiley & Sons US, 6th
edition edition, 2006.

[11] ITI GmbH. SimulationX, 2010. URL http:
//www.simulationx.com.

[12] Matthias Kunick, Hans-Joachim Kretschmar,
and Uwe Gampe. Fast Calculation of Ther-
modynamic Properties of Water and Steam in
Process Modelling using Spline Interpolation.
Proceedings of the 15h International Confer-
ence on the Properties of Water and Steam,
2008.

[13] Nicholas C. Lemke. Untersuchung zweistu-
figer Flüssigkeitskühler mit dem Kältemit-
tel CO2. Number 73 in Forschungsberichte
des Deutschen Kälte- und Klimatechnischen
Vereins. Deutscher Kälte- und Klimatechnis-
cher Verein, Holtzminden, 2005.

[14] E. W. Lemmon. Pseudo-Pure Fluid Equation
of State for the Refrigerant Blends R-410A,
R-404A, R-507A, and R-407C. International
Journal of Thermophysics, Vol. 24, No. 4, 24,
2003.

[15] M. O. McLinden, S. A. Klein, E. W. Lemmon,
and A. P. Peskin. NIST thermodynamic and
transport properties of refrigerants and refrig-
erant mixtures-REFPROP. 2008.

[16] National Instruments. NI VeriStand, 2011.
URL http://www.ni.com/veristand.

[17] OPAL-RT. RT-LAB, 2011. URL
http://www.opal-rt.com/product/
rt-lab-professional.

[18] Anand Pitchaikani, Kingsly Jebakumar S,
Shankar Venkataraman, and S. A. Sundare-
san. Real-time Drive Cycle Simulation of Au-
tomotive Climate Control System. In Proc.
7th Modelica Conference, pages 839–846. The
Modelica Association, 2009.

[19] Christoph Richter. Proposal of New Object-
Oriented Equation-Based Model Libraries for
Thermodynamic Systems. PhD thesis, TU
Braunschweig, 2008.

[20] C. Schulze, M. Huhn, and M. Schüler. Profil-
ing of Modelica Real-Time Models. In Pro-
ceedings of the 3rd International Workshop
on Equation-Based Object-Oriented Modeling
Languages and Tools, volume 3, pages 23–32,
2010.

[21] C. Schulze, W. Tegethoff, M. Huhn, and
J. Köhler. Numerisch effiziente Berech-
nungsmethoden für die Stoffeigenschaften von
Fluiden für die Systemsimulation. DKV-
Tagungsberichte, 2010.

[22] N. C. Strupp, R. M. Kossel, W. Tegethoff,
and J. Köhler. Senkung des Kraftstoffver-
brauches durch Optimierung der Leerlaufkli-
matisierung eines PKW mittels Hybridküh-
lung. In DKV Tagung, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

55

Efficient hybrid simulation of autotuning PI controllers

Alberto Leva, Marco Bonvini∗

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy
{leva,bonvini}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Autotuning methods are typically conceived as proce-
dures, thus need simulating as digital blocks. How-
ever, when no autotuning is in progress, it is far
more efficient to represent the tuned controller as a
continuous-time system, to exploit variable-step inte-
gration. This manuscript presents the first nucleus of a
Modelica library of autotuning controllers, where the
problem just mentioned is tackled explicitly. The fo-
cus is here restricted to the PI structure, but the pre-
sented ideas are general.

Keywords: Autotuning; PI control; hybrid systems’
simulation.

1 Introduction

It is universally acknowledged that PI and PID regu-
lators significantly contribute to form the backbone of
industrial controls [5, 3]. Also, in many applications
and especially in recent years, their automatic tuning
is of paramount importance for a quick system setup
and an easy maintenance. As a result, an impressing
quantity of autotuning rules can be found in the litera-
ture, see e.g. the vast review [17]; analogously, a large
and steadily increasing number of industrial applica-
tion and products are available, as testified by works
such as [15].

Apparently, therefore, the simulation of PI(D) au-
totuners is a very interesting topic, for at least two
reasons. From the standpoint of the analyst who per-
forms system-level simulation studies, for example
in a view to ease and speed the commissioning of a
plant, autotuning is precious to reduce the time needed
to parametrise the included regulators, that are often
quite numerous. From the point of view of engineer
who develops autotuning controllers, conversely, the
possibility of testing a product (with a quasi-replica
code representation) on realistic simulation models is

equally precious, since doing so allows to assess a pri-
ori its correct behaviour in the whole class of applica-
tion it is intended for.

However, in a view to achieve efficient simulation,
the presence of autotuning regulators poses a relevant
issue. The problem is that autotuners are typically con-
ceived as digital blocks, and for the sake of correctness
and precision, so need to be their models. On the other
hand, when no autotuning is in progress, the regulator
behaves as a fixed-parameter dynamic system, thus it
is far more convenient to represent it in the continuous-
time domain, so as to exploit variable-step integration.

In such a context, this manuscript presents the
first nucleus of a Modelica library of autotuning con-
trollers, and concentrates on their hybrid representa-
tion, encompassing a continuous-time model of the
controller, and a digital model of the autotuning part.
After a brief theoretical review, a general structure
for the necessary Modelica models is proposed as the
main contribution, and an application that refers to
a relay-based PI autotuner is presented. Simulation
examples show the efficiency advantages of the pre-
sented hybrid representation with respect to a fully
digital one.

2 Theoretical background

This work, although (as can be guessed) the proposed
ideas are general, limits the scope to relay-based au-
totuning, and considers a one-degree-of-freedom PI
written in the Laplace transform domain as the error-
to-control transfer function

R(s) = K
(

1+
1

sTi

)
, (1)

where K is the gain and Ti the integral time. The basic
principle of relay-based autotuning was introduced in
[1], and then developed in [2, 8, 4, 16, 9] and many
other papers; a survey on the matter, for the interested
reader, can be found in [21].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

56

In extreme synthesis, the idea is to lead the con-
trolled system to a limit cycle by substituting the con-
troller to be tuned with a relay, as shown in figure 1.

Figure 1: Basic scheme for relay-based (PI) autotun-
ing.

Once said condition is established, by measuring the
period and amplitude of the induced controlled vari-
able’s oscillation and by resorting to the well known
describing function approximation, it is possible to es-
timate one point P̂(jωox) = Poxe jϕox of the process fre-
quency response P(jω), where ωox is the mentioned
oscillation frequency. Then, to tune the PI, a point
L is chosen that the open-loop frequency response
L(jω) = R(jω)P(jω) has to contain, and the two pa-
rameters of the regulator R(s) are found by solving the
complex equation

R(jωox)Poxe jϕox = L. (2)

A widely used specification in relay-based PI auto-
tuning is the closed-loop phase margin ϕm, which is
enforced in a straightforward way by forcing L(jω)
to cross the unit circle, at frequency ωox, in the point
L = e j(ϕm−π), with ϕm in radians.

In this work, a slight variant of the scheme shown
in figure 1 is used, where the relay is hysteresis-free,
or has so small a hysteresis to allow the real nega-
tive semiaxis to be considered its critical point locus,
and there is an integrator cascaded to it. Doing so
causes the oscillation to occur at the frequency where
the phase of P(jω)/(jω) is −π , i.e., that of P(jω) is
−π/2. The situation is illustrated in figure 2, where M
denotes the frequency response magnitude of P(s)/s
at frequency ω−ox

In this case, some computations omitted for brevity
lead to determine the magnitude of P(jω) at the oscil-
lation frequency ωox as

Pox =
π2A
8D

, (3)

where A is the amplitude of the controlled variable’s
permanent oscillation, and D the relay swing. Select-
ing the process frequency response point with phase

Figure 2: One-point identification with relay plus in-
tegrator feedback.

−π/2 is a convenient choice, since a PI regulator can
only introduce a phase lag: the desired phase margin
ϕm is in fact obtained by drawing from (2) the two real
equations for magnitude and phase, whence the simple
tuning rules

Ti =
tan(ϕm)

ωox
, K =

tan(ϕm)
Pox
√

1+ tan2(ϕm)
, (4)

that are used for the PI autotuner presented later on in
this work.

Many variants of (4) exist in the literature, see e.g.
[18, 20] or the so called “contextual autotuning” re-
cently proposed in [12]. Moreover, the same tuning
principle is applicable to the PID, and also to more
complex regulator structure, possibly detecting and
employing several points of P(jω). The results shown
here can be easily extended to any such case.

3 Modelica implementation

This section presents two Modelica realisations (the
first fully digital, the second hybrid) of the considered
autotuning methodology. In both cases, the icon of the
resulting block is that of figure 3.

Figure 3: Modelica icon of the autotuning PI con-
troller.

The block inputs are the set point and the process
variable, plus a boolean one, a pulse on which initiates
the autotuning procedure; the output is clearly the con-
trol signal. The initial values for K and Ti, as well as
the required phase margin, are provided as parameters.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

57

In both realisations, with reference to figure 1 and
the relationships introduced above, the autotuning pro-
cedure is composed of the following steps:

1. start with the controller in PI mode;

2. when the AT pulse is received,

(a) initialise the relay plus integrator control,

(b) connect it to the process,

(c) and wait for a permanent oscillation;

in the quite simple procedure presented here, an
oscillation is considered permanent when the dif-
ference between its period and that of the previ-
ous one is less than a percent defined as param-
eter, while - for the sake of safety in the face
of possible outliers - a certain number of oscil-
lations, defined as a parameter too, is counted un-
conditionally before proceeding;

3. when a permanent oscillation is detected, com-
pute its frequency, and by means of (3) deter-
mine the corresponding process frequency re-
sponse magnitude (the phase is −π/2);

4. apply (4) to tune the regulator, and finally switch
back to PI mode.

It is worth noticing that any industrial realisation
would be more articulated than those illustrated in the
following. For example, some logic would need intro-
ducing to abort the procedure in the case of unexpected
and/or possibly harmful system behaviours, a confir-
mation should be requested to the operator in order to
accept or decline the proposed parameters prior to up-
dating the PI, and so forth. Such features are however
omitted here since they are lengthy to discuss in the
necessary detail, and substantially inessential for the
purpose of this work.

3.1 Fully digital version

Based on the procedure sketched above, it is quite sim-
ple to write a digital Modelica model like that reported
below, together with some comments that should be
explicative enough compatibly with space limitations.

model ATPIrelayNCdigital
import Modelica.Constants.*;
parameter Real K0 = 1 "Initial K";
parameter Real Ti0 = 10 "Initial Ti";
parameter Real slope = 0.1 "relay integrator gain (control slope)";
parameter Real permOxPerc = 5 "% diff to take oscillations as equal";
parameter Real pm = 45 "reqd phase margin in degrees";
parameter Real CSmax = 1 "upper control saturation value";
parameter Real CSmin = 0 "lower control saturation value";
parameter Integer nOxMin = 3 "oxs to wait for unconditionally";
parameter Real Ts = 0.1 "sampling time";

protected

discrete Boolean UP; // relay is in the up state
discrete Real lastToggleUp; // instant of last toggle to up
discrete Real period; // measured ox period
discrete Real wox; // measured ox frequency
discrete Real Pox; // measured process mag at wox
discrete Real rPVmax // service variables to measure the
discrete Real rPVmin; // min and max values of the process
discrete Real rCSmax; // variable and the control during
discrete Real rCSmin; // oscillations
discrete Real K; // PI gain
discrete Real Ti; // PI integral time
discrete Real e; // error (Sp-PV)
discrete Real CSp; // proportional part of CS
discrete Real CSi; // integral part of CS
discrete Integer nOx; // ox counter
discrete Integer iMode; // mode: 0 is PI, 1 autotuning
Modelica.Blocks.Interfaces.RealInput SP;
Modelica.Blocks.Interfaces.RealInput PV;
Modelica.Blocks.Interfaces.RealOutput CS;
Modelica.Blocks.Interfaces.BooleanInput ATreq;

algorithm
when initial() then

iMode := 0;
K := K0;
Ti := Ti0;

end when;
when ATreq==true then

iMode:=1;
end when;
when sample(0,Ts) then

e := SP-PV;
if iMode==0 then // PI mode

CSp := K*e;
CSi := pre(CSi)+K*Ts/Ti*e;
CS := CSp+CSi;
if CS>CSmax then

CS:=CSmax;
end if;
if CS<CSmin then

CS:=CSmin;
end if;
CSi := CS-CSp;

end if;
if iMode==1 then // AT mode

if pre(iMode)==0 then // 1st step, initialise
wox := 0;
Pox := 0;
rPVmax := PV;
rPVmin := PV;
rCSmax := CS;
rCSmin := CS;
lastToggleUp := time;
nOx := 0;

end if;
if UP==false and PV<=SP then // Manage relay

UP := true;
end if;
if UP==true and PV>SP then

UP := false;
end if;
if UP==true then

CS := CS + slope*Ts;
else

CS := CS - slope*Ts;
end if;
if PV>rPVmax then // record max and min for PV and CS

rPVmax := PV;
end if;
if PV<rPVmin then

rPVmin := PV;
end if;
if CS>rCSmax then

rCSmax := CS;
end if;
if CS<rCSmin then

rCSmin := CS;
end if;
if UP==true and pre(UP)==false then // tune if perm ox

period := time-lastToggleUp;
lastToggleUp := time;
if period>0 and nOx>=nOxMin

and abs(period-pre(period))/period
< permOxPerc/100 then

iMode := 0;
wox := 2*pi/period;
Pox := pi^2*(rPVmax-rPVmin)/8/(rCSmax-rCSmin);
Ti := tan(pm/180*pi)/wox;
K := tan(pm/180*pi)/(Pox*sqrt(1+(tan(pm/180*pi))^2));
CSi := CS-K*Ts/Ti*e; // re-initialise the PI after AT

end if;
rPVmax := PV;
rPVmin := PV;
rCSmax := CS;
rCSmin := CS;
nOx := nOx+1;

end if;
end if;

end when;
end ATPIrelayNCdigital;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

58

3.2 From fully digital to hybrid

When everything is digital, things are simple, and the
only issue to care about is to correctly manage the reg-
ulator tracking while the relay is driving the control
signal so as to achieve the required permanent oscil-
lation. If conversely one wants to represent the con-
troller as a continuous-time system, it is necessary to
suitably coordinate it with the digital procedure.

The solution adopted here can be summarised as fol-
lows. First, implement the controller in the desired
form (here, for consistence with the digital case, an an-
tiwindup PI was chosen) as differential and algebraic
equations. Then, realise the autotuning procedure as
a digital algorithm, including the control computation
during that procedure, exactly as it was in the fully dig-
ital case. Finally, manage the autotuning request event
by (a) setting a flag that selects the control output to be
that coming from the equations or the algorithm, de-
pending on the mode, and (b) initialising the algorithm
output to the last equation output. Analogously, man-
age the autotuning termination by resetting the above
flag, and reinitialising the equation-based controller
state to match the last algorithm output.

The only (small) disadvantage of such a solution is
that the equation-based controller stays in place during
the autotuning phase. However the resulting overhead
is generally very limited, given the invariantly simple
structure of the controller, while there is a gain in terms
of simplicity with respect to possible alternative solu-
tions attempting to avoid said overhead.

3.3 Hybrid version

The PI for this realisation is implemented in anti-
windup form, i.e., as the block diagram of figure 4.

Figure 4: Block diagram of the used continuous-time
antiwindup PI.

That scheme corresponds in Modelica to the equa-
tions

satIn = K*(SP-PV)+linFBout;
CSpi = Ti*der(linFBout)+linFBout;
CSpi = noEvent(max(CSmin,min(CSmax,satIn)));

where CSpi is the control signal in PI mode (u in
figure 4), satIn the input of the saturation block, and

linFBout the output of the feedback block, added in
the diagram to the term Ke.

Given all that, the Modelica model of the hybrid au-
totuning PI is shown in the listing below.

model ATPIrelayNCmixedMode
import Modelica.Constants.*;
// ... same parameters as the fully digital version ...
Integer iMode;
Real K;
Real Ti;
Real satIn;
Real linFBout(start=0,stateSelect=StateSelect.always);
Real CSpi;
discrete Real CSat;
discrete Boolean AT;
discrete Boolean UP;
discrete Real rPVmax;
discrete Real rPVmin;
discrete Real rCSmax;
discrete Real rCSmin;
discrete Real lastToggleUp;
discrete Real period;
discrete Real wox;
discrete Real Pox;
discrete Integer nOx;
// ... same connectors as the fully digital version ...

equation
// Continuous-time antiwindup PI
satIn = K*(SP-PV)+linFBout;
CSpi = Ti*der(linFBout)+linFBout;
CSpi = noEvent(max(CSmin,min(CSmax,satIn)));
// Output selection
if iMode==0 or iMode==1 then // 0, PI or 1, AT init

CS = CSpi;
else // 2, AT run

CS = CSat;
end if;

algorithm
// Autotuning procedure
when initial() then

K := K0;
Ti := Ti0;
AT := false;

end when;
when ATreq and sample(0,Ts) then // Turn on AT when required

if not AT then
AT := true; // set AT flag on
iMode := 1; // set next mode to AT init

end if;
end when;
when AT and iMode==1 and sample(0,Ts) then // AT init mode

iMode := 2; // set mode to AT run
CSat := pre(CSpi);
UP := false;
period := 0;
wox := 0;
Pox := 0;
rPVmax := pre(PV);
rPVmin := pre(PV);
rCSmax := CSat;
rCSmin := CSat;
lastToggleUp := time;
nOx := 0;

end when;
when (iMode==1 or iMode==2) and not AT

and sample(0,Ts) then // AT shutdown;
iMode := 0;
reinit(linFBout,CSat); // re-initialise the continuos-time PI

end when;
when AT and iMode==2 and sample(0,Ts) then // AT run mode

if UP==false and PV<=SP then // Manage relay
UP := true;

end if;
if UP==true and PV>SP then

UP := false;
end if;
if UP==true then

CSat := CSat + slope*Ts;
else

CSat := CSat - slope*Ts;
end if;
if PV>rPVmax then // record relay id max and min for PV and CS

rPVmax := PV;
end if;
if PV<rPVmin then

rPVmin := PV;
end if;
if CSat>rCSmax then

rCSmax := CSat;
end if;
if CSat<rCSmin then

rCSmin := CSat;
end if;
if UP==true and pre(UP)==false then // tune if perm ox

period := time-lastToggleUp;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

59

lastToggleUp := time;
if period>0 and nOx>=nOxMin

and abs(period-pre(period))/period
< permOxPeriodPerc/100 then

AT := false;
wox := 2*pi/period;
Pox := pi^2*(rPVmax-rPVmin)/8/(rCSmax-rCSmin);
Ti := tan(pm/180*pi)/wox;
K := tan(pm/180*pi)/(Pox*sqrt(1+(tan(pm/180*pi))^2));

end if;
rPVmax := PV;
rPVmin := PV;
rCSmax := CSat;
rCSmin := CSat;
nOx := nOx+1;

end if;
end when;

end ATPIrelayNCmixedMode;

Notice the presence of some noEvent clauses. In
principle they can be omitted, but leaving them in
slightly reduces the computational burden and, above
all, is consistent with the operation of real-world auto-
tuners, where inputs are typically acquired only at the
beginning of a sampling period.

Also, observe how the proposed structuring can
be quite easily generalised, including different tuning
rules, different types of process stimulation (e.g., step-
instead of relay-based) and different controller struc-
tures, since the presence of the autotuning algorithm
does not modify in any sense the controller equations.

4 Simulation examples

In this section, two simulation examples are reported,
to show the advantages yielded by the proposed auto-
tuner models, and to verify their correct behaviour in
realistic situations.

4.1 Example 1

This example aims at illustrating the correctness of the
hybrid realisation, and its usefulness in terms of simu-
lation efficiency.

The Modelica scheme used for the example is that
of figure 5, where the ATPI block is the fully digital or
the hybrid autotuning PI, alternatively.

Figure 5: Modelica scheme for simulation example 1.

The process under control is described by the trans-
fer function

P1(s) =
1

(1+ s)3 (5)

and the autotuning PI, in both the fully digital and the
hybrid versions, is employed with a sampling time Ts

of 0.1s, first leading the loop to steady state with a low-
performance initial PI, then performing the autotuning
operation with a required phase margin of 45◦, and fi-
nally testing the so obtained PI with a set point and a
load disturbance step, introduced respectively by the
step sources SP and LD in figure 5.

Figure 6 shows the results, proving that the two real-
isations are de facto identical as for their outcome (in
both cases, for example, the tuned PI has K = 1.078
and Ti = 1.751). On the other hand, however, the num-
ber of simulation steps required by the system with
the hybrid autotuner in the 240s presented run is 3908,
versus the 24007 of the system with the fully digital
one. With so simple a process this does not turn into
a significant reduction of the simulation time, but with
more realistic a model of the controlled object, said
advantage would be evident.

4.2 Example 2

This example shows the presented autotuner at work
on a (slightly) more realistic example, namely the
speed control of an axis, the model of which is built
with standard Modelica blocks (with the sole excep-
tion of a noise generator) and is shown in figure 7.
Three tuning operations are performed, with three dif-
ferent values of the required phase margin, namely
40◦, 60◦, and 80◦.

Figure 8 shows the tuning results, obtained with the
hybrid version of the autotuner (of course the fully dig-
ital one produces the same outcome). For brevity only
the final part of the performed simulations is shown,
when the PI is already tuned and the closed-loop sys-
tem behaviour is tested by applying a set point step.

As can be seen, even in the presence of (reason-
ably) noisy measurements, the autotuning PI behaves
correctly. It must be noticed that with the used tun-
ing approach, the control system’s cutoff frequency is
dictated by the relay plus integrator experiment, as it
clearly becomes ωox. For that reason, the relationship
between the required phase margin and the shape of
the obtained closed-loop transients, or even basic char-
acteristics such as the maximum overshoot, is difficult
to characterise in a formal way. Incidentally, this is
especially true in the presence of resonances above
the cutoff, which is typical of mechanical systems.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

60

Figure 6: Closed-loop transients in simulation example 1.

Nonetheless, the prescribed phase margin is achieved,
and in any case the mentioned difficulty is inherent to
the employed autotuning approach, not to its Modelica
representation. The interested reader can find in [8] a
discussion on this matter.

Figure 7: Model of the axis used in simulation exam-
ple 2.

5 Some more words on the proposal
usefulness

It was suggested above, as one of the motivations for
this work, that a Modelica library of autotuners is use-
ful to quickly set up the control system of a plant, or at
least the part of it that is composed of PI(D) loops, and
to verify the correct behaviour of a new autotuner by
applying it in simulation to a benchmark set of mod-
els, conveniently chosen so as to represent the whole
variety of applications where the new product is meant
to be used.

After looking at the examples, and taking a more
research-related point of view, at least one more use-

fulness can however be foreseen for such a library,
and the underlying model structuring. Apologising in
advance for the number of remarks to report prior to
reaching the main point, the matter can be explained
as follows.

In the first place, as can be noticed e.g. from the ex-
tensive review [17], establishing a taxonomy of tuning
methods, also if the scope is restricted to a single con-
troller structure, is far less trivial than one may expect.

Even more difficult is to set up a comparative anal-
ysis of such methods, basically because in the liter-
ature, when proposing and discussing a method, the
process stimulation and information gathering phase
is seldom accounted for. As shown in works like [14],
comparisons between different tuning methods can be
reversed by simply modifying the way in which the
process is stimulated.

For the sake of completeness, it is worth observ-
ing that relay-based rules are the less keen to incur in
that problem, since there is virtually no ambiguity on
how process information is obtained and use with re-
spect for example to the step-based identification of a
fixed-order model, that can be carried out in a variety
of manners, but nevertheless the problem exists, and
needs addressing.

The absence of a taxonomy like that just envisaged
is felt in the applications as an important open prob-
lem, see e.g. [11], because it makes it difficult to de-
cide a priori which tuning rule is best suited for the
particular problem at hand. In the opinion of the au-
thors, the fact that a tuning method “sometimes works
satisfactorily and sometimes does not”, with no appar-
ent reason, is a major reasons for the resistances that
autotuning still encounters in some applications. It is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

61

Figure 8: Tuning results in simulation example 2.

by definition possible to decide which rule (in a given
and wide enough set) is the best for a given problem
a posteriori, by simply applying all the rules in the set
and examining the results, but this is clearly infeasible
in practice.

As a result, most tuning rules are discussed “in
nominal conditions”, i.e., making some structural as-
sumptions on the process dynamics and performing
the analysis under the hypothesis that the real process
adheres to said assumptions [3].

Some attempts were made to circumvent the prob-
lem by means of the robust control theory, but this re-
quires information on the class of processes to which
the one under control belongs, and no matter how such
a class has to be characterised, no single experiment
can provide the necessary information. Attempts were
also made to bring in the “identification for control”
theory [6, 7], but unfortunately in many cases techno-
logical limitations do not permit to apply process in-
puts with the necessary excitation characteristics, and
leave little (if any) room for “experiment design” as
meant for in that theory.

For the problem just sketched, the presented library
offers (part of) a solution. In fact, if evaluating a set
of control rules a posteriori is infeasible in practice,
it is not in simulation. Having in mind the type of
application to be addressed (thermal, mechanical, and
so forth), one can set up an enormous set of cases, test
each considered rule on each case, and draw from such
a simulation campaign the information required to set
up a selection mechanism. In fact there are plenty of
techniques to create such a mechanism, from interpo-

lation to soft computing [13, 10], and what is typically
missing is precisely the data. On a similar front, when
introducing a new tuning rule, the proposal is signifi-
cantly strengthened if some idea is provided on how it
will behave when coupled to realistic process experi-
ments. Providing such information requires a lot of ad-
ditional work with respect to the typical analyses per-
formed in the literature, that are most frequently based
on linear models, because in that domain is autotuning
typically treated, and only the linear framework allows
for powerful methods that do not require simulation.

As noticed e.g. in [19], however, the used models
are frequently inadequate to examine the behaviour
of an autotuner in the large, and therefore the men-
tioned analyses are sometimes confuted by experience,
thereby further hindering a wide adoption of autotun-
ing. Needless to explain why and how, the availability
of a library like that presented here can help solve also
this problem.

6 Conclusions and future work

The problem of simulating autotuning industrial con-
trollers in Modelica was addressed, with the specific
aim of obtaining efficient models. To this end, the
controller is represented as a continuous-time system,
while the autotuning procedure is realised as an al-
gorithm. The proposed model structuring thereby al-
lows to separate the two main parts of an autotuner
clearly, preserving the simulation speed yielded by
continuous-time control blocks, and replicating the au-
totuning software precisely.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

62

As shown by the reported examples, and a num-
ber of other ones not reported here for space reasons,
the so obtained simulation models are very precise if
compared to fully digital ones, that certainly represent
industrial implementation more closely, but oblige to
pay for said fidelity in terms of simulation speed.

In this work, the focus was restricted to relay-based
PI autotuning based on a single point of the process
frequency response. It is however clear that the pre-
sented structuring is totally general, with respect to
both the controller structure, the type of process stim-
ulation, the tuning rules, and all in all the overall tun-
ing procedure, inclusive of the logic needed to control
the tuning operation. Future research will thus explore
all those extensions, leading to a complete Modelica
library of autotuning controllers, including different
tuning rules and excitation procedures, and possibly
addressing not only single controller blocks, but also
the most frequently used control structures.

References

[1] K.J. Åström and T. Hägglund. Automatic tuning
of simple regulators with specifications on phase
and amplitude margins. Automatica, 20(5):645–
651, 1984.

[2] K.J. Åström and T. Hägglund. Industrial adaptive
controllers based on frequency response tech-
niques. Automatica, 27(4):599–609, 1991.

[3] K.J. Åström and T. Hägglund. Advanced PID
control. Instrument Society of America, Re-
search Triangle Park, NY, 2006.

[4] A. Besançon-Voda and H. Roux-Buisson. An-
other version of the relay feedback experiment.
Journal of Process Control, 7(4):303–308, 1997.

[5] R.C. Dorf and H. Bishop. Modern control sys-
tems. Addison-Wesley, Reading, UK, 1995.

[6] M. Gevers. Identification for control: from the
early achievements to the revival of experiment
design. European Journal of Control, 11(4–
5):335–352, 2005.

[7] H. Hjalmarsson. From experiment design to
closed-loop control. Automatica, 43:393–438,
2005.

[8] A. Leva. PID autotuning algorithm based on re-
lay feedback. IEE Proceedings-D, 140(5):328–
338, 1993.

[9] A. Leva. Simple model-based PID autotuners
with rapid relay identification. In Proc. 16th
IFAC World Congress, Praha, Czech Republic,
2005.

[10] A. Leva and F. Donida. Normalised expression
and evaluation of pi tuning rules. In Proc. 17th
IFAC World Congress, Seoul, Korea, 2008.

[11] A. Leva and F. Donida. Quality indices for the
autotuning of industrial regulators. IET Control
Theory & Applications, 3(21):170–180, 2009.

[12] A. Leva, S. Negro, and A.V. Papadopou-
los. PI/PID autotuning with contextual model
parametrisation. Journal of Process Control,
20(4):452–463, 2010.

[13] A. Leva and L. Piroddi. Model-specific auto-
tuning of classical regulator: a neural approach
to structural identification. Control Engineering
and Practice, 4(10):1381–1391, 1996.

[14] A. Leva and L. Piroddi. On the parameterisation
of simple process models for the autotuning of
industrial regulators. In 26th American Control
Conference (to appear), New York (USA), 2007.

[15] Y. Li, K.H. Ang, and C.Y. Chong. Patents,
software, and hardware for PID control—an
overview and analysis of the current art. IEEE
Control Systems Magazine, pages 42–54, febru-
ary 2006.

[16] W.L. Luyben. Getting more information from
relay feedback tests. Industrial & Engineering
Chemistry Research, 40(20):4391–4402, 2001.

[17] A. O’Dwyer. Handbook of PI and PID controller
tuning rules. World Scientific Publishing, Singa-
pore, 2003.

[18] R.C. Panda and C.C. Yu. Analytical expressions
for relay feed back responses. Journal of Process
Control, 13:489–501, 2003.

[19] F.G. Shinskey. Process control: as taught versus
as practiced. Industrial & Engineering Chem-
istry Research, 41(16):3745–3750, 2002.

[20] T. Thyagarajan and C.C. Yu. Improved autotun-
ing using the shape factor from relay feedback.
Ind. Eng. Chem. Res., 43:4425–4440, 2003.

[21] C.C. Yu. Autotuning of PID controllers: relay
feedback approach. Springer-Verlag, London,
1999.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

63

Models of a post-combustion absorption unit for simulation, optimiza-
tion and non-linear model predictive control schemes

J. Åkessona,d, R. Faberb, C. D. Lairdc, K. Prölßa, H. Tummescheita, S. Veluta, Y. Zhuc
aModelon AB, Ideon Science Park, Lund, Sweden

bVattenfall Research and Development AB, Berlin, Germany
cArtie McFerrin Department of Chemical Engineering, Texas A&M University, U.S.A

dDepartment of Automatic Control, Lund University, Sweden

Abstract

An increasing demand on load flexibility in power
supply networks is the motivation to look at flexible,
and possibly optimal control systems for power
plants with carbon capture units. Minimizing the
energy demand for carbon dioxide removal under
these circumstances reduces the cost disadvantage of
carbon capture compared to conventional production.
In this work a dynamic model in Modelica of a
chemical absorption process run with an aqueous
monoethanolamine (MEA) is developed, and used
for solving optimal control problems. Starting from a
rather detailed dynamic model of the process, model
reduction is performed based on physical insight.
The reduced model computes distinctly faster, shows
similar transient behavior and reflects trends for op-
timal steady-state operations reported in the litera-
ture. The detailed model has been developed in Dy-
mola, and the reduced model is used in JModeli-
ca.org, a platform supporting non-linear dynamic
optimization. First results are shown on the dynamic
optimization of the desorption column, the main
cause of energy usage in the process.

Keywords: CO2, absorption, model, optimization,
nonlinear model predictive control, Modelica, JMo-
delica,org

1 Introduction

Carbon dioxide (CO2) removal from a gas mixture
using aqueous amine solutions is a well established
process that previously has mainly been applied to
gas sweetening of natural gas in refineries. Although
the focus there lies primarily on the removal of hy-
drogen sulfide, it is equally applicable to flue gas
from fossil-fuel fired power plants.

Figure 1 shows a schematic of the process. The
CO2 from the flue gas is absorbed by the liquid sol-
vent in the absorber column. The cleaned gas is re-

leased to the environment, while the rich solution is
pumped to the stripper column passing through a
heat exchanger on the way. In the stripper at elevated
temperatures, the CO2 in the solution is released to a
steam flow from the reboiler, which is driven by bled

steam from the power generation process. Leaving
the stripper at the top the product stream is after wa-
ter separation compressed and stored. The overall
power plant efficiency is expected to be reduced by
at least 10 %, the solvent regeneration being respon-
sible for more than half of this [1]. Minimizing the
amount of steam required in the reboiler is therefore
the task with highest priority in the optimization of
this process.

With an increasing demand on the plant’s flexible
operation in the face of frequent load changes and an
increased fraction of the generation capacity ex-
pected to come from renewables, dynamic simula-
tion and optimization have become important tools
to ensure an efficient incorporation of the carbon
capture into the power generation. At the same time
a trade-off must be found between efficiency losses
and removal rate, possibly governed by time-varying
economic boundary conditions.

This paper presents the preliminary results
achieved within a larger project aiming at developing

Figure 1: Schematic of an absorption/desorption
process to remove carbon dioxide from power plant
flue gas.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

64

an optimization technology for advanced model-
based control of the separation plant. It focuses on
the modeling of the capture plant, briefly presents
the methods and tools that are used for optimization
and presents preliminary results of solving an optim-
al control problem for the reduced model presented
in the first half of the paper.

2 Background

2.1 Modeling of carbon dioxide removal with
chemical absorption

System simulation models of amine scrubbing
processes with different levels of detail can be found
in the literature and as part of commercial toolboxes.
The most rigorous models are developed for steady-
state system computations with partial differential
equations for mass transport along bulk flow and
between the two phases, resulting in a high order
system. This becomes easily too complex for dynam-
ic system simulations, especially if parts of the pow-
er generation are supposed to be included or if used
in model based control. Replacing rigorous models
of multi-component mass transfer between gas and
liquid with semi-empirical algebraic correlations re-
duces model complexity dramatically and is for ex-
ample applied in [2] for an absorber description.
Another model aspect with room for different levels
of detail is the thermodynamic model of the liquid
phase, describing the non-ideality of the electrolyte
solution. Tobiesen compares in [3] a more rigorous
with simpler approaches and concludes that high ac-
curacy is rather a matter of a good data fit than mod-
el complexity.

Several studies on optimal operation of an amine-
based CO2 capture plant can be found in the litera-
ture. In [4] the effect of variables such as solvent
circulation rate, stripper pressure or solvent tempera-
ture is investigated. The analysis is however static
and considered only the variation of one parameter at
a time, disregarding the multivariable and dynamic
nature of the process. In [5] control strategies aiming
at a fast response are developed using offline dynam-
ic simulation of the process. In [6], both optimization
and control of the plant are studied. The optimal
conditions for operation are determined offline using
static models and a suitable control structure to
maintain the process close to optimal operation in
spite of disturbances is thereafter derived using dy-
namic models.

The process industry has up to now not taken up
the use of Modelica to the same degree as e.g. the
automotive industry, mainly due a strong market

presence of domain-specific tools that are only ap-
plicable to process industry problems. Another im-
portant reason is the lack of physical properties for
substances used in the process industry. There are,
however, no other languages and tools that are as
suitable as the combination of Dymola for high-
performance simulation and JModelica.org for dy-
namic optimization for the given project, when the
threshold of developing the fluid property models
natively in Modelica is overcome.

2.2 Model Predictive Control

Model Predictive Control (MPC) is an advanced
control method that relies of on-line solution of op-
timal control problems. During recent years, the me-
thod has become increasingly popular, especially in
the process industry, [7]. The popularity of the me-
thod is attributed to its ability to handle multiple-
input multiple-output (MIMO) systems, as well as
control and state constraints. These two ingredients
are common in a broad range of control problems.
MPC allows the control engineer to tune a cost func-
tion to express the control objectives, typically by
choosing weights in a quadratic cost function. By
choosing the weights properly, the significance of
the control objectives can be balanced. E.g., perfor-
mance can be traded for robustness. In order to cap-
ture limitations in the plant to be controlled, con-
straints can be modeled. Constraints may represent
tanks that may not over-flow or pressures that may
not be exceeded for safety reasons. Other examples
of constraints include limitations in actuators, such
as limited ranges in valves and limited torques in
motors.

In addition to a cost function and constraints,
MPC relies on a model of the plant to be controlled.
The model may be derived from first-principles, as is
the case in this paper, or it may be computed from
empirical data. Both linear and non-linear models
can be used. During execution of the MPC control-
ler, the model is used to predict the plant response to
the future control inputs.

The key component of an MPC controller is the
solution of an open loop optimal control problem
(OCP). Based on the cost function, the constraints,
the model and measurements, or estimates of the cur-
rent plant state, optimal predicted trajectories for the
model variables and the control inputs are computed.
The first part of the optimal control variable trajecto-
ries is then applied to the plant. The procedure is
then repeated periodically, each time shifting the
optimal control horizon one step into further. This
principle is called receding horizon control.

Solution of optimal control problems may be very
computationally challenging, in particular for non-
linear models. Application of MPC is therefore more

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

65

common in domains where typical plants have time
constants in the range of minutes and hours rather
than seconds. The CCS systems studied in this paper
falls into this category, which makes MPC a feasible
choice.

In addition to industrial use, MPC has also been
extensively studied in the academic community,
where a large body of theory has been developed,
see, e.g., [11,12]. Notably, results for optimality, sta-
bility and robustness are available.

2.3 JModelica.org, Optimica and Dymola

In this work, Dymola is used as platform for simu-
lation and as graphical editor while the software plat-
form JModelica.org is used to solve dynamic optimi-
zation problems is JModelica.org. The JModelica.org
platform has been described earlier [8], and is cur-
rently undergoing rapid development both with re-
spect to the parts of the Modelica language that are
supported and with respect to the algorithms availa-
ble. The main reason for choosing the JModelica.org
platform is, however, that it offers strong support for
solution of dynamic optimization problems, which is
a key component of executing MPC controllers, as
discussed above.

JModelica.org supports an extension of Modelica
entitled Optimica [9], which allows dynamic optimi-
zation problems to be formulated based on Modelica
models. Optimica enables the user to express cost
functions, constraints, and what to optimize in a de-
scription format that is complimentary to Modelica’s
support for dynamic modeling using high-level lan-
guage constructs. This feature enables shorter design
cycles since more effort can be put into formulation
of optimization problems rather than encoding them
in a specialized format for a particular optimization
algorithm. This property is valuable in this this work,
since extensive tuning of the cost functions and the
constraints has proven necessary.

A direct collocation method, [10], is implemented
in JModelica.org for solving large scale dynamic
optimization algorithms. The method is applicable to
differential algebraic systems and relies on full dis-
cretization of state, algebraic and control profiles.
The resulting non-linear program is typically very
large, but also sparse, which can be exploited by
numerical software. In JModelica.org, the algorithm
IPOPT, [11], is used to solve the NLPs resulting
from collocation.

In terms of user interaction, JModelica.org offers
a Python [12] interface. Using Python, Modelica and
Optimica models can be compiled into executable
optimization programs, optimization algorithms can
be invoked and the results can be loaded. Python also
comes with packages for numerical computations
and visualization, which makes it a suitable envi-
ronment for scientific computations. It can be noted

that the capabilities of Python go beyond scripting
and atomization in that full-fledged applications with
customized user interfaces can be created.

3 Dynamic model of an absorption/desorption
column

The starting point in the development of a Mod-
elica model suitable to be used in dynamic optimiza-
tion is a model of an absorption unit developed in
Dymola. The system consists of the main compo-
nents absorber, stripper, reboiler and internal heat
exchanger as well as auxiliary equipment such as
pumps, valves, flow resistances, cooled vessels, sen-
sors and reservoirs, as sketched in Figure 1. The sol-
vent is an aqueous MEA solution.

Each packed section in a column consists of gas
and liquid bulk flow and a static interface model de-
scribing the two-phase contact. Figure 2 shows the
diagram layer of the packed section model. Gas and
liquid phase are treated as separate media, each
modeled as a separate medium property package.
Thermodynamic equilibrium is only present at the
phase interface, while mass and energy storage only
occurs in the bulk flow.

Figure 2: Diagram of the packed section model

Phase equilibrium at the gas-liquid interface for
both, water and carbon dioxide, is computed as fol-
lows, assuming the pointing-factors and gas phase
fugacity coefficients being equal to one.

 ����� � ��������He��� (1) ����� � ������������,����	
 (2)

with the mole fractions in gas and liquid phase �	

and �	, the Henry-coefficient for dissolution of CO2
in water He, the vapor pressure of water �	,
�� and
the system pressure �.

3.1 State selection

Pressure in the column is determined by the gas
phase, with friction losses along the way through the
packing material. The space available for the gas

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

66

phase is however dependent on the space occupied
by the liquid phase. These properties and their deriv-
atives are then passed to the respective other bulk
component through signal connectors, see green and
dark blue connections in Temperature and species
amounts in each phase were chosen as independent
state variables. Algebraic loops and high index prob-
lems can thus be avoided if

1. gas pressure can be directly computed from

temperature and species amounts in the gas
phase, e.g. using the ideal gas law or a cubic
equation of state,

2. liquid density is independent of pressure (in-
compressible medium),

3. energy and species mass balances are formu-
lated in terms of the derivatives of the chosen
states,

4. and mass and heat transfer correlate concentra-
tions and temperatures in the two dynamic vo-
lume models, gas and liquid bulk flow

Pressure drop in the gas phase and liquid hold-up

are determined with literature correlations for packed
columns, e.g. [Mackowiak], or user-defined nominal
points, i.e. constant hold-up and gas flow operating
point. The actual liquid hold-up correlates with the
static set point via first order dynamics.

For a stripper column operated with MEA-
solution and under the assumption that MEA is non-
volatile, the number of dynamic degrees of freedom
is then equal to 7 per volume segment (CO2 gas, H2O
gas, CO2 liquid, H2O liquid, MEA, T liquid, T gas).
In the absorber absorber additional flue gas compo-
nent as oxygen and nytrogen are present. Column
design, operation and demanded accuracy determine
the required discretization of the packed sections in
bulk flow direction, which usually is a number be-
tween 8 and 20.

3.2 Chemical reactions

The capacity of amines to absorb carbon dioxide
is to a large extent based on chemical reactions. In
the case of MEA as a solvent five main reactions can
be identified as well as the zero charge condition.

2 H2O ↔ H3O

+ +OH- (3)

CO2 + 2 H2O ↔ H3O
+ + HCO3

- (4)

HCO3
- + H2O ↔H3O

+ + CO3
2- (5)

MEAH+ H2O ↔ H3O
+ + MEA (6)

MEACOO- + H2O ↔MEA + HCO3
- (7)

This leads to a total of nine species in the liquid
phase including the 6 ions. Throughout the models
developed within this work, chemical equilibrium is
assumed to be present, at the phase interface as well
as in the bulk liquid. This assumption is thought to
be justified at high temperatures as they are found in
the stripper. The deviations resulting in the absorber
are considered acceptable, if taking into account the
poor availability of reliable kinetic data in the litera-
ture and the amount of additional dynamic states
saved (5 per volume segment). However, a different
solvent may demand a different approach.

3.3 Chemical equilibrium

The liquid phase speciation is determined by equi-
librium constants Kj from the literature for each reac-
tion j, which are determined empirically and ex-
pressed as polynomial functions of temperature.
They are defined as

 � � ∏��	�	
��,� (8)

where �	 and �	 are the activity coefficient and

molality of component i, respectively. �	,� is the stoi-
chiometric coefficient of component i in reaction j,
starting materials are considered with a negative
sign, products with a positive one. Equilibrium con-
stants allow also for an inference on heats of reac-
tion, using the van’t Hoff equation:

 ������ �
∆����� (9)

where ∆Hr is the enthalpy of reaction, T the tem-

perature and R the ideal gas constant. The enthalpy
of physical solution is computed accordingly using
the temperature dependency of the Henry-coefficient
[13].

 However, a lot of computational time is required
to solve the non-linear system of equations describ-
ing the speciation. Furthermore, extreme differences
in ion concentrations by several orders of magnitude
make a good choice of iteration variables essential
for robust convergence.

In addition the following assumptions also apply:

− the flue gas entering the absorber contains only
carbon dioxide, water, oxygen and nitrogen

− MEA is non-volatile and not present in the gas
phase

− the total amount of liquid in the column is defined
as the packing hold-up and the sump liquid vo-
lume

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

67

− the liquid in the column sumps and other large
volumes is assumed to be ideally mixed

− mass and heat transfer between liquid and gas
phase is restricted to the packed section

− negligible temperature difference between liquid
bulk and interface to gas phase

− perfect gas law applies in the gas phase.
− phase equilibrium in reboiler and condenser

Table 1: References for physical properties used in
the model

The molecular carbon dioxide concentration cCO2,b is
then used to compute mass transfer between bulk and
interface (if).
 �� 	� � �	��	����	,� � �	,	�
 i = CO2 (10)

�� 	� � ���������,����,����� i = CO2, H2O (11)

where �� 	� and �� 	� denote the molar flows in the liq-
uid and the vapor phase, respectively. �	� is the con-
tact area, E is an enhancement factor describing the
impact of chemical reactions on the concentration
profile near the interface. k is a mass transfer coeffi-
cient, �	,	� and �	,� are molar concentrations at the
interface and in the liquid bulk, respectively and �	,	�
and �	,� are correspondingly partial pressures of the
considered species in the gas phase. R and T are the
ideal gas constant and bulk phase temperature, re-
spectively.
Properties and correlations from the literature used in
these models are listed in Table 1.

3.4 Model reduction

Online optimization as it is used in MPC impli-
cates tighter limitations on the model size than pure
dynamic simulation or even offline optimization
would do. The solution of the optimization problem
for a finite horizon needs to be found between two
sampling instants and therefore demands a relatively
low computational effort. But also the available
memory to store result points for all model variables
for each time step within the finite horizon limits the
allowed number of algebraic and differentiated va-
riables. However, exact numbers are hard to define
in advance. At the same time accuracy demands are
not as high as the model is updated with measure-
ment values at each sample step.

The following measures are taken in order to re-

duce the model:
1. Chemical equilibrium computation (and ion

speciation) was replaced by a spline approxima-
tion of the molecular CO2 concentration in the
liquid phase as a function of temperature and
solvent loading with CO2. The mass fraction of
MEA in the unloaded solution is kept constant at
30% for this function.

Property Symbol
Used in
reduced
model

Reference

Equilibrium
constants

Ki indirectly
Collected
in [14]

Henry-
coefficient

Heco2 yes [14]

Activity
coefficients,
liquid phase

γi indirectly [14]

Mass transfer
coefficients

kiL, kiV no [15]

Diffusivities
liquid phase

DiL no

[16] +
Stokes –
Einstein
relation

Diffusivities
gas phase

DiV no
Fuller’s
eq.in [17]

Densities and
viscosities,
liquid

ρ, µ yes [18]

Enhancement
factor

E no [2]

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

68

2. Enthalpy of absorption/desorption is replaced by
a function of temperature but constant with sol-
vent loading.

3. Mass transfer coefficients including enhance-
ment by chemical reactions are no longer com-
puted from physical medium properties, but be-
come constant tuning parameters.

4. Reduction of the number of volumes in bulk
flow direction to an acceptable minimum (itera-
tive, dependent on application)

5. Constant specific heat capacities of all species
and constant liquid density

3.5 Validation and model comparison

The total system model is composed of the two
packed columns and complemented with washers,
condensers, pumps and valves according to Figure 1.
The reboiler, which supplies the gas flow to the
stripper is modeled as a flash stage with phase equi-
librium and uniform temperature. Simulation results
of the detailed model are compared to experimental
data from a pilot plant run with open control loops
[19]. The input variables of the test case are:

• fluegas inlet flow and properties
• clean gas pressure
• liquid recirculation rate
• reboiler duty
• product stream outlet pressure

All inlet conditions are kept constant except for the
flue gas rate, which is reduced by 30% after having
run the plant in steady-state for some time. Figure 3

shows the CO2 removal rate before and after the step
change in experiment and simulation. Giving the fact
that the experiment apparently did not reach steady-
state before the step, the agreement between the two
curves is satisfactory.

The temperatures at the gas outlet of the stripper col-
umn and at the liquid outlet of the reboiler are plot-
ted in Figure 4.
Especially the reboiler temperature, which is directly
coupled to pressure and pressure drop along the gas
flow path as well as the solvent loading, is in very
good agreement with the experimental data.

Since liquid phase concentration data is unavailable,
it can be useful to look at temperatures instead, be-
cause of the direct connection between ab-

Figure 4: Stripper top and reboiler temperatures

Figure 5: Temperature profile wrt column
height

Figure 3: Carbon dioxide removal rate, experi-
ment and simulation of the detailed model

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

69

sorbed/desorbed carbon dioxide and temperature
changes due to heats of reaction. Figure 5 compares
the gas temperature profile along the absorber col-
umn height for experiment and simulation at pre-
sumed steady state before and after the flue gas step,
respectively. The locations of the five measurement
points were guessed to be equally distributed. The
simulation captures well the location of the highest
temperature first in the upper part and later with a
lower gas flowrate as having moved further down.

The optimization problem in the next section is only
solved for the stripper column including reboiler and
condenser. A comparison of the detailed and the re-
duced model is therefore only performed for this part
of the plant. Model assumptions, which affect the
dynamic behavior of the unit, namely concerning
liquid volumes and hold-ups, are similar in both
models. Therefore, the comparison is restricted to
steady-state operating points. Figure 6 presents the
liquid lean loading at the stripper outlet as a result of
reboiler duty under constant liquid inlet conditions
and stripper top pressure. The results show that the
energy required to regenerate the solvent to a cer-
tainn lean loading is predicted close to each other
with the two models. It can be concluded that the
complexity of the reduced model is sufficient to in-
vestigate the energy consumption of the reboiler. The
reduced model performed the stripper unit series 200
times faster than the detailed model. The simulations
started at fixed initial states and simulated to steady-
state. Large transients as they occur in the first
seconds of a simulation demand especially large
computational efforts, when using the detailed mod-
el.

4 Optimization results

The goal of the project is to apply nonlinear model
predictive control on the separation plant to minim-
ize its energy usage. As it was mentioned in Section
2.2, this requires solving a sequence of open-loop
optimal control problems. The aim of the present
section is to show how those open-loop control prob-
lems can efficiently and accurately be solved using
the simplified models and the tools previously de-
scribed. For that purpose, a simple control problem
using one of the most energy demanding parts of the
separation plant, namely the stripper unit, will be
formulated and solved.

4.1 Process model

The process to be optimized is the stripper unit
shown in Figure 7.

Figure 7: Graphical representation of the stripper
unit used for optimization in Dymola

It is composed of:

• a reboiler
• a stripper column with packed sections

and a sump
• a condenser to remove the water from the

product stream
• a pressure control valve together with a

pressure controller

Reboiler

Desorber

From
Absorber

To
Absorber

To
Storage

Condenser

Pressure
control

Heat injection

G

desorber
L

G L

reb?

LV

F

conden?

r?

r?

valve
gasSink

T_gs

k=313
p_gs

k=1.3e5

p_set

k=1?

valve.p?

headPressure

T_c?

T=3?
K

leanSolut?

richSolut?

f low sou?

T_so?

k=356
Vflo?

k=16.?

liquidSink

T_ls

k=313
p_ls

k=2e5

summary

Q_reb?

k=2e6

gain

pI1

vol2

vol1

dQ

heat_der

I
k=1

1
s

Figure 6: Solvent lean loading as a function of
reboiler duty, detailed and reduced model

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

70

The process model is described by 1493 equations
and 1493 time-varying variables, including 50 conti-
nuous-time states. This is a larger model size than
the size of the models reported in [20] for start-up
optimization of coal fired power plants.

4.2 Control problem

Objective function. The control problem is formu-
lated as in standard MPC using a quadratic cost func-
tion J penalizing deviations of the controlled variable
y, as well as variations in the control signal u: ���, ��� � � 	
���� ������ � � ������� �����

where 	 and � are weights that can be tuned to
achieve a desired dynamic behavior and �� is the
prediction horizon.

Controlled variable. The variable to be controlled

is the removal efficiency � of the separation plant. It
is defined as the mass flow ratio of carbon dioxide
leaving the condenser and carbon dioxide entering
the absorber column with the fluegas: η � m� 	
�,�������� �� m� 	
�,������� ��

Since the absorber column is not included in the
optimization set-up, the CO2 concentration in the
rich solution entering the stripper column has been
assumed to be in equilibrium with the flue gas enter-
ing the absorber column.

Control signal. The chosen control signal is the

heat flow rate �� to the reboiler. However, the deci-
sion variable of the optimization problem is chosen

to be its time-derivative
����� , which is parameterized

by a piecewise constant signal taking N values over
the prediction horizon ��, i.e. for i=0..N-1

 ����� �t� � �� � �, � � � ��� , � � 1���� "

 Only the first value of this open-loop optimiza-

tion result, i.e. �� would actually be applied to the
process if the entire MPC algorithm was imple-
mented.

Constraints. As far as the optimization constraints

are concerned, they may be of both regulatory1 and
operational nature. The versatile JModelica.org plat-

1 Regulatory rules for carbon capture plants are still under
discussion, but will certainly play a role.

form allows us to include any constraint that can be
expressed in terms of process variables. In the
present example, an upper limit on the reboiler pres-
sure is imposed to avoid MEA degradation occurring
at high temperatures.

 #����� ����� $ #!"#, � � �0,��"

A maximal temperature could equivalently be im-
posed since pressure and temperature are coupled in
the reboiler.

Initial state. The initial state �� is assumed to be

known and is computed using Dymola as the statio-
nary point corresponding to a given heat flow rate �� � ���. An implementation of the MPC controller
would require an observer to compute an estimate of
the initial state �� based on the available measure-
ments.

4.3 Numerical example

As mentioned in Section 2.3, the JModelica.org plat-
form implements a direct collocation method to
solve the optimal control problem. This implies that
optimization is not performed on the continuous
DAE system mentioned in 4.1, but on a discretized
version using the Radau quadrature. The trajectory of
every variable in the dynamic model is approximated
by piecewise polynomials on each interval of the
prediction horizon. In each interval, the approxima-
tion is exact at a number &$ of points, the collocation
points. Choosing &$ � 3 and dividing the prediction
horizon �� in N=10 intervals of equal length con-
verts the continuous optimization problem to an al-
gebraic nonlinear program with 29824 variables,
29814 equality constraints and 5646 inequality con-
straints. Most of the inequality constraints originate
from the max and min attributes associated to the
physical variables. As the optimization problem is
most probably non-convex, it is essential to provide
the solver IPOPT with reasonable guessed trajecto-
ries for the initialization of the iterative optimization
algorithm. The trajectories were here taken to be
constant in time and given by the initial state ��,
computed in Dymola.
 A step change in the desired removal efficiency is
now considered. Using the numerical values listed in
Table 2, the optimization problem is solved in JMo-
delica.org in 36 iterations. The results are shown in
Figure 8.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

71

Table 2: Parameter values used in the optimization
problem

1000s 0.1 0.7 M 1.95

bar
0.9

At the beginning, the heat flow rate to the reboiler is
rapidly increased from its start value of 0.7 MW to
1.05 MW, leading to a removal efficiency of about
0.8 at time t=400s. At around 500s, the reboiler pre
sure reaches its maximal allowed value of 1.95 bar
and the heat flow rate decreases slightly to avoid

Figure 8: Trajectories of the optimized desorber unit.
100 seconds. From top to bottom: removal efficiency, condenser pressure and reboiler pressure,

: Parameter values used in the optimization

At the beginning, the heat flow rate to the reboiler is
eased from its start value of 0.7 MW to

1.05 MW, leading to a removal efficiency of about
0.8 at time t=400s. At around 500s, the reboiler pres-
sure reaches its maximal allowed value of 1.95 bar
and the heat flow rate decreases slightly to avoid

constraint violation. Because of the high condenser
pressure, the target efficiency of 0.9 cannot be
achieved in this optimization setup. With a different
column design or different boundary conditions,
higher efficiency could of course be achieved.
To evaluate the consistency of the optimization r
sult with respect to the continuous-time model equ
tions, the optimized trajectories have been evaluated
by applying the optimized heat input to the model
implemented in Dymola. No difference could be
served when comparing results from JModelica.org
and Dymola (results not shown).

Trajectories of the optimized desorber unit. The target efficiency is changed to 0.9 after
tom: removal efficiency, condenser pressure and reboiler pressure,

violation. Because of the high condenser
pressure, the target efficiency of 0.9 cannot be
achieved in this optimization setup. With a different
column design or different boundary conditions,
higher efficiency could of course be achieved.

consistency of the optimization re-
time model equa-

tions, the optimized trajectories have been evaluated
by applying the optimized heat input to the model
implemented in Dymola. No difference could be ob-

esults from JModelica.org

The target efficiency is changed to 0.9 after
tom: removal efficiency, condenser pressure and reboiler pressure,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

72

5 Conclusions

A dynamic model of a post-combustion carbon

capture process developed in Modelica was
presented. The main focus lies on the chemical
absorption of the carbon dioxide by the liquid
solution in the absorber column. The same model
can be used for the corresponding desorption process
in the stripper column, by exchanging the flue gas
medium for a mixture of water steam and carbon
dioxide. A comparison of simulation results with
experiments from a pilot plant showed a good
agreement.

In a second step the model was reduced to meet
the demands of a dynamic optimization. The largest
performance improvement was achieved with a re-
placement of the chemical reactions in the liquid
phase by an interpolated table with equilibrium data.
A comparison of steady-state results from the strip-
per unit modeled with both approaches justified the
usage of the reduced model for energy optimization
purposes.

As a first step toward NMPC, a test case with the
chosen system model was defined. It demonstrates
the solution of an optimal control problem with the
JModelica.org platform while adhering to specified
variable constraints, in this case set on the reboiler
pressure.

By formulating and solving this problem we have
shown that the JModelica.org platform is a viable
choice for solving large scale dynamic optimization
problems, which is a prerequisite for NMPC applied
to CCS plants. Future extensions include investiga-
tion of how to explore available control variables,
cost function formulation, and state estimation.

6 Acknowledgements

This work was funded by the Swedish funding
agency Vinnova under the grant program “Forska
and Väx.

7 References

[1] Abu-Zahra MRM, Schneiders LHJ, Niederer
JPM, Feron PHM, Versteeg GF. CO2 capture
from power plants. Part II. A parametric study of
the economical performance based on mono-

ethanolamine. International Journal of
Greenhouse Gas Control 2007;1:135-142.

[2] Kvamsdal HM, Jakobsen JP, Hoff KA. Dynamic
modeling and simulation of a CO2 absorber
column for post-combustion CO2 capture. Chem
Eng Process 2009;48:135-144.

[3] Tobiesen FA, Juliussen O, Svendsen HF. Expe-
rimental validation of a rigorous stripper model-
for CO2 post-combustion capture. Chem Eng Sci
2008;63:2641-2656.

[4] Freguia S, Rochelle GT. Modeling of CO2 cap-
ture by aqueous monoethanolamine. AIChE
Journal 2003;49(7):1676-1686.

[5] Ziaii S, Rochelle GT, Edgar TF. Dynamic
modeling to minimize energy use for CO2
capture in power plants by aqueous
monoethanolamine. Ind Eng Chem Res
2009;48:6105–6111.

[6] Panahi M, Karimi M, Skogestad S, Hillestad M,
Svendsen HF. Self-optimizing and control struc-
ture design for a CO2 capturing plant. In: Eljack
FT, Rex Reklaitis GV, El-Hawagi MM, editors.
Proceedings of the 2nd Annual Gas Processing
Symposium, Qatar 2010.

 [7] Qin SJ, Badgwell TA. A survey of industrial
model predictive control technology. Control
Engineering Practice 2003;11: 733-764.

 [8] Åkesson, J., Årzén, K.-E., Gäfvert, M.,
Bergdahl, T., & Tummescheit, H. Modeling and
Optimization with Optimica and
JModelica.org—Languages and Tools for
Solving Large-Scale Dynamic Optimization
Problem. Computers and Chemical Engineering
2010, Doi:10.1016/j.compchemeng.2009.11.011.

[9] Åkesson, J. Optimica-an extension of Modelica
supporting dynamic optimization. 6th
International Modelica Conference 2008.

[1] Biegler LT, Cervantes A, Wächter A. Advances
in simultaneous strategies for dynamic
optimization. Chemical Engineering Science
2002;57:575-593.

[11] Wächter A, Biegler LT. On the implementation
of an interior-point filter line-search algorithm
for large-scale nonlinear programming.
Mathematical Programming , 2006;106 (1); 25-
58.

[12] Python Software Foundation. Python Home
Page. Retrieved from www.python.org, 2010.

[13] Kim I, Hesssen ET, Haug-Warberg T, Svendsen
HF. Enthalpies of Absorption of CO2 in Aqueous
Alkanolamine Solutions from e-NRTL Model.
Energy Procedia 2009;1:829-835.

[14] Böttinger W. NMR-spektroskopische
Untersuchung der Reaktivabsorption von

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

73

Kohlendioxid in wässrigen Aminlösungen. Dis-
sertation. Universität Stuttgart; 2005

[15] Onda K, Takeuchi H, Okumoto Y. Mass trans-
fer coefficients between gas and liquid packed
columns J Chem Eng Jpn 1968;1(1):56-62

[16] Versteeg GF, van Dijck LAJ, van Swaaij WPM.
On the kinetics between CO2 and alkanolamines
both in aqueous and non-aqueous solutions. An
overwiew. Chem Eng Commun 1996;144:113-
158.

[17] Poling BE, Prausnitz JM, O'Connell JP. The
properties of gases and liquids. 5th edition. New
York: McGraw-Hill;2001

[18] Weiland RH, Dingmann JC, Cronin DB,
Browning GJ. Density and Viscosity of Some
Partially Carbonated Aqueous Alkanolamine So-
lutions and Their Blends. J. Chem. Eng. Data
1998;43(3):378–382

 [19] Faber R, Köpcke M, Biede O, Nygaard-
Knudsen J, Andersen J. Open-loop step res-
ponses for the MEA post-combustion capture
process: Experimental results from the Esbjerg
pilot plant. Proceedings of the GHGT-10 confe-
rence 2010.

[20] Franke, R. Doppelhamer, J., Online Application
of Modelica Models in the Industrial IT Ex-
tended Automation System 800xA, Proceedings
of 5th International Modelica Conference, 2006,
Vienna, Austria.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

74

Robust Initialization
of Differential-Algebraic Equations Using Homotopy

Michael Sielemann1, Francesco Casella2, Martin Otter1, Christoph Clauß3, Jonas Eborn4,
Sven Erik Mattsson5, Hans Olsson5

1DLR Institute of Robotics and Mechatronics, Germany
2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

3Fraunhofer EAS, Dresden, Germany
4Modelon AB, Lund, Sweden

5Dassault Systèmes AB, Lund Sweden

Abstract

The new operator homotopy(..) was introduced in
Modelica 3.2 to improve the solution of difficult ini-
tialization problems. The background and motivation
for this approach is discussed and it is demonstrated
how to apply it for mechanical, electrical and fluid
systems. Furthermore, it is shown at hand of several
examples how an inappropriate formulation might
lead to ill-posed problems.

Keywords:
Initialization, DAE, homotopy, nonlinear equations

1 Introduction

A dynamic model describes how the state variables
and thus the entire system behave over time. The
state variables define the current condition of the
model and have to be initialized when simulation
starts. For this purpose, Modelica provides language
constructs to define initial conditions such as initial
equation sections (Mattsson et. al., 2002). The result-
ing constraints and all equations and algorithms that
are utilized during the simulation form the initializa-
tion problem. Based on its solution, all variables,
derivatives and pre-variables are assigned consistent
values before the simulation starts.

Mathematically, the resulting problem is an initial
value problem for a differential algebraic equation
system (DAE) with dim(f) = nx+nw equations:

 , , , , () , () ,nx nwt t t t 0 f x x w x w .

Here, x is the vector of state variables and w is the
vector of algebraic unknowns. For simplicity of the
discussion, we assume that the DAE has no hybrid
part and is index-reduced, i.e. it has index 1, which
means that the following expression is regular:

f f

x w
.

Note, all the following results still hold for hybrid,
higher index DAEs with small adaptations.

Initialization means to provide consistent initial
values for so that the DAE is fulfilled at

the initial time t0. Since these are 2*nx+nw un-
knowns and the DAE has nx+nw unknowns, addi-
tional nx equations must be provided which are
called “initial equations” in Modelica:

0 0 0, ,x x w

 0 0 0 0, , , , dim()t nx 0 g x x w g

The most often used initial equations are:

0 x 0
that is, steady-state initialization.

The result is usually a nonlinear system of alge-
braic equations, which has to be solved numerically.
This does not always work right away for industrial
problems as the commonly employed gradient-based
local algorithms, such as the damped Newton
method, provide local convergence only (even when
using globalizations such as trust regions).

Modelica allows users to describe any model ma-
thematically, which makes it highly flexible and po-
werful for simulation of heterogeneous multi-domain
physical systems. However, this also means that no
knowledge of the mathematical character of the
problem equations can be introduced into the solver.
Instead, an algorithm has to work on a general nu-
merical problem (in contrast to domain-specific algo-
rithms for nonlinear problems).

As a result, the success to solve initialization
problems of state-of-the-art implementations of
Modelica tools depends on the choice of iteration
variables and the guess values for these variables
defined with the start attribute. Library developers
therefore typically implement approximate equations

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

75

in order to set these. They are usually formulated in
terms of parameters (of e.g. the boundary condi-
tions). At the same time, the iteration variables of the
nonlinear equation systems may change after small
topological modifications to the model. As a result it
may become difficult for a library developer to pro-
vide a robust initialization capability.

Since a model becomes useless whenever initiali-
zation fails, and the current state-of-the-art is not
fully satisfactory in this regard, we conclude that
more reliable and robust methods are needed for a
wider application of the Modelica modeling lan-
guage by practitioners.

The goal of this contribution is to provide the
solver with more information on the problem to
solve. This is performed in an object-oriented way
and seamlessly integrates with the concept of equa-
tion-based object-oriented languages.

2 Nonlinear Equation Solvers
and Homotopy

The classic gradient-based iterative algorithms to
solve nonlinear algebraic equation systems such as
damped Newton’s Method provide local conver-
gence only, see, e.g., (Dennis and Schnabel, 1996),
(Deuflhard, 2004), (Kelley, 2003). Such algorithms
may fail due to various reasons such as the residuals
not being Lipschitz continuously differentiable or
containing local minima with respect to some norm
introduced by the algorithm.

Several alternatives to these conventional meth-
ods exist. Homotopy is one of them and is consid-
ered in this contribution to meet the need for more
robust initialization.

2.1 Established Homotopy Methods

In homotopy methods for solving nonlinear algebraic
equation systems, the idea is to start with a simpli-
fied problem and continuously deform it to the diffi-
cult problem of interest. Even though this appears to
be conceptually simple, several details of these me-
thods and algorithms have to be considered. Unless
certain prerequisites are met, the existence of the
homotopy trace between the start and a solution, fi-
nite length of the path, nonexistence of singularities
along the path and other important requirements are
not guaranteed.

The homotopy is constructed from a system of re-
sidual equations that is easy to solve, as well as the

one of interest, = 0. Here, a generic vector z

of unknowns is used. In the Modelica case, this vec-

tor is:

 F z

0 0 0[; ;]z x x w and the equations are F=[f; g].
The homotopy is then a system of equations with one
higher dimension and is denoted by

 , z 0ρ .

The additional dimension is the homotopy or con-
tinuation parameter λ. It is typically restricted to the
range 0 ≤ λ ≤ 1 such that is solved easily

and

 ,0 ρ z 0

 ,1 ()z F zρ is the system of interest.

At least three different homotopies are discussed
in literature. We introduce the Fixed Point Homotopy
following (Chow et. al., 1978) as

 0, 1 z z ρ z F z .

Here, z0 is the start iterate. According to (Keller,
1978), the Newton Homotopy (or Global Homotopy)
is defined as follows:

 z F

F z
0

0

, 1

1

ρ z F z F

F z

z

Finally, the Affine Homotopy is introduced following
(Wayburn and Seader, 1987) as

 0 0, 1 z F z z z ρ z F

Here, 0F z denotes the Jacobian of the residual

equations at the start iterate.
The Newton Homotopy has the advantage of

scale-invariance (Wayburn and Seader, 1987). How-
ever, the simple problem may have sev-

eral solutions and infinite loops that do not cross

 ,0 0ρ z

1 may result. Such tracks are called isolae (Choi
and Book, 1991). The Fixed Point and Affine Homo-
topies only contain a single solution to the simple
problem. Therefore, starting continuation inside an
isola is impossible. The Affine Homotopy is also
scale-invariant and the Fixed Point Homotopy is not
(Wayburn and Seader, 1987).

Affine and Fixed Point Homotopies in turn may
prescribe traces, which diverge toward an infinite
value of some elements of the unknowns z. Obvi-
ously, such traces cannot be followed numerically as
the arc length is infinite and because the sign may
change.

We note that (Chow et.al., 1978) provides theo-
rems on the success of the Fixed Point Homotopy
with probability one in the sense of a Lebesgue
measure. Success means that the track is of finite
length, bounded and free of singularities (with the
exception of turning points, which are not critical).
The associated coercivity conditions on the residual
equations were successfully employed in the area of
analog circuit simulators for example. However, it is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

76

neither possible to translate the boundedness condi-
tion on the solution of the residual equations F(z) nor
the Inner Product Condition on F(z) to general multi-
domain physical modeling as needed by a Modelica
model. The former is the case due to the existence of
unsaturated amplifier components, which arise in
several applications, and the latter due to the lack of
energy dissipation in component models to compen-
sate the effect of boundary conditions in several
physical domains other than electronics.

0 Homotopy parameter λ

Solution of
Track diverges to ±∞

Isola

1

unknown x

Regular path with turning points

Bifurcation

Figure 1: Illustration of failure modes of homotopy

In summary, the experience of the authors shows that
such established homotopy methods are not suffi-
ciently robust due to be above mentioned failure
modes. Furthermore, an implementation of the Fixed
Point Homotopy within Dymola 7, which was avail-
able since several years, did not provide indications
of increased robustness of this approach with respect
to the Newton solver in practical applications.

2.2 General Problem-Specific Homotopy

The issues in the general homotopies introduced so
far stem from continuously deforming two rather
unrelated systems of equations into each other. In the
case of the Fixed Point Homotopy the simplified
problem is the linear system z – z0.

The source of the problem is the “lack of addi-
tional information” that can be utilized for the solu-
tion. In order to improve this situation for Modelica,
a problem-specific homotopy is introduced:
 By deriving the simplified system from the ac-

tual system of interest, and
 by formulating the simplified system such that a

homotopy to the actual problem of interest be
free of singularities.

The formulation of the simplified system is problem-
specific and allows modelers to infuse their knowl-
edge about the physics of the problem into the way
the equation system is solved (cf. Introduction). The
approach is compatible with object-orientation and
declarative modeling and is understood as something

introduced by domain experts to selected key equa-
tions. The goal is the formulation:

 , 1 ρ z F z F z .

Here, F z is the actual problem and F z is the

simplified one. Based on a proposal by M. Otter, M.
Sielemann and F. Casella, the new built-in operator,
homotopy(..) was introduced in Modelica 3.2. It
depends on two arguments, namely actual, the
Real expression describing the actual problem, and
simplified, the Real expression corresponding to
the simplified problem. The Modelica translator can
then expand this operator according to the homotopy.
For the homotopy given above, which will be used
throughout the remaining part of this article, the ex-
pression

homotopy(expr1, expr2)

is thus expanded to

 expr1 1 expr2 .

In contrast to other language constructs, the benefit
of using this operator is that only one equation sys-
tem for any number of steps is needed for initializa-
tion, and that it is logically defined how to transform
one equation system into the other.

3 Implementation in Modelica Tools

The implementation of the new homotopy operator
in a Modelica tool is rather straightforward: During
the symbolic manipulation phase (BLT transforma-
tion, Pantelides algorithm etc.), the operator is
treated as a function with two arguments. When gen-
erating code, the tool has to conceptually perform
one homotopy iteration over the whole model and
not several homotopy iterations over the respective
local algebraic equation systems. The reason is that
the following structure can be present:

1 1

2 1 2

() // has homotopy operator

= (, , ,)

w f x

0 f x x w w

Here, a local non-linear equation system f2 is present.
The homotopy operator is, however, used on a vari-
able that is an “input” to the non-linear algebraic
equation system and modifies the characteristics of
it. The only useful way is to perform the homotopy
iteration over f1 and f2 together.

This approach is “conceptual”, because more ef-
ficient implementations are possible, e.g. by deter-
mining the smallest iteration loop, that contains the
equations of the first BLT block in which a homo-
topy operator is present and all equations up to the
last BLT block that describes an equation system.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

77

Various continuation algorithms have been sug-
gested in literature, which are all suitable to trace
homotopies of the type considered herein (e.g. pseu-
do arc-length algorithms). Popular examples are
Hompack (Hompack, 2010) and Alcon2 (Elib, 2010;
Deuflhard et. al. 1987).

In order to validate the methodology, a test im-
plementation was developed by M. Sielemann,
which utilizes the Dymola software (Dymola 2010)
and the Loca continuation algorithms of Trilinos
(Heroux et. al., 2005). One practical advantage of
Loca over Hompack and Alcon2 is that the sensitivi-
ties of the homotopy with respect to the continuation
parameter λ do not have to be provided. For Hom-
pack and Alcon2 this has to be provided and had to
be implemented using finite differences. The
Loca/Dymola implementation has the following fea-
tures:

 It provides three options for the treatment of the
suggested homotopy operator. Normally, it is ex-
panded to the given homotopy expression. Alter-
natively, simplified equation sets are obtained by
inlining either argument. In case of the simplified
argument, maximum structural simplifications of
the equation system result.

 The user is able to manually prescribe whether to
use homotopy initialization or not. This is an im-
portant feature for library development and de-
bugging, and may be useful for users, too (e.g. if a
local gradient based solver converges to a mathe-
matically valid, but physically unreasonable solu-
tion or when a local gradient based solver does
not converge and a user does not want to wait at
the start of each simulation until the software real-
izes this and switches to homotopy initialization).

 Verbose information on the homotopy is option-
ally provided, which is useful for library devel-
opment and debugging. In particular, the homo-
topy traces are visualized. Like this, it is possible
to reconstruct what happens during the solution of
the simplified problems and the homotopy trans-
formation.

Additionally, Dymola 7.5 Beta also supports the
homotopy operator. It was used for some of the ap-
plication examples.

4 Application Examples

In this section several examples are given how to
utilize the homotopy operator in different physical
domains in order to solve difficult initialization prob-
lems.

4.1 Mechanical Systems with Kinematic Loops

Whenever kinematic loops are part of a mechanical
system, non-linear algebraic equation systems are
present. If these equation systems are solved numeri-
cally, the user has to provide guess values for the
iteration variables in order that the system can be
initialized. The issues are first demonstrated at hand
of a simple example, the four bar mechanism, see
Figure 2:

Figure 2: Four bar mechanism
 (top: Modelica model, bottom: animation).

The four bar mechanism consists of 4 connected re-
volute joints where the rotation axes of the joints are
all parallel to each other. Since this mechanism is
over constrained (e.g., the forces perpendicular to the
kinematic loop cannot be uniquely determined), the
upper two revolute joints are replaced by spherical
joints which gives the same kinematic motion, but all
quantities can be uniquely computed. Since joint r1
shall be driven by a drive train, the angle of this
joint, “r1.phi” and its derivative are defined to be
states by selecting in the “Advanced” menu of joint
“r1” the option “stateSelect = StateSelect.always”.

This mechanical system gives rise to 9 nonlinear
algebraic equations that are transformed by Dymola
to one non-linear algebraic equation in one unknown.
This equation is the constraint that the distance be-
tween the two spherical joints is constant. Formally,
this nonlinear algebraic equation has the form:

0 = f(r1.phi, r4.phi)

where r1.phi is the “known” state and “r4.phi” is the
angle of the right lower revolute joint that is used as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

78

iteration variable. This nonlinear equation has two
solutions that correspond to the two configurations
of the mechanism. In order to initialize this mecha-
nism, a “guess” value for variable r4.phi has to be
provided.

It is always a useful strategy to define a mecha-
nism in a reference configuration in which all gener-
alized joint coordinates are zero and where all rele-
vant kinematic quantities can be easily determined.
When the mechanism is initialized in this way, the
nonlinear equations of the initialization problem are
fulfilled. In the case of the four bar mechanism, the
selected reference configuration (in which r1.phi =
r4.phi = 0) is selected such that the left bar is di-
rected along the y-axis and the lower bar along the x-
axis, respectively (see left part of Figure 3 below).

Problems arise, if the simulation of the mecha-
nism shall not start in the reference configuration,
but at a user-defined angle r1.phi = phi0. Depending
on the “guess” value of “r4.phi” the numerical solver
might no longer find a solution, or if it computes a
solution, it might be the wrong configuration.

In the example of Figure 3, a guess value of
r4.phi = 45° is selected and r1.phi is changed from
r1.phi = 0°, in steps to -20°. The initial solutions
found by Dymola are shown in Figure 3:

Figure 3: Initial solutions:
 (left: r1.phi = 0°, right: r1.phi = -20°)

Starting at about 18.9° the configuration is changing
to an undesired configuration. This type of initializa-
tion is not robust, since for every change of the ini-
tial states, all guess values need to be properly
adapted, which is usually difficult (not practical) if
the system is no longer in its reference configuration.

The homotopy operator opens up a completely
new direction: In the model of the revolute joint, the
equation for the joint angle is changed to

if homotopyInitialization then
 ang
else

le = phi_offset + homotopy(phi,0);

 angle = phi_offset + phi;
end if;

where homotopyInitialization is a Boolean pa-
rameter that is set to true for r1 and set to false for
r4. Furthermore, the start value of r4.phi = 0 (the
value from the reference configuration). The mean-
ing is that independently which start value is given

for r1.phi, the mechanism is initialized in its refer-
ence configuration r1.phi = 0 (where the nonlinear
algebraic equation is identically fulfilled) and then
r1.phi is moved by the homotopy method until it
reaches its start value. In every iteration a good guess
value exists from the previous step and therefore the
nonlinear equation is solved and remains in the con-
figuration of the reference configuration. As a result,
a very robust initialization of the mechanism is ob-
tained, see Figure 4:

Figure 4: Initial solutions for
 r1.phi.start = 0°, -20°, -45°, -75°

The four bar mechanism was only introduced to
demonstrate the issues on a simple mechanism1.

The sketched initialization technique shall now be
applied on a much more involved example: A
“Delta” robot (Clavel 1990). This robot is commer-
cially available by several companies, e.g., by ABB
under the name “FlexPicker™”2. A suitable refer-
ence configuration of this robot is shown in Figure 5:

Figure 5: Delta robot in its reference configuration.

At the top, the robot consists of 3 actuated revolute
joints that each drives a parallelogram. Every paral-
lelogram consists of 4 spherical joints. In the bottom,
the three parallelograms are rigidly mounted on a
plate (in the figure visualized by a blue sphere that
marks the center of mass of the load body that is at-
tached to this point; in commercial robots, there is

1 The equation system can be solved analytically when
using an Assemblies.JointRRR joint from the
Modelica.Mechanics.MultiBody library.
2 FlexPicker is a trademark of ABB.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

79

usually an additional revolute joint here). Overall,
this robot has 3 revolute joints, 12 spherical joints
and has 6 coupled kinematic loops. The robot has 3
degrees of freedom and can be controlled by the 3
revolute joints. By construction, the load plate is al-
ways parallel to the mounting plate on top, inde-
pendently of the actual joint angles. Within its work-
space, the robot can move very fast to a desired posi-
tion. Since the motors that are mounted on the top
plate are not moved, accelerations can be up to 30 g
an

tion, this system is initialized in the following

on variables of the nonlinear equa-

s the angles to the desired
start configuration.

d speeds of 10 m/s can be reached.
Both direct kinematics (= given the joint angles,

compute the position of the load), as well as the in-
verse kinematics (= given the load position, compute
the joint angles) give rise to nonlinear algebraic equ-
ation systems. The more complicated case is the di-
rect kinematic solution. When the robot is built up
with “Joints.SphericalSpherical” joints (that each
introduces a length constraint between two spherical
joints), then Dymola transforms the system of 87
nonlinear algebraic equations down to 6 equations. If
the joint angles are given, the resulting equation sys-
tem has 16 configurations, but only the one shown in
Figure 5 is the desired one. With the homotopy ini-
tializa
way:
1. In the reference configuration, the absolute posi-

tion r[3] of the center point of the load plate, as
well as the rotation angles phi[3] from the iner-
tial frame to the load frame can be easily analyti-
cally computed (r = {0, 0, -sqrt(L2 – (r1+r2-r3)

2)},
phi = {0,0,0}). These values are provided as start
values to the load body (since Dymola selects
them as iterati
tion system).

2. The homotopy initialization of the revolute joints
is switched on. So, for given start angles, the ro-
bot always starts first in the reference configura-
tion and then move

Figure 6: Delta robot initia

Practical experience shows that within the technical
workspace of this robot, the initialization is very ro-
bust. A typical example is shown in Figure 6.

The path of the three position variables of the
load mass as function of the homotopy parameter
(computed with Loca) is shown in Figure 7. As can
be seen, the three paths are nearly linear and there-
fore even simple homotopy methods (like fixed step
methods) will work.

Figure 7: Homotopy path of the absolute position
 variables for the initialization of Figure 6.

4.2 Analog Electronic Circuit

In electronic circuits, operation starts often after the
power supply is switched on. Power supply is in
most cases a constant operating voltage of 15V, 5V
or others, often a split supply with +15V and -15V is
used. After switching on power supply, an initial
value of all variables (voltages and currents) is
reached, especially capacitors are loaded. The state
in which no variable is varying any more is called
DC (direct current) operating point. Its calculation is
often a challenge for which homotopy operators are
useful.

Figure 8: PID controller circuit with
 A741 operational amplifier.

lized in configuration
 {45°, -45°, 30°}.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

80

Figure 8 shows a simple PID controller circuit (Ti-
etze and Schenk, 2002) using a A741 operational
amplifier model (Horowitz and Hill, 1989) which is
composed of 21 NPN and PNP transistors of the
Modelica Standard Library, see Figure 9:

Figure 9: Operational amplifier A741 composed of
 21 NPN and PNP transistors.

To compare the due power supply (VCC 15V, VEE -
15V) limited controller output with the ideal unlim-
ited behaviour, a mathematical PID controller model
is inserted in parallel. Typical simulation results with
a comparison of the two models are shown in Figure
10. Translating this circuit, results in a system of 240
nonlinear algebraic equations that is reduced by Dy-
mola to a set of 38 nonlinear algebraic equations that
have to be solved during initialization (during simu-
lation, only a system of 17 linear equations is pre-
sent). With Dymola 7.4 (and most likely also with
any other Modelica tool), initialization of this circuit
fails, i.e., the DC operating point cannot be calcu-
lated.

Figure 10: Comparison of circuit PID with the ideal
 mathematical PID controller.

A successful initialization is possible by replacing
the constant supply sources VCC and VEE by ramp
sources which start at zero, followed by a transient
simulation until all variables remain constant. In gen-
eral, this way is cumbersome and error prone since
the circuit has to be changed manually. Furthermore,
the ramping up during a simulation introduces oscil-
lations and simulation has to be long enough until
the vibrations “died out”.

The situation changes completely, if the homo-
topy operator is used by changing the constant volt-
age model according to

model ConstantVoltage_Homotopy
 import Modelica.Electrical.Analog;
 extends Analog.Interfaces.OnePort;
 parameter Modelica.SIunits.Voltage V;
equation
 v
end ConstantVoltage_Homotopy;

 = homotopy(V,0.0);

This definition starts the constant voltage at zero and
during homotopy initialization it is ramped up to the
desired voltage V. During the ramping, all deriva-
tives are zero and therefore it is a ramping along
steady-states. Simple homotopy algorithms fail in
this case. In this example, the Loca algorithm was
used to calculate the homotopy initialization. In
Figure 11 the non-trivial variation of an internal
voltage of the operational amplifier is shown with
respect to the homotopy variable λ changing from
zero to one. Due to the sharp edge at λ = 0.18, a
homotopy method with a variable step size is needed
in this case.

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0
Continuation path for uA741.q17.NPN1.vbc

Figure 11: Homotopy path for a voltage variable of
 the operational amplifier with respect to λ.

4.3 Hydraulic Networks

Hydraulic networks are typically characterized by
the simultaneous presence of components with large
and small pressure losses, by mixing points, and by
nonlinear momentum balance equations, which de-
pend on the fluid properties, e.g., the density. As a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

81

result, the system of nonlinear equations during
steady-state initialization is typically large and
strongly nonlinear. Their numerical solution is there-
fore problematic, unless relatively accurate start val-
ues are set for the iteration variables.

Figure 12: A hydraulic network.

An example case built with the ThermoPower 3 li-
brary is shown in Figure 12. A pump with a recircu-
lation and a control valve sucks fluid from a low
pressure source. The fluid is then mixed with the
flow coming from a second intermediate pressure
source through a short pipe, and further pumped
through a long pipe (with mass and energy storage)
into a high-pressure sink. The pressure losses in the
two pipes are small, compared to the pressure losses
across the valves and pumps.

The resulting initialization problem has 13 itera-
tion variables after tearing, among which two flow
rates and four pressures. If the start values of those
six variables are not accurately set, the standard non-
linear solver in Dymola fails to converge.

This initialization problem can be made much
easier to solve by substituting the original momen-
tum balance equations in the pump and pipe models
by linear, constant-coefficient ones, which are tuned
based on nominal operating data, and then by apply-
ing the homotopy transformation to bring the model
back to its original form.

More specifically, the pressure losses in the short
and long pipes are computed by linear mflow-dp rela-
tionships, passing through the origin and through the
nominal flow and nominal pressure loss point (these
data must be provided as parameters). In the case of
the pump, the tangent to the flow-head curve at the
nominal flow rate is used instead of the original
curve. By the simple substitutions of these two equa-
tions, the hydraulic problem becomes linear (two
linear systems with five and three unknowns), while
all the enthalpies and fluid properties are calculated
by simple assignments once the flow rates are
known. As a consequence, no start value at all is
required to guarantee convergence of the simplified
problem; the homotopy transformation then solves
the original nonlinear problem without further inter-
vention by the end user.

It is interesting to note that the homotopy paths of
the iteration variables are smooth and do not show

any kind of singularity or turning point even if the
actual steady state has a substantial mismatch with
the nominal data used to set up the simplified model.
As an example, Figure 13 shows the continuation
paths for two pressures and two flows if the valve V4
on the far right is closed by 90% at initialization,
thus reducing all flows in the circuit to a small frac-
tion of the nominal flow.

Figure 13: Homotopy paths of 4 iteration variables.

4.4 Calibration of A/C Heat Exchanger

A typical problem in air conditioning system and
component design is to calibrate a heat exchanger
model to measurement data. This is performed using
steady-state initialization in a test bench with given
boundary conditions, like the one shown in Figure
14.

Temperature: Ref Wall Air

dimensionless evaporator length, refrigerant?

Powe

Quality

r

Superheat

init
sup.h?

p_in
p_out
mdot

evaporator

Source

hm.

h
.
m

Sink

hp

p h

AirIn

mT
.

T m.

AirOut

p T

4493

13.7

mdot?

durati?

h_ref

durati?

airf low

durati?

phi_air

durati?

airtemp

durati?

p_sink

durati?

h_sink

durati?

0 1
10

30

0

1

30.0 28.4

4.8420
evapOut

p [b?h[kJ/kg]

T [°C]m [g/s]

Legend

.

Figure 14: Evaporator calibration test bench, from the
 AirConditioning library.

Heat transfer on the air side can be correlated using
the Nusselt number, Nu = kc Dhyd/F, which relates
the heat transfer coefficient kc to the hydraulic di-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

82

ameter Dhyd and the fluid thermal conductivity F.
Normally, the calibration can be performed during
initialization by solving for Nu as an unknown pa-
rameter using initial equations.

 parameter Modelica.SIunits.NusseltNumber
 Nu_air(fixed=false, start=10)
 "global Nusselt number";
initial equation
 hex.summary.Qdot_air = P_measured;

In most cases this solves perfectly fine using stan-
dard methods, and can be combined to calibrate sev-
eral parameters simultaneously, for example both
heat transfer and pressure drop. But sometimes it is
difficult to reach the desired solution, P_measured,
because it is close to the maximum cooling capacity.
The solver will then fail to converge.

Using the homotopy approach, the Nu-number
may be used as a control signal, starting at a given
value for which the steady-state initialization con-
verges, see the code below:

 parameter Modelica.SIunits.NusseltNumber
 Nu_air(fixed=false, start=10)
 "global Nusselt number";
 parameter Modelica.SIunits.NusseltNumber

arting Nusselt number"; Nu_start=10 "st
initial equation
 0 = homotopy(
actual = hex.summary.Qdot_air - P_measured,
simplified = Nu_air - Nu_start);

The path that the homotopy solver takes can be illus-
trated with a plot of Qdot_air vs. Nu, see Figure 15.
The starting value is taken in the middle of the slop-
ing curve, and the solver will then converge to the
desired solution, if one exists. This method has been
used to calibrate over large sets of data with excel-
lent results.

10 20
6E3

7E3

8E3

9E3

1E4

[W
]

Nu_air

hex.summary.Qdot_air P_measured

Figure 15: Steady-state performance of heat exchanger
as function of Nu-number on the air side. The solution
Nu_air = 19.7 is very close to maximum Qdot=9420 W.

5 Ill-posed Examples

Unfortunately, it is quite easy to formulate ill-posed
problems with the homotopy operator, so that ini-
tialization will fail. Below, a number of simple ex-
amples are given to demonstrate different kinds of
issues.

5.1 Singular Simplified System

The “simplified” problem in the homotopy formula-
tion might be formulated too simple by removing all
dependencies of a variable, as shown in the next ex-
ample:

x + 2*homotopy(y,1) = 5
2*x - homotopy(y,1) = 0

Note, the “simplified” problem is actually:

x + 2 = 5
2*x - 1 = 0

and this equation system does not have a solution
although the “actual” problem has a solution. There
are different variants of this type of problem. For
example, the “simplified” system might remove
variables that are used as iteration variables in a sys-
tem of equations and then the system is singular, al-
though a different selection of iteration variables
might make the system regular.

Since such cases can easily appear, the minimum
requirement is that a tool reports these problems dur-
ing translation. Conceptually this is easy, by per-
forming an assignment for the “simplified” problem
which would fail (with good diagnostics), if this
problem is structurally singular.

A tool might also perform a more involved treat-
ment:

1. For the tearing algorithm, select only iteration
variables, that are appearing in the “actual”
and in the “simplified” problem formulation
(does not work for the problem above).

2. Solve simplified problem with symbolic ma-
nipulations (does not work for the problem
above).

3. Remove the homotopy operator from certain
equations, until the “simplified” system is
structurally regular. This would work in the
example above, e.g., by removing the homo-
topy operator from the second equation.

4. The homotopy formulation of appropriate
equations is changed. In the example above,
one can observe that the modeler defined with
the second equation that “y” shall be used for
the “actual” problem and “1” for the simpli-
fied” problem, i.e., the modeler defined “y=1”
for the “simplified” problem. This information

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

83

allows to rewrite the second equation to:
 homotopy(2*x,1) – y = 0
which results in a regular “simplified” system.

5.2 Singular Intermediate System

Singular systems might also occur for a combination
of the “simplified” and “actual” problem formula-
tion, i.e., when 0 < λ < 1. A typical example is the
following where homotopy moves from an “initial
state” to a “steady state” formulation (i.e., using
Fixed Point Homotopy):

model DoNotUse
 Real x;
 parameter Real x0 = 0;
equation
 der(x) = 1-x;
initial equation
 0 = homotopy(der(x), x - x0);
end DoNotUse;

After the initial equation is expanded to

00 (1) ()x x x

the two equations can be solved for the unknown x
by eliminating the derivative of x:

 0 01

2 1

x x
x

This equation has a singularity at 5.0 , see Figure
16. A homotopy solver will usually not be able to
compute the solution and therefore initialization will
fail.

-0.5 0.5 1.0 1.5
l

-10

-5

5

10

Figure 16: Solution to ill-posed example for 0 0.25x

5.3 Bifurcation of Intermediate System

Ramping of boundary conditions is a straight-
forward way to employ homotopy. Some care has to
be taken however when using this pattern, which is
illustrated for a flip flop, see the simple analog elec-
tric circuit of Figure 17:

R

=

1

k

rC

1

R

=

1

k

rC

2

+-

xb1 xb2

xc2xc1

Rc1 Rc2

Rb2Rb1
Vs

R

=

1

k

rC

1

R

=

1

k

rC

2

+-

xb1 xb2

xc2xc1

Rc1 Rc2

Rb2Rb1
Vs

Figure 17: Flip-flop circuit leading to several solutions
 during the homotopy iteration.

This flip flop circuit has three steady state solutions
out of which two are stable. If a homotopy is con-
structed by ramping up the source voltage Vs, then a
bifurcation will show up in the homotopy track. This
bifurcation shows up at the point at which the base-
emitter junction of the transistor is triggered and the
three steady state solutions emerge. In non-trivial
applications, such bifurcations are numerically diffi-
cult to handle and shall thus be avoided under any
circumstances. The following figure illustrates the
homotopy trace that results in such a natural parame-
ter continuation strategy (also called source step-
ping). Here, a simple Ebers-Moll transistor model
was used.

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.05
0.10
0.15
0.20

l

ub1l

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5

l

uc1l

Figure 18: Voltages at base and collector of
 transistor 1 in flip-flop circuit. At λ = 0.15
 a bifurcation to three solutions occurs.

6 Conclusions

The homotopy operator introduced in to the Mode-
lica language in version 3.2 (Modelica 2010) opens
up completely new possibilities to robustly initialize
Modelica models. Several examples have been given
to demonstrate the usage in different domains. Addi-
tionally, large power plant applications with up to
671 iteration variables for steady-state initialization
are discussed in (Casella et. al. 2011). Due to the
successful applications, it is planned to introduce this
operator at appropriate places in to the next version
of the Modelica Standard Library, in order to im-
prove the initialization of Modelica user models.

As demonstrated by several examples in section
5, it is easy to misuse the homotopy operator result-
ing in failed initialization. As a “rule of thumb”, the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

84

homotopy formulation should not change the “struc-
ture” of the equation system, i.e., it should be based
on the simplification of terms, but not by solving a
completely different problem (e.g. moving from a
simplified system that is initialized at given states to
a steady-state formulation might easily fail, see sec-
tion 5.2). Furthermore, it is always useful to inspect
how the start-up of the “real” system works and
mimic this “start-up” with the homotopy formula-
tion, if this is possible.

There is still room for improving initialization.
One issue is that still guess values might be needed
for iteration variables (see, e.g., the Delta robot in
section 4.1) and the iteration variables are selected
by the tool. One remedy might be to introduce an
additional enumeration attribute for variables, such
as, “iterationSelect” that allows a library developer
to directly suggest useful iteration variables with the
enumeration values “never, avoid, default, prefer,
always”, in a similar way as for the existing attribute
“stateSelect” to guide the state selection.

7 Acknowledgements
Partial financial support of DLR and Fraunhofer by
BMBF (Förderkennzeichen: 01IS07022F) for this
work within the ITEA2 project EUROSYSLIB
(www.eurosyslib.com; funding number 06020) is
highly appreciated.

References

Allgower E.L., Georg K. (2003): Introduction to nu-
merical continuation methods. SIAM Classics in
Applied Mathematics.

Casella F., Sielemann M., Savoldelli L. (2011): Steady-
state initialization of object-oriented thermo-fluid
models by homotopy methods. Modelica’2011 Con-
ference, Dresden, March 20-22.

Choi S.H., Book N.L. (1991): Unreachable roots for
global homotopy continuation methods. AIChE
Journal 37, pp. 1093-1095.

Chow S.N., Mallet-Paret J., Yorke J.A. (1978): Finding
Zeroes of Maps: Homotopy Methods That are
Constructive With Probability One. Mathematics of
Computation 32, pp. 887-899.

Clavel R. (1990): Device for the Movement and Posi-
tioning of an Element in Space. US Patent No.
4,976,582, December 11, 1990. Download:
http://v3.espacenet.com/publicationDetails/biblio?CC
=US&NR=4976582&KC=&FT=E

Elib (2010): http://elib.zib.de/pub/elib/codelib/alcon2/.
Accessed November 2010.

Dennis J.E., Schnabel R.B. (1996): Numerical methods
for unconstrained optimization and nonlinear
equations. SIAM Classics in Applied Mathematics.

Deuflhard P., Fiedler B., Kunkel P. (1987): Efficient nu-
merical path following beyond critical points.
SIAM Journal on Numerical Analysis, Society for In-
dustrial and Applied Mathematics, 24, 912-927.

Deuflhard P. (2004): Newton Methods for Nonlinear
Problems. Affine Invariance and Adaptive Algo-
rithms. Springer.

Dymola (2010): Dymola 7.4.
http://www.3ds.com/products/catia/portfolio/dymola

Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J.,
Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Paw-
lowski R.P., Phipps E.T., Salinger A.G., Thornquist
H.K., Tuminaro R.S., Willenbring J.M., Williams A.,
Stanley K.S. (2005): An overview of the Trilinos
project. ACM Transactions on Mathematical Soft-
ware, 31, 397-423.

Hompack (2010): http://www.netlib.org/hompack/. Ac-
cessed November 2010.

Horowitz P., Hill W. (1989): The Art of Electronics.
Cambridge University Press, page 189.

Keller H. (1978): Global homotopies and Newton meth-
ods. C. de Boor and G. Golub, eds., Academic Press,
New York, pp. 73-94.

Kelley C.T. (2003): Solving nonlinear equations with
Newton's method. SIAM.

Mattsson S.E., Elmqvist H., Otter M., Olsson H. (2002):
Initialization of Hybrid Differential-Algebraic
Equations in Modelica 2.0. Proceedings of the Sec-
ond International Modelica Conference, Munich,
Germany, pp. 9-15. Download:
https://www.modelica.org/events/Conference2002/pa
pers/p02_Mattsson.pdf

Modelica (2010): Modelica – A Unified Object-
Oriented Language for Physical Systems Model-
ing. Language Specification, Version 3.2. March 24.
Download:
https://www.modelica.org/documents/ModelicaSpec3
2.pdf

Tietze U., Schenk C. (2002): Halbleiterschaltungstech-
nik. Springer, 12th edition, page 1150.

Watson L.T., Billups S.C., Morgan A. P. (1987): Algo-
rithm 652: HOMPACK, A suite of codes for glob-
ally convergent homotopy algorithms. ACM Trans-
actions on Mathematical Software, 13, 281-310.

Wayburn T., Seader J. (1987): Homotopy continuation
methods for computer-aided process design. Com-
puters & Chemical Engineering 11, pp. 7-25.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

85

http://www.eurosyslib.com/
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=4976582&KC=&FT=E
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=4976582&KC=&FT=E
http://elib.zib.de/pub/elib/codelib/alcon2/
http://www.3ds.com/products/catia/portfolio/dymola
http://www.netlib.org/hompack/
https://www.modelica.org/events/Conference2002/papers/p02_Mattsson.pdf
https://www.modelica.org/events/Conference2002/papers/p02_Mattsson.pdf
https://www.modelica.org/documents/ModelicaSpec32.pdf
https://www.modelica.org/documents/ModelicaSpec32.pdf

Steady-state initialization of object-oriented thermo-fluid models
by homotopy methods

Francesco Casella∗ Michael Sielemann† Luca Savoldelli∗
∗ Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
† Deutsches Zentrum für Luft- und Raumfahrt, Institute of Robotics and Mechatronics

Münchner Strasse 20, 82234 Wessling, Germany

Abstract

The steady-state initialization of large object-oriented
thermo-hydraulic networks is a difficult problem, be-
cause of the sensitivity of the convergence to the initial
guesses of the iteration variables. This paper proposes
an approach to this problem based on homotopy trans-
formation, detailing specific criteria for model simpli-
fications in this physical domain. The approach is suc-
cessfully demonstrated on large power plant test cases,
having several hundreds of iteration variables.

Keywords: Thermo-hydraulic systems, power
plants, steady-state initialization problems.

1 Introduction

Steady state initialization of large thermo-fluid net-
work is hard and often fails, even when using state-
of-the-art nonlinear solvers. This hampers the use of
object-oriented models in applications such as power
plant simulation, because of the difficulties encoun-
tered in getting a newly built model to actually sim-
ulate.

Currently, the only way to solve this problem is to
manually set good initial guesses for all the iteration
variables of the problem. This is rather inconvenient,
since the number of such variables can easily grow be-
yond a hundred or even a thousand, and also because
any tiny change to the model, or to the version of the
Modelica tool used to simulate it, can lead to a differ-
ent set of iteration variables and thus require a further
setting of intial guesses. This makes the initialization
activity tedious and very far from the concepts of mod-
ularity and object-orientation.

This paper presents an alternative approach to the
problem, based on homotopy transformation. The pro-
posed strategy is demonstrated by means of a proto-

type solver code on large-scale power plant test cases.
The paper is structured as follows: Section 2 gives

the basic of homotopy-based initialization of object-
oriented models and presents the test implementa-
tion of the solver. Section 3 introduces criteria for
the formulation of simplified models in the domain
of thermo-hydraulic networks. Section 4 illustrates
experimental results obtained large-scale models of
combined-cycle power plants, while Section 5 gives
concluding remarks.

2 Homotopy-based initialization of
object-oriented models

2.1 Problem definition

To encode initialization problems in Modelica, lan-
guage constructs such as initial equation sections are
defined. They introduce additional constraints, which,
together with all equations and algorithms that are
utilized during simulation, constitute the initialization
problem. The solution can then be used to assign all
variables, derivatives and pre-variables consistent val-
ues.

Formally, the resulting problem is an initial value
problem for a system of differential algebraic equa-
tions (DAE), 0 = F (ẋ,x,w, t). Variables x are the state
variables, w are the algebraic unknowns, and t is time.
The initialisation problem prescribed by the model in-
troduces conditions such as the steady-state condition
ẋ = 0 at some time t = t0. The differential algebraic
equation system is usually index reduced, i.e. it has in-
dex 1, which means that the following expression be
regular [

∂F
∂ ẋ

∂F
∂w

]
.

Formally, this problem usually results in a non-
linear system of algebraic equations that has to be

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

86

solved numerically. Unfortunately, this does not al-
ways work robustly for industrial problems as the fre-
quently utilised gradient-based local algorithms such
as damped Newton Method offer local convergence
properties only (even when using so-called globaliza-
tions such as trust regions).

Several alternative methods are discussed in litera-
ture to solve the present problem more robustly. Ho-
motopy continuation is one of them and it is consid-
ered in this article to address the need for more robust
initialisation.

2.2 Established homotopy methods

Informally, using homotopy to solve nonlinear alge-
braic equation systems can be defined as follows.
First, one starts with a simple problem whose solu-
tion is known or easy to obtain and then continuously
deforms this simple problem to the difficult problem
of interest. Conceptually, this appears to be simple.
However, several details of these methods have to be
taken into account. In particular, the existence of the
homotopy path between the start and a solution, fi-
nite length, and nonexistence of singularities along the
track are not guaranteed.

In order to construct a homotopy, one needs the sys-
tem of residual equations of interest, F(x), and another
one that is easy to solve F̃ (x). Here and in the remain-
der of this section, a generic vector of unknowns x is
indicating, including the state derivatives, states, and
algebraic unknowns. The two sets of residual equa-
tions are then deformed from one to the other via a
homotopy or continuation parameter λ . A simple ex-
ample of such a deformation is a linear convex combi-
nation. In any case, the homotopy is then a system of
equations with one higher dimension and denoted by

ρ (x,λ) = 0.

The homotopy parameter is typically restricted to
some range, e.g. [0,1], such that ρ (x,0) = F̃ (x) = 0 is
solved easily and ρ (x,1) = F(x) = 0 is the system of
interest.

Many general-purpose homotopies are defined in
literature. For example, the Newton homotopy [3] is
defined as:

ρ(x,λ) = λF(x)+(1−λ)(x− x0), (1)

where x0 is a tentative estimate for the solution of
F(x) = 0. Other similar methods exist, such as the
fixed point homotopy and the affine homotopy. All
such methods exhibit convergence failure modes, as

Figure 1: Problematic homotopy paths

shown in Fig. 1, which render them not sufficiently
robust to alleviate the convergence issues described in
the introduction. Examples of these convergence fail-
ure modes are infinite loops without reaching λ = 1
(isolae), which occur for the Newton homotopy, and
components of the solution vector wandering off to-
ward ±∞, as observed for the fixed point and affine ho-
motopies. Furthermore, bifurcations may arise along
the continuation paths, which are non-trivial to handle
numerically for industrial problems.

Additional reasons why established homotopy
methods are not considered a feasible solution to alle-
viate the need for a more robust initialisation method
are given in [1].

2.3 Problem-specific homotopy

In the established homotopies mentioned in the previ-
ous section, two rather unrelated systems of equations
are continuously deformed into each other; the radi-
cal difference between the two systems of equation is
arguably the cause of the singular homotopy pahts.

Therefore, we propose to introduce problem-
specific homotopies, where the simplified system is
derived from the actual system of interest and close
enough to it so as to avoid that the homotopy to the
actual problem of interest be free of singularities. The
formulation of the simplified systems is introduced by
domain experts, allowing them to infuse their knowl-
edge about the physics of the problem into the way the
equation system is solved. The approach is fully com-
patible with object-orientation and declarative model-
ing.

2.4 Test implementation

In order to validate the methodology a test implemen-
tation was developed. It was based on the equation-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

87

based object-oriented modelling language Modelica R©

and the compiler Dymola R© in versions 7.3 and 6.1.
Using this test implementation, homotopies such as

ρ (x,λ) = λF (x)+(1−λ) F̃ (x)

can be formulated in a declarative way, where F (x)
is the actual problem and F̃ (x) is the simplified
one. For this purpose,a function homotopy() was
introduced, that takes two input arguments, namely
actual, the expression describing the actual problem,
and simplified, the expression corresponding to the
simple problem. The Modelica compiler then ex-
panded this function according to the above-described
homotopy. For example, the expression

homotopy(actual=a*b, simplified=c/d)

was expanded to

λ (a ·b)+(1−λ)(c/d) .

This idea has later on been included in version 3.2
of the Modelica language specification, where a built-
in homotopy() operator with the same semantics has
been introduced.

From the numerical side, the test implementation
utilised the LOCA continuation algorithms of Trili-
nos [2]. A list of the main features of the test imple-
mentation is given here.

First of all, the algorithm provided three options for
the implementation of the homotopy() function. In
order to numerically solve the simplified problem as
easily as possible, a version of the function that re-
turned the simplified argument was inlined, in or-
der to obtain the maximum structural simplification of
the corresponding system of equations. For the ho-
motopy transformation, it was expanded to the given
homotopy expression. For the dynamic simulation of
the system, after initialization, an inlined version re-
turning the actual argument was used.

The user was able to manually prescribe whether to
use homotopy initialisation or not. This is an impor-
tant feature for library development and debugging,
and may be useful for end users, too (e.g., if a local
gradient based solver converges to a mathematically
valid, but physically unreasonable solution or when a
local gradient based solver does not converge and a
user does not want to wait at the start of each simula-
tion until the software realised this).

The user was able to specify that the simplified
problem only should be solved. This feature is essen-
tial for library development, when one must analyze

the properties of the simplified model, to understand
whether it is good enough to provide a robust numeri-
cal initialization to the homotopy transformation, or if
it is necessary to proceed further in the simplification
process.

Verbose information on the homotopy was option-
ally provided, which was useful for library develop-
ment and debugging, and the homotopy traces of all
the iteration variables of the nonlinear system of equa-
tions were recorded for later visualisation and analy-
sis.

Last, but not least, the underlying solver was able
to follow homotopy traces with turning points, should
they arise during the transformation.

3 Homotopy-based initialization of
thermo-fluid network models

3.1 Basic principles

The basic idea is to formulate a simplified model
which is easier to solve without the need of accu-
rate start values, but which is on the other hand close
enough to the actual problem to avoid singularities
during the homotopy transformation. Three goals
must be pursued:

1. The simplified model should approximate the ac-
tual model around the nominal operating point
of the plant, in order to have a solution which is
close to that operating point, and thus physically
meaningful.

2. The simplified model should be close enough to
the actual model that the homotopy transforma-
tion from the simplified to the actual problem
gives rise to smooth transformations of all the it-
eration variables, with no singularites, no bifurca-
tions, and possibly no turning points, even though
the latter ones can be handled by continuation al-
gorithms such as LOCA.

3. The numerical solution of the simplified model
should converge with rough (default, or nominal-
parameter based) initial guess values, either set
by default or based on parameters specifying the
nominal operating point. This avoids the need of
manually setting start values for the iteration vari-
ables of the specific system at hand, whose set
is difficult or impossible to determine a-priori by
the end user, as it is usually the result of sophisti-
cated (and often proprietary) tearing algorithms.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

88

3.2 Formulating the simplified model

The simplified model should be initialized at steady
state as the actual problem, in order to avoid unphys-
ical situations, so the initial equations (der(x) = 0) are
not changed. The general guideline is to approximate
a few model equations so that the implicit system of
equations corresponding to the steady-state initializa-
tion problem has the minimum number of unknowns
and is as linear as possible. Noting that a linear prob-
lem can be solved by the standard Newton algorithm
exactly in one iteration, one can expect that in general
the less nonlinear the problem is, the less sensitive to
start values the convergence will be.

Ideally, the simplified model could be obtained by
linearizing the actual model close to the initial steady
state. In practice, this is not a good idea for two rea-
sons. First of all, this strategy would require to modify
a large fraction of the model equations (all the nonlin-
ear ones). Secondly, obtaining such linearisation re-
quires to know the steady state values of all the vari-
ables, which are yet to be determined. The idea is
then instead to simplify only those few equations that
mostly contribute to the nonlinearity of the large im-
plicit system of equations of typical steady-state ini-
tialization problems.

Power plant models are essentially thermo-
hydraulic networks with non-trivial fluid models
(ideal gases with temperature-dependent cp and
vaporizing fluids, usually water), exchanging heat
by convection through heat exchanger walls. The
main sources of nonlinearities in the steady state
initialization problem are now listed.

1. Momentum balance equations: pressure-flow rate
relationships are usually quadratic and depend on
upstream properties, such as density and viscos-
ity, which in turn depend on thermal variables and
on the flow direction.

2. Energy balance equations have the form
∑ j w jh j + ∑ j Q j = 0, thus are nonlinear in the
mass flow rate - specific enthalpy products w jh j.

3. The upstream enthalpy appearing in energy bal-
ance equations of components allowing flow re-
versal depends on the direction of the flow.

4. Flow-dependent heat transfer coefficients γ in-
troduce nonlinearities in heat transfer equations
Q = γS(Tf luid −Twall).

5. Temperature-enthalpy relationships are nonlinear
in both ideal gas and water/steam models.

6. Controllers influencing flow rates through, e.g.,
valve openings, pump speeds, etc., and whose
controlled variables are instead related to energy
flows or storage, e.g., turbine power, boiler pres-
sure, introduce nonlinear couplings between hy-
draulic and thermal equations.

7. Controllers with control signal saturations intro-
duce nonlinearities in the system model.

Note that many other nonlinear equations which are
present in the model are irrelevant for the steady-state
initialization, because they only involve the dynamic
behaviour, which is by definition not considered if all
derivatives are zero. For example, the dependency on
pressure and temperature (or specific enthalpy) of the
fluid compressibility dρ

d p , which enters the left-hand-
side of dynamic mass balances, is irrelevant in the de-
termination of the steady state. Therefore, if structural
analysis is applied to the initialization problem, the
computation of those quantities will be moved after the
core implicit system of equations in the BLT transfor-
mation, and they will be computed explicitly as a func-
tion of the already computed thermodynamic states,
e.g., (p,T) or (p,h). Consequently, it is only neces-
sary to worry about those equations and those vari-
ables which are strictly necessary to solve the steady-
state equations, where one assumes that all derivatives
are equal to zero.

3.2.1 Momentum balance equations

The most important source of nonlinearity in the
steady-state initialization problem is given by the mo-
mentum equations, which are usually quadratic in the
flow rate, due to the friction term. When low pressure
losses are modelled, the flow rate is highly sensitive
to pressure errors: a small error in the pressures dur-
ing the first Newton iterations can cause large errors in
the flow rates, which in turn cause large errors in the
energy balance equations, possibly bringing the spe-
cific enthalpies out of their validity range of the fluid
model. Furthermore, the dependence of the momen-
tum balance on the fluid properties introduces a non-
linear coupling between the hydraulic equations, de-
scribing pressure-flow relationships, and the thermal
equations, describing energy storage and heat transfer.

All these problems are removed if the momen-
tum balances are substituted with linear constant-
coefficient pressure-flow rate relationships. These can
be based on nominal operating data (nominal pressure
drop, nominal flow rate), which are often already in-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

89

cluded among the component parameters, and are usu-
ally known in advance from overall plant design data.
Friction losses can be approximated by a linear func-
tion passing through the origin and the nominal oper-
ating point:

w =
wnom

∆pnom
∆p (2)

Static head terms can be computed using a constant
known nominal density:

∆pstatic = ρnomgH (3)

The flow characteristic of turbines can be approxi-
mated by a linear pressure-flowrate realationship:

w =
wnom

∆pnom
∆p (4)

Control valves can be represented by a simplified
equation, where the flow rate is both proportional to
the pressure difference ∆p and to the valve opening α:

w = α
wnom

∆pnom
∆p. (5)

This equation is still significantly nonlinear and might
cause problems, in particular if α is the output of a
controller (e.g., in the case of level controller for drum
boilers). In this case, it is possible to further simplify
the equation, making it linear, by removing the depen-
dency on ∆p:

w = αwnom. (6)

Pump characteristics cannot be reasonably repre-
sented by a curve passing through the origin. In this
case, it is convenient to use a linearised version of
the characteristic curve, computed around the nominal
flow rate, head, and pump rotational speed.

The simplified models are then written together with
their actual counterparts, using the homotopy() oper-
ator. A few examples from the ThermoPower library
are shown here for the sake of the example:

// Pressure loss component

pin - pout =

homotopy(smooth(1, Kf*squareReg(w,wnom*wnf))/rho,

dpnom/wnom*w) "Flow characteristics";

// Valve for incompressible fluid

w = homotopy(FlowChar(theta)*Av*sqrt(rho)*sqrtR(dp),

theta/thetanom*wnom/dpnom*dp);

// Pump

function df_dq = der(flowCharacteristic, q_flow);

head = homotopy((n/n0)^2*flowChar(q*n0/(n + n_eps)),

df_dq(q0)*(q - q0)+

(2/n0*flowChar(q0) - q0/n0*df_dq(q0))*(n - n0)

+ head0);

// Turbine

w = homotopy(Kt*partialArc*sqrt(p_in*rho_in))*

sqrtReg(1 - (1/PR)^2),

wnom/pnom*p_in);

In some cases, the structure of the system of equa-
tions corresponding to the simplified steady-state ini-
tialization is such that, with these simplifications, the
steady-state hydraulic equations are completely de-
coupled from the steady-state thermal equations. In
those cases, the BLT algorithm will split the system
of equations into two smaller subsystems. First, the
hydraulic equations alone will be solved, determining
the pressures and flow rates. Since all the involved
equations are now linear, the problem is solved easily
and without any concern about convergence and ini-
tial guess values. Subsequently, the thermal equations
will be solved, but since the flow rates are now known,
a major source of nonlinearity, i.e., the w jh j products
in energy balances, will be gone, thus making it easier
to solve the thermal equations as well.

Other cases will not be this easy. Consider for ex-
ample a Rankine cycle with a circulation boiler. Even
though the simplified flow equation for the turbine is
linear, it is apparent how the steam flow rate essen-
tially depends on the heat input, which determines how
much steam is produced. Consequently, the hydraulic
and thermal equations will be coupled in this case,
even when considering the simplified model. Anyway,
a larger part of the equations in this system will be
linear, thus easing the convergence of the nonlinear
solver. More opportunities for efficient tearing will
also be available, since a larger fraction of equations
can be symbolically turned into an explicit assignment.

3.2.2 Energy balance equations

The nonlinearity in this case stems from the w jh j prod-
ucts in the steady-state energy balances. It is not as
hard as in the case of momentum balances for small
pressure losses, but it can still give rise to significant
problems: if during iterations, the mass flow rate is
wrong by a factor of, say, two, then also enthalpy
changes will be off by the same factor, which could
cause out-of-bounds problems with the fluid property
computation routines.

The best way to get rid of this problem is to use the
nominal flow rates instead of the actual flow rates for
the simplified initialization problem; by doing so, the
energy balance equations become linear, and are thus
solved without major problems. Unfortunately, spec-
ifying all the nominal flow rates is rather impractical
for multiple-port mixing components such as storage
and storage-less mixing volumes, steam drums, steam
headers, etc. Furthermore, if all of those nominal val-
ues were not set to correct values, considerable errors
could arise in the computation of the enthalpies, that

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

90

could hamper the convergence of the simplified prob-
lem.

A reasonable compromise, which allows to get rid
of most w jh j-type nonlinearities in typical power plant
models, is to using the nominal flow rate in the en-
ergy balance equations for both sides of heat exchang-
ers, instead of the actual flow rate. The values of the
nominal primary and secondary flow rates are usually
known for all heat exchangers in a plant, only two pa-
rameters are needed per heat exchanger, and a lot of
nonlinear equations are turned into linear equations,
since there are 2N such energy balance equations in
a heat exchanger having N discrete volumes on each
side, and there are usually many heat exchangers in a
given plant model. It is assumed that the few remain-
ing nonlinear energy balance equations (contained in
mixers, drums, steam headers, etc.) will be handled by
the nonlinear solver without major problems.

Note that this approximation effectively removes
the dependency between the flow rate and the outlet
temperature of the fluid. This might then prove prob-
lematic in all those cases where a temperature con-
troller is used to keep the outlet temperature at a given
set point, because the corresponding simplified equa-
tions might become singular or ill-conditioned. In
those cases, it is necessary to open the temperature
feedback loop in the simplified problem - see below
Sect. 3.2.6.

3.2.3 Dependence of the upstream enthalpy on the
direction of the flow in energy balances

If flow reversal is allowed, the specific enthalpy of flu-
ids entering and leaving control volumes where mass
and energy balances are formulated are calculated us-
ing the upstream discretisation scheme, e.g.:

h = i f w > 0 then hentering else hinternal (7)

The discontinuity might be smoothed out in the neigh-
bourhood of w = 0, but in any case these equations
introduce a strong nonlinearity, if not a discontinuity,
in the steady-state equations.

If the hydraulic equations of the simplified problem
are completely decoupled from the thermal equations,
then this is not a problem: the values of all flow rates
will be computed by solving the linear hydraulic equa-
tions; then, the flow rate w will no longer be an un-
known when (7) will be solved. In general, this de-
coupling cannot be performed, as discussed in the pre-
vious sub-section. Upon initialization, however, one
can assume that the flow rate will have the design di-
rection, so a simplified equation can be written under

that assumption, e.g.:

h = hentering (8)

For example, this is how the specific enthalpy at the
inlet port of a mixing volume is computed in the Ther-
moPower library:

hi = homotopy(if not allowFlowReversal

then inStream(inlet.h_outflow)

else actualStream(inlet.h_outflow),

inStream(inlet.h_outflow));

3.2.4 Flow-dependent heat transfer coefficients

Convective heat transfer is represented by equations
such as

Q = γS(Tf luid −Twall) (9)

Simpler models assume a constant heat trasfer coeffi-
cient γ , so the equation is linear. More accurate mod-
els instead compute γ as a function of Reynolds and
Prandtl numbers, which depend on the flow rate, as
well as on the density, viscosity and thermal conduc-
tivity of the fluid, and possibly also on the wall tem-
perature. All these dependencies introduce consider-
able nonlinearities, as well as coupling between the
hydraulic and thermal equations.

The obvious strategy for simplified problem formu-
lation is to use the nominal value of γ instead of the
actual one, thus making equation (9) linear, e.g.:

wall.gamma[j] = homotopy(

gamma_nom*noEvent(abs(infl.m_flow/wnom)^kw),

gamma_nom);

3.2.5 Temperature-enthalpy relationships

Temperature profiles and transferred thermal power
in heat exchangers are determined by the interplay
between heat transfer, which is driven by tempera-
ture differences, and convective transport of heat by
the fluid, which is described by enthalpy differences.
The temperature-enthalpy relationships are therefore
involved in the steady-state equations describing heat
exchangers, namely h = h(T) for ideal gases and T =
T (p,h) for vaporizing fluids.

In the case of ideal gases, the function is approx-
imately linear over significant ranges of T , since its
derivative, the specific heat cp, does not change too
much with the temperature. This is also the case for
the vaporizing fluid, as long as the function is evalu-
ated on the correct side of the saturation curve: the cp

of liquid water does not change dramatically with tem-
perature, nor does the cp of steam, with the exception

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

91

of the transcritical region and of a thin region just out-
side the saturation curve. On the other hand, substitut-
ing those functions with linear approximations which
are consistent with each other is not trivial and would
require substantial changes to the code of the original
fluid model.

The strategy for the homotopy is then to rely on the
fact that these functions are only mildly nonlinear, so
they should not cause major convergence issues, of
course as long as they are called in their range of va-
lidity. Therefore, the corresponding function calls are
left untouched in the simplified model.

It is however essential to select reasonable start val-
ues for the gas temperatures, so that the guess values
used for the first Newton iterations are already in the
correct temperature range, as far as cp is concerned;
the precise numerical value of start attribute is not crit-
ical. As concerns the vaporizing fluid properties, start
values should be selected so that the first Newton iter-
ations compute the properties on the correct side of the
saturation curve, i.e., subcooled liquid or superheated
steam.

The user input is therefore a very rough temperature
value for the gas side (say, 400 rather than 600 or 800
K, for standard flue gas heat exchanger), and the indi-
cation of a nominal pressure and of the phase (liquid or
vapour) for the vapour size, that can be used internally
in the model to compute start values of the specific
enthalpies corresponding to well-subcooled liquid and
well-superheated steam.

Evaporating pipes are less critical from this point of
view, because in a two-phase mixture the temperature-
enthalpy relationship becomes flat, i.e. the tempera-
ture no longer depends on the enthalpy, but only on the
pressure, which usually does not change much across
the pipe length.

3.2.6 Controllers acting on flows and controlling
energy-related quantities

It is often the case that the plant model is complete
with controllers, and that the goal is to initialize the
whole controlled system in steady state. If the con-
troller is active and contains some integral action on
the error, the steady-state equations are equivalent to
the equation

y = ysp, (10)

where ysp is the value of the set point. This equation,
coupled with the rest of the plant model, implicitly de-
termines the value of the control value, e.g. a valve
opening or a pump rotational speed.

If the control variable directly influences a flow rate,
and the controlled variable is manly determined by the
energy flows, (10) introduces a strong nonlinear cou-
pling between the hydraulic equations and the thermal
equations, thus hampering the solver convergence.

Consider the following example. The last econo-
mizer stages of a heat recovery steam generator usu-
ally allow to modulate a recirculation flow in order to
control the outlet temperature of the preheated water
to the desired value. In order to change this value,
valves or pump speeds must be changed, that can also
affect the water/steam flow through the evaporator and
superheater, thus greatly influencing all the thermal
power transfer phenomena across the steam generator.
During the first iterations of the nonlinear solver, the
gas temperature near the exhaust can be quite differ-
ent from its design value: this causes the recircula-
tion flows to be also different from the design values,
thus influencing the evaporator and superheater flows,
which in turn affect the temperature of the gas heating
them. In the end, the solver might get stuck far away
from the sought after solution even when considering
the simplified equations for the physical model.

Should this happen, it usually is possible to roughly
estimate what the value of the control variable will be
in the nominal operating point of the plant. It is then
possible to remove the above-described nonlinear cou-
pling by using a simplified model of the controller that
just outputs the start value of the control variable. Of
course this means that the steady-state operating point
of the simplified model will be slightly off with re-
spect to the correct value, but this is not a problem,
as long as the operating point is physically meaning-
ful and not too far from the exact solution. The ho-
motopy transformation will then slowly introduce the
closed-loop controller action, thus smoothly bringing
the controlled variables to their set points at the end of
the homotopy transformation.

In some cases, an explicit controller model is not
included in the plant model, and the steady-state oper-
ating point is just obtained by adding equations such
as (10) for the desired outputs (inverse initialization).
In this case, those equations should use the homotopy
operator to blend the prescribed control value (simpli-
fied model) with the prescribed output value, e.g.:

0 = homotopy(valve_opening - valve_opening_nominal,

T_out - T_out_nominal);

3.2.7 Controllers with control signal saturations

It is often the case that controllers in controlled plant
models include saturations, i.e., limitations in the con-
trol variable range. If the saturation limits are wide

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

92

enough, then they are actually irrelevant: the controller
is modulating, and the effect of the controller is equiv-
alent to the steady-state equation on the integral action.
This is in turn equivalent to (10), which implicitly de-
termines the value of the control variable, within the
saturation limits. On the other hand, if an out-of-bound
control action would be required to attain the set point,
then the saturation is engaged, equation (10) no longer
holds and is replaced by either

u = umax (11)

or
u = umin. (12)

Irrespective of the way the saturating controller
is actually implemented (e.g. with or without anti-
windup action), the above scenarios always hold, in-
dicating a strongly nonlinear behaviour of the corre-
sponding system of equations. In other words, letting
the solver figure out which controllers are in a mod-
ulating state, which are saturated high and which are
saturated low corresponds to solving a highly nonlin-
ear problem, with potentially combinatorial complex-
ity, which can cause serious convergence problems to
the solver.

Doing so is however not necessary in general, since
the status of the controllers in the nominal operating
point is usually well known. In case it is known in
advance that the controller will be modulating, then
the saturation limits can be removed in the simplified
model, thus making the model linear. In case it is
known in advance that the control output will be sat-
urated at the maximum or minimum limits, then the
saturation equation is replaced with an equation stat-
ing that the control output is fixed at the maximum or
minimum value.

Note that this functionality can be merged with
the functionality described in the previous subsection.
Summing up, the simplified model should either re-
move the saturation limits from the output, or hold the
output at a fixed value, which might be a specific nom-
inal value, the maximum, or the minimum, depending
on the situation.

3.3 Solving the simplified model

It is apparent that all the above-described simplifica-
tion strategies reduce the couplings between equations
and the nonlinear effects, compared to the actual ini-
tialization problem. In order to take full advantage of
these simplifications and ensure the highest chance of
convergence, it is recommended that the tool applies

structural analysis and optimization (BLT transforma-
tion, tearing, etc.) to the simplified initialization prob-
lem, obtained by replacing all instances of the homo-
topy() operator with their simplified argument.

When this is done, then the iteration variables of the
initialization problem, i.e, the tearing variables, typi-
cally belong to these categories:

• Gas-side temperature distributions in heat ex-
changers

• Wall temperatures distributions in heat exchang-
ers

• Water/steam side enthalpy distributions in heat
exchangers

• Steam drum pressures

• A few other flow rates and pressures

The first two sets will need very rough start values
(say 400, 600 or 800 K, depending on the heat ex-
changer); there will be no need at all to provide es-
timates of the actual temperature distributions within
heat exchangers. The third set also requires very rough
start values (subcooled liquid or superheated steam,
depending on the case). Therefore, appropriate start
values can be set for all these variables in the model,
based on a a couple of numerical parameters in the heat
exchanger component, whose precise value is not at all
critical for convergence. Steam drum start values can
be easily supplied based on nominal operating point
data. If the flow rates belong to heat exchanger compo-
nents, a nominal value is already available, since it is
required to perform the energy balance equation sim-
plification, so it can also be used to set the start value.

In some cases, there might still be a very few re-
maining iteration variables that don’t have any mean-
ingful start value, causing the solver to fail. These can
be fixed on a case by case basis, or by adding suitable
start and/or nominal parameters to the corresponding
library model. Ideally, required start values should be
inferred from parameters of the component which give
information about the nominal operating point, with-
out the need of extra ad-hoc input by the end-user.

3.4 Steady-state initialization far from the
nominal operating point

The simplified problem has been designed to approx-
imate the actual problem at the nominal operating
point. What if one wants to initialize the plant at a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

93

different operating point, e.g. 40% load, instead of the
nominal 100% load?

One idea in this case is to use the homotopy() oper-
ator to parameterize the signal sources that define the
operating point. For example, if the load set-point is
generated by a step or ramp source, one might write
homotopy(40, 100) as the offset value. This means
that the simplified initialization problem is actually
solved with an offset of 100%, i.e., at full load; dur-
ing the homotopy transformation, while the problem
is brought to its actual form, the load is also progres-
sively reduced to 40%, thus eventually converging to
the required steady state.

It has been verified in a number of test cases (see
next Section) that this additional mismatch between
simplified and actual model does not lead to any sin-
gularity of the solution during the homotopy transfor-
mation, and guarantees successful convergence of the
actual initialization problem.

Should this not be the case, two homotopy trans-
formations should be performed in sequence: first the
simplified problem at nominal load should be trans-
formed to the actual model, also at nominal load; then,
the load set point should be reduced, therefore realis-
ing a quasi-static change of the operating point from
full load to partial load, which should pose no prob-
lems. Unfortunately this is not possible with the cur-
rent definition of the homotopy() operator, which only
allows for a single, system-wide transformation.

4 Experimental results

The general ideas illustrated in the previous sections
has been implemented in the version 3 of the Ther-
moPower library [4]. The library has then been used
to build a series of test cases of increasing complex-
ity, culminating in the complete model of a combined-
cycle power plant, whose heat recovery steam genera-
tor (HRSG) includes 15 different heat exchangers. A
few extra parameters for nominal values required by
the simplified model had to be added to the formerly
developed heat exchanger models; however, they are
a very small fraction of the number of parameters al-
ready needed to set up those models and, as noted in
the previous section, their numerical values need not
be precise by any means. Furthermore, and more im-
portant, these parameters are set once and for all in a
given plant model and need not be changed on a case-
by-case basis depending on the choice of start values
of the Modelica tool.

For the simpler cases, homotopy was actually not

necessary to solve the initialization problem, but as the
complexity increased, more and more cases fail to ini-
tialize when the built-in solver of Dymola is used, be-
cause of initial guesses which are not accurate enough.
All the simplified models converged without problems
(as long as the nominal parameter gives a correct or-
der of magnitude for all the iteration variables) and the
homotopy paths of all the iteration variables proved to
be smooth and devoid of turning points or worse sin-
gularities.

The three largest and hardest-to-solve cases are
briefly documented here. The model describes a com-
plete combined-cycle power plant. The three levels of
pressure HRSG includes 15 heat exchangers, each one
discretized by finite volumes and with flow-dependent
heat transfer coefficients. The steam turbine system
includes a condenser model and a pumping system
model, so the water/steam cycle is closed. The tur-
bines operate in sliding pressure; control loops are
included to control the steam drum levels, the super-
heater outlet temperatures, the economizer outlet tem-
perature, and the combined electrical power output of
the gas and steam turbines. Three variants have been
considered:

1. reference plant model, initialized at 100% load;

2. reference plant model, initialized at 60% load;

3. detailed plant model, with two parallel HRSGs,
common steam collector and steam turbine sys-
tem, also initialized at 100% load;

The initialization problem of case 1. has 345 iter-
ation variables. During the homotopy transformation,
no variable shows bifurcations or turning points. Most
variables change by less than 5% between λ = 0 and
λ = 1. The outputs of the superheaters and reheaters
temperature controllers (which are fixed to the start
value at λ = 0 and work in closed loop at λ = 1) show
the biggest variations, but change smoothly and with-
out singularities during the homotopy transformation.

The computation of the transformation took 8 steps
and 40 seconds using the test implementation, running
on a 2.26 GHz P9300 Intel processor. For the sake of
the example, Fig. 2 shows some representative plots
of iteration variables during the transformation.

Case 2 has the same number of iteration variables,
but now the homotopy transformation also involves
bringing down the load from the nominal 100% value
to 60%, so it is a bit more involved, because the val-
ues of the initial steady state significantly differ from
the nominal values. This time, the transformation re-
quired 37 steps and took 100 seconds to compute. Fig.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

94

Figure 2: Homotopy paths for 100% load initialization

Figure 3: Homotopy paths for 60% load initialization

3 shows the plots of the same iteration variables con-
sidered in the previous case: it is apparent how the
change in the values is now substantial, since it in-
volves a large change in the operating point, but the
transformation is nevertheless smooth and without sin-
gularities.

Case 3, which includes two HRSG models in par-
allel, has 673 iteration variables. The transformation
took 7 steps and 170 seconds of CPU time to be per-
formed. The plots of the iteration variables are similar
to those shown in Figure 2 as expected, since also in
this case the system is initialized at 100% load.

As a final consideration, note that the experimen-
tal code uses a brute-force numerical approach to
compute the Jacobian, which can be computed in a
much more efficient way by exploiting its sparsity
pattern. Furthermore, not much time has been de-
voted to the optimal setting of the continuation solver.

A production-quality implementation is therefore ex-
pected to be substantially faster to perform the trans-
formation shown above.

5 Conclusions and outlook

A strategy for robust and reliable steady-state initial-
ization of large thermo-hydraulic system has been pre-
sented in this paper. The basic idea is to simplify a few
selected equations in order to form a simplified ini-
tialization problem that is easily solved, without need
of setting accurate start values for the iteration vari-
ables; subsequently, smoothly transform this problem
into the actual problem of interest, getting its initial-
ization by continuity.

The proposed strategy has been demonstrated by
means of a test implementation of the homotopy()

operator, applied to large models of combined-cycle
power plants with up to 671 iteration variables. All the
examined test cases were solved successfully and the
homotopy paths of all the iteration variables did not
show singular behaviour of any sort, thus confirming
the validity of the selection criteria for the simplified
model.

By adding a few more parameters to the model, indi-
cating nominal values (without need of particular ac-
curacy), the proposed method completely eliminated
the need by the end user of setting start values on the
particular problem at hand, in order to ensure conver-
gence. The authors thus argue that they have demon-
strated a truly modular and object-oriented approach
to reliable steady-state initialization for large thermo-
hydraulic networks.

The availability of built-in, fast and numerically
well-behaved homotopy methods in Modelica tools
would make this approach a lot more user-friendly
than using the prototype implementation employed for
this study, which was only meant to demonstrate the
soundness of the proposed approach from the point of
view of the mathematical modelling involved.

6 Acknowledgement

The financial support of EDF under contract
5900058671 (Development of an efficient method for
power plant modelling) is gratefully acknowledged by
the first and last authors.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

95

References

[1] Sielemann M., Casella F., Otter M., Clauss C.,
Eborn J., Mattsson S.E., Olsson H., Robust Ini-
tialization of Differential-Algebraic Equations
Using Homotopy. Submitted to Modelica Con-
ference 2011, Dresden, Germany, 20–22 March
2011.

[2] Heroux M. A., Bartlett R. A., Howle V. E., Hoek-
stra R. J., Hu J. J., Kolda T. G., Lehoucq R.
B., Long K. R., Pawlowski R. P., Phipps E. T.,
Salinger A. G., Thornquist H. K., Tuminaro R.
S., Willenbring J. M., Williams A., Stanley K. S.
An overview of the Trilinos project, ACM Trans-
actions on Mathematical Software, 31, 397–423,
2005.

[3] Chow S. N., Mallet-Paret J., Yorke J. A. (1978):
Finding Zeroes of Maps: Homotopy Methods
That are Constructive With Probability One.
Mathematics of Computation 32, pp. 887-899,
1978.

[4] Casella F., Leva A., Modelica Open Library For
Power Plant Simulation: Design And Experi-
mental Validation. Proceedings 3rd International
Modelica Conference, Linköping, Sweden, Nov.
3-4, 2003, pp. 41-50.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

96

Improving Newton's method for Initialization

of Modelica models

Johan Ylikiiskilä†

Johan Åkesson∗†, Claus Führer∗∗

∗ Departement of Automatic Control, Lund University

∗∗ Departement of Numerical Analysis, Lund University

† Modelon AB ∗/∗∗ Lund University
Ideon Science Park Sölvegatan 18

SE-22370, Lund, Sweden SE-22100, Lund, Sweden
E-mail: info@modelon.se E-mail:claus@maths.lth.se

Abstract

Initializing a model written in Modelica translates
to �nding consistent initial values to the underly-
ing DAE. Adding initial equations and conditions
creates a system of non-linear equations that can
be solved for the initial con�guration. This paper
reports an implementation of Newton's method to
solve the non-linear initialization system. This
implementation also uses a regularization method
to deal with singular Jacobians as well as sparse
solvers to exploit the sparsity structure of the Ja-
cobian. The implementation is based on the open-
source projects JModelica.org and Assimulo, KIN-
SOL from the SUNDIALS suite and SuperLU.
Keywords: initialization; Newton's method; reg-

ularization; JModelica.org; Assimulo; KINSOL;

SuperLU

1 Introduction

The initialization of a Modelica model is equiva-
lent to �nding consistant intial values to the un-
derlying DAE:

F (ẋ,x,w, t) = 0 (1)

Here x ∈ Rnx are the states and ẋ ∈ Rnx their
time derivatives. w ∈ Rnw are the algebraic vari-
ables and t is the time.
In JModelica.org, initialization is performed by

creating a system of, often non-linear, equations

called the initialization system:

F0 (ẋ,x,w, t) = 0 (2)

The system F0 consists of the equations describ-
ing the derivatives and algebraic variables in (1),
and in addition, F0 also contains information such
as initial equations and �xed start values. How
F0 is formed is explained in Section 2. The non-
linear system of equations (2) can be solved in a
multitude of ways. This paper focuses on one of
the most common, Newton's method.
To simplify notation the three vectors solved for,

ẋ, x and w, are grouped together by the notation
u = [ẋ;x;w] with u

(k)
0 being the values of ẋ, x

and w at time t = 0 and iteration k.
Being initialized by an initial guess u0, Newton's

method is basically an iteration over the following
three steps:

1. Calculate a direction u
(0)
0 by solving

J
(
u
(k)
0

)
∆u = −F0

(
u
(k)
0

)
(3)

where J
(
u
(k)
0

)
and F0

(
u
(k)
0

)
are the Jaco-

bian and the residual calculated at the current
iterate k.

2. Update u
(k+1)
0 :

u
(k+1)
0 = u

(k)
0 + µ∆u (4)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

97

where 0 < µ ≤ 1 is a parameter that is used to
increase the convergence radius, for example
using linesearch [5]. If µ = 1 then the method
is Newton's classical method.

3. Check for convergence, and if the stopping cri-
teria are ful�lled, return the result.

This paper will, as the title suggests, improve
Newton's method to suit it better to initializing
models written in Modelica. The improvement is
focused on the �rst of the three steps constituting
Newton's method, the solving of equation (3). Two
issues are treated:

• An initial guess sometimes results in a sin-
gular Jacobian, so that the linear equation
system no longer has a unique solution or a
solution at all. In these cases a special regu-
larization procedure has to be applied before
the linear system can be numerically solved by
e.g. LU factorization. This will be discussed
in this paper.

• For large Modelica models the matrix
J
(
u
(k)
0

)
is sparse, a justi�cation for this will

be given later. In this case it is interesting to
look at representing the matrix J

(
u
(k)
0

)
in a

sparse format and using a sparse linear solver
such as SuperLU [12]. This paper will discuss
whether, or when, such an implementation is
advantageous or not.

2 JModelica.org and initializa-

tion

The initialization problem is generated in JModel-
ica.org upon compilation. The system to be solved
at initialization is (1) with additional initial equa-
tions supplied by the user. The functions associ-
ated with the initialization system, such as F0 and
its Jacobian, are supplied by the JMI interface [14].
JModelica.org sets up the DAE system in its

index-1 form, a form in which di�erential variables,
x and algebraic variables w can be clearly distin-
guished. The system contains equations describing
all derivatives and algebraic variables. It will then
have nx+nw equations resulting in an underdeter-
mined system. Thus nx additional equations are
needed [17].
The assumption of (1) being of index 1 can be

justi�ed by saying that if a DAE of higher index

is encountered, an algorithm such as the one de-
scribed in [18] is applied to reduce the problem
back to a DAE of index 1.
The additional nx equations can be supplied by

the user as �xed start values and initial equa-
tions. Adding this information to the System
(1), the initilization System (2) is obtained. This
is done by adding all equations de�ned as ini-
tial equations as well as an equation of the kind
(5) for each variable xi with a modi�er such as
(start = x_0, fixed = True).

0 = xi − x0 (5)

If the user has supplied enough additional data,
the System (2) can be generated. If, however
the user supplies too much information the sys-
tem becomes overdetermined and the compiler will
give an error message. If, on the other hand,
not enough information is supplied the system be-
comes underdetermined. In this case the com-
piler will try to add information, such as setting
some variables to fixed = true, making the sys-
tem well de�ned. This is accomplished by applying
an algorithm to compute a maximal matching be-
tween variables and equations. For this purpose,
an implementation of the Hopcroft Karp match-
ing algorithm, [11], is employed. If unmatched
variables are detected, the corresponding fixed

attributes are set to true, and thereby balancing
the system.

3 Implementation

3.1 Overview

The implementation of the algorithm reported
spans multiple packages, written in two di�erent
programming languages: Python and C. A third
language, Cython [4], is used so packages written
in the two di�erent languages can communicate
with each other. The algorithm basicly consists
of four packages, JModelica.org, Assimulo, KIN-
SOL and an external linear solver (cf. Section 3.2)
implementing a regularization method and using
SuperLU.
The JModelica.org project is the biggest part

and consists of code written in multiple languages,
the part of JModelica.org used in this thesis is
however entirely coded in Python
Assimulo is a package written in Python using

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

98

Cython to interface functionality from the SUN-
DIALS suite, for example KINSOL [4, 1].
Finally KINSOL and SuperLU are two packages

entirely written in C. An overview of how these
packages interact is presented in Figure 1.

Figure 1: Overview of the packages involved in this
paper and how they interact.

Model data, such as evaluation of F0 and its
Jacobian, are obtained by the JMI interface in the
JModelica.org part of Figure 1. The data is passed
to Assimulo who calls KINSOL using Cython. In
KINSOL the data is used to create the system (3)
which is solved by the external linear solver, called
SuperLU in Figure 1.

3.2 KINSOL

The non-linear solver implemented in the initial-
ization algorithm reported is based on KINSOL
from the SUNDIALS suite [5]. Although this re-
port focuses on regularization and sparse solvers,
some necessary theory on KINSOL has to be re-
viewed to allow discussion of the implementation
of regularization and SuperLU.
KINSOL is a solver of systems of non-linear

equations which implements a modi�ed Newton
method where the Jacobian is only evaluated when
the solution progresses to slow or a certain num-
ber of iterations is exceeded [5]. This is to speed
up the solution of the nonlinear system since Jaco-
bian evaluations are expensive. The Jacobian can
either be calculated by �nite di�erences or have to
be supplied as a function by the user.
A regularization method and SuperLU are im-

plemented in KINSOL as an external linear solver.
An external linear solver is called by KINSOL to
solve (3) and must implement a set of functions.

The two functions that are of interest in the imple-
mentation discussed here are the setup and solve

functions.

• The setup function is called whenever KIN-
SOL needs to (re)evaluate the Jacobian. LU
factorization is preferably performed in this
function.

• The solve function uses the data from the last
call to setup to solve the linear system.

4 Regularization

When in a step, say in the kth step and the
Jacobian is singular, the linear system (3) has
no solution or its solution is not unique. Thus a
di�erent algorithm for determining the Newton
increment ∆u has to be used.

We require that ∆u is a descent direction and a
solution of the following regularized normal equa-
tions

(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
∆u (h)

= −J
(
u
(k)
0

)T
F0

(
u
(k)
0

) (6)

with λk > 0.

Here, the matrix
(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
is positive de�nite with eigenvalues in[
λk, λk +

∥∥∥J(u(k)
0

)∥∥∥
2

]
⊂ R, [19].

We select λk in accordance to a strategy used,
when implementing the Levenberg-Marquardt
method (LM) for solving an overdetermined non-
linear equations systems [7, Ch. 10], by setting

λk := min
(

1,
∥∥∥J (uk)T F0 (uk)

∥∥∥) (7)

Note, in the DAE initialization process this reg-
ularization technique is required in a single, exep-
tional step only, while the overall process remains
classical Newton iteration, based on solving regu-
lar linear systems.

4.1 Implementation

As mentioned in Section 3, regularization is im-
plemented in an external linear solver to KINSOL.
This is done so that when the LU factorization in

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

99

the setup function fails due to the Jacobian being
singular, the regularization algorithm is called.
When the regularization is called, the regular-

ization parameter λk is given by (7). Secondly, the

regularized matrix
(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
is

calculated and stored as the problem Jacobian. A
�ag is also set telling the linear solver that the
problem is currently regularized.
When the solve function is called it will continue

as usual if the regularization �ag is not set. If the
�ag is set however, a new right hand side corre-
sponding to the right hand side of (6) is calculated

and solved for instead of the ordinary −F0

(
u
(k)
0

)
.

With the regularization parameter calculated as
described, there is still a problem of the Jacobian
being singular at the solution. The strategy cho-
sen is only valid for overdetermined systems if the
Jacobian is regular at the solution [7, Ch. 10].
To see what e�ects this presents on the DAE ini-
tialization, the algorithm has been tested on the
following problem (8).

0 = x2

0 = y2
(8)

Problem (8) has the solution x = y = 0 where
its Jacobian (9) is singular.[

2x 0
0 2y

]
(9)

The algorithm converges, albeit slowly (29 itera-
tion when starting at x = y = 1.0), to the solution
x = y = 0.0018. The stopping criteria attained in
this case is the norm of the residual being smaller
than a given tolerance ε, in this case set to 6 ·10−6.
Hence the problem of a singular Jacobian at the

solution slows down the algorithm but it does not
cause it to crash, as long as the tolerance is not
set too small. There are methods discussed in [10]
handling this problem which may be included in a
later implementation.

4.2 A simple example

To test if regularization indeed works, a simply
constructed system with poorly chosen initial val-
ues is initialized. The example contains two states
x, and y as well as an algebraic variable w and is
written as follows:

model SingularTest

Real x ;

Real y (start = 1, fixed = true);

Real w (start = 2, fixed = true);

equation

der(x) = x^2 - y;

der(y) = x^2 + z^2;

0 = w - x^2 -y;

end SingularTest;

In the initialization problem, the consistent val-
ues of the two states y and x, their derivatives
and the algebraic variable w are solved for. The
sought DAE equations are the three equations in
the equation block. Added to these are the two
equations corresponding to �xed start values. Five
variables and �ve equations make up the well de-
�ned initialization system (10).

0 = x2 − y − ẋ
0 = x2 − z2 − ẏ
0 = w − x2y − y
0 = y − 1
0 = w − 2

(10)

At the initial guess given in the Modelica code
(the variable x is without a start guess and is given
the default guess zero), the system (10) has the
Jacobian (11):

1 0 0 −1 0
0 1 0 0 4
0 0 0 −1 1
0 0 0 1 0
0 0 0 0 1

 (11)

(11) is singular and so is JTJ, JTJ+h2I is how-
ever regular.
Trying to initialize this model in JModelica.org

yields the regularization algorithm to be called fol-
lowed by the Jacobian becoming regular and New-
ton's method proceeding as usual. Hence the reg-
ularization implemented succeeds in handling the
singular Jacobian.

5 Sparse solvers

Another aspect taken into account when solving
(3) is the structural properties if the Jacobian.
When solving large systems, the solution of the
system (3) can become very costly and slow due
to the size of the Jacobian. But although the Ja-
cobian is big in size it is not necessarily dense.
A matrix, and the corresponding linear system, is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

100

said to be sparse if there are many zero entries and
only a few entries di�erent from zero and this is
something that can be exploited.
Another approach to exploiting model structure

commonly employed in Modelica tools is based on
the Block Lower Triangular (BLT) transformation,
in which the system of equations is decomposed
into a sequence of smaller equation systems, see
e.g. [8, 9].

5.1 Sparse Jacobians in Modelica mod-

els

In the case of a Jacobian, the number of non-zero
entries in row i corresponds to the number of vari-
ables upon which the function i in the system (2)
is dependent. Since each function in a Modelica
model of size n normally depends on about �ve
to ten variables, the number of non-zero entries
will grow linearly while the size of the Jacobian
will grow quadraticaly for each added function. In
addition, many equations in (2) come from initial
values set by a fixed = true which only depend
on one variable. The hypothesis stated here is that
the Jacobian will get more sparse as the Modelica
model itself gets bigger.

5.2 SuperLU

Since the Jacobians are sparse, it is interesting to
look at sparse solvers for solving (3). The solver
investigated in this paper is SuperLU, a fast LU-
factorization algorithm optimizing memory usage
[12]. The SuperLU solver will also be coupled with
regularization to be able to handle singular Jaco-
bians.
SuperLU is implemented, similar to the regular-

ization method, as an external linear solver. Since
JModelica.org has support for sparse Jacobians
through the JMI interface [14], the implementa-
tion is similar to the dense case. The function cal-
culating the sparse Jacobian is wrapped in Cython
[4] and passed to KINSOL instead of the dense Ja-
cobian. In this case the Jacobian given by the JMI
interface is given in coordinate or triplet format,
each non zero element is stored as the value along
with the row and column number. The format re-
quired by SuperLU is Compressed Column format

or Harwell-Boeing format where the columns are
stored in one array, their row numbers in one ar-
ray and the index of when the column changes in
a third array [13]. This requires the Jacobian to

be reformated before passing to SuperLU, which is
performed by scipy. The computational e�ort for
this transformation grows linearly with the size of
the problem [6].
In the external linear solver, the methods used

for LU factorization are called in the setup and
the solving routines are called in the solve func-
tion. Regularization is also implemented in the
same fashion as in the dense solver but with sparse
matrices.

6 Results

6.1 Regularization

As mentioned brie�y in the end of Sec-
tion 4.2, the regularization algorithm suc-
ceeds with the constructed example presented
there. A model of a distillation column,
jmodelica.examples.distillation, from the
JModelica.org distribution, is a model with a sin-
gular Jacobian at the initial guess supplied in
the Modelica �le. When solving the initialization
problem with KINSOL coupled with an ordinary
linear solver, the solver fails, stating that the Ja-
cobian could not be LU-factorized. When a reg-
ularized linear solver, like the ones described in
Sections 4.1 and 5.2, are used however, one regu-
larized step is taken and KINSOL then converges
to the solution without having to perform another
regularization step.

6.2 SuperLU

To test the e�ency of the initialization algorithm
with SuperLU, several Modelica models have been
initialized with the sparse and the dense initializa-
tion algorithm. The initialization has been timed
multiple times and a mean value is calculated. The
mean values and medians of the times are later
compared to decide which algorithm is faster. The
tests have been performed on a Intel Core 2 Duo
T5870 processor under 32 bit Windows 7 Profes-
sional.
To test if the initialization algorithm is faster

using SuperLU instead of a dense linear solver
two series of non-linear systems have been com-
pared. From [2] the problem series Broyden and
Moraeux are problems concerning constrained op-
timization but can be seen as a non linear root
�nding problem. A simple script AtoM.py is im-
plemented to translate the models, supplied in the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

101

AMPL format .mod, to Modelica for later treat-
ment by JModelica.org. These problem series of-
fer similar systems of di�erent size. In Figures
2 and 3 the speedups of both the Broyden and
Moreaux problems are plotted against the num-
ber of variables of the systems. In Figure 2 the
speedup of the total time is plotted while Fig-
ure 3 plots the speedup of the total time except
the time spent evaluating system functions and
Jacobians. Here speedup means the time mea-
sured with dense solver divided by time measured
with sparse solver, ei.e. how many times faster the
sparse solver is than the dense solver. It should be
noticed that computation of Jacobians in JMod-
elica.org used for the benchmarks is slow, due to
limitations in the CppAD package, [3], with re-
gards to sparse Jacobians. Therefore, we focus on
comparison of the time spent in KINSOL in the
cases of sparse versus dense linear solvers.

0 100 200 300 400 500
Size of system

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p
 [

D
e
n
se

 t
im

e
 /

 S
p
a
rs

e
 t

im
e
]

Broyden
Moreaux

Figure 2: Speedup of the total times for the Broy-
den and Moreaux problems.

0 100 200 300 400 500
Size of system

0

5

10

15

20

25

30

35

40

45

S
p
e
e
d
u
p
 [

D
e
n
se

 t
im

e
 /

 S
p
a
rs

e
 t

im
e
]

Broyden
Moreaux

Figure 3: Speedup of the Broyden and Moreaux
problems not counting time in fevals and jevals.

In Tables 1 and 2 the data from the test runs
on the Broyden and Moreaux preoblems are pre-
sented. The data consists of the time spent in to-
tal is presented (tot) along the time spent in KIN-
SOL and linear solver without evaluations of Jaco-
bians and system functions (KIN), the time spent
on evaluating the residual and Jacobian (Evals)
and the number of non-linear iterations required
(iters). The data is scaled by the total time of the
dense solver to simplify comparison.

Table 1: Times measured for the Broyden prob-
lems.

Broyden 10 40 80 320
size 10 40 80 320

tot
Dense 1.0 1.0 1.0 1.0
Sparse 1.530 0.880 0.787 0.738

KIN
Dense 0.452 0.249 0.244 0.243
Sparse 0.425 0.060 0.019 0.006

Evals
Dense 0.548 0.751 0.756 0.757
Sparse 1.105 0.820 0.768 0.732

iters
Dense 17 60 112 137
Sparse 17 60 112 137

Table 2: Times measured for the Moreaux prob-
lems.

Moreaux 10 40 80 160
size 32 122 242 482

tot
Dense 1.0 1.0 1.0 1.0
Sparse 1.010 0.734 0.645 0.584

KIN
Dense 0.666 0.495 0.457 0.435
Sparse 0.580 0.218 0.121 0.062

Evals
Dense 0.334 0.505 0.543 0.565
Sparse 0.430 0.516 0.524 0.522

iters
Dense 38 112 123 137
Sparse 38 112 123 137

The models tested in Tables 1 and 2 are not
models originally written in Modelica but rather
optimization benchmarks. To test how the ini-
tialization algorithm using a sparse solver behaves
when used on 'real' Modelica models, the same
test performed in Tables 1 and 2 are performed on
some models with di�erent sizes in Table 3.

• CSTR: an example from the JModelica.org
package describing two continously stirred
tank reactors in series.

• DIST: an example from the JModelica.org
package already mentioned in Section 6.1.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

102

• CoCy: a Modelica model describing a com-
bined cycle power plant initialized at full load.

Table 3: Times measured for the Modelica models.
Model CSTR Dist CoCy
size 15 99 150

tot
Dense 1.0 1.0 1.0
Sparse 1.112 0.599 0.635

KIN
Dense 0.645 0.552 0.426
Sparse 0.610 0.115 0.112

Evals
Dense 0.355 0.448 0.574
Sparse 0.502 0.484 0.523

iters
Dense 10 24 34
Sparse 10 24 34

6.3 Sparsity of Jacobians

It is also interesting to take a look at the sparsity of
the systems to put the results obtained in Section
6.2. In Table 4 the sparsity of the systems, that
is the sparsity of the system Jacobian, timed in
Table 1 and 2, are presented.

Table 4: Sparsity measured in the percentage of
elements di�ernet from zero in the Jacobian.
Model 10 20 40 80 160 320
Broyden 54.0 31.0 16.5 8.5 4.31 2.17
Moreaux 8.98 4.73 2.43 1.23 0.62 -

In Table 5 the sparsity of the Modelica mod-
els timed in Table 3 are presented supporting the
hypothesis of bigger models being more sparse..

Table 5: Sparsity measured in the percentage of
elements di�ernet from zero in the Jacobian.
Model Size Sparisty
CSTR 15 24.0
DIST 99 2.67
CoCy 150 1.75

7 Conclusions

The regularization method is handling singular Ja-
cobians at initialization. So far, no models, sup-
ported by JModelica.org, have caused the initial-
ization algorithm based on regularization to stop
due to a singular Jacobian. A problem with a sin-
gular Jacobian at the solution is however solved

slower, as shown in the end of Section 4.1. Pan
and Fan [10] proposes techniques to handle this
problem that may be used in a later implementa-
tions.
Table 5 imply that larger Modelica models are

more sparse than smaller Modelica models, thus
supporting the hypothesis stated in section 5.1 of
Modelica models getting more sparse as they grow
in size.
Regarding sparsity, Figures 2, 3 and Tables 1,

2 and 3 imply that the problems are initialized
faster with the sparse version of the initialization
algorithm. Due to CppAD slowing down the eval-
uations of Jacobian, the times spent in KINSOL
are compared instead of the total time.
When applied to the Modelica models in Ta-

ble 3, the sparse version solves the bigger prob-
lems (of size n ≈ 100 or bigger) around 4-5 times
faster than the dense version. The bigger bench-
marks from the Broyden and Moreaux series show
an even bigger speedup, Broyden320 is for example
solved 40 times faster. For smaller model, like the
model of the two stirred tank reactors, the orga-
nizational e�ort of SuperLU and the model being
less sparse, outweighs the advantages and the two
methods are equal.
In the benchmarks presented here, the time for

evaluating Jacobians outweights the time spent in
KINSOL, especially if SuperLU is employed. This
is due to the fact that the package used for gener-
ation of Jacobians has weak support for computa-
tion of sparse deriviatives. This de�ciency will be
adressed in future versions of JModelica.org.
In conclusion, the sparse version of the initial-

ization algorithm is advantageous when applied
to bigger models. For smaller models however,
the two version performs equally. However, the
slow evaluation of sparse Jacobians make the dense
solver a better choice for smaller models.

References

[1] The assimulo homepage. http://www.

jmodelica.org/page/199.

[2] The coconut benchmark: Library 3 constraint
satisfaction test problems. http://www.mat.
univie.ac.at/~neum/glopt/coconut/

Benchmark/Library3_new_v1.html.

[3] The cppad webpage. http://www.coin-or.

org/CppAD/.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

103

[4] Stefan Behnel, Robert Bradshaw, Dag Sverre
Seljebotn, and other contributors. Cython c-
extensions for python - homepage. http://

www.cython.org/.

[5] Aaron M. Collier, Alan C. Hindmars-
hand Radu Serban, and Carol S. Woodward.
User Documentation for kinsol v2.6.0. Center
for Applied Scienti�c Computing, Lawrence
Livermore National Laboratory, May 2009.

[6] The SciPy community. SciPy Reference

Guide, 0.9.0.dev6665 edition, October 2010.

[7] J.E. Dennis and R.B. Schnabel. Numerical

methods for unconstrained optimization and

nonlinear equations. Prentice Hall, 1983.

[8] Hilding Elmqvist. A Structured Model Lan-

guage for Large Continuous Systems. PhD
thesis, Department of Automatic Control,
Lund University, Sweden, may 1978. TFRT-
1015.

[9] Jan Eriksson. A note on the decomposition of
systems of sparse non-linear equations. BIT

Numerical Mathematics, 16(4):462�465, 1976.
10.1007/BF01932730.

[10] Jinyan Fan and Jianyu Pan. A note on
the levenberg-marquardt parameter. Applied
Mathematics and Computation, 207:351�359,
2009.

[11] John E. Hopcroft and Richard M. Karp. An
2/5 algorithm for maximum matchings in bi-
partite graphs. SIAM Journal on Computing,
2(4):225�231, 1973.

[12] X. S. L. W. Demmel James W. Demmel, John
R. Gilbert, Stanley C. Eisenstat, John R.
Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial piv-
oting. SIAM J. MATRIX ANAL. APPL,
20(3):720�755, 1999.

[13] Xiaoye S. Li James W. Demmel, John
R. Gilbert. SuperLU Users Guide.

[14] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization
with optimica and jmodelica.org - languages
and tools for solving large-scale dynamic op-
timization problem. Computers and Chemical
Engineering, 34(11):1737�1749, nov 2010.

[15] K. Levenberg. A method for the solution of
certain nonlinear problems in least squares.
Quart. Appl. Math., 2:164�166, 1944.

[16] D.W. Marquardt. An algorithm for least-
squares estimation of nonlinear inequalities.
SIAM J. Appl. Math., 11:431�441, 1963.

[17] S.E Mattson, H. Elmqvist, M. Otter, and
H. Olsson. Initialization of hybrid di�erential-
algebraic equations in modelica 2.0. In
Second International Modelica Conferencem,

Proceedings, pages 9�15. The Modelica Asso-
ciation, March 2002.

[18] Sven Erik Mattsson and Gustaf Söderlind. In-
dex reduction in di�erential-algebraic equa-
tions using dummy derivatives. SIAM J. Sci.

Comput, 14(3):677�692, May 1993.

[19] Arnold Neumaier. Solving ill-conditioned and
singular linear systems: A tutorial on reg-
ularization. SIAM Review, 40(3):636�666,
September 1998.

[20] Jorge Nocedal and Stephen J. Wright. Nu-

merical Optimization. Springer, 2006.

Acknowledgements

The authors would like to acknowledge the kind
assistance from Francesco Casella in providing the
Combined Cycle benchmark model used in the
paper. This work was partially funded by the
Swedish funding agency Vinnova under the grant
program "Forska and Väx".

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

104

The Functional Mockup Interface

for Tool independent Exchange of Simulation Models

T. Blochwitz
1
, M. Otter

2
, M. Arnold

3
, C. Bausch

4
, C. Clauß

5
, H. Elmqvist

9
, A. Junghanns

6
,

J. Mauss
6
, M. Monteiro

4
, T. Neidhold

1
, D. Neumerkel

7
, H. Olsson

9
, J.-V. Peetz

8
, S. Wolf

5

Germany:
1
ITI GmbH, Dresden;

2
DLR Oberpfaffenhofen;

3
University of Halle,

4
Atego Systems GmbH, Wolfsburg;

5
Fraunhofer IIS EAS, Dresden;

6
QTronic, Berlin;

7
Daimler AG, Stuttgart;

8
Fraunhofer SCAI, St. Augustin;

Sweden:
9
Dassault Systèmes, Lund.

Abstract

The Functional Mockup Interface (FMI) is a tool

independent standard for the exchange of dynamic

models and for co-simulation. The development of

FMI was initiated and organized by Daimler AG

within the ITEA2 project MODELISAR. The prima-

ry goal is to support the exchange of simulation

models between suppliers and OEMs even if a large

variety of different tools are used. The FMI was de-

veloped in a close collaboration between simulation

tool vendors and research institutes. In this article an

overview about FMI is given and technical details

about the solution are discussed.

Keywords: Simulation; Co-Simulation, Model Ex-

change; MODELISAR; Functional Mockup Interface

(FMI); Functional Mockup Unit (FMU);

1 Introduction

One of the objectives of the development and usage

of tool independent modeling languages (e.g. Model-

ica
®
[1]1, VHDL-AMS [10]) is to ease the model ex-

change between simulation tools. However, model-

ing languages require a huge effort to support them

in a tool. It is therefore common to provide also low

level interfaces, to exchange models in a less power-

ful, but much simpler way. Another aspect of model

exchange is the protection of product know-how

which could be recovered from their physical mod-

els.

Several tools offer proprietary model interfaces, such

as:

1 Modelica® is a registered trademark of the Modelica Association.

• Matlab/Simulink
®2: S-Functions [3]

• MSC.ADAMS3: user-written subroutines [4]

• Silver: Silver-Module API [5]

• SIMPACK: user routines [6]

• SimulationX
®4: External Model Interface [7]

Currently, no tool independent standard for model

exchange (via source or binary code in a program-

ming language) is available. The same holds for the

situation in the field of co-simulation.

Vendors of Modelica tools (AMESim, Dymola,

SimulationX) and non Modelica tools (SIMPACK,

Silver, Exite), as well as research institutes worked

closely together and recently defined the Functional

Mockup Interface5. This interface covers the aspects

of model exchange [8] and of co-simulation [9]. This

development was initiated and organized by Daimler

AG with the goal to improve the exchange of simula-

tion models between suppliers and OEMs. Within

MODELISAR, Daimler has set up 14 automotive use

cases for the evaluation and improvement of FMI. In

this article, the technical details behind FMI are dis-

cussed.

Figure 1: Improving model-based design between

OEM and supplier with FMI.

2 Matlab®/Simulink® are regist. trademarks of The MathWorks Inc.
3 MSC® is a registered trademark and MSC.ADAMS is a trademark

of MSC.Software Corporation or its subsidiaries.
4 SimulationX® is a registered trademark of ITI GmbH.
5 http://www.functional-mockup-interface.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

105

2 The Functional Mock-Up Interface

2.1 Main Design Ideas

The FMI standard consists of two main parts:

1. FMI for Model Exchange:

The intention is that a modeling environment can

generate C-Code of a dynamic system model in

form of an input/output block that can be utilized

by other modeling and simulation environments.

Models are described by differential, algebraic

and discrete equations with time-, state- and

step-events. The models to be treated can be

large for usage in offline simulation; and it is al-

so possible to use models for online simulation

and in embedded control systems on micro-

processors.

2. FMI for Co-Simulation:

The intention is to couple two or more simula-

tion tools in a co-simulation environment. The

data exchange between subsystems is restricted

to discrete communication points. In the time be-

tween two communication points, the subsys-

tems are solved independently from each other

by their individual solver. Master algorithms

control the data exchange between subsystems

and the synchronization of all slave simulation

solvers (slaves). The interface allows standard,

as well as advanced master algorithms, e.g. the

usage of variable communication step sizes,

higher order signal extrapolation, and error con-

trol.

Both approaches share a bulk of common parts that

are sketched in the next subsections.

2.2 Distribution

A component which implements the FMI is called

Functional Mockup Unit (FMU). It consists of one

zip-file with extension “.fmu” containing all neces-

sary components to utilize the FMU:

1. An XML-file contains the definition of all varia-

bles of the FMU that are exposed to the envi-

ronment in which the FMU shall be used, as well

as other model information. It is then possible to

run the FMU on a target system without this in-

formation, i.e., with no unnecessary overhead.

For FMI-for-Co-Simulation, all information

about the “slaves”, which is relevant for the

communication in the co-simulation environ-

ment is provided in a slave specific XML-file. In

particular, this includes a set of capability flags

to characterize the ability of the slave to support

advanced master algorithms, e.g. the usage of

variable communication step sizes, higher order

signal extrapolation, or others.

2. For the FMI-for-Model-Exchange case, all need-

ed model equations are provided with a small set

of easy to use C-functions. These C-functions

can either be provided in source and/or binary

form. Binary forms for different platforms can

be included in the same model zip-file.

For the FMI-for-Co-Simulation case, also a

small set of easy to use C-functions are provided

in source and/or binary form to initiate a com-

munication with a simulation tool, to compute a

communication time step, and to perform the da-

Figure 2: Top level part of the FMI XML schema

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

106

ta exchange at the communication points.

3. Further data can be included in the FMU zip-file,

especially a model icon (bitmap file), documen-

tation files, maps and tables needed by the mod-

el, and/or all object libraries or DLLs that are

utilized.

2.3 Description Schema

All information about a model and a co-simulation

setup that is not needed during execution is stored in

an XML-file called “modelDescription.xml”. The

benefit is that every tool can use its favorite pro-

gramming language to read this XML-file (e.g. C,

C++, C#, Java, Python) and that the overhead, both

in terms of memory and simulation efficiency, is re-

duced. As usual, the XML-file is defined by an

XML-schema file called “fmiModelDescrip-

tion.xsd”. Most information is identical for the two

FMI cases.

In Figure 2, the top-level part of the schema defi-

nition is shown. All parts are the same for the two

FMI-cases, with exception of the element “Imple-

mentation”. If present, the import tool should inter-

pret the model description as applying to co-

simulation. As a consequence, the import tool must

select the C-functions for co-simulation, otherwise

for model exchange. An important part of the “Im-

plementation” is the definition of capability flags to

define the capabilities that the co-simulation slave

supports:

Figure 3: Capability flags of FMI for Co-Simulation.

These flags are interpreted by the master to select a

co-simulation algorithm which is supported by all

connected slaves.

2.4 C-Interface

The executive part of FMI consists of two header

files that define the C-types and –interfaces. The

header file “fmiPlatformTypes.h” contains all defini-

tions that depend on the target platform:

#define fmiPlatform "standard32"

#define fmiTrue 1

#define fmiFalse 0

#define fmiUndefinedValueReference

 (fmiValueReference)(-1)

typedef void* fmiComponent;

typedef unsigned int fmiValueReference;

typedef double fmiReal ;

typedef int fmiInteger;

typedef char fmiBoolean;

typedef const char* fmiString ;

This header file must be used both by the FMU and

by the target simulator. If the target simulator has

different definitions in the header file (e.g.,

“typedef float fmiReal” instead of “typedef

double fmiReal”), then the FMU needs to be re-

compiled with the header file used by the target sim-

ulator. The header file platform, for which the model

was compiled, as well as the version number of the

header files, can be inquired in the target simulator

with FMI functions.

In this first version of FMI, the minimum amount

of different data types is defined. This is not suffi-

cient for embedded systems and will be improved in

one of the follow-up versions of FMI.

The type fmiValueReference defines a handle

for the value of a variable: The handle is unique at

least with respect to the corresponding base type

(like fmiReal) besides alias variables that have the

same handle. All structured entities, like records or

arrays, are “flattened” in to a set of scalar values of

type fmiReal, fmiInteger etc. A fmiValueRef-

erence references one such scalar. The coding of

fmiValueReference is a “secret” of the modeling

environment that generated the model. The data ex-

change is performed using the functions fmi-

SetXXX(...) and fmiGetXXX(...). XXX stands

for one of the types Real, Integer, and Boolean. One

argument of these functions is an array of

fmiValueReference, which defines which variable

is accessed. The mapping between the FMU varia-

bles and the fmiValueReferences is stored in the

model description XML file.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

107

For simplicity, in this first version of FMI a “flat”

structure of variables is used. Still, the original hier-

archical structure of the variables can be retrieved, if

a flag is set in the XML-file that a particular conven-

tion of the variable names is used. For example, the

Modelica variable name

 “pipe[3,4].T[14]”

defines a variable which is an element of an array of

records “pipe” of vector T (“.” separates hierarchical

levels and “[...]” defines array elements).

Header-file “fmiFunctions.h” contains the proto-

types for functions that can be called from simulation

environments.

The goal is that both textual and binary represen-

tations of models are supported and that several

models using FMI might be present at link time in an

executable (e.g., model A may use a model B). For

this to be possible the names of the FMI-functions in

different models must be different unless function

pointers must be used. For simplicity and since the

function pointer approach is not desirable on embed-

ded systems, the first variant is utilized by FMI:

Macros are provided in “fmiFunctions.h” to build

the actual function names. A typical usage in an FMI

model or co-simulation slave is:

#define MODEL_IDENTIFIER MyFMU

#include "fmiFunctions.h"

< implementation of the FMI functions >

For example, a function that is defined as

 “fmiGetDerivatives”

is changed by the macros to the actual function name

 “MyFMU_fmiGetDerivatives”,

i.e., the function name is prefixed with the model or

slave name and an “_”. The “MODEL_IDENTIFIER”

is defined in the XML-file of the FMU. A simulation

environment can therefore construct the relevant

function names after inspection of the XML-file.

This can be used by (a) generating code for the actu-

al function call or (b) by dynamically loading a dy-

namic link library and explicitly importing the func-

tion symbols by providing the “real” function names

as strings.

3 FMI for Model Exchange

3.1 Mathematical Description

The goal of the Model Exchange interface is to nu-

merically solve a system of differential, algebraic

and discrete equations. In this version of the inter-

face, ordinary differential equations in state space

form with events are handled (abbreviated as “hybrid

ODE”).

This type of system is described as a piecewise

continuous system. Discontinuities can occur at time

instants t0, t1, …, tn, where ti < ti+1. These time in-

stants are called “events”. Events can be known be-

fore hand (= time event), or are defined implicitly (=

state and step events).

The “state” of a hybrid ODE is represented by a

continuous state x(t) and by a time-discrete state m(t)

that have the following properties:

• x(t) is a vector of real numbers (= time-

continuous states) and is a continuous function

of time inside each interval ti ≤ t < ti+1, where

()
0

limi it t
ε

ε
→

= + , i.e., the right limit to ti (note,

x(t) is continuous between the right limit to ti

and the left limit to ti+1 respectively).

• m(t) is a set of real, integer, logical, and string

variables (= time-discrete states) that are con-

stant inside each interval ti ≤ t < ti+1. In other

words, m(t) changes value only at events. This

means, m(t) = m(ti), for ti ≤ t < ti+1.

At every event instant ti, variables might be discon-

tinuous and therefore have two values at this time

instant, the ”left” and the ”right” limit. x(ti), m(ti) are

always defined to be the right limit at ti, whereas

x¯ (ti), m¯ (ti) are defined to be the “left” limit at ti,

e.g.: m¯ (ti) = m(ti-1). In the following figure, the two

variable types are visualized:

Figure 4: Piecewise-continuous states of an

FMU: time-continuous (x) and time-discrete (m).

An event instant ti is defined by one of the following

conditions that gives the smallest time instant:

1. At a predefined time instant ti = Tnext(ti-1) that was

defined at the previous event instant ti-1 either by

the FMU, or by the environment of the FMU due

to a discontinuous change of an input signal uj at

ti. Such an event is called time event.

2. At a time instant, where an event indicator zj(t)

changes its domain from zj > 0 to zj ≤ 0 or vice

versa (see Figure 5 below). More precisely: An

event t = ti occurs at the smallest time instant

“min t” with t > ti-1 where “(zj(t) > 0) ≠ (zj(ti-1) >

time t

t0 t1
t2

x(t)

m(t)

m
–
(t1) m(t1)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

108

0)”. Such an event is called state event. All event

indicators are piecewise continuous and are col-

lected together in one vector of real numbers

z(t).

Figure 5: An event occurs when the event indica-

tor changes its domain from z > 0 to z ≤ 0 or vice

versa.

3. At every completed step of an integrator,

fmiCompletedIntegratorStep must be called.

An event occurs at this time instant, if indicated

by the return argument callEventUpdate. Such

an event is called step event. Step events are,

e.g., used to dynamically change the (continu-

ous) states of a model, because the previous

states are no longer suited numerically.

An event is always triggered from the environment

in which the FMU is called, so it is not triggered in-

side the FMU. A model (FMU) may have additional

variables p, u, y, v. These symbols characterize sets

of real integer, logical, and string variables, respec-

tively. The non-real variables change their values

only at events. For example, this means that uj(t) =

uj(ti), for ti ≤ t < ti+1, if uj is an integer, logical or

string variable. If uj is a real variable, it is either a

continuous function of time inside this interval or it

is constant in this interval (= time-discrete). “p” are

parameters (data that is constant during the simula-

tion), “u” are inputs (signals provided from the envi-

ronment), “y” are outputs (signals provided to the

environment that can be used as inputs to other sub-

systems), and “v” are internal variables that are not

used in connections, but are only exposed by the

model to inspect results. Typically, there are a few

inputs u and outputs y (say 10), and many internal

variables v (say 100000).

3.2 Caching of Variables

Depending on the situation, different variables need

to be computed. In order to be efficient, FMI is de-

signed so that the interface requires only the compu-

tation of variables that are needed in the present con-

text. For example, during the iteration of an integra-

tor step, only the state derivatives need to be com-

puted provided the output of a model is not connect-

ed. It might be that at the same time instant other

variables are needed. For example, if an integrator

step is completed, the event indicator functions need

to be computed as well. For efficiency it is then im-

portant that in the call to compute the event indicator

functions, the state derivatives are not newly com-

puted, if they have been computed already at the pre-

sent time instant. This means, the state derivatives

shall be reused from the previous call. This feature is

called “caching of variables”.

Caching requires that the model evaluation can

detect when the input arguments, like time or states,

have changed. This is achieved by setting them ex-

plicitly with a function call since every such function

call signals precisely a change of the corresponding

variables. A typical call sequence to compute the

derivatives

(, , ,)t=x f x u p&

as function of states, inputs, and parameters is there-

fore:

// Instantiate FMU

// ("M" is the MODEL_IDENTIFIER)

m = M_fmiInstantiateModel("m", ...);

 ...

// set parameters

M_fmiSetReal(m, id_p, np, p);

// initialize instance

M_fmiInitialize(m, ...);

 ...

// set time

M_fmiSetTime(m, time);

 ...

// set inputs

M_fmiSetReal(m, id_u, nu, u);

 ...

// set states

M_fmiSetContinuousStates(m, x, nx);

 ...

// get state derivatives

M_fmiGetDerivatives(m, der_x, nx);

To obtain the FMU outputs:

),p,u,x(fy t=

as function of states, inputs, and parameters, the en-

vironment would call:

...

// get outputs

M_fmiGetReal(m, id_y, ny, y);

...

time

t0 t1 t2

z(t
z > 0

z ≤ 0

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

109

The FMU decides internally which part of the model

code is evaluated in the present context.

4 FMI for Co-Simulation

Co-simulation is a simulation technique for coupled

time-continuous and time-discrete systems that ex-

ploits the modular structure of coupled problems in

all stages of the simulation process (pre-processing,

time integration, post-processing).

The data exchange between subsystems is re-

stricted to discrete communication points. In the time

between two communication points, the subsystems

are solved independently from each other by their

individual solver. Master algorithms control the data

exchange between subsystems and the synchroniza-

tion of all slave simulation solvers (slaves).

Examples for co-simulation techniques are the

distributed simulation of heterogeneous systems,

partitioning and parallelization of large systems,

multi rate integration, and hardware-in-the-loop sim-

ulations.

A simulation tool can be coupled if it is able to

communicate data during simulation at certain time

points (communication points, tCi), see Figure 6.

Figure 6: Coupleable simulation tool

4.1 Master Slave Principle

Instead of coupling the simulation tools directly, it is

assumed that all communication is handled via a

master (Figure 7).

Figure 7: Three tools are controlled by one master

The master plays an essential role in controlling the

coupled simulation. Besides distribution of commu-

nication data, the master analyses the connection

graph, chooses a suitable simulation algorithm and

controls the simulation according to that algorithm.

The slaves are the simulation tools, which are pre-

pared to simulate their subtask. The slaves are able to

communicate data, execute control commands and

return status information.

4.2 Interface

The FMI for Co-Simulation defines similar functions

like FMI for Model Exchange for creation, initializa-

tion, termination, and destruction of the slaves. In

order to allow distributed scenarios, the co-

simulation functions provide some more arguments.

E.g. the function fmiInstantiateSlave(...) pro-

vides the string argument mimeType which defines

the tool which is needed to compute the FMU in a

tool based co-simulation scenario (see section 4.3).

For data exchange, the fmiGet…/fmiSet… func-

tions of FMI for Model Exchange are used here too.

In order to allow higher order extrapola-

tion/interpolation of continuous inputs/outputs addi-

tional Get/Set functions are defined for input/output

derivatives.

The computation of a communication time step is

initiated by the call of fmiDoStep(...). The func-

tion arguments are the current communication time

instance, the communication step size, and a flag that

indicates whether the previous communication step

was accepted by the master and a new communica-

tion step is started. Depending on the internal state of

the slave and the previous call of fmiDoStep(...),

the slave has to decide which action is to be done

before the step is computed. E.g. if a communication

time step is repeated, the last taken step is to be dis-

carded.

Using this interface function, different co-

simulation algorithms are possible:

• Constant and variable communication step

sizes.

• Straightforward methods without rejecting

and repetition of communication steps.

• Sophisticated methods with iterative repeti-

tion of communication steps.

4.3 Use Cases

The FMI for Co-Simulation standard can be used to

support different usage scenarios. The simplest one

is shown in the following figure (in order to keep it

simple, only one slave is drawn).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

110

Figure 8: Simple stand alone use case.

Master and slave are running in the same process.

The slave contains model and solver, no additional

tool is needed.

The next use case is carried out on different pro-

cesses. A complete simulation tool acts as slave. In

this case, the FMI is implemented by a simulation

tool dependent wrapper which communicates by a

(proprietary) interface with the simulation tool.

Figure 9: Slave is a simulation tool

The green and orange interfaces can be inter-process

communication technologies like COM/DCOM,

CORBA, Windows message based interfaces or sig-

nals and events. The co-simulation master does not

notice the usage of an FMI wrapper here. It still uti-

lizes only the FMI for Co-Simulation.

Figure 10 demonstrates a distributed co-

simulation scenario.

Figure 10: Distributed co-simulation scenario.

The slave (which can be a simulation tool as in Fig-

ure 9 too) and the master run on different computers.

The data exchange is handled by a communication

layer which is implemented by a special FMI wrap-

per. Neither the master nor the slave notice the tech-

nology used by the communication layer. Both uti-

lize the FMI for Co-Simulation only.

5 Comparing Model-Exchange

Approaches

As shown in section 1, there are multiple, proprietary

approaches for exchanging executable models. Here

we discuss the differences with respect to the follow-

ing properties:

1. Interface coverage:

a) Model representation as ordinary differential

equation (ODE) or differential algebraic

equation (DAE).

b) Does the API support querying Jacobian ma-

trix information?

c) Is it possible to transfer structural data via

the API? If information about algebraic de-

pendencies between outputs and inputs are

supplied, the importing tool is able to detect

and handle algebraic loops automatically.

2. Event handling: Does the API support transport-

ing event handling information between model

and simulation environment for

a) Time events?

b) State events?

c) Step events?

d) Event iteration?

3. Step-size control: Does the API support

a) Rejecting of time step by the model?

b) Variable step sizes?

4. Efficiency: Does the API support

a) efficient computing

(e.g. allowing value cashing)?

b) efficient result storage

(e.g. via alias mechanism and storing large

numbers of internal variables)?

c) efficient argument handling

(data copy required)?

5. Programming languages: Which programming

languages are supported by the API

6. Documentation: Is documentation sufficient for

a) using the APIs data types?

b) building models with this API (export)?

c) using models with this API in other simula-

tion environments (import)?

d) each models variables (inputs, outputs, states

etc.)?

7. Miscellaneous:

a) Interoperability: which platforms are sup-

ported?

b) Does changing the (version of the) simula-

tion environment require model re-

compilation?

c) Compact and flexible file format, that allows

the inclusion of additional data.

8. Status of API:

a) License?

b) Developed and maintained by only one tool

vendor?

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

111

1. Silver supports only exchanging models includ-

ing their own solvers, communicating at project-

dependent, equidistant time intervals.

2. DAE support is planned for one of the next ver-

sions.

3. Planned for one of the next FMI versions.

4. Loops are detected and can be handled using

additional user intervention on the model.

5. API supports time events, but definition is based

on real variables which could lead to inexact re-

sults.

6. Efficient and numerically robust time event han-

dling is planned for FMI Version 2.0

7. Caching mechanism is possible, but the compo-

nent itself has to observe which data have

changed since the last call.

8. API is not designed to transfer more data than

inputs, outputs, and states. Internal variables are

not published by the external model.

9. The component can be provided as binary for

one operating system and/or as source code.

10. The model source code can be part of the FMU

archive file.

11. Recompilation is only needed for major version

changes.

 Property Simulink:

S-Function

ADAMS:

user routines

Silver:

Silver API

SIMPACK:

user routines

SimulationX:

EMI
FMI for Model

Exchange

1a Representation ODE ODE Co-Sim
1
 ODE/DAE ODE ODE

2

1b Jacobian support no no no no no no
3

1c Structural data yes no no no
4

yes yes

1a Time events yes
5

no no yes

yes
5

yes
5,6

1b State events yes no no yes yes yes

2c Step events yes no no yes yes yes

2d Event iteration no no no yes yes yes

3a Discard time step no no no no yes yes

3b Variable step size yes yes no yes yes yes

4a Eff. computing no
7

no
7
 no

7
no

7
no

7
yes

4b Eff. Result storage no
8

no no no
8

no
8

yes

4c Data copy required no no no no no yes

5 API language C, C++,

Fortran

C, Fortran C, Python C, Fortran C C

6a Doc API data types yes yes yes yes yes yes

6b Doc model generation yes yes yes yes yes yes

6c Doc model use no no yes yes yes yes

6d Doc model variables no yes no no yes

7a Platform support independent
9

Windows,

Linux

Windows Windows,

UNIX

Windows independent.
9,10

7b Recompilation yes yes no yes
11

 yes no

7c Compact file format no no no no no yes

8a Legal status proprietary proprietary open proprietary open open

8b Proprietary yes yes yes yes yes no

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

112

6 Tools supporting FMI

The following tools are currently supporting the FMI

version 1.0 (for an up-to-date list see www.functional-

mockup-interface.org/tools.html):

• Dymola 7.4 (FMU export and import,

www.3ds.com/products/catia/portfolio/dymola),

• JModelica.org 1.3 (FMU import,

www.jmodelica.org),

• Silver 2.0 (FMU import,

www.qtronic.com/en/silver.html),

• SimulationX 3.4 (FMU import and export, FMU

co-simulation, www.simulationx.com, see [10])

• Simulink (FMU export by Dymola 7.4

via Real-Time Workshop,

www.mathworks.com/products/simulink),

• Fraunhofer Co-Simulation Master (see [12])

The respective vendors plan to support FMI with

their following tools:

• AMESim (FMU export and import,
www.lmsintl.com/imagine-amesim-1-d-multi-

domain-system-simulation),

• EXITE, EXITE ACE (FMU export and import,

www.extessy.com),

• OpenModelica (FMU export and import;

a prototype for FMU export is available,

www.openmodelica.org),

• SIMPACK (FMU import, FMU co-simulation,

www.simpack.com),

• TISC (FMU import, www.tlk-thermo.com).

• MpCCI (FMU import and export,

www.mpcci.de)

7 Conclusions

The FMI eases the model exchange and co-

simulation between different tools. It has a high po-

tential being widely accepted in the CAE world:

• It was initiated, organized and pushed by Daim-

ler to significantly improve the exchange of sim-

ulation models between suppliers and OEMs.

• It was defined in close collaboration of different

tool vendors within the MODELISAR project.

• Industrial users were involved in the proof of

concept within MODELSAR.

• FMI can already be used with several Modelica

tools, Simulink, multi-body and other tools.

• In the ITEA2 project OPENPROD [10], FMI

extensions are currently developed with respect

to optimization applications.

Current priorities of the further development inside

MODELISAR are:

• Unification and harmonization of FMI for Model

Exchange and Co-Simulation

• Improved handling of time events.

• Improved support for FMUs in embedded

systems.

• Efficient interface to Jacobian matrices.

8 Acknowledgements

This work is supported by the German BMBF

(Förderkennzeichen: 01IS08002) and the Swedish

VINNOVA (funding number: 2008-02291) within

the ITEA2 MODELISAR project

(http://www.itea2.org/public/project_leaflets/MODE

LISAR_profile_oct-08.pdf). The authors appreciate

the partial funding of this work.

9 References

[1] Modelica Association: Modelica – A Uni-

fied Object-Oriented Language for Physi-

cal Systems Modeling. Language Specifi-
cation, Version 3.2. March 24, 2010. Down-

load:

https://www.modelica.org/documents/Modeli

caSpec32.pdf

[2] VHDL-AMS: IEEE Std 1076.1-2007. Nov.

15, 2007. VHDL-AMS web page:

http://www.vhdl.org/vhdl-ams/

[3] The Mathworks: Manual: Writing

S-Functions, 2002

[4] Using ADAMS/Solver Subroutines. Me-

chanical Dynamics, Inc., 1998.

[5] A. Junghanns: Virtual integration of Au-

tomotive Hard- and Software with Silver.

ITI-Symposium, 24.-25.11.2010, Dresden.

[6] http://www.simpack.com

[7] Blochwitz T., Kurzbach G., Neidhold T. An

External Model Interface for Modelica.

6th International Modelica Conference, Bie-

lefeld 2008.

www.modelica.org/events/modelica2008/Pro

ceedings/sessions/session5f.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

113

[8] MODELISAR Consortium: Functional

Mock-up Interface for Model Exchange.

Version 1.0, www.functional-mockup-

interface.org

[9] MODELISAR Consortium: Functional

Mock-up Interface for Co-Simulation.

Version 1.0, October 2010, www.functional-

mockup-interface.org

[10] OPENPROD - Open Model-Driven

Whole-ProductDevelopment and Simula-
tion Environment, www.openprod.org

[11] Ch. Noll, T. Blochwitz, Th. Neidhold, Ch.

Kehrer: Implementation of Modelisar

Functional Mock-up Interfaces in Simula-

tionX. 8
th
 International Modelica Confer-

ence. Dresden 2011.

[12] J. Bastian, Ch. Clauß, S. Wolf, P. Schneider:

Master for Co-Simulation Using FMI. 8
th

International Modelica Conference. Dresden

2011.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

114

Master for Co-Simulation Using FMI

Jens Bastian Christoph Clauß Susann Wolf Peter Schneider
Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS

Zeunerstraße 38, 01069 Dresden, Germany
{Jens.Bastian, Christoph.Clauss, Susann.Wolf, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

Co-Simulation is a general approach to simulate
coupled technical systems. In a master-slave concept
the slaves simulate sub-problems whereas the master
is responsible for both coordinating the overall simu-
lation as well as transferring data. To unify the inter-
face between master and slave the FMI for Co-
Simulation was developed. Using FMI a master was
implemented with simple and advanced algorithms
which can be applied depending on the properties of
the involved slave simulators. The master was tested
amongst others by coupling with SimulationX.

Keywords: co-simulation; FMI; master

1 Introduction

Modeling problems in natural sciences and engineer-
ing often leads to hybrid systems of differential and
algebraic, time continuous and time or event discrete
equations. Often complex multi-disciplinary systems
cannot be modeled and simulated in one simulation
tool alone or subsystem models are available only for
a specific simulation tool. Sometimes sub-problems
shall be simulated with the simulator which suits best
for the specific domain. Thus for the simulation of
multi-disciplinary problems or for hardware-in-the-
loop simulation it is often reasonable or even neces-
sary to couple different simulation tools with each
other or with real world system components.

Simulator coupling is used in various fields of
application like automotive engineering, microelec-
tronics, mechatronics etc.

Up to now simulator coupling is nearly always a
point-to-point solution tailored to the involved simu-
lators. These special solutions cause high effort so a
generally accepted interface for simulator coupling
supported by many simulation tools is desirable.

2 Co-Simulation

Co-simulation is an approach for the joint simulation
of models developed with different tools (tool cou-
pling) where each tool treats one part of a modular
coupled problem. Intermediate results (variables,
status information) are exchanged between these
tools during simulation where data exchange is re-
stricted to discrete communication points. Between
these communication points the subsystems are
solved independently.

2.1 Coupling of simulators

A simulation tool S can be coupled if it is able to
communicate data during simulation at certain time
points t, cf. Figure 1. Here input variables are
denoted by u and output variables by y.

Figure 1: Block representation of a simulator S

Simulators have different capabilities which have
an influence on the algorithms that can be used for
their coupling. Such capabilities are:
 The simulator can handle variable

communication step sizes.

 The simulator can handle events.

 It is possible to undo a time step, i.e. the
simulator can reject time steps.

When using simulator coupling the original
problem is divided into N subproblems each handled
by a simulator. Typically, N is small, i.e. below 20.
Thereby the simulators do not have to be different.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

115

The signal flow for the coupled simulators can be
described by a directed graph with the simulators as
the nodes and the exchanged data as the edges.

If there is feedback in the graph then cycles exist.
A cycle is a path in a graph with the same node as
start and end point. Cycles can be eliminated if the
simulators in a cycle are combined into a super-
simulator i.e. a simulator superior to the simulators
of the cycle.

Figure 2 shows an example of such a graph.
Simulator A has the highest priority. The simulators
B, C, and D form a cycle. E, F, and G are
subordinated to this cycle. That means simulator A is
executed first of all. Then the cycle of B, C, and D is
finished. Afterward simulators E and F are executed
whereat both simulators can be run in parallel. At
last G is processed.

Figure 2: Example graph of coupled simulation tools

For simulation, the whole graph is analyzed first.
If cycles are detected then they are combined into a
super simulator. The simulators are coupled with
directed data flow. A priority is assigned to each
simulator with 0 representing the highest priority.
Simulators with the same priority can be executed in
parallel. All simulators in cycles either have to be
processed iteratively or with small enough time steps
and error control.

Figure 3: Master-Slave structure

Instead of direct coupling, a master is assumed to
be located between the single simulation tools which

synchronizes, controlles and manages them [1]. Each
edge of the graph is regarded as to go “through” the
master, cf. Figure 3. The master serves as an
interface, establishes connections and exchanges data
between the simulators which are called slaves.
Slaves are assumed to communicate with the master
only.

2.2 Basic Co-simulation computational flow

The whole co-simulation can be divided into several
phases.

1. Initialization phase

All simulation tools are prepared for starting the co-
simulation. The master receives the properties of the
slaves. Furthermore the master receives the connec-
tion graph. The slaves and models are initialized and
parameters are set. The communication links be-
tween master and slaves are established. The master
chooses its algorithm based on the capabilities of the
slaves as well as the connection graph and user input.

2. Simulation phase

The master forces the slaves to simulate the time in-
terval from start time to stop time by stepwise solv-
ing master subintervals which are also called com-
munication steps. Their boundaries are called com-
munication points. In case of event iteration the
communication step size can be zero. The simulation
is performed independently for all subsystems re-
stricting data exchange between subsystems to these
communication points.

Before simulating a subinterval a slave receives
its input values and possibly their derivatives with
respect to time as well as the communication step
size from the master. After finishing the communica-
tion step the master receives the output values of the
slave and possibly their derivatives with respect to
time. Furthermore the slave status has to be trans-
ferred to the master. If the slave simulation fails fur-
ther communication is necessary.

3. Closing phase

The master stops the complete simulation and is re-
sponsible for proper memory deallocation, terminat-
ing and resetting or shutting down the slaves.

2.3 Accuracy and stability

Co-simulation can lead to problems regarding stabil-
ity and accuracy of the simulation [2] – especially if
feedback exists between simulators, cf. the example
given in section 4.4. If a simulation tools provides an

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

116

interface for co-simulation at all then usually it is not
possible to reset a simulator so that a time step can
be repeated e.g. with a smaller step size.

So co-simulation should often be used as a last
resort as long as iterative methods have to be used
for stability and simulators only provide a rudimental
co-simulation interface. Hopefully this will change
in future with the introduction of a standardized co-
simulation interface like the one proposed in the next
section.

3 Functional Mock-up Interface
(FMI) for Co-Simulation

The Functional Mock-up Interface (FMI) for Co-
Simulation [3], [4], [5] is an interface standard for
the solution of time dependent coupled systems con-
sisting of subsystems that are continuous in time or
time-discrete. It provides interfaces between master
and slaves and addresses both data exchange and
algorithmic issues. Both simple as well as more so-
phisticated master algorithms are supported. How-
ever, the master algorithm itself is not part of FMI
for Co-Simulation.

FMI for Co-Simulation consists of two parts:
 Co-Simulation Interface: a set of C functions for

controlling the slaves and for data exchange of
input and output values as well as status infor-
mation.

 Co-Simulation Description Schema: defines the
structure and content of an XML file. This slave
specific XML file contains “static” information
about the model (input and output variables, pa-
rameters, …) and the solver/simulator (capabili-
ties, …).

The complete interface description can be ob-
tained from [3].

The capability flags in the XML file characterize
the ability of the slave to support advanced master
algorithms which use variable communication step
sizes, higher order signal extrapolation etc.

A component implementing the FMI is called
Functional Mock-up Unit (FMU). It consists of one
zip file containing
 the XML description file and

 the implementation in source or binary form
(dynamic library).

A master can import an FMU by first reading the
model description XML file contained in the zip file.

Coupling simulators by FMI for Co-Simulation
hides their implementation details and thus can pro-
tect intellectual property.

FMI for Co-Simulation version 1.0 was published
in October 2010. Currently it is planned to combine
FMI for Co-Simulation with FMI for Model Ex-
change to an FMI standard.

4 EAS Master

MODELISAR [6] is a research project within the
European ITEA2 program. It is aimed to develop the
FMI as well as to support it by involved tool ven-
dors. Use cases will show the benefits of applied
FMI. Master algorithms are not standardized with
FMI but developed in the MODELISAR project e.g.
by tool vendors. A prototypical implementation of a
master has been provided by EAS for the MODELI-
SAR consortium. The package contains the ANSI C
code of the master, a generic “C function” slave, and
a collection of examples.

The “C function” slave provides the basic func-
tionality of FMI for Co-Simulation. The user has
only to provide two functions for initialization (the
number of input and output variables) and the com-
putation of a step with the step size communicated
by the master.

4.1 Configuration

The master is configured by a simple text file. There
are keywords for start and stop time, step size, cou-
pling algorithm, error tolerance etc. The coupled
FMUs with their paths have to appear within the
configuration file, too. The graph of the simulator
coupling has to be supplied by an incidence matrix
and information about the priority of the slaves as
well as occurring cycles.

4.2 Coupling algorithms

The master prototype provides three algorithms for
the simulation with fixed step size:
 data flow between the slaves without iterations,

i.e. simple forward calculation

 fixed point iteration of all cycles within the
graph

 simple implementation of Newton’s method with
Jacobians approximated by finite differences

All master algorithms proceed in macro steps of
fixed step size from start time to end time.

The computation of a time step from ti to ti+1
within cycles is performed in the following way:
Every slave makes an assumption for its input value
u at time ti+1. Currently this is done using constant
interpolation ii tutu 1 , i.e. in each macro step

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

117

all terms that couple the subsystems are frozen. Thus
synchronization and update of the exchanged values
with computed output 1ity is done at the end of
the time step. Because no slave depends on the cur-
rent output of another one, the slaves can run in par-
allel. This iteration scheme is called to be of Jacobi
type.

Another approach would be to simulate a time
step with every slave of a cycle one after another and
to use the output 1ity just calculated as input

 1itu for the following slaves. These staggered al-
gorithms which handle the subsystems sequentially
are called of Gauß-Seidel type. This method was
used within a first master implementation. The
drawback of this approach is that the slaves within
the cycles cannot run in parallel and the behavior of
the iteration depends on the calling sequence of the
slaves. However, an example exists where this ap-
proach converges while the first method does not
converge.

4.3 Simple slave test examples

A collection of examples using the “C function”
slave is provided together with the master. They
cover different types of coupling – with or without
cycles, nonlinear equations, ODEs, DAEs – and
demonstrate the usage of the configuration file.
Some of the examples can be solved with all master
algorithms, some only with Newton’s method.

One of these examples is BspK6. It consists of
four coupled slaves which exchange 4 values (0, 1, 2,
3) of type fmiReal and 2 values (4, 5) of type
fmiInteger, cf. Figure 4. The slaves S0, S1, and
S2 form a cycle.

S0

S1 S2

S3

0

4 5

1 2 3

u

u4u3

y

y1 y2

y

u1

y1

u2

y2

u

Figure 4: Example BspK6 from collection

Input, output, and internal variables of the slaves
are related by the following equations.

Slave S0:

02
d

d
21 uux

t

x

else

10
:

else

10
:

2

3
2

1

4
1

xu

u
y

xu

u
y

Slave S1:

 01001πsin1000

0π3sin
d

d

2

1

10
2

utxy

tux
t

x

Slave S2:

 01001πsin1000

0π2sin
d

d

2

1

10
2

utxy

tux
t

x

Slave S3:

else0

2πsin1

else0

πsin1

2
1

2

2
1

1

t
y

t
y

Figure 5 and Figure 6 show simulation results for
constant step size 10-4 and Newton’s method as itera-
tive method for the cycle. The other two methods do
not converge for this example.

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0 0.2 0.4 0.6 0.8 1

t

BspK6

0
3

Figure 5: Simulation results for exchanged values 0
and 3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

t

BspK6

1
2
4
5

Figure 6: Simulation results for exchanged values 1, 2,
4, and 5

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

118

4.4 Coupling with ITI SimulationX

Another example shows coupling of SimulationX [7]
with a “C function” slave via the EAS Master.

The original SimulationX model is shown in
Figure 7. It is a simple plant with a controller driven
by the “speed” function

else0

s 1s 2.0rpm 100 t
tf

Figure 7: Full SimulationX model

This model has been split into three FMUs: two
SimulationX FMUs for the controller and the plant
and one “C function simulator” FMU for the speed
input, cf. Figure 8. The SimulationX FMUs contain
the model as well as the solver as a DLL. They were
created via the code export option of SimulationX.

Plant

Controller Speed

Figure 8: Coupling of three FMUs

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

time (s)

Plant.sensor1.om (rad/s)

SimulationX
Coupling

Figure 9: Simulation results

The coupled FMUs have been simulated by the
prototypical master with fixed step size 10-3 with the
simple algorithm for forward calculation without
iteration. Results of this calculation as well as of the
original simulation model are presented in Figure 9.

As it can be seen, the angular velocity of the plant
shows a small but fast decaying oscillation in the
original model after the speed has been switched to 0
after 1 s. In contrast, the oscillation is larger and does
not decay in the simulator coupling. For larger step
sizes the amplitude of this oscillation is even larger
(not shown).

At the moment, SimulationX cannot discard steps
so a simulation with iterative methods was not possi-
ble. With iterative methods we expect the oscillation
to decay like in the original model.

4.5 Efficiency

Efficiency and simulation speed strongly depend on
the problem which has to be solved.

Clearly, the most efficient approach would be to
use only one simulation tool and do without co-
simulation. If this is not possible then problems de-
scribed by graphs without feedback can be simulated
most efficiently using the non-iterative method. If
there are cycles within the graph and no iterative
methods can be used because the simulators cannot
discard steps then accuracy and numerical stability
may be poor. Anyway, the macro step size has to be
very small then and thus the computational costs
strongly increase.

S1 S2

S3

Figure 10: Disadvantage of current OpenMP approach
compared to thread programming

By using OpenMP [8] slaves of the same priority
can run in parallel. However, the current implemen-
tation of this approach has a disadvantage compared
to thread programming which will be explained with
the help of Figure 10. Here S1 has a higher priority
than S2. S3 can have the same priority either as S1 or
S2. Thus either both S3 and S1 can run in parallel
and the simulation continues with S2 after both S1
and S3 have finished or S2 and S3 can both run in
parallel after S1 has finished. Instead it would be
better to handle S1 and S2 as a “super slave” which
runs in parallel with S3, i.e. synchronization takes
place at the start of S1 and S3 and after S2 and S3
have finished. However, either a more complicated
data structure has to be used for this purpose if
OpenMP should be used or platform dependent
thread programming has to be used.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

119

4.6 Summary of properties

The implementation of the EAS Master is as plat-
form independent as possible. Platform dependent
code – mainly for dealing with dynamic libraries –
could happily be collected as preprocessor defines
within a single header file. Thus the master runs on
multiple platforms (MS Windows, Linux, Sun So-
laris).

Slaves can run in parallel if they have the same
priority. Platform independence also was the reason
to use OpenMP instead of explicitly dealing with
thread programming for this purpose. OpenMP is
supported by newer version of the major C compilers
(gcc, Visual Studio). Parallelization is realized by
one #pragma directive in front of a “for” loop so that
compilers without OpenMP support simply compile
the code for serial execution. However, the OpenMP
approach has the drawback compared to explicit
dealing with threads that only slaves of the same pri-
ority and not across different priorities can run in
parallel.

Currently the three algorithms mentioned in sec-
tion 4.2 are available.

4.7 Future enhancements

A commercially available version of the master will
have the following features:
 The graph will automatically be analyzed for the

priority of the slaves and cycles.

 Newton’s method will be improved. A better
Jacobian update strategy will be used so that the
high cost of calculating a new Jacobian by finite
differences will be reduced.

 Broyden’s method will be available as another
iterative method.

 A step size control will be implemented based on
results in [9] so that variable macro steps can be
used.

 Polynomial interpolation of data besides the cur-
rently used constant interpolation will be sup-
ported.

5 Conclusions

Co-simulation is a powerful method to simulate het-
erogeneous systems where each subsystem is simu-
lated by its own specialized simulator. However, cur-
rently simulation tools have their own interface for
coupling – if at all. Additionally, they are often not
able to discard steps and thus not suitable for itera-
tive methods.

The Functional Mock-up Interface (FMI) for Co-
Simulation as a proposed standard for simulator cou-
pling will hopefully be widely used because it re-
places current point-to-point solutions and thus eases
the reuse of models tailored to special simulators.
The protection of intellectual property is also possi-
ble with FMI.

Providing the prototypical master implementation
will hopefully help to promote the FMI for Co-
simulation.

Acknowledgements

The SimulationX model and FMUs were kindly pro-
vided by T. Blochwitz from ITI.

This work is supported by the German BMBF within
the ITEA2 MODELISAR project.

The authors thank the reviewers for valuable re-
marks.

References

[1] Wolf, S.; Blochwitz, T.: Master Slave Simu-
lator Coupling. ITI Symposium 2010.

[2] Schierz, T.; Arnold, M.: Advanced numerical
methods for co-simulation algorithms in ve-
hicle system dynamics. 1st Conference on
Multiphysics Simulation, Bonn 2010.

[3] Functional Mock-up Interface for Co-
Simulation v1.0, MODELISAR consortium,
2010. http://functional-mockup-interface.org

[4] Arnold, M.; Blochwitz, T.; Clauß, C.; Neid-
hold, T.; Schierz, T.; Wolf, S.: FMI-for-
CoSimulation. 1st Conference on Multiphys-
ics Simulation, Bonn, 2010.

[5] Enge-Rosenblatt, O., Clauß, C.; Schneider,
A.; Schneider, P.: Functional Digital Mock-
up and the Functional Mock-up Interface –
Two Complementary Approaches for a
Comprehensive Investigation of Heterogene-
ous Systems. 8th International Modelica Con-
ference, Dresden, 2011.

[6] http://www.modelisar.org

[7] http://www.simulationx.com

[8] http://www.openmp.org

[9] Schierz, T.; Arnold, M.; Eichberger, A.; Frie-
drich, M.: Study on Theoretical and Practical
Aspects of Communication Stepsize Control.
MODELISAR, sWP203 report, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

120

An Annular Plate Model in Arbitrary Lagrangian-Eulerian
Description for the DLR FlexibleBodies Library

Andreas Heckmann∗, Stefan Hartweg∗ and Ingo Kaiser∗
∗German Aerospace Center (DLR), Institute of Robotics and Mechatronics

Oberpfaffenhofen, 82234 Wessling, Germany

Abstract

The bending deformation of rotating annular plates
and the associated vibration behaviour is important in
engineering applications which range from automotive
or railway brake systems to discs that form essential
components in turbomachinery.

In order to extend the capabilities of the DLR
FlexibleBodies library for such use cases, a new Mod-
elica class has been implemented which is based on the
analytical description of an annular Kirchhoff plate. In
addition the so-called Arbitray Langrangian-Eulerian
(ALE) representation has been adopted so that rotating
and non-rotating external loads may be applied con-
ventiently to rotating plates.

Besides these particularities the new class An-
nularPlate completely corresponds to the concept of
FlexibleBodies library with the two already available
model classes Beam and ModalBody.

This paper gives an overview on the theoretical
background of the new class AnnularPlate, explains
the usage and presents application examples.

Keywords: Arbitrary Lagrangian-Eulerian ap-
proach, annular Kirchhoff plate, flexible multibody
system

1 Introduction

The commercial DLR FlexibleBodies library pre-
sented in 2006 [1] contains two different types of
model classes: The Beam model employs an analyt-
ical description of the deformation field, while a gen-
eral ModalBody model is defined in such a way that
the dynamic behaviour of a body with an arbitrary ge-
ometrical shape can be simulated if suitable finite ele-
ment data of the body exist.

The new model class AnnularPlate introduced in
this paper is implemented in the same manner as it ap-
plies for the Beam model. The analytical description
of an annular Kirchhoff plate has been used to define

the object-oriented data structure called ”Standard In-
put Data of flexible bodies“ (SID), see [2], which is the
general base of all models in the DLR FlexibleBodies
library.

Rotating discs are a very common structure type
in mechanical engineering. But their modeling often
has to cope with the difficulty to describe non-rotating
forces acting on the disc such as the normal and fric-
tion forces at a disc brake. Usually this requires a con-
tact formulation in order to evaluate which material
point of the disc is in contact with the pad at the con-
sidered point in time.

Due to the so-called Arbitrary Lagrangian-
Eulerian description it is possible to provide a standard
Modelica multibody frame connector which is how-
ever not linked to a material point of the plate, but
slides over the surface of the plate as it is given for the
brake disc-pad contact point. No contact problem has
to be formulated and solved and normal and friction
forces are convenient to apply at this frame connector.

In addition the AnnularPlate model is capable of
defining material-fixed points on the plate with frame
connectors to which forces, other bodies such as un-
balances, springs etc. may be attached in the usual
way.

2 Theoretical Background

This section shortly summarizes well-known funda-
mentals on structural dynamics of annular plates and
on multibody dynamics. The modeling approach of
the FlexibleBodies library utilizes these fundamentals
and will be introduced in Sec. 3.

2.1 Partial Differential Equation

The partial differential equation (PDE) of a freely vi-
brating, homogeneous Kirchoff plate with transverse
deformation w in the mid-plane of the plate as a
function of the radius r, the angle φ and time t, i.e.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

121

w = w(r,φ, t), reads

D ∆∆w+ ρ̂ẅ = 0 , (1)

where ∆ denotes the Laplace operator and ρ̂ represents
the mass per unit area [3, (1.1)]. D is the bending rigid-
ity of the plate according to

D :=
Eh3

12(1−ν2)
(2)

and depends on the Young’s modulus E, the plate
thickness h and the Poisson number ν.

An analytical solution to (1) is assumed in the
form

w(r,φ, t) = R(r) ⋅Φ(φ) ⋅q(t) , (3)

so that the PDE (1) can be separated in three ordinary
differential equations (ODE) for R(r), Φ(φ) and q(t),
respectively [4, 4.3.15].

For R(r) the Bessel-type ODE

r4R′′′′+2r3R′′′− (1+2k2)(r2R′′− rR′)+

+(k4−4k2−λ
4r4)R = 0 , ()′ :=

d
dr

,
(4)

is obtained [5, (5.1-120)]. The parameter k relates (4)
to Φ(φ) in (3) and represents the wavenumber or the
number of nodal diameters in Fig. 2. The parameter λ

depends on the eigenvalue ω of the ODE for q(t):

λ
2 := ω

√
ρ̂

D
. (5)

Bessel and modified Bessel functions of first and sec-
ond kind satisfy (4) and have to be selected in such a
way that the boundary conditions at the inner and the
outer radius of the annular plate are considered.

Harmonic waves provide a solution with respect
to the angular coordinate, i.e. Φ(φ) = cos(kφ+ψk)
with offset angle ψk and Φ(φ) = Φ(φ+2π).

Finally, the time-dependency of the displace-
ments q(t) are as well assumed to be harmonic, e.g.
q(t) = sin(ω t).

Note that (1) has an infinite number of solutions,
out of which only a reduced, finite number of eigen-
values ω and associated deformation fields, the eigen-
forms in Fig. 2, are considered for numerical analysis.

2.2 Multibody Framework

The mechanical description in multibody dynamics is
based on the floating frame of reference approach, i.e.
the absolute position rrr = rrr(ccc, t) of a specific body par-
ticle is subdivided into three parts: the position vector

rrrR = rrrR(t) to the body’s reference frame, the initial po-
sition of the body particle within the body’s reference
frame, i.e. the Lagrange coordinate ccc ∕= ccc(t), and the
elastic displacement uuu(ccc, t):

rrr = rrrR +ccc+uuu , (6)

where all terms are resolved w.r.t. the body’s floating
frame of reference (R).

Therefore the angular velocity of the reference
frame ωωωR have to be taken in account when the kine-
matic quantities velocity vvv and acceleration aaa of a par-
ticle are derived:

vvv = ω̃ωωR rrr+ ṙrr = vvvR +ω̃ωωR (ccc+uuu)+ u̇uu , (7)

aaa = aaaR +(˙̃ωωωR +ω̃ωωR ω̃ωωR) (ccc+uuu)+2ω̃ωωR u̇uu+ üuu , (8)

where the ˜()-operator is used to replace the vector
cross product by a multplication with an appropriate
skew-symmetric matrix, so that e.g. the identity ωωω×
ccc = ω̃ωω ccc holds.

The decomposition in (6) makes it possible to su-
perimpose a large non-linear overall motion of the ref-
erence frame with small elastic deformations.

The displacement field of the annular plate is
approximated by a first order Taylor expansion with
space-dependent mode shapes ΦΦΦ(ccc) ∈ ℝ3,n and time-
dependent modal amplitudes qqq(t) ∈ ℝn [2]:

uuu =ΦΦΦ qqq. (9)

Note that the description of the annular plate is lim-
ited to this first order expansion in this initial imple-
mentation, so that plate buckling phenomena are not
covered, see [6], [7, Ch. 1]. The second order dis-
placement field of an annular plate currently is a field
of research at the DLR.

Figure 1: Vector chain to specify the position rrr re-
solved in the floating frame of reference (R).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

122

The kinematic quantities together with the vector
of applied forces fff e are inserted into Jourdain’s prin-
ciple of virtual power:

δvvvT
∫

body

(d fff e−aaa dm) = 0 . (10)

Subsequently, the equations of motion of an un-
constrained flexible body are formulated neglecting
deflection terms of higher than first order [2, (38)]:⎛⎝ mIII3 sym.

md̃ddCM JJJ
CCCt CCCr MMMe

⎞⎠⎡⎣ aaaR

ω̇ωωR

q̈qq

⎤⎦=

= hhhω −

⎡⎣ 000
000

KKKe qqq+DDDe q̇qq

⎤⎦+hhhe , (11)

where the following quantities and symbols appear:
m body mass
III3 3×3 identity matrix
dddCM(qqq) position of center of mass
JJJ(qqq) inertia tensor
CCCt(qqq) inertia coupling matrix
CCCr(qqq) inertia coupling matrix
hhhω(ωωω,qqq,q̇qq) gyroscopic and centripetal forces
hhhe external forces
MMMe structural mass matrix
KKKe structural stiffness matrix
DDDe structural damping matrix

If, for the sake of demonstration, the body is as-
sumed to be rigid, those rows and columns in (11)
vanish that are associated with the generalised de-
formational acceleration q̈qq. Since (11) is formulated
in terms of the translational and angular accelera-
tion of the floating frame of reference, such reduc-
tion leads to the classical Newton-Euler equations of
a rigid body. Therefore, SHABANA calls (11) the gen-
eralised Newton-Euler equations of an unconstrained
deformable body in [8, Sec. 5.5].

On the other hand, if the motion of the reference
frame is constrained to be zero, (11) is reduced to the
classical structural equation

MMMe q̈qq+DDDe q̇qq+KKKe qqq = fff e , (12)

where fff e is that part of hhhe that is associated to the rows
of q̈qq.

3 The Annular Plate Model

3.1 Mode Shapes

In order to specify the spatial shape functions in (9) the
knowledge on the analytical solution in (3) is exploited

and the displacements are formulated as function of
cylindrical coordinates, i.e. ΦΦΦ =ΦΦΦ(r,φ,z), w,r and w,φ

are partial derivatives with respect to r or φ:

n

∑
i=1

ΦΦΦiqi(t) =

⎡⎢⎣ −z(cos(φ)w,r− sin(φ)
r w,φ)

−z(sin(φ)w,r +
cos(φ)

r w,φ)
w

⎤⎥⎦ ,

w =
lm

∑
l=0

km

∑
k=0

Rl(r) ⋅ cos(kφ) ⋅qi(t)+ . . .

. . .+
lm

∑
l=0

km

∑
k=1

Rl(r) ⋅ sin(kφ) ⋅qi(t) ,

with i = 1,2, . . . ,n , n = (lm +1)(2km +1) .

(13)

Since the parameter k may be interpreted as the num-
ber of nodal diameters and l as the number of nodal
circles, each specific couple < l,k > may be visualized
by a nodal pattern shown in Fig. 2, which character-
izes the shape function or eigenform, respectively.

Figure 2: Example nodal diameters k and circles l
that characterize annular plate eigenforms. Supported
boundary conditions are applied at the inner radius.

For the sake of demonstration Fig. 3 illustrates
one exemplary mode shape from Fig. 2 in a different
way.

Figure 3: The k = 2 and l = 2 mode shape from Fig. 2
in more details, cp. [5, 5.1-29].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

123

The number of considered mode shapes in the
model is controlled by the values lm and km, which are
to be specified by user input parameters of the Annu-
larPlate class.

The functions Rl(r) in (13) correspond to the
Bessel functions mentioned in Sec. 2.1. However
for the sake of simplicity and robustness of the im-
plementation the original Bessel functions have not
been used but a two-step approach is applied. At first
the displacement field in radial direction and the un-
derlying ODE (4) is discretized with cubic B-splines
R̄RR(r) = (R̄1(r), R̄2(r), ..., R̄p(r))T as shown in Fig. 4
taking the boundary conditions at the inner and outer
radius into account [9].

Figure 4: Example set of cubic B-splines for free
boundary conditions to initially discretize the dis-
placement field in radial direction.

That way the associated mass M̄MMe and stiffness
matrix K̄KKe are evaluated. In the second step the prob-
lem

[M̄MMeω
2
n +K̄KKe] vvvn = 0 (14)

is solved for a specified number of eigenvalues ωn.
One specific eigenvector vvvn=l may then be interpreted
to define a fixed linear combination of the initial B-
splines functions in such a way that the associated so-
lution of (4) is approximated, i.e. Rl ≈ vvvT

l ⋅ R̄RR. The
accuracy of the approximation may be controlled by
the number of the initially used B-splines p in relation
to the specified value lm. The final result corresponds
to the approach in (13).

3.2 Arbitrary Lagrangian-Eulerian Descrip-
tion

It is now considered that the annular plate performs a
in general large rotation around its central axis spec-
ified by the angle χ(t). So far the motion of material

Figure 5: Coordinate transformation with angle χ, that
leads from the Langrangian to the ALE-decription.

particles is described in the so-called Lagrangian point
of view [10, Sec. I.3], i.e. the floating frame of refer-
ence follows the rotation as it is shown for the coordi-
nate system named B in Fig. 5.

However for specific use cases it may make sense
to resolve the deformation of the plate in frame A in
Fig. 5 that follows the complete reference motion of
the plate except of the motion expressed by the angle
χ. In other words, the observer does not rotate with
the plate but looks on the plate from the outside, from
a point in rest concerning the rotation with angle χ(t).

This idea is influenced by the Eulerian descrip-
tion [10, Sec. I.4] widely used in fluid dynamics,
where the motion state of the fluid at a fixed point in
space is presented. However the concept introduced
above combines aspects of the Lagrangian and the Eu-
lerian approach and is therefore known as Arbitrary
Lagrangian-Eulerian (ALE) description in literature,
see e.g. [11]. Due to the rotational symmetry proper-
ties of the annular plate the ALE-description can here
be formulated in an elegant way.

For theoretical derivation the coordinate transfor-
mation

φ = θ−χ (15)

is defined, where θ specifies the angular position of
an observed point on the annular plate resolved with
respect to the ALE-reference system A in Fig. 5.

Furthermore it is assumed that for every mode
shape in (13) that employs a sin(kφ)-term an associ-
ated mode shape is present where the sinus- is replaced
by the cosinus-function only, but Rl(r) and k are iden-
tical, so that mode shape couples c1 and c2 exist:

c1(r,φ) = Rl(r) ⋅ sin(kφ) ,

c2(r,φ) = Rl(r) ⋅ cos(kφ) .
(16)

If the following identities

sin(kφ) = sin(kθ)cos(kχ)− cos(kθ)sin(kχ) ,

cos(kφ) = cos(kθ)cos(kχ)+ sin(kθ)sin(kχ)
(17)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

124

are inserted into (16), an associated mode couple
c̄1(r,θ) and c̄2(r,θ) defined with respect to frame A
appears:

c1(r,φ) =

=Rl sin(kθ)︸ ︷︷ ︸
:=c̄1(r,θ)

cos(kχ)−Rl cos(kθ)︸ ︷︷ ︸
:=c̄2(r,θ)

sin(kχ) ,

=c̄1(r,θ)cos(kχ)− c̄2(r,θ)sin(kχ) ,

c2(r,φ) = c̄1(r,θ)sin(kχ)+ c̄2(r,θ)cos(kχ) .

(18)

As a result of suitable transformations it may also be
written:

c̄1(r,θ) = c2(r,φ)sin(kχ)+ c1(r,φ)cos(kχ) ,

c̄2(r,θ) = c2(r,φ)cos(kχ)− c1(r,φ)sin(kχ) .
(19)

The modes c̄1(r,θ) and c̄2(r,θ) are defined in the
ALE-reference system A and are linear combinations
of the modes c1(r,φ) and c2(r,φ) described in the La-
grangian frame B , whereas the combination depends
on χ.

This information can be exploited in order to de-
fine a transformation: a deformation field resolved in
the Lagrangian frame can be transformed to be re-
solved in the ALE frame and vice versa. Of course
the physical deformation field itself does not change,
but its resolution does so that the numerical values
describing the deformation field will be different in
frame A or B , respectively.

In practise the transformation is formulated in
terms of the modal amplitudes qi(t) which are the de-
formation variables in (11):

q̄i1(t) = sin(kχ(t)) ⋅qi2(t)+ cos(kχ(t)) ⋅qi1(t) ,

q̄i2(t) = cos(kχ(t)) ⋅qi2(t)− sin(kχ(t)) ⋅qi1(t) .
(20)

Again, the new modal amplitudes in the ALE frame
q̄i(t) are expressed as a linear combination of modal
amplitudes in the Lagrangian frame qi(t) and it is just
a matter of convenience and practicability in which co-
ordinates the equations of motion are actually evalu-
ated.

One particularity has been ignored so far. For
mode shapes with k = 0, i.e. no nodal diameters in
Fig. 2, no mode couple with c1 and c2 according to
(16) exists, since no associated sinus-function is intro-
duced in (13). As a consequence the transformation
(20) is not defined for such modes. However, eigen-
forms with k = 0 present rotational-symmetric defor-
mation fields since the dependency on φ is eliminated
in (13) due to the term cos(kφ). As a consequence
eigenforms with k = 0 are invariant with respect to

rotations with angle χ or in other words: The modal
coordinates qi(t) related to k = 0 are identical in the
ALE- and the Lagrangian description and no transfor-
mation is needed.

4 The User Interface

4.1 Connectors and Parameters

Figure 6: Icon layer of the AnnularPlate class with 3
types of multibody connectors: the floating frame of
reference and two arrays of frames representing points
in Lagrangian- or ALE-description, respectively.

Fig. 6 presents the AnnularPlate icon. Connec-
tions to the floating frame of reference of the plate
are to be defined using the frame ref connector. The
array of connectors nodes Lagrange contains as much
frames as are given by the first dimension of the input
parameter xsi in the following table:

geometrical parameters
r i [m] inner radius of the plate
r a [m] outer radius of the plate
th [m] thickness of the plate
xsi[:,2] [−] points on the disc

Each row of xsi specifies the radial and the angu-
lar position of one point in the mid-plane of the disc
parametrized in the interval [0,1], e.g. xsi[1, :] =
{0.5,0.125} defines a point in the middle between the
inner and outer radius at 45∘ angular position.

The connector array nodes ALE refers to the same
input parameter definition xsi, whereas the associated
points here are described in the ALE-representation.
Forces and torques applied to these frames are in rest
which respect to the rotation χ of the disc.

Note that conventional frame connectors from the
Standard Multibody library are used within the Flexi-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

125

bleBodies library and no restrictions concerning con-
necting e.g. other bodies to nodes ALE are effected,
although nodes ALE frames do not represent material
points.

Usually multibody frame connections represent
physical mounting devices such as screws or welds
that bond two frames together so that their positions
and orientations are constrained to be identical. How-
ever it is the idea of nodes ALE frames that they are not
bonded to the disc and there is no mounting device.
From the plate’s material point of view nodes ALE
frames slide on the plate. In view of this fact the user
is in charge to ensure that connections to nodes ALE
frames are physical consistent. If e.g. another body
is attached to a nodes ALE frame this would require
a physical guidance device on the plate to which the
external body is connected.

In addition to the 3-dimensional multibody frame
connectors, two 1-dimensional rotational flanges are
shown in Fig. 6. These two flanges are connected to
both sides of the 3-dimensional rotational joint which
is introduced into the AnnularPlate class at the plate
axis by default. The two flanges are conditionally in-
stantiated controlled via user parameter and can be uti-
lized to e.g. define constant rotation velocity.

In addition to the purely geometrical parameters
above, the table below shows the physical parame-
ters the user has to provide in order to employ a An-
nularPlate instance:

physical parameters
rho [kg/m3] mass density
E [N/m2] Youngs’s modulus
G [N/m2] Shear modulus

The following discretization parameters control
the modal approach of the AnnularPlate model accord-
ing to (13):

∙ boundaryConditionRI: This enumeration pa-
rameter offers the options free, supported and
clamped and specifies the boundary condition at
the inner radius.

∙ boundaryConditionRA: This is again an enumer-
ation parameter that specifies the boundary con-
dition at the outer radius in the same way as noted
for the inner radius.

∙ nodalDiameters: This is an integer vector of
arbitrary length, in which all nodal diameters
numbers k, see Fig. 2, to consider have to be
given. E.g. nodalDiameters = {0,2} defines

that all modes (to be additionally qualified by
nodalCircles) with zero and two nodal diameters
are to be taken into account.

∙ nodalCircles: This is an integer vector of arbi-
trary length, in which all nodal circles l to con-
sider have to be given, see Fig. 2.

∙ damping: This is a real vector, which defines the
damping of each mode separately.

There is one aspect in which the discretization pa-
rameters above differ from what is depicted in (13).
There, the number of mode shapes is specified by two
thresholds lm and km and all modes with l ≤ lm and
k≤ km are included in the model. However the two in-
puts nodalCircles and nodalDiameters offer the pos-
sibility to specify each nodal circle and diameter to be
considered, separately.

A literature review had revealed that in particular
brake squeal models often only include a single mode
shape couple corresponding to a specific frequency at
which squeal phenomena have been observed in real
applications, see e.g. [12]. The case is covered by the
parameter definitions above.

Besides the discretization parameters that are re-
lated to the underlying plate model the graphical user
interface of the AnnularPlate class consists of a bun-
dle of other input data to specify in-scale and exag-
gerated animation, initialization, state selection and so
on. Concerning these more general issues the user in-
terface corresponds to what is already known from the
Beam and ModalBody class of the DLR FlexibleBod-
ies library.

4.2 Degenerated Geometry

There are two different cases of degenerated geometry
which lead to singularities if defined by user input:

circular plate: The AnnularPlate model is not ca-
pable of representing a true circular plate with
ri = 0. The model will simulate, if a very small
inner radius such as e.g. ri = 1−10m is given,
but as long as not enforced by clamped boundary
conditions the displacement results on the inner
radius do not satisfy the compatibility equations
of continuum mechanics, see [10, Sec. II.6]. E.g.
consider two displacements uuuA(ri) and uuuB(ri) of
two arbitrary, but not coinciding points lying on
the inner radius, then the following statement has
to be noticed in general:

lim
ri→0

(uuuA(ri)−uuuB(ri))
2 ∕= 0

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

126

circular ring: It is also not possible to specify ri = ra.
From the theoretical point of view the user may
define an annular plate with arbitrary small width
ra− ri > 0, but as a consequence the eigen fre-
quencies ωi of the flexible body will be increased
towards infinity:

lim
ri→ra

ωi = ∞

5 Example Models

5.1 A Lathe Cutting Model

Figure 7: Diagram layer of the Lathe Cutting Model

The cylindrical turning of a disc on a lathe in
Fig. 7 serves as an first example to demonstrate the ap-
proach. The disc, ri = 0.075m, ra = 0.15m, th= 0.01m
made of steel, rotates with constant rotational velocity
while the lathe tool is moved in parallel to the disc
axis in order to form the outer cylindrical disc surface.
The cutting tool is supported by a linear spring-damper
element which represents compliances of the tool ma-
chinery.

The assumed cutting speed is 100 m/min, the feed
is 120 mm/min. The relevant force here, the feed for-
ward force f f is evaluated according to the instanta-
neous chip dimensions b and h:

f f = b h1−m f k f 1.1 , (21)

using the specific force constants m f = 0.7013, k f 1.1 =
351 N/mm2.

The disc is assumed to be clamped at the inner
radius and free at the outer radius.

Fig. 8 shows the animation of the simulation
where the largest deformation is of course at the at-
tachment point of the feed forward force.

Figure 8: AnnularPlate model with applied non-
rotating feed forward force, the solid animation shows
the in-scale deformation at t = 0.9 s, while the wire-
frame animation is exaggerated by a factor of 100.

Fig. 9 depicts the time history of two deforma-
tions states qi(t) that are associated to the eigenforms
with node diameter k = 1 and node circle l = 0. After
0.25 s, the lathe tool approaches the plate and begins
to cut. Then the chip dimensions are increased which
leads to a larger feed forward force and larger defor-
mations. After 1.23 s the cutting process is stationary.

The upper plot presents the Lagrange point of
view, the virtual observer rotates with the plate and
experiences how the deformations change with the ro-
tation angle.

The lower plot delineates the standpoint of an ob-
server that does not rotate with the plate. As a conse-
quence the deformation of the plate is experienced to
be stationary with respect to the rotation angle.

In order to verify the implementation the natural
frequencies of the AnnularPlate model were compared
to the results of a FEM analysis for different combina-
tions of boundary conditions. Tab. 1 gives the results
for the set-up used in the lathe cutting model. The dif-
ferences are indeed very small for all boundary con-
ditions so that at least the evaluation of the structural
mass and stiffness matrices MMMe and KKKe can be assumed
to be correct.

For two reasons this lathe cutting scenario is a
challenging one: Firstly, the frequency of the excita-
tion is much lower than the lowest natural frequency
of the plate, i.e. this scenario is a quasi-static one. It

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

127

Figure 9: Modal amplitudes of two exemplary defor-
mation states in Lagrangian and ALE-description.

is a known phenomenon that the discretization with
eigenmodes is comparable inefficient whenever static
deformation fields are to represent, so that a large num-
ber of modes is necessary to get correct values. Note
that this fact does not apply for dynamic excitations.

Secondly, the application of a single, discrete
force at the circumference of an annular plate is an
issue for the angular discretization, which here may be
interpreted as a Fourier expansion. Again, it is to ex-
pect that a large number of modes is necessary to get
values close to reality.

A closer look at the exaggerated compared to the
in-scale animation in Fig. 8 shows that deformations
also occur in regions e.g. opposite to the force attach-
ment point. These displacement results far away from
the cutting tool are reduced if a higher number of nodal

Natural frequencies [Hz]

Modelica 1449 1478 1478 1635 1635
Ansys 1451 1480 1480 1637 1637

Modelica 2064 2064 2847 2847 3974
Ansys 2065 2065 2848 2848 3977

Table 1: The first 10 natural frequencies of an An-
nularPlate model compared to an Ansys model of the
same plate with 1296 Shell63 elements for the sake of
verification.

diameters k is considered.
The convergence of the deformation results as a

function of the nodal diameters k and the nodal circles
l is presented in Fig. 10, where the deformation at the
force attachment points are given. At least the nodal

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

considered nodal diameters k [−]

u m
ax

 [m
m

]

nodal circles l=0
nodal circles l=0,1
nodal circles l=0,1,2
umax in Ansys

Figure 10: Convergence of the displacements results
at the force attachment point

diameters k = 0,1, . . . ,7 and the nodal circles l = 0,1
should be taken into account in order to get reasonable
static deformation results which leads to all together
30 degrees of freedom. The highest frequency in the
model associated to the eigenform with k = 7, l = 1
turns out to be 18837 Hz. In the first implementation
44.7 cpu-s were required to simulate the 5.5 s of the
complete scenario with a common lap-top.

5.2 A Helicopter Blade Control Model

The cyclic blade control of an helicopter is the sec-
ond application example shown in Fig. 11. The swash
plate, here modeled as an annular plate, supports two
linkages that actuate the pitch joint of the helicopter
blades. As long as the swash plate rotates in parallel
to the rotor base carrying the blades above, the pitch
of the blades is kept constant during one rotation. If
the swash plate is tilted in such a way that the angular
velocity vectors of the rotor base and the swash plate
are no more collinear, the blade pitches are a function
of the rotation angle, see Fig. 12.

Since the direction and value of the air forces act-
ing on the blades depend on the pitch angle, the roll
and pitch motion of the helicopter fuselage can be con-
trolled via this mechanism.

Besides the swash plate, the linkages, the rotor
base and the pitch joints, the model in Fig. 13 contains

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

128

Figure 11: Total view on the helicopter mechanism:
the wireframe illustrations exaggerate the deforma-
tions by a factor of 100, while the solid representations
are shown in true scale.

two 5 m long beams describing the blades and consid-
ering their torsional and two-directional bending de-
formation. A rough representation of the air forces’
effects on the pitch motion is given by force-damper
elements acting on the pitch joints. The prismatic joint
in Fig. 13 allows for the adjustment of the vertical po-
sition of the swash plate and thereby governs the col-
lective pitch angle. The rotational joint aside regulates
the tilting angle of the swash plate and therefore pro-
vides cyclic blade control.

The inner and outer radius of the 0.01 m thick
swash plate made of steel is set to 0.1 and 0.39 m, re-
spectively. Supported boundary conditions are applied
at the inner radius and the l = 0, k = 0,1, . . . ,7 eigen-
forms are considered, so that 15 degrees of freedom
and eigenfrequencies between 50 Hz and 1009 Hz are
defined. Since the externals loads acting on the plate
here rotate with the plate the ALE-functionality was

Figure 12: Side View on the tilted Swash Plate: the
absolute value of the deformations are additionally in-
dicated by color.

Figure 13: Diagram layer of a Helicopter Blade Con-
trol Model

not used. The blade models take the first eigenform
for each of the three deformations types into account.
In order to evaluate 1 s simulation time, 4.7 cpu-s are
required on a common lap-top.

The simulation scenario assumes a constant angu-
lar motion of the blades with 22 rad/s, the swash plate
tilting angle is as well constant, namely 8∘. Fig. 14
shows the controlled pitch angles as a function of time.

The above plot in Fig. 15 presents the bending de-
formation of the plate at those two positions where the
linkages are attached to. Since the model is initialized
in the undeformed configuration, natural vibration are
initiated but are damped out rather quickly due to the
defined structural damping of 2%.

The first modal amplitude in the plot below in
Fig. 15 is associated to the rotational-symmetric < k =
0, l = 0 >-eigenform and its stationary value q1 ∕= 0
is ruled by the gravity load. The modal amplitude q2

Figure 14: Simulation results concerning the con-
trolled helicopter blade pitches.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

129

Figure 15: Deformation results at the two linkage
attachment points and two modal amplitudes of the
swash plate.

is related to that < k = 1, l = 0 >-eigenform, which
displays its maximum and minimum deformations ex-
actly at the linkage attachment points. As a conse-
quence q2 represents by far the dominating part of the
particular solution.

5.3 A Brake Squeal Model

The last application is a reproduction of a brake squeal
model presented by Chakraborty et.al. [12]. It is based
on the idea that the friction forces are oriented along

Figure 16: Animation of the brake disc with 18 ap-
plied friction forces oriented along the deformed sur-
face (wireframe scale 1000:1). Pads and caliper bodies
are considered but omitted for the visualization only.

Figure 17: Modal amplitudes of the Brake Squeal
Model.

the deformed friction surface. This so-called follower-
forces phenomenon leads to a flutter-type instability
and as a consequence to brake squeal. The arrows
in the animation Fig. 16 show the friction forces as
they are aligned with the surface tangent at the contact
points. Due to this set-up the limit cycles in Fig. 17 oc-
cur as soon as the friction coefficient exceeds a certain
limit.

The simulation scenario was defined as an initial
value problem. Therefore the modal amplitudes of the
first 1.5 s in Fig. 17 slightly differ from the behavior
later on. The angular velocity of the brake disc was
assumed to be constant 25 rad/s, the brake disc di-
mensions were set to ri = 0.07 m, ra = 0.153 m and
th = 0.0181 m and 4 eigenforms with l = 0, k = 1,2
with supported boundary conditions at the inner radius
are considered. 64 cpu-s were needed to simulate the
5 s to be seen in Fig. 17.

The contact is formulated with one prismatic joint
in axial direction for each contact point, see Fig. 18.
The spherical joint allows for the alignment of the
friction force with the contact surface. frame b is to
be connected to one nodes ALE frame of the annu-
lar plate, see Fig. 6. frame a is supposed to provide
the connection to the brake caliper, which is a part of
the model but not visualized in Fig. 16. The spring-
damper element attached to the prismatic joint rep-
resents the contact stiffness. For a more advanced
study, this linear element may be replaced by a non-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

130

Figure 18: Diagram layer of the contact submodel.

linear spring which takes the loss of contact or the lift-
off of the brake pads, respectively, into account. The
simplicity of the contact modeling here again demon-
strates the advantages of the ALE-description.

6 Conclusions and Outlook

This paper introduces the new Modelica class called
AnnularPlate. The underlying plate model refers to
a homogeneous Kirchhoff plate in cylindrical coordi-
nates. The option to use connector frames in the so-
called Arbitrary Lagrangian-Eulerian description of-
fers the capability to apply non-rotating external loads
in a convenient and numerical efficient way. The first
example, a lathe cutting model, demonstrates in partic-
ular the advantages of this ALE-approach. The Heli-
copter Blade Control model presents the annular plate
model as a part of a more complex mechanism. A
Brake Squeal Model from literature concludes the ex-
ample presentation. The AnnularPlate class will be
distributed with the Version 2.0 of the commercial
DLR FlexibleBodies library.

Future enhancements concern the second order
displacement field description to cover initial plate
buckling phenomena as well. The additional consider-

ation of torsional deformations of the plate is another
optional improvement in order to cope with applica-
tions in which large forces in circumferential direction
are present.

7 Acknowledgements

A first preliminary version of the annular plate model
was implemented by Kemal Çiğ in the course of his
master thesis project at the DLR.

This work is part of the ITEA 2 ∼ 6020 project
Eurosyslib and therefore funded by the German Fed-
eral Ministry of Economics and Technology. The
authors highly appreciate the partial financial sup-
port of DLR by BMBF (BMBF Förderkennzeichen:
01IS07022F), the German Federal Ministry of the Ed-
ucation and Research, within the ITEA 2 project Eu-
rosyslib [13].

References

[1] Andreas Heckmann, Martin Otter, Stefan Dietz,
and José Dı́az López. The DLR FlexibleBody
library to model large motions of beams and of
flexible bodies exported from finite element pro-
grams. In 5th International Modelica Confer-
ence, pages 85 – 95, 2006.

[2] O. Wallrapp. Standardization of flexible body
modeling in multibody system codes, Part 1:
Definition of standard input data. Mechanics of
Structures and Machines, 22(3):283–304, 1994.

[3] A.W. Leissa. Vibration of plates. NASA SP-160,
Washington, D.C., 1969.

[4] R. Szilard. Theory and Analysis of Plates.
Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, 1974.

[5] H. Irretier. Grundlagen der Schwingungstechnik
2. Vieweg-Verlag, Braunschweig, 2001.

[6] O. Wallrapp and R. Schwertassek. Representa-
tion of geometric stiffening in multibody system
simulation. International Journal for Numerical
Methods in Engineering, 32:1833–1850, 1991.

[7] F. Bloom and D. Coffin. Handbook of Thin
Plate Buckling and Postbuckling. Chapman &
Hall/CRC, Washington, D.C., 2001.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

131

[8] A.A. Shabana. Dynamics of Multibody Sys-
tems. Cambridge University Press, Cambridge,
2nd edition, 1998.

[9] Carl de Boor. A practical Guide to Splines.
Springer–Verlag, Berlin, 1978.

[10] J. Salençon. Handbook of Continuum Mechan-
ics. Springer-Verlag, Berlin, 2001.

[11] U. Nackenhorst. The ALE-formulation of bodies
in rolling contact, Theoretical foundations and
finite element approach. Computer Methods in
Applied Mechanics and Engineering, 193:4299–
4322, 2004.

[12] G. Chakraborty, T. Jearsiripongkul, U. von Wag-
ner, and P. Hagedorn. A new model for a float-
ing caliper disc-brake and active squeal control.
VDI-Bericht, 1736:93–102, 2002.

[13] ITEA 2. Eurosyslib. http://www.itea2.org.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

132

A Modelica-Based and Domain-Specific Framework for
Electromechanical System Design

Damien Chapon*, Fabien Hospital†, Guillaume Bouchez*, Marc Budinger†
*A irbus Operation S.A.S.,

316 Route de Bayonne 31060 Toulouse,
†INSA de Toulouse

135 Av. de Rangueil 31500 Toulouse.
{damien.chapon,guillaume.bouchez}@airbus.com,
{fabien.hospital,marc.budinger}@insa-toulouse.fr

Abstract

A Modelica-Based Domain-Specific Framework for
Electromechanical System Design was developed.
The intended goal of this framework is to be used in
early design phases in order to size physical
architectures of electromechanical airbrake system.
It has been developed using a generic methodology
for the development of interoperable and model-
driven system design frameworks. It is based on
domain-specific modelling languages for the
description of system architectures and relies on
ModelicaML, a Modelica UML profile, to support
system architecture analyses with the Modelica
modelling language. Transitions between
architectural description models and Modelica
analysis models are realized through analyses-based
model transformations.

Keywords: Modelica; Domain Specific Language;
Model Driven Engineering, Electromechanical
Actuator.

1 Introduction

To develop new generations of aircrafts which
ensure safer flights with improved operations, new
system architectures which encompass new
technologies shall be developed. Moreover, aircraft
development shall be realized in a shorter period and
with a new complex industrial organization that
enforces the links with the system suppliers. To face
up to these technical and industrial challenges, more
and more modelling and simulation are used during
the aircraft development, from the preliminary and
conceptual phase to the integration of systems, and
at different levels from aircraft functional level, to

detailed dynamical analyses of equipments.
However, the use of modelling and simulation
activities within such compartmented and distributed
organization results in the application of several
different and non-fully coordinated or optimized
“model-driven” processes, methods, and tools to
support the discipline of systems engineering.

In order to solve this problem, a generic
methodology for the development of interoperable
and model-driven system design frameworks has
been created. In this paper we are not going to
present the overall methodology, but rather its
philosophy, and how Modelica is integrated and
used in it. For the demonstration, we applied this
methodology in order to develop a Modelica-based
domain-specific framework for electromechanical
system design. The intended goal of this framework
is to be used in early design phases in order to size
physical architectures of electromechanical airbrake
system. This Framework is integrated in an Eclipse
platform. It is based on domain specific modelling
languages for the description of system architectures
and relies on ModelicaML, a Modelica UML profile,
to support system analyses with the Modelica
modelling language. Transitions between
architecture descriptive models and Modelica
analysis models are realized through analyses-based
model transformations.

2 Design Framework development
methodology overview

2.1 Methodology’s principles for collaborative
and interoperable design activities

The design of a system physical architecture is an
iterative process. It involves several interrelated sub
processes to transform the system functional

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

133

architecture into a physical solution. The
arrangement of these diffe
depicted in the following picture inspired from the
IEEE 1220 standard [1].

Figure 1 -

During the
different alternatives of physical architecture are
proposed and defined. The
process is used in support to evaluate and compare
these proposed architectures. The selected
architecture is then more precisely defined,
optimised and sized in the
sub-process. Finally the
used to verify and validate the chosen architecture
each of these domains of use
Figure 1, the system physical architecture design
process is an iterative set of back and forth between
these different sub

Inside a system design team, the different
activities of these sub
across different actors having different
roles. Depending on the
organization these roles could be merged and their
appellations could be different. However for
complex systems these roles
and it is therefore conceptually important to keep
these roles
system design framework. To schematize, we can
group these role

• System Architects
system design activities. They define the different
architecture alternatives. Th
consistence with the functional architecture and
with other systems. They manage the detailed
design and validate the choices and the results of
the system designers and system analysts.

• System Designers
according

architecture into a physical solution. The
arrangement of these diffe
depicted in the following picture inspired from the
IEEE 1220 standard [1].

 System Physical Architecture design sub
processes

During the Definition and Synthesis
different alternatives of physical architecture are
proposed and defined. The
process is used in support to evaluate and compare
these proposed architectures. The selected
architecture is then more precisely defined,

sed and sized in the
process. Finally the

used to verify and validate the chosen architecture
each of these domains of use

1, the system physical architecture design
process is an iterative set of back and forth between
these different sub-processes.

Inside a system design team, the different
activities of these sub
across different actors having different
roles. Depending on the
organization these roles could be merged and their
appellations could be different. However for
complex systems these roles
and it is therefore conceptually important to keep

 separated in order to build optimized
system design framework. To schematize, we can
group these roles in three main categories:

System Architects. They manage the overall
system design activities. They define the different
architecture alternatives. Th
consistence with the functional architecture and
with other systems. They manage the detailed
design and validate the choices and the results of
the system designers and system analysts.
System Designers. They define

ding concepts expressed by the system

architecture into a physical solution. The
arrangement of these different sub processes are
depicted in the following picture inspired from the
IEEE 1220 standard [1].

System Physical Architecture design sub
processes

Definition and Synthesis
different alternatives of physical architecture are
proposed and defined. The system
process is used in support to evaluate and compare
these proposed architectures. The selected
architecture is then more precisely defined,

sed and sized in the Definition and Synthesis
process. Finally the Verification

used to verify and validate the chosen architecture
each of these domains of use. As illustrated in the

1, the system physical architecture design
process is an iterative set of back and forth between

processes.

Inside a system design team, the different
activities of these sub-processes are distributed
across different actors having different
roles. Depending on the system complexity and the
organization these roles could be merged and their
appellations could be different. However for
complex systems these roles are clearly separated
and it is therefore conceptually important to keep

separated in order to build optimized
system design framework. To schematize, we can

in three main categories:

. They manage the overall
system design activities. They define the different
architecture alternatives. They ensure the
consistence with the functional architecture and
with other systems. They manage the detailed
design and validate the choices and the results of
the system designers and system analysts.

. They define
concepts expressed by the system

architecture into a physical solution. The
rent sub processes are

depicted in the following picture inspired from the

System Physical Architecture design sub

Definition and Synthesis sub-process,
different alternatives of physical architecture are

system analysis
process is used in support to evaluate and compare
these proposed architectures. The selected
architecture is then more precisely defined,

Definition and Synthesis
Verification sub-process is

used to verify and validate the chosen architecture
. As illustrated in the

1, the system physical architecture design
process is an iterative set of back and forth between

Inside a system design team, the different
processes are distributed

across different actors having different skills and
system complexity and the

organization these roles could be merged and their
appellations could be different. However for

are clearly separated
and it is therefore conceptually important to keep

separated in order to build optimized
system design framework. To schematize, we can

in three main categories:

. They manage the overall
system design activities. They define the different

ey ensure the
consistence with the functional architecture and
with other systems. They manage the detailed
design and validate the choices and the results of
the system designers and system analysts.

. They define the architecture
concepts expressed by the system

architecture into a physical solution. The
rent sub processes are

depicted in the following picture inspired from the

System Physical Architecture design sub-

process,
different alternatives of physical architecture are

s sub-
process is used in support to evaluate and compare
these proposed architectures. The selected
architecture is then more precisely defined,

Definition and Synthesis
process is

used to verify and validate the chosen architecture in
. As illustrated in the

1, the system physical architecture design
process is an iterative set of back and forth between

Inside a system design team, the different
processes are distributed

s and
system complexity and the

organization these roles could be merged and their
appellations could be different. However for

are clearly separated
and it is therefore conceptually important to keep

separated in order to build optimized
system design framework. To schematize, we can

. They manage the overall
system design activities. They define the different

ey ensure the
consistence with the functional architecture and
with other systems. They manage the detailed
design and validate the choices and the results of

the architecture
concepts expressed by the system

architect. They realize the detailed design, the
optimization and sizing of the architecture;

• System Analysts
between the different architecture alternatives
and/or the verification/val

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that
they need for the activities they are responsibl
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to
allow the different actors ac
architectural data they need. In a classical document
centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their
activities. Thus, with th
models and model
engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the
architectural data for the
activities.

The
of the frameworks in order to get a collaborative
design with dedicated environment for the different
actors.

Moreover, in order to get a functional and multi

system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

architect. They realize the detailed design, the
optimization and sizing of the architecture;
System Analysts
between the different architecture alternatives
and/or the verification/val

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that
they need for the activities they are responsibl
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to
allow the different actors ac
architectural data they need. In a classical document
centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their
activities. Thus, with th
models and model
engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the
architectural data for the
activities.

The Figure 3
of the frameworks in order to get a collaborative
design with dedicated environment for the different
actors.

Figure 2 - Actors and modules interactions

Moreover, in order to get a functional and multi

system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

architect. They realize the detailed design, the
optimization and sizing of the architecture;
System Analysts. They realize the trade studies
between the different architecture alternatives
and/or the verification/val

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that
they need for the activities they are responsibl
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to
allow the different actors ac
architectural data they need. In a classical document
centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their
activities. Thus, with the growing importance of
models and model-driven technologies in the system
engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the
architectural data for the satellites

Figure 3 illustrates the modular organization
of the frameworks in order to get a collaborative
design with dedicated environment for the different

Actors and modules interactions

Moreover, in order to get a functional and multi
system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

architect. They realize the detailed design, the
optimization and sizing of the architecture;

. They realize the trade studies
between the different architecture alternatives
and/or the verification/validation analyses.

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that
they need for the activities they are responsibl
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to
allow the different actors accessing to the
architectural data they need. In a classical document
centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their

e growing importance of
driven technologies in the system

engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the

satellites design or analysis

illustrates the modular organization
of the frameworks in order to get a collaborative
design with dedicated environment for the different

Actors and modules interactions

Moreover, in order to get a functional and multi
system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

architect. They realize the detailed design, the
optimization and sizing of the architecture;

. They realize the trade studies
between the different architecture alternatives

idation analyses.

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that
they need for the activities they are responsible for,
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to

cessing to the
architectural data they need. In a classical document-
centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their

e growing importance of
driven technologies in the system

engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the

design or analysis

illustrates the modular organization
of the frameworks in order to get a collaborative
design with dedicated environment for the different

Actors and modules interactions

Moreover, in order to get a functional and multi-
system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

architect. They realize the detailed design, the

. They realize the trade studies
between the different architecture alternatives

The different actors of the system design
activities have to interact with the central point of all
these activities, i.e. the system physical architecture
being designed. Firstly to get the information that

e for,
and then to send back the results to the architecture
definition after performing their activities. In order
to get a collaborative design it is therefore crucial to
give a central role to the system architecture and to

cessing to the
-

centric process, the architectural data is stored in
documents and is therefore not formalized and has to
be interpreted by the different actors to realize their

e growing importance of
driven technologies in the system

engineering processes, it could be useful to have a
formal representation of this central architecture
description in order to automate the access to the

design or analysis

illustrates the modular organization
of the frameworks in order to get a collaborative
design with dedicated environment for the different

-
system optimisation of the designed aircraft, the
different teams responsible of systems architectures
have to access to the architectural data of the others

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

134

systems their
architectural data is stored in the
description, which should also be the link between
the different teams. To support this data exchange
we can imagine a common architectural database
where every team
architectures descriptions through its own dedicated
framework. The development of this database is out
of the scope of the methodology. However this idea
illustrates the need to build interoperable system
design framewor
Figure 3. This figure shows two dedicated design
frameworks for two different system design teams.
Each framework got a multi
editor for edition and consultation of system
architectural data. Each team
data of its system architecture through its own
framework. Architectural data coming from others
system can only be consulted. The consulting and
editing views are therefore different for each team
depending on their different repr
The design and analyses modules are plugged to the
formal architectural data to access the data in order
for the system designer or analyst to perform their
activities. Then the results of these activities are
used to mature the system ar

2.2 Model

The framework development methodology is model
driven. It concerns the two following main activities:

Figure

systems their own system is related with. The
architectural data is stored in the
description, which should also be the link between
the different teams. To support this data exchange
we can imagine a common architectural database
where every team could access to the others systems
architectures descriptions through its own dedicated
framework. The development of this database is out
of the scope of the methodology. However this idea
illustrates the need to build interoperable system
design frameworks. We illustrated this idea in the

This figure shows two dedicated design
frameworks for two different system design teams.
Each framework got a multi
editor for edition and consultation of system
architectural data. Each team
data of its system architecture through its own
framework. Architectural data coming from others
system can only be consulted. The consulting and
editing views are therefore different for each team
depending on their different repr
The design and analyses modules are plugged to the
formal architectural data to access the data in order
for the system designer or analyst to perform their
activities. Then the results of these activities are
used to mature the system ar

Model-driven development methods

The framework development methodology is model
driven. It concerns the two following main activities:

Figure 3 - Example of possible relationships between dedicated design frameworks through a Common

own system is related with. The
architectural data is stored in the system architecture
description, which should also be the link between
the different teams. To support this data exchange
we can imagine a common architectural database

could access to the others systems
architectures descriptions through its own dedicated
framework. The development of this database is out
of the scope of the methodology. However this idea
illustrates the need to build interoperable system

ks. We illustrated this idea in the
This figure shows two dedicated design

frameworks for two different system design teams.
Each framework got a multi-view architectural
editor for edition and consultation of system
architectural data. Each team can access and edit the
data of its system architecture through its own
framework. Architectural data coming from others
system can only be consulted. The consulting and
editing views are therefore different for each team
depending on their different representation needs.
The design and analyses modules are plugged to the
formal architectural data to access the data in order
for the system designer or analyst to perform their
activities. Then the results of these activities are
used to mature the system architecture.

driven development methods

The framework development methodology is model
driven. It concerns the two following main activities:

Example of possible relationships between dedicated design frameworks through a Common

own system is related with. The
system architecture

description, which should also be the link between
the different teams. To support this data exchange
we can imagine a common architectural database

could access to the others systems
architectures descriptions through its own dedicated
framework. The development of this database is out
of the scope of the methodology. However this idea
illustrates the need to build interoperable system

ks. We illustrated this idea in the
This figure shows two dedicated design

frameworks for two different system design teams.
view architectural

editor for edition and consultation of system
can access and edit the

data of its system architecture through its own
framework. Architectural data coming from others
system can only be consulted. The consulting and
editing views are therefore different for each team

esentation needs.
The design and analyses modules are plugged to the
formal architectural data to access the data in order
for the system designer or analyst to perform their
activities. Then the results of these activities are

chitecture.

driven development methods

The framework development methodology is model
driven. It concerns the two following main activities:

Example of possible relationships between dedicated design frameworks through a Common
Architectural Database

own system is related with. The
system architecture

description, which should also be the link between
the different teams. To support this data exchange
we can imagine a common architectural database

could access to the others systems
architectures descriptions through its own dedicated
framework. The development of this database is out
of the scope of the methodology. However this idea
illustrates the need to build interoperable system

ks. We illustrated this idea in the
This figure shows two dedicated design

frameworks for two different system design teams.
view architectural

editor for edition and consultation of system
can access and edit the

data of its system architecture through its own
framework. Architectural data coming from others
system can only be consulted. The consulting and
editing views are therefore different for each team

esentation needs.
The design and analyses modules are plugged to the
formal architectural data to access the data in order
for the system designer or analyst to perform their
activities. Then the results of these activities are

The framework development methodology is model-
driven. It concerns the two following main activities:

• Creation of architectural multi
dedicated Domain Specific Languages ;

• Development of ga
architecture description
activities through model transformations.

With Domain
every system design activities could have access to
the system architecture
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub
activities:

1.

2.

Then, model transformati
automate the exchange of data from architecture
descriptive models to analyses models. If these
satellite activities are not model
models transformations such as automatic code
generation or document generation are used t
the realization of these activities.

Example of possible relationships between dedicated design frameworks through a Common
Architectural Database

Creation of architectural multi
dedicated Domain Specific Languages ;
Development of ga
architecture description
activities through model transformations.

With Domain-Specific Languages every actor of
every system design activities could have access to

system architecture
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub
activities:

 Creation and customization of domain specific
languages with their own meta
capture the right knowledge and concerns of
specific engineer

 Creation of customized graphical
editors. These graphical
the views that are needed by system architects to
graphically create models conform to their
engineering domain’s meta

Then, model transformati
automate the exchange of data from architecture
descriptive models to analyses models. If these
satellite activities are not model
models transformations such as automatic code
generation or document generation are used t
the realization of these activities.

Example of possible relationships between dedicated design frameworks through a Common
Architectural Database

Creation of architectural multi
dedicated Domain Specific Languages ;
Development of gateway from
architecture description
activities through model transformations.

Specific Languages every actor of
every system design activities could have access to

system architecture description in a view adapt
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub

Creation and customization of domain specific
languages with their own meta
capture the right knowledge and concerns of
specific engineering domains;
Creation of customized graphical
editors. These graphical
the views that are needed by system architects to
graphically create models conform to their
engineering domain’s meta

Then, model transformati
automate the exchange of data from architecture
descriptive models to analyses models. If these
satellite activities are not model
models transformations such as automatic code
generation or document generation are used t
the realization of these activities.

Example of possible relationships between dedicated design frameworks through a Common

Creation of architectural multi-views editors with
dedicated Domain Specific Languages ;

teway from
 to design or analysis

activities through model transformations.

Specific Languages every actor of
every system design activities could have access to

description in a view adapt
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub

Creation and customization of domain specific
languages with their own meta
capture the right knowledge and concerns of

ing domains;
Creation of customized graphical
editors. These graphical modelling editors bring
the views that are needed by system architects to
graphically create models conform to their
engineering domain’s meta-model.

Then, model transformations could be used to
automate the exchange of data from architecture
descriptive models to analyses models. If these
satellite activities are not model-based, others
models transformations such as automatic code
generation or document generation are used t
the realization of these activities.

Example of possible relationships between dedicated design frameworks through a Common

views editors with
dedicated Domain Specific Languages ;

teway from system
to design or analysis

activities through model transformations.

Specific Languages every actor of
every system design activities could have access to

description in a view adapted
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub

Creation and customization of domain specific
languages with their own meta-models to
capture the right knowledge and concerns of

Creation of customized graphical modelling
editors bring

the views that are needed by system architects to
graphically create models conform to their

ons could be used to
automate the exchange of data from architecture
descriptive models to analyses models. If these

based, others
models transformations such as automatic code
generation or document generation are used to help

Example of possible relationships between dedicated design frameworks through a Common

views editors with

system
to design or analysis

Specific Languages every actor of
every system design activities could have access to

ed
to its needs. The creation of graphical Domain
Specific Languages is composed of two main sub

Creation and customization of domain specific
models to

capture the right knowledge and concerns of

modelling
editors bring

the views that are needed by system architects to
graphically create models conform to their

ons could be used to
automate the exchange of data from architecture
descriptive models to analyses models. If these

based, others
models transformations such as automatic code

o help

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

135

2.3 Model

Thus, the methodology relies on the creation of
domain specific modelling languages in order to
capture the specificities of engineering domains’
knowledge. In this perspective it uses the Eclipse
Modelling Framework (EMF)
Eclipse-based
generation facility for building tools and other
applications based on a structured data model that
can be specified in the Ecore language. Ecore is a
variant of the EM
[3] standard, that is used to define simple meta
models using simple concepts. Moreover, EMF
provides the foundation for interoperability with
other EMF
Interoperability between tools is a key driver in our
methodology, so we selecte
Transformation Language), a model transformation
language and toolkit, for the model transformations
inside the use case presented in the next section.
selected Acceleo
For the creation of graphical
Obeo Designer [6
workbench fully integrated with Eclipse. It is based
on GMF [7]
provides a generative component and runtime
infrastructure for developing graphical editors based
on EMF. Obeo Designer hides the complexity of
GMF and offers the capacity to build quickly and
easily customized graphical editors.

3 Use Case

3.1 Airbrake system presentation

In the present case study, an electromechanical
actuator equivalent to a currently operating
hydraulic airbrake actuator of a commercial single
aisle aircraft is studied (
the electromechanical airbrake is assumed to remain
identical to the hydraulic one. This kinematics is
based on a three rod mechanism, where the
extension/retraction o
the angular movement of the airbrake control
surface. Accordingly, the transformations of motion
are rotation (motor, gear), translation (screw, nut)
and rotation (of the control surface).The airbrake
motion ranges from 0
of the airbrake introduces dynamic efforts that are
not significant compared to the aerodynamic efforts.
Specification imposes matching the dimensions of
the current hydraulic actuator. Therefore, the
variation of hard point
in this study. Furthermore, in power sizing phase,

Model-driven technologies

Thus, the methodology relies on the creation of
domain specific modelling languages in order to
capture the specificities of engineering domains’
knowledge. In this perspective it uses the Eclipse
Modelling Framework (EMF)

based modelling
generation facility for building tools and other
applications based on a structured data model that
can be specified in the Ecore language. Ecore is a
variant of the EMOF, a subset of the OMG's MOF

ndard, that is used to define simple meta
models using simple concepts. Moreover, EMF
provides the foundation for interoperability with
other EMF-based tools and applications.
Interoperability between tools is a key driver in our

ethodology, so we selecte
Transformation Language), a model transformation
language and toolkit, for the model transformations

use case presented in the next section.
selected Acceleo[5] for model to text transformation.
For the creation of graphical
Obeo Designer [6]. Obeo Designer is an open
workbench fully integrated with Eclipse. It is based

[7] (Graphical
provides a generative component and runtime
infrastructure for developing graphical editors based
on EMF. Obeo Designer hides the complexity of
GMF and offers the capacity to build quickly and
easily customized graphical editors.

Use Case

Airbrake system presentation

In the present case study, an electromechanical
actuator equivalent to a currently operating
hydraulic airbrake actuator of a commercial single
aisle aircraft is studied (
the electromechanical airbrake is assumed to remain
identical to the hydraulic one. This kinematics is
based on a three rod mechanism, where the
extension/retraction of the actuator linear jack drives
the angular movement of the airbrake control
surface. Accordingly, the transformations of motion
are rotation (motor, gear), translation (screw, nut)
and rotation (of the control surface).The airbrake
motion ranges from 0 °to 50°. The moment of inertia
of the airbrake introduces dynamic efforts that are
not significant compared to the aerodynamic efforts.
Specification imposes matching the dimensions of
the current hydraulic actuator. Therefore, the
variation of hard point
in this study. Furthermore, in power sizing phase,

driven technologies

Thus, the methodology relies on the creation of
domain specific modelling languages in order to
capture the specificities of engineering domains’
knowledge. In this perspective it uses the Eclipse
Modelling Framework (EMF) [2]

modelling framework and code
generation facility for building tools and other
applications based on a structured data model that
can be specified in the Ecore language. Ecore is a

OF, a subset of the OMG's MOF
ndard, that is used to define simple meta

models using simple concepts. Moreover, EMF
provides the foundation for interoperability with

based tools and applications.
Interoperability between tools is a key driver in our

ethodology, so we selected ATL[4
Transformation Language), a model transformation
language and toolkit, for the model transformations

use case presented in the next section.
for model to text transformation.

For the creation of graphical edit
]. Obeo Designer is an open

workbench fully integrated with Eclipse. It is based
(Graphical Modelling Framework), that

provides a generative component and runtime
infrastructure for developing graphical editors based
on EMF. Obeo Designer hides the complexity of
GMF and offers the capacity to build quickly and
easily customized graphical editors.

Airbrake system presentation

In the present case study, an electromechanical
actuator equivalent to a currently operating
hydraulic airbrake actuator of a commercial single
aisle aircraft is studied (Figure 4). The kinematics of
the electromechanical airbrake is assumed to remain
identical to the hydraulic one. This kinematics is
based on a three rod mechanism, where the

f the actuator linear jack drives
the angular movement of the airbrake control
surface. Accordingly, the transformations of motion
are rotation (motor, gear), translation (screw, nut)
and rotation (of the control surface).The airbrake

°to 50°. The moment of inertia
of the airbrake introduces dynamic efforts that are
not significant compared to the aerodynamic efforts.
Specification imposes matching the dimensions of
the current hydraulic actuator. Therefore, the
variation of hard point positions was
in this study. Furthermore, in power sizing phase,

Thus, the methodology relies on the creation of
domain specific modelling languages in order to
capture the specificities of engineering domains’
knowledge. In this perspective it uses the Eclipse

[2]. EMF is an
framework and code

generation facility for building tools and other
applications based on a structured data model that
can be specified in the Ecore language. Ecore is a

OF, a subset of the OMG's MOF
ndard, that is used to define simple meta

models using simple concepts. Moreover, EMF
provides the foundation for interoperability with

based tools and applications.
Interoperability between tools is a key driver in our

d ATL[4] (ATLAS
Transformation Language), a model transformation
language and toolkit, for the model transformations

use case presented in the next section.
for model to text transformation.

editors we selected
]. Obeo Designer is an open

workbench fully integrated with Eclipse. It is based
Framework), that

provides a generative component and runtime
infrastructure for developing graphical editors based
on EMF. Obeo Designer hides the complexity of
GMF and offers the capacity to build quickly and

Airbrake system presentation

In the present case study, an electromechanical
actuator equivalent to a currently operating
hydraulic airbrake actuator of a commercial single

). The kinematics of
the electromechanical airbrake is assumed to remain
identical to the hydraulic one. This kinematics is
based on a three rod mechanism, where the

f the actuator linear jack drives
the angular movement of the airbrake control
surface. Accordingly, the transformations of motion
are rotation (motor, gear), translation (screw, nut)
and rotation (of the control surface).The airbrake

°to 50°. The moment of inertia
of the airbrake introduces dynamic efforts that are
not significant compared to the aerodynamic efforts.
Specification imposes matching the dimensions of
the current hydraulic actuator. Therefore, the

was not addressed
in this study. Furthermore, in power sizing phase,

Thus, the methodology relies on the creation of
domain specific modelling languages in order to
capture the specificities of engineering domains’
knowledge. In this perspective it uses the Eclipse

F is an
framework and code

generation facility for building tools and other
applications based on a structured data model that
can be specified in the Ecore language. Ecore is a

OF, a subset of the OMG's MOF
ndard, that is used to define simple meta-

models using simple concepts. Moreover, EMF
provides the foundation for interoperability with

based tools and applications.
Interoperability between tools is a key driver in our

] (ATLAS
Transformation Language), a model transformation
language and toolkit, for the model transformations

use case presented in the next section. We
for model to text transformation.

ors we selected
]. Obeo Designer is an open

workbench fully integrated with Eclipse. It is based
Framework), that

provides a generative component and runtime
infrastructure for developing graphical editors based
on EMF. Obeo Designer hides the complexity of
GMF and offers the capacity to build quickly and

In the present case study, an electromechanical
actuator equivalent to a currently operating
hydraulic airbrake actuator of a commercial single

). The kinematics of
the electromechanical airbrake is assumed to remain
identical to the hydraulic one. This kinematics is
based on a three rod mechanism, where the

f the actuator linear jack drives
the angular movement of the airbrake control
surface. Accordingly, the transformations of motion
are rotation (motor, gear), translation (screw, nut)
and rotation (of the control surface).The airbrake

°to 50°. The moment of inertia
of the airbrake introduces dynamic efforts that are
not significant compared to the aerodynamic efforts.
Specification imposes matching the dimensions of
the current hydraulic actuator. Therefore, the

not addressed
in this study. Furthermore, in power sizing phase,

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But
with the sizing progress
detailed
taken into account to implement the virtual
prototype.

3.2

For this use case, the
introduced in section 2 has been used. A Modelica
Based Domain
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an
overview of this Framework.

As illustrated in the figure, the framework is
composed of two
editors, one for each of the main domains
collaborating for EMAs system design activities:
1.

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But
with the sizing progress
detailed, and fric
taken into account to implement the virtual
prototype.

Figure 4 - Airbrake

 Overview of the developed Domain
Design Framework

For this use case, the
introduced in section 2 has been used. A Modelica
Based Domain
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an
overview of this Framework.

Figure 5 - General overview of the developed
system design framework

As illustrated in the figure, the framework is
composed of two
editors, one for each of the main domains
collaborating for EMAs system design activities:

 Power Electronics Systems, to control and make
the correct conversion of the electric power
coming from the electrical network to the
electromechanical motor;

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But
with the sizing progress, tools are more and more

and friction, stiffness and backlash will be
taken into account to implement the virtual

Airbrake and its hydrulic actuator

Overview of the developed Domain
Design Framework

For this use case, the development methodology
introduced in section 2 has been used. A Modelica
Based Domain-Specific Framework for
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an
overview of this Framework.

General overview of the developed
system design framework

As illustrated in the figure, the framework is
composed of two system architecture
editors, one for each of the main domains
collaborating for EMAs system design activities:

lectronics Systems, to control and make
the correct conversion of the electric power
coming from the electrical network to the
electromechanical motor;

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But

tools are more and more
tion, stiffness and backlash will be

taken into account to implement the virtual

and its hydrulic actuator

Overview of the developed Domain

development methodology
introduced in section 2 has been used. A Modelica

Specific Framework for
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an
overview of this Framework.

General overview of the developed
system design framework

As illustrated in the figure, the framework is
system architecture

editors, one for each of the main domains
collaborating for EMAs system design activities:

lectronics Systems, to control and make
the correct conversion of the electric power
coming from the electrical network to the
electromechanical motor;

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But

tools are more and more
tion, stiffness and backlash will be

taken into account to implement the virtual

and its hydrulic actuator

Overview of the developed Domain-Specific

development methodology
introduced in section 2 has been used. A Modelica-

Specific Framework for
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an

General overview of the developed

As illustrated in the figure, the framework is
system architecture graphical

editors, one for each of the main domains
collaborating for EMAs system design activities:

lectronics Systems, to control and make
the correct conversion of the electric power
coming from the electrical network to the

these points will be considered as perfect mechanical
transmissions (e.g., no friction and no backlash). But

tools are more and more
tion, stiffness and backlash will be

taken into account to implement the virtual

Specific

development methodology
-

Specific Framework for
Electromechanical Actuators (EMAs) System
Design was developed. The Figure 5 gives an

As illustrated in the figure, the framework is
graphical

editors, one for each of the main domains

lectronics Systems, to control and make
the correct conversion of the electric power
coming from the electrical network to the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

136

2. Electromechanical Systems, to transform the
electrical power in mechanical power and to
adapt the mechanical power to the application.

Then, model transformations and document
generation capabilities have been developed to
support partially or totally the following activities:

• Parametrical and structural analyses;
• Sizing analyses;
• Failure Mode, Effects, and Criticality Analyses

(FMECA);
• Airbrake position control synthesis.

3.3 Domain Specific Modelling Languages for
Electromechanical System Design

For the development of the two system architecture
graphical editors, two meta-models were developed,
one for electromechanical actuating system
architecture and one for power electronics system
architecture. Then, the domain specific graphical
editors for each domain have been realised in Obeo
Designer so that the system architects can build
graphically the architectural models. In Obeo
Designer we specified the graphical representations
of each required concepts (components, ports and
connections) of the two meta-models. We assigned a
domain specific icon to each component and used
generic graphical representations for ports and
connections. Then we created the palette of
components and connections, and we specified the
way the model elements are created when using the
palette. The figure 6 and 7 presents two architectures
that have been realized with these graphical editors.

Figure 6 - Power electronics system architecture
graphical editor

Figure 7 – Electromechanical system architecture
graphical editor

As can be seen, the graphical editors propose a
palette of components and connections that can be
disposed on the workbench. The components’
attributes can be changed in the properties view.
Obeo Designer keep updated instantaneously the
graphical view of the model and the model itself.

3.4 Integration of ModelicaML

Modelica [8] is a multi-domain modelling language
for efficient component-oriented modelling of
complex systems. The Modelica formalism can be
used by several domains to perform physical
analyses. Modelica is therefore well suited for multi-
domain physical analyses and consequently we add
it as an analyses module in order to add virtual
analyses capabilities. The link between system
architecture descriptive models and Modelica
analyses models as already been studied in a
previous work [9] and this integration is the
concretisation of this work.

The Modelica module used in the framework is
the ModelicaML [10] eclipse plug-in. Actually
ModelicaML is a UML [11] profile. It extends a
subset of UML in order to graphically define new
Modelica models by using UML diagrams.
TheseUML diagrams allow presenting the
composition, connection, inheritance or behaviour of
classes. Thus, it brings Modelica modelling
capabilities into the framework. Further it relies on
the OMG’s UML, which is conform to the Meta-
Object-Facility and therefore the model
transformations between the system architecture
descriptive models and the analyses models can be
easily defined in ATL.

3.5 Analysis-based model transformations to
Modelica Model

With the integration of a ModelicaML analyses
module, the architecture descriptive models can be
used as inputs for model transformations in order to
create Modelica analyses models. In the system

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

137

engineering process, analyses are perfo
specific purposes and therefore domain experts use
adapted modelling
analyses models.. And finally the domain experts
dispose and connect the required components
according the known system architecture to be
analysed. In the same way, the developed framework
relies on model transformations in order to automate
as much as possible these analyses models creation
steps.

According to the analysis to be performed, a
specific ATL model transformation is coded. The
Model transformation is performed in three steps as
illustrated in
1. Components of the architecture to be analysed

are directly mapped to the right analyses
components available in a library dedicated to
the analysis to be performed.

2. Parameters of each component of the
architecture are mapped to the right parameters
of their corresponding analyses models.

3. Connections of the architecture models are
treated by t
automatically connect the components of the
analyses models.

Figure
Transformations to get the Modelica analysis models

The Modelica analysis module is used in our use
case to support sizing analyses and
control synthesis. As illustrated in the F
dedicated libraries for these two activities have been
used. They will be presented in the next subsect
Then, a model transformation has been developed
for each analysis type. Thus, from the same
architecture descriptive
models can be obtained as illustrated in the figure 9.

engineering process, analyses are perfo
specific purposes and therefore domain experts use

modelling languages to create the
analyses models.. And finally the domain experts
dispose and connect the required components
according the known system architecture to be
analysed. In the same way, the developed framework
relies on model transformations in order to automate
as much as possible these analyses models creation

According to the analysis to be performed, a
specific ATL model transformation is coded. The

odel transformation is performed in three steps as
illustrated in Figure 8:

Components of the architecture to be analysed
are directly mapped to the right analyses

mponents available in a library dedicated to
the analysis to be performed.
Parameters of each component of the
architecture are mapped to the right parameters
of their corresponding analyses models.
Connections of the architecture models are
treated by the model transformation to
automatically connect the components of the
analyses models.

Figure 8 - The three steps of the model
Transformations to get the Modelica analysis models

The Modelica analysis module is used in our use
case to support sizing analyses and

rol synthesis. As illustrated in the F
dedicated libraries for these two activities have been
used. They will be presented in the next subsect
Then, a model transformation has been developed
for each analysis type. Thus, from the same
architecture descriptive
models can be obtained as illustrated in the figure 9.

engineering process, analyses are perfo
specific purposes and therefore domain experts use

languages to create the
analyses models.. And finally the domain experts
dispose and connect the required components
according the known system architecture to be
analysed. In the same way, the developed framework
relies on model transformations in order to automate
as much as possible these analyses models creation

According to the analysis to be performed, a
specific ATL model transformation is coded. The

odel transformation is performed in three steps as

Components of the architecture to be analysed
are directly mapped to the right analyses

mponents available in a library dedicated to
the analysis to be performed.
Parameters of each component of the
architecture are mapped to the right parameters
of their corresponding analyses models.
Connections of the architecture models are

he model transformation to
automatically connect the components of the

The three steps of the model
Transformations to get the Modelica analysis models

The Modelica analysis module is used in our use
case to support sizing analyses and

rol synthesis. As illustrated in the F
dedicated libraries for these two activities have been
used. They will be presented in the next subsect
Then, a model transformation has been developed
for each analysis type. Thus, from the same
architecture descriptive model different analyses
models can be obtained as illustrated in the figure 9.

engineering process, analyses are performed for
specific purposes and therefore domain experts use

languages to create the adequate
analyses models.. And finally the domain experts
dispose and connect the required components
according the known system architecture to be
analysed. In the same way, the developed framework
relies on model transformations in order to automate
as much as possible these analyses models creation

According to the analysis to be performed, a
specific ATL model transformation is coded. The

odel transformation is performed in three steps as

Components of the architecture to be analysed
are directly mapped to the right analyses

mponents available in a library dedicated to

Parameters of each component of the
architecture are mapped to the right parameters
of their corresponding analyses models.
Connections of the architecture models are

he model transformation to
automatically connect the components of the

The three steps of the model
Transformations to get the Modelica analysis models

The Modelica analysis module is used in our use
case to support sizing analyses and airbrake position

rol synthesis. As illustrated in the Figure 8,
dedicated libraries for these two activities have been
used. They will be presented in the next subsect
Then, a model transformation has been developed
for each analysis type. Thus, from the same system

model different analyses
models can be obtained as illustrated in the figure 9.

rmed for
specific purposes and therefore domain experts use

adequate
analyses models.. And finally the domain experts
dispose and connect the required components
according the known system architecture to be
analysed. In the same way, the developed framework
relies on model transformations in order to automate
as much as possible these analyses models creation

According to the analysis to be performed, a
specific ATL model transformation is coded. The

odel transformation is performed in three steps as

Components of the architecture to be analysed
are directly mapped to the right analyses

mponents available in a library dedicated to

Parameters of each component of the
architecture are mapped to the right parameters

Connections of the architecture models are
he model transformation to

automatically connect the components of the

Transformations to get the Modelica analysis models

The Modelica analysis module is used in our use
irbrake position

igure 8,
dedicated libraries for these two activities have been
used. They will be presented in the next subsection.
Then, a model transformation has been developed

system
model different analyses

models can be obtained as illustrated in the figure 9.

This principle is called analysis
transformation.

Figure

3.6

An in
design
developed since three years
Toulouse
uses non
fact, these Modelica models contain e
simulation and analysis
different
comparison in function of definition parameters are
separated in different sub
according to the type of rated study,
necessary and sufficient
analyze
as to adapt itself to the v
conception
analysis models according the analysis to be
performed.
model

This principle is called analysis
ransformation.

Figure 9 - Analysis

 Analysis-

An in-house Modelica
design of electromechanical actuators is
developed since three years
Toulouse [12],
uses non-causal models and inverse simulation. In
fact, these Modelica models contain e
simulation and analysis
different parameters of simulation, sizing and
comparison in function of definition parameters are
separated in different sub
ccording to the type of rated study,

necessary and sufficient
analyze, in order t
as to adapt itself to the v
conception, each physical component has different
analysis models according the analysis to be
performed. The next figure shows
models of a component exam

This principle is called analysis

Analysis-Based Model Transformation

-specific libraries

Modelica library for
of electromechanical actuators is

developed since three years
, [13], [14],

causal models and inverse simulation. In
fact, these Modelica models contain e
simulation and analysis models.

parameters of simulation, sizing and
comparison in function of definition parameters are
separated in different sub
ccording to the type of rated study,

necessary and sufficient characteristic sizes for
, in order to reduce the parameter number

as to adapt itself to the v
, each physical component has different

analysis models according the analysis to be
The next figure shows

a component exam

This principle is called analysis-based model

Based Model Transformation

specific libraries

library for the preliminary
of electromechanical actuators is

 in the ICA laboratory
, [15], [16]. This library

causal models and inverse simulation. In
fact, these Modelica models contain e

models. Calculations of
parameters of simulation, sizing and

comparison in function of definition parameters are
separated in different sub-models. Moreover,
ccording to the type of rated study, model

characteristic sizes for
o reduce the parameter number

as to adapt itself to the various stages of the
, each physical component has different

analysis models according the analysis to be
The next figure shows the three

a component example, the spur gear

based model

Based Model Transformations

the preliminary
of electromechanical actuators is being

laboratory of
. This library

causal models and inverse simulation. In
fact, these Modelica models contain estimation,

Calculations of
parameters of simulation, sizing and

comparison in function of definition parameters are
models. Moreover,

models own the
characteristic sizes for

o reduce the parameter number. So
arious stages of the

, each physical component has different
analysis models according the analysis to be

three analysis
the spur gear.

based model

the preliminary
being

of
. This library

causal models and inverse simulation. In
stimation,

Calculations of
parameters of simulation, sizing and

comparison in function of definition parameters are
models. Moreover,

the
characteristic sizes for

So
arious stages of the

, each physical component has different
analysis models according the analysis to be

s

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

138

 Power Sizing

 Modal Analysis

Virtual Prototype

Figure 10 - Example of the three analysis models of
the spur gear component

3.6.1 Power Sizing analysis
For the electromechanical actuating system sizing,
each component is simulated and estimated with
respect to the transmitted power in a backwards way
starting from the load and its mission profile (effort
and position time histories). This library takes into
consideration operating areas, fatigue and reliability
of components. Scaling laws approaches are
implemented as a fast and efficient strategy in order
to reduce the number of design parameters from the
numerous model parameters [12]. These models
require only inertia and efficiency as details.

3.6.2 Modal analysis for dynamic
performances

For the control synthesis, the stability and the speed
of the system can be studied with direct simulation.
In this preliminary design stage, modal analysis
gives the dynamic performance of the structure
(pass-band and time response). Thus, more or less
complex components models with or without linear
friction and linear stiffness, allow the validation of
components choice of the EMA..

3.6.3 Validation trough virtual prototype
In a preliminary design phase, components selection
is finished and with the virtual prototyping, we start
to go up in the V-cycle with more and more detailed
models. CAD models of component allow the
assembly of EMA elements and the analysis of
complex components like carter. Non linearity is
integrated in stiffness and in friction to introduce
backlash and finer models. Finally, integrating
components with complex characteristics, control
system and 3D representation, a virtual prototyping
is realized to analyse the virtual integration and to go
far in synthesis of the global system. This kind of
model is realized for a reducer box in the reference
[17] where fine phenomena are modelled to
implement a virtual prototype.

4 Design scenario and simulation
results

A study was performed on the airbrake actuator use
case. This study includes the following steps:
1. System architecture definition;
2. Power sizing analysis;
3. Modal analysis;
4. FMECA analysis (not presented).

The next two sections illustrate the analysis
performed with Modelica.

4.1 Sizing analysis

The dimensions and mass estimation of one of
architecture of the airbrake actuator are summarized
in Table 1. Sizing of the mechanical parts and
verification of the fatigue constraints was realized
from the mission profile. For more precision in
methodology refer to the Reference [15].

Airbrake Angle

Plane speed

Torque

Time

Figure 11: Mechanical mission profile

Table 1: Components dimensions results

Mass
(kg)

Length (mm)

Diameter
BLDC Cylindrical Motor 1.5 136

67
Brake 0.54 28

73
Spur Gear (ratio=5)
+ Ball Bearings

0.8 21
129

Roller Screw (pitch=4mm)
+ Thrust Bearing

1.38 172
53

Rod (hollow) 0.55 113
61

Spherical bearing
 (2 pieces)

0.14 70
35

Housing (Aluminium) 0.4 252
130

TOTAL MASS 5.3
FINAL DIMENSIONS
Distance between hard points
Outer diameter

312
129

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

139

Indeed, components known in power view have
modal analysis characteristics associated and a
preliminary dynamic study can be realized. In direct
simulation, with appropriated models of
components, the system

4.2 Modal analysis

For the airbrake actuator, specification imposes
stability and time response. So, in a first time, the
actuator slaving loop is simplified and composed to
proportional controllers for speed slaving and
position slaving, with constant disturbance which
involves static deviation.
of this stage is analyzing natural performance of
components in function of dynamic constraint
applied.

Command
(2 proportional

controllers

Figure

First, the kinematic of the airbrake model was
simplified changing 3D model by inertia and lever
arm where aerodynamics load can be applied as a
constant load.
to reduce parameter number
were used to develop more or less complex
mechanical models:

• Motor: second order transfer function (cutoff
frequency of 500Hz, damping coefficient of 0,7:
typical of continuous current motor), torque
source and inertia;

• Brake: only inertia (stiffness and backlash
unknown)

• Spur Gear:
• Roller/Screw: inertia, translation mass, pitch and

take into account stiffness or not;
• Rod and

stiffness which can be take into account or not.
Thus, anchorage stiffness can be included directly
in the spherical bearing model.

The first stage consists in controllers’
frequency analysis in open loo
controllers gain can be done in function of
frequency of the system.

Indeed, components known in power view have
modal analysis characteristics associated and a
preliminary dynamic study can be realized. In direct
simulation, with appropriated models of
components, the system

Modal analysis

he airbrake actuator, specification imposes
stability and time response. So, in a first time, the
actuator slaving loop is simplified and composed to
proportional controllers for speed slaving and
position slaving, with constant disturbance which

static deviation.
of this stage is analyzing natural performance of
components in function of dynamic constraint

Command
2 proportional
controllers)

Figure 12 : Modelica slaving model actuator

he kinematic of the airbrake model was
simplified changing 3D model by inertia and lever
arm where aerodynamics load can be applied as a
constant load. Secondly,
to reduce parameter number
were used to develop more or less complex
mechanical models:

Motor: second order transfer function (cutoff
frequency of 500Hz, damping coefficient of 0,7:

ical of continuous current motor), torque
source and inertia;
Brake: only inertia (stiffness and backlash
unknown);
Spur Gear: inertia and transmission ratio;
Roller/Screw: inertia, translation mass, pitch and

e into account stiffness or not;
Rod and Spherical bearing: translation mass and
stiffness which can be take into account or not.
Thus, anchorage stiffness can be included directly
in the spherical bearing model.

The first stage consists in controllers’
frequency analysis in open loo
controllers gain can be done in function of
frequency of the system.

Indeed, components known in power view have
modal analysis characteristics associated and a
preliminary dynamic study can be realized. In direct
simulation, with appropriated models of
components, the system modal analysis

he airbrake actuator, specification imposes
stability and time response. So, in a first time, the
actuator slaving loop is simplified and composed to
proportional controllers for speed slaving and
position slaving, with constant disturbance which

static deviation. Furthermore, the objective
of this stage is analyzing natural performance of
components in function of dynamic constraint

: Modelica slaving model actuator

he kinematic of the airbrake model was
simplified changing 3D model by inertia and lever
arm where aerodynamics load can be applied as a

Secondly, the scaling laws
to reduce parameter number [12],
were used to develop more or less complex

Motor: second order transfer function (cutoff
frequency of 500Hz, damping coefficient of 0,7:

ical of continuous current motor), torque

Brake: only inertia (stiffness and backlash

inertia and transmission ratio;
Roller/Screw: inertia, translation mass, pitch and

e into account stiffness or not;
Spherical bearing: translation mass and

stiffness which can be take into account or not.
Thus, anchorage stiffness can be included directly
in the spherical bearing model.

The first stage consists in controllers’
frequency analysis in open loop. Thus, choice of
controllers gain can be done in function of
frequency of the system. Controllers can be adjusted

Indeed, components known in power view have
modal analysis characteristics associated and a
preliminary dynamic study can be realized. In direct
simulation, with appropriated models of

modal analysis can be done.

he airbrake actuator, specification imposes
stability and time response. So, in a first time, the
actuator slaving loop is simplified and composed to
proportional controllers for speed slaving and
position slaving, with constant disturbance which

Furthermore, the objective
of this stage is analyzing natural performance of
components in function of dynamic constraint

Simplified
Airbrake Model

: Modelica slaving model actuator

he kinematic of the airbrake model was
simplified changing 3D model by inertia and lever
arm where aerodynamics load can be applied as a

the scaling laws were used
 and assumptions

were used to develop more or less complex electro

Motor: second order transfer function (cutoff
frequency of 500Hz, damping coefficient of 0,7:

ical of continuous current motor), torque

Brake: only inertia (stiffness and backlash

inertia and transmission ratio;
Roller/Screw: inertia, translation mass, pitch and

Spherical bearing: translation mass and

stiffness which can be take into account or not.
Thus, anchorage stiffness can be included directly

The first stage consists in controllers’ setting
p. Thus, choice of

controllers gain can be done in function of cutoff
Controllers can be adjusted

Indeed, components known in power view have
modal analysis characteristics associated and a
preliminary dynamic study can be realized. In direct
simulation, with appropriated models of

can be done.

he airbrake actuator, specification imposes
stability and time response. So, in a first time, the
actuator slaving loop is simplified and composed to
proportional controllers for speed slaving and
position slaving, with constant disturbance which

Furthermore, the objective
of this stage is analyzing natural performance of
components in function of dynamic constraint

he kinematic of the airbrake model was
simplified changing 3D model by inertia and lever
arm where aerodynamics load can be applied as a

were used
assumptions

electro-

Motor: second order transfer function (cutoff
frequency of 500Hz, damping coefficient of 0,7:

ical of continuous current motor), torque

Brake: only inertia (stiffness and backlash

Roller/Screw: inertia, translation mass, pitch and

Spherical bearing: translation mass and
stiffness which can be take into account or not.
Thus, anchorage stiffness can be included directly

 with
p. Thus, choice of

cutoff
Controllers can be adjusted

after some iteration
then on the position loop.

Then, the
to analyze the time response. The output and the
input of the slaving are th
actuator.
present but the system is stable and time response is
less than 1,5 seconds as specification requires
(Figure

5

5.1

For system design, Modelica is a very
modeling
modeling

• Object orientation, which allows the re
components in different projects with integration
of elementary blocs.

• A
such
direct simulation for command synthesis.

However, a designer needs other to
mod
architecture
phases

• E
inform
design
They
library
parameter
number of definition parameters)
the addition of resolution’s capacity of algebraic
problems, as
range of the treated problems of design.

• Post processing a
processing of results stemming from simulation,
in particular in design way to v

after some iteration
then on the position loop.

n, the answer to a step in input is studied in

to analyze the time response. The output and the
input of the slaving are th
actuator. Of course, the static deviance is still
present but the system is stable and time response is
less than 1,5 seconds as specification requires
Figure 13).

Figure 13

 Limitations

 Modelica

For system design, Modelica is a very
modeling language
modeling paradigm promoting

Object orientation, which allows the re
components in different projects with integration
of elementary blocs.
A-causality, thus different analyses are poss
such as inverse simulation for power sizing an
direct simulation for command synthesis.

However, a designer needs other to
models to totally design and analyze system
architecture, in particular in pre and post p
phases of the simulat

Estimation models
inform the different necessary parameters
design. These models are static and algebraic.
They are implemented
library, with
parameters [14]
number of definition parameters)
the addition of resolution’s capacity of algebraic
problems, as
range of the treated problems of design.
Post processing a
processing of results stemming from simulation,
in particular in design way to v

after some iterations, the first on the speed loop, and
then on the position loop.

answer to a step in input is studied in
to analyze the time response. The output and the
input of the slaving are th

Of course, the static deviance is still
present but the system is stable and time response is
less than 1,5 seconds as specification requires

: Position system answer to a step

Limitations

Modelica

For system design, Modelica is a very
language because of its
paradigm promoting

Object orientation, which allows the re
components in different projects with integration
of elementary blocs.

causality, thus different analyses are poss
as inverse simulation for power sizing an

direct simulation for command synthesis.

However, a designer needs other to
els to totally design and analyze system

in particular in pre and post p
of the simulation:

stimation models, prerequisite
the different necessary parameters

. These models are static and algebraic.
are implemented in the previously presented

with scaling laws
[14] (power laws which reduce the

number of definition parameters)
the addition of resolution’s capacity of algebraic
problems, as [18], would allow spreading the
range of the treated problems of design.
Post processing analysis models
processing of results stemming from simulation,
in particular in design way to v

, the first on the speed loop, and

answer to a step in input is studied in
to analyze the time response. The output and the
input of the slaving are the position of the rod

Of course, the static deviance is still
present but the system is stable and time response is
less than 1,5 seconds as specification requires

: Position system answer to a step

For system design, Modelica is a very
because of its efficient physical

paradigm promoting:

Object orientation, which allows the re
components in different projects with integration

causality, thus different analyses are poss
as inverse simulation for power sizing an

direct simulation for command synthesis.

However, a designer needs other to
els to totally design and analyze system

in particular in pre and post p

prerequisite in the simulation
the different necessary parameters

. These models are static and algebraic.
in the previously presented

laws in definition of some
(power laws which reduce the

number of definition parameters). For example,
the addition of resolution’s capacity of algebraic

, would allow spreading the
range of the treated problems of design.

s models, which
processing of results stemming from simulation,
in particular in design way to validate components

, the first on the speed loop, and

answer to a step in input is studied in order
to analyze the time response. The output and the

e position of the rod
Of course, the static deviance is still

present but the system is stable and time response is
less than 1,5 seconds as specification requires

: Position system answer to a step

For system design, Modelica is a very interesting
efficient physical

Object orientation, which allows the re-use of
components in different projects with integration

causality, thus different analyses are possible
as inverse simulation for power sizing and

direct simulation for command synthesis.

However, a designer needs other tools and
els to totally design and analyze system

in particular in pre and post processing

the simulation,
the different necessary parameters for

. These models are static and algebraic.
in the previously presented

definition of some
(power laws which reduce the

. For example,
the addition of resolution’s capacity of algebraic

, would allow spreading the
range of the treated problems of design.

, which allow
processing of results stemming from simulation,

alidate components

, the first on the speed loop, and

order
to analyze the time response. The output and the

e position of the rod
Of course, the static deviance is still

present but the system is stable and time response is
less than 1,5 seconds as specification requires

ing
efficient physical

use of
components in different projects with integration

ible
d

ols and
els to totally design and analyze system

ocessing

,
for

. These models are static and algebraic.
in the previously presented

definition of some
(power laws which reduce the

. For example,
the addition of resolution’s capacity of algebraic

, would allow spreading the

allow
processing of results stemming from simulation,

alidate components

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

140

choice. They are implemented for now, in the in-
house library models, with means and integral
calculation during the simulation that is weighing
it down. It would be better if they could be
realized at the end of dynamic simulation.

As an example, for the sizing of components of
the system architecture performed in the previous
use case the following models are needed. The
different models of the spur gear component are
separated and described in Modelica.

These aspects of Pre-processing and Post-
Processing have to keep the oriented object logic of
Modelica language to allow re-using of models. A
solution could be the addition in Modelica norms of
sections as static model, to develop calculation
before issuing a dynamic simulation; and post-
processing, to lead calculation after dynamic
simulation; seemed to equation form on Modelica
language.

Estimation
model

Post
processing
analysis
model

Dynamic
simualtion

model

Figure 14: Spur Gear models

5.2 ModelicaML

Regarding the capabilities of the developed
prototype, ModelicaML has some limitations:

• ModelicaML doesn’t include yet a full simulation
center, with an integrated GUI for launching of
code generation, compilation, execution and
displaying of simulation results on plots inside
Eclipse. This means that the Modelica code
generated in ModelicaML should at the moment
be loaded inside a Modelica simulator outside the
prototype. For this use case, Dymola has been
used.

• ModelicaML does not allow the import of
external Modelica code. This is a real problem to

import and use existing Modelica libraries inside
ModelicaML. For this use case we modelled
directly in the ModelicaML graphical modelling
language the libraries that were necessary.

However these limitations are planned to be
removed in a near future by the ModelicaML
developers.

6 Conclusions

The main principles of a generic methodology for
the development of customized, interoperable and
model-driven system design frameworks are
illustrated in this paper. This methodology
encourages the capitalization of engineering
domains’ knowledge in order to reuse it by
promoting the use of analyses-based model
transformations and domain specific modelling
languages. It relies on a set of interoperable model-
driven tools and languages including EMF, GMF,
ATL, or Obeo Designer.

To illustrate this methodology, a domain-specific
framework for electromechanical system design was
developed. The intended goal of this framework is to
be use d in early design phases in order to size
physical architectures of electromechanical airbrake
system. This framework uses the ModelicaML UML
profile to support system architecture analyses with
the Modelica modelling language. Model
transformations from system architecture models to
Modelica analysis models are performed through
analysis-based model transformations. To this end,
we used specific libraries dedicated to preliminary
sizing and control/command of electromechanical
system. However, the framework doesn’t depend
only on Modelica for system analysis. As an
example document generation capability is
implemented in Acceleo for Failure Mode, Effects,
and Criticality Analyses. This documentation is not
described in this paper but it represents a very
important information source for designer as soon
the start of design system. The developed framework
is just a prototype and should be extended according
the methodology principles with other architectural
and analyses capabilities.

References

[1] Doran, T., IEEE 1220: for practical systems
engineering. IEEE Computer, Vol.39, No. 5,
May 2006.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

141

[2] Eclipse Modelling Framework Project,
http://www.eclipse.org/modelling/emf/

[3] OMG: Meta Object Facility (MOF) 2.0 Core
Specification, OMG Document formal/2006-
01-01. (2006)

[4] Jouault, F., Kurtev, I., Transforming Models
with ATL. In J.-M. Bruel (Ed.): MoDELS
2005 Workshops, LNCS 3844, p. 128 – 138,
2006

[5] Acceleo – http://www.eclipse.org/Acceleo/

[6] Juliot, E., Benois, J., La création de points de
vue avec Obeo Designer, ou comment
fabriquer des DSM Eclipse sans être un
développeur expert? In Génie logiciel, GL &
IS, p 49 - 54, 2009

[7] Graphical Modelling Framework.,
http://www.eclipse.org/modelling/gmf/

[8] Fritzson, P., Principles of Object-Oriented
Modelling and Simulation with Modelica
2.1, Wiley-IEEE Press, 2004.

[9] Chapon, D., Bouchez, G., On the link
between Architectural Description Models
and Modelica Analyses Models. Proceedings
7th Modelica Conference, Como, Italy, Sep.
20-22, 2009

[10] Schamai, W., Fritzson, P., Paredis, C., Pop,
A., Towards Unified System Modelling and
Simulation with ModelicaML: Modelling of
Executable Behavior Using Graphical
Notations. Proceedings 7th Modelica
Conference, Como, Italy, Sep. 20-22, 2009

[11] OMG: UML OCL 2.0 Specification, OMG
Document ptc/2003-10-14. (2003)

[12] Liscouet, J., "Conception préliminaire des
actionneurs électromécaniques - Approche
hybride directe/inverse," PhD, Institut
Clément Ader, INSA, Université de
Toulouse, Chap.3, 2010.

[13] Budinger, M., Liscouet, J., Lefevre, Y.,
Fontchastagner, J., Abdelli, A., Allain, L.:
Preliminary design of electromechanical
actuators with Modelica. Proceedings of the
Modelica 2009 Conference (2009)

[14] Budinger, M., Liscouet, J., Cong, Y., Maré,
J.C.: Simulation based design of
electromechanical actuators with Modelica.
Proceedings of the ASME IDETC/CIE 2009
(2009)

[15] F. Hospital, M. Budinger, J. Liscouet, J-Ch
Maré, “Model Based Methodologies for the
Assessment of More Electric Flight Control
Actuators“, 13th AIAA/ATIO Aviation

Technology, Integration and Operation
Conference, 13 - 15 Sep 2010 - Fort Worth,
Texas.

[16] M. Budinger, A. Fraj, T. El Halabi, J-Ch.
Maré, “Coupling CAD and system
simulation framework for the preliminary
design of electromechanical actuators”,
IDMME Virtual Concept, 20-22 October
2010, Bordeaux, France.

[17] Angelika Peer, Physical-based Friction
Identification of an Electro-Mechanical
Actuator with Dymola/Modelica and MOPS,
Modelica'2003 conference.

[18] GAMS, http://www.gams.com/

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

142

Towards a Benchmark Suite for Modelica Compilers: Large Models

Jens Frenkel+, Christian Schubert+, Günter Kunze+, Peter Fritzson*, Martin Sjölund*, Adrian Pop*
+Dresden University of Technology, Institute of Mobile Machinery and Processing Machines

*PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

{jens.frenkel, christian.schubert, guenter.kunze}@tu-dresden.de,
{peter.fritzson,martin.sjolund,adrian.pop}@liu.se

Abstract
The paper presents a contribution to a Modelica
benchmark suite. Basic ideas for a tool independent
benchmark suite based on Python scripting along with
models for testing the performance of Modelica com-
pilers regarding large systems of equation are given.
The automation of running the benchmark suite is
demonstrated followed by a selection of benchmark
results to determine the current limits of Modelica tools
and how they scale for an increasing number of equa-
tions.
Keywords: benchmark, performance comparison, code
generation, compiler.

1 Introduction

Benchmarks are a well-known method to compare the
capabilities of different software products. Based on the
results users are able to choose the best software for
their application. Several commercial and non-
commercial Modelica compilers are available on the
market, like SimulationX, OpenModelica, JModelica,
MathModelica, and Dymola.

Due to the growing number of compilers, a tool in-
dependent and standardized test is needed from which
the strengths of each compiler can be determined. Such
a benchmark might also be used by compiler develop-
ers to test their compilers for compliance with the
Modelica standard. Furthermore it can be used to iden-
tify ways of improving simulation performance. This
paper tries to develop such a benchmark suite called
ModeliMark.
A standard for benchmarking Modelica compilers
should cover the following topics:

1. languages features
2. symbolic manipulation power
3. numeric solver robustness
4. compiling performance
5. simulation/target code performance

In the first part all language features of Modelica are
tested showing the coverage of each compiler.

Symbolic manipulation power refers to testing
which simplifications and manipulations are under-
taken by the compiler in order to improve simulation
speed.

In Numeric solver robustness difficult models are
simulated comparing their results. Difficult models
might feature high indices, inconsistent initial values or
singularities which might require dynamic state selec-
tion for example [1].

Compiling and simulation performance tests a set of
predefined models and measures their time for transla-
tion or simulation respectively.

A main concern of this paper is to investigate how
current modelica compilers cope with large models, i.e.
many equations.

The next chapter gives an overview of previous
work on comparisons for Modelica compilers. It is fol-
lowed by an overview on model design for benchmark-
ing the scalability with respect to model size. Chapter
four focuses on how the execution of such a benchmark
could be automated using Python. A first glance at
some benchmark results is given in the fifth chapter.

2 Previous Work

Every development team of a Modelica compiler al-
ready has a wide range of tests to ensure that the com-
piler is working correctly. Also the Modelica language
specification and the Modelica Library include numer-
ous examples which can be included in tests. Some of
them can be used to test for language features whereas
others could be used for performance measurements.

At the Modelica Conference in 2008 [8] a bench-
mark library focussing on numerical robustness was
presented. The authors tried to compare their own
Modelica compiler MOSILAB with commercial tools.
Several models ranging from simple tests for language

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

143

features to demanding electrical circuits with disconti-
nuities.

Further possible benchmark models emerged from
the efforts of implementing parallel Modelica compil-
ers; see [4] and [5].

2 Large models for Performance
Benchmarks

The scope of this paper lies not in trying to establish a
general Modelica benchmark but in providing a set of
large benchmark models.

With increasing popularity of Modelica the demand
for more detailed models increases as well. This leads
to larger models with a very high number of equations
and variables. However, large systems is a challenging
task for Modelica compilers due to the symbolic ap-
proach to Modelica compilation.

The following models are supposed to evaluate the
performance and boundaries of available Modelica
compilers regarding large models. The benchmark
comprises a set of synthetic models testing different
aspects.

The first model is called flat model, containing
many variables and equations which are tree structured.

The hierarchical model yields similar complexity
by recursive use of small submodels.

A further set of models is designed to test the sym-
bolical effort to extract systems of equations. It consists
of models with:

1 a large number of alias variables, for example
“a=b” or “a=-b”, and only a few other equa-
tions

2 a linear system of equations
3 a nonlinear system of equations
4 a linear system of equations with time discrete

and continues variables (mixed linear system)
5 a nonlinear system of equations with time dis-

crete and continues variables (mixed nonlinear
system)

2.1 Flat Model

The flat model consists of n variables and n equations
and has the following form.

model flatclass_n
 input Real inp;
 Real v_1;
 Real v_2;
 Real v_3;
 ...
 Real v_n;
equation
 v_1 = 1 + v_2;

 v_2 = 2 + v_3;
..…
 v_(n-1) = (n-1) + v_n;
 der(v_n) = v_1 + inp;
end flatclass_n;

The same model may be expressed using a for-loop.

model flatClass_N
 constant Integer N=100;
 input Real inp;
 Real v[N];
equation
 for i in 1:N-1 loop
 v[i] = i + v[i+1];
 end for;
 der(v[N]) = v[1] + inp;
end flatClass_N;

While both models give the same result their syntax is
different leading to different workloads in the compiler.
For this comparison only the first model has been con-
sidered.

Note that a Modelica compiler which is able to
work with for-loops directly instead of expanding them
may achieve significantly better results using the sec-
ond formulation.

2.2 Hierarchical Models

The following hierarchical model features a mechanical
system consisting of a long series of masses intercon-
nected by springs. The base class uses the Mode-
lica.Mechanics.Translational library and is shown in
Figure 1:

Figure 1. SpringMass Model 1.

In the next level two of these submodels are combined
as shown in Figure 2. This step can be repeated for
each individual level.

Figure 2. SpringMass Model 2.

The topmost model connects a submodel to a fixed
flange. Therefore the number of equations increases
with the level as given in Table 1.

Due to the structural information translation may be
faster than the flat model with equal number of equa-
tions.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

144

Level Equations

1 21

2 42

3 84

4 168

Table 1: Number of equations for the SpringMass
models.

2.3 Alias Model

Connect equations in Modelica models often lead to
equations like “a=b” or “a=-b”. Such equations are
considered to be alias equations since they merely in-
troduce new names for known variables. Hence, addi-
tional alias equations should only lead to minimal
overhead.

In order to test this behaviour the model FlatA-
liasClass has been designed. It is very similar to the
FlatModel only with additional alias equations. The
number m of additional alias equations can be altered to
see their influence.

model Flataliasclass_n
 input Real inp;
 Real v_1;
 Real v_2;
 ...
 Real v_n;

 Real va_1;
 Real va_2;
 ...
 Real va_m;
equation
 va_1 = v_1;
 va_1 = 1 + v_2;
 va_2 = v_2;
 va_2 = 2 + v_3;
..…
 va_(n-1) = v_(n-1);
 va_(n-1) = (n-1) + v_n;
 der(v_n) = v_1 + inp;

end Flataliasclass_n;

In addition another model called AliasClass_N has
been implemented in which alias relations emerge only
if previous found aliases are replaced. In fact, if all
alias relations are found only the first equation remains.

model AliasClass_N
 input Real inp;
 constant Integer N=4;
 Real a[2*N+1];

equation
 der(a[1]) = inp;
 a[2] = -a[1];
 a[3] = 2*a[2]+a[1];
 for i in 4:2:2*N loop

 a[i] = a[i-3] + a[i-2] – a[i-1];
 a[i+1] = i*a[i]+(i-1)*a[i-1];
 end for;
end AliasClass_N;

2.4 Model with linear or nonlinear Systems of
Equations

Dealing with linear or nonlinear systems of equations is
a basic requirement of every Modelica compiler. The
main concern of the next four models is to answer the
question up to which size an equation system can be
handled by a compiler and what effort it takes.

2.4.1 Linear Model

First, there is the Linersysclass_n which possess a
strong connected linear system of n equations which
has the unique solution:
 v = 1+inp/(n-2)*[1,1,…,1] for n > 2.

model Linearsysclass_n
 input Real inp;
 Real v_0;
 Real v_1;
 Real v_2;
 ...
 Real v_n;
equation
 - v_0 + v_1 + v_2 … + v_n = n-2 + inp;
 + v_0 - v_1 + v_2 … + v_n = n-2 + inp;
 + v_0 + v_1 - v_2 … + v_n = n-2 + inp;
 …
 + v_0 + v_1 + v_2 … - v_n = n-2 + inp;

end Linearsysclass_n;

2.4.2 Mixed Linear Model

Modelica models often include if-equations which
lead to time discrete components which themselves
may be part of an equation system. Such systems of
equations have to be solved using iterative methods
which are tested by the following model. Mixedli-
nersysclass leads to a strongly connected linear
system including if-equations.
model Mixedlinearsysclass_n
 input Real inp;
 Real v_0;
 Boolean b_0;
 Real v_1;
 Boolean b_1;
 Real v_2;
 Boolean b_2;
 ...
 Real v_n;
 Boolean b_n;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

145

equation
 b_0 = v_0 > 0;
 (if b_0 then -v_0 else -2*v_0) + v_1 +
v_2 … + v_n = n-2+inp;

 b_1 = v_1 > 0;
 + v_0 + (if b_1 then -v_1 else -2*v_1) +
v_2 … + v_n = n-2+inp;

 b_2 = v_2 > 0;
 + v_0 + v_1 +(if b_2 then -v_2 else -
2*v_2) … + v_n = n-2+inp;
 …

 b_n = v_n > 0;
 + v_0 + v_1 + v_2 … +(if b_n then -v_n
else -2*v_n) = n-2+inp;

end Mixedlinearsysclass_n;

2.4.3 Nonlinear Model

Similar to the linear case, there are models which test
the Modelica compiler’s ability to solve nonlinear
equations by a slight alteration of the aforementioned
models.
model Nnlinearsysclass_n
 input Real inp;
 Real v_0;
 Real v_1;
 Real v_2;
 ...
 Real v_n;
equation
 - sin(v_0) + v_1 + v_2 … + v_n=n-2+inp;
 + v_0 - sin(v_1) + v_2 … + v_n=n-2+inp;
 + v_0 + v_1 - sin(v_2) … + v_n=n-2+inp;
 …
 + v_0 + v_1 + v_2 … - sin(v_n)=n-2+inp;

end Nonlinearsysclass_n;

model Mixednonlinearsysclass_n
 input Real inp;
 Real v_0;
 Boolean b_0;
 Real v_1;
 Boolean b_1;
 Real v_2;
 Boolean b_2;
 ...
 Real v_n;
 Boolean b_n;
equation
 b_0 = v_0 > 0;
 (if b_0 then sin(v_0) else cos(v_0)) +
v_1 + v_2 … + v_n = n-2+inp;
 b_1 = v_1 > 0;
 + v_0 + (if b_1 then sin(v_1) else
cos(v_1)) + v_2 … + v_n = n-2+inp;
 b_2 = v_2 > 0;
 + v_0 + v_1 +(if b_2 then sin(v_2) else
cos(v_2)) … + v_n = n-2+inp;
 …
 b_n = v_n > 0;
 + v_0 + v_1 + v_2 … +(if b_n then
sin(v_n) else cos(v_n)) = n-2+inp;

end Mixednonlinearsysclass_n;

3 Automating the Benchmark Suite

The main concern of this paper was to get an answer on
how current Modelica compilers cope with large mod-
els, i.e. many equations. To get this answer a lot of
models with an increasing number of equations had to
be translated and simulated. Hence, the generation of
the models as well as the control of the Modelica com-
pilers should be fully automated.

The programming language Python proves to be
well suited as it allows importing C-Code, starting ex-
ternal processes or even accessing COM-Components
under Microsoft Windows. In addition Python is an
object oriented script language which is easy to read
and for which comprehensive libraries are available.

The first part of the solution is a model generator as
shown in Figure 3. It chooses appropriate models, val-
ues for n (number of equations) and writes Modelica
code which shall then be tested. Each test model is
stored in a separate Python class which returns Mode-
lica code for a given n.

Figure 3. Benchmark Framework.

These models are handed over to the Benchmark Com-
ponent. It controls the benchmark process and commu-
nicates via a wrapper with the corresponding Modelica
compiler. Such a wrapper has to be created for each
individual compiler. So far wrappers for OpenMode-
lica, JModelica and Dymola have been implemented.

Based on the usual Modelica translation process,
which is divided into flattening and symbolic manipu-
lation, the wrappers expose three functions:
 flatten
 translate

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

146

 simulate
Flatten instructs the compiler to parse the Modelica
code and return the flat model. Translate first flattens
the model and turns it into a state which can be simu-
lated (executable for example). Simulate flattens, trans-
lates and simulates the model using the standard solver
and a predefined output interval and stop time.

Since not every Modelica compiler provides func-
tions to measure the execution time of the flattening,
translation and simulation process the functionalities
from the Python library time is used. All results are
written to a text file. The source code as well as the
models is freely available at
http://code.google.com/p/modelimark, and linked from
www.openmodelica.org.

4 Benchmark Results

The following benchmarks were accomplished using a
Windows 7, 64 Bit System with Intel Core i7 860, 2.80
GHz and 4.0 GB RAM.

4.1 Modelica Compilers

For this benchmark three different Modelica compilers
were used:
 OpenModelica compiler Revision 7745 from

21/01/2011
 JModelica 1.4
 Dymola 7.4

4.2 Flat Model

As can be seen in Figure 4 Dymola needs the least time
for translation followed by OpenModelica and JMode-
lica.

However time increases roughly with the third pow-
er of n which makes Modelica uneconomical for very
large models. It was found that the upper limit for the
number of equations is not defined by time but by the
compiler itself.

While JModelica and OpenModelica failed at
around 2000 and 60 000 equations respectively, Dymo-
la managed to translate a model with 160 000 equations
but Visual Studio 2008 failed to compile the executa-
ble.

4.3 Hierarchical Models

Figure 5 shows the results for the hierarchical Model in
comparison to the flat one. It can be seen that JModeli-
ca and OpenModelica do not benefit. In Dymola how-
ever, the time now only increases with the second pow-
er of n. It is assumed that the internal look up process
in Dymola exploits the model structure. Nevertheless,

twice the equations still leads to a fourfold time for
translation.

Figure 4: Benchmark Results Flat Model

Figure 5: Flat Model and hierarchical Model

4.4 Alias Model

Each graph in the Figures 6, 7, 8 show for each compi-
ler how the time for translation changes with increasing
percentage of alias equations for a given number of
equations.

In the case of Dymola the influence of alias equa-
tions is similar to normal equations.

In OpenModelica and JModelica alias equations are
treated more efficiently since their influence is almost
linear and independent of n.

0,1

1

10

100

1000

10 100 1000 10000 100000Ti
m
e
 [
s]
 fo
r
Tr
an
sl
at
io
n

Number of Equations

Flat Model

OMC ‐ 7745 Dymola 7.4 Jmodelica 1.4

0,1

1

10

100

1000

10 100 1000 10000 100000Ti
m
e
[s
] f
or
 T
ra
ns
la
ti
on

Number of Equations

Flat Model and Hierarchical Model

OMC ‐ 7745

Dymola 7.4

Jmodelica 1.4

Dymola 7.4 hierarchical model

OMC ‐ 7089 hierarchical model

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

147

Figure 6: FlatAlilasClass - OMC 7745

Figure 7: FlatAliasClass Dymola 7.4

Figure 8: FlatAliasClass JModelica 1.4

For the model AliasClass where a recursive substi-
tution is needed, to find all alias relations Dymola
seems to be more efficient (Figure 9). Further inves-
tigations have shown that the Dymola compiler rep-
laces only the first 11 alias variables. All the other
alias variables are not detected and calculated for
each simulation step.

Figure 9: AliasClass Model

4.5 Linear or Nonlinear Systems of Equations

Looking at Figure 10, 11, 12 it can be seen that the re-
sults for the different types of equation systems hardly
differ. Again, the implementation in Dymola seems to
be more efficient compared to JModelica and Open-
Modelica. Note, that the maximum number of un-
knowns which could be solved for in Dymola was 320
compared to a 160 in OpenModelica and 80 in JMode-
lica.

5 Conclusions

This paper tried to encourage the development of a
standard benchmark suite for Modelica compilers. It
would give compiler developers insights to find possi-
bilities for improvements and give users the chance to
compare different compilers.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

148

The scope of this paper was limited to the behavior
of current Modelica compilers regarding large models.
It could be found that Dymola was generally faster than
OpenModelica and JModelica. However, even Dymola
does not seem suitable for very large models as it can-
not cope with models that have more than 160000 equ-
ations.

Furthermore it was found that, depending on the
model, the time needed for translation grows with
second or third power of the number of equations.

In order to continue establishing Modelica as the
major simulation language better ways of dealing with
large models have to be found. Some first promising
ideas are given in [6] and [7].

All the models as well as the Python code are freely
available at http://code.google.com/p/modelimark/, and
linked from www.openmodelica.org.

Figure 10: Linear and Nonlinear Systems of Equations
Dymola 7.4

Figure 11: Linear and Nonlinear Systems of Equations
OMC – 7745

Figure 12: Linear and Nonlinear Systems of Equations
JModelica 1.4

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

149

References
[1] S. Mattsson, G. Söderlind: Index reduction in

differential-algebraic equations using dummy
derivatives. SIAM J. Sci. Statist. Comput.,
14:677– 692, 1993.

[2] Peter Fritzson: Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Page 57ff, Wiley IEEE Press, 2004.

[3] O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F.
Breitenecker, C. Nytsch-Geusen: Comparison
of Different Modelica-Based Simulators Using
Benchmark Tasks, in Procedings of Modelica
Conference 2008

[4] M. Maggio, K. Stavåker, F. Donida, F.
Casella, P.Fritzson: Parallel Simulation of
Equation-based Object-Oriented Models with
Quantized State Systems on a GPU, in Proced-
ings of the 7th Modelica Conference 2009

[5] H. Lundvall, K. Stavåker, P. Fritzson, C. Kess-
ler: Automatic parallelization of simulation
code for equation-based models with software
pipelining and measurements on three plat-
forms. in ACM SIGARCH Computer Architec-
ture News, Vol. 36, No. 5, December 2008.

[6] D Zimmer: Module-Preserving Compila-tion of
Modelica Models,Proceedings 7th Modelica
Conference, Como, Italy, Sep. 20-22, 2009.

[7] C. Höger, F. Lorenzen, P. Pepper: Notes on the
Separate Compilation of Modelica, The 3rd In-
ternational Work-shop on Equation-Based Ob-
ject-Oriented Modeling Languages and Tools,
Oslo, Norway, October 3, 2010

Appendix

a. FlatModel

n OMC - 7745 Dymola 7.4 Jmodelica 1.4

 T S T S T S

10 0,92 0,11 0,39 0,11 3,73 0,21

20 0,94 0,07 0,42 0,09 3,00 0,15

40 0,91 0,09 0,50 0,03 3,19 0,24

80 1,00 0,13 0,41 0,19 3,73 0,25

160 1,21 0,21 0,46 0,14 5,04 0,50

320 1,49 0,35 0,55 0,33 8,73 1,45

640 2,11 0,68 0,59 0,55 19,76 5,66

1280 3,73 1,27 0,75 1,11 59,57 22,30

2560 8,37 2,61 1,34 2,00

5120 21,75 5,01 3,05 4,06

10240 69,13 10,01 9,83 7,66

20480 239,78 21,47 41,18 16,25

40960 932,63 42,87 245,29 35,01

b. Hierarchical Models

n OMC – 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

42 0,94 0,21 0,70 0,27 10,72 1,57

84 1,14 0,13 0,44 0,07 4,86 0,15

168 1,39 0,3 0,55 0,00 4,55 0,23

336 1,61 0,29 0,56 0,11 6,78 0,41

672 2,63 0,57 0,66 0,13 13,52 1,13

1344 5,58 1,07 0,76 0,35 34,38 3,59

2688 14,67 2,14 1,10 0,36 103,74 13,30

5376 46,60 4,47 1,86 1,70 377,37 50,66

10752 165,47 10,26 3,58 0,94

21504 666,54 26,01 6,69 7,21

43008 13,03 7,29

86016 26,37 46,29

c. FlatAliasClass

n alias OMC - 7745 Dymola 7.4

 T S T S

1000 0 3,27 1,57 0,59 0,25

1200 200 3,22 1,83 0,72 0,82

1400 400 3,47 2,01 0,69 1,06

1600 600 3,89 2,15 0,79 1,13

1800 800 4,13 1,91 0,79 1,27

2000 0 6,52 2,24 1,03 1,65

2400 400 6,94 2,68 1,16 1,77

2800 800 7,41 2,93 1,32 2,06

3200 1200 8,26 3,67 1,55 2,30

3600 1600 9,14 3,92 1,85 2,41

4000 0 15,80 4,13 2,27 3,10

4800 800 17,56 5,02 2,89 3,34

5600 1600 19,46 5,90 3,50 3,92

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

150

6400 2400 21,99 6,61 4,20 4,52

7200 3200 24,69 7,53 5,10 5,19

8000 0 47,53 8,19 6,48 5,97

9600 1600 53,25 9,96 9,25 6,91

11200 3200 59,60 11,45 12,18 7,71

12800 4800 66,90 12,48 14,79 9,23

14400 6400 75,67 14,36 18,97 9,43

16000 0 155,14 16,84 24,88 11,30

19300 3200 174,05 20,12 35,72 14,21

22400 6400 197,41 23,53 51,89 15,18

25600 9600 234,25 26,64 76,05 16,55

28800 12800 261,50 29,90 113,93 9,23

32000 0 114,03 23,75

38400 6400 216,26 28,89

44800 12800 303,47 35,67

51200 19200 405,83 32,61

57600 25600 518,32 32,39

64000 0 669,37 39,99

76800 12800 1001,91 107,16

89600 25600 1379,49 160,05

102400 38400 1860,19 44,43

115200 51200 2262,47 33,65

n alias JModelica 1.4

 T S

10 0 3,64 0,18

12 2 2,99 0,21

14 4 2,87 0,14

16 6 2,72 0,12

18 8 2,74 0,14

20 0 2,85 0,14

24 4 2,85 0,15

28 8 2,84 0,13

32 12 2,86 0,15

36 16 2,90 0,15

40 0 3,04 0,15

48 8 3,00 0,18

56 16 3,04 0,16

64 24 3,10 0,18

72 32 3,05 0,18

80 0 3,50 0,25

96 16 3,55 0,26

112 32 3,58 0,23

128 48 3,57 0,26

144 64 3,63 0,23

160 0 4,87 0,48

192 32 4,91 0,47

224 64 5,02 0,49

256 96 5,13 0,47

288 128 5,22 0,51

320 0 8,29 1,38

384 64 8,70 1,38

448 128 8,75 1,40

512 192 9,30 1,43

576 256 9,06 1,42

640 0 19,37 5,37

768 128 19,22 5,27

896 256 19,40 5,21

1024 384 19,89 5,28

1152 512 20,50 5,31

1280 0 60,08 21,35

1536 256 59,92 21,11

1792 512 60,04 21,20

2048 768 71,17 21,93

2304 1024 68,60 22,68

d. AliasClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 0,99 0,08 0,04 0,10 3,63 0,29

20 1,00 0,10 0,41 0,15 3,36 0,18

40 0,94 0,14 0,45 0,11 4,39 0,32

80 1,09 0,21 0,44 0,19 6,73 0,61

160 1,39 0,49 0,48 0,31 15,26 2,00

320 2,11 0,66 0,54 0,55 38,80 6,06

640 5,10 1,29 0,69 0,99 107,41 25,03

1280 18,53 2,59 0,96 1,95

2560 128,74 5,06 2,00 3,71

5120 820,39 10,45 5,42 7,41

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

151

e. LinSysClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 1,05 0,15 0,34 0,08 5,64 0,18

20 1,45 0,20 0,39 0,06 4,70 0,16

40 5,33 0,41 0,42 0,09 15,31 0,25

80 66,56 2,06 0,68 0,09 131,26 0,49

160 1363,40 10,92 2,24 0,12

320 13,64 0,11

f. MixedLinSysClass

n OMC - 7745 Dymola 7.4

 T S T S

5 1,05 0,06 0,36 0,02

10 1,22 0,08 0,54 0,02

20 0,44 0,06

40 0,54 0,08

80 0,73 0,18

160 2,39 0,26

320 14,55 0,34

g. NonLinSysClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 1,03 0,11 0,45 0,02 8,76 1,24

20 1,43 0,25 0,38 0,06 4,70 0,14

40 5,37 1,02 0,47 0,09 21,50 0,67

80 69,56 6,38 0,76 0,11 181,44 0,42

160 1402,46 45,11 2,36 0,24

320 14,24 0,38

h. MixedNonLinSysClass

n Dymola 7.4

 T S

10 0,60 0,23

20 0,41 0,11

40 0,45 0,09

80 0,90 0,13

160 2,44 0,30

320 14,93 0,61

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

152

OMWeb – Virtual Web-based Remote Laboratory for Modelica in
Engineering Courses

Mohsen Torabzadeh-Tari, Zoheb Muhammed Hossain, Peter Fritzson, Thomas Richter1
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{mohto, x10muhho, petfr }@ida.liu.se

1Rechenzentrum, Stuttgart University, Germany
1richter@rus.uni-stuttgart.de

Abstract
In this paper we present a web-based teaching envi-
ronment, OMWeb, useful both in engineering courses
as well as for teaching programming languages. OM-
Web can be an alternative or complementary tool to the
traditional teaching method with lecturing and reading
textbooks.

Experience shows that using such interactive plat-
forms will lead to more engagement from the students.
With such a solution the student can focus more on the
important learning goals. The student needs only to
open a web browser and start writing programs in order
to use the tool. The OMWeb server contains all the
needed software. In each interaction, the server returns
results to the user. This solution allows each student to
work at his/her own speed, at any time, and remotely,
enhancing the individual learning.

OMWeb is part of the open source platform Open-
Modelica. It can be applied to several areas in natural
science, such as physics, chemistry, biology, biome-
chanics etc., where phenomena can be illustrated by
dynamic simulations.

Keywords: OMWeb, OpenModelica, Virtual, Web-
based

1 Introduction
In this paper we introduce a learning environment for
web-based modern object-oriented equation-based
modeling and simulation. This environment, called
OMWeb, is useful both in programming language
teaching and in engineering courses. The primary ap-
plication shown in this paper is teaching the Modelica
language [1]. However, the concept can also be adapted
to other languages. In this way the student has an inter-
active common platform for learning programming
languages as well as learning through virtual experi-
ments with physical phenomena.

This kind of interactive course allows experimenta-
tion and dynamic simulation as well as execution of
computer programs. As a part of the open source plat-
form OpenModelica, [2], this makes it possible to inte-
grate applied sciences in physics, human biology [3],
mathematics, and computer science.

2 OpenModelica Platform
In 2002 an initiative was taken by the PELAB group at
Linköping University to develop an open source plat-
form for the Modelica language, to be called OpenMo-
delica [2],[3] and [10]. The OpenModelica effort has
expanded, and is in recent years also supported by the
Open Source Modelica Consortium.

The OpenModelica environment, shown in Fig. 1,
consists of several interconnected subsystems. The de-
bugger currently supports debugging of an extended
algorithmic subset of Modelica, MetaModelica.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

OMShell

 Figure 1. Illustration of communication between different
parts of the OpenModelica platform.

The OpenModelica Notebook editor, OMNotebook
(see Section 5.3), provides an active electronic note-
book including an editor. The notebook is active in the
sense that models inside the book can be changed and
executed, it is not just a passive textbook or html page.
This is one of the first open source efforts that makes it
possible to create interactive books for educational pur-
poses in general, and more specifically for teaching and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

153

mailto:%7D@ida.liu.se�

learning programming. Traditional teaching methods
with lecturing and reading a textbook are often too pas-
sive and don’t engage the student as much.

3 OMWeb architecture
The OMWeb architecture is composed of three de-
coupled set of entities namely the Teacher and/or Stu-
dent Client (TC and SC), the E-learning Community
Server and the Computation Client, similar to the
NumLab architecture (Section 5.1).

The three layers have been developed in different
programming languages; the clients are developed in
Java, the E-learning Community Server (ECS) is devel-
oped in Ruby On Rails and for the Computation Client
(CC) C++ is used, see Fig 2.

Figure 2. OMWeb architecture

Communication among the modules is done following
the REpresentational State Transfer (REST) architec-
ture; which uses Hyper Text Transfer Protocol, HTTP
as the carrier of messages across the network. The
HTTP has four methods for accessing and updating the
resources - GET, POST, PUT and DELETE.

Moreover, JavaScript Object Notation (JSON) is
used to format the data for communication. One reson
behind the choice of JSON format is that it is easy for
the humans to read and write as well as for the ma-
chines to parse the data.

4 OMWEb – OpenModelica Virtual
Web-based Learning Platform

In this Section the different parts of OMWeb are ex-
plained in detail.

OMWeb provides a programming environment
within a web browser. This facilitates for the student to
learn and participate in courses, independent of time
and place. The availability in a standard web browser

makes it easier to get started with than if you have to
install special software packages.

The Student Client and the Computation Client are
both active entities in the system, whereas ECS is the
passive entity. In detail, the ECS never initiates a
communication, rather it only responds to occurring
events.

On the other hand the end clients are the ones who
are always polling for Solution or Result messages
from the Solution and Result Queue of the ECS as soon
as they finish POST-ing a message to the ECS. The
communication diagram in Fig 6 reflects a better illu-
stration of the message flow in the System.

4.1 Frontend: Teacher Client, TC

The TC [13] is the web frontend of the system and is
specially developed for a teacher to post his/hers exer-
cises or assignments intended for the students to solve
and get evaluated.

Fig. 3 illustrates the Graphical User Interface of this
client. The tab "Exercise Generator " has three fields
for entry; the name of the exercise, the description of
the exercise and the text area takes in the program code.

The teacher then clicks on the "Send Exercise" but-
ton; this action will first generate the JSON script of the
corresponding exercise by filling in the "value" tag of
the respective "identifier". Later, it sends the JSON
string using the HTTP POST which posts the exercise
to the ECS.

Figure 3. Teacher Client

4.2 Frontend: Student Client, SC

The SC [14] is a web frontend designed for the students
who are to solve the exercises posted by the TC, see
Fig 4.

A student first opens the web applet and clicks on
the drop down box of the client user interface that is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

154

labeled "Fetch Exercise" to retrieve the list of exercises
posted by their teacher. The student then selects one of
the exercises from the list and the exercise is shown in
the client interface.

The exercise may contain one or more sections la-
beled as Editable and Non-editable where the students
can edit the code of the Editable section(s) only.

Later, when the student is done with solving the
program, the button labeled "Execute" is pressed, this
will first generate the JSON string for the Solution of
the exercise and then will send over the network to the
ECS using the HTTP POST method.

As soon as sending of the solution is done the SC
initiates to poll for the Result of the Solution from the
ECS.

The client continues to poll until it receives the Re-
sult JSON string from the ECS. On receiving the Result
the JSON string is parsed and the result data is shown
on the output section of the client interface.

Figure 4. Student Client

4.3 Middleware, E-learning Community Serv-
er, ECS

The ECS module works as the middleware between the
frontend client and the backend client (server) in order
to forward the requests back and forth.

The ECS is composed of three internal modules
which are used to manage the messages of the clients:
Community, Membership and Resources.

Figure 5. ECS Community

In order for the clients at both ends to communicate
with each other they are required to be first registered
to the ECS with a unique Membership ID where the
membership is granted by the administrator of the ECS.

Next, the Members are assigned to a common
Community (Fig. 5), this is required to route the mes-
sages of the same community members back and forth.

 For example let us assume that there are four fron-
tend SCs and two backend Computation Clients with
membership IDs StC_Pelab_01, StC_Rts_01,
StC_Adit_01, StC_Eslab_01 and CtC_IDA_01,
CtC_IDA02 respectively. Also assume that there are
two communities in the ECS Comm_IDA_01 and
Comm_IDA_02.

Let us also assume that client StC_Pelab_01,
StC_Rts_01 and CtC_IDA_01 are members of the
Comm_IDA_01 community and that clients
StC_Adit_01, StC_Eslab_01 and CtC_IDA_02 are
members of the Comm_IDA_02 community.

Now, the messages sent by the clients
StC_Pelab_01 and StC_Rts_01 can be processed by the
backend client CtC_IDA_01 only and messages sent by
the StC_Adit_01, StC_Eslab_01 would be processed by
the CtC_IDA_02 only.

This kind of routing guarantees that the messages
are received by the intended entities only and hence
eliminates any misrouting possibilities.

The ECS also maintains a database to store the ex-
ercises posted by the teachers using an authentic TC.
The exercises are given an unique ID in order to be
identified by the font/backend clients while generating
the Solutions and the Results, further about this is dis-
cussed in later segment.

To manage the messages from and to the clients two
separate queues are maintained. These queues are event
driven queues supplied by the Ruby On Rails architec-
ture. An event handler takes care of the specific events
generated by the incoming messages at the ECS. When

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

155

the ECS receives an incoming message from the Stu-
dent Client containing the HTTP method POST, the
event handler routes the message to the Solution Queue
and when the ECS receives an incoming message from
the Computation Client with the HTTP method POST,
it is put to the Result Queue.

Similarly, when the incoming message from the
Student Client and Computation Client is a HTTP
GET, the messages are retrieved from the Result and
Solution Queue respectively and forwarded to the
clients who initiated the GET request.

4.4 Backend: Computation Client, CC

The CC is responsible for executing the Solutions sent
by the SC, evaluate the correctness of the program code
and send the Result back to the ECS.

As we have mentioned in the previous section, the
clients who are member of the same community can
communicate between themselves; so, the computation
client CtC01 could only fetch, execute and evaluate the
result that was sent by the Student Client StC01.

Figure 6. Sequence of message flow

The CC is developed in C++ on a Linux platform. It
adopts Sandbox technique to limit the program instance
accesses, e.g. only the Linux commands available in-
side the Sandbox. When the CC fetches a Solution
message from the Solution Queue of the ECS it carries
out several sequential tasks in order to evaluate the
program code. First, it parses the solution JSON string
and extracts the respective exercise of the solution from
the ECS. Then the core solution content is extracted

from the JSON string and is merged to the "editable"
section of the exercise; which makes it a complete pro-
gram. A file with the program's name is then created
and the generated program code is copied and pasted
into it.

Next, the type of compiler that should be used to
compile the program is extracted from the JSON string
with the respective flags and the program file is com-
piled, in our case it is the Modelica compiler. If there is
any error during the compilation, a result JSON string
is generated with the compiler error message and is
posted to the ECS Result Queue.

Otherwise, on successful compilation a Makefile is
produced which is then executed. The execution of the
Makefile creates an executable, it is then executed and
on successful execution, a .plt file is created.

The content of the .plt file is then pasted in the re-
sult JSON string and posted back to the ECS Result
Queue, eventually which is polled by the specific Stu-
dent Client.

5 Related Work
A brief survey is presented in this section covering
some existing web-based and interactive learning plat-
forms.

5.1 NumLab Architecture

At University of Stuttgart a web-based virtual envi-
ronment NumLab [7] is available for computerized ma-
thematical calculations including related subjects. The
idea is to provide a web-based teaching environment
where the students can focus on the numerical and ma-
thematical topics without having to install any software
packages.

NumLab is built according to the client-server ar-
chitecture with a Java-applet in the front-end, a mid-
dleware layer E-learning Community Server, and a
back-end client containing all the involved software
packages, [9].

For communication between the ECS server and the
other parts of the system REST, Representational State
Transfer, is used which simplifies the communication
in web-based distributed systems. The data representa-
tion and exchange format JSON, JavaScript Object No-
tation is used, [8].

5.2 Intelligent Tutoring System
There are many web-based intelligent tutoring systems
that are worth to mention. For example the ELM-ART
used for teaching the Lisp language [12] or a plugable
web-based tutoring system in [11].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

156

5.3 DrModelica

The OMNotebook subsystem in OpenModelica is cur-
rently being used for course material (DrModelica) in
teaching the Modelica language and equation-based
object-oriented modeling and simulation, (see Fig 7).

 It can easily be adapted for use with electronic
books teaching other programming languages. OMNo-
tebook can also easily be used in other areas such as
physics, biology chemistry, biomechanics etc., where
phenomena can be illustrated by dynamic simulations
within the book.

Figure 7. Bouncing ball example with movement anima-

tion in OMNotebook

5.4 OMScheme

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than
Modelica, e.g the Scheme programming language, [6].
An implementation of the factorial function using OM-
Scheme is shown in Fig 8.

Figure 8. Factorial function illustrated in OM-

Scheme

5.5 DrControl
DrControl, Fig 9, is a recently developed active elec-
tronic book course material based on OMNotebook for
teaching control theory and modeling with Modelica.

It contains explanations about basic concepts of
control theory along with Modelica exercises. Observer
models, Kalman filters, and linearization of non-linear
problems are some of the topics in the course used in
control of a pendulum, a DC motor, and a tank system
model among others.

Figure 9. DrControl for teaching control theory concepts.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

157

6 Future Work
The OMWeb platform presented in this paper is pure-
text based. Integrating the graphical connection editor,
OMEdit into OMWeb would be one of the desired next
mile-stone. Also a 3D visualization and syntax hig-
hlighting should be supported for making the environ-
ment more user friendly.

Figure 10. Bouncing Ball illustrated in OMWeb with

syntax highlighting aid and plotting.

7 Conclusions
In this work we extended the basic idea of an active
web-based teaching environment for educational pur-
poses to handle multiple programming languages.

An early prototype is being developed for handling
the Scheme and Modelica languages. OMWeb takes the
virtual remote learning environment idea further by
introducing OpenModelica platform within NumLab
and widens the applicability to a wide range of engi-
neering courses by introducing Modelica language in
those courses.

The benefits and opportunities offered by a web-
based solution is natural to access a vast amount of
knowledge and information but also the ability for the
student to work at his or hers own speed which en-
hances the learning process. Furthermore, the student
activity is encouraged more by the interactivity and
ease-of-use within an easy-to-use web-based interface

8 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Modelica Association. The Modelica Language

Specification Version 3.1, May 2009.
www.modelica.org

[2] Peter Fritzson et al OpenModelica Users Guide
and OpenModelica System Documentation,
www.ida.liu.se/projects/OpenModelica, 2009.

[3] Anders Sandholm, Peter Fritzson, Varun Arora,
Scott Delp, Göran Petersson, and Jessica Rose.
The Gait E-Book - Development of Effective Par-
ticipatory Learning using Simulation and Active
Electronic Books. In Proceedings of the 11th Me-
diterranean Conference on Medical and Biologi-
cal Engineering and Computing (Medicon'2007),
Ljubljana, Slovenia, June 26 - 30, 2007.

[4] Bernhard Bachmann, Peter Aronsson, and Peter
Fritzson. “Robust Initialization of Differential
Algebraic Equations” In Proc. of (Modelica ’06),
Vienna, Austria, 2006.

[5] Mohsen Torabzadeh-Tari, Peter Fritzson, Adrian
Pop, and Martin Sjölund. Generalization of an
Active Electronic Notebook for Learning Mul-
tiple Programming Languages, IEEE EDUCON
Education Engineering 2010 – The Future of
Global Learning Engineering Education, Madrid,
Spain, 2010

[6] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006

[7] Bankolé Adjibadji, Stephan Rudolf , and Thomas
Richter. Numerische Mathematik im Browser:
Das Virtuelle Programmierlabor ViP, Stuttgart
University, Rechenzentrum, Feb 2010
http://isblab.rus.uni-
stuttgart.de:7070/numlab/exercises

[8] Douglas Crockford. Introducing JSON, URL:
http://json.org. Retrieved March 25, 2010

[9] Heiko Bernloehr. E-learning Community Server,
URL: http://freeit.de/ecsa/index.html, Retrieved
March 25, 2010

[10] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

158

http://isblab.rus.uni-stuttgart.de:7070/numlab/exercises�
http://isblab.rus.uni-stuttgart.de:7070/numlab/exercises�
http://json.org/�
http://freeit.de/ecsa/index.html�

David Broman. The OpenModelica Modeling,
Simulation, and Software Development Environ-
ment. In Simulation News Europe, 44/45, De-
cember 2005. See also:
http://www.openmodelica.org.

[11] Ang Yang, Kinshuk, Ashok Patel, A Plug-able
Web-based Intelligent Tutoring System, Confe-
rence on Information Systems ECIS 2002,
Gdansk, Poland

[12] Gerhard Weber, Peter Brusilovsky, ELM-ART:
An Adaptive Versatile System for Web-based In-
struction, International Journal of Artificial Intel-
ligence in Education, 2001, Vol 12, pp 351-384

[13] http://omweb.ida.liu.se/TeacherClient

[14] http://omweb.ida.liu.se/StudentClient

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

159

http://www.openmodelica.org/�

MSL Electrical Spice3 - Status and Further Development

Kristin Majetta Sandra Böhme Christoph Clauß Peter Schneider
Fraunhofer Institute for Integrated Circuits IIS, Design Automation Division EAS

Zeunerstr. 38, 01069 Dresden
{kristin.majetta, sandra.boehme, christoph.clauss, peter.schneider}@eas.iss.fraunhofer.de

Abstract

The Modelica Standard Library was improved
by adding a package of a subset of SPICE3
models which are transformed to the Modelica
language. This Spice3 library contains basic
models, sources, and four semiconductor de-
vices (diode, BJT, MOSFET level 1, resistor).
Extensive tests showed the correctness of model
characteristics at simple circuits. Further models
already prepared will be added to the Spice3
Modelica Library later on.

Keywords: SPICE, Modelica, electronic circuit
simulation, semiconductor models, netlist trans-
lator

1 Introduction

Beyond the common electric and electronic
models available in the Mode-
lica.Electrical.Analog library is has been an
early aim to have Spice models for the simula-
tion of advanced electronic circuits. Beyond the
MSL two SPICE libraries already had been de-
veloped, the SPICELib [1] and the BondLib [2].
The SPICELib, which covers different complex
MOSFET models, is a standalone library with
its own connectors. The BondLib bases on bond
graphs. It offers different levels of models re-
lated to HSPICE. At the 7th Modelica Confer-
ence the development of another SPICE library
was reported as well as test issues and examples
[3]. In contrast to the existing SPICE libraries
the models of the new SPICE library were di-
rectly extracted from the open SPICE3 source
code. These models which were improved
within the ITEA research projects EURO-
SYSLIB and MODELISAR, are now included
into the Modelica.Electrical.Spice3 library
which is available in the Modelica Standard
Library version 3.2, released in October 2010.

In this paper the actual Spice3 library is pre-
sented as well as issues of testing. Furthermore,
the prepared upgrading is described which con-
cerns further models as well as a netlist transla-
tor. After all planning on a commercial ex-
tended Spice3 library is discussed.

2 The Spice3 Library of MSL
3.2

SPICE3, a simulation tool for electronic cir-
cuits, was developed in the University of Cali-
fornia Berkeley in the nineties of the 20th cen-
tury continuing the successful former version
SPICE, and SPICE2 [4], [5]. It is commonly
known and widely used. For a very large num-
ber of electronic circuits so called SPICE3 net-
lists are available, that describe the circuits for
the simulation with SPICE3. The netlists are
built of models of the predefined model pool of
SPICE3 exclusively that contains the following
models:

• Basic models (resistor, inductor, capaci-
tor, conductor, coupled inductor, linear
controlled sources)

• Semiconductor device models (different
types of transistors, diode, resistor, ca-
pacitor)

• Lines (lossy and lossless transmission
lines)

• Sources (different types of both voltage
and current sources)

Besides SPICE3, derived simulators are known
many of them are commercial, e.g. PSPICE [6],
HSPICE [7]. The source code of these derivates
is, in contrast to SPICE3, not open.

The idea to have the SPICE3 models avail-
able in Modelica exists already since the begin-
ning of the Modelica development. Between
2007 and 2010 a Spice3 library for Modelica
was developed by the Fraunhofer Institute for
Integrated Circuits IIS/EAS.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

160

In the following “SPICE3” denominates
Berkeley SPICE3 simulator related topics, and
“Spice3” the Modelica Spice3 library.

2.1 Offered models

The models of the Modelica.Electrical.Spice3
library are thematically arranged according to
the above mentioned grouping of the SPICE3
models (Picture 1). The SPICE3 line models are
not yet available in Modelica. Furthermore,
MSL typical packages are added (User’s Guide,
Interfaces et alt.). The names of the models are
composed in the way that the capital coding the
model in SPICE3 (e.g. “D” for diode) is fol-
lowed by an underscore and the common name
of the device model, e.g. the name of the diode
is D_Diode in the Spice3 library. This way each
user independently of his knowledge of SPICE3
can indentify the model’s behavior easily.

Picture 1 Spice3 library of MSL3.2

The package Basic contains models of the re-
sistor, capacitor, inductor, controlled sources
and, additionally to SPICE3, the ground model.
They are very similar to basic elements of the
Analog library and can be used in the same
way. SPICE3 netlists refer to the ground node
by using the node number “0”, whereas in
Modelica the ground model has to be con-
nected.

The package Semiconductors contains the
Mosfet level 1 (MOS1) model with the two
types PMOS and NMOS. It has a set of 41 pa-
rameters and can be used for a more detailed
simulation than the Mosfet transistor of the
Analog package. Furthermore the BJT model,
which is a bipolar transistor, was transformed
into Modelica, NPN and PNP types are avail-
able. A diode model and a semiconductor resis-
tor are also part of the package. The semicon-
ductor resistor can either be parameterized with
the usual resistance value or by its geometrical
dimension (length, width) as it is in SPICE3.

The package Sources contains the SPICE3
voltage and current sources (constant, sinusoi-
dal, exponential, pulse, piece wise linear and
single frequency FM).

The package Additionals was introduced to
contain important models that are not part of
SPICE3 but of other SPICE derivates. At the
moment the polynomial sources of SPICE2 are
part of the package. They are implemented for
polynomials up to the fifth order.

The package Interfaces contains only a spe-
cial partial model, a twoport, that is used in the
controlled sources models. The definition of the
pins of the other models is used from Electri-
cal.Analog.Interfaces. Therefore, the Spice3
models are compatible to the Electrical.Analog
library and to the MSL in general.

Because the semiconductor models are very
complex, many functions and data records are
needed to describe the semiconductor behavior.
These functions and records are collected in the
Internal package. For the user of the Spice3
library it is not necessary to work with the In-
ternal package. It is for developers only.

2.2 Principles of development

Since the SPICE3 source code is open, it is pos-
sible to extract the models directly. Years ago
this was done [8]. The models were stored in a
C++ library in an object oriented programming
manner. This C++ library contains the exact
SPICE3 models; it is tested very intensively and
therefore assumed to be correct. Consequently,
it was used as the base for transforming SPICE3
models into Modelica models.

In SPICE3 after linearization is calculated,
in each iteration step actual representative val-
ues (R, L, G and C) of the device are written to
the matrix of a linear system of equations, that
basically connects the current vector with the
voltage vector. Since in Modelica the terminal
behavior of the model has to be described as
equations this SPICE3 like linear system of
equations is not necessary to be filled in by cer-
tain model functions. Instead, in Modelica a so
called toplevel model is used. In Picture 2 the
toplevel model of the bipolar transistor model is
shown as an example, which represents the sub-
stitute circuit of the device modeled.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

161

Picture 2 Toplevel model of bipolar transistor

The currents at the different pins (e.g. bipolar
transistor: B, C, E) as well as internal currents
are calculated using functions that are called in
the algorithm part of the toplevel model. These
functions are the main part of the model, they
came from a nearly one-to-one transformation
of the respectively C++ code. Also the data (pa-
rameters, variables) structure had to be rewrit-
ten into Modelica and is stored in records. The
data is stored in a hierarchy in C++, because, as
usual in object oriented languages, some models
use the same set of parameters besides their ex-
tra own parameters. E.g. the MOS1 and MOS2
models both use nearly the same parameters.
Therefore they were stored in a superior record
MOS. Only the individual parameters of MOS1
and MOS2 are stored in separate records. The
data structure is very complex and the number
both of parameters and variables is high.

In SPICE3 two kinds of parameters are used,
on the one hand the so called device parameters
that are adjustable for each single device (e.g.
channel length of Mos1 transistor) and on the
other hand the technological parameters that are
global for a group of devices (e.g. oxide thick-
ness of Mos1 transistors). The technology pa-
rameters are set via the so called modelcard in
SPICE3. That different parameter handling was
transformed to Modelica by introducing model-
card records which collect the technological
parameters [9]. Modelcard records are available
in the Semiconductors package.

A special issue is the usage of SI units, as it
is usual for the unit check in the MSL. On the
one hand there are non SI units, that should not
be converted to SI units in order not to use other
values in the Spice3 models as it is usual in
SPICE3. On the other hand, the C++-sources do
not have any units at all, so they have to be
added in the future.

2.3 Status of testing

Because of the high number of parameters as
well as functions and especially the nonlinear
behaviour, testing the Spice3 models is very
complex.
To verify the simulation results of the Spice3
models SPICE3 was used as reference simulator
and Dymola for the simulation of the Modelica
models. Recently tests with SimulationX
started. Many tests of device characteristics
were developed by varying at least one parame-
ter using a test circuit which is very simple. The
device to be tested is connected to an exponen-
tial voltage source that provides the operating
voltage and a sinusoidal voltage source as input.
Picture 3 shows the two test circuits with the
Mos1 model as well as the bipolar model.

Picture 3 Test circuits for Mos1 and Bipolar models

The SPICE3 reference results are stored in a
text file and included in the test circuit simula-
tion via the Modelica function CombiTime-
Table for automatic comparison. This way it is
possible to compare the results directly. Also
the error between the Modelica calculation and
the SPICE reference results is calculated during
simulation. The comparisons are done for all
currents of the pins of the models (e.g. for Mos1
the currents from the four pins Drain, Gate,
Source, Bulk are compared). Since the Spice3
semiconductor models have very many parame-
ters, a lot of tests of this kind were build (about
1800). The parameters vary from reasonable
and common values to completely absurd val-
ues. The analyses of the results showed, that in
most cases the simulations between Modelica
and SPICE3 are in accordance for the reason-
able values. In the case of absurd parameter val-
ues sometimes the results differ. However, these
results are often of no practical relevance (e.g.
currents of Mega ampere) but show that also in
extreme cases the models work still similar. The
differences possibly come from the different
implementations of the simulation algorithms
SPICE3 and Dymola.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

162

These parameter tests are stored as regres-
sion tests. Their simulation instructions are
stored in a separate file that runs the simulations
of all the parameter tests of the according semi-
conductor element. The comparison results be-
tween of the currents of the Modelica Spice3
model and the imported SPICE3 currents are
coded by simply “true” if correct and otherwise
“false” for each pin of each test circuit, and
printed into a text file for a visual check. The
correctness is checked at each internal simula-
tion step by an absolute and relative error crite-
rion the parameters of which are individually
adjusted to each test circuit. After changing
something at the model, the whole regression
test can be repeated for validation easily to find
out possibly good or bad influence of the model
changes.

Beside these relatively simple tests of
model characteristics, more complex circuits
were tested. However, the number of transistors
in these circuits was still small. These tests were
not yet done intensively, but the circuits tested
showed correct results compared to SPICE3.
Tests of big (transistor) circuits are still neces-
sary. Within the test process it was recognized
that numerical issues may arise at larger cir-
cuits. Also the performance of the models has to
be improved in comparison to other electrical
simulators, e.g. SPICE3 or Saber.

2.4 Examples

In the package Examples of the Spice3 li-
brary (Picture 4) eight example circuits are pre-
pared to help the user to get an idea of the li-
brary and how to use the models.

Picture 4 Package Examples of the Spice3 library

The example Nand is built in CMOS technol-
ogy with two NMos1 and PMOS1 models
(Picture 5).

Picture 5 Nand circuit of package Examples

The results are plausible (NAND function is
realized) and, compared to SPICE3, correct.
They are shown in Picture 6. The two upper
signals are the input voltages and the lower sig-
nal is the output voltage of the NAND circuit.

Picture 6 Simulation results of the NAND circuit

To have the technology parameters available the
record modelcard is used. In the NAND exam-
ple above, the modelcards of each singe transis-
tor are filled separately. However two other
possibilities are imaginable to have the model-
cards available for all transistors at the same
time. The first way is to make the modelcard
available as instance of the circuit and give it, as
a parameter, to all occurring transistors in the
circuit. The second way is to define the model-
card and extend it to each transistor [3].

2.5 Open issues of the Spice3 library

The described Spice3 library was included into
the MSL3.2 which was released in October
2010. The library contains a selection of the
SPICE3 models. The test of the library, espe-
cially the semiconductor models, in the first
instance was done via characteristic curves
tests. These tests showed, that the models are
working correctly. However, the test of ex-
tended electrical circuits with many transistor

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

163

models was not done yet, so information about
the functionality of such real electric circuits are
not yet available.

In SPICE3 it is possible to set global pa-
rameters to reset control options for specific
simulation purpose. E.g. if GMIN is used, very
small resistors are added to the circuits at cer-
tain nodes to avoid numerical difficulties. Fur-
ther global parameters are:

• RELTOL (relative error tolerance)
• ABSTOL (absolute current error

tolerance)
• VNTOL (absolute voltage error

tolerance)
• TRTOL (transient error tolerance)
• TNOM (resetting nominal tempera-

ture)

All global parameters are described in [5]. Fur-
thermore, SPICE3 knows different types of
analysis like DC analysis, AC small-signal
analysis, transient analysis, pole-zero analysis,
small-signal distortion analysis, noise analysis
and analysis at different temperatures. Since the
SPICE3 models are closely related to the simu-
lation algorithm, the models and the types of
analysis are hardly clearly separable, and mod-
els are related to types of analyses. In Modelica
the models and the simulation algorithm (part of
the simulation tool) are separated from each
other, information about the type of analysis is
not part of the model but of the simulation tool.
The issue is to add further types of analysis (at
least AC) to Modelica and allow the models to
react on the type of analysis.

In SPICE3 there are possibilities to set ini-
tial conditions to start the simulation from dif-
ferent states values (e.g. initial charge of a ca-
pacitance). In the actual Spice3 library for Mod-
elica initial conditions are only available for the
inductor and the capacitance model of the basic
package. The initial parameter has to be added
to the other models in the Spice3 library.

Another important point is the adding of as-
sertions to check parameter values to be rea-
sonable (e.g. temperature has to be greater than
0K, or the channel length must be positive). In
SPICE3 the parameters are not checked very
intensively.

A further useful feature that is not part of
SPICE3 is the conditional heatport that is avail-
able in the MSL3.2. It offers the possibility of
electric-thermal simulation. The heatport is a

partial model that can be included by any elec-
trical model by inheritance. If it is included, the
temperature is available within the model and
the loss power has to be calculated. The heat-
port can be switched off. In this case the loss
power flows into an internal ground and the
temperature is set to the constant temperature
value of the electrical model. If the conditional
heatport is used, a connection between the
thermal and the electrical network is available
and the thermal loss power flows into the ther-
mal network. The conditional heatport should
be added in future which will change the tem-
perature handling as modelled using fixed tem-
peratures in SPICE3 if the heatport is switched
on.

3 Further development of the
MSL Spice3 package

Besides the open issues explained in section
2.5 the MSL Spice3 library will be improved by
issues coming from user applications. Espe-
cially optimization of numerical issues is ex-
pected to become necessary. In this section fur-
ther SPICE3 models will be described that are
prepared to be added to the MSL Spice3 library
as well as a netlist translator.

3.1 Planned models

To enlarge the available Spice3 model pool the
Mosfet level 2 model (Mos2), the Jfet model
and the coupling factor model for inductors will
be added.

Mos2 model
The Mos2 model is similar to the Mos1 model.
Since the C++ source code is written in an ob-
ject oriented manner, many of the functions and
parameters of the upper Mos model were used.
The Mos2 model is suitable for a smaller chan-
nel length. Actual tests of the model show, that
it works correctly in principal. However a limit-
ing precondition is, that the capacitance pa-
rameters must be set to a nonzero value to avoid
numerical difficulties. The reason is, that the
internal capacitance value (totalC) consists of

two parts, the constant parameter value
(parameterC) given by the user and an internal so

called Meyer capacitance value (meyerC):

meyerparametertotal CCC +=

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

164

During simulation the Meyer capacitance
can become zero, so the total capacitance value
is also zero if the constant parameter value for
the capacitance is not set. Nevertheless charac-
teristic curve tests show that the Mos2 model is
working correctly, if parameterC is set to a non-

zero value. The capacity handling is an actual
topic of research.

JFet model
The Junction Field Effect Transistor (Jfet, P and
N Type) model is also prepared to be added to
the Spice3 library. It uses the functions and pa-
rameters from the upper Fet class that is also
used from the two Mosfet models of level 1 and
2. Its test is also in the first beginning compar-
ing the characteristics using both SPICE3 and
Spice3. Picture 7 shows the similar test circuit
used for the characteristic curve tests of the JFet
model.

Picture 7 Characteristic curve test circuit for JFET model

As an example the influence of the trans-
conductance parameter BETA is analyzed.
BETA is a technology parameter that is speci-
fied in the modelcard, as it is usual in SPICE3.
An impression of the JFet modelcard gives
Picture 8. It can be seen that BETA is given with
1e-9 and the other parameters have their default
values.

Picture 8 Jfet Modelcard

The simulation result of this circuit and the re-
spective SPICE3 result are in accordance. As an
example Picture 9 shows some simulation re-
sults.

Picture 9 Simulation results of JFet test circuit

The upper picture shows the Modelica and the
SPICE3 results of the gate current. These curves
coincide in principle. In the lower picture the
differences are shown which are in the range of
mA while the maximum gate current is about
0.27A. The maximum error between the two
gate currents is 0.4%. Reasons for that are the
different simulation algorithms of SPICE3 and
Dymola as well as the interpolation due to dif-
ferent step sizes.

Inductive coupling factor

In SPICE3 it is possible to model an inductive
coupling between inductances via the inductive
coupling factor K, which is a separate element
in the SPICE3 netlist with its own element line
(key letter K). It refers to two conductors which
have to be defined in the netlist. To model the
coupling factor in a similar way in Modelica it
is suggested to introduce a new pin, the Induc-
tiveCouplePin, which has three variables, the
inductance, the derivation of the current and, for
adding the induced voltages of several cou-
plings as a flow variable, the voltage. This pin
is added to the existing inductance and to the
also new introduced element
K_CoupledInductors. Within this model, the
mutual inductance M is calculated for two in-

ductances via 21LLKM = and with that the

induced voltages 21
~ iMv ⋅= and 12

~ iMv ⋅=
that are needed to complete both the voltages

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

165

2111 iMiLv ⋅+⋅= and 1222 iMiLv ⋅+⋅= of
the first and second inductance. This approach
is still under discussion. Picture 10 gives an im-
pression from a circuit schematic with coupled
inductors.

Picture 10 Circuit with coupled inductors

Semiconductor capacitance

The prepared semiconductor capacitance
C_Capacitor is modeled like the other semi-
conductor devices. For technological parame-
ters the ModelcardCapacitor is available which
contains junction capacitances, the default
width, and a narrowing factor.

Concluding the presentation of models to be
added Picture 11 shows the icons of the future
extended Spice3 subpackages:

Picture 11 Extended Spice3 library

3.2 Netlist translator

An important improvement will be the netlist
translator [10]. It allows SPICE3 netlists to be
translated to Modelica models which refer to
the Models of the Modelica.Electrical.Spice3

library. The translator itself is a special Mode-
lica model which uses essentially string func-
tion capabilities of the MSL.

As an example a SPICE3 netlist which de-
scribes a rectifier (Picture 12). The netlists file
name may be rectifier.cir.

Rectifier

vsin 1 0 sin(0 5 50)

ri 1 2 0.1
d1 2 3 diode area=1.5
c 3 0 30u
rl 3 0 1k

.model diode d cjo=3pF

.tran 0.001 0.1

.control
run
set options no break
.endc

.end

Picture 12 SPICE3 netlist of a rectifier

The translator is a Modelica model called
SpiceToModelica.mo (Picture 13). It has to be
adapted by inserting the name of the SPICE3
netlist file. Further parameters are the path to
the Modelica Spice3 library, which will be used
as import variable in the Modelica resulting
model, the version which is prepared to enable
different SPICE netlist derivates in future, as
well as the maximum number of modelcard,
which is a temporary parameter of the actual
solution.

model SpiceToModelica
"Start translation here. Enter file name,
 switch to simulation mode and simulate.
 The resulting .mo file will be created
in the working directory."
//--- Enter file name here: ---
parameter String fileName = "rectifier.cir"
"Name of file which shall be translated";
//--- Parameter Section ---
parameter String SpicePackage =
"Modelica.Electrical.Spice3.*"
"Location of Spice Package in Modelica Li-
brary”;
parameter String version = "spice3"
"Which Spice Version shall be interpreted";
// not implemented yet
constant Integer iMax = 100
"Maximum number of modelcards in the file.";
//--- Main Program ---
protected
 Boolean ok "Return value";
algorithm
 ok := translate(fileName, SpicePackage,
 help.upper(version), iMax);
end SpiceToModelica;

Picture 13 Translator call

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

166

Then the model SpiceToModelica has to be
simulated. As a result the file rectifier.mo
(Picture 14) contains the following Modelica
model of the rectifier which can be simulated
using the Modelica.Electrical.Spice3 library:

model rectifier "Rectifier"

 import Modelica.Electrical.Spice3.*;

 parameter Semiconductors.ModelcardDIODE
 DIODE(CJO=3e-012);

 Sources.V_sin VSIN(VO=0, VA=5, FREQ=50);

 Basic.R_Resistor RI(R=0.1);

 Semiconductors.D_DIODE
 D1(modelcarddiode=DIODE,AREA=1.5);

 Basic.C_Capacitor C(C=3e-005);

 Basic.R_Resistor RL(R=1000);

 Basic.Ground g;

protected

 Modeica.Electrical.Analog.Interfaces.Pin
 n1;

 Modelica.Electrical.Analog.Interfaces.Pin
 n0;

 Modelica.Electrical.Analog.Interfaces.Pin
 n2;

 Modelica.Electrical.Analog.Interfaces.Pin
 n3;

equation

 connect(g.p,n0);

 connect(VSIN.p, n1);

 connect(VSIN.n, n0);

 connect(RI.p, n1);

 connect(RI.n, n2);

 connect(D1.p, n2);

 connect(D1.n, n3);

 connect(C.p, n3);

 connect(C.n, n0);

 connect(RL.p, n3);

 connect(RL.n, n0);

 annotation (uses(Modelica(version="3.2")),

experiment(StopTime=0.1, Interval=0.001));

end rectifier;

Picture 14 Translated Modelica model of the rectifier
 circuit

Once the Modelica “netlist model” is available
it can be used for simulation or adapted to fur-
ther modelling. Especially connectors can be
added as well as an icon to use the SPICE net-
list as building block in further models. This
way SPICE3 netlists can be integrated in Mode-
lica modelling easily.

The Modelica function translate reads the input
SPICE3 netlist as a string from the file given by
the parameter FileName. Then preprocessing
simplifies the netlist, e.g. by deleting comments.
The resulting intermediate netlist is parsed to
recognise several kinds of tokens which de-
scribe component names, node names, parame-
ters and others. Since no Backus Naur Form of
the SPICE3 input language exists, and the de-
scription in the manual is not as exact as ex-
pected, many tests were necessary do find out
details. The SPICE3 input language for netlists
is a context sensitive language therefore no pre-
pared parser (e.g. lex [11]) can be applied. The
used parser was constructed by taking into con-
sideration the basic element notification of the
input language as well as the specifics of many
elements. The Modelica string functions were
intensively used.

It is planned to add the translator which is
adapted to the offered SPICE3 model pool, to
Spice3 Modelica subpackage utilities.

4 Commercial fully extended
Spice3 Library

There are still SPICE3 device models remaining
which are not yet transformed to Modelica:

• MOSFET Level 3
• MOSFET Level 4 (BSIM 1)
• MOSFET Level 5 (BSIM 2)
• MOSFET Level 6 (modified Level 3)
• MESFET

These models can be transformed to Modelica
in the same way as described in section 2.2. It is
planned to have these models available in a
fully extended Spice3 library which will be no
more open source.

The transformation of further semiconductor
models which are offered e.g. by HSPICE de-
pends on the availability of the model source
code. Usually the source code of models is not
available in simulation tools but e.g. in publica-
tions, which need not describe identical to im-
plementation model code. If model equations
are available, and models are asked for further
models can be added to the fully extended li-
brary. A challenge not discussed yet is the mod-
eling of up-to-date MOSFET models like e.g.
the EKV [12] model.

 In accordance to the extended Spice3 library
the netlist translator has to be adapted. If net-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

167

lists from other SPICE simulators shall be trans-
lated which are not identical to SPICE3 netlists
a thoroughly check and reprogramming of the
translator will be necessary.

5 Conclusions

The MSL Electrical.Spice3 was presented
which has been available since October 2010. It
contains most of the basic SPICE3 models as
well as low level semiconductor device models.
Transistor characteristics are intensively tested
at small circuits with varying parameters.

The next development step presented will
add coupled inductors, further semiconductor
models as well as a netlist translator which
completes the library to support given SPICE3
netlists without any intermediate composition
step.

It is planned to create a commercial Spice3
electronics library which offers the full SPICE3
model pool as well as models of other SPICE
derivates, furthermore additional dedicated de-
vice models.

Additional to the models a method was de-
veloped of transformation existing model de-
scriptions, which are sequentially programmed
using e.g. the C or C++ language, to Modelica.
This knowledge could be applied to the trans-
formation of further open source libraries.

Open issues in the development of electron-
ics simulation using SPICE3 features in Mode-
lica are

• Testing extended complex circuits
• Finding a solution of further meth-

ods of analysis (AC, sensitivity)
• Improvements to performance as

well as numerical stability (e.g.
homotopy operator)

• Adding the conditional heat port
• Handling of some SPICE3 options

and similar issues like the initial
conditions and global parameter set-
tings

The Modelica Spice3 libraries allow more ad-
vanced electronic simulation than the Mode-
lica.Electrical.Analog library, nevertheless elec-
tronics simulation with Modelica is to be re-
garded as promising, but at its initial stage.

Acknowledgement

This research was founded by the European
ITEA2, research projects EUROSYSLIB and
MODELISAR.

References

[1] Urquia, A.; Martin, C.; Dormido, S: De-
sign of SPICELib: a Modelica Library
for modeling and analysis of electric
circuits. Mathematical and Computer
Modelling of Dynamical Systems,
11(1)2005, 43-60.

[2] Cellier, F. E.; Nebot, A.: The Modelica
bond graph library. Proc. 4th Int. Mode-
lica Conference, Hamburg-Harburg,
Germany, 1, 2005, 57-65.

[3] Majetta, K.; Böhme, S.; Clauß, C.;
Schneider, P.: SPICE3 Modelica Li-
brary. 7th International Modelica Con-
ference, Como, 2009.

[4] Nagel, L.W.: SPICE2: A computer pro-
gram to simulate semiconductor cir-
cuits. Electronic Research Laboratory
Rep. No. ERL-M520, University of
California, Berkeley, 1975.

[5] SPICE Version 3e Users Manual, 1991

[6] Robert Heinemann: PSPICE – Einfüh-
rung in die Elektronik-Simulation. Carl
Hanser Verlag München, 2009.
http://www.spicelab.de/index.htm

[7] http://www.synopsys.com/Tools/Verific
ation/AMSVerification/Circuit
Simulation/HSPICE/

[8] Leitner, T.: Entwicklung simulatoru-
nabhängiger Modelle für Halbleiter-
Bauelemente mit objektorientierten Me-
thoden. Chemnitz, Technische Universi-
tät, Diss., 1999.

[9] Majetta, K.: Entwicklung und prototypi-
sche Umsetzung eines Konzeptes für ei-
ne Modelica-Bibliothek von SPICE-
Halbleiterbauelementen und Erarbeitung
einer Teststrategie. Dresden, Berufsaka-
demie Sachsen, Dipl., 2008.

[10] Boneß, K.: Konzeption und prototypi-
sche Implementierung eines Übersetzers
von SPICE3-Netzlisten nach Modelica
basierend auf Modelica-inhärenter
String-Verarbeitung. Hochschule für

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

168

Technik und Wirtschaft, Dresden, Dipl.,
2011, under preparation.

[11] Lesk, M. E.; Schmidt, E.: LEX – A
Lexical Analyzer Generator. UNIX Pro-
grammer’s Manual. 7th Ed., Vol. 2A.
Murray Hill, New Jersey: Bell Tele-
phone Laboratories, Inc. 1978.

[12] Enz, C.; Krummenacher, F.; Vittoz,
E.A.: An analytical MOS transistor
model valid in all regions of operation
and dedicated to low-voltage and low-
current applications. Analog Integrated
Circuits and Signal Processing
8(1995)83-114.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

169

The New FundamentalWave Library for Modeling Rotating
Electrical Three Phase Machines

Christian Kral Anton Haumer
AIT Austrian Institute of Technology GmbH

Mobility Department, Electric Drive Technologies
Giefinggasse 2, 1210 Vienna, Austria

Abstract

This paper introduces the new FundemantalWave

library which is included in the Modelica Standard
Library 3.2. The presented Modelica package pro-
vides models and components of rotating electrical
three phase machines. The presented electrical
machine models are fully compatible with the original
Machines library of the electrical domain but rely on
the concept of the magnetic potential and magnetic
flux fundamental waves. In this article, the connector
concept, the components and electric machine models
of the FundemantalWave package will be explained.
Additionally, the didactic advantages and the flex-
ibility of the proposed package in with respect to
considering more enhanced and sophisticated effects
will be discussed.

Keywords: Rotating electrical three phase machines,
fundamental wave, time transients, Modelica Standard
Library MSL

1 Introduction

Electric machines models have been introduced to the
Modelica Standard Library (MSL) in 2004. Since then
the package has continuously been enhanced and ad-
ditional machine types and effects have been added
to the Modelica.Electrical.Machines library (short
Machines library). More sophisticated loss effects and
a consistent thermal concept have been implemented
for the library version included in the MSL 3.2. . The
more sophisticated loss models include

• friction losses,

• eddy current core losses,

• stray load losses and

• brush losses,

and have been published in [1]. These loss
models have been incorporated in the Machines

library such way that they can be applied
for both the original Machines and the new
Modelica.Magnetic.FundamentalWave library.
The main difference between the two machines
packages is that Machines uses current, voltage and
flux linkage space phasors (vectors) [2–5] whereas
FundamentalWave applies complex vectors for phys-
ical representation of the the magnetic flux and the
magnetic potential difference.
The motivation for introducing a new package for ro-
tating electrical three phase machine was the need
for modeling different effects based on physical mag-
netic quantities and models. An example for modeling
global demagnetization effects of the permanent mag-
nets in synchronous machines is presented in [6]. Ad-
ditonal applications will be discussed in section 5.
An original implementation of an electric machines
library based on magnetic potential differences and
magnetic flux vectors has been presented by Beuschel
[7]. In this paper, however, DC and three phase electri-
cal machine have been modeled based on a magnetic
connector which is designed slightly different from the
one introduced in the FundamentalWave library. In
the original implementation of Beuschel the objective
was the universal applicability of the proposed con-
cept to different types of machines. The main focus of
the FundamentalWave library was motivated by a clear
physical interpretation of the quantities in the connec-
tor such that the library can be applied to model com-
plex physical phenomena in electrical machines.
The FundamentalWave library models rely on the fol-
lowing assumptions:

• only symmetrical three phase induction machines
are modeled

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

170

• in the current implementation only linear mag-
netic circuit elements are taken into account

• deep bar effects and higher harmonic spatial elec-
tro magnetic wave effects are also not considered

2 Concept and Magnetic Connector

In the package Modelica.Magnetic.FluxTubes the
concept of magnetic ports has been introduced to
model one dimensional flux tubes. The generic mag-
netic port of FluxTubes,
connector MagneticPort

"Generic magnetic port"
SI.MagneticPotentialDifference V_m
"Magnetic potential at the port";

flow SI.MagneticFlux Phi
"Magnetic flux flowing into the port";

end MagneticPort;

consists of the magnetic potential difference as poten-
tial variable and the magnetic flux as flow variable.
In a radial field electrical machine usually only the
fundamental field components is modeled. As an ex-
ample, the two dimensional field distribution of a four
pole asynchronous induction machine is depicted in
Fig. 1. The magnetic field quantities in the air gap,
e.g., the magnetic potential difference, can be approx-
imated by a fundamental wave with respect to one pole
pair, as it is presented in Fig. 2. In this figure the angle
ϕ refers to one pole pair (ϕ = 2π) of the machine. The
angle ϕ is also referred to as electrical angle. The mag-
nitude and the phase shift of the fundamental wave in
Fig. 2 can be represented by a phasor in the complex
plane as depicted in Fig. 3. In the FundamentalWave

library the complex magnetic potential difference and
the complex magnetic flux are represented by a real
and imaginary part, respectively:
connector MagneticPort

"Complex magnetic port"
Modelica.SIunits.
ComplexMagneticPotentialDifference V_m
"Complex magnetic potential difference";

flow Modelica.SIunits.
ComplexMagneticFlux Phi
"Complex magnetic flux";

end MagneticPort;

The relationship between the real and imaginary parts
of the phasors and the spatial waveform of the connec-
tor components is given by:

Vm(ϕ) = Re[(Vm,re + jVm,im)e− jϕ]
= Vm,re cos(ϕ)+Vm,im sin(ϕ)

Φ(ϕ) = Φre cos(ϕ)+Φim sin(ϕ)

Figure 1: Magnetic field distribution of and asyn-
chronous induction machine at no load operation

Figure 2: Fundamental wave of the magnetic potential
difference

Figure 3: Complex phasor of the magnetic potential
difference

It is important to note that the magnetic potential dif-
ference of the connector definition refers to the total
magnetic potential difference excited by all poles of
the machine.
In both the Machines and the new FundamentalWave

library only spatial fundamental wave effects of spa-
cial magnetic quantities are considered. Higher har-
monic spatial wave effects due to

• the spatial reluctance distribution of the slots,

• the magneto motive force (magnetic potential dif-
ference) harmonics due to the current of the coils
embedded in slots, and,

• if present, the field distribution of the permanent
magnets,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

171

Figure 4: Structure of the FundamentalWave library

are not taken into account. The impact of higher har-
monic time harmonics in the currents and voltages is,
however, fully taken into account by the spatial funda-
mental wave representation.

3 Components

An overview of the packages and components in-
cluded in the FundamentalWave library is presented in
Fig. 4. In this chapter the generic components, the ma-
chine specific components and the background of the
thermal super connector will be presented. Chapter 4
will then go into detail with the topology specific ma-
chine models.

Figure 5: Equivalent consideration of eddy current
losses in a multi phase electrical and a fundamental
wave magnetic circuit

3.1 Generic FundamentalWave Components

The magnetic Ground model sets the real and imag-
inary part of the magnetic potential difference of the
connector to zero. The complex flux components are
not affected in this model.
In the Reluctance model a linear relationship between
the magnetic potential difference and the magnetic
flux components is considered. In order to take mag-
netic saliences of the reluctance into account a new
saliency type is defined, which consists of a d and q

components. The equations of the reluctance model
are:

(pi/2) * V_m.re = R_m.d * Phi.re;
(pi/2) * V_m.im = R_m.q * Phi.im;

In these equations the term pi/2 results of the aver-
aging of the sinusoidal waveform of the magnetic flux
density over one pole pair. In a fully symmetrical mag-
netic circuit the d and q component of the reluctance
parameter R_m are equal. Saliency effects with unequal
d and q component of the reluctance have to be applied
with care, since the saliency model always refers to the
specific reference frame of the connectors.
The EddyCurrent loss model is designed in the style
of the FluxTubes package:

(pi/2) * V_m.re = G * der(Phi.re);
(pi/2) * V_m.im = G * der(Phi.im);
lossPower = (pi/2)*(V_m.re*der(Phi.re)

+ V_m.im*der(Phi.im));

In an electric machine the eddy current loss model can
usually also be represented in an electrical equivalent
circuit as depicted in Fig. 5. The equivalent represen-
tation of the two circuits, however, relies on a symmet-
rical electro magnetic coupling as it is explained in the
following paragraph. For an m phase electrical circuit
the parameter relationship

G = (m/2)*Gc/N^2

applies.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

172

Figure 6: Orientation of a single phase coil and com-
plex magnetic flux phasor

The SinglePhaseElectroMagneticConverter con-
siders Ampere’s law and the induction law for a single
phase coil. Model parameters are the effective number
of turns and the orientation, both with respect to the
fundamental wave:

parameter Real effectiveTurns
"Effective number of turns";

parameter Modelica.SIunits.Angle orientation
"Orientation of the resulting
fundamental wave V_m phasor";

final parameter Complex N =
effectiveTurns * Modelica.ComplexMath.exp(
Complex(0,orientation))
"Complex number of turns";

Such a single phase coil is depicted in Fig. 6 and the
relevant model equations are:

V_m = (2.0/pi) * N * i;
-v = Modelica.ComplexMath.real(

Modelica.ComplexMath.conj(N)

*Complex(der(Phi.re),der(Phi.im)));

In the MultiPhaseElectroMagneticConverter, in-
corporating m phases, an array of m single phase electro
magnetic converters is instantiated and connected with
the multi phase electrical connectors. The magnetic
ports of the single phase electro magnetic converters
are series connected, since the same flux applies to
each coupling element.

3.2 Machine Specific Models

For modeling electric machines some more specific
models are provided. These models are single and
symmetrical multi phase windings including

• winding resistance including thermal connector,

• leakage inductance and field, respectively,

• zero inductance,

• core losses associated with the respective wind-
ing including thermal connector, and the

• electro magnetic converter.

Figure 7: Symmetrical multi phase winding

Figure 8: Stator and rotor fixed complex fluxes and
magnetic potential differences of the air gap model

Additional machine specific models are the air gap
model (with rotor saliency) as well as the symmetri-
cal and salient rotor cage windings.
The SymmetricalMultiPhaseWinding model is de-
picted in Fig. 7. The stray field and the core losses
of the winding are considered in the magnetic domain.
Since the modeled stray field implies and an ideal cou-
pling of the m electrical phases, the zero inductance of
the machine has to be considered separately [8]. The
thermal connectors of the winding resistor and core
loss model are externally available.
In the RotorSaliencyAirGap model different physi-
cal effects are taken into account. First, the stator and
rotor magnetic ports have different fundamental wave
rotational frequencies as they refer to different refer-
ence frames, see Fig. 8:

// Stator flux, stator fixed
port_sp.Phi = Phi_ss;
// Rotor flux, rotor fixed
port_rp.Phi = Phi_rr;
// Stator magnetic potential difference,
// stator fixed
port_sp.V_m - port_sn.V_m = V_mss;
// Rotor magnetic potential difference,
// rotor fixed
port_rp.V_m - port_rn.V_m = V_mrr;

The quantities that either refer to the stator or rotor
reference frame are transformed by means of a rotator
that is derived from the electrical angular difference

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

173

gamma between mechanical stator and rotor flange—
thus multiplied with the number of pole pairs p:

gamma = p*(flange_a.phi-support.phi);
rotator = Modelica.ComplexMath.exp(

Complex(0,gamma));
// Stator flux, rotor fixed
Phi_sr = Phi_ss

* Modelica.ComplexMath.conj(rotator);
// Stator magnetic potential difference,
// rotor fixed
V_msr = V_mss

* Modelica.ComplexMath.conj(rotator);

Second, the magnetic reluctance of the air gap due to
rotor saliency is taken into account, since the relation-
ships between the components of the fluxes and the
magnetic potential differences are considered with re-
spect to the rotor reference frame.

// Total magnetic potential difference
// is the sum of the stator and rotor
// magnetic potential difference
(pi/2.0) * (V_mrr.re + V_msr.re)

= Phi_rr.re*R_m.d;
(pi/2.0) * (V_mrr.im + V_msr.im)

= Phi_rr.im*R_m.q;

Cross coupling effects are not considered in this
model.
All the electric machine models provided by the
FundamentalWave library do not take the reluctances
of the stator and rotor teeth and yoke into account.
Therefore, the total main field reluctance of the ma-
chine is seen as an equivalent air gap reluctance.
Third, the inner torque of the air gap is calculated:

tauElectrical =
- (pi*p/2.0)*(Phi_ss.im * V_mss.re

- Phi_ss.re * V_mss.im);
flange_a.tau = -tauElectrical;
support.tau = tauElectrical;

The SymmetricMultiPhaseCageWinding and
SaliencyCageWinding are designed in a similar
way as the symmetric winding models. The main
difference is the inherent short circuit of the cage
winding and thus the cage models have only magnetic
and thermal connectors, respectively. An example of
a symmetric rotor cage model is depicted in Fig. 9.
In this implementation the rotor cage is modeled as
an equivalent three phase winding—which is already
implied by the machine parameters rotor resistance
Rr and rotor leakage inductance Lrsigma, which
both refer to an equivalent stator winding. Rotor
core losses are currently not considered in the cage
winding models.

winding

s
t
r
a
y
I
n
d
u
c
t
o
r

r
e
s
i
s
t
o
r

star

g
r
o
u
n
d

t
h
e
r
m
a
l
C
o
l
l
e
c
t
o
r

starAuxiliary

heatPortWinding

port_p port_n

Figure 9: Symmetric rotor cage model

3.3 Thermal Super Connectors

For all the electric machine models thermal super con-
nector are introduced. The super connectors are only
implemented in the Machines library, since both the
Machines and the FundamentalWave library use the
same connector definitions. The super connector con-
tains instances of thermal connectors. Each thermal
connector is associated with the actual temperature
and heat flow of one particular loss effect. Since the
different machine models have different topologies,
different super connector definitions are used. The
common heat ports of all induction machine models
are summarized in the partial model connector:

partial connector
PartialThermalPortInductionMachines

"Partial thermal port
of induction machines"

parameter Integer m=3 "Number of phases";
Modelica.Thermal.HeatTransfer.Interfaces.

HeatPort_a heatPortStatorWinding[m]
"Heat port of stator windings";

Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortStatorCore "Heat port
of (optional) stator core losses";

Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortRotorCore "Heat port
of (optional) rotor core losses";

Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortStrayLoad "Heat port
of (optional) stray losses";

Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortFriction "Heat port
of (optional) friction losses";

end PartialThermalPortInductionMachines;

The basic thermal super heat port contains a connector
for the stator winding (copper losses), the stator core
(currently only stator eddy current losses), the rotor
core (currently not utilized), stray load losses and the
friction losses. Each connector used for the particu-
lar induction machine models extends from this partial
connector definition and adds machine specific param-
eters and heat ports. For example, the thermal super

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

174

connector definition for permanent magnet induction
machines is:

connector ThermalPortSMPM
"Thermal port of synchronous induction
machine with permanent magnets"
extends Machines.Interfaces.
InductionMachines.
PartialThermalPortInductionMachines;

parameter Boolean useDamperCage
"Enable / disable damper cage";

equation
Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortRotorWinding
if useDamperCage
"Heat port of damper cage (optional)";
Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort_a heatPortPermanentMagnet
"Heat port of permanent magnets";

end ThermalPortSMPM;

Since the permanent magnet synchronous machines
are implemented with an optional damper cage, the
boolean parameter useDamperCage has to be utilized
in the associated heat port definition.

4 Electric Machine Models

In the FundamentalWave library five different induc-
tion machine models are provided. Each of these mod-
els extends from the partial machine model which is
depicted in Fig. 10. Each machine model consists of
electrical, mechanical and thermal connectors. The
stator windings are accessible by a positive and neg-
ative multi phase plug with m=3 phases, respresent-
ing the begin and the end of the three stator wind-
ings, respectively. Each model that dissipates losses is
equipped with a thermal heat port. Each of these ther-
mal heat ports is connected to an internal thermal port
(super connector). In order to consider heat flow and
temperature exchange with external thermal models an
optional external thermal port is provided. Dependent
on a boolean parameter useThermalPort either the ex-
ternal thermal port is used or the losses are dissipated
to an internal constant temperature ambient. The shaft
end of the machine is represent by the rotational con-
nector flange. By default, the stator is fixed and thus
the rotational connector support, representing the sta-
tor housing, is not accessible. Alternatively, if the pa-
rameter useSupport is set to true, the rotational con-
nector of the stator housing can be connected with an
external mounting model.
The electrical plugs are connected with a model of the
stray load losses and a symmetrical model of the stator
winding (Fig. 7). The stray load loss model senses the

i
n
e
r
t
i
a
R
o
t
o
r

J=Jr

inertiaStator

fixed

s
t
a
t
o
r

groundS

groundR

f
l
a
n
g
e

s
u
p
p
o
r
t

plug_spplug_sn

internal
Support

f
r
i
c
t
i
o
n

airGap

strayLoad

thermalPort

t
h
e
r
m
a
l
A
m
p
b
i
e
n
t

internal
Thermal
Port

Figure 10: Partial basic induction machine model

actual current and generates mechanical losses propor-
tional to the current and angular velocity. The mag-
netic ports of the stator winding model are directly
connected to stator ports of the air gap model. The
inertias of the stator and rotor, respectively, are con-
nected to all the stator and rotor specific rotational
connectors of the air gap, stray load loss and friction
model, respectively.
The machine parameters of the Machines and
the FundamentalWave library are identical except
for one parameter, the effective number of stator
turns,effectiveStatorTurns, which is solely needed
in the FundamentalWave library. This parameter does
not affect the operational behavior of the machine but
scales the magnetic potential difference and magnetic
flux. The fundamental wave connector quantities can
therefore only represent the actual physical quantities
of the machine, if the real effective number of turns is
provided.

4.1 Asynchronous Induction Machines

A squirrel cage and slip ring induction machine model
are provided in the FundamentalWave library. In the
squirrel cage model the magnetic rotor ports of the
air gap model are connected with a symmetrical cage
model as depicted in Fig. 11. The slip ring induction
machine models has a regular three phase winding in
the rotor, see Fig. 12. In the current implementation,
the rotor core losses are not taken into account.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

175

rotorCage

Figure 11: Asynchronous machine with squirrel cage
rotor

rotor

p
l
u
g
_
r
n

p
l
u
g
_
r
p

Figure 12: Asynchronous machine with slip ring rotor

s
h
o
r
t

rotorCage
+

-

p
e
r
m
a
n
e
n
t
M
a
g
n
e
t

heatFlow
Sensor

DamperCage

Figure 13: Synchronous machine with permanent
magnet

e
x
c
i
t
a
t
i
o
n

p
i
n
_
e
p

p
i
n
_
e
n

s
h
o
r
t

rotorCage

heatFlow
Sensor

DamperCage

b
r
u
s
h

Figure 14: Synchronous machine with electrical exci-
tation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

176

s
h
o
r
t

rotorCage

heatFlow
Sensor

DamperCage

Figure 15: Synchronous machine with reluctance rotor

4.2 Synchronous Induction Machines

Three synchronous machine models with electrical
excitation, permanent magnet excitation and without
excitation but a reluctance rotor are available in the
FundamentalWave library. Each of these machine
models is equipped with an optional damper cage. The
damper cage parameters include different rotor resis-
tance and rotor leakage inductance parameters in the
direct (d) and quadrature (q) axis. If the damper cage
is disabled, a magnetic short is connected instead of
the damper cage, as show in Fig. 13–15. In order to
handle the cage temperature of the super connector in
case of the disabled damper cage, a heat flow sensor is
uses which can set its connector temperature for con-
sistency reasons. The permanent magnet synchronous
machine model depicted in Fig. 13 has a magnetic po-
tential difference source in the rotor representing the
permanent magnet. The reluctance of the magnet is
inherently represent by the salient main field induc-
tances of the direct (d) and quadrature (q) axis, Lmd
and Lmq, respectively. The synchronous machine with
electrical excitation has a single phase electrical wind-
ing (Fig. 14) and a brush model representing the slip
rings of the excitation circuit. In the reluctance syn-
chronous machine model of Fig. 15 no additional ex-
citation is present. The torque generated in this syn-
chronous machine is solely due to rotor saliences, i.e.,
Lmd6=Lmq.

ground

star sineVoltage

- +

i
d
e
a
l
C
l
o
s
e
r

booleanStep

A

R
M
S

D

aimcM

loadInertiaM

q
u
a
d
r
a
t
i
c
L
o
a
d
T
o
r
q
u
e
M

Figure 16: Asynchronous induction machine started
direct on line

0 0.2 0.4 0.6 0.8 1
−400

−200

0

200

400

600

time [s]

a
i
m
c
M
.
t
a
u
E
l
e
c
t
r
i
c
a
l

[
N
m
]

Figure 17: Torque of an asynchronous machine with
squirrel cage rotor started directly on line

4.3 Example

An example of an asynchronous induction machine
started direct on line is presented in Fig. 16, compara-
ble to the included one in the Examples package of the
FundamentalWave library. A delta connected induc-
tion machine is connected to a stiff voltage supply after
closing a switch at 0.1 s. Even if this is not presented
here in this paper: the torque developed by the induc-
tion machine during starting (Fig. 17 and 18) is exactly
matching the results that are obtained by substituting
the asynchronous induction machine by a model from
the Machines library. So the models are fully com-
patible with respect to their operational behavior. For
the investigated machine the effective number of sta-
tor turns was set to 25 which results in the rotor flux
results presented in Fig. 19. Immediately after closing
the switch at 0.1 s the rotor frequency is equal to the
supply frequency (50 Hz). After fully accelerating the
machine, the slip frequency of the rotor flux is approx-
imately 2 Hz.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

177

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

time [s]

a
i
m
c
M
.
w
M
e
c
h
a
n
i
c
a
l

[
r
a
d
/
s
]

Figure 18: Angular mechanical velocity of an asyn-
chronous machine with squirrel cage rotor started di-
rectly on line

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

time [s]

a
i
m
c
M
.
a
i
r
G
a
p
.
P
h
i
_
r
r
.
r
e
;
i
m

[
V
s
]

re
im

Figure 19: Real and imaginary part of the rotor flux of
an asynchronous machine with squirrel cage rotor and
25 stator turns started directly on line

5 Didactic Aspects and Expandabil-
ity

From a didactic point of view the FundamentalWave

electric machines library allows a valuable insight
in the concepts of electro mechanical power conver-
sion. Since fundamental wave magnetic domain mod-
els are added to the MSL, the magnetic potential and
flow variables of an electric machine do have a clear
and physical representation. For each component and
physical effect in an electrical machine there is a par-
ticular model representing this effect. For example, in
an induction machine with slip ring rotor the machine
basically consists of a stator winding, an air gap and
a rotor winding. The total reluctance of the magnetic
circuit of the machine is represented by the main field

s
t
a
t
o
r

R
e
l
u
c
t
a
n
c
e

r
o
t
o
r

R
e
l
u
c
t
a
n
c
e

Figure 20: Possible model of an asynchronous induc-
tion machine with nonlinear stator and rotor core re-
luctances

inductance of the air gap model. The reluctances of
the stator and rotor teeth and yoke are currently not
explicitly modeled.
With the FundamentalWave library the model can cer-
tainly be adapted such way that the nonlinear magnetic
properties of the stator and rotor core can be consid-
ered, as it is proposed in Fig. 20. In such a model the
air gap reluctance has to be adapted such way that it
only represents the total main field reluctance minus
the stator reluctance minus the rotor core reluctance.
In such a model the different section of the magnetic
main field—stator core, air gap, rotor core—would
be represented by the respective magnetic reluctance
models.
The temperature dependent ohmic losses of the stator
and rotor winding—if present— as well as the stator
core losses are inherently taken into account in the
winding models. Friction and stray load losses are
considered by separate losses. If either of these losses
should be modeled in more sophisticated way, e.g.,
extending the core losses by hysteresis losses, then
only the respective loss model has to be replaced and
adapted due to the clearly object oriented structure of
the components applied in the machine models.
Additional physical effects such as the deep bar effect
can be easily modeled by replacing the respective cage
model by a more advanced one. In the same way, the
entire topology of an asymmetric squirrel cage could
be modeled by replacing the three phase symmetrical

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

178

topology by a more sophisticated one [9].

6 Conclusions

This paper gives an overview of the FundamentalWave
library which is included in the Modelica Standard Li-
brary 3.2. The basic idea of the complex magnetic
potential difference and the complex magnetic flux is
introduced and the basic components and equations
are presented. After discussing the machine specific
components the common partial machine model and
the different asynchronous and synchronous induction
machines are presented. From a modeling point of
view the basic structure of the fundamental wave elec-
tric machine models is very clear and plausible. Each
model represents a distinct physically effect and can
thus easily be replaced by a more sophisticated model
in order to consider additional physical effects.

References

[1] A. Haumer, C. Kral, H. Kapeller, T. Bäuml, and
J. V. Gragger, “The AdvancedMachines library:
Loss models for electric machines”, Proceed-
ings of the 7th Modelica Conference, pp. 847–854,
2009.

[2] G. J. Retter, Matrix and Space-Phasor Theory of
Electrical Machines, Akademiai Kiado, Budapest,
1987.

[3] C. Kral, “Derivation of the space phasor equations
and the required parameters of a squirrel cage in-
duction machine with faulty rotor bars”, Confer-
ence Proceedings of the International Symposium
on Diagnostics for Electrical Machines, Power
Electronics and Drives, SDEMPED, pp. 395–400,
1999.

[4] J. Stepina, “Raumzeiger in Matrizendarstellung
in der Theorie der elektr. Maschine”, Archiv fuer
Elektrotechnik, vol. 58, pp. 91–97, 1976.

[5] H. Kleinrath, Stromrichtergespeiste Drehfeld-
maschinen, Springer Verlag, Wien, 1980.

[6] C. Kral, R. Sprangers, J. Waarma, A. Haumer,
O. Winter, and E. Lomonova, “Modeling de-
magnetization effects in permanent magnet syn-
chronous machines”, Proceeding of the XIX Inter-
national Conference on Electrical Machines 2010,
2010.

[7] M. Beuschel, “A uniform approach for modelling
electrical machines”, Modelica workshop, pp.
101–108, 2000.

[8] H. Späth, Elektrische Maschinen, Eine Ein-
führung in die Theorie des Betriebsverhaltens,
Springer Verlag, Berlin – Heidelberg – New York,
1973.

[9] C. Kral, A. Haumer, and F. Pirker, “A modelica li-
brary for the simulation of electrical asymmetries
in multiphase machines - the extended machines
library”, IEEE International Symposium on Diag-
nostics for Electric Machines, Power Electronics
and Drives, The 6th, SDEMPED 2007, Cracow,
Poland, pp. 255–260, 2007.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

179

A Driver Model for Virtual Drivetrain Endurance Testing

 Tilman Bünte Emmanuel Chrisofakis
 German Aerospace Center (DLR) Daimler AG
 Institute of Robotics and Mechatronics, Germany Stuttgart, Germany
 Tilman.Buente@dlr.de emmanuel.chrisofakis@daimler.com

Abstract

Starting from an assumed vehicle path on a given
road section we derive the formulae for the calcula-
tion of an appropriate reference speed profile tabled
over road arc length. Together with a speed error
feedback we thus emulate what a real driver does
while driving and scheduling his actions on throttle
and brake pedal. The resulting driver model may be
used for automatic speed control in vehicle dynamics
simulation. The application addressed here is soft-
ware in the loop simulation for virtual drivetrain en-
durance testing at Daimler AG. A prototypical Mod-
elica implementation was made at DLR and tested
with a simple longitudinal vehicle dynamics model.
Finally, we discuss the experiences with the refer-
ence speed profiles made in the industrial practice.

Keywords: driver model; automatic gearbox testing;
reference vehicle speed profile; software in the loop
(SiL); virtual drivetrain endurance testing.

1 Introduction

For the virtual endurance test of automatic gearboxes
realistic and repeatable load collectives are searched
for. Therefore, a given road is assumed in terms of
slope, crossfall, curvature, road adhesion coefficient,
and speed limits along the path of the road center-
line. Adequate input signals for throttle and brake
pedal are needed to drive a total vehicle model along
the road while imitating realistic driver behavior.
The driver model task means providing suitable
pedal position signals. In our approach, the driver
model is split into two sequential subtasks. Firstly, a
vehicle speed profile along the road arc length is cal-
culated regarding the road conditions with a suffi-
cient preview. This reference speed profile is sup-
posed to approximate a speed profile which a driver
(usually unconsciously) forms in his mind yielding a
set point for subsequent speed control. Speed profiles
have already been used in the context of various
driver speed assistance systems such as [1], [2]. The

idea is continued and re-engineered here to obtain an
adequate complexity of the solution for the given
problem.
According to the split subtask notion, the second
subtask is accomplished by using feedback of the
speed error to desired longitudinal vehicle accelera-
tion. Based on the latter appropriate gas and brake
pedal positions can be determined. Meaningful
parameterization allows for assigning typical driver
types like cautious, normal, sportive or risky. The
driver model is implemented in Modelica; the speed
profile calculation is done at initialization time.
The paper is organized as follows. The assumptions
and the theoretic background of the speed profile
generation are described in section 2. Section 3 is
dedicated to the implementation of a speed feedback
controller. Some simulation results with the model
depicted in Figure 1 are shown in section 4. Experi-
mental results from virtual automatic gearbox test
runs are presented in section 5 including a report on
one's experiences.

Figure 1: Total Modelica model for driver model
evaluation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

180

mailto:Tilman.Buente@dlr.de
mailto:emmanuel.chrisofakis@daimler.com

2 Speed profile generation

The derivation of a reference speed profile is accord-
ing to the following conception: At the end of a pre-
view horizon the vehicle should come to a standstill.
The preview horizon may be set arbitrarily a certain
distance ahead or e.g. formed by the end of the cur-
rent visual range, the next road junction, and/or by
an obstacle. On the way to this stop the vehicle’s
speed is scheduled to be maximal, however, such
that all traffic regulations and physical limitations
are met with certain margins. These include the lim-
ited lateral acceleration in curves, reduced decelera-
tion capability while downhill or curve riding due to
combined longitudinal/lateral tire forces, speed lim-
its, and so on. The margins are adapted according to
the driver type. In summary: Like real drivers do, the
speed is scheduled virtually along the reverse path
starting from a limitation arising ahead.

2.1 Assumptions

The road definition is assumed to be given in terms
of slope z(s)/s, crossfall z(s)/w, curvature (s),
road adhesion coefficient (s), and speed limits as
functions of a single parameter being the road arc
length s. The variable’s dependencies of s (also de-
noted position in the sequel) are omitted in the for-
mulae as from now.
The road position [x, y, z]T and the heading angle
belonging to any value of the arc length s and any
lateral displacement w from the road centerline can
be calculated by numeric integration based on the
following ordinary differential equations

s
,)cos(

s

x
,)sin(

s

y
 (1)

and adequate start conditions. Road slope and cross-
fall should be so small such that errors from lineari-
zation of associated trigonometric functions are neg-
ligible. A basic supposition adopted here is that the
total horizontal force |Fsw| transmitted between the
collectivity of all tires and the road is limited iso-
tropically,

gmFFF wssw 22 , (2)

where g is the gravitational acceleration, Fs is the
force in travel direction, and Fw represents the lateral
force.
The disposition of the driver to utilize the physical
force limits in longitudinal or lateral direction is re-

flected by the driver behavioral parameters s and

w, respectively, each with 0 s,w 1 and specific

values depending on the driver type. Evolving from
(2), the expression

1

22

gm

FF

w

w

s

s

(3)

is denoted the driver related degree of utilization of
force transmission quota which usually is persis-
tently changing while driving. The associated ine-
quality is the fundamental relation [1] later used for
the calculation of speed profiles.

2.2 Forces acting on the vehicle

For the calculation of the reference speed profile the
vehicle is considered a point mass. Therefore, vehi-
cle dynamics such as yaw, roll, pitch and heave mo-
tion plus their effect on the tire forces are neglected.
The speed of the point mass vehicle is v = ds/dt, the
longitudinal force may be expressed as

s

z
vkgvvvmF Rs)((4)

where kR(v) is the vehicle’s rolling resistance coeffi-
cient and

m

AcwL

2

 (5)

is a parameter related to aerodynamic drag defined
only for abbreviation of math terms. Here, L is the
air density, cw is the drag coefficient, A is the face
surface, and m is the total mass of the vehicle.
The lateral force is

 g
w

z
vmFw

2 . (6)

Note that the point mass assumption does not hold
for highly dynamic manoeuvres which may result
from risky driver behaviour. In this case, it can not
be guaranteed that the real vehicle would still be able
to follow the speed profile.

2.3 Constraints on longitudinal dynamics

The calculation of reference speed profiles is deter-
mined by a set of constraints on the longitudinal dy-
namics of the vehicle which are presented below.

Static speed limits
An upper static bound on the speed is obtained when
solving (3) for v after inserting (6) and Fs=0:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

181

w

zgg
v w

 (7)

This is the local maximum speed without making
skidding off the road in a curve. Or, to be more pre-
cise, the portion of it the driver is accepting.
Another bound reflects the collectivity of all con-
ceivable speed limitations such as legal speed limits,
deliberate speed reduction or any other arbitrary
speed constraint:

speedlimit
v

f vv

 (8)

The behavioral parameter f reflects the driver’s dis-
position towards this constraint category. The value

f =1.1 means that the driver is ready to excess

speed limits by ten percent. The parameter v in (8)
will be cancelled later (see (23)) and is of no rele-
vance here. The static upper speed limit, in sum-
mary, is the smaller of the two limits calculated by
(7) and (8):

statvv max,

with

 speedlimit
v

fw
stat v

w

zgg
v

 , minmax,

(9)

Acceleration limits
The limited engine power Pmax imposes an upper
bound on the acceleration. Depending on the driver

type the power limit is exploited by a fraction p

with 0p1, thus

max PvF ps (10)

holds. After insertion of (4) and solving for the ac-
celeration we get

 c
mv

P
vv

p

P

 max

max,

 (11)

with

 szvkgvvc R /)(. (12)

A valid interval for the vehicle’s acceleration can be
obtained from transformation of (3) and considera-
tion of (4), (6), (11), and (12):

ecvdc (13)

with

22
22

w

z

g

v
gd w

w

s

 (14)

and

mv

P
de p max , min

 . (15)

2.4 Numeric speed profile calculation formulae

On a sufficiently small section s0 s s1 of the road
path where the longitudinal acceleration can be as-
sumed constant the following equation holds:

2
001 2

t
v

tvss

 (16)

Here, t is the time needed to drive along the road
section and v0 is the initial speed at s = s0. Moreover,
the speed v1 when reaching s = s1 is

tvvv 01 . (17)

Depending on whether v0 or v1 is given, after elimi-
nation of t from the set (16), (17) we obtain mean-
ingful solutions for the other variable

)(2 01
2
01 ssvvv (18)

or

)(2 01
2
10 ssvvv . (19)

This allows for a simple numeric integration algo-
rithm (explicit Euler) for the calculation of reference
speed profiles along the arc length s

)(2)()1()(
2

)()1(kkkkk ssvvv

(20)

or

)(2)1()()(
2

)()1(kkkkk ssvvv

(21)

for the reverse direction, respectively. For this pur-
pose it is required that the road path information is
given with sufficiently high resolution along s such
that the assumption of constant longitudinal accelera-
tion between the grid points is justified.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

182

2.5 Numeric maximal speed profile calculation

The maximal speed profile denotes the speed profile
vmax(s) along a considered road section exhibiting the
maximum possible speed at all positions s while re-
specting the following constraints:

 The start speed at the road section beginning
is vmax(sstart) = vstart.

 The final speed at the road section end is
vmax(send) = vend.

 At every position sstart s send the inequali-

ties (3), (9) with v=1, and (13) hold.
Hence, the maximal speed profile is a candidate for a
reference speed along the considered road section to
be used for speed control. It may, of course, be fur-
ther processed according to one’s needs.

Figure 2: The road definition used for illustration in
sections 2-4: (s) and z(s)/s as displayed; ,
z(s)/w = 0, vspeedlimit = 41.7m/s

In the sequel the procedure for calculating a tabled
representation of the maximal speed profile is pre-
sented. In multiple steps the speed profile is reduced
by considering new constraints at each time. See
Figure 3 for illustration. The underlying road defini-
tion is given with Figure 2. The normal driver type
was chosen; see Table 1 in section 4.2.

1. The static upper speed limit vmax,stat is calcu-

lated using (9) for all given sampling points
of s.

2. Starting from the end of the road section send
an interim profile vmax,back is calculated.
Therefore, the recursive formula (21) is ap-
plied over all sampling points of s and
vmax,back (send) = vend is used as start value.
With each integration step the value of v is

set to dcv being the maximum decel-
eration (i.e. minimum acceleration) accord-
ing to (13). Therefore, in (12) and (14) the
current values for all varying quantities are
inserted. During the recursive procedure
vmax,back must be always limited to the static
upper speed limit vmax,stat. The resulting in-
terim speed profile provides a necessary
condition such that the vehicle starting with
vmax,stat at any position can decelerate down
to v(s=send) vend while always respecting
the inequalities (3), (9).

3. Not only when braking, also when accelerat-
ing the constraints must be fulfilled. There-
fore, the previous step is repeated, however,
in forward direction resulting in a new in-
terim speed profile vmax,forw. Formula (20) is
used for recursive integration from the start
value vstart at sstart. The acceleration is set to
its current maximum value ecv . Note,
that vmax,forw mustn’t exceed the previously
calculated vmax,back in order to keep that in-
formation.

4. The finite difference equations (20) and (21)
respectively which were used in the two pre-
vious steps are based on the assumption of
constant acceleration between two sampling
points. Depending on the effective gridding
this assumption may be violated. In this case
the gridding needs to be refined by inserting
new sampling points where needed. This
should be repeated until the resulting accel-
eration error is less than a predefined toler-
ance. Note that steps 3 and 4 also need to be
repeated in that grid refinement loop.

Figure 3: Calculation of the maximal speed profile
and definition of a reference speed profile

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

183

The decisive maximal speed profile, finally, is
)()(max,max svsv forw . (22)

If the vehicle exactly follows this speed profile then
it drives at maximum speed while respecting all
physical limits plus considering driver type depend-
ent safety, comfort, and economy relevant margins.

2.6 Reference speed profile definition

The before calculated maximum speed profile can be
adopted as a base for the definition of a reference
speed profile which is suitable for speed control of
the vehicle. As an example, linear scaling is applied

)()(max svsv vref (23)

using a driver type dependent parameter v with

0v1 (compare Figure 3 with v = 0.9).

3 Speed control based on reference
speed profiles

3.1 Using acceleration as control variable

The aim of speed feedback control is to make the
error between reference speed and actual vehicle
speed small. For adjustments of the vehicle speed,
accelerations in the interval given by (13) are permit-
ted. Accordingly, a reference longitudinal accelera-
tion aref is formed by the controller. In a successive
module which is not discussed here, the reference
acceleration can be transformed into gas and brake
pedal positions as accurately as possible e.g. by us-
ing nonlinear inverse static or inverse dynamic mod-
els [3]. Any speed errors resulting from model inac-
curacies or induced by disturbances can be compen-
sated for by the speed feedback control which is de-
scribed as follows. It turned out that proportional
feedback of the speed control error yields satisfac-
tory results, even if the resulting control variable aref
is limited according to in v (13). Before being more
precise with this issue, prediction of the speed error
is introduced.

3.2 Prediction of the speed error

Significant control performance improvement can be
achieved by compensation of plant delay. A parame-
terizable prediction time Tpred takes into account
summarized lags which may be present in the control
loop such as power train or brake dynamics. Hence,

both the reference speed and the vehicle speed are
predicted by Tpred in advance. The approximation
used here assumes that during the prediction time the
acceleration remains constant.
The predicted reference speed is simply determined
by evaluation of (23)

)(, predrefpredref svv (24)

at the predicted vehicle position
2

2
1

predvehpredvehvehpred TvTvss . (25)

On the other hand, the predicted vehicle speed is

predvehvehpred Tvvv (26)

The prediction time may also be considered a driver
type dependent parameter. If no prediction virtue is
wanted then Tpred can simply be set to zero.

3.3 Limited proportional feedback

As mentioned before the speed control uses feedback
of the predicted speed error
 predpredrefgrawref vva ,, . (27)

The driver type dependent parameter g is the feed-
back gain. Finally, the controller must respect the
acceleration limits (13):

 otherwise

 if

 if

,

,

,

predpredrawref

predpredrawref

rawref

predpred

predpred

ref eca

dca

a

ec

dc

a

 (28)

Reasonably, all variables take on their values at the
predicted position s = spred. Note that if this kind of
limited feedback (28) is used, then the limitation of
the speed profile in forward direction is redundant
and)()(max,max svsv back should be used rather than

(22).

4 Simulation results

4.1 Modelica implementation

Figure 1 shows the total Modelica model we built
during implementation and prototype testing of the
driver model together with a very simple vehicle
model. The speed control given by (27) is imple-
mented in the block driver. The block vehicle uses
the longitudinal acceleration as requested from
driver as input. It consists of a first order lag element
for representation of the power train / brake dynam-
ics. The time constant is set unrealistically high to

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

184

Tlag=1.0s to demonstrate clearly the benefit of the
speed error prediction concept. Two successive inte-
grators compute speed vveh and position sveh, repec-
tively.
The prime block speedProfile needs the tabled road
definition as parameter. From that, the maximal
speed profile is calculated in multiple steps as ex-
plained in section 2.5. A corresponding function is
executed at model initialization time and stores the
result in a parameter table. Therefore, also driver
type and vehicle parameters are needed which are
instantiated as records in the total model. During the
simulation, the block speedProfile provides the pre-
dicted quantities needed for (27), (28). To facilitate
their calculation all relevant variables are evaluated
on the base of the predicted vehicle position (25) and
speed (26). The tabled road data and the pre-
calculated reference speed profile are correspond-
ingly interpolated.

4.2 Prototype simulation

This section shows simulation results obtained with
the prototypical implementation from Figure 1. The
vehicle starts at sveh = 2900 m and vveh = 0. The nor-
mal driver record with the parameters given in Table
1 was used.

Table 1: Normal driver type parameters

s=0.4 w=0.4 v=0.9 f=1.1

g=10 p = 0.6 Tpred= Tlag =1.0 s

In Figure 4 the blue line is the pre-calculated refer-
ence speed profile (cf. Figure 3). The red line is the
simulated predicted reference speed. We find that the
simulated vehicle speed (green line) matches very
well the reference speed.

Figure 4: Speed profiles and actual vehicle speed in
the simulation

Only at the beginning there is a big gap which is
conditioned by the limited acceleration. Figure 5
shows the effective acceleration limits (blue, red)
according to (13) and the actual vehicle acceleration
(green line). The acceleration potential is fully ex-
ploited in the initial phase while there is a large
speed error. Later, the driver model keeps some mar-
gin from the limits which is due to our choice

 v = 0.9 in (23).

Figure 5: Acceleration limits and actual vehicle
acceleration in the simulation

The driver related degree of utilization of force
transmission quota from (3) is shown in Figure 6
with a blue line. As a consequence of our approach,
it must never exceed one. The physical degree of
utilization of force transmission quota is plotted as a

red line. It is obtained by setting s = 1 and w = 1 in
(3) and thus removing the driver type dependent im-
plicit safety margin.

Figure 6: Utilization of force transmission quota in
the simulation

5 Experimental results and applica-
tional issues

The Modelica driver model was evaluated at Daimler
and found suitable for the purpose of virtual
drivetrain endurance tests. Thereupon, the driver
model was deployed in a software in the loop envi-
ronment (SiL) in conjunction with a detailed plant
model. The functional code in the loop is the control
code of an automatic Mercedes-Benz gearbox trans-
mission. The used plant model describes the longitu-
dinal dynamics of a vehicle and has its modeling fo-
cus on the 1-D rotational dynamics of the drivetrain.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

185

Figure 7 shows a top-level screenshot of the model
[6]. The calculation of the reference speed profile
(23) as described in section 2 serves as reference
speed and was integrated in the overall car model
(Figure 7) which in turn was exported as a DLL for
the SiL environment. For the code export we used
the C-Code generated by Dymola 6.2 wrapped with
an API for the co-simulation tool BACKBONE, a
proprietary Daimler program.

Figure 7: Modelica car model for SiL export

For SiL control of this model at Daimler an en-
hanced feedback control was used rather than (27). It
also accomplishes the assignment to both throttle and
brake pedal based on PI-control of the vehicle speed
error. The driver specific parameters used for the
calculation of the speed profile turned out to be use-
ful for the calibration of the total SiL driver model.

This specific deployment of the SiL is used for vir-
tual endurance testing of the drivetrain. The tracks
we use are the same that our testing teams drive in
reality. With the virtualisation we are able to

 examine the impact of code updates on the
endurance of the hardware (gearbox and
drivetrain components),

 detect bugs in the code, and
 calculate load collectives.

All this can be done in a fast and absolutely low cost
manner. So far, at Daimler, simulation of load col-
lectives for gearboxes primarily had taken place with
special software which, however, didn’t include the
functional code. SiL simulations of this kind had
been done by using a fixed speed profile derived
from experimental measurements or a load collective
simulation. The reference speed input to the SiL was
therefore car specific and could not be used for other
vehicle configurations. Moreover, the reference

speed had been time scheduled rather than position
scheduled. Hence, a cumulative error in the calcula-
tion was unavoidable due to the deviation between
desired and actual speed: After some simulation time
on long tracks (some 100 km) the vehicle’s position
did not match the position the reference speed was
assigned to. As a result of this error, peculiar situa-
tions occurred in the simulation such as full throttle
while downhill driving etc.

With the new method of car specific speed profile
calculation coming along with position dependent
driver action we are now able to use the SiL directly
for load collectives simulation without the need for
extra software. Only the topology of a track is
needed and track specific restrictions, such as speed
limits, obligatory stops etc.).

Figure 8: Comparison of simulation results (speed
over vehicle position)

For illustration of the realized progress Figure 8
shows a comparison of speed profiles. The first
curve (dep. “original”) is produced by our special
program for load collectives calculation, which used
to be the input for SiL simulations. This speed pro-
file is considered a benchmark for the new method.
Two SiL simulations were made, one with the previ-
ously used method (dep. “old (time mode)”) and one
using the new approach (dep. ”new (track mode)”),
each with a similarly configured (engine power,
mass) car model on the same drive track.

With the new method, the resulting vehicle speed fits
the benchmark speed significantly better than with
the old method despite only road track data but no
direct information of the benchmark speed was proc-
essed. This also applies to the primarily relevant cri-
terion for drivetrain endurance i.e. the load collec-
tive. In Figure 9 - Figure 11 one can see the compari-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

186

son of the three variants w.r.t. the load shapes at the
cardan shaft (torque over engine speed).

Figure 9: Simulated cardan shaft load collectives
(torque over speed), original version.

Figure 10: Simulated cardan shaft load collectives
(torque over speed), old version using time mode.

Figure 11: Simulated cardan shaft load collectives
(torque over speed), new version using track mode.

It is obvious that the distribution yielded with the
new method matches better the benchmark than the
old approach. Analogous results are obtained for all
drive tracks that Daimler uses in the gearbox devel-
opment. The flexible car dependent parameterization
obviously yields better robustness of the load collec-
tives results.
With the new method for the calculation of time in-
dependent, vehicle specific speed profiles we made
an important step towards the evaluation of load col-
lectives in conjunction with SiL simulation. Our in-
put to the simulation from now on consists in time
independent track data and is identical for all vehicle
models, regardless of car weight or installed engine
power.

6 Conclusions

A new method for quick automatic calculation of
reference speed profiles which are applicable for
automatic gearbox testing was developed at DLR
and implemented using Modelica. The resulting
speed profiles are specific for the assumed vehicle
data. Moreover, they can easily be adapted by tuning
of various parameters which are interpretable to rep-
resent different driver behavior.
At Daimler, the algorithm is now used for both flexi-
ble and reproducible generation of load collectives
for virtual drivetrain endurance testing. The new ap-
proach replaces the less efficient procedure where
static time-dependent speed profiles were taken as
inputs which had been produced from special load
collective generation software or driving experi-
ments separately for each car type.

7 Acknowledgement

The presented results were compiled in the context
of the ITEA2 project Modelisar [4].

References

[1] Aguilera, V., Glaser, S., Arnim, A.: An ad-
vanced driver speed assistance in curves: risk
function, cooperation modes, system archi-
tecture and experimental validation. Proc.
IEEE Intelligent Vehicles Symposium. Las
Vegas, Nevada, 2005,

[2] Jimenez, F., Aparicio, F., Paez, J.: Evaluation
of in-vehicle dynamic speed assistance in
Spain: algorithm and driver behaviour. IET

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

187

Intelligent Transport Systems, Vol. 2, No. 2,
2008.

[3] Thümmel M. et. al. Nonlinear Inverse Mod-
els for Control. Proc. 4th Int. Modelica
Conf., Hamburg, 2005.

[4] “MODELISAR Project Profile” 2008,
http://www.itea2.org/public/project_leaflets/
MODELISAR_profile_oct-08.pdf

[5] Schlabe, D., Knostmann, T., Bünte, T.: Scade
Suite Modelica Interface. Proc. 8th Int.
Modelica Conf., Dresden, Germany, 2011.

[6] Chrisofakis, E., Junghanns, A., Kehrer, C.,
Rink, A.: Simulation-based development of
automotive control software with Modelica.
Proc. 8th Int. Modelica Conf., Dresden,
Germany, 2011.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

188

http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf
http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf

Optimization-Tool for local renewable energy usage in the connected

system: “Building-eMobility”

Dipl.-Ing. Torsten Schwan Dipl.-Ing. René Unger

Prof. Dr.-Ing Bernard Bäker Dr.-Ing. Beate Mikoleit

Dresden University of Technology EA EnergieArchitektur GmbH

Institute of Automotive Technologies Dresden

George-Bähr-Str. 1c, 01062 Dresden Königsstr. 2, 01097 Dresden

schwan@iad.tu-dresden.de rene.unger@ea-gmbh.de

Dipl.-Ing. Christian Kehrer

ITI GmbH

Webergasse 1, 01067 Dresden

Kehrer@iti.de

Abstract

Renewable energy production and decentralized

energy storage as well as optimized usage of existing

energy resources are matters of rapidly growing im-

portance. Even today in building architecture as well

as modern mobility concepts these technologies are

major cost drivers.

Staying abreast to these changes, EA EnergieArchi-

tektur GmbH together with IAD TU Dresden are

developing a simulation tool to identify and optimize

the potentials for building specific energy storage

and production as well as optimized usage strategies

on the consumer side.

Furthermore the simulation tool allows analyzing the

smart integration of new eMobility concepts. In this

it works as a test bench for system wide energy man-

agement with priority on charging strategies for such

vehicles from the decentralized power supply.

Keywords: renewable energy; eMobility; modeling

1 Why a holistic energy simulation

for car and building

Today, there are various technologies available to

provide local renewable energy, for example: micro-

wind-turbines, photovoltaics, solar heat, heat pumps

and combined heat and power units (CHP).

These energy systems use direct natural energy re-

sources like wind and sun or renewable fuels like

wood, bio-gas or even vegetable oil. The availability

and efficiency of these resources differ greatly de-

pending on the specific location. Furthermore these

energy systems are expensive in money and produc-

tion resources. Therefore it is important to find an

optimized configuration before installing an energy

system in a specific building.

A second thought on optimizing renewable energy

includes the time of availability. There is no sun-

shine at night. Is it better to store the daylight energy

using batteries, charge a heat storage or to install the

photovoltaics facing westwards thus providing more

energy when demand is high - in the evening?

In the course of the increasing demand on electric

mobility, the need for charging concepts has risen.

Both power and energy have to be provided. Syn-

chronization of the demand on energy and storage as

well as on availability in a building is an important

fact for future energy-management systems.

Electric Mobility as mobile storage with constraints

to availability (docked, undocked) and requirements

from lifestyle (e.g. 100% charge in the morning)

adds further complexity to the system.

The energy system layout for a specific combination

Building-eMobility as well as the research and de-

velopment of optimized energy-management algo-

rithms are two engineering tasks which demand for a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

189

dynamic simulation covering all macroscopic aspects

of the system.

Such a simulation system is not available, yet. Exist-

ing Software either covers only one of the subsys-

tems (e.g. PVSol) or it does not include costs and

dynamics using precalculated balances instead.

This paper shows a different approach using the in-

terdisciplinary modeling Language Modelica to im-

plement physics and information flow as well as

cost-specific behavior of building-related renewable

energy systems in the same set of differential and

algebraic equations. Additionally the object oriented

modeling concept allows to describe well-arranged

and understandably system behavior of the power

generation, storage and consumption components.

The tool under development presented in this paper

is able to simulate and evaluate the energy flow in

the holistic connected system “Building-eMobility”.

It will be used to layout the most energy and cost

efficient combination of components as well as for

testing intelligent energy-management algorithms in

much-faster-than-real-time (accelerated SiL).

Since the main focus is on system layout and ben-

chmarking the location specific energy and cost effi-

ciency, the applicable level of detail is an important

fact on model design.

2 Concept of the energy simulation

model

The basic conceptual design requirements of the si-

mulation model can be deduced from the desired

simulation results.

The development of precise rules for the renewable

energy system layout, depending on local climate

and planned usage, requires a reduced set of possible

subsystems for the later system composition (i.e. mi-

cro-wind-turbines, electric car, electric bike, etc.).

Additionally a common set of input-parameters

based on availability (i.e. weather statics) and build-

ing design (heat-transmission, inhabitants) needs to

be defined.

The analysis of a specific location over long time

periods (>1 year, <1 minute step) with regard to dif-

ferent system layouts, cost, availability and energy

independence requires easily replaceable subcompo-

nents (i.e. Photovoltaics / Solar Heat) with integrated

cost functions as well as the use of “real-world”

measurements as input-data.

To enable parameter variation the calculation needs

to be fast, thus phenomenological descriptions in-

stead of real physics should be used wherever possi-

ble.

Fig. 2: SiL-application of the simulation environ-

ment including energy-management-algorithms

The finished simulation system will act as a test

bench for advanced energy management algorithms.

Therefore the integration effort for a simulated or

SiL-energy-manager needs to be reasonable. In these

Fig. 1: Structure of the energy simulation process

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

190

tests critical system states (e.g. power shortage, emp-

ty car battery in the morning) should be detected au-

tomatically and calculated in higher time resolution.

Fig. 1 shows the basic simulation process.

The SiL-energy-manager could be implemented as

an algebraic equation system including all relevant

measurement and control signals. An integration of

an outstanding control-block as energy-manager im-

plemented in another environment like Mat-

lab/Simulink is also imaginary.

The resulting simulation consists of a library of sub-

system-models for each specified component. These

sub-models are connected using an energy-bus and a

cost-function-bus. Especially interesting components

like micro-wind-turbines and batteries are available

as fast phenomenological models as well as exact

physical models. Besides the energy-components,

different models for inhabitants, climate and utility

company were created.

3 Examples for Subsystem-Models

In this paragraph an abstract of the implemented

Subsystem-Models used in the energy simulation

tool is described. Special attention is turned on the

model requirements dealing with the discrepancy

between fast system calculation time and precise si-

mulation results. For implementation partially exist-

ing approaches were used.

3.1 Micro-Wind-Turbine

The Micro-Wind-Turbine model calculates the elec-

trical energy output of a building integrated wind

power plant. Input-data is wind speed and direction

for a specific location, based on “real-world” mea-

surements or statistics. With attention to all existing

physical relations like angle of incidence, acceptable

operating range and aerodynamic configuration of

the turbine, the wind power absorbed by the turbine

during the integration time step is calculated.

Depending on the specification of the gearing me-

chanism and the designated type of electric genera-

tor, i.e. asynchronous machine, the model simulates

the generated electrical power from the turbine pow-

er.

To improve calculation time and to avoid problems

with the internal logic of modern smart inverters the

phenomenological behavior is replicated. Therefore

the model is based on generator specific characteris-

tic curves (e.g. dependency of open-circuit-voltage

and generator torque on generator velocity) in a

closed loop control with turbine power as reference

instead of magnetic coupling and switching diodes.

The behavior of the net-coupling inverter is rendered

in a similar way with additional inputs for external

power management.

Fig. 3: Energy and information flow in a specific scenario building - vehicle

Usable Energy

Converters

Storage and
Energy Mangement

Consumers

E-Mobility

Monitoring

User

Public Grid

Electicity
consumers

Building Grid

Information

Electricity

Local Battery
Storage

WindSun

Micro-WindPhotovoltaic

Energy Management

Heat
consumers

Thermal
Storage

Ambient Heat

Uplink

Heat

Heat Pump Power Process

Virtual
Energy
Market

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

191

3.2 Heat Storage

The Heat Storage model describes mathematically

the behavior of the temperature spreading in a tank

which is used to save thermal energy. The model

considers the energy losses of the tank through the

isolation (1) and the heat transfer (2) as well as the

heat convection (3) between the different tempera-

ture layers in the tank. The describing differential

equations for one layer are shown in fig. 2. Also the

heat dissipation and supply of a layer (e.g. by heater

or Heat Pump) is implemented in the model (4).

The model will be parameterized by the physical

dimensions of the tank and the integrated heat ex-

changer. Another describing parameter set consists

of the thermal characteristics of thermal storage me-

dia. Output of the simulation model is the amount of

energy put in or dissipated from the Heat Storage

and the temperature spreading in the tank.

Although there have been existing a lot of different

models for Heat Storage systems the presented mod-

el have become necessary because these models

were so detailed that the simulation time would have

been very long. So the presented model was adapted

that way that only the behavior of the temperature

spreading in the Heat Storage will be contemplated.

3.3 Battery

Electrical Batteries are a major field of research at

the IAD TU Dresden. Based on these long-term stu-

dies, Batteries are described mathematically to rend-

er the exact electrical behavior of a black-box at its

terminals. The fast model defines a number of bat-

tery strings, each consisting of a specified number of

in series connected battery cells.

These cells are parameterized by measured characte-

ristics (e.g. impedance, open-circuit-voltage) of dif-

ferent types of battery cells (e.g. Li-Ion). Out of

these characteristics the model calculates the realiza-

ble power supply of the battery depending on the

state of charge and other characteristic battery condi-

tions (e.g. cell temperature).

This battery model allows simulating the power

supply of different types and dimensions of batteries

within a very short simulation time because inner

chemical processes were neglected. Additionally it

enables the calculation of the specific lifecycle-cost

including usage dependent cell aging.

3.4 Heat Pump

A heat pump is a machine to transform heat from a

reservoir with lower temperature (e.g. ambience) to a

higher temperature level for heating and storage. The

focus is put on electrically driven pumps.

Fig. 4: Differential equations describing the behavior of the heat storage tank

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

192

In the process the working medium (e.g. CO2,

R407C) is subjected to a thermodynamic cycle. Al-

though it is possible to implement this thermody-

namic cycle in a mathematical model, the model lev-

el of detail for exact representation would be far too

complex for the short simulation time requirement.

Therefore another approach was chosen for modeling

this system comparable to other subsystem-models.

The method used for modeling the Heat Pump di-

vides two phases for the calculation of the supplied

heat of a Heat Pump, the dissipated heat flow be-

tween the working medium and the heating medium

and the rise of the enthalpy of the heating medium

per time unit. These two heating flows are equal in

steady states. So for the simulation of the heating

flow of characterized Heat Pumps the model uses

manufacturer data for the input-data-related steady

state heat and electrical power flow.

The dynamic of the heat pump respective input-data

and heat flow modification as well as switching op-

erations necessitates other modeling methods. The

problem is solved on the one hand by model parti-

tioning between heat dissipation and generation.

On the other hand the different types of switching

operations (normal switching, de-icing) are modeled

as loop controller with different time constants.

Fig. 6 shows the model structure used to calculate

the switching transient behavior of a Heat Pump after

a de-icing process because of coincidental switching

of ventilator, circulating pump and heat pump. Also

simulation results for behavior of heat power at nor-

mal switching events compared with after-de-icing

events are presented.

Fig. 6: Model of switching transient characteristic

after de-icing (above), simulation results (below)

Fig. 5: Simulation concept and subsystem models for weather, demand, resulting consumers and

energy generation, storage and management subsystems

Models of Demand

Weathermodel

weather

power

Wind

Sonne

photovoltaic
Umweltwärme

heat

heat pump power-process

model of
building

user-profile eMobility

power

heat

solar heat

micro-wind

grid and
supplier

building-grid

cost-model

battery

Hot-Water-
Storage

CHP

energy management

demand

Models of Consumers

eMobility power-
consumer

heat-
consumer

critical
bounderies

control / measurement

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

193

Fig. 7: Simulation library pictured as mind map

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

194

4 Gathering Input-Data

Simulation results are only as good as the input-data

they are based on. Therefore the important groups of

data like weather and climate, technical characteris-

tics of components and energy statistics have to be

gathered for specified simulation scenarios.

Weather and climate are important for the energy

output as well as the demand. Statistics for local cli-

mate are available from various sources like “Deut-

scher Wetterdienst” but these are often cost inten-

sive. To analyze weather dynamics we use long term

measurements (i.e. wind speed) with high time reso-

lution (1s) at the specific location. Since these data-

sets are too huge for reasonable use within Simula-

tionX, extensive preprocessing is done. The resulting

parameters are used in a weather sub-model to create

stochastic signals with characteristics similar to the

original measurement.

The technical characteristics mostly depend on the

datasheets of the used components. Special emphas-

ize is put on the characteristics of micro-wind- tur-

bines (a primary technology of EA GmbH) and bat-

tery storage (IAD).

Energy-data is generated similar to weather data

based on energy-suppliers statistics, market-data and

direct measurements at our research sites. The result-

ing weather, market and usage model can provide

stochastic output signals based on season and time of

day.

5 Synthesis of a holistic model

Based on the simulation scenario the holistic model

consists of the corresponding parameterized submo-

dels for the energy system components (i.e. 10m²

PV, heat-pump, 5 kWh battery, 2 cars, etc.). Respec-

tively the models for users, environment / weather,

consumption and provider are added and configured.

The according “real-world” input-data for the scena-

rio is stored in external files and fetched at simula-

tion time.

To simplify the simulation model and to improve the

clearness, signals like velocity and direction of wind,

are unified to bus systems. The main busses connect-

ing the subsystem-models are energy-bus, cost-bus,

environment-bus and energy-management-bus. Due

to the calculation time requirement, most connec-

tions are signal couplings (only variable information)

as opposed to physical coupling (real physical va-

riables).

These couplings are divided into special-defined

connectors for thermal and electrical elements.

Therefore these connectors allow the connection of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

195

different model-types which are interrelated. Realiz-

ing the interrelated behavior of these subsystem-

models the connectors transfer all power-relevant

data.

6 Examples for simulation results

The following example shows the simulated beha-

vior of the thermal and electrical energy flow in an

office building in central Germany. The input data is

based on measurements from March 2010.

In the simulation run the building is outfitted with

five Micro-Wind-Turbines (3m housing, 3.5 kW

rated output), photovoltaics rated at 16.5 kWp and a

li-ion battery system of 10 kW rated power and 4.32

kWh storage).

Besides the configuration of the energy producing

and storing systems in the simulated building the

used energy-management-algorithm for system con-

trolling is essential for the calculated power beha-

vior. So in the presented simulation was defined that

the building-integrated battery will be discharged

above a specific electrical power demand and

charged otherwise preferred by local renewably pro-

duces energy. The battery application primary use is

peak power reduction.

Fig. 9 shows the simulated electrical power. With the

above configuration, the peak power drawn from the

grid can be significantly reduced by 10 kW. Almost

all renewable energy is used locally. The peak at

noon could be covered with a marginally bigger bat-

tery or used for heating. In case of the selected con-

figuration and parameter-set the cumulative electric-

al energy demand could be reduced about 20%.

The simulated thermal subsystem contains an over-

sized 239 m
2
 flat plate thermal collector and a 3.5 m²

hot water storage tank. In the application the solar

heat collector charge the heat storage tank. That con-

figuration decouples the heating system in the build-

ing from heat sources. In the simulation, all conven-

tional heating is combined as “grid”.

The combined heating system was controlled by the

storage temperature at a specific layer as reference

value. The heat was then extracted from the tank on

demand, observing tank layer and temperature

spread.

Fig. 10: Simulated temperature characteristics

Fig. 10 shows the initiated and simulated characteris-

tics for ambient, comfort and room temperature. The

comfort temperature refers to nominal temperature

characteristics in office buildings. Thereby the room

temperature has to be reduced in the night in order to

save energy.

Fig. 9: Results for simulated electrical power

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

196

Fig. 11 shows the peak thermal energy demand in the

morning (switch to daytime temperature), important

for the system layout. A second aspect is shown in

the solar heat graph. Only around noon, the collec-

tors get hot enough to charge the storage tank. Addi-

tionally the decoupling of solar heat and heating

cycle can be seen. The tank size in this case is

enough for the day cycle.

In case of such an oversized configuration and para-

meter-set the cumulative heat demand could be re-

duced only about 8%. Although it is a sunny winter

day, the collectors though oversized, cover only a

small part of the heating requirements. Lower tem-

perature heating systems or direct use of the solar

heat would be options to find an applicable layout.

Another important result of the simulation addresses

the consideration of the influence of the heat pro-

duced by the people working in the building. The

simulated demand of the building differs about 18%

between calculation runs with and without the stan-

dardized number of office workers in the building.

Finally the defined requirement on “faster-than-real-

time”-simulation could be achieved including suffi-

cient detailed results. The realized factor between the

simulation time and the simulated time is 1:1000.

7 Conclusion and future develop-

ments

As for today, it is possible to simulate the energy

flow in a complete combination eVehicle-Building,

given a specific configuration of the energy system.

Based on the results the configuration can be opti-

mized manually and validated afterwards. Energy-

management algorithms can be tested within the si-

mulation. Energy usage and wastage are analyzable

and comparable. Including modern charging con-

cepts for eVehicles which are dedicated to a simu-

lated building is also possible.

The future development aims to extend a database

with simulation results and input-datasets, including

different combinations of buildings, vehicles, loca-

tions and usages. This database will also be con-

nected to acknowledged tools for detailed component

layout (i.e. PV calculation, heat demand). Further-

more the process of parameter variation and optimi-

zation for parameters like energy generation, usage,

lifecycle cost and independence shall be automated.

Long term objectives are an independent application

and standards for assessment of local renewable

energy systems.

Fig. 11: Results for simulated thermal power

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

197

8 Research project: “Residence and

Mobility”

The described tool is developed within the research

project “Residence and Mobility”. The aim is to cov-

er all energy demands of a family and their individu-

al lifestyle with the renewable energy provided

around the building they live in. The research project

is encouraged with subsidies from the European Un-

ion and the Sächsische Aufbaubank (SAB).

Fig. 12 shows the reference building implementing

the new technologies including in-house micro-

wind-turbines, photovoltaics, CO2-heat-pump and

12m³ heat storage tanks. A user friendly monitoring

system shows the workings of the energy system

References

[1] H. Winkelmeier: Energiesysteme - Wind-

energie - 02 - Bauformen und Aerodynamik

von Windkraftanlagen. energiewerkstatt°,

2005.

[2] P. Fritzon: Principles of Object-Oriented

Modeling and Simulation with Modelica

2.1.Wiley-IEEE Press, 2003.

[3] R. Unger; T. Schwan; B. Bäker; B. Mikoleit:

Optimization tool for local renewable energy

usage; ITI Symposium 2010.

[4] S. Kutter; R. Falsett; B. Bäker; L. Mora-

wietz: Dynamische Modellierung des makro-

skopischen, thermoelektrischen Verhaltens

von Lithium-Ionen-Energiespeichern. Ta-

gung: Elektrik/Elektronik in Hybrid- und

Elektrofahrzeugen, Haus der Technik, Mün-

chen, 17./18. November, 2008.

[5] T. Schwan: Aufbau eines 12V-Lithium-

Ionen Batteriedemonstrator, Technische

Universtität Dresden, IAD Diplomarbeit,

Fahrzeugmechatronik, 2009.

[6] SimulationX-Hompage der ITI

GmbH. http://www.simulationx.com

[7] G. Reiner; E. Shafai; R. Wimmer; D. Zogg;

H.R. Gabathuler; H. Mayer; H.U. Bruderer:

Kurztestmethode für Wärmepumpenanlagen,

ETH-Zürich, Sulzer Friotherm AG, 1998.

Fig. 12: Energy Monitoring (left side); reference building for modular renewable energy management

system (right side)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

198

http://www.simulationx.com/

Development of a Modelica Library
for Simulation of Diffractive Optomechatronic Systems

Thomas Kaden Klaus Janschek
Institute of Automation, Faculty of Electrical Engineering

Technische Universität Dresden, 10162 Dresden
Thomas.Kaden@tu-dresden.de Klaus.Janschek@tu-dresden.de

Abstract

The proper operation and performance of optome-
chatronic systems is fundamentally affected by
changes of the relative geometry caused by thermal
influences, mechanical displacements and vibrations.
Such extrinsic and intrinsic disturbances can be
compensated by active control of optical elements
like lenses, diffraction gratings or laser sources. In
the context with system design and performance
analysis tasks it is big challenge to model and simu-
late the coupled optomechatronic behavior including
closed-loop control and disturbances properly on a
representative level.
A promising approach is the integration of diffrac-
tive optic models in the well established physical
object oriented modeling environment Modelica®,
which offers already a broad support of multi-
domain libraries, e.g. electrical, mechanical and
thermal.
Therefore the basic modeling requirements for dif-
fractive optical elements are outlined followed by a
discussion of possible problems and solutions for a
computationally efficient implementation of a two-
dimensional spatial optical library for Modelica-
based simulation environments.
Keywords: Modelica; Diffractive Optics; Optical
library

1 Introduction

The application of optomechatronic systems is in-
creasing constantly. Examples are telescopes with
adaptive optics [4], motion compensated cameras
[7], [8], diffraction based sensors for on-line textile
inspection [1], optical Fourier processors and corre-
lators [9] or interferometer arrangements.
Diffractive optical components are used in optome-
chatronic systems mainly for the purpose of fast on-
line signal processing.

However such systems are affected by environmental
influences. Mechanical displacements, vibrations and
thermal distortions can significantly affect the proper
function and accuracy of the optical subsystem due
to changes of the optical path length. Therefore in
the context with system design and performance
analysis tasks the coupled optomechatronic behavior
including closed-loop control and disturbances must
be modeled and simulated.
In this paper the integration of diffractive optics
models into the physically object oriented modeling
environment Modelica is discussed. The require-
ments for physical object oriented optical models
with diffractive optical functionality and interfaces
are outlined. In particular the feasibility of two-
dimensional spatial interfaces in Modelica is further
evaluated and a tool-independent concept for an op-
tical library is proposed. The use of Modelicas ex-
ternal object / function interface is motivated through
the insufficient support of large matrices in existing
Modelica tools.

2 Simulation of optomechatronic sys-
tems

Optomechatronic systems are usually composed of
an arrangement of electronic, mechanic and optical
elements [6] as shown in Fig. 1. Especially the opti-
cal functionality depends on a fixed arrangement of
optical elements providing exact optical path geome-
try.
However the operation of mechanical and electrical
components is corrupted by geometrical or thermal
intrinsic disturbances of the arrangement of optical
components. Additional errors are inserted by extrin-
sic disturbances like shock, vibration or environ-
mental temperature changes.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

199

SLM 1

S
L

M
 2

ST

electronic

optical sensors
(CMOS / Shack-

Hartmann)ST

piezo
elements

optical input

optical output

Fig. 1 Optomechatronic System

The state of the art computer based physical object
based modeling and simulation environments focus
on two main areas:

- Simulation tools focused on optics like Ze-
max [17] including detailed geometrical and
diffractive optics modeling, but without or
only with insufficient mechatronic function-
ality,

- Multi-domain object oriented tools, e.g.
Modelica-based, incorporating a broad me-
chatronic functionality, but up-to-date with-
out optics functionality, in particular without
any diffractive optics [16].

In recent years the object oriented, equation based
modeling language MODELICA established mainly
focusing at the modeling and simulation of electrical,
mechanical, chemical and thermal systems.
The usual approach is to decompose a physical sys-
tem down to single model components. The entities
of components form a package and all packages be-
longing to one physical domain create a library.
Modelica currently supports electrical, mechanical,
multibody mechanic or thermal libraries. Up to now
there is no library in Modelica for simulating diffrac-
tive optical elements as needed for the simulation of
optomechatronic systems, (Fig. 2).

Fig. 2 Optomechatronic system model

The basic problem is the missing support of Mode-
lica for spatially distributed variables and equations
[2].
Nevertheless the following analysis of one of the
most important diffraction equation shows that basi-
cally matrix computation will be needed to imple-
ment a diffractive optical functionality.

3 Scalar wave optic

3.1 Rayleigh-Sommerfeld diffraction integral

Many optical phenomena like diffraction or interfer-
ence of monochromatic coherent light waves can be
described in a beneficial manner by scalar wave the-
ory, which leads to a simplified formulation for dif-
fraction phenomena. According to the HUYGENS-
FRESNEL principle the complex amplitude distribu-
tion of light at a single point behind an aperture can
be described by a weighted sum of spherical waves
originating from every point within the aperture [3].
This principle can be stated in mathematical form as
the well-known RAYLEIGH-SOMMERFELD diffraction
integral (1st solution) given by [3], [11]:

01()

1 0 01
01

() () cos(,) . (1)
j k re

A r E r n r ds
r

⋅ ⋅

å

= ⋅ ⋅òò

Note that the diffracting aperture is assumed to be
planar. For a statically geometric configuration, the
integral (1) is independent of time and it can be char-
acterized as algebraic relation between input and out-
put.

3.2 Numerical implementation

As there is usually no analytical solution for (1) the
spatial integration must be solved using numerical
two-dimensional approximations on digital com-
puters. The two-dimensional spatial discretization
leads to a [N*M] matrix representation for a given
aperture plane, (Fig. 3).

Fig. 3 Discretization of aperture plane

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

200

Integration of (1) now has to be replaced by N*M
complex multiplications and summations for every
output point. Therefore the calculation of an output
plane of equal size requires (N*M)2 complex opera-
tions. For higher optical resolutions (e.g. N=M=1024
pixel) the point wise solution of (1) is a very time
consuming task.

3.3 Angular spectrum Method

An optical system can be generally considered as a
two-dimensional spatial linear system. Equation (1)
can then be solved using Fourier methods, in particu-
lar by application of the convolution theorem, as-
suming spatial invariance (parallel planes). Thus the
computational effort for solving of integral equation
(1) can be significantly reduced by application of
standard fast Fourier transform (FFT) algorithms,
complex matrix multiplication with a propagation
kernel H(fx, fy) and inverse fast Fourier transform
(iFFT), (Fig. 4).

Fig. 4 Principle of angular spectrum method

The propagation kernel is given by [3]:

2 2 21 ()
 . (2)(,) x yj k z f f

x yH f f e
l⋅ ⋅ ⋅ - ⋅ +=

This method is orders of magnitude faster than the
point-wise calculation of (1).
Assuming the more general case of non parallel
planes, this Fourier based method can be used as
well, but frequency mapping must be implemented to
compensate for the plane rotation [12], [13]. How-
ever this step involves interpolation due to a restric-
tion inherent to the FFT, namely the fixed sampling
of the frequency domain.

4 Concept for an optical library in
Modelica

Object oriented modeling of a physical system or
component in general needs to include two basic as-
pects [2]:

- The interface of the optical component to
pass and access data.

- The optical component and its internal en-
capsulated functionality.

The main properties of optical elements are dis-
cussed from the point of view of object oriented
modeling as well as there integration into an optical
library for Modelica.

4.1 Interface

Object oriented modeling requires the encapsulating
of the internal function. Communication with other
model elements is only allowed through well defined
interfaces which are called connectors in Modelica
[2].
According to the requirements of scalar diffractive
optics a connector has to represent a two-
dimensional plane in 3D-space. Every plane is asso-
ciated with a complex amplitude light distribution.
The spatial discretization of such a cut plane leads to
matrix input/output connectors; a possible interface
structure is shown in Fig. 5.
The propagation of light is not bounded to material
and this decoupling suggests the use of causal in-
put/output connectors instead of acausal connectors
as explained in the following.

connector InputPlane

parameter Integer N = 64; "plane width pixel N"
parameter Integer M = 64; "plane height pixel M"

input Real rw [3]; "position of cut plane"
input Real Tw[3, 3]; "orientation of cut plane"
input Real r[2, N, M]; "position in cut plane"
input Real E[2, N, M]; "complex light amplitude“

end InputPlane;

connector OutputPlane

parameter Integer N = 64; "plane width pixel N"
parameter Integer M = 64; "plane height pixel M"

output Real rw [3]; "position of cut plane"
output Real Tw[3, 3]; "orientation of cut plane"
output Real r[2, N, M]; "position in cut plane"
output Real E[2, N, M]; "complex light amplitude“

end OutputPlane;

Fig. 5 Example of an optical input/output
connector in Modelica

Modelicas acausal connector principle represents the
physical behaviour of components at the cut points.
As a consequence the direction of a connection is not
specified. This approach follows the interaction be-
tween components in the physical world [2].
Generally light does not need material to propagate
through space. Light travels through media as well as
through vacuum. The lack of an energy carrier for
that spatial domain makes it difficult for scalar wave
optics to follow the concept of acaucal connectors.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

201

Considering the propagation of light in the direction
from one component to the next component an opti-
cal connection can suitably be described by Modeli-
cas signal based or causal connectors as described
above.
This component model however does not have the
ability to describe a reactive behaviour of light
waves to the previous optomechatronic component.
This limitation is acceptable for the optical function-
ality because light waves at one point in space can
interpenetrate without disturbing each other.
The influence of light to mechanical components in
terms of forces, position and orientation can be ne-
glected for macroscopic mechatronic systems and
small optical energy. Under this assumption a light
wave can be considered being non-reactive to the
mechanical components.
In principle the energy of light can be transformed in
heat when interacting with mechanical and electrical
components. This conversion however takes place
within the optomechatonic components and can be
considered by an additional thermal model if needed.

4.2 Components

Every element with a significant optical function is
considered being a component. The interesting phys-
ical properties include finite mass and spring stiff-
ness and a mechanical connection to other (optical)
elements forming a multi-body system (MBS), (Fig.
6).

Fig. 6 Generic optical component

For a component model the following approach is
chosen. The optical input plane is perpendicularly
located directly in front of the optical element body.
The output plane is determined by the input plane of
the next optical element.
The relative geometry between the actual component
and the subsequent component determines the ge-
ometry of the output plane, (Fig. 7).

Fig. 7 Optical component functionality

The optical function of the component is defined
between input and output plane. It can be modeled as
a complex two dimensional optical function T(xi, yi)
defined at the location of the input plane followed by
free space propagation [3], [5].
Matrix calculation is formally supported be Modelica
and for many diffractive optical setups the optical
functionality can be specified by a complex matrix in
a first step.

4.3 Additional properties for an optical library

The implementation of an easy-to-use optical library
and the equation based modeling paradigm of Mode-
lica require the description of two dimensional spa-
tial variables in any kind. There is ongoing develop-
ment for the support of partial differential equations
(PDE) and its associated domain definitions which
however is not yet operational so far [14], [15].
Hence an equation based description of the optical
function T(xi, yi) is not possible.
It is therefore necessary to use a physical description
of the two-dimensional optical cut plane (optical
domain information) and convert it into an internal
two-dimensional complex matrix representation
which can be handled by the simulation tool, (Fig. 8).
The same holds for the description of optical equa-
tions which are defined on that domain.
At last the visualisation of two-dimensional data for
examination should be available by the simulation
tool. Access and visualisation should be granted not
only to Modelica connector matrices but also to
static internal matrix variables if they exist.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

202

Fig. 8 Domain to matrix conversion

5 Implementation

5.1 Optical Benchmark system: using matrix
functionality provided by Modelica

Before designing and implementing complex Mode-
lica library elements, the feasibility and adequate
functioning of possible matrix interfaces and internal
algorithms must be evaluated. Therefore we consider
first the following model of an elementary optical
system consisting of a perfectly planar monochro-
matic light source, a pin-hole aperture and a Fourier
lens (Fig. 9). The overall internal component calcula-
tions (discrete approximation of angular spectrum
method for RAYLEIGH-SOMMERFELD diffraction in-
tegral) are simply two complex matrix multiplica-
tions (pinhole and lens function) and free space light
propagation after the lens.

planar light
wave

pinhole lens screen

wave length object plane fourier plane

f - focal length

planar light
wave

pinhole lens screen

wave length object plane fourier plane

f - focal length

Fig. 9 Optical benchmark system

According to the object oriented modeling approach,
the body elements from the existing Modelica multi-
body library were extended by optical input and out-
put connectors.
The experiment results for the model translation time
(Modelica to C-code) of the benchmark experiments
with varying connector matrix size N is shown in
Table 1. Increasing matrix size N leads to the obser-
vation that the computation time for analyzing and

flattening the model increases significantly. For
technically interesting optical resolutions, e.g.
N=1024, the computation time is out of scope of
practical simulation experiments. Using different
Modelica based tools like SimulationX©, Open-
Modelica or MathModelica© show similar behavior.

Table 1. Model translation time (Modelica to C-code)
for the benchmark model with SimulationX, matrix

size [N*N] +)

N 8 16 32 48 64 128

t / sec 30 40 100 310 1060 -
+) Opteron 175, DualCore, 2GB Ram

This behavior is caused by the standard analysis and
translation process from MODELICA source code to
executable C-code. During the conversion of the
model into executable code (flattening process) the
tools normally decide which variables become a state
variable [2]. This process can take a long analysis
time for large matrices.

5.2 Matrix implementation using the External
Object / Function interface

A possible alternative tool independent solution for
the problem described above can be considered using
the external function / object interface described in
the Modelica language specification [14]. The solu-
tion benefits from a fast calculation time, handling of
large matrices and can be implemented in a modular
way, (Fig. 10).

Fig. 10 Basic concept for optical library elements

While handling the matrix calculation externally
with C-code the formal description of two-
dimensional domains (planes in space), equations
and parameter remain in Modelica.
This approach leads to a composite optical connector
composed of a matrix with complex amplitude val-
ues representing the light wave (OptMatrix) and a
coordinate frame (input: frame_a, output: frame_b)
associated with the respective cut plane, (Fig. 11).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

203

The model OptMatrix is extended from Modelicas
external object class. In connection with the coordi-
nate frame which represents the position and orienta-
tion of the plane in space it forms the desired optical
connector.

Fig. 11 Optical connector with external object/function
interface for the input cut plane

The external object implements the following struc-
ture in C-code while constructor and destructor func-
tions handle the memory accordingly:

typedef struct{

 unsigned int N; // number of matrix rows
 unsigned int M; // number of matrix cols
 double* AmpReal; // complex amplitude, real part
 double* AmpImag; // complex amplitude, imag. part
 double* PosX ; // position in plane, x axis
 double* PosY; // position in plane, y axis

}OptMatrix;

The created objects are then handled through the re-
spective Modelica tool. Access can be granted
through external functions as described in the Mode-
lica Language Specification [14]. According to the
Modelica Language Specification all access func-
tions can be written in C-code, compiled and encap-
sulated in a system library (‘.a’ for unix / linux, ‘.dll’
for windows).
Every external function needs a Modelica wrapper
function operating with external objects and using
the external system library. Those functions are
placed in a separate package within the optical Mod-
elica library, (Fig. 12).
Optical components are modeled basically as rigid
body elements (maybe within a multibody system)
which are extended with optical input and/or output
connectors. The generic optical components can be
further specified implementing specific optical func-
tionality.

Modelica LibraryOptics

Interfaces

Generic_Optic.mo

package.mo

OptMatrix.mo

package.mo

ExternalFun.mo

InputPlane.mo

OutputPlane.mo

external objects
/ functions

composite
connectors

libExtOptic.a

InputPin.mo

OutputPin.mo
input / output
frames

C-code

Modelica LibraryOptics

Interfaces

Generic_Optic.mo

package.mo

OptMatrix.mo

package.mo

ExternalFun.mo

InputPlane.mo

OutputPlane.mo

external objects
/ functions

composite
connectors

libExtOptic.a

InputPin.mo

OutputPin.mo
input / output
frames

C-code

Fig. 12 Modelica optical library structure

Considering again the benchmark model (Fig 9) and
its optical functionality it is known that under certain
conditions the lens performs the (optical) Fourier-
transform of the pinhole circle function [3, 5]. The
required conditions are that that pinhole and screen
are positioned perpendicular at the focal points of the
lens and that the lens is thin and convex.
The Fourier transform of the circle function can be
described analytically and it is called Airy function
[3]. It will serve as a reference for testing the optical
end-to-end performance of the benchmark system
and the implementation of the internal diffraction
equation.
The fist step however will be the proof that handling
matrix calculation with Modelica is possible in a
manageable way. The test system consists of four
optical components, i.e. PlaneWave, PinHole,
ThinLens and Screen) leading to the following sys-
tem structure (Fig 13).

O3O1 O4

PlaneWave

optical system

O2

PinHole ThinLens Screen

mechanical system

f = 250mm
λ = 650nm

λ = 650nm

R = 0.5mm

world

f - focal length

MultiBody.Parts.Body2
MultiBody.Parts.FrameRotation

Fig. 13 optical test system in Modelica

For the implementation of the optical functionality
we assume perpendicular planes first. This means
that the system is static and perfectly aligned with
the optical axis as shown in (Fig 13). It allows the use
of the angular spectrum method for calculation of the
Sommerfeld light diffraction after the pinhole and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

204

the lens according to equation (1). Therefore the fol-
lowing calculation steps are executed internally for
those components:

- Matrix multiplication of the respective opti-
cal function (pinhole, lens phase function)

- Fast Fourier transformation (FFT) of the in-
put data

- Centering of FFT data (fftshift function)
- Calculation of spatial propagation filter

H(fx,fy) according to equation (2) and matrix
multiplication with FFT data

- Inverse Fourier transformation (iFFT) of the
result

For the implementation of the FFT / iFFT the fftw3
library is included in the external function library
[18].
The radius of the pinhole (R=0.5mm) as well as typ-
ical lens parameters (focal length f=250mm) and op-
tical parameters (λ=650nm) are parameterized.
Up to now the simulation experiments show that the
overall translation time for the whole model with
several complex matrix manipulations and a pure
mechanical multi body mass system of an optical
bench is acceptable also for large spatial matrix di-
mensions (Table 2)

Table 2. Model translation time for Benchmark Model
with external function interface, matrix size [N*N]+)

N 512 1024 2048

t / sec 45 50 55
+) Opteron 175, DualCore, 2GB Ram

A detailed evaluation of simulation performances
under dynamic conditions is currently in progress.

5.3 External data access and visualization

The matrix values of every component e.g. input /
output planes should be accessible. An easy solution
for large matrix data is to store the matrix values as a
binary file. Currently the visualization is done by
Matlab which reads the binary file over a ‘.mex’ in-
terface and uses image functions for visualization.

6 Conclusion

The physical object oriented modeling and simula-
tion of optomechatronic systems currently lack of an
appropriate easy-to-use modeling tool. Modelica can
handle electrical, mechanical and thermal physical

domains and provides well implemented libraries but
does not cover diffractive optics.
Analysis of scalar wave optics shows that basically
matrix calculation is needed to implement an optical
functionality and represent cut planes in 3D space.
As the basic matrix calculation capability for large
matrices is not sufficient by existing Modelica simu-
lation tools the implementation of an optical library
needs to incorporate the external object/function in-
terface.
Up to now a concept for optical connectors and
components is introduced and a basic optical func-
tionality using FFT algorithms is already imple-
mented and partly tested with Openmodelica and
SimulationX [16]. The approach is promising and
further implementations of components for an optical
library as well as detailed performance and accuracy
investigations also for the calculation of diffraction
between tilted planes will be executed.

References

[1] Dyblenko, S. (2009). Optische Ana-
lyse von Bahnwaren mittels , Spekt-
ralmethoden - Lösungen und An-
wendungen. Technical report, IPP
Symposium, Fakultät Elektrotro-
technik und Informationstechnik, TU
Dresden

[2] Fritzson, P. (2004). Principles of Ob-
ject-Oriented Modeling and Simula-
tion with Modelica 2.1. IEEE Press

[3] Goodman, J.W. (2005). Indroduction
to Fourier Optics. The McGraw-Hall
Companies, 3d edition

[4] Hardy, J.W. (1998). Adaptive Optics
for Astronomical Telescopes, Oxford
University Press

[5] Hecht, E. (2002). Optik, Oldenburg
Wissenschaftsverlag, ISBN 3-486-
27359-0

[6] Janschek, K. (2010). Systementwurf
mechatronischer Systeme: Methoden
- Modelle – Konzepte, Springer.

[7] Janschek, K., S. Dyblenko, V.
Tchernykh, and T. Kaden (2007).
Robuste Verfahren zur Bildaufnahme
und Bildauswertung bei Online Mes-
sung der Papierformation auf Tra-
versierrahmen. VDI-Berichte,
1981:57–66.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

205

[8] Janschek, K., V. Tchernykh and S.
Dyblenko (2007). Performance
analysis of optomechatronic image
stabilization for a compact space
camera. Control Engineering Prac-
tice 15(3 SPEC. ISS.): 333-347

[9] Janschek, K. and V. Tchernykh
(2002). Optical correlator for image
motion compensation in the focal
plane of a satellite camera. Space
Technology, 21(4):127-132

[10] Juday, D.R. and Florence, M.J.
(1991). Full complex modulation
with two one-parameter SLMs, SPIE,
vol. 1558, pp. 499-503.

[11] Sommerfeld A. (1999), Vorlesungen
über theoretische Physik – 4, Optik.
Akad. Verlag Geest u. Portig, 3rd
edition

[12] Tommasi, T and B.Bianco (1992).
Frequency analysis of light difffrac-
tion between rotated planes. Optics
Letters, vol. 17, nr. 8

[13] Matsushima K. (2008). Formulation
of the rotational transformation of
wave fields and their application to
digital holography. Applied Optics,
vol. 47, nr. 19

[14] Modelica (2010). The MODELICA
Language Specification, Version 3.2,
www.modelica.org

[15] Saldami, L., Bachmann, P. Fritzson,
P. and Wiesmann H. (2005). A
Framework for Describing and Solv-
ing PDE Models in Modelica, 4th in-
ternational Modelica Conference,
Hamburg, March 7-8

[16] Uhlig.A, Beutlich, Blochwitz, Kurz-
bach and Naehring (2009). Modellie-
rung und Simulation mit Modelica in
SimulationX, www.iti.de

[17] Zemax (2010), software for optical
system design. www.zemax.com

[18] http://www.fftw.org/

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

206

Transferring Causality Analysis from
Synchronous Programs to Hybrid Programs

Kerstin Bauer and Klaus Schneider
Department of Computer Science

University of Kaiserslautern
{k_bauer,klaus.schneider}@cs.uni-kl.de

Abstract

Outputs of synchronous programs may suffer from cyclic dependencies since
statements are allowed to read the current outputs’ values to determine the ac-
tions that generate the current values of the outputs. For this reason, compilers
have to perform a causality analysis that ensures that at any point of time, there
is a unique and constructive way to determine the outputs. The discrete parts of
hybrid systems may suffer from the same problem as observed in synchronous
programs. As we recently extended our synchronous language Quartz to de-
scribe hybrid systems, we explain in this paper how the causality analysis as
originally introduced for synchronous systems can also be used to handle cyclic
dependencies in hybrid Modelica programs.

1 Introduction

Reactive systems [20] are systems that have an ongoing interaction with their envi-
ronment in terms of a discrete sequence of reaction steps. In each reaction step, all
the current inputs are read to compute the outputs for the current point in time as
well as the system’s state for the next point of time.

Synchronous languages [6, 18, 7] such as Esterel [8, 10], Lustre [19], and Quartz
[31] have been developed to describe reactive systems. The operational semantics
of these languages is defined by so-called micro and macro steps, where a macro step
consists of finitely many micro steps whose maximal number is known at compile
time. Macro steps correspond to reaction steps of the reactive system, and micro
steps correspond to atomic actions like assignments of the program. Variables of
a synchronous program are synchronously updated between macro steps, so that
the execution of the micro steps of one macro step is done in the same variable
environment of their macro step.

The distinction between micro and macro steps does not only lead to a con-
venient programming model for reactive systems that allows to efficiently synthe-
size hardware and software as well as a simplified estimation of worst-case reaction
times. It is also the key to a compositional formal semantics which is a necessary
requirement for formal verification and provably correct synthesis procedures. Typi-
cally, the semantics are described by means of SOS (structural operational semantics
[27]) transition rules that recursively follow the syntax of the program [9, 31].

As synchronous programs are allowed to read their own outputs, mutual depen-
dencies between trigger conditions and the effect of their actions can occur which is
also well-known in hardware design [35, 24, 34, 29, 30]. The causality problem is
the problem to decide whether such cyclic dependencies can be resolved at runtime
for all reachable states and all possible inputs. It is moreover required that for all
inputs and all reachable states, there must be a schedule to fire the enabled actions
in a sequential schedule so that all values that were required are available when the
actions need them. The mere existence of a unique solution of the cyclic equation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

207

systems is thereby not sufficient, the solution must be determined in a construc-
tive way that can be found at runtime. One therefore often speaks of constructive
programs [9] that are based on Brouwer’s intuitionistic/constructive logic.

In contrast to the discrete reaction steps of an embedded reactive system, its
environment often consists of continuous behaviors that are determined by the laws of
physics. For this reason, the verification of properties that depend on the interaction
with the continuous environment requires the consideration of hybrid systems (see
e.g. [2, 1]). Since most verification problems are undecidable for hybrid systems
[22, 21], a rich theory of algorithmic, approximative approaches has been developed
over the years [28, 25, 23, 16, 17, 3, 13]. However, only a few languages and tools
that deal with non-trivial hybrid systems [14] are available. Moreover, the languages
of most of these tools focus purely on the continuous part of the system providing
only little support for modeling and analyzing of the discrete parts of the system
[12].

The Modelica language [15, 26] is a highly developed language for the model-
ing and simulation of hybrid systems. Academic and industrial tools for handling
Modelica descriptions together with a vast amount of libraries are available, e.g.,
the commercial tool Dymola1 and the academical/industrial tool OpenModelica2.
However, as it is the case for the other tools, the emphasis of these tools lies on the
modeling of the continuous part of the system. Causality cycles in the discrete part
of Modelica programs, called algebraic loops, can currently not be handled by these
tools.

In this paper, we therefore propose that causality cycles (i.e. algebraic loops)
in Modelica programs can be resolved in the same way as done for synchronous
programs: By means of a three- or four-valued logic one may perform a causality
analysis at compile time that can assure that during runtime, all the cycles can
be resolved [32, 33]. To this end, we report about the experiences we made by
extending our synchronous programming language Quartz [31] to describe hybrid
systems [4, 5]. We have implemented a simulator for the hybrid Quartz language as
well as a translation to Modelica programs. We thereby observed that our compiler
was able to deal well with causality cycles, while these programs were rejected by
tools that are based on Modelica. We see no problem by extending these tools so
that they can also benefit from the solutions that are already successfully used for
synchronous languages.

2 The Synchronous Language Quartz

Quartz [31] is a synchronous language derived from the Esterel language [11, 8].
The common paradigm of synchronous languages is the perfect synchrony [18, 7]
which means that the execution of programs is divided into macro steps that may be
interpreted as logical time. As this logical time is the same in all concurrent threads,
these threads run in lockstep, which leads to a deterministic form of concurrency.
Macro steps are divided into finitely many micro steps that are atomic actions of the
programs. Moreover, variables change synchronously in macro steps, i.e., variables
have unique values in each macro step.

In the following, we only give a brief overview of Quartz, and refer to [31] for
further details. Provided that S, S1, and S2 are statements, ` is a location variable,
x is a variable, σ is a Boolean expression, and ρ is a type, then the following are
statements (parts given in square brackets are optional):

• nothing (empty statement)
• x = τ and next(x) = τ (assignments)

1http://www.dymola.com
2http://www.openModelica.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

208

• assume(ϕ) and assert(ϕ) (assumptions and assertions)
• ` : pause (start/end of macro step)
• if (σ) S1 else S2 (conditional)
• S1;S2 (sequences)
• do S while(σ) (loops)
• S1 ‖ S2 (synchronous concurrency)
• [weak] [immediate] abort S when(σ)

• [weak] [immediate] suspend S when(σ)

• {ρ x; S} (local variable x of type ρ)

The pause statement defines a control flow location ` – a boolean variable being true
iff the control flow is currently at ` : pause. Since all other statements are executed
in zero time, the control flow only rests at these positions in the program, and thus
the possible control flow states are the subsets of the set of locations.

There are two variants of assignments that both evaluate the right-hand side τ in
the current macro step (variable environment). While immediate assignments x = τ

immediately transfer the value of τ to the left-hand side x, delayed assignments
next(x) = τ transfer this value only in the following step.

If the value of a variable is not determined by assignments, a default value is
computed according to the declaration of the variable. To this end, declarations
consist of a storage class in addition to the type of a variable. There are two storage
classes, namely mem and event that choose the previous value (mem variables) or a
default value (event variables) in case no assignment determines the value of a vari-
able. Available data types are booleans, bitvectors, signed/unsigned bounded/un-
bounded integers, arrays and tuples.

In addition to the statements known from other imperative languages (condi-
tionals, sequences and loops), Quartz offers synchronous concurrency S1 ‖ S2 and
sophisticated preemption and suspension statements, as well as many more state-
ments like generic statements to allow comfortable descriptions of reactive systems
(see [31] for the complete syntax and semantics).

Our Averest system3 provides algorithms that translate a synchronous program
to a set of guarded actions [31], i.e., pairs (γ,α) consisting of a trigger condition γ

and an action α. Actions are thereby assignments x= τ and next(x)= τ, assumptions
assume(ϕ), or assertions assert(ϕ). The meaning of a guarded action is obvious:
in every macro step, all actions are executed whose guards are true. Thus, it is
straightforward to construct a symbolic representation of the transition relation in
terms of the guarded actions (see [31]).

3 Causality Analysis in System Modeling of Controllers

3.1 Causality Problems in Quartz

As already mentioned, synchronous programs often suffer from cyclic dependencies
since the programs are allowed to read their own outputs for determining these
outputs. It is simple to determine whether a program has such cyclic dependencies
by means of a static syntactic analysis. If no cycles occur, it is straightforward to
generate code that exactly implements the given program’s behavior. However, if
cycles occur, the programs can get stuck in deadlocks or may implement one of
many possible nondeterministic behaviors. For this reason, a causality analysis has
to be performed that checks whether the cycles can be resolved during runtime for
all possible states and inputs.

To explain the causality analysis performed in compilers for synchronous lan-
guages, consider the execution of a Quartz program. To this end, we assume that

3http://www.averest.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

209

Discrete Transition:
Causality Analysis

Delayed Transition:
No Dependencies

Edel

Ediscr

Figure 1: Execution of a Macro Step of Quartz

program guarded actions
module P(event ?i,o1,o2) {

if(i) {
if(o1) o2=true;

} else {
if(o2) o1=true;

}
assert(!o1 & !o2);

}

regular guarded actions:
i & o1 ==> o2=true;

!i & o2 ==> o2=true;
true ==> assert(!o1 & !o2);

reaction to absence actions:
!(i & o1) ==> o2=false;
!(!i & o2) ==> o2=false;

Figure 2: Example Quartz Program with a Causality Cycle and its Translation to
Guarded Actions.

the program has already been compiled in a set of guarded actions (γ,α) as ex-
plained in the previous section. The execution of such a set of guarded actions is
then best explained by a discrete two-location automaton as shown in Figure 1. Each
macro step starts with a partial environment Edel that is determined by the delayed
actions of the previous macro step4. After assigning this partial environment to the
current discrete environment Ediscr, it is checked which trigger conditions become
true so that further actions can be executed. Also, actions whose trigger condition
become false, can be singled out. Due to the execution of new actions, more values
become known, and the same procedure is repeated until no more values become
known. The program is constructive (i.e. causally correct) if the environment Ediscr
is fully defined at the end. Finally, the delayed actions are executed to provide a
new delayed environment Edel for the next execution step. As all values are known
at that point of time, the computation of Edel does not require a causality analysis.

A simulator can directly implement the procedure outlined above. A compiler
has to perform this analysis for all inputs, which is typically done in a symbolic way
(similar to model-checking) to avoid the enumeration of all states and inputs. Al-
though it is possible to remove the causality cycles if the programs are constructive,
it is often better to retain them in the code, since it is known that the cyclic code
will be typically smaller [24, 29, 30] and will not have problems during runtime (if
the code is executed as outlined above).

A simple example for a Quartz program with cyclic dependencies is shown in
Figure 2. The program P has a boolean input i and two boolean outputs o1 and o2
that can also be read. As o1 and o2 are boolean event variables, they are reset to
their default value false whenever there is no action setting them actively.

The translation to guarded actions yields the guarded actions shown on the right
of Figure 2. We distinguish between the ‘regular’ guarded actions that are those
that appear in the program, and additional guarded actions that are added by the
compiler to reset event variables or to store memorized variables.

4In the first macro step initial assignments are given instead.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

210

Iteration Step i o1 o2 May-Set of Actions Must-Set of Actions
1 true ⊥ ⊥ o1⇒ o2 = true true⇒ o1 = false

¬o1⇒ o2 = false
¬o2⇒ o1 = false

2 true false ⊥ true⇒ o2 = false
true⇒ o1 = false

3 true false false true⇒ o2 = false
true⇒ o1 = false

Table 1: Fixpoint Iteration for Input Value i = true

The causality analysis for input i=true is shown in Table 1. It can be seen that
the values of all variables can be determined within three steps even though o1
and o2 depend on each other. Depending on the so-far obtained partial variable
environment, the set of guarded actions is partitioned into ‘must actions’ that must
be executed (their trigger condition is true), ‘cannot actions’ that cannot be executed
(their trigger condition is false), and the remaining ‘may actions’ whose might or
might not be executed (their trigger condition is neither true nor false due to still
unknown variables). The value ⊥ shown in Table indicates that currently no valid
value is known for the corresponding variable.

A similar fixpoint iteration can be shown for i = false. However, in this case,
the value of o2 will be computed before the one of o1, so that a different schedule
has to be used depending on input i.

model causality
Real t (start = 0);
Boolean i (start = false);
Boolean o1 (start = false);
Boolean o2 (start = false);

equation
der(t) = 1.0;
when { t>=0.1 } then

i = if pre(i) then false else true;
o1 = if (not(i) and o2) then true else false;
o2 = if (i and o1) then true else false;
reinit(t,0.0);

end when;
end causality;

Figure 3: Modelica Program with Causality Conflict

3.2 Causality Problems in Modelica

The Modelica language also supports the synchronous model of computation in its
discrete part. Because of this, the guarded actions obtained from Quartz programs
can be easily translated to equivalent Modelica programs. However, the tools we
used were not able to deal with causality problems (algebraic loops), illustrated with
the Modelica program shown in Figure 3. This program is obtained by translating
the guarded actions of the Quartz program P to Modelica. The real variable t is only
a time trigger and does not influence the discrete behavior of the program.

Neither OpenModelica 1.5.0 nor the demoversion of the industrial tool Dymola 7
are able to execute the program, because of the occurring algebraic loop. Even when
simplifying the line i = if pre(i) then false else true; by i = true; such
that there exists a unique computation order as shown in Table 1, the tools cannot
handle the program. Failure reports of Dymola simply note: "Current version cannot
generate code for an algebraic loop involving integers or Boolean".

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

211

Discrete Transition:
Causality Analysis

Continuous Transition:
Numerical Computation

Ediscr

Delayed Transition:
No Dependencies

Edel Ediscr,Econt

Figure 4: Execution of a Macro Step of Hybrid Quartz

4 Hybrid Quartz

The environments of embedded reactive systems are often defined by continuous
behaviors that are determined by the laws of physics. To be able to describe these
continuous environments, the synchronous language Quartz has been recently ex-
tended to Hybrid Quartz [4]. While time in synchronous languages is purely logical,
hybrid systems require the consideration of physical time. In order to combine these
inherently different time concepts, the computational model of macro steps is en-
dowed by a continuous transition as depicted in Figure 4.

In addition to the memorized and event variables, there are additionally hy-
brid variables in Hybrid Quartz. Hybrid variables must have the data type real
and are the only variables who have continuous evolutions during the macro steps.
These continuous variables can be assigned by flow assignments x <- τ whose left
hand side may also refer to the derivation of the continuous variable drv(x) <- τ.
For specification and verification reasons, one can additionally impose constraints
constrain{S,M,E}(φ), which state that the condition φ has to be satisfied at the
Start, at any interMediate point or at the End of the continuous evolution.

The continuous actions x <- τ, drv(x) <- τ, and constrain{S,M,E}(φ) may
only occur in special statements of the form flow S until(σ) where S is a list of
flow assignments and σ is a so-called release condition that terminates the contin-
uous phase defined by the flow statement. The compiler also generates guarded
actions for Hybrid Quartz, where the actions now additionally consist of continuous
guarded actions, i.e., guarded actions that contain flow assignments or constrain
actions as well as guarded actions (γ,release(σ)) for the release conditions.

In Hybrid Quartz, there exists also a new operator cont that allows one to access
the discrete as well as the continuous value of a hybrid variable during a flow-
statement, i.e., its value at the time when the continuous phase was started and its
value at some considered point of time during the continuous phase.

More information on hybrid Quartz can be found in [4].
The simulation of Hybrid Quartz programs, depicted in Figure 4, is performed

as follows: After computing the discrete variable environment Ediscr by means of
the causality analysis, one can determine which of the continuous actions are en-
abled. Taking the values of Ediscr as initial values for potential systems of ordinary
differential equations, the continuous flow of the macro step is executed until the
first active release condition σ is satisfied. Econt stores the values of all variables at
the end of the continuous transition. Note, that Ediscr and Econt coincide in all dis-
crete variables, as these do not change their value during the continuous evolution.
The delayed transition now obtains both environments as inputs and computes the
partial environment Edel for the following macro step.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

212

module bouncingball() {
hybrid real h;
hybrid real v;
int n;

h = start;
v = 0.0;
n = 0;
loop{

(w,w’): flow {
drv(h) <- v;
drv(v) <- -9.81;

} until(cont(h)<=0.0 and cont(v)<=0.0)
next(n) = n+1;
next(v) = v * -0.5;
(l, l’): flow{} until(true);

}
}

ḣ = v
v̇ =−9.81

h≥ 0

h = 10

h == 0, v≤ 0,
v′ =−0.5v

Figure 5: Bouncing Ball Example in Hybrid Quartz

We conclude this section by listing a Quartz program for the well-known Bounc-
ing Ball example in Figure 5. The program models a bouncing ball, whose velocity
is reduced by half whenever it bounces on the floor. Initially, the ball starts at height
h = 0.0 with velocity v = 0.0, and no bounces appeared so far (n = 0).

5 From Hybrid Quartz to Modelica Programs

The intermediate code format of Hybrid Quartz in the form of guarded actions is
already very close to Modelica code. Only few adjustments need to be made in
order to obtain an equivalent Modelica program. The translated Modelica program
will have the general form

model fromQuartz
Variable Declarations;

equation
all continuous guarded actions
when (disjunction of all guarded release conditions)

for each variable: gather all guarded actions in one expression
for each continuous variable: reinit with the associated discrete value

end when;
end fromQuartz:

Hybrid Quartz essentially provides two environments for each macro step, Ediscr and
Econt . The third environment Edel can be omitted in Modelica models, as one can use
the pre-operator instead.

To obtain an equivalent Modelica model, it is necessary to represent these two
environments in some way. The easiest way is to create for each variable a discrete
version and a continuous version, where the discrete version refers to Ediscr and the
continuous version refers to Econt . As the two environments coincide on all discrete
variables, it suffices to only create a copy for each hybrid variable. That means, each
hybrid variable hybrid real x in Quartz is replaced in Modelica by

discrete Real x_discr; Real x;

whereas each discrete5 variable type y in Quartz is replaced by

discrete type y;.
5The storage class of discrete variables is handled by the compiler in that appropriate reactions to

absence are generated.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

213

The guarded actions are translated into Modelica in two successive steps: In the first
step, each guarded action γ ⇒ α is translated into the equivalent statement

if σ then α.

As this code is not yet supported by the existing tools, these guarded actions will be
gathered together in actions of the form

x = if γ1 then α1else if ...

which are accepted by both Dymola and OpenModelica.
The first type of actions are immediate assignments in the form of γ⇒ x =τ. This

action is replaced by
if γdiscr then x = τdiscr

where γdiscr, τdiscr replace each occurrence of a continuous variable x by either x or
x_discr, depending on whether x lies within a cont(_) statement or not.

The second type of guarded actions is that of delayed actions γ ⇒ next(x) = τ.
Analogously to the discrete actions, first γ and τ are replaced by γdiscr and τdiscr. In a
second step, all variables x are replaced by pre(x) in γdiscr as well as in τdiscr, as the
computation of these actions must be done w.r.t. the variable environment of the
previous macro step. This has the same effect as computing the delayed assignments
in the current macro step and storing them in an intermediate environment.

Expressions within flow actions conditions are treated analogously.
In the second step, for each variable all conditional assignments are collected and

written as a single assignment with the variable on the left hand side. Additionally,
according to the storage class of the variable, the reaction to absence is encoded:

• event variables are set to their default value.
• memorized variables are set to their previous discrete value.
• hybrid variables are set to their last known continuous value.

Equations concerning the continuous flow are written first in the equation setting.
As condition for the following when-statement, the boolean disjunction of all release
actions is given.

According to simple test models, Modelica or at least the demo version of Dymola
and OpenModelica are not capable to handle execution steps, where the continuous
evolution actually does not consume physical time. Therefore we must add a timer
t which is reinitialized to 0 during each discrete transition and increases linearly
in time. All activation conditions of the when statement now must be conjuncted
with the condition that time has actually advanced, i.e. t ≥ min, where min is some
minimal time (chosen suitable small).

Within the when-statement, now all discrete equations are written down. Fur-
thermore, all hybrid variables are reinitialized with their discrete values.

The translation procedure is finally illustrated by the bouncing ball example
given in Figure 5. In a first step, the program is compiled to guarded actions.
The boolean variable Init will hold iff the execution is in the initial step. Further-
more, in order to increase readability, the boolean expression cont(h) <= 0.0 and
cont(v)<= 0.0 in the flow statement is replaced by σ . The corresponding Modelica
model is given in Figure 6.

1. (Init ∨ l)∧σ => next(w) = true
2. (w’ ∨ Init ∨ l)∧¬σ => next(w’) = true
3. w => next(l) = true
4. Init ∨ l ∨ w’ => der(h) <- v
5. Init ∨ l ∨ w’ => der(v) <- -9.81
6. w => next(n) = n+1
7. w => next(v) = v*-0.5
8. Init ∨ l ∨ w’ => release(σ)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

214

model BouncingBall
Real h (start = 10);
discrete Real h_discr (start = 0);
Real v;
discrete Real v_discr (start = 0);
Boolean Init(start = true);
Boolean w(start = false);
Boolean w2(start = false);
Boolean l (start = false);
Integer n (start = 0);
Real t(start=0);

equation
der(t) = 1;
der(h) = if (Init or l or w2) then v else 0;
der(v) = if (Init or l or w2) then -9.81 else 0;

when ((t>=0.01) and (((Init or l or w2) and h < 0 and v < 0) or w)) then
n = if pre(w) then pre(n) + 1 else pre(n);
v_discr = if pre(w) then - pre(v) * 0.5 else pre(v);
h_discr = pre(h);
w = if (pre(Init) or pre(l) or pre(w2)) and pre(v) <= 0 and pre(h) <= 0

then true else false;
w2 = if (pre(Init) or pre(l) or pre(w2)) and not (pre(v) <= 0 and pre(h) <= 0)

then true else false;
l = if pre(w) then true else false;
Init = false;

reinit(v, v_discr);
reinit(h, h_discr);
reinit(t, 0);

end when;
end BouncingBall;

Figure 6: Modelica Model of the Bouncing Ball generated from a Hybrid Quartz
Program

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

215

6 Conclusions

Hybrid Quartz and Modelica approach the modeling of hybrid systems from differ-
ent starting points: While Hybrid Quartz emphasizes mainly the discrete part of the
system, the Modelica language puts its emphasis on the continuous part. Neverthe-
less, this paper shows that both languages not only share a common core, but that
one can translate Hybrid Quartz programs one-to-one to Modelica programs.

However, due to the different origins of the two modeling languages, Hybrid
Quartz and Modelica provide very different algorithms for the analysis and simula-
tion of the hybrid programs: Based on the well-developed theory within the discrete
domain, Quartz (like other synchronous languages) is able to solve non-trivial alge-
braic loops, thus allowing a much broader variety of models. As non-trivial causal
dependencies may easily occur, this is a big advantage over Modelica programs.
Furthermore, discrete Quartz already provides algorithms for formal verification.

On the other hand, as the main emphasis of Modelica lies on the continuous
part of the hybrid system, algorithms to deal with the continuous evolutions of such
systems are well-developed. As Quartz only has been recently extended to Hybrid
Quartz, sophisticated algorithms for dealing with the continuous dynamics are still
missing.

Thus, tools for both languages could learn a lot from each other. Tools for
synchronous languages offer sophisticated procedures for formal verification, worst
case execution time analysis and causality analysis, while tools that deal with Model-
ica offer much better support for continuous dynamics. Thus, the resulting mixture
could be a lot more powerful as both tools on their own.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science (TCS), 138(1):3–34, 1995.

[2] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In R. Grossmann,
A. Nerode, A. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS,
pages 209–229. Springer, 1993.

[3] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[4] K. Bauer and K. Schneider. From synchronous programs to symbolic representations
of hybrid systems. In K. Johansson and W. Yi, editors, Hybrid Systems: Computation
and Control (HSCC), pages 41–50, Stockholm, Sweden, 2010. ACM.

[5] K. Bauer and K. Schneider. Predicting events for the simulation of hybrid systems. In
International Conference on Embedded Software and Systems (ICESS), Bradford, United
Kingdom, 2010. IEEE Computer Society.

[6] A. Benveniste and G. Berry. The synchronous approach to reactive real-time systems.
Proceedings of the IEEE, 79(9):1270–1282, 1991.

[7] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.
The synchronous languages twelve years later. Proceedings of the IEEE, 91(1):64–83,
2003.

[8] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.

[9] G. Berry. The constructive semantics of pure Esterel. http://www-sop.inria.fr/
esterel.org/, July 1999.

[10] G. Berry. The Esterel v5 language primer. http://www-sop.inria.fr/esterel.org/,
July 2000.

[11] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

[12] X. Briand and B. Jeannet. Combining control and data abstraction in the verification
of hybrid systems. In R. Bloem and P. Schaumont, editors, Formal Methods and Models
for Codesign (MEMOCODE), pages 141–150, Cambridge, Massachusetts, USA, 2009.
IEEE Computer Society.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

216

[13] D. Campagna and C. Piazza. Hybrid automata in systems biology: How far can we go?
Electronic Notes in Theoretical Computer Science (ENTCS), 229:93–108, 2009.

[14] L. Carloni, M. Di Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli.
Modeling techniques, programming languages, and design toolsets for hybrid systems,
2004. Report on the Columbus Project, http://www.columbus.gr.

[15] P. Fritzson and V. Engelson. Modelica - a unified object-oriented language for system
modeling and simulation. In Object-Oriented Programming, volume 1445 of LNCS,
pages 67–90. Springer, 1998.

[16] M. Fränzle. What will be eventually true of polynomial hybrid automata? In
N. Kobayashi and B. Pierce, editors, Theoretical Aspects of Computer Software (TACS),
volume 2215 of LNCS, pages 340–359, Sendai, Japan, 2001. Springer.

[17] R. Ghosh, A. Tiwari, and C. Tomlin. Automated symbolic reachability analysis with
application to delta-notch signaling automata. In O. Maler and A. Pnueli, editors,
Hybrid Systems: Computation and Control (HSCC), volume 2623 of LNCS, pages 233–
248, Prague, Czech Republic, 2003. Springer.

[18] N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.
[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-

gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September
1991.

[20] D. Harel. Statecharts: A visual formulation for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[21] T. Henzinger. The theory of hybrid automata. In Logic in Computer Science (LICS),
pages 278–292, New Brunswick, New Jersey, USA, 1996. IEEE Computer Society.

[22] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-
tomata? In Las Vegas, Nevada, USA, pages 373–382. ACM, 1995.

[23] G. Lafferriere, G. Pappas, and S. Yovine. A new class of decidable hybrid systems. In
F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and Control
(HSCC), volume 1569 of LNCS, pages 137–151, Berg en Dal, The Netherlands, 1999.
Springer.

[24] S. Malik. Analysis of cycle combinational circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (T-CAD), 13(7):950–956, July 1994.

[25] J. Miller. Decidability and complexity results for timed automata and semi-linear hy-
brid automata. In N. Lynch and B. Krogh, editors, Hybrid Systems: Computation and
Control (HSCC), volume 1790 of LNCS, pages 296–309, Pittsburgh, Pennsylvania, USA,
2000. Springer.

[26] Modelica Association. Modelica - a unified object-oriented language for physical sys-
tems modeling, language specification version 2.0, 2002. http://www.Modelica.org.

[27] G. Plotkin. A structural approach to operational semantics. Technical Report FN-19,
DAIMI, Aarhus, Denmark, 1981.

[28] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propa-
gation based abstraction refinement. In M. Morari and L. Thiele, editors, Hybrid Sys-
tems: Computation and Control (HSCC), volume 3414 of LNCS, pages 573–589, Zürich,
Switzerland, 2005. Springer.

[29] M. Riedel and J. Bruck. Cyclic combinational circuits: Analysis for synthesis. In In-
ternational Workshop on Logic and Synthesis (IWLS), Laguna Beach, California, USA,
2003.

[30] M. Riedel and J. Bruck. The synthesis of cyclic combinational circuits. In Design
Automation Conference (DAC), pages 163–168, Anaheim, California, USA, 2003. ACM.

[31] K. Schneider. The synchronous programming language Quartz. Internal Report 375,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Ger-
many, 2009.

[32] K. Schneider and J. Brandt. Performing causality analysis by bounded model checking.
In Application of Concurrency to System Design (ACSD), pages 78–87, Xi’an, China,
2008. IEEE Computer Society.

[33] K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Maximal causality analysis. In
J. Desel and Y. Watanabe, editors, Application of Concurrency to System Design (ACSD),
pages 106–115, St. Malo, France, 2005. IEEE Computer Society.

[34] T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In European
Design and Test Conference (EDTC), Paris, France, 1996. IEEE Computer Society.

[35] L. Stok. False loops through resource sharing. In International Conference on Computer-
Aided Design (ICCAD), pages 345–348. IEEE Computer Society, 1992.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

217

Integration of CasADi and JModelica.org

Joel Anderssonc Johan Åkessona,b Francesco Casellad Moritz Diehlc
aDepartment of Automatic Control, Lund University, Sweden

bModelon AB, Sweden
cDepartment of Electrical Engineering and Optimization in Engineering Center (OPTEC),

K.U. Leuven, Belgium
dDipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Abstract

This paper presents the integration of two open source
softwares: CasADi, which is a framework for efficient
evaluation of expressions and their derivatives, and the
Modelica-based platform JModelica.org. The integra-
tion of the tools is based on an XML format for ex-
change of DAE models. The JModelica.org platform
supports export of models in this XML format, wheras
CasADi supports import of models expressed in this
format. Furthermore, we have carried out comparisons
with ACADO, which is a multiple shooting package
for solving optimal control problems.

CasADi, in turn, has been interfaced with ACADO
Toolkit, enabling users to define optimal control prob-
lems using Modelica and Optimica specifications, and
use solve using direct multiple shooting. In addi-
tion, a collocation algorithm targeted at solving large-
scale DAE constrained dynamic optimization prob-
lems has been implemented. This implementation ex-
plores CasADi’s Python and IPOPT interfaces, which
offer a convenient, yet highly efficient environment for
development of optimization algorithms. The algo-
rithms are evaluated using industrially relevant bench-
mark problems.

Keywords: Dynamic optimization, Symbolic ma-
nipulation, Modelica, JModelica.org, ACADO Toolkit,
CasADi

1 Introduction

High-level modeling frameworks such as Modelica are
becoming increasingly used in industrial applications.
Existing modeling languages enable users to rapidly
develop complex large-scale models. Traditionally,
the main target for such models has been simulation,
i.e., to define virtual experiments where a simulation
software computes the model response.

During the last two decades, methods for large scale
dynamic optimization problems have been developed.
Notably, linear and non-linear model predictive con-
trol (MPC) have had a significant impact in the indus-
trial community, in particular in the area of process
control. In MPC, an optimal control problem is solved
for a finite horizon, and the first optimal control in-
terval is applied to the plant. At the next sample, the
procedure is repeated, and the optimal control problem
is solved again, based on updated state estimates. The
advantages of MPC as compared to traditional control
strategies are that it takes into account state and in-
put constraints and that it handles systems with mul-
tiple inputs and multiple outputs. Also, MPC offers
means to trade performance and robustness by tuning
of a cost function, where the importance of different,
often contradictory, control objectives are encoded. A
bottleneck when applying MPC strategies, in particu-
lar in the case of non-linear systems, is that the com-
putational effort needed to solve the optimal control
problem in each sample is significant. Development
of algorithms compatible with the real-time require-
ments of MPC has therefore been a strong theme in
the research community, see e.g., [15, 40].

Driven by the impact of high-level modeling lan-
guages in the industrial community, there have been
several efforts to integrate frameworks for such lan-
guages with algorithms for dynamic optimization. Ex-
amples include gPROMS [34], which supports dy-
namic optimization of process systems models and
Dymola [13], which supports parameter and design
optimization of Modelica models. Several other appli-
cations of dynamic optimization of Modelica models
have been reported, e.g., [20, 35, 3, 33, 28].

This paper reports results of an effort where
three different open source packages have been in-
tegrated: JModelica.org, [2], ACADO Toolkit, [26],
and CasADi, [4]. The integration relies on the XML

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

218

model exchange format previously reported in [32].
Two main results are presented in the paper. Firstly,
it is shown how CasADi, supporting import of the
mentioned XML model format, has been used to inte-
grate JModelica.org with ACADO Toolkit. Secondly,
a novel direct collocation method has been developed
based on the innovative symbolic manipulation fea-
tures of CasADi. From a user’s perspective, both
CasADi and JModelica.org come with Python inter-
faces, which makes scripting, plotting and analysis of
results straightforward.

The benefit of integrating additional algorithms for
solution of dynamic optimization problems in the
JModelica.org platform is that users may experiment
with different algorithms and choose the one that is
most suited for their particular problem. To some ex-
tent, the situation is similar to that of choosing an in-
tegrator for a simulation experiment, where it is well
known that stiff systems require more sophisticated
solvers than non-stiff systems.

The paper is organized as follows: in Section 2,
background on dynamic optimization, Modelica and
Optimica, ACADO and JModelica.org is given. Sec-
tion 3 describes CasADi and recent extensions thereof.
Section 4 reports a novel Python-based collocation im-
plementation and in Section 5, benchmark results are
presented. The paper ends with a summary and con-
clusions in Section 6.

2 Background

2.1 Dynamic optimization

Dynamic optimization is the solution of decision
making problems constrained by differential or
differential-algebraic equations. A common formula-
tion is the optimal control problem (OCP) based on
differential-algebraic equations (DAE) on the form

min
x,u,z,p

∫ T

0
l(t,x(t), ẋ(t),z(t),u(t), p)dt

+E(T,x(T),z(T), p)
subject to

f (t,x(t), ẋ(t),z(t),u(t), p) = 0 t ∈ [0,T]
h(t,x(t), ẋ(t),z(t),u(t), p)≤ 0 t ∈ [0,T]
x(0) = x0

umin ≤ u(t)≤ umax t ∈ [0,T]
pmin ≤ p ≤ pmax

(1)

where x ∈ RNx and z ∈ RNz denote differential and al-
gebraic states respectively, u ∈ RNu are the free con-

trol signals and p ∈RNp a set of free parameters in the
model. The DAE is represented by the Nx + Nz equa-
tions f (t,x(t), ẋ,z(t),u(t), p) = 0, with the initial value
for x explicitly given.

The objective function consists of an integral cost
contribution (or Lagrange term) and an end time cost
contribution (or Mayer term). The time horizon [0,T]
may or may not be fixed.

Numerical methods for solving this optimization
problem emerged with the birth of the electronic com-
puter in the 1950’s and were typically based on ei-
ther dynamic programming, which is limited to very
small problems, or methods based on the calculus
of variation, so-called indirect methods. The in-
ability of indirect methods to deal with inequality
constraints, represented above as the path constraint
h(t,x(t), ẋ,z(t),u(t), p) ≤ 0 and the control bounds
u(·)∈ [umin,umax], shifted the focus in the early 1980’s
to direct-methods, where instead the control, and (pos-
sibly) the state, trajectories are parametrized to form
a finite-dimensional non-linear program (NLP), for
which standard solution methods exist. In this work,
we employ two of the most popular methods in this
field, namely direct multiple shooting and direct collo-
cation, see [8, 9] for an overview.

2.1.1 Direct multiple shooting

After parametrizing the control trajectories, for exam-
ple by using a piecewise constant approximation, the
time varying state trajectories can be eliminated by
making use of standard ODE or DAE integrators. This
method of embeddding DAE integrators in the NLP
formulation is referred to as single shooting. The ad-
vantage is that it makes use of two standard problem
formulations, the solution of initial value problems for
DAEs and the solution of unstructured NLPs. For both
of these problems, there exist several standard solvers,
facilitating the implementation of the method. The
drawback of single shooting is that the integrator call
is a highly nonlinear operation, even if the differential
equation is a linear one, making the NLP-optimizer
prone to ending up in a local, rather than global, mini-
mum and/or to slow convergence speeds To overcome
this, Bock’s direct multiple shooting method [10] in-
cludes in the optimization problem the differential
state at a number of points, ”shooting nodes”, and the
continuity of the state trajectories at these points is en-
forced by adding additional constraints to the NLP.
These additional degrees of freedom can be used for
suitable initialization of the state trajectories and of-
ten increase the radius of convergence at the cost of a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

219

larger NLP.
The main difficulty of the method, and often the

bottleneck in terms of solution times, is to efficiently
and accurately calculate first and often second or-
der derivatives of the DAE integrator, needed by the
NLP solver. Implementations of the method include
MUSCOD-II and the open-source ACADO Toolkit
[26], used here.

2.1.2 Direct collocation

A common alternative to shooting methods is direct
collocation on finite elements. Direct collocation is a
simultaneous method, where both the differential and
algebraic states as well as the controls are approxi-
mated by polynomials. But in contrast to multiple
shooting, no integrator is used to compute the state and
algebraic profiles. Rather, the original continuous time
optimal control problem (1) is transcribed directly into
an algebraic problem in the form of a non-linear pro-
gram (NLP). This non-linear program is usually large,
but is also typically very sparse. Algorithms, such as
IPOPT, [39], exist that explores the sparsity structure
of the resulting NLP in order to compute solutions of
the problem in a fast and robust way.

The interpolation polynomials used to approximate
the state profiles are usually chosen to be orthogonal
Lagrange polynominals, and common choices for the
collocation proints include Lobatto, Radau and Gauss
schemes. In this paper, Radau collocation will be used,
since this scheme has the advantage of featuring a col-
location point at the end of each finite element, which
makes encoding of continuity constraint for the states
at element junction points straightforward.

The direct collocation method shares some charac-
teristics with multiple shooting, since both are simulta-
neous methods. For example, unstable systems can be
handled, and it is easy to incorporate state and control
constraints. There are, however, also differences be-
tween multiple shooting and direct collocation. While
a multiple shooting method typically requires compu-
tation of DAE sensitivities by means of integration of
additional differential equations, direct collocation re-
lies only on evaluation of first and (if analytic Hessian
is used) second order derivatives of the DAE residual.
For further discussion on the pros and cons of multiple
shooting and direct collocation, see [9]

2.2 Modelica and Optimica

The Modelica language targets modeling of com-
plex heterogeneous physical systems, [37]. Model-

ica permits specification of models in a wide range
of physical domains, including mechanics, thermody-
namics, electronics, chemistry and thermal systems.
Also, recent versions of the language support mod-
eling of embedded control systems and mapping of
controller code to real-time control hardware. Mod-
elica is object-oriented and equation-based, where the
former property provides a means to construct mod-
ular and reusable models and the latter enables the
user to state declarative equations. It is worth notic-
ing that both differential and algebraic equations are
supported and that there is no need, for the user, to
solve the model equations for the derivatives, which is
common in block-based modeling frameworks. In ad-
dition, Modelica supports acausal modeling, enabling
explicit modeling of physical interfaces. This feature
is the foundation of the component model in Model-
ica, where components can be connected to each other
in connection diagrams.

Whereas Modelica offers state-of-the-art modeling
of complex physical systems, it lacks constructs for
expressing optimization problems. For simulation ap-
plications, this is not a problem, but when integrating
Modelica models with optimization frameworks, it is
inconvenient. In order to improve the support for for-
mulation of optimization problems, the Optimica ex-
tension [1] has been proposed. Optimica adds to Mod-
elica a small number of constructs for expressing cost
functions, constraints, and what parameters and con-
trols to optimize.

2.3 JModelica.org

JModelica.org is a Modelica-based open source plat-
form targeting optimization simulation and analysis of
complex systems, [2]. The platform offers compil-
ers for Modelica and Optimica, a simulation package
called Assimulo and a direct collocation algorithm for
solving large-scale DAE-based dynamic optimization
problems. The user interface in JModelica.org is based
on Python, which provides means to conveniently de-
velop complex scripts and applications. In particular,
the packages Numpy [30], Scipy [16] and Matplotlib
[27] enable the user to perform numerical computa-
tions interactively.

Recent developments of the JModelica.org plat-
form includes import and export of Functional Mock-
up Units (FMUs) and the integration with ACADO
Toolkit and CasADi reported in this paper. The JMod-
elica.org platform has been used in several industrial
applications, including [28, 5, 35, 31, 23, 11]

The JModelica.org compilers generate C-code in-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

220

tended for compilation and linking with numerical
solvers. While this is a well established procedure
for compiling Modelica models, it suffers from some
drawbacks. Compiled code indeed offers very efficient
evaluation of the model equations, but it also requires
the user to regard the model as a black box. In con-
trast, there are many algorithms that can make efficient
use of models expressed in symbolic form. Exam-
ples include tools for control design, optimization al-
gorithms, and code generation, see [12] for a detailed
treatment of this topic. In order to offer an alterna-
tive format for model export, JModelica.org supports
the XML format described in [32]. This format is an
extension of the XML scheme specified by the Func-
tional Mock-up Interface (FMI) specification [29] and
contains, apart from model meta data also the model
equations. The equations are given in a format that is
closely related to the expression trees that are common
in compilers. The XML export functionality is ex-
plored in this paper to integrate the packages ACADO
Toolkit and CasADi with the JModelica.org platform.

2.4 ACADO Toolkit

ACADO Toolkit [26] is an open-source tool for au-
tomatic control and dynamic optimization developed
at the Center of Excellence on Optimization in En-
gineering (OPTEC) at the K.U. Leuven, Belgium. It
implements among other things Bock’s direct multiple
shooting method [10], and is in particular designed to
be used efficiently in a closed loop setting for nonlin-
ear model predictive control (NMPC). For this aim, it
uses the real-time iteration scheme, [14], and solves
the NLP by a structure exploiting sequential quadratic
programming method using the active-set quadratic
programming (QP) solver qpOASES, [18].

Compared to other tools for dynamic optimization,
the focus of ACADO Toolkit has been to develop a
complete toolchain, from the DAE integration to the
solution of optimal control problems in realtime. This
vertical integration, together with its implementation
in self-contained C++ code, allows for the tool to be
efficiently deployed on embedded systems for solving
optimization-based control and estimation problems.

3 CasADi

CasADi is a minimalistic computer algebra system im-
plementing automatic differentiation, AD (see [22]) in
forward and adjoint modes by means of a hybrid sym-
bolic/numeric approach, [4]. It is designed to be a low-

level tool for quick, yet highly efficient implementa-
tion of algorithms for numerical optimization, as il-
lustrated in this paper, see Section 4. Of particular
interest is dynamic optimization, using either a col-
location approach, or a shooting-based approach us-
ing embedded ODE/DAE-integrators. In either case,
CasADi relieves the user from the work of efficiently
calculating the relevant derivative or ODE/DAE sen-
sitivity information to an arbitrary degree, as needed
by the NLP solver. This together with an interface
to Python, see Section 3.1, drastically reduces the ef-
fort of implementing the methods compared to a pure
C/C++/Fortran approach.

Whereas conventional AD tools are designed to be
applied black-box to C or Fortran code, CasADi al-
lows the user to build up symbolic representations of
functions in the form of computational graphs, and
then apply the automatic differentiation code to the
graph directly. These graphs are allowed to be more
general than those normally used in AD tools, includ-
ing (sparse) matrix-valued operations, switches and
integrator calls. To prevent that this added general-
ity comes to the cost of lower numerical efficiency,
CasADi also includes a second, more restricted graph
formulation with only scalar, built-in unary and binary
operations and no branches, similar to the ones found
in conventional AD tools.

CasADi is an open source tool, written as a self-
contained C++ code, relying only on the standard tem-
plate library.

3.1 Python interface to CasADi

Whereas the C++ language is highly efficent for high
performance calculations, and well suited for integra-
tion with numerical packages written in C or Fortran,
it lacks the interactivity needed for rapid prototyping
of new mathematical algorithms, or applications of an
existing algorithm to a particular model. For this pur-
pose, a scripting language such as Python, [36], or a
numerical computing environment such as Matlab, is
more suitable. We choose here to work with Python
rather than Matlab due to its open source availabiliy
and ease of interfacing with other programming lan-
guages.

Interfacing C++ with Python can be done in sev-
eral ways. One way is to wrap the C++ classes in
C functions and blend them into a Python-to-C com-
piler such as Cython. While this approach is simple
enough for small C++ classes, it becomes prohibitively
cumbersome for more complex classes. Fortunately,
there exist excellent tools that are able to automate

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

221

this process, such as the Simplified Wrapper and Inter-
face Generator (SWIG) [17, 6] and the Boost-Python
package. We have chosen to work with SWIG due to
SWIG’s support for a large subset of C++ constructs, a
large and active development community and the pos-
sibility to interface the code to a variety of languages
in addition to Python, in particular JAVA and Octave.

The latest version of SWIG at the time of writ-
ing, version 2.0, maps C++ language constructs onto
equivalent Python constructs. Examples of features
that are supported in SWIG are polymorphism, excep-
tions handling, templates and function overloading.

By carefully designing the CasADi C++ source
code, it was possible to automatically generate inter-
face code for all the public classes of CasADi. Since
the interface code is automatically generated, it is
easy to maintain as the work on CasADi progresses
with new features being added. Using CasADi from
Python renders little or no speed penalty, since virtu-
ally all work-intensive calculations (numerical calcu-
lation, operations on the computational graphs etc.),
take place in the built-in virtual machine. Functions
formulated in Python are typically called only once,
to build up the graph of the functions, thereafter the
speed penalty is neglible.

3.2 The CasADi interfaces to numerical soft-
ware

In addition to being a modeling environment and an
efficient AD environment, CasADi offers interfaces to
a set of numeric software packages, in particular:

• The sensitivity capable ODE and DAE integrators
CVODES and IDAS from the Sundials suite [25]

• The large-scale, primal-dual interior point NLP
solver IPOPT [39]

• The ACADO toolkit

In the Sundials case, CasADi automatically formu-
lates the forward or adjoint sensitivity equations and
provides Jacobian information with the appropriate
sparsity needed by the linear solvers, normally an in-
volved and error prone process. For IPOPT, the gra-
dient of the objective function is generated via adjoint
AD. Also, a sparse Jacobian of the NLP constraints
as well as an exact sparse Hessian of the Lagrangian
can be generated using AD by source code transfor-
mation. The ACADO Toolkit interface makes it pos-
sible to use the tool from Python and attach an arbi-
trary ODE/DAE integrator (currently CVODES, IDAS

Figure 1: Optimization toolchain for JModel-
ica/CasADi.

or fixed-step explicit integrators that have been imple-
mented symbolically by the user) to ACADO.

3.3 Complete tool chain

Though models for relatively simple dynamic systems
can be efficiently formulated directly in CasADi, for
more complex models it is beneficial to use a more
expressive approach based on an object-oriented mod-
elling language such as Modelica. To transmit model
information about the dynamic system between Mod-
elica and CasADi, we use the XML exchange format
reported in [32], which is supported by JModelica.org.
On the CasADi side, an XML interpreter based on the
open source XML parser TinyXML, [38], is used to
parse the generated XML code and build up the corre-
sponding C++ data structures. The complete toolchain
is presented in Figure 1.

This approach contrasts to the more conventional
approach currently used in the current optimization
framework of JModelica.org. This approach is based
on C-code generation, which then needs to be com-
piled by a C compiler and linked with JModelica.org’s
runtime environment. See Figure 2.

The fact that the approach does not rely on a C-
compiler in the optimization loop means that the pro-
gram code can be compiled and linked once and for all
for a particular system and then distributed as executa-
bles. It is also important to note that as models grow
in size, the time needed to compile the code may be
large.

3.4 A simple example

To demonstrate the tool, we show how to implement
a simple, single shooting method for the Van der Pol
oscillator used as a benchmark in section 5.1:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

222

Figure 2: Optimization toolchain for JModelica.

from casadi import *

Declare variables (use simple, efficient DAG)

t = SX("t") # time

x=SX("x"); y=SX("y"); u=SX("u"); L=SX("cost")

ODE right hand side function

f = [(1 - y*y)*x - y + u, x, x*x + y*y + u*u]

rhs = SXFunction([[t],[x,y,L],[u]],[f])

Create an integrator (CVODES)

I = CVodesIntegrator(rhs)

I.setOption("ad_order",1) # enable AD

I.setOption("abstol",1e-10) # abs. tolerance

I.setOption("reltol",1e-10) # rel. tolerance

I.setOption("steps_per_checkpoint",1000)

I.init()

Number of control intervals

NU = 20

All controls (use complex, general DAG)

U = MX("U",NU) # NU-by-1 matrix variable

The initial state (x=0, y=1, L=0)

X = MX([0,1,0])

Time horizon

T0 = MX(0); TF = MX(20.0/NU)

State derivative and algebraic state

XP = MX(); Z = MX() # Not used

Build up a graph of integrator calls

for k in range(NU):

[X,XP,Z] = I.call([T0,TF,X,U[k],XP,Z])

Objective function: L(T)

F = MXFunction([U],[X[2]])

Terminal constraints: 0<=[x(T);y(T)]<=0

G = MXFunction([U],[X[0:2]])

solver = IpoptSolver(F,G)

solver.setOption("tol",1e-5)

solver.setOption("hessian_approximation", \

"limited-memory")

solver.setOption("max_iter",1000)

solver.init()

Set bounds and initial guess

solver.setInput(NU*[-0.75], NLP_LBX)

solver.setInput(NU*[1.0],NLP_UBX)

solver.setInput(NU*[0.0],NLP_X_INIT)

solver.setInput([0,0],NLP_LBG)

solver.setInput([0,0],NLP_UBG)

Solve the problem

solver.solve()

In CasADi, symbolic variables are instances of ei-
ther the scalar expression class SX, or the more general
matrix expression class MX.

x=SX("x"); y=SX("y"); u=SX("u"); L=SX("cost")

...

U = MX("U",NU) # NU-by-1 matrix variable

In the example above, we declare variables and for-
mulate the right-hand-side of the integrator symboli-
cally:

f = [(1 - y*y)*x - y + u, x, x*x + y*y + u*u]

Note that at the place where this is encountered in
the script, neither x, y or u have taken a particular
value. This representation of the ordinary differen-
tial equation is passed to the ODE integrator CVODES
from the Sundials suite [25]. Since the ODE is in sym-
bolic form, the integrator interface is able to derive any
information it might need to be able to solve the initial
value problem efficiently, relieving the user of a te-
dious and often error prone process. The information
that can be automatically generated includes derivative
information for sparse, dense or banded methods, as
well as the formulation of the forward and adjoint sen-
sitivity equations (required here since the integrator is
being used in an optimal control setting).

The next interesting line is:

for k in range(NU):

[X,XP,Z] = I.call([T0,TF,X,U[k],XP,Z])

Here, the call member function of the
CVodesIntegrator instance is used to construct
a graph with function calls to the integrator. Since the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

223

matrix variable U is not known at this point, actually
solving the IVP is not possible. This allows us to get
a completely symbolic representation not only of the
ODE, but of the nonlinear programming program.
We then pass the NLP to the open source dual-primal
interior point NLP solver IPOPT. Again, since the
formulation is symbolic, the IPOPT interface will
generate all the information it needs to solve the
problem, including the gradient of the NLP objective
function and the Jacobian of the NLP constraint
function, both of which can be best calculated using
automatic differentiation in adjoint mode for this
particular example.

Note that the example above, with comments re-
moved, consists of about 30 lines of code, which is
a very compact way to implement the single shoot-
ing method. With only moderately more effort, other
methods from the field of optimal control can be for-
mulated including multiple-shooting and direct col-
location, see Section 4. When executing the script
above, it iterates to the the correct solution in 592 NLP
iterations, which is considerably slower than the corre-
sponding results for the simultaneous methods. Adapt-
ing the script to implement multple-shooting rather
than single-shooting (the code of which is available in
CasADi’s example collection), decreases the number
of NLP iterations to only 17.

4 A Python-based Collocation Algo-
rithm

As described in Section 2.1, one strategy for solv-
ing large-scale dynamic optimization problems is di-
rect collocation, where the dynamic DAE constraint
is replaced by a discrete time approximation. The re-
sult is an non-linear program (NLP), which can be
solved with standard algorithms. A particular chal-
lenge when implementing collocation algorithms is
that the algorithms typically used to solve the result-
ing NLP require accurate derivative information and
sparsity structures. In addition, second order deriva-
tives can often improve robustness and convergence of
such algorithms.

One option for implementing collocation algorithm
is provided by optimization tools such as AMPL [19]
and GAMS [21]. These tools support formulation of
linear and non-linear programs and the user may spec-
ify collocation problems by encoding the model equa-
tions as well as the collocation constraints. The AMPL
platform also provides a solver API, supporting evalu-
ation of the cost function and the constraints, as well

as first and second order derivatives, including sparsity
information. A benefit for the user is that the tool in-
ternally computes these quantities using an automatic
differentiation strategy that is very efficient, which in
turn enables a solver algorithm to operate fast and reli-
ably. On the other hand, AMPL, and similar systems,
does not offer appropriate support for physical mod-
eling. The description format is inherently flat, which
makes construction of reusable models intractable.

Physical modeling systems, on the other hand, of-
fer excellent support for modeling and model reuse,
but typically offer only model execution interfaces
that often do not provide all the necessary API func-
tions. Typically, sparsity information and second or-
der derivative information is lacking. The model exe-
cution interface in JModelica.org, entitled the JMod-
elica.org Model Interface (JMI) overcomes some of
these deficiencies by providing a DAE interface sup-
porting sparse Jacobians, which in turn are computed
using the CppAD package [7]. Based on JMI, a direct
collocation algorithm has been implemented in C and
the resulting NLP has been interfaced with the algo-
rithm IPOPT [39]. While this approach has been suc-
cessfully used in a number of industrially relevant ap-
plications, it also requires a significant effort in terms
of implementation and maintenance. In many respects,
implementation of collocation algorithms reduces to
book keeping problems where indices of states, inputs
and parameters need to be tracked in the global vari-
able vector. Also, the sparsity structure of the DAE Ja-
cobian needs to be mapped into the composite NLP re-
sulting from collocation. In this respect, the approach
taken in AMPL and GAMS has significant advantages.

In an effort to explore the strengths of the physi-
cal modeling framework JModelica.org and the con-
venience and efficiency in evaluation of derivatives of-
fered by CasADi, a direct collocation algorithm simi-
lar to the one existing in JModelica.org has been im-
plemented. The implementation is done completely
in Python relying on CasADi’s model import feature
and its Python interface. As compared to the approach
taken with AMPL, the user is relieved from the bur-
den of implementing the collocation algorithm itself.
In this respect the new implementation does not dif-
fer from the current implementation in JModelica.org,
but instead, the effort needed to implement the algo-
rithm is significantly reduced. Also, advanced users
may easily tailor the collocation algorithm to their spe-
cific needs.

The implementation used for the benchmarks pre-
sented in this paper is a third order Radau scheme,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

224

which is also supported by the C collocation imple-
mentation in JModelica.org.

5 Benchmarks

Three different optimal control benchmark problems
with different properties have been selected for com-
parison of the different algorithms: the Van der Pol os-
cillator, a Continuously Stirred Tank Reactor (CSTR)
with an exothermic reaction, and a combined cycle
power plant. The first bencmark, the Van der Pol oscil-
lator, is a system commonly studied in non-linear con-
trol courses, and demonstrates the ability of all meth-
ods evaluated to solve optimal control problems. The
CSTR problem features highly non-linear dynamics in
combination with a state contstraint. The final bench-
mark, the combined cycle power plant, is of larger
scale, consisting of nine states and more than 100 al-
gebraics.

Whereas the Van der Pol problem has been success-
fully solved using both multiple shooting and collo-
cation, a solution to the CSTR and combined cycle
problem has been obtained only using a collocation
approach.

For reference, the original collocation implementa-
tion, written in C, is included in the benchmarks. This
algorithm is referred to as JM collocation.

All the calculations have been performed on an Dell
Latitude E6400 laptop with an Intel Core Duo proces-
sor of 2.4 GHz, 4 GB of RAM, 3072 KB of L2 Cache
and 128 kB if L1 cache, running Linux.

In the benchmarks where IPOPT is used, the algo-
rithm is compiled with the linear solver MA57 from
the HSL suite.

5.1 Optimal control of the Van der Pol Oscil-
lator

As a first example, consider the Van der Pol oscillator,
described by the differential equations

ẋ1 = x2, x1(0) = 1

ẋ2 = (1− x2
1)x2− x1 x2(0) = 0.

(2)

The optimization problem is formulated as to mini-
mize the following cost

min
u

∫ 20

0
x2

1 + x2
2 +u2dt (3)

subject to the constraint

u ≤ 0.75. (4)

Figure 3: Optimization results for the Van der Pol os-
cillator.

First, we solve the optimal control problem using three
different algorithms, all based on the Modelica model
and the Optimica specification encoding the optimal
control problem. 20 uniformly distributed control
segements were used in all cases. The first method
used to solve the problem is JModelica’s native, C-
based implementation of direct collocation, which re-
lies on code generation and the AD-tool CppAD to
generate derivatives. Secondly, the novel, CasADi
and Python-based implementation of direct colloca-
tion presented in Section 4 is applied. The third al-
gorithm is ACADO Toolkit’s implementation of mul-
tiple shooting, using CasADi’s interface to evaluate
functions and and directional derivatives. Forward
mode AD was used to generate DAE sensitivities and a
BFGS approximation of the Hessian of the Lagrangian
of the NLP. The optimal solutions for the three differ-
ent algorithms are shown in Figure 3.

Table 1 shows the number of NLP iterations and
total CPU time for the optimization (in seconds) for
5 different algorithmic approaches: direct colloca-
tion implemented in C and in Python using CasADi,
ACADO Toolkit via the CasADi interface, and imple-
mentations of single and multiple shooting based on
CasADi’s Python interface. The implementations of
single and multiple shooting are included to demon-
strate usage of CasADi’s integrator and NLP solver
implementation, rather than to achive high perfor-
mance. For the single shooting code, the complete
script was presented in Section 3.4.

The last column of the table contains the share of the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

225

total time spent in the NLP solver, the rest is mostly
spent in the DAE functions (DAE residual, Jacobian
of the constraints, objective function etc.) which are
interfaced to the NLP solver. This information is not
available for ACADO Toolkit.

Table 1: Execution times for the Van der Pol bench-
mark.

Tool NLP
itera-
tions

Total
time [s]

Time
in NLP
solver
[s]

JModelica.org coll. 21 0.32 0.14
CasADi collocation 103 0.97 0.92
ACADO via CasADi 28 3.45 n/a
CasADi single shooting 616 167.7 1.22
CasADi mult. shooting 16 59.1 0.20

We can see that JModelica’s current C-based imple-
mentation of direct collocation and ACADO’s multi-
ple shooting implementation, both of them using an
inexact Hessian approximation with BFGS updating,
show a similar number of NLP iterations. In terms of
speed, the JModelica.org implementation clearly out-
performs ACADO which is at least partly explained
by the fact that JModelica.org involves a code genera-
tion step, significantly reducing the function overhead
in the NLP solver. Also, CasADi involves a code gen-
eration step, but not to C-code which is then compiled,
but to a virtual machine implemented inside CasADi.
Clearly, this virtual machine is able to compete with
the C implementation in terms of efficiently during
evaluation and is also fast in the translation phase, as
no C-code needs to be generated and compiled. Also
note that for this small problem size, the function over-
head associated with calling the DAE right hand side
is major for all of the shooting methods. A more fair
comparison here would involve the use of ACADO
Toolkit’s own symbolic syntax coupled with a code
generation step in ACADO.

In this particular example, IPOPT, using CasADi to
generate the exact Hessian of the Lagrangian, require
more NLP steps than ACADO and JModelica.org’s
native implementation of collocation which are both
using an inexact Hessian approximation. Despite the
fact that the CasADi-based implementation does not
rely on C code generation, and although it is calculat-
ing the exact Hessian, the time it takes to evaluate the
functions only constitute only a small fraction (around
5%) of the total execution time. In contrast, in the C-
based implmentation, the time spent in DAE functions,
make up more than half of the total CPU time. This re-
sult cleary demonstrates one of the main strengths of

CasADi, namely computational efficiency.
Looking at the number of iterations required in the

single shooting algorithm, the superior convergence
speed of simultaneous methods (collocation and mul-
tiple shooting) is obvious.

5.2 Optimal control of a CSTR reactor

We consider the Hicks-Ray Continuously Stirred Tank
Reactor (CSTR) containing an exothermic reaction,
[24]. The states of the system are the reactor temper-
ature T and the reactant concentration c. The reactant
inflow rate, F0, concentration, c0, and temperature, T0,
are assumed to be constant. The input of the system is
the cooling flow temperature Tc. The dynamics of the
system is then given by:

ċ(t) = F0(c0− c(t))/V − k0e−EdivR/T (t)c(t)
Ṫ (t) = F0(T0−T (t))/V−

dH/(ρCp)k0e−EdivR/T (t)c(t)+
2U/(rρCp)(Tc(t)−T (t))

(5)

where r, k0, EdivR, U , ρ , Cp, dH, and V are physical
parameters.

Based on the CSTR model, the following dynamic
optimization problem is formulated:

min
Tc(t)

∫ t f

0
(cref− c(t))2 +(T ref−T (t))2+

(T ref
c −Tc(t))2dt

(6)

subject to the dynamics (5). The cost function corre-
sponds to a load change of the system and penalizes
deviations from a desired operating point given by tar-
get values cref, T ref and T ref

c for c, T and Tc respec-
tively. Stationary operating conditions were computed
based on constant cooling temperatures Tc = 250 (ini-
tial conditions) and Tc = 280 (reference point).

In order to avoid too high temperatures during the
ignition phase of the reactor, the following tempera-
ture bound was enforced:

T (t)≤ 350. (7)

The optimal trajectories for the three different al-
gorithms are shown in Figure 4, where we have used
a control discretization of 100 elements and a 3rd or-
der Radau-discretization of the state trajectories for the
two collocation implementations.

Table 2 shows the performance of the two compared
implementations of collocation in terms of NLP itera-
tions and CPU time.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

226

Figure 4: Optimization results for the CSTR reactor.

Table 2: Execution times for the CSTR benchmark.
Tool JM

coll.
CasADi
coll.

NLP iterations 85 20
Total time 3.2 0.18
Time in NLP solver 1.1 0.16
Time in DAE functions 2.1 0.02

In this example, the Python-based collocation algo-
rithm is clearly superior, it converges more quickly,
which is likely due to the provided exact Hessian.
Also, the lion’s share of the execution time is spent
internally in IPOPT, leaving little opportunities to op-
timize the code in function evaluations further.

5.3 Optimal start-up of a combined cycle
power plant

5.3.1 Physical model setup

A simplified model of a one-level-of-pressure
combined-cycle power plant is considered in this
benchmark, see Figure 5 for the object diagram.

The gas turbine model (lower left) generates a pre-
scribed flow of exhaust gas at a prescribed tempera-
ture, which are both a function of the load input signal.

The turbine exhaust gases enter the hot side of
a counter-current heat exchanger, and are then dis-
charged to the atmosphere. The economizer and su-
perheater are modelled by a dynamic energy balance
equation for each side, neglecting compressibility and
friction effects. The drum boiler evaporator instead
includes both dynamic mass and energy balance equa-
tions, assuming thermodynamic equilibrium between
the liquid and the vapour phases. The energy storage

Figure 5: Diagram of the combined-cycle plant model.

in all the steel walls is accounted for assuming they are
at the same temperature of the water/steam fluid.

The feedwater system is described by a prescribed
flow rate source with fixed temperature, driven by a PI
level controller that stabilizes the level dynamics and
keeps the void fraction in the drum around 0.5.

Finally, the superheated steam enters the steam tur-
bine, which is modeled as an expansion to the con-
denser pressure, assuming a constant isentropic effi-
ciency. The turbine also exposes a thermal port, cor-
responding to the surface where the inlet steam comes
into contact with the turbine rotor. This port is con-
nected to a thermal model of the hollow shaft, given
by Fourier’s heat equation, discretized by the finite dif-
ference method. The thermal stress on the shaft sur-
face, which is the main limiting factor in the start-up
transients, is proportional to the difference between the
surface and the average temperature of the shaft.

In order to keep the complexity low, constant spe-
cific heat cp is assumed in the economizers and su-
perheaters; lumped-parameter models are assumed for
the heat exchanger segments, with just one tempera-
ture state for each side. Last, but not least, also the
turbine rotor thermal model has only one tempera-
ture state resulting from the discretization of Fourier’s
equation. The resulting nonlinear model has nine state
variables and 127 algebraic variables. A more detailed
discussion on the physical modelling of the plant can
be found in [11].

5.3.2 Minimum-time start-up

The goal of the optimization problem is to reach the
full load level as fast as possible, while limiting the
peak stress value on the rotor surface, which deter-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

227

mines the lifetime consumption of the turbine. Since
the steam cycle is assumed to operate in a pure slid-
ing pressure mode, the full load state is reached when
the load level of the turbine, u(t) (which is the con-
trol variable), has reached 100% and the normalized
value of the evaporator pressure, pev, has reached the
target reference value pref

ev . A Lagrange-type cost func-
tion, penalizing the sum of the squared deviations from
the target values, drives the system towards the desired
set-point (pevap,u) = (pref

evap,1) as quickly as possible.
Inequality constraints are prescribed on the maxi-

mum admissible thermal stress in the steam turbine,
σ(t), as well as on the rate of change of the gas turbine
load: on one hand, the load is forbidden to decrease,
in order to avoid cycling of the stress level during the
transient; on the other hand, it cannot exceed the max-
imum rate prescribed by the manufacturer.

The start-up optimization problem is then defined
as:

min
u(t)

∫ t f

t0
(pevap(t)− pref

evap)
2 +(u(t)−1)2 dt (8)

subject to the constraints

σ(t)≤ σmax

u̇(t)≤ dumin

u̇(t)≥ 0

(9)

and to the DAE dynamics representing the plant.
The initial state for the DAE represents the state of
the plant immediately after the steam turbine roll-out
phase and the connection of the electric generator to
the grid.

The optimization result is shown in Figure 6. Dur-
ing the first 200 seconds, the gas turbine load is in-
creased at the maximum allowed rate and the stress
builds up rapidly, until it reaches the target limit. Sub-
sequently, the load is slowly increased, in order to
maintain the stress level approximately constant at the
prescribed limit. When the 50% load level is reached,
further increases of the load do not cause additional
increase of the gas exhaust temperature, and therefore
cause only small increases of the steam temperature.
It is then possible to resume increasing the load at the
maximum allowed rate, while the stress level starts to
decrease. The full load is reached at about 1400 s. Be-
tween 1000 and 1100 seconds, the load increase rate
is actually zero; apparently, this small pause allows to
increase the load faster later on, leading to an overall
shorter start-up time.

This problem, which is of a more realistic size has
been solved with the two direct collocation implemen-
tations and the results are shown in Table 3.

Figure 6: Optimal startup of a combined cycle power
plant.

Table 3: Execution times for the combined cycle
benchmark.

Tool JM coll CasADi
coll

NLP iterations 49 198
Total time 19.9 16.3
Time in NLP solver 2.4 15.3
Optimal cost 6487 6175

We note that the CasADi-based collocation algo-
rithm needs more iterations to reach the optimal solu-
tion, but on the other hand, the optimum that it found is
indeed better than the one found using BFGS. Whether
this is due to some minor differences in the collocation
algorithms (since the models are identical), is beyond
the scope of this paper. What can be said with certainty
is that whereas most of the time spent in the DAE func-
tions in the existing C-based approach, the opposite
is true for the CasADi approach. Indeed, with more
than 90% of the computational time spent internally in
IPOPT, optimizing the CasADi execution time further
would do little to reduce the overall execution time.

6 Summary and Conclusions

In this paper, the integration of CasADi and the JMod-
elica.org platform has been reported. It has been
shown how an XML-based model exchange format
supported by JModelica.org and CasADi is used to
combine the expressive power provided by Modelica
and Optimica with state of the art optimization algo-
rithms. The use of a language neutral model exchange
format simplifies tool interoperability and allows users

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

228

to use different optimization algorithms without the
need to reencode the problem formulation. As com-
pared to traditional optimization frameworks, typically
requiring user’s to encode the model, the cost function
and the constraints in a algorithm-specific manner, the
approach put forward in this paper increases flexibility
significantly.

7 Acknowledgments

This research at KU Leuven was supported
by the Research Council KUL via the Center
of Excellence on Optimization in Engineering
EF/05/006 (OPTEC, http://www.kuleuven.be/optec/),
GOA AMBioRICS, IOF-SCORES4CHEM and
PhD/postdoc/fellow grants, the Flemish Government
via FWO (PhD/postdoc grants, projects G.0452.04,
G.0499.04, G.0211.05,G.0226.06, G.0321.06,
G.0302.07, G.0320.08, G.0558.08, G.0557.08, re-
search communities ICCoS, ANMMM, MLDM) and
via IWT (PhD Grants, McKnow-E, Eureka-Flite+),
Helmholtz Gemeinschaft via vICeRP, the EU via
ERNSI, Contract Research AMINAL, as well as
the Belgian Federal Science Policy Office: IUAP
P6/04 (DYSCO, Dynamical systems, control and
optimization, 2007-2011).

Johan Åkesson gratefully acknowledges financial
support from the Swedish Science Foundation through
the grant Lund Center for Control of Complex Engi-
neering Systems (LCCC).

References

[1] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[2] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization with
Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimiza-
tion problem. Computers and Chemical Engi-
neering, 34(11):1737–1749, November 2010.
Doi:10.1016/j.compchemeng.2009.11.011.

[3] Johan Åkesson and Ola Slätteke. Modeling, cali-
bration and control of a paper machine dryer sec-
tion. In 5th International Modelica Conference
2006, Vienna, Austria, September 2006. Model-
ica Association.

[4] J. Andersson, B. Houska, and M. Diehl. Towards
a Computer Algebra System with Automatic Dif-
ferentiation for use with Object-Oriented mod-
elling languages. In 3rd International Work-
shop on Equation-Based Object-Oriented Mod-
eling Languages and Tools, Oslo, Norway, Octo-
ber 3, 2010.

[5] Niklas Andersson, Per-Ola Larsson, Johan
Åkesson, Staffan Haugwitz, and Bernt Nilsson.
Calibration of a polyethylene plant for grade
change optimizations. In 21st European Sympo-
sium on Computer-Aided Process Engineering,
May 2011. Accepted for publication.

[6] D. M. Beazley. Automated scientific software
scripting with SWIG. Future Gener. Comput.
Syst., 19:599–609, July 2003.

[7] B. M. Bell. CppAD Home Page, 2010. http:

//www.coin-or.org/CppAD/.

[8] Lorenz T. Biegler. Nonlinear programming: con-
cepts, algorithms, and applications to chemical
processes. SIAM, 2010.

[9] T. Binder, L. Blank, H.G. Bock, R. Bulirsch,
W. Dahmen, M. Diehl, T. Kronseder, W Mar-
quardt, J.P. Schlöder, and O. v. Stryk. Online Op-
timization of Large Scale Systems, chapter Intro-
duction to model based optimization of chemical
processes on moving horizons, pages 295–339.
Springer-Verlag, Berlin Heidelberg, 2001.

[10] H.G. Bock and K.J. Plitt. A multiple shoot-
ing algorithm for direct solution of optimal con-
trol problems. In Proceedings 9th IFAC World
Congress Budapest, pages 243–247. Pergamon
Press, 1984.

[11] F. Casella, F. Donida, and J. Åkesson. Object-
oriented modeling and optimal control: A case
study in power plant start-up. In Proc. 18th IFAC
World Congress, 2011. In submission.

[12] Francesco Casella, Filippo Donida, and Johan
Åkesson. An XML representation of DAE sys-
tems obtained from Modelica models. In Pro-
ceedings of the 7th International Modelica Con-
ference 2009. Modelica Association, September
2009.

[13] Dassault Systemes. Dymola web page, 2010.
http://www.3ds.com/products/catia/

portfolio/dymola.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

229

[14] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen,
Z. Nagy, and F. Allgöwer. Real-time optimiza-
tion and Nonlinear Model Predictive Control
of Processes governed by differential-algebraic
equations. J. Proc. Contr., 12(4):577–585, 2002.

[15] M. Diehl, H. J. Ferreau, and N. Haverbeke. Non-
linear model predictive control, volume 384 of
Lecture Notes in Control and Information Sci-
ences, chapter Efficient Numerical Methods for
Nonlinear MPC and Moving Horizon Estima-
tion, pages 391–417. Springer, 2009.

[16] Inc. Enthought. SciPy, 2010. http://www.

scipy.org/.

[17] Dave Beazley et al. SWIG – Simplified Wrap-
per and Interface Generator, version 2.0, 2010.
http://www.swig.org/.

[18] H. J. Ferreau, H. G. Bock, and M. Diehl. An
online active set strategy to overcome the limita-
tions of explicit MPC. International Journal of
Robust and Nonlinear Control, 18(8):816–830,
2008.

[19] R Fourer, D. Gay, and B Kernighan. AMPL – A
Modeling Language for Mathematical Program-
ming. Brooks/Cole — Thomson Learning, 2003.

[20] R. Franke, M. Rode, and K Krü 1
2 ger. On-line op-

timization of drum boiler startup. In Proceedings
of Modelica’2003 conference, 2003.

[21] Gams Development Corporation. GAMS web
page, 2010. http://www.gams.com/.

[22] A. Griewank. Evaluating Derivatives, Principles
and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, 2000.

[23] Staffan Haugwitz, Johan Åkesson, and Per Ha-
gander. Dynamic start-up optimization of a plate
reactor with uncertainties. Journal of Process
Control, 19(4):686–700, April 2009.

[24] G. A. Hicks and W. H. Ray. Approximation
methods for optimal control synthesis. Can. J.
Chem. Eng., 20:522 –529, 1971.

[25] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L.
Lee, R. Serban, D. E. Shumaker, and C. S. Wood-
ward. Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers. ACM Trans-
actions on Mathematical Software, 31:363–396,
2005.

[26] B. Houska, H.J. Ferreau, and M. Diehl. ACADO
Toolkit – An Open Source Framework for Auto-
matic Control and Dynamic Optimization. Op-
timal Control Applications and Methods, 2010.
DOI: 10.1002/oca.939 (in print).

[27] J. Hunter, D. Dale, and M. Droettboom. Mat-
PlotLib: Python plotting, 2010. http://

matplotlib.sourceforge.net/.

[28] P-O. Larsson, J. Åkesson, Staffan Haugwitz, and
Niklas Andersson. Modeling and optimization of
grade changes for multistage polyethylene reac-
tors. In Proc. 18th IFAC World Congress, 2011.
In submission.

[29] Modelisar. Functional Mock-up Interface
for Model Exchange, 2010. http://www.

functional-mockup-interface.org.

[30] T. Oliphant. Numpy Home Page, 2009. http:

//numpy.scipy.org/.

[31] B. Olofsson, H. Nilsson, A. Robertsson, and
J. Åkesson. Optimal tracking and identification
of paths for industrial robots. In Proc. 18th IFAC
World Congress, 2011. In submission.

[32] Roberto Parrotto, Johan Åkesson, and Francesco
Casella. An XML representation of DAE sys-
tems obtained from continuous-time Modelica
models. In Third International Workshop on
Equation-based Object-oriented Modeling Lan-
guages and Tools - EOOLT 2010, September
2010.

[33] J. Poland, A. J. Isaksson, and P. Aronsson. Build-
ing and solving nonlinear optimal control and es-
timation problems. In 7th International Modelica
Conference, 2009.

[34] Process Systems Enterprise. gPROMS Home
Page, 2010. http://www.psenterprise.com/
gproms/index.html.

[35] K. Prölss, H. Tummescheit, S. Velut, Y. Zhu,
J. Åkesson, and C. D. Laird. Models for a post-
combustion absorption unit for use in simulation,
optimization and in a non-linear model predictive
control scheme. In 8th International Modelica
Conference, 2011.

[36] Python Software Foundation. Python Program-
ming Language – Official Website, January
2011. http://www.python.org/.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

230

[37] The Modelica Association. Modelica – a uni-
fied object-oriented language for physical sys-
tems modeling, language specification, version
3.2. Technical report, Modelica Association,
2010.

[38] Lee Thomason. TinyXML, January 2011. http:
//www.grinninglizard.com/tinyxml/.

[39] Andreas Wächter and Lorenz T. Biegler. On
the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear
programming. Mathematical Programming,
106(1):25–58, 2006.

[40] V. M. Zavala and L. T. Biegler. The advanced
step NMPC controller: Optimality, stability and
robustness. Automatica, 45(1):86–93, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

231

Towards a Modular and Accessible Modelica Compiler Backend

Jens Frenkel+, Günter Kunze+, Peter Fritzson*, Martin Sjölund*, Adrian Pop*, Willi Braun#
+Dresden University of Technology, Institute of Mobile Machinery and Processing Machines

*PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

#FH Bielefeld, University of Applied Sciences
{jens.frenkel, guenter.kunze}@tu-dresden.de,{peter.fritzson,martin.sjolund,adrian.pop}@liu.se,

willi.braun@fh-bielefeld.de

Abstract

Modelica is well suited for modelling complex physical
systems due to the acausal description it is using. The
causalisation of the model is carried out prior to each
simulation. A significant part of the causalisation pro-
cess is the symbolic manipulation and optimisation of
the model. Despite the growing interest in Modelica,
the capabilities of symbolic manipulation and optimisa-
tion are not fully utilized. This paper presents an ap-
proach to increase the customisability, access, and re-
use of symbolic optimisation by a more modular and
flexible design concept. An overview of the common
symbolic manipulation and optimisation algorithms of
a typical Modelica compiler is presented as well as a
general modular design concept for a Modelica compil-
er backend. The modularisation concept will be imple-
mented in a future version of the OpenModelica com-
piler.

Keywords: Compiler Backend; Optimisation; Interfac-
es.

1 Introduction

Modelica is a multi-domain object-oriented equation
based modelling language. It is mostly used for model-
ling and simulation of complex physical systems but
other tasks like symbolic analysis of the equation sys-
tem behind the model are possible as well. To accom-
plish those tasks a Modelica Compiler or Interpreter is
needed. All Modelica compilers known to the authors
are divided into a frontend and a backend. The frontend
is used to extract the system of equations behind the
object-oriented Modelica Model. This task is typically
called flattening and forms a challenge on its own [1].

 The Backend is the part of the compiler which per-
forms symbolic manipulation of the equation systems
and generates code suitable for (efficient) execution or
interpretation. These symbolic manipulations are de-

pendent on the specific analysis task and the type of the
equation system. To prepare a model for numerically
stable simulation of a higher index system, for exam-
ple, the backend could perform an index reduction in
combination with a matching algorithm to assign all the
equations and perform some symbolic optimisation in
order to improve the runtime performance.

Because of the complexity of Modelica the typically
implemented symbolic manipulation algorithms are
generally applicable for all kinds of equation systems.
On the one hand this is an advantage because the user
does not need to deal with the tasks of symbolic ma-
nipulation to get the desired results. On the other hand
it is a disadvantage for the advanced user or library
developer because there is normally only restricted ac-
cess to the symbolic manipulation algorithms.

To overcome these limitations the authors designed
a concept for a modular Modelica compiler backend
which to a large extent has been realised in the new re-
organised implementation of the Open Source
OpenModelica Compiler from OpenModelica version
1.6, excluding external APIs and phase reordering flex-
ibility. The concept will include an interface for exter-
nal tools, for example for symbolic optimisation, and a
safe and task-dependent method to implement manipu-
lation algorithms for equation systems.

The next chapter introduces the reader into the
common symbolic manipulation process for Modelica
Compilers. Chapter three presents an overview of ad-
vanced symbolic manipulation algorithms which may
speed up the simulation. The options for the user to
access and customisation of symbolic manipulation
algorithms are discussed within chapter four.

After concluding the previous chapters, chapter five
presents the concept of the new modular compiler
backend. Chapter six continues with the basic concept
for its implementation and chapter seven presents inter-
faces of the modular compiler backend in more detail.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

232

2 Common Symbolic Manipulation
in Modelica Compiler Backends

Simulation itself is the most common usage of Modeli-
ca Models. The following section gives a general over-
view on the tasks of the backend of the Modelica com-
piler and applies to almost all implementations, see also
Figure 1.

 The output of the frontend is usually a flat repre-
sentation of the Modelica model containing all varia-
bles with their properties, equations and algorithms.
The first step of the backend is to analyse the flat mod-
el representation and extract additional information.
Extracted information could for example be the candi-
dates for states, implicit discrete variables and the vari-
ables with time-dependency. Candidates for states are
differentiated variables and variables with the property
stateSelect equal to StateSelect.prefer or
StateSelect.always.

With the change of Modelica 3.2 the derivative op-
erator “der” may have an expression as its argument.
With the ambition of an efficient code generation all
such expressions have to be symbolically differentiated
with respect to the time dependent variables. Only if it
is not possible to perform the symbolic differentiation
an additional variable should be introduced.

The next steps of the symbolic optimisation are to
remove simple equations and equations with no time
dependency. Simple equations are of the form “a=b”,
“a=-b” also called “alias equations”. Alias equations
appear quite often because of the connect-equations
concept. Equations with no time dependency are com-
posed of constant or parameter variables and variables
calculated based on constants or parameters.

Subsequently follows the matching algorithm which
is one of the main phases of the backend. This algo-
rithm has to find an equation for each variable the
equation is solved for. If the system should be solved as
an explicit ordinary differential equation (ODE) sys-
tem, but is a higher index system, the matching algo-
rithm works together with an index reduction algo-
rithm.

To get the block lower triangular form (BLT-Form)
Tarjan’s algorithm [10] is performed. This algorithm
sorts the equations in the order they have to be solved.

 The next step is the symbolic transformation and
the collection of additional information, for example
the occurring of zero crossings. Within the symbolic
transformation phase the information from the match-
ing algorithm is used to solve certain equations symbol-
ically. This has to be done for single equations as well
as for linear or nonlinear equation systems. To solve
certain equations symbolically means to solve an equa-
tion or a system of equations for the desired variable or
variables or provide all information to use an applicable
numerical solver.

The last part of the backend after the whole symbol-
ic manipulation process is concerned with code genera-
tion.

3 Advanced User Supported Symbol-
ic Manipulation

In addition to the methods mentioned in Section 2 there
are specialised symbolic manipulation algorithms
which may speed up the simulation. These include al-
gorithms like:
 dummy derivative with dynamic state selection
 tearing
 inline integration
 function inlining.

All to the author’s known Modelica compilers do not
use these algorithms automatically, apart from tearing.
Normally the users have to set special compiler flags or
adjustments or use specific keywords, for example an-
notations for code generation.

The Dummy Derivative method [3] is a commonly
used index reduction algorithm for higher index differ-
ential algebraic equations (DAE) systems. Using the
Dummy Derivatives method may for some systems
result in a singular Jacobian. A well-known example is
the description of a planar pendulum described using
the Cartesian coordinates.

To overcome these mathematical difficulties dy-
namic state selection could be used. The basic idea of

Figure 1: Common symbolic manipula-
tion process for Modelica models.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

233

dynamic state selection is to change the section of state
variables at run-time for higher performance and nu-
merically stable simulation, see [4] and [5].

Large algebraic equation systems are typical of
Modelica models. The tearing algorithm is a method to
reduce the size of large algebraic equation systems by
dividing strongly connected components in the BLT
graph into smaller sub-systems of equations which
could be solved more efficiently.

The basic concept of tearing is to make an assump-
tion about one or several variables to be known. With
this assumption the matching algorithm is continued.
The torn equation systems are divided into several re-
duced algebraic equation systems and a set of explicit
assignments. In case of a linear algebraic equation sys-
tem the relaxation algorithm or a solver for nonlinear
systems, for example the Newton Iteration method, can
be used to solve the algebraic system. Detailed infor-
mation on the tearing algorithm can be found in Cellier
and Kofmann [6].

For simulations with strong requirements on execu-
tion time like hardware in the loop simulation, it may
be beneficial to merge the integration method and the
equation system. This method is called inline integra-
tion and yields an equation system where the numerical
solver is eliminated as an explicit software component.
Inline integration is for minimising call overhead and
enabling additional symbolic manipulations for exam-
ple removing the division of the time step on both sides
of an equation. For further information about inline
integration [6] and [7] are recommended.

The Modelica Specification 3.2 provides within
chapter 17.3 annotations for code generation. The anno-
tations:
 Evaluate,
 Inline and
 LateInline

are useful for symbolic optimisation. For example the
Modelica MultiBody Library uses these annotations.
Performing the specialised symbolic manipulation al-
gorithms the common symbolic manipulation process
from Figure 1 is expanded to the advanced symbolic
manipulation process shown in Figure 2. For some op-
timisation methods, for example inline integration, it is
useful to run the matching and sorting algorithm re-
peatedly. Hence the graph presented in Figure 2 has in
this case a loop within the second optimisation and
matching algorithm stage.

4 Access to and Customisation of
Symbolic Manipulation

Letting the user or library developers provide the com-
piler with specific information on how the symbolic
manipulation algorithms should optimise the equation
system can be achieved through several options:
1. Usage of specific keywords introduced into the lan-

guage
2. Usage of optional compiler flags/settings
3. Exporting the systems of equations in a symbolic

standardized and easy to use format and perform the
optimisation with another tool

4. Development of a new Modelica compiler

However, none of the above mentioned options are
practical in case a special optimisation is needed. The
reasons are:

 Option 1 requires a long term standardisation pro-
cess for the new methods.

 Option 2 is tool-specific, and therewith restricted.
 For Option 3 there is no standardized and easy to

use format available yet nor does the common com-
piler support an export or import of the system of
equations. Even if there is a support for export
available the user would have to provide a code
writer for the target format.

 Option 4 is not possible for most of the users.

In case an advanced user requires a symbolic manipula-
tion algorithm, the compiler has to fulfill the following
requirements:

Figure 2: Advanced symbolic manipula-
tion process for Modelica models.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

234

 The export and import of the system of equations in
a symbolic standardised and easy to use format. (A
promising development is shown in [2].)

 An increasing number of symbolic manipulation al-
gorithms.

 The possibility to define and use a symbolic manip-
ulation algorithm in a safe and application-related
way.

5 Modular Compiler Backend

To achieve the requirements of a more open and cus-
tomisable access to symbolic manipulation capabilities
the backend of the compiler needs a more general de-
sign concept. Keeping the tasks presented in Section 2
in mind the main tasks of the backend can be summa-
rized into five phases:

 input phase
 pre-optimisation phase
 transformation phase
 post-optimisation phase
 output phase

Based on these phases and the concept of transferring
the system of equations represented by a data object
from one phase to the next, an equation system pipeline
is formed as shown in Figure 3.

The transformation phase achieves a matching using
index reduction methods and sorting the equations. Dif-
ferent modules for index reduction should be available
as shown in Figure 3 within the left upper inner box
“DAE-Handler for Index Reduction”.

For some optimisation methods, for example inline
integration, it is useful to run the matching and sorting
algorithm repeatedly. Hence the pipeline presented in
Figure 3 has a loop within the post-optimisation and
transformation phase.

The output phase transforms the system of equa-
tions into the desired target format. This phase is the
combination from the symbolic transformation and the
code generation from Figure 2. Supposable target for-
mats are a simulation executable or a functional
mockup unit or if not a simulation is desired a XML,
Matlab or Python file export.

With a modularisation concept in mind each phase
should be presented by one (input phase, transfor-
mation phase and output phase) or several (pre- and
post-optimisation phases) modules. For a specific equa-
tion system the pipeline might be built from specific
modules in a specific order. For another equation sys-
tem the pipeline might be built from other modules in a
different order. More precisely, it will be possible to
use application-oriented pipelines for different equation

system. As mentioned above a Modelica model is rep-
resented in the backend as an equation system. This
equation system could be composed of equations, algo-
rithms and sub-systems of equations. In case of a multi-
domain model it may be beneficial to use different op-
timisation modules for the different sub-systems pre-
sent in the model. The equation system pipeline frame
work will allow the optimisation of different sub-
systems using different optimisation modules. The
challenge is to define proper rules for the differentia-
tion of systems of equations.

Figure 3: Data Flow in the Equation System Pipeline.

The system of equations has to be represented by a data
object. This data object should basically include:
 the variables,
 the equations and
 the algorithms.

In case of an efficient implementation and to use the
same interface for the pre- and the post-optimisation
modules as desired, it is beneficial to store additional
information within the data object and to classify varia-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

235

bles, equations and algorithms into different groups.
The additional information should be:
 an incidence matrix for the equations/algorithms

and variables,
 the matching of variables and equations/algorithms

solved for and
 the order of the equations/algorithms they have to

be calculated in.

6 Concept for Implementation

To reduce the possibilities of introducing errors in de-
veloping the backend and support the developers in the
most suitable way, three levels of complexity will be
introduced by a class concept represented in Figure 4.

The basic level is a library for manipulating sym-
bols and symbolic expressions, as shown in the inner-
most box called “Symbolic Math Library” of Figure 4.
The Symbolic Math Library comprises the four mod-
ules:
 Expression
 Symbol
 Simplify
 Solve

An expression consists of symbols, numbers and opera-
tors. In case of a non-scalar symbol an expression is
used to point to the scalar elements of the symbol.
Hence, the expression module and the symbol module
use one another as shown in Figure 4. The two modules
comprise functions to:
 generate expressions/symbols,
 transform them to other types,
 manipulate ,
 get something,
 traverse,
 compare and
 replace sub-expressions.

The module “Simplify” performs symbolic simplifica-
tion of expressions and the module “Solve” implements
functions to solve symbolical equations with the form
“0=exp” for sub-expression.
Based on this symbolic math library an equation system
library presents the second level, which supports all
operations to access and manipulate equations, algo-
rithms and equation systems. The “Equation System
Library” comprises the four modules:
 Variable
 Equation
 Algorithm
 EquationSystem

This library provides functions to manipulate the sys-
tem of equations, traverse them or replace variables

with other variables or expressions for example. Both
libraries have to preserve the consistency of the system
of equations.

By using the library for symbols and expressions as
well as the equation system library specific modules
can be developed for each phase of the equation system
pipeline within the third level in a safe and task-
oriented way. The upper box “Modules for Optimisa-
tion” in Figure 4 for example represents optimisation
algorithms such as:

 Tearing/Relaxation
 InlineIntegration
 Linearisation
 Remove Simple Equation

 Figure 4. Concept for Implementation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

236

The developer can use the library functions of the equa-
tion system library and deal with the tasks of the opti-
misation algorithm.

The same principle holds for the box “DAE-Handler
for Index Reduction” shown in Figure 4. For example
to implement a classical handler for index reduction the
developer can use the function to get the derivatives of
the constrained equations and the function to replace
equations. The classical handler for index reduction
performs index reduction by taking the derivatives of
the constrained equations.

The two modules to perform the sorting of the equa-
tions in BLT-Form and the module for code writing use
the functions of the Symbolic Math Library and the
equation system library as well as all other modules
within the third level of the backend.

Furthermore, through the use of the library func-
tions the implementation of debugging functionality for
the system of equations is simplified and less error-
prone because the information about the performed
transformations would be added automatically by the
library functions.

7 Interfaces and User Modules

With the possibility to export the system of equations
during each phase the usability of the compiler for var-
ious analysis tasks can be significantly increased.
The next level of usability can be reached with an im-
port of equation systems. This opens up the possibili-
ties to:
 use the backend without the frontend,
 use other optimisation tools via an intermediate file

format or an interface and
 store equation systems in different optimisation

stages and run the optimisation algorithm again with
improved optimisation modules.

As shown in Figure 5 the export is feasible by one or
more modules in the pre- or past-optimisation phase. In
Figure 5 an export to an XML-file format is shown as
one example. The import has to be realized in the input
phase to enable a consistency check of the system of
equations.

Furthermore the presented design concept does not
only include external interfaces as presented above.
Additionally internal interfaces expand the usability of
the compiler. With the advantages of the modularisa-
tion:
 replacement of modules,
 reusability of functions,
 distribution of the implementation complexity,
 limitation of complexity and

 a comfortable way to implement symbolic manipu-
lation algorithms

the barriers to design, implement and test new algo-
rithms for symbolic manipulation are reduced. Clearly,
the symbolic simplification of a Modelica model is a
difficult topic and it seems that only the Modelica
compiler writers are able to provide such features. But,
with a simplified access to the Modelica compiler de-
velopment the Modelica compiler writer community
can increase.

 A comfortable way to implement those algorithms
can be supported with the presented class concept from
Figure 4, a development environment and the possibil-
ity to test the implemented algorithms. With the use of
MetaModelica [8] for the Modelica compiler develop-
ment it would be possible for an advanced Modelica
user to implement his/her own modules. MetaModelica
is an extension of the Modelica Language for Meta-
programming facilities. Because of the similarity of
MetaModelica and Modelica the additional require-
ments are marginal. Using the OpenModelica Devel-

opment Environment (OMDev) the requirements men-
tioned above would also be fulfilled.

By offering the possibility to load the modules for
symbolic manipulation dynamically during compile
time the user could combine the compiler backend with

Figure 5: Interfaces for a modular Modelica compiler
backend.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

237

his/her own modules. With a standardized data object
format it would furthermore be possible to implement
new modules in a different language, e.g. C/C++.

8 Conclusion

With the possibility for the user to define and use
his/her own symbolic manipulation algorithms the pos-
sibilities of using Modelica for many different kinds of
applications beside simulation can be significantly in-
creased.

 Users may on their own develop, analyse and get a
deeper understanding of symbolic manipulation algo-
rithms and get better results for specific applications.

 Furthermore, the user could e.g. get access to high-
er index equation system solvers without the challenge
to implement his/her own compiler.

 By giving the user a safe and easy option to extend
and adapt the functionality of the compiler to their own
needs, it would be possible to enhance the development
of the compiler to a new quality and wider practicabil-
ity. This paper presents a contribution to an approach
towards achieving this goal.

The described concept is partly implemented in
OpenModelica 1.6. The modularization has been
achieved, but the external API with the XML interface
is still mostly future work, and an internal API for flex-
ible phase ordering is also future work.

References
[1] Peter Fritzson: Principles of Object-Oriented

Modelling and Simulation with Modelica 2.1,
Page 57ff, Wiley IEEE Press, 2004.

[2] Roberto Parrotto, Johan Åkesson, and Frances-
co Casella: An XML representation of DAE
systems obtained from continuous-time Model-
ica models, EOOLT 2010.

[3] S. E. Mattsson and G. Söderlind: Index Reduc-
tion in Differential Algebraic Equations Using

Dummy Derivatives, SIAM Journal on Scien-
tific Computing, Vol. 14. No. 3, pp. 677-692,
1993

[4] S.E. Mattsson, H. Olsson and H. Elmqvist: Dy-
namic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,

[5] P. Kunkel and V. Mehrmann: Index reduction
for differential-algebraic equations by minimal
extension, ZAMM, vol. 84, pp. 579–597, 2004.

[6] F. E. Cellier, E. Kofman: Continuous System
Simulation, Springer, 2006.

[7] Bonvini, Donida, Leva: Modelica as a design
tool for hardware-in-the-loop simulation, Pro-
ceedings 7th Modelica Conference, Como, Ita-
ly, Sep. 20-22, 2009

[8] A. Pop and P. Fritzson: MetaModelica: A Uni-
fied Equation-Based Semantical and Mathe-
matical Modelling Language. In Proceedings of
Joint Modular Languages Conference 2006
(JMLC2006) LNCS Springer Verlag. Jesus
College, Oxford, England, Sept 13-15, 2006.

[9] P. Fritzson, A. Pop, D. Broman, P. Aronsson:
Formal Semantics Based Translator Generation
and Tool Development in Practice. In Proceed-
ings of 20th Australian Software Engineering
Conference (ASWEC 2009), Gold Coast,
Queensland, Australia, April 14 – 17, 2009.

[10] R.E. Tarjan: Depth First Search and Linear
Graph Algorithms, SIAM Journal of Comput-
ting, 1, pp. 146-160, 1972.

[11] H. Lundvall and P. Fritzson: Event Handling in
the OpenModelica Compiler and Run-time
System. In Proceedings of the 46th Conference
on Simulation and Modelling of the Scandina-
vian Simulation Society (SIMS2005), Trond-
heim, Norway, October 13-14, 2005. An ex-
tended version in Linköping University Press,
www.ep.liu.se.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

238

Media Modeling for Distillation Process with Modelica/MWorks

Chen Chang Ding Jianwan Chen Liping Wu Yizhong

CAD Center, Huazhong University of Science and Technology, Wuhan, China, 430074

chenchang1210@hotmail.com jwdingwh@gmail.com chenlp@hustcad.com

cad.wyz@hust.edu.cn

Abstract

This paper describes a package which consists of

media models for distillation process with the

method of classical two-parameter cubic

thermodynamic equation of state in Modelica on

platform MWorks. A structuralized and hierarchical

modeling strategy was proposed in order to separate

the components and the mixing rules of mixture from

the vapor-liquid equilibrium predicting methods.

With this strategy, a new media model can be

introduced by changing the components’ information

of mixture and of mixing rule. An air distillation

column model was built to test the air media model

consists of nitrogen, oxygen and argon. The results

obtained with MWorks were compared with

simulation calculated with Aspen Plus. A very good

agreement was found and the air model for

distillation in the column worked well.

Keywords: media model; distillation; Modelica;

Vapor-Liquid equilibrium

1 Introduction

Distillation process utilizes the different boiling

point of components of mixture on the same

condition to separate components from mixture. It is

widely used in petroleum refining, chemical,

metallurgical industries and so on. Up to the present

there are numerous commercialized platforms like

Aspen Plus and HYSYS that could be used to predict

distillation process. These platforms mainly contain

media model for vapor-liquid equilibrium (VLE),

physicochemical constants database, process unit

models, User Interface and algorithms library.

Therein the media model is one of the most

important cores of these tools. Its computational

efficiency and accuracy have a strong impact on the

simulation consumed time and accuracy of the whole

process system model. The prediction methods of

vapor-Liquid equilibrium in these tools are mainly

fugacity coefficient method and fugacity- activity

coefficient method. With the former method the

fugacity coefficients of vapor phase and liquid phase

are calculated from the thermodynamic equation of

state. The fugacity coefficient of vapor is from the

thermodynamic equation of state (EoS) and the

activity coefficient from excess function with the

later method. The users of these tools just know how

to use vapor-liquid equilibrium model but don’t

know the mechanism of modeling in these tools.

At present, there are lots of media models for pure

substance and mixture in the Modelica Standard

Library (MSL) Media[1]. But there is no media

model for vapor-liquid equilibrium. In this paper, a

package named MediaForSapera which contains

physical property computing with the two-parameter

EoS method for vapor-liquid equilibrium was built

based on Modelica in MWorks[2]. The models in this

package are based on general concept which allows

the introduction of new working media for

distillation by modification of a new model

parameters and addition of particular equations of

different EoS methods. The media package consists

of parts as follows:

1、 Interfaces: consists of the partial media

models that contain the common variables,

constants, parameters and model structure.

At present there is a base partial model and

four partial models with two-parameter

cubic EOS methods in the package.

2、 FluidData: consists of records contain the

basic physicochemical constants, like

molecular weight and critical temperature,

and experimental regression coefficients of

pure component of the mixture, such as

coefficients of polynomial for specific

enthalpy calculation.

3、 Examples: some mixture models for

Vapor-Liquid Equilibrium, such as air

model which is made up of nitrogen,

oxygen and argon, simple air model

composed of nitrogen and oxygen. All

examples in the package are extends from

package Interfaces.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

239

4、 Tests: some simple models that are used to

test the media models in Examples.

2 Methods of VLE based on the

two-parameter EoS

Vapor-liquid equilibrium is a condition where a

liquid and its vapor are in equilibrium with each

other, a condition or state where the rate of

evaporation equals the rate of condensation on a

molecular level. It could be described by fugacity’s

equality of two phases as follow:

 𝑓𝑖
𝑉 = 𝑓𝑖

𝐿 (1)

Where 𝑓𝑖
𝑉 and 𝑓𝑖

𝐿 means the fugacity in vapor and

liquid phase of component i respectively. There are

two methods that are used to calculate the fugacity.

One is the fugacity-activity coefficient method.

Another is fugacity coefficient method which

predicts the fugacity of two phases by EoS mean as

follows:

 {
𝑓𝑖

𝑉 = 𝛷𝑖
𝑉𝑦𝑖𝑝

 𝑓𝑖
𝐿 = 𝛷𝑖

𝐿𝑥𝑖𝑝
 (2)

Where 𝛷𝑖
𝑉 and 𝛷𝑖

𝐿 means the fugacity coefficient

in vapor and liquid phase of component i

respectively and 𝑦𝑖 and 𝑥𝑖 the mole fraction in

vapor and liquid phase of component i respectively.

The fugacity coefficient method has good

thermodynamic consistency and doesn’t need the

fugacity of standard state when it is calculated. Its

results agree with the experimental measurements

very well for a range of mixture except the strong

polar molecule and electrolyte system. So it is widely

applied to the prediction of vapor-liquid equilibrium

of mixture. The two-parameter cubic EoS method is

introduced into this paper to model VLE of mixture.

2.1 Two-parameter EoS

The thermodynamic equation of state has been

proposed which has practical utility for the first time

by Van der Waals in year 1873 and it has been

developed rapidly in the next one hundred years. The

EoS has been widely used in VLE calculation in

large range of mixture, even includes strong polar

molecule, during the latest decades. Herein the

two-parameter EoS, such as Soave-Redlich-Kwong

(SRK) equation, Redlich-Kwong equation (RK),

Peng-Robinson (PR) equation and Harmens equation,

has characteristic of a small number of parameter,

simple expressions, easily-solving and exact results.

So it has been developed very well and applied more

widely than other EoS.

In this paper, four kinds of two-parameter cubic EoS

were introduced to model the VEL of mixture. They

are RK, SRK, PR and Harmens and they could be

expressed in a unified form:

 𝑝 =
𝑅𝑇

𝑣−𝑏
−

𝑎(𝑇)

𝑣2+𝑚𝑏𝑣+𝑛𝑏2 (3)

Where, p is the pressure of the media, pa. T the

temperature of the media, K. v molar volume, m3

/mol. R the universal gas constant, 8.314J/(mol∙K).

a(T) and b the parameters of EoS, these two

parameters of mixture are computed by mixing rule.

m, n different constants according the different EoS.

The fugacity coefficient and specific enthalphy of

mixture are the important medium properties for

distillation process simulation. For two-parameter

cubic EoS method, they are computed as follows:

 𝑅𝑇𝑙𝑛𝜙𝑖 = ∫ [(
𝜕𝑝

𝜕𝑛𝑖
)

𝑇,𝑉,𝑛𝑗

−
𝑅𝑇

𝑣
] 𝑑𝑣

∞

𝑉
− 𝑅𝑇𝑙𝑛𝑧 (4)

 ℎ𝑖 = ∫ [𝑝 − 𝑇 (
𝜕𝑝

𝜕𝑇
)

𝑉,𝑛𝑇

] 𝑑𝑉
∞

𝑉
+ 𝑝𝑉 + ℎ𝑖

0 (5)

 ℎ = ∑ 𝑦𝑖ℎ𝑖 (6)

where, z means the compressibility factor, =pv/(RT).

ℎ𝑖 the actual specific enthalphy of component i of

mixture. ℎ𝑖
0 the ideal specific enthalphy of

component i of mixture. h the actual specific

enthalphy of mixture.

2.2 mixing rule

When the equation (3) is applied to mixture, the

parameters a(T) and b should be computed by some

mixing rules that could be found in reference[3]. For

a(T) and b in RK, SRK and PR EoS, the Reid mixing

rule is used usually.

 {
𝑎𝑚 = ∑ ∑ 𝑦𝑖𝑦𝑗√𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗)𝑗𝑖

𝑏𝑚 = ∑ 𝑦𝑖𝑏𝑖𝑖

 (7)

Where, 𝑎𝑚 and 𝑏𝑚 mean the parameters of EoS

for mixture. 𝑎𝑖 , 𝑏𝑖 and 𝑎𝑗 the parameters of

components i and j. 𝑦𝑖 and 𝑦𝑖 the mole fraction of

components i and j in vapor or liquid phase of the

mixture. 𝑘𝑖𝑗 is binary interaction coefficient

between component i and component j. It can be

obtained from experiment. The mixing rule for

Harmens EoS is different from the other three EoS. It

can be consulted in reference[4].

3 Implement in MWorks

There are large numbers of mixture in the distillation

process industries and so are the media properties

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

240

prediction methods and the mixing rules of

components in mixture. In order to allow the

introduction of new working media for distillation by

modifying the minimizing set of parameters and

componentsMixing rules

Base Level
Partial media model partialmediaModelforSepera contains

constants, variables, FluidDara structure and model description

that could be shared by all media models for seperation.

Method Level
Partial model partialmediaforSeperawithEOS extended from

partialmediaModelforsepera by adding extra specialized

variables, model description according to the different

Thermodynamical Equation of State.

Instantiation level
Complete media models extended from

partialmediaforSeperawithEOS by assigning components of

mixture and adding mixture rule. It can be used in process unit

models.

Figure 1 Sketch of modeling strategy of media model for distillation

adding the minimizing set of equations, a

structuralized and hierarchical modeling strategy was

used for the modeling of media model package for

distillation, as shows in figure 1. The package has

three levels: base level, method level and

instantiation level.

The base level model is a partial model named

PartialMediaForSepera which all the media models

for distillation are extended from. It consists of some

common parts that can be shared by all models with

the method of two-parameter cubic EoS. The more

details are listed as follows.

 Medium constants: media name, names and

number of chemical substances, critical

proprerties, etc.

 FluidData structure: definition of record

type FluidConstants used for storing

physicochemical constants of pure

substances as show in figure 2. All

components’ physicochemical constants

used in VLE mixture have to comply with

this data structure. When a new substance

is introduced, the constants are assigned in

order of the constants’ sequence in figure 2.

 ThermodynamicState: a minimum set of

variables of state. It is used for function

calling.

 BasePropertiesRecord: common variables

could be shared by all media model with all

EOS, such as pressure, specific enthalpy of

vapor and liquid phase, compressibility

factor, etc.

 BaseProperties: a partial model consists of

common behavior of all media model with

all EOS.

 Type definition: such as “Type

CompressibilityFactor = Real(final

quantity= "compressibility", min=0,

max=1)”.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

241

Figure 2 Structure of the FluidConstants

The method level model is extended from the base

level model PartialMediaForSepera by adding some

special variables and the description according to the

different two-parameter cubic EoS methods. For

instance, the PR EoS method has the expression of

the fugacity coefficient in vapor phase as follow.

𝑙𝑛𝜙𝑖 =
𝑏𝑖

𝑏𝑚

(𝑧 − 1) − 𝑙𝑛(𝑧 − 𝐵𝑚) −

𝐴𝑚

2√2𝐵𝑚
*

2 ∑ 𝑥𝑗𝑎𝑖𝑗𝑗

𝑎𝑚
−

𝑏𝑖

𝑏𝑚
+ 𝑙𝑛 (

𝑧+(1+√2)𝐵𝑚

𝑧+(1−√2)𝐵𝑚
) (8)

Equation (8) is a special equation which is only suit

for the PR EoS but not other. And it should be added

to the BaseProperties section when the partial

method level media model with the PR method is

built by extending the partial base level model, as

shows in figure 3.

Finally the case level models are constructed by

extending the method level models and adding the

components and the mixing rule of mixture. For

example, the air model for distillation was built by

defining the medium name, components’ names and

appointing the fluid data of Nitrogen, Oxygen and

Argon and the binary interaction coefficient of

components as figure 4.

As discussed above, the reason for introducing the

structuralized and hierarchical modeling strategy is

that we want to separate the components information

of mixture and the mixing rules from VLE predicting

method. The same VLE predicting method can be

applied to the different mixtures by changing the

components information of mixture and mixing rule

like the air model showed in figure 4. A user just

needs to know the physicochemical constants of

components and the mixing rule when the user wants

to introduce a new model.

Figure 3 The media model with PR EoS method by

extending the base model

Figure 4 Air model with PR EoS method

4 Test case

In order to validate the media model, a steady state

air distillation column model was built in Modelica

on MWorks based on the assumptions as follows.

 Every column theoretic stage is considered

as an adiabatic system.

 In the energy balance the wall material’s

heat storage is neglected.

 Chemical reactions between Nitrogen,

Oxygen and Argon are not considered.

The column contains eighteen theoretic stages and

the first of them is the condenser which is at the top

of column. The cooled feed air flows into the

fifteenth stage. Each theoretic stage obeys the mass

and energy balance.

 ∑ �̇�𝑖 = 0 (9)

 ∑ �̇�𝑖 ℎ𝑖 = 0 (10)

package N2O2ArWithPRMethod
 extends
Interfaces.PartialMediaForSeperaWithPRMethod(
 mediumName="Air for seperation",
 substanceNames={"O2","Ar","N2"},

,…);
redeclare model extends BaseProperties
equation
PureFluidConstants={FluidData.O2,FluidData.Ar,
FluidData.N2};
kij={{0,0.01396,-0.01238},
 {0.01396,0,-4.071e-3},
 {-0.01238,-4.071e-3,0}};
 end BaseProperties;
end N2O2ArWithPRMethod;

redeclare replaceable partial model extends
BaseProperties
 …
equation

 …
 Log(FugacityCoefficientV) = b .* (zV - 1) /
bV_Mix .- Modelica.Math.log((zV - BV_Mix)) -
AV_Mix / BV_Mix / (2 * sqrt(2)) * (exmav /
aV_Mix .- b / bV_Mix) * (Modelica.Math.log(((zV +
2.414 * BV_Mix) / (zV - 0.414 * BV_Mix))));
 …
end BaseProperties;

record FluidConstants
extends Modelica.Icons.Record;
String name "Name of ideal gas";
SI.MolarMass molarMass;
SI.Temperature criticalTemperature;
SI.AbsolutePressure criticalPressure;
SI.MolarVolume criticalMolarVolume;
Real acentricFactor " acentric factor";
CompressibilityFactor criticalcompressibility;
Real[5] bh

"coefficient of idea media SpecificEnthalpy";
end FluidConstants;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

242

Where, �̇�𝑖 means the mole flow rate on the inlet

and outlet of the theoretic stage. ℎ𝑖 the specific

enthalpy correspond to the �̇�𝑖.

The media model used in the column model was the

model N2O2ArWithPRMethod mentioned in the

Figure 5 Air distillation column in MWorks (left) and

Aspen Plus (right)

third section. The results of this model were

validated with calculations simulated with tool

Aspen Plus. The figure 5 shows the sketch of air

distillation column model in MWorks and Aspen

Plus. F means the cooled feed. N means nitrogen

product. O means oxygen-enriched liquid air. For the

case the following input values and parameters are

used.

Table 1 input values and parameters in the model

Feed pressure 6[bar]

Feed total flow 200[kmol/hour]

Feed mole fraction 0.785[N2], 0.205[O2],

0.01[Ar]

Feed stage No.15

Stage numbers 18

Condensation rate 100%

Condenser pressure 5[bar]

stage pressure drop 0.01[bar]

Distillate rate 50[kmol/hour]

Reflux 1.3

The model of air separation tower was simulated

with 18 theoretical stages and the input values and

parameters used in MWorks and Aspen Plus are

listed in table 1. The physical property model in

Aspen Plus is also Peng-Robinson method.

Figure 6 shows the temperature of medium in each

stage from the simulation in Aspen Plus and MWorks.

The 18th theoretical stage is the oxygen-rich tray and

the first stage is the condenser. The maximum

difference value of the temperature is 0.201K and the

mean value of that is 0.1482K between the results

from MWorks and that from Aspen Plus.Figure 7

demonstrates the values of the mole fraction of

components (nitrogen, oxygen and argon) of air in

gas phase in each stage from the simulation in

MWorks and in Aspen Plus. The maximum

difference of mole fraction of nitrogen is 0.1826%

between the results from MWorks and that from

Aspen Plus. The mole fraction of oxygen 0.1820%.

The mole fraction of argon 0.0049%. The average

difference of mole fraction of nitrogen is 0.0778%

Figure 6 Temperature in each stage

92

93

94

95

96

97

98

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
em

p
er

a
tu

re
/K

Stage Number

Plus MWorks

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

243

Figure 7 Vapor phase mole fraction profile of air distillation column

Figure 8 vapor-liquid equilibrium constant profile of air distillation column

between MWorks and Aspen Plus. The mole fraction

of oxygen 0.0672%. The mole fraction of argon

0.0025%.

The vapor-Liquid equilibrium constants of

substances of mixture simulated in each stage in

Aspen Plus and MWorks are showed in Figure 8. The

maximum relative difference of the equilibrium

constant of nitrogen is 0.6078% between the results

from MWorks and that from Aspen Plus. The

equilibrium constant of oxygen 2.4411%. The

equilibrium constant of argon 1.4253%. The mean

relative difference of the equilibrium constant of

nitrogen is 0.2556% between MWorks and Aspen

Plus. The equilibrium constant of oxygen 2.1032%.

The equilibrium constant of argon 0.8879%.

Summing up the above, the results obtained in the

MWorks model show similar results compared to the

Aspen Plus and the media model of air for

distillation based on Modelica in MWorks works

well.

5 Conclusions

Distillation process widely exists in Petroleum

refining and chemical industry, et al. The model for

vapor-liquid equilibrium predicting is one of the

important parts in distillation process. Its

computational efficiency and accuracy have a strong

impact on the computational efficiency and accuracy

of process model. In this paper, a media model

package, based on the structuralized and hierarchical

modeling strategy, was built for distillation process

in order to explore a suitable modeling strategy for

media model. An air model with this strategy was

used in the air separation column model and the

results were validated by the simulation in Aspen

Plus. The differences of interested variables' value

between the simulation of MWorks and of Aspen

Plus are slight and the air model works well.

At present, the method for media model is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

stage number

m
o

le
 f

ra
c
ti
o

n

N
2
 Plus O

2
 Plus Ar Plus N

2
 MWorks O

2
 MWorks Ar MWorks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

v
a

p
o

r-
li

q
u

id
 e

q
u

il
ib

ri
u

m

C
o

n
st

a
n

ts

stage number

O2 Plus O2 MWorks Ar Plus Ar MWorks N2 Plus N2 MWorks

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

244

two-parameter cubic EoS and the number of

substances is small. The future work is adding the

other EoS and activity coefficient method for media

model and also substances to make the media

package more generally applicable.

Acknowledgments

The paper was supported by National Nature Science

Foundation of China (No. 60704019, No.60874064),

Major State Basic Research Development Program

of China (No. 2011CB706500).

References

[1] Modelica Association. Modelica Standard

Library, February, 2008. Version 3.0.

[2] Zhou F, Zhang H, Zhu H, et al. Design and

Implementation of Animation Post-processor

Based on ACIS and HOOPS in MWorks.

Proceedings of the 7th International

Modelica Conference, Como, Italy,

September 20-22, 2009, pp. 663-668.

[3] Reid R C, Prausnitz J M, Poling B E. The

properties of gases and liquids. 4
th

 ed. Nem

York: McGraw-Hill, 1987.

[4] Harmens. A Cubic Equation of State for the

Prediction of O2-Ar-N2 Phase Equilibrium,

Cryogenics, v. 17, pp. 519-521, 1977.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

245

Experimental comparison of the dynamic evaporator response

using homogeneous and slip flow modeling

Martin Ryhl Kærn†,‡ Brian Elmegaard† Lars Finn Sloth Larsen‡

†Technical University of Denmark, Department of Mechanical Engineering
Nils Koppels Allé Bygn. 403, DK-2800 Lyngby, Denmark, e-mail: pmak�mek.dtu.dk

‡Danfoss A/S, Refrigeration and Air-Conditioning
Nordborgvej 81, DK-6430 Nordborg, Denmark, e-mail: martin�danfoss.om

Abstract

The dynamic response from an evaporator is important

for control of refrigeration and air-conditioning sys-

tems. Essentially, the prediction of refrigerant charge

inside the evaporator is crucial for the dynamic behav-

ior. The prediction of refrigerant charge follows from

suitable void fraction correlations from the literature.

A chosen set of void fraction correlations (slip flow)

and the assumption of homogeneous flow will be in-

vestigated in this paper and compared to experiments

on a simple coaxial type evaporator. The numerical

model of the evaporator is a dynamic distributed mix-

ture model, where different void fraction correlations

can be applied. It is shown that the dynamic response

of the homogeneous model is too fast, whereas the slip

flow models agree well with the experiments. Another

difference is that the charge prediction of the homoge-

neous model is approximately 2-3 times less than the

slip flow models.

Keywords: refrigeration; air-conditioning; evapo-

rator; two-phase flow; modeling; Modelica; transient;

dynamic; simulation

Nomenclature

Roman

A Cross-sectional area (m2)

cp Specific heat capacity (J kg−1K−1)

D Inner tube outer diameter (m)

d Inner tube inner diameter (m)

Fw Wall friction force (N m−3)

G Mass flux (kg m−2s−1)

g Gravitational acceleration (m s−2)

Ḣ Enthalpy flow (W)

h Specific mixed-cup enthalpy (J kg−1)

h̄ Specific in situ mixture enthalpy (J kg−1)

htc Heat transfer coefficient (W m−2K−1)

İ Momentum flow (N)

k Thermal conductivity (W m−1K−1)

M Mass (kg)

ṁ Mass flow rate (kg s−1)

P Channel perimeter (m)

p Pressure (Pa)

Q̇ Heat flow rate (W)

q′′w Wall heat flux (W m−2)

R Thermal resistance (K W−1)

S Slip ratio (-)

T Temperature (K)

t Time (s)

U Velocity (m s−1)

V̇ Volume flow rate (m3/s)

x Vapor quality (-)

z Axial channel length (m)

Greek

α Void fraction (-)

ρ Density (kg m−3)

ρ̄ Mixture density (kg m−3)
ρ ′ Momentum density (kg m−3)

σ Surface tension (N m−1)

θ Angle to horizontal plane (deg.)

Subscripts

ax Axial

b Brine

f Saturated liquid

g Saturated gas

H Homogeneous

rad Radial

sat Saturation

w Wall

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

246

1 Introduction

Refrigerant charge minimization in refrigeration and

air-conditioning systems is becoming increasingly im-

portant for environmental and legislative reasons. As

the charge is minimized the dynamic behavior of the

system becomes quicker and the requirements for the

control increases. Furthermore, new control methods

continuously evolve that requires more and more ac-

curate prediction of the dynamic behavior of the evap-

orator. Thus there is a demand for accurate modeling

of the evaporator response.

The focus in this paper is the modeling of the dy-

namic behavior in a dry-expansion evaporator with ex-

perimental validation. The key variable here is the

void fraction. The void fraction essentially determines

the refrigerant charge and thus the dynamic response

of the evaporator. As we shall see in section 4, the

use of a void fraction correlation determines the slip

ratio of the two phases, implying a slip flow model. If

the slip ratio is assumed to be unity, then the flow is

homogeneous (i.e. both phases travel with the same

velocity), implying the homogeneous model.

Many void fraction correlations exist in the litera-

ture. Some are rather simple analytical relations, oth-

ers are quite sophisticated and of empirical nature. The

question in mind is: When is it sufficient to use the ho-

mogeneous model, in contrast to the slip flow models?

Despite the large amount of work that has been done

on the development of void fraction correlations, some

void fraction correlations do not satisfy a smooth tran-

sition in void fraction at the two-phase to vapor phase

transition. Woldesemayat and Ghajar [1] compared 68

void fraction correlations in order to find an acceptable

void fraction correlation that could predict most of the

collected experimental data for all inclination angles,

fluids and flow patterns. They developed a modified

version of the Dix [2] model, however, the model does

not ensure a smooth transition at the two-phase to va-

por phase transition. For dynamic simulation the tran-

sition and its derivatives should be continuous or at

least a smoothening may be used. Furthermore, the

correlation complexity should be sought to a minimum

while capturing the main dynamics of interest.

Woldesemayat and Ghajar [1] also gave void frac-

tion correlation recommendations, considering each

specific type of flow. For horizontal flow, as is the

case of consideration in this paper, the void fraction of

Premoli et al. [3] was worth the general recommenda-

tion among others, regardless of flow regime and flu-

ids. Recently, the same void fraction model was rec-

ommended by Maa et al. [4] and Mader et al. [5] as the

best choice for R410A air-conditioners. The model

also ensures a smooth transition at the two-phase to

vapor-phase transition, and for these reasons the Pre-

moli et al. [3] model will be used in this study.

Wojtan et al. [6] recommends Steiners version of

the Rouhani and Axelsson void fraction model [7],

and uses this model in their general flow map [8] for

predicting both two-phase heat transfer and pressure

drop in a flow regime dependant way. The earlier

versions of the Rouhani and Axelsson model did not

ensure a smooth transition from two-phase to vapor

phase, however Steiner modified the model for hor-

izontal flow in a way that ensures a smooth transi-

tion. The Steiner version of the Rouhani and Axelsson

model is also included in this study.

The two aforementioned void fraction correlations

are both sophisticated models and functions of pres-

sure, p, vapor quality, x, mixture mass flux, G, sur-

face tension, σ , and acceleration of gravity, g. Simpler

models only dependant on pressure and vapor quality

exists, e.g. the Zivi [9] model, which is one of the

simplest void fraction models. The inclusion of the

Zivi [9] model fulfills our set of slip flow models to be

investigated in this paper.

The paper includes a brief description of the experi-

ments, the test rig and the numerical modeling frame-

work. Then the results of the transient evaporator re-

sponse are addressed.

2 The experiments

The experimental data are obtained from the master

thesis of Antonius [10], who compared the experi-

mental results with commercial software Sinda/Fluint

[11]. The thesis is written in Danish, however the main

results are given in English in Jakobsen et al. [12].

Sinda/Fluint is a general thermo-fluid network ana-

lyzer capable of simulating static and dynamic behav-

ior of multi-phase fluid networks as they interact with

thermal structures, using a lumped parameter finite-

difference approach. It is quite similar to the numerical

model introduced in section 4, however the empirical

correlations for heat transfer, friction coefficient and

void fraction are restricted to a predefined possibili-

ties.

The test case geometry and boundary conditions

were kept as simple as possible in order to focus on

the two-phase flow. Figure 1 shows a sketch of the test

case coaxial evaporator and corresponding boundary

conditions for the numerical simulations. The outer

tube wall is insulated to minimize heat flow from the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

247

R22 R22

ṁin,hin
V̇out

ṁb,Tb,inEthanolEthanol

Figure 1: Sketch of test case evaporator

surroundings. R22 is the refrigerant flowing in the in-

ner tube, whereas ethanol with 10% water by mass is

flowing in countercurrent direction in the outer tube

shell.

Both a step in refrigerant mass inflow and volume

outflow was considered in the work by Antonius [10].

The original data does unfortunately no longer exist,

however, the boundary conditions as function of time,

as indicated on figure 1, was curve fitted in the work to

be used as input to Sinda/Fluint. Only one set of these

curve fits is available in the thesis, whereas the rest are

missing. For these reasons it is only possible to repro-

duce the evaporator response on a step change in vol-

ume outflow. The dynamics of the mass outflow and

outlet pressure is then compared to the homogeneous

model and slip flow models. The mass inflow, mass

outflow and outlet pressure are obtained from figures

in Antonius [10] by graphical means for the compari-

son.

3 The test rig

A schematic of the test rig is shown in figure 2. The

test case coaxial evaporator is 7 m long and made of

cobber. The inner tube has an internal and outer diam-

eter of 11.1 and 12.7 mm, respectively, and the outer

tube outer diameter is 20.18 mm.

The following data are used to obtain the appropri-

ate boundary conditions as shown in figure 1. At the

inlet of the evaporator, the mass flow is measured di-

rectly by M2, the mixed-cup enthalpy h is found us-

ing the subcooled liquid temperature T3 and pressure

P1. The volume flow at the outlet of the evaporator is

found using the mass flow M1 and the density of the

superheated vapor at temperature T1 and pressure P3.

The mass flow M3 and temperature T4 are directly ap-

plicable as boundary conditions for the brine system.

A thorough documentation of the test rig (e.g. ap-

paratus, calibration and data acquisition method) can

be found in Antonius [10].

4 Model formulation

The model is implemented in Dymola 7.4 [13]. Dy-

mola is based on the Modelica language and facili-

tates object-oriented programming, which is important

for model reuse and extension. Dymola has been well

tested within the field of air-conditioning and refrig-

eration [14, 15]. Thermophysical properties for R22

are obtained from the Refeqns package [16]. Ther-

mophysical properties for ethanol with 10% water by

mass are obtained from VDI Wärmeatlas [17].

4.1 Refrigerant flow

The simplest form of the one-dimensional two-phase

flow models is chosen, i.e. the mixture model as de-

rived by performing a differential analysis on each

phase and adding the phasic equations [18]. The result

is the mixture mass conservation, the mixture momen-

tum conservation and the mixture energy conservation

equations given by

A
∂ ρ̄

∂ t
+

∂ ṁ

∂ z
= 0 (1)

∂ ṁ

∂ t
+

∂

∂ z

(

ṁ2

ρ ′A

)

=−A
∂ p

∂ z
−FwA− ρ̄gAsin θ (2)

A
∂

∂ t

(

ρ̄ h̄− p
)

+
∂

∂ z
(ṁh) = Pq′′w (3)

where it has been assumed that thermodynamic equi-

librium exists and that the changes in kinetic and po-

tential energy are negligible. The mixture density, spe-

cific in situ enthalpy, specific mixed-cup enthalpy and

momentum density are given by

ρ̄ = ρgα +ρ f (1−α) (4)

h̄ = [ρ f h f (1−α)+ρghgα]/ρ̄ (5)

h = (1− x)h f + xhg (6)

ρ ′ =

(

(1− x)2

ρ f (1−α)
+

x2

ρgα

)−1

(7)

where the void fraction is defined as α = Ag/A, and

the vapor quality is defined as x = ṁg/ṁ.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

248

M

M1

D

T2

P3

P2

T4

H

M3

T6

M2

T3

P1

T7

P P

T1

Measurements:

T = Temperature

M = Mass flow

P = Pressure

Cooling tower

Demister

Heater

1/2"

1/4"

7/8"

Test Evaporator

Figure 2: Evaporator test rig

Using the definition of the slip ratio, the void frac-

tion and the vapor quality, the fundamental void-

quality relation can be derived as

S =
Ug

U f

=

ṁg

ρgαA

ṁ f

ρ f (1−α)A

=
x

1− x

ρ f

ρg

1−α

α

(8)

and rewritten in terms of the void fraction as

α =

[

1+
ρg

ρ f

1− x

x
S

]

−1

(9)

If homogeneous flow is assumed, then S = 1 and the

homogeneous void fraction, αH , may be calculated by

equation 9. Furthermore, for homogeneous flow it can

be shown that h̄ = h and ρ ′ = ρ̄ = ρH by using the

homogeneous void fraction, where the homogeneous

mixture density, ρH , becomes

ρH =

(

x

ρg

+
1− x

ρ f

)

−1

(10)

The state variables are chosen to be h̄ and p. The

derivative of the mixture density with respect to time

is computed by use of the chain rule

∂ ρ̄

∂ t
=

∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

∂ p

∂ t
+

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

∂ h̄

∂ t
(11)

where the partial derivatives of mixture density with

respect to pressure and in situ enthalpy are calculated

by numerical finite difference as

∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

=
ρ̄(p+∆p, h̄)− ρ̄(p, h̄)

∆p
(12)

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

=
ρ̄(p, h̄+∆h̄)− ρ̄(p, h̄)

∆h̄
(13)

Equations 1, 2 and 3 are discretized according to

the Finite Volume Method (FVM), where the number

of control volumes must be high enough to resolve the

spatial distribution of properties.

The staggered grid structure is adopted as described

by Patankar [19]. It means that the mass and energy

conservation will be solved on the control volume grid,

and the momentum equation will be solved on a stag-

gered grid as depicted on figure 3, where ψ denotes

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

249

a thermodynamic quantity and ψ̂ its approximation.

Similar discretization methodology was used in [20].

Inlet

ψ1 · · · ψi · · · ψn

Outlet

ṁ1 · · · ṁi ṁi+1 · · · ṁn+1

ψ̂i ψ̂i+1

Figure 3: Staggered grid structure; thick = control vol-

ume grid, dashed = staggered grid

The mass and energy conservation equations be-

come

A∆z
dρ̄i

dt
= ṁi − ṁi+1 (14)

A∆z
d

dt

(

ρ̄ih̄i − pi

)

= Ḣi − Ḣi+1+ Q̇i (15)

where the enthalpy flow Ḣi = ṁiĥi and heat flow Q̇i =
P∆zq′′w,i = P∆zhtc,i(Tw,i−Ti) have been used, and New-

ton’s law of cooling is applied with the well known

heat transfer coefficient htc.

For convection dominated flows the upwind differ-

ence scheme is recommended to approximate thermo-

dynamic quantities onto the staggered grid, because

central difference scheme may lead to non-physical so-

lutions. The 1st order upwind scheme is obtained by

taking the control volume face value (staggered grid

center) to be equal to the nearest upstream control vol-

ume center, thus

ψ̂i ≈ δiψi +(1−δi)ψi−1 i = 1..n+1 (16)

where δi is the indicator function denoting the direc-

tion of the mass flow

δi =

{

0 ṁ ≥ 0

1 ṁ < 0
(17)

The momentum equation becomes

∆z
dṁi

dt
= ∆İi −A(pi − pi−1)−Fw,iA∆z

− ˆ̄ρigA∆zsinθ (18)

where the momentum flow İi = ṁ2
i /(ρ̂

′

i A) has been

used and the difference in momentum flow, ∆İi, is ap-

proximated according to the 2nd order central differ-

ence scheme as

∆İi ≈

(

İi−1 − İi

)

+
(

İi − İi+1

)

2
=

dİi−1 +dİi

2
(19)

where dİ is the momentum flow difference between

the staggered grid cells. The use of the central dif-

ference scheme serves to avoid discontinuities in the

momentum equation.

Boundary models are used to compute other bound-

ary conditions than the ones indicated on figure 1, i.e.

Ḣ, İ, dİ, ψ̂ . The change of momentum flow dİ at the

inlet or outlet is simply set to zero, whereas the other

variables are computed from the thermodynamic state

and the mass flow rate.

Correlations for the frictional force, Fw, the heat

transfer coefficient, htc, and the void fraction, α (if slip

flow), must be supplied to close the system of equa-

tions.

4.2 Tube wall

The tube wall is discretized according to the Resis-

tance Capacitance Method [21]. The method essen-

tially uses the thermal resistances to describe the heat

flows across the tube wall boundaries. The tube wall is

assumed to have rotational symmetry, i.e. T = T (r,z),
and thus the energy equation for each discrete cell be-

comes

Mcp

dT

dt
= Q̇W + Q̇E + Q̇S + Q̇N (20)

where Q̇S = −P∆zq′′w from equation 3. The entering

and leaving heat flows are depicted on figure 4.

Q̇N

Q̇W Q̇E

φ

Section B−B

B

B

r

Q̇S

Figure 4: Heat flows to and from the tube wall

By definition, the heat flows are computed as Q̇ =
∆T/R, where the thermal resistances in the radial and

axial directions to the midpoint of the wall cell are

Rax = 0.5
∆z

kA
(21)

Rrad = 0.5
ln

D/2
d/2

2πk∆z
(22)

The boundary condition at the inlet and outlet of the

pipe wall is simply no heat flow in the axial direction.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

250

4.3 Liquid flow

The liquid flow is assumed to be incompressible and

cannot accumulate mass or energy. With these as-

sumptions the mass and energy conservation equations

for each liquid cell reads

ṁin − ṁout = 0 (23)

(ṁcpT)in − (ṁcpT)out + Q̇N = 0 (24)

Again Newton’s law of cooling is applied to com-

pute the heat transfer as

Q̇N = htc∆zP(Tw −Tin) (25)

where the 1st order upwind approximation of the liquid

cell temperature is used. A correlation for the heat

transfer coefficient must be applied.

4.4 Smooth functions

A first order continuous function is applied at the

phase transitions (0 ≤ x < 0.05 and 0.95 < x ≤ 1). The

function ensures a smooth transition from two-phase

to single phase in heat transfer and frictional pressure

drop correlations. If the transitions are discontinuous,

the equation solver might be slow or even fail to con-

verge. The first order continuous function is described

in Richter [15]. The used correlations are shown in

table 1.

4.5 Heat exchanger architecture

Components of the refrigerant (both control volume

grid cell and staggered grid cell), the wall and the liq-

uid have been made in Dymola, and essentially arrays

of these components are put together to form the evap-

orator in counter flow operation, as shown on figure

5.

Refrigerant Refrigerant

Liquid Liquid

RefCell

WallCell

LiqCell

· · ·

· · ·

· · ·

RefCell

WallCell

LiqCell

1 · · · n

Figure 5: Heat exchanger architecture, counter flow.

We chose to use 30 cells in our simulations. Fur-

thermore, we did not use any of the elements of the

Modelica standard library. We chose this to learn ev-

ery step of the implementation in Modelica and to be

Table 1: Overview of used correlations

Liquid brine

Heat transfer Dittus and Boelter [22]

Single phase refrigerant

Heat transfer Gnielinski [23]

Friction Blasius [24]

Two-phase refrigerant

Heat transfer Shah [25]

Friction Müller-Steinhagen and

Heck [26]

Void fraction Zivi [9]

Premoli et al. [3]

Steiners version of Rouhani

and Axelsson [7]

able to quickly apply changes to the model formula-

tion and correlations if necessary.

5 Results

In this section, the results are compared to the exper-

imental data at a step decrease or increase in volume

outflow. The cases correspond to a change in outflow

by capacity control of the compressor. Firstly, we ad-

dress the different void fraction correlations to be used.

5.1 Comparison of the void fraction models

All the used correlations for the void fraction (slip flow

models) are shown in table 1.

Using equation 9 with S = 1 becomes the homoge-

neous model, where each phase travels with the same

velocity. If we use the slip ratio correlation by Zivi

[9] in equation 9, i.e. S = (ρg/ρ f)
−1/3, we get the

Zivi void fraction model. The Premoli et al. [3] model

and the Steiners version of the Rouhani and Axelsson

model [7] depend on both flow and fluid properties in

more complicated ways. The void fraction models are

compared in figure 6 as functions of vapor quality.

It is clearly seen that the area of the liquid is smaller

in the homogeneous model, indicating a faster dy-

namic response compared to all the other models. The

Premoli model and the Steiners version of the Rouhani

and Axelsson model seam almost the same for the spe-

cific refrigerant and conditions. At low vapor quali-

ties the Zivi model shows the largest amount of liquid,

however at vapor qualities above 0.2, which is often

the case for dry-expansion systems, it shows less liq-

uid than the Premoli model and the Steiners version of

the Rouhani and Axelsson model, indicating a faster

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

251

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Af

A

Ag

A

Vapor quality, x [−]

V
o

id
 f

ra
c
to

in
, α

 [
−

]

Homogen

Zivi

Premoli

SvR&A

Figure 6: Comparison of the chosen void fraction

models. (R22, Tsat = −5.7◦C, p = 4.12 bar, G = 124

kg m−2s−1)

dynamic response, however, not as fast as the homo-

geneous model.

5.2 A step decrease in volume outflow

In figure 7, the response of the mass outflow and the

outlet pressure are compared at a step decrease in vol-

ume outflow.

At time equal 5 seconds the step occurs. The step

shows an undershoot in mass outflow in the experi-

ment and the models. The models have a sharp edge

at the peak of the undershoot, which originates from

the curve fitted boundary condition for volume out-

flow. After the undershoot the mass outflow increases

and adjusts to a new steady state after approximately

40 seconds. Only the homogeneous model shows an

overshoot during the transient response. Similarly, the

pressure increases as the volume outflow decreases,

however, only the homogeneous model shows an over-

shoot here.

5.3 A step increase in volume outflow

In figure 8, the response of the mass outflow and the

outlet pressure are compared at a step increase in vol-

ume outflow.

At time equal 7 seconds the increase in volume out-

flow occurs. The step shows a quite large overshoot

in the mass outflow, however, it adjusts quicker to

the new quasi-steady state after approximately 25 sec-

onds. Again the homogeneous model shows another

undershoot after the overshoot. The pressure decreases

on the step increase of volume outflow. Again the ho-

mogeneous model shows an undershoot in contrast to

the other void fraction models.

(a)

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

M
a

s
s
 f

lo
w

 [
k
g

/m
in

]

Measured inflow

Measured outflow

Homogen outflow

Zivi outflow

Premoli outflow

SvR&A outflow

(b)

0 10 20 30 40 50 60
3

3.5

4

4.5

5

5.5

Time [s]

P
re

s
s
u

re
 [

b
a

r]

Measured

Homogen

Zivi

Premoli

SvR&A

Figure 7: Mass outflow (a) and pressure outlet (b) re-

sponse on decrease in volume outflow

5.4 Discussion

Apparently, the homogeneous model reacts too

quickly. The response of the Premoli model and the

Steiners version of the Rouhani and Axelsson model

seam to predict almost the same and the most accu-

rate responses from the evaporator. The Zivi model

seam to be quite close to the experimental data, and

can be considered as an easy way to capture the main

dynamics of the evaporator, however, if the dynamics

are more important, one should turn to the more so-

phisticated void fraction models.

Another observation is that the steady state values

are not affected by the individual void fraction mod-

els. This is because the two-phase heat transfer and

frictional pressure drop correlations are functions of

vapor quality and not the choice of the void fraction

correlation. Some more sophisticated two-phase heat

transfer and frictional pressure drop correlations incor-

porate their own void fraction correlation in for ex-

ample their heat transfer correlation [27]. One may

inspect the equations 1, 2 and 3 and find that almost

only the dynamic terms are affected by the void frac-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

252

(a)

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time [s]

M
a

s
s
 f

lo
w

 [
k
g

/m
in

]

Measured inflow

Measured outflow

Homogen outflow

Zivi outflow

Premoli outflow

SvR&A outflow

(b)

0 10 20 30 40 50 60
2

2.5

3

3.5

4

4.5

5

Time [s]

P
re

s
s
u

re
 [

b
a

r]

Measured

Homogen

Zivi

Premoli

SvR&A

Figure 8: Mass outflow (a) and pressure outlet (b) re-

sponse on increase in volume outflow

tion model. Other terms that are affected by the choice

of void fraction model are the accelerational and gravi-

tational pressure drop terms. For horizontal flow grav-

itational pressure drop vanish, however, usually both

these terms are approximately an order of magnitude

less than the frictional pressure drop [15, 28]. Fur-

thermore, they do not influence the heat transfer and

corresponding evaporation pressure.

The refrigerant charge in the evaporator (both two-

phase and superheated area) are shown in table 2 at

time equals 0 from figure 7 and 8, i.e. the two different

steady states.

Table 2: Refrigerant charge in the evaporator at time=0

from figure 7 and 8

Homogen Zivi Premoli SvR&A

[g] [g] [g] [g]

ss∗ (figure 7) 10.7 16.8 24.0 22.6

ss∗ (figure 8) 26.3 57.9 79.8 76.2
∗ ss = steady state (at time=0)

The two-phase area was approximately 35% of the

evaporator at time=0 from figure 7, however, on fig-

ure 8 at time=0 the two-phase area was approximately

85% in the evaporator. This leads to the differences

in the refrigerant charge predictions from the steady

states in figure 7 to 8 at time=0. When the volume

flow goes down the pressure increases, both the over-

all UA-value and temperature difference between the

refrigerant and the brine decreases, and it results in

a smaller heat transfer and larger two-phase area. In

other words, the refrigerant will be sucked out of the

evaporator as the volume outflow increases at no con-

trol of the superheat.

Using the Premoli model and the Steiners version

of the Rouhani and Axelsson model, as the most accu-

rate void fraction models, shows that the homogeneous

model underpredicts the refrigerant charge by approx-

imately 2-3 times. The Zivi model lies in between.

6 Conclusion

It can be concluded that the homogeneous model is

insufficient for modeling of the dynamic evaporator

response of the current coaxial evaporator with high

accuracy. If one wants to investigate the dynamic be-

havior due to refrigerant movement and amount of re-

frigerant in the evaporator, then a slip flow model is

needed, since the homogeneous model gives inaccu-

rate results. The choice of a given slip flow model

must be considered for both numerical and accuracy

reasons, which unfortunately are counteracting.

In this study the Premoli et al. [3] void fraction

model and the Steiners version of the Rouhani and Ax-

elsson [7] void fraction model gave the most accurate

evaporator response. The simple void fraction model

by Zivi [9] gave less accurate results, but quite much

better than the homogeneous void fraction model.

These investigations considered a step in volume

outflow, but similar conclusions with regard to void-

fraction model validity are expected for a step in mass

inflow to the evaporator, as pointed out in [10, 12]. In-

vestigation of the control strategy of a capacity con-

trolled compressor or an expansion valve using the

measured superheat as feedback, are examples, where

the use of a slip flow model is required.

References

[1] M. A. Woldesemayat, A. J. Ghajar, Comparison

of void fraction correlations for different flow

patterns in horizontal and upward inclined pipes,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

253

International Journal of Multiphase Flow 33 (4)

(2007) 347 – 370.

[2] G. E. Dix, Vapor void fraction for forced con-

vection with subcooled boiling at low flow rates,

Tech. rep., General Electric Company Report

NEDO-10491 (1971).

[3] A. Premoli, D. D. Francesco, A. Prina, A dimen-

sional correlation for evaluating two-phase mix-

ture density, La Termotecnica 25 (1971) 17–26.

[4] X. Maa, G. Dinga, P. Zhanga, W. Hana, S. Kasa-

harab, T. Yamaguchib, Experimental validation

of void fraction models for r410a air condi-

tioners, International Journal of Refrigeration 32

(2009) 780–790.

[5] G. Mader, L. F. S. Larsen, G. P. F. Fösel, Low

charge system behavior - interactions of heat ex-

changer volumes and charge, in: 2nd Workshop

on Refrigerant Charge Reduction, IIR, KTH,

Stockholm, Sweden, 2010.

[6] L. Wojtan, T. Ursenbacher, J. R. Thome, Mea-

surement of dynamic void fractions in stratified

types of flow, Experimental Thermal and Fluid

Science 29 (3) (2005) 383 – 392.

[7] D. Steiner, Heat transfer to boiling saturated liq-

uids, VDI-Wärmeatlas (VDI Heat Atlas), Verein

Deutscher Ingenieure (Ed.), VDI-Gessellschaft

Verfahrenstechnik und Chemie-ingenieurwesen

(GCV), Düsseldorf, 1993, (Translator: J.W.

Fullarton).

[8] L. Wojtan, T. Ursenbacher, J. R. Thome, Investi-

gation of flow boiling in horizontal tubes: Part i

- a new diabatic two-phase flow pattern map, In-

ternational Journal of Heat and Mass Transfer 48

(2005) 2955–2969.

[9] S. M. Zivi, Estimation of steady-state steam

void-fraction by means of the principle of min-

imum entropy production, J. Heat Transf. 86

(1964) 247–252.

[10] J. Antonius, Distribuerede fordampermodeller på

flere detaljeringsniveauer, Master’s thesis, Tech-

nical University of Denmark, Department of En-

ergy Engineering (1998).

[11] Cullimore & Ring Technologies Inc., Little-

ton, Colorado, USA, Sinda/Fluint user’s manual,

General Purpose Thermal/Fluid Network Ana-

lyzer, version 5.2 (2008).

[12] A. Jakobsen, J. Antonius, H. J. Høgaard Knud-

sen, Experimental evaluation of the use of ho-

mogeneous and slip-flow two-ophase dynamic

models in evaporator modelling, in: 20th Inter-

national Congress of Refrigeration, IIR/IIF, Syd-

ney, 1999.

[13] Dynasim AB, Research Park Ideon SE-223 70,

Lund, Sweden, Dynamic Modeling Laboratory,

Dymola User’s Manual, version 7.4 (2010).

[14] J. Eborn, H. Tummescheit, K. Prölß, Aircondi-

tioning - a modelica library for dynamic simula-

tion of ac systems, in: 4th International Modelica

Conference, Hamburg, Germany, 2005, pp. 185–

192.

[15] C. C. Richter, Proposal of new object-oriented

equation-based model libraries for thermody-

namic systems, Ph.D. thesis, Technische Uni-

versität Carolo-Wilhelmina zu Braunschweig,

Fakultät für Maschinenbau (2008).

[16] M. J. Skovrup, Thermodynamic and thermophys-

ical properties of refrigerants, Department of En-

ergy Engineering, Technical University of Den-

mark, Nils Koppels Allé, Building 402, DK-2800

Lyngby, Denmark (2009).

[17] VDI Wärmeatlas, Berechnungsblätter für den

Wärmeübergang, Springer-Verlag, Ch. Lab., 9th

Edition, Dd 20, (2002).

[18] S. M. Ghiaasiaan, Two-phase flow: Boiling

and Condensation in Conventional and Minia-

ture Systems, 1st Edition, Cambridge University

Press, 2008.

[19] S. V. Patankar, Numerical heat transfer and fluid

flow, Taylor & Francis, 1980.

[20] O. Bauer, Modelling of two-phase flows with

modelica, Master’s thesis, Lund University, De-

partment of Automatic Control (1999).

[21] A. F. Mills, Heat Transfer, 2nd Edition, Prentice

Hall, 1999.

[22] E. J. Dittus, L. M. K. Boelter, Publications on

Engineering, Vol. 2, University of California,

Berkeley, 1930.

[23] V. Gnielinski, New equation for heat and mass

transfer in turbulent pipe and channel flow, Inter-

national Chemical Engineering 16 (1976) 359–

368.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

254

[24] P. R. H. Blasius, VDI Wärmeatlas, 9th Edition,

Springer-Verlag, Ch. Lab., 2002.

[25] M. M. Shah, Chart correlation for saturated boil-

ing heat transfer: Equations and further study,

ASHRAE Transactions 88 (1982) 185–196.

[26] H. Müller-Steinhagen, K. Heck, A simple fric-

tion pressure drop correlation for two-phase flow

in pipes, Chemical engineering and processing

20 (1986) 297–308.

[27] L. Wojtan, T. Ursenbacher, J. R. Thome, Inves-

tigation of flow boiling in horizontal tubes: Part

ii - development of a new heat transfer model for

stratified-wavy, dryout and mist flow regimes, In-

ternational Journal of Heat and Mass Transfer 48

(2005) 2970–2985.

[28] H. Jiang, Development of a simulation and op-

timization tool for heat-exchanger design, Ph.D.

thesis, University of Maryland at College Park,

Department of Mechanical Engineering (2003).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

255

Strong Coupling of Modelica System-Level Models
with Detailed CFD Models for Transient Simulation

of Hydraulic Components in their Surrounding Environment

Antoine Viel
LMS Imagine

7 Place des Minimes, 42300 Roanne, France
antoine.viel@lmsintl.com

Abstract

Strong coupling with a CFD software is usually suited
to the coupled transient simulation of an hydraulic
component (like a valve, a pump, ...) with its sur-
rounding environment. Due to the nature of the solvers
used by CFD code, co-simulation is generally the best
way to couple a Modelica system-level simulator and
a CFD solver. This article describes a methodology
and the associated technology for establishing a co-
simulation between a Modelica model simulated with
an ODE/DAE solver like the one encountered in LMS
Imagine.Lab AMESim, and a 3D model of flow com-
puted by a CFD software. The physical, numerical,
and computer-related aspects of co-simulation handled
by this methodology are exemplified on an application
test case in fluid power.

Keywords: Tool Coupling; Co-simulation; Hy-
draulic Component Modeling; CFD

1 Introduction

The detailed design of an hydraulic component like a
compound relief valve [1] is a complex task and re-
quires a model including many details. The method-
ology to model this component implies starting with a
simple model and after analysis and comparison with
experimental results, the model is made more complex
step by step. With this approach it is possible to under-
stand the influence of different parts of the valve on
the overall system transient behavior. However exper-
imental results might not be available for all subsys-
tems. In such cases involving complex 2D or 3D ge-
ometries with turbulent flows and distributed phenom-
ena like cavitation, the use of Computational Fluid Dy-
namics simulation is of great help. CFD modeling is
easy to setup when the fluid domain to be studied can

be decoupled from its surrounding environment. In
such a case, the boundary conditions are well-known,
and act as real sources with no reactions. If the flow is
coupled to its environment, and this is frequently the
case when performing transient simulation of a com-
plete hydraulic circuit, the whole coupled system has
to be simulated. This can be done by coupling the CFD
model with the system-level model, the latter provid-
ing the boundary conditions of the meshed fluid do-
main. Coupling a system-level simulator with a CFD
code can be performed through different approaches
[7]:

• Weak coupling is well suited to the case of hy-
draulic models (or a part of it) which can be re-
duced to a static relationship between a small
number of lumped variables. This relationship is
usually characterized by performing batch runs in
the CFD code, and gathering the results in lookup
tables.

• Strong coupling with a CFD software is usually
suited to the coupled transient simulation of an
hydraulic component with its surrounding envi-
ronment (remaining part of the hydraulic circuit,
thermal exchanges, mechanical work done by the
fluid, ...). Due to the nature of the solvers used
by CFD code, co-simulation is generally the only
way to couple a Modelica system-level simulator
and a CFD solver [10].

The following sections describes a methodology for
establishing a co-simulation between a Modelica sim-
ulation environment with an ODE/DAE solver and a
2D/3D model of flow computed by a CFD software.
The physical, numerical, and computer-related aspects
of co-simulation handled by this methodology are ex-
emplified step-by-step on an application test case.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

256

2 Application test case: modelling of
a compound relief valve

2.1 Overall system description

The hydraulic system considered as test case is
sketched out on Figure 1. This type of pilot-operated
valve is usually used for limiting the pressure in an
hydraulic circuit, by releasing a fraction of the flow
from the inlet of the valve to its outlet. On the con-
trary of the direct-acting valves like the check-valves,
operation of a compound relief valve is not affected by
the flow going through it. A small pressure difference
across the ball valve is enough to open the pilot valve
indenpendently of the main flow rate from inlet to out-
let. The corresponding Modelica system-level model
is shown on Figure 2.

Figure 1: Sketch of the compound relief valve

The model tries to reproduce the transient behavior
of the valve operating in a simplified hydraulic circuit
made of a varying-flowrate pump and a load, on the
left and right sides of the circuit sketch. At the center
of the sketch, each component of the valve has a func-
tional modeling counterpart on the Modelica model,
using the hydraulic component design approach [2]
[3]. The spool valve model is made of two parts:

1. The hydraulic part deals with the flow through the
outer orifices of the spool, which areas depend on
the spool position. It also describes the pressure
dynamics in the top and bottom spool chambers

Figure 2: Sketch of the Modelica model of a com-
pound relief valve.

using two hydraulic capacitive elements, which
are explicitly materialized on the sketch. The cor-
responding pressures are acting on the spool body
through the two piston-like elements.

2. The mechanical part directly represents the rigid
body dynamics of the spool submitted to the pres-
sure, spring and viscous damping forces.

At the top of the model sketch lies the pilot valve,
which is a ball poppet valve. The hydraulic part of
this model is aimed at being replaced by the detailed
CFD model shown on Figure 3. A simplified Model-
ica model of the flow in the valve seat is described in
the next section. The remaining mechanical part is the
rigid body dynamics of the ball submitted to the static
and dynamic fluid forces and to the spring force. In the
model, the motion of the ball is limited in its travel by
an ideal endstop which corresponds to the pilot valve
being closed.

2.2 System-level model of the pilot valve

To study the stability of the coupled system resulting
from the co-simulation of the detailed CFD model of
the ball valve with the system-level of the hydraulic
cicruit and mechanical part of the valve, a simpli-
fied equivalent system-level model of the ball valve is
needed.

The model tries to reproduce the transient behavior
of the ball poppet submitted to the pressure and viscos-
ity forces arising from the turbulent flow in the valve

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

257

Figure 3: 2D axisymmetric fluid domain considered for detailed flow modeling.

Figure 4: Geometry of the ball poppet valve.

seat. The modeling assumptions and analysis follow
roughly [4]. The flow rate through the valve is given
by the elementary orifice law:

q = cd Ah(x)

√
2(pup− pdn)

ρ(p̄)
(1)

where pup, pdn, and p̄ = 1
2 (pup + pdn) are the up-

stream, downstream and mean pressures, ρ the fluid
density depending mainly on pressure, Ah the throat
area, and cd the discharge coefficient. The throat area,
shown on Figure 4 depends geometrically on the ball
lift x:

Ah(x) =
π

2
x sinθ (x sinθ +Db) (2)

with Db the ball diameter and θ the half chamfer an-
gle. The discharge coefficient is usually modeled as a
smooth function of the flow number:

cd = cd,max tanh(
2λ

λcrit
)

the flow number λ being given by:

λ =
Dh

µ(p̄)

√
2ρ(p̄)(pup− pdn)

λcrit is the critical value of the flow number, corre-
sponding to the laminar-turbulent transition. The hy-
draulic diameter Dh is directly linked to the ball lift by
a geometrical relation:

Dh = 2x sinθ (3)

When the ball is rising, the actual flow rate is bounded
by the inlet area rather than the throat area. This is
taken into account in the Modelica model by comput-
ing a maximum lift xmax such that in equation (2) the
area becomes equal to the inlet area:

Ah(xmax) =
π

4
D2

s

where Ds is the seat diameter. The effective lift value,
bounded by xmax is then used to compute the throat
area (2) and the hydraulic diameter (3).

The hydromechanical part of the model deals with
the fluid forces acting on the ball. Static pressure
forces are usually distinguished from dynamic forces
stemming from the acceleration of fluid through the
orifice. Under varying flow conditions resulting from
varying lift, the pressure distribution along the ball can
have large variations. The dependency of the pressure
distribution, and hence of the active area used in the
computation of the static pressures forces, could be
studied using a preliminary uncoupled CFD computa-
tion [6]. The pressure field is computed at steady-state
for different value of the ball lift. Some results are
shown on Figure 5.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

258

Figure 5: Pressure distribution in the orifice for two
different fixed ball lifts.

For laminar flows, the pressure drop occurs at the
minimum geometrical cross section

Al =
π

4
D2

b cos2
θ

As it is shown on Figure 5 when transiting from small
ball lift to high lift, the flow becomes turbulent and
separates from the ball, and the corresponding pres-
sure distribution moves towards the inlet [5]. A model,
proposed by [4], takes this into account by considering
the laminar-turbulent transition. The active area Ap is
thus a fraction of the geometrical pressurized area:

Ap

Al
=

{
1+

√
λ

λcrit
(f −1) if λ ≤ λcrit

f if λ > λcrit
(4)

where 0 < f < 1 is a turbulent active area factor, fit-
ted on the steady-state CFD computations. Finally, the
fluid forces acting on the ball are given by the sum of
the static pressure forces and the dynamic or jet forces:

F = Ap (pup− pdn)+Fjet

with

Fjet = ρ(p̄)q(vup− vdn cosθ)

= 2cd Ah(x)(pup− pdn)(cd
Ah(x)

Ah(xmax)
− cosθ)

3 Coupling principles and methodol-
ogy

When trying to couple simulators, many different
issues arise (types of physical coupling, numerical
methods, software and hardware implementations)
which seem intricate at a first glance. A general
methodology [7] is required to prioritize these is-
sues, thus avoiding suboptimal choices based only on
computer-related contingencies. The decision flow

chart shown on Figure 6 synthesizes this methodol-
ogy used to couple a system-level simulator with third-
party simulation software. The choices made for cou-
pling the 1D system-level model of an hydromechanic
system with a CFD model are emphasized on the flow
chart. The next sections explain these choices.

3.1 Type of physical coupling

The first choice to be made is between weak cou-
pling or strong coupling. Weak coupling means that
the model could be reduced to a dynamic part, cas-
caded with a non-linear static part, obtained by stat-
ically characterizing the system on some operating
points, typically using some batch run functionality
of the CFD software. Weak coupling has many ad-
vantages from the numerical and the software point
of view: the external model is generally reduced to
data tables that are evaluated directly in the system-
level simulator, using a table lookup library [7]. How-
ever, as we are interested in the study of the coupled
system in general transient conditions, the weak cou-
pling seems inappropriate. Static characterization - if
it makes sense - would require a lot of batch run com-
putations with varying boundary conditions. As the
model reduction assumptions cannot be always made
about a CFD model, strong or full coupling between
the two models is considered here.

3.2 Solver interaction

The two models being strongly coupled, the next
choice to be done deals with the numerical solvers
used to perform the transient simulation of the cou-
pled system. The best way is to use only one nu-
merical integration solver, simulating a unique math-
ematical model, obtained by importing one of the
two involved model into the other one. This way,
the numerical issues are only related to the capabili-
ties of the numerical integration scheme to handle the
physically-originating stiffnesses of the coupled sys-
tem, which could typically be handled by variable-
timestep variable-order linear multistep methods. Im-
porting the external model into the system-level simu-
lator implies obviously that this model could be ex-
ported from its simulation environment, either the
mathematical structure of the equations, or the value of
the parameters to be fed to an equivalent model. How-
ever, with most of the CFD software [9], the mathe-
matical structure of the fluid model (including conser-
vation laws like the Navier-Stokes equations and con-
stitutive relations like fluid properties or rheological

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

259

Figure 6: Decision flow chart for a general simulators coupling methodology.

models) is tightly linked with the numerical methods
used to discretize it. Exporting the whole fluid model
from a CFD software seems very difficult to realize,
and the solver capabilities that would be required to
solve such a model are very specific, and are not avail-
able in general system-level simulators. That is why
the two solvers must be retained, and the transient sim-
ulation is performed through co-simulation.

3.3 System partitioning for co-simulation

In co-simulation, the two involved solvers exchange
only a predefined set of variables at some communica-
tion time point. Thus, the whole coupled system must
be partitioned in two subsystems, and the exchanged
variables on the boundary have to be precisely defined.

The Modelica model described on Figure 2 is modi-
fied in order to delegate the detailed modelling of the
flow in the seat to the CFD code. The modified part of
the AMESim-Modelica model is shown on Figure 7.
A non-standard construction called external connec-
tor is introduced to enforce the causality at the bound-
ary of the Modelica model. A Modelica model with
such connectors is processed by the AMESim Model-
ica compiler in the usual a-causal way, except for the
variables declared as external inputs which have their
causality imposed by the outside world. The part of
the model corresponding to the valve seat is removed
from model and three causal/a-causal gateway models
are introduced at the boundary of the model:

external connector ConnectForceInPosOut
output SIunits.Velocity v;
output SIunits.Position x;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

260

Figure 7: Modified Modelica model with external connectors.

input SIunits.Force f;
end ConnectForceInPosOut;

model ForceInputPosOutput
ConnectForceInPosOut c "Causal connector";
Flange a "A-causal connector";

equation
a.f + c.f = 0;
a.x = c.x;
a.v = c.v;

end ForceInputPosOutput;

external connector ConnectFlowInPressureOut
output SIunits.Pressure_bar p;
input SIunits.VolumeflowRate q;

end ConnectFlowInPressureOut;

model FlowrateInputPressureOutput
ConnectFlowInPressureOut c "Causal connector";
FluidPort fp "A-causal connector";

equation
fp.q + c.q = 0;
fp.p = SIunits.from_bar(c.p);

end FlowrateInputPressureOutput;

These models act as sources or sensors from the
system-level point of view and they carry the ex-
changed variables shown on Table 1.

In the system-level to CFD direction, the variable
is directly read from the Modelica model, and applied
as a space-constant boundary condition (pressure, wall
position and velocity) to the CFD model. In the other
direction, the variable is computed by integrating the
related quantity (pressure giving force, fluid veloc-
ity giving flow rate) on the boundaries. Some ad-
ditional unit conversions are performed in the exter-
nal causal/a-causal connectors, since the Modelica li-
brary upon which the model is built works with SI
units, whereas the CFD software user functions used
for specifying the boundary conditions could be writ-
ten in trade units.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

261

Modelica Model Variable Causality
ForceInputPosOutput x to CFD

(ball position)
ForceInputPosOutput v to CFD

(ball velocity)
f

ForceInputPosOutput (fluid forces from CFD
acting on ball)

FlowrateInput p
PressureOutput (pressure to CFD

(instance 1) at inlet)
FlowrateInput q
PressureOutput (flow rate from CFD

(instance 1) at inlet)
FlowrateInput p
PressureOutput (pressure to CFD

(instance 2) at outlet)
FlowrateInput q
PressureOutput (flow rate from CFD

(instance 2) at outlet)

Table 1: Variables exchanged during co-simulation.

3.4 Modular integration type

The two subsystems being coupled through the state
variables listed on Table 1, there is no need to set up a
full algebraic coupling method, and hence only the ex-
plicit modular integration method is implemented on
each simulator, as depicted on Figure 8. The simula-
tion time is partitioned in macro time step, in which
the integration process is strictly cascaded from a sim-
ulator to another, whatever the actual order. Inside a
macro time step, the exchanged variables are held con-
stant.

Figure 8: Explicit modular integration scheme.

3.5 Time stepping

The choice of a co-simulation time step T (or macro
time step size) is determined by numerical stability
of the co-simulated system with respect to the con-
tinuous case. Co-simulating two systems with ex-
plicit modular integration method introduces a sam-
ple with zero-order hold on the exchanged variables.
The whole system obtained is a loop sampled system,
which numerical stability may differ from the intrin-
sic physical stability of the fully coupled continuous
system. Stability study of such loop sampled system
is carried using the usual stability criteria from linear
control system theory [8]. The coupled system com-
prising the seat and the mechanical part of the valve
has many non-linearities, arising from geometry or
pressure-dependent fluid properties. To study the sta-
bility of the loop sampled system, the system has to
be linearized around some operating point. This can
be performed using the Linear Analysis Tools from
LMS Imagine.Lab, once the most dimensioning oper-
ating point has been recognised. At high ball lift, the
flow in the seat becomes turbulent, and flow separa-
tion occurs. This means that the pressure drop moves
towards the inlet, and the active area of the ball is de-
creased, while the influence of the momentum forces
is increased. Stability study of the coupled system is
thus carried by considering a linearized model of the
mechanical part of the valve subjected to the sole jet
or momentum forces of the fluid. In this simplified
linearized system, co-simulation is taken into account
by considering a sample and zero-order hold at rate T
of the ball position. The hydraulic stiffness kh repre-
sents the sensitivity of the jet forces with respect to the
valve lift, at the desired operating point (typically high
lift). The bloc-diagram of the resulting loop sampled
system is depicted on Figure 9.

Figure 9: Bloc diagram of the loop sampled system
considered for studying co-simulation stability.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

262

The discrete transfer function of this loop sampled
system is then given by:

Hloop(z) = Z
[

1
ms2 +d s+ k

1− e−T s

s
kh

]
= (1− z−1)Kloop Z

[
ω2

0

s(s2 +2ζ ω0 s+ω2
0)

]
with Kloop = kh

mω2
0

the loop gain, ω2
0 = k

m the un-

damped natural frequency, and ζ = d
2
√

k m
the mechan-

ical damping ratio. Finally the loop transfer function
is given by:

Hloop(z) =
Kloop (az+b)

z2−2ze−ζ ω0 T cosωdT + e−2ζ ω0 T
(5)

with ωd =
√

1−ζ 2 ω0,

a = 1− e−ζ ω0 T cosωdT − ζ e−ζ ω0 T√
1−ζ 2

sinωdT

and

b = e−2ζ ω0 T − e−ζ ω0 T cosωdT +
ζ e−ζ ω0 T√

1−ζ 2
sinωdT

At the operating point corresponding to high ball lift,
the Linear Analysis Tool of LMS Imagine.Lab gives
the following values for the loop transfer function co-
efficients: Kloop = 3.85, ω0

2π
= 50 Hz and ζ = 0.47. For

a co-simulation macro-time step T = 0.1µs, the Bode
diagram of Hloop is shown on Figure 10. Applying
the Nyquist stability criterion to (5) with these values,
the crossover frequency is fcross = 390 Hz, giving a
gain margin value GM = 10 log10(|Hloop(fcross)|) = 12
dB, and a phase margin PM = 28◦. These values
are enough for ensuring the numerical stability of co-
simulation, and hence the time step size may be sched-
uled up to 0.1µs at each macro step.

4 Communication protocol and com-
puter implementation

The last choice to be done is related to the commu-
nication protocol implemented between the two simu-
lators. Computational performance is usually consid-
ered for choosing the communication channel. Dis-
tributed co-simulation (two software running on two
different processors or two different computers) lead-
ing to parallel processing speedup is interesting only
if computational load is well balanced between the
two software. This is clearly not the case when co-
simulating a system-level model with a CFD code.

Figure 10: Bode diagram of the loop transfer function
for a co-simulation time step T = 0.1µs.

The load is strongly unbalanced: typically, the com-
plete transient simulation of the step response with the
system-level model takes less than 1 minute, whereas
the valve simulated with the detailed CFD model of
the flow in the seat takes about 1 day on a quad core
CPU computer. Distributed co-simulation being use-
less, there is no need for multiprocessor or multicom-
puter communication protocol. A direct local com-
munication link is therefore used on the same pro-
cessor. The Modelica model with embedded LMS
Imagine.Lab AMESim solver and Modelica libraries
is compiled as a shared library using the Generic Co-
simulation Interface of LMS Imagine.Lab, and then is
linked locally with the CFD software, namely ANSYS
Fluent. At each macro time step, ANSYS Fluent is
acting as the master simulator: it schedules the next
macro step size, and calls the AMESim solver with
the input variables, according to the modular integra-
tion scheme depicted on Figure 8. Output variables are
exchanged at the end of the current macro time step,
and a new macro step can take place.

5 Some co-simulation results

As an example, we consider computing the step re-
sponse of the check valve, by increasing the pressure at
inlet from 0 to 10 bar in 1 ms. Some of the exchanged
variables (ball lift, hydraulic forces, upstream pres-
sure, flow rate) are monitored in LMS Imagine.Lab
during co-simulation (Figure 11), while the other flow
quantities - static pressure, velocity, Reynolds number,
etc - are displayed directly in the CFD software (Fig-
ure 12).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

263

Figure 11: Exchanged variables monitored in LMS
Imagine.Lab.

The variables monitored in LMS Imagine.Lab
AMESim are the typical responses to such an input of
pressure. It is interesting to note that the jet force val-
ues (i.e. hydrodynamic forces) can be reached, since
it is a key factor in the design of such and hydro-
mechanical systems.

The map of the static pressure can be represented
for the whole geometry in the CFD software. It al-
lows accessing detailed results that can not be reached
in usual lumped-parameter models. The map of static
pressure obtained here at different simulation times
corresponds to the expected results for such a use-case
of poppet with ball on conical seat [4].

6 Conclusions

We can finally conclude that the strong coupling of
some Modelica components with a CFD model com-
bining two different software such as LMS Imag-
ine.Lab AMESim for the system-level tool and AN-
SYS Fluent for the CFD software was successful. Be-
side the fluid power test case exemplified in this pa-
per, the methodology was also applied to the model-
ing of a full direct diesel injection system [10] using
the 3D CFD code Principia Eole to accuratly predict
the cavitation transients in a nozzle under multiple in-
jection conditions. It would require some additional
works to apply this methodology outside fluid power
to confirm that it brings a real added-value for other
types of industrial applications. Another promising
way of research lies in the Functional Mock-up Inter-
face (FMI, [11]), which standardises the coupling be-

Figure 12: Pressure distributions at t = 1 ms, 4.2 ms
and 11 ms.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

264

tween two solvers through co-simulation. The general
simulator coupling methodology described here could
benefit from this FMI specifications, especially regard-
ing the implementation of implicit modular integration
and time stepping techniques by CFD software editors.

Acknowledgments

This work was in part supported by DGE in the ITEA2
Eurosyslib (06020) project under contract number
07.2.93.0146.

References

[1] Akers A., Gassman M., Smith R., Hydraulic
Power System Analysis, CRC Press, 2006.

[2] Mc Cloy D., Martin H.R., Control of Fluid
Power: Analysis and Design, Wiley, 1980.

[3] Lebrun M., Richards C.W., How to create good
models without writing a single line of code, 4th
Scandinavian Int. Conference on Fluid Power,
Linköping, Sweden, June 1997, vol. 1.

[4] Mittwollen N., Michl T., Breit R., Parametric hy-
draulic valve model including transitional flow
effects. In: Proceedings of the 2nd MATHMOD
Vienna, IMACS Symposium on Mathematical
Modelling, Febr. 5-7, 1997, TU Vienna, Austria,
Editors: I. Troch, F. Breitenecker, ARGESIM
Report No.11.

[5] Clavier A., Alirand M., Vernat F., Sagot B., Lo-
cal Approach to Improve the Global Approach
of Hydraulic Forces in Ball Poppet Valves, 4th
In. Symposium on Fluid Power, Wuhan, China,
April 2003.

[6] Baudry X., Mare J.C., Linking CFD and lumped
parameters analysis for the design of flow com-
pensated spool valve, 1st Fluid Power Net Int.
PhD Symposium, Hamburg, Germany, June
2000.

[7] Neyrat S., Viel A., Strong Coupling LMS Imag-
ine.Lab Modelica with CFD Software, Report of
the sub work package 2.4 of the ITEA2 Eurosys-
lib Project, LMS Imagine, June 2010.

[8] Franklin G.F., Powell J.D., Workman M.L., Dig-
ital Control of Dynamic Systems, Addison Wes-
ley, 1997.

[9] Chung T.J., Computational Fluid Dynamics,
Cambridge University Press, 2002.

[10] Marcer, R., Audiffren C., Viel A., Bouvier B.,
Walbott A., Argueyrolles B., Coupling 1D Sys-
tem AMESim and 3D CFD EOLE models for
Diesel Injection Simulation. In: Proceedings of
the ILASS Europe 23rd Annual Conference on
Liquid Atomization and Spray Systems, Brno,
Sept. 2010.

[11] Functional Mock-Up Interface for Co-
Simulation 1.0 Specification, MODELISAR
project (ITEA2 - 07006) and consortium,
October 12th, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

265

Recent Developments of the Modelica “Buildings”
Library for Building Energy and Control Systems

Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui
Simulation Research Group, Building Technologies Department,

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

Abstract

At the Modelica 2009 conference, we introduced
the Buildings library, a freely available Model-
ica library for building energy and control sys-
tems [16].

This paper reports the updates of the library
and presents example applications for a range of
heating, ventilation and air conditioning (HVAC)
systems. Over the past two years, the library has
been further developed. The number of HVAC
components models has been doubled and various
components have been revised to increase numer-
ical robustness.

The paper starts with an overview of the li-
brary architecture and a description of the main
packages. To demonstrate the features of the
Buildings library, applications that include mul-
tizone airflow simulation as well as supervisory
and local loop control of a variable air volume
(VAV) system are briefly described. The paper
closes with a discussion of the current develop-
ment.

Keywords: building energy systems, heating,
ventilation, air-conditioning, controls

1 Introduction

Buildings account for a large portion of energy
consumption and related green house gas emis-
sions. For example, in the United States, build-
ings consume 2/3 of electricity and 40% of total
energy [4]. In order to reduce global green house
gas emissions, it is critical to reduce building en-
ergy consumption by increasing energy-efficiency
and by using more renewable energy. To support
the design and operation of low energy buildings,
a simulation program should support:

1. rapid prototyping of new building systems,
2. comparison of the performance of different de-

signs of the building, its energy system and its

control algorithms,
3. analysis of the operation of existing building

systems,
4. development and specification of building

control sequences, and
5. reuse of models during operation for energy-

minimizing controls, fault detection and diag-
nostics.

To support these use cases, we develop an
open-source Modelica library for building en-
ergy and control systems. The library is
freely available from http://www.modelica.org/

libraries/Buildings.

At the 7th Modelica conference in 2009, we
introduced the Buildings library, version 0.6.0,
which had 73 non-partial models and blocks, as
well as 26 functions. The latest version, 0.10.0, has
129 non-partial models and blocks and 39 func-
tions. This paper highlights some of these updates
to inform users about the new capabilities.

The paper is structured as follows: Section 2
gives an overview of the Buildings library. Sec-
tion 3 describes the updates in detail. Section 4
presents applications with models for multizone
airflow simulation and for co-simulation. Section 5
describes classes which are currently under devel-
opment and will be available in future releases.

2 Summary of the Buildings Li-
brary

The Buildings library is based on the
Modelica.Fluid library [8]. The Buildings li-
brary is organized into the packages shown in
Fig. 1. Components in these packages augment
models from the Modelica Standard Library and
from the Modelica.Fluid library. Base classes,
which are typically not of interest to the end-user,
but are used to construct other classes, are stored
in packages called BaseClasses. Most packages

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

266

http://www.modelica.org/libraries/Buildings
http://www.modelica.org/libraries/Buildings

contain a package called Examples, which con-
tains example applications. The examples illus-
trate typical use of components in the parent di-
rectories. They are also used to conduct unit tests.

The current Buildings library contains six ma-
jor packages, including a new package Airflow.
The package Airflow provides models to compute
the airflow inside the buildings and between the
building and the ambient environment. It cur-
rently has a package Multizone for multizone air-
flow models, which is discussed in Section 3.1.
The Controls package contains components for
continuous time control, discrete time control and
scheduling of set points. The package Fluid is
the largest package of the Buildings library. It
contains components for fluid flow systems, such
as pumps, boilers, chillers, valves and sensors,
which are described in Section 3.3. The pack-
age HeatTransfer contains models for heat trans-
fer in buildings (Section 3.4). It provides mod-
els and functions for heat transfer due to con-
vection, conduction and radiation. It also has
thermal property data for different solid mate-
rials. The Media package contains media mod-
els that are simpler and generally computation-
ally more efficient than the ones in the Modelica
Standard Library. The simplifications have been
done by taking into account that HVAC systems
in buildings typically have a smaller range of op-
erating conditions compared to other thermody-
namic applications. The Utilities package pro-
vides utilities such as for the calculation of ther-
mal comfort and psychrometric properties. It also
has an interface to the Building Control Virtual
Test Bed (BCVTB) [17], which can connect Mod-
elica to other simulation programs, such as Ener-
gyPlus, MATLAB/Simulink and Radiance, for co-
simulation. The BCVTB can also connect Mod-
elica models to building automation systems for
model-based operation.

3 Updates of the Buildings Li-
brary

This section compares the newest Buildings li-
brary, version 0.10.0, with version 0.6.0 which was
reported in the last Modelica conference [16]. The
purpose is to explain to users the new packages,
models and blocks, as well as their new features.

3.1 Package Airflow
The airflow package provides models for com-

puting air flow inside a building and between a
building and its exterior environment. For build-

Buildings.Airflow.Multizone
.Controls.Continuous

.Discrete

.SetPoints
.Fluid.Actuators.Dampers

.Motors

.Valves
.Boilers
.Chillers
.Delays
.FixedResistances
.HeatExchangers
.HeatExchangers.CoolingTowers

.Radiators
.Interfaces
.MassExchangers
.MixingVolumes
.Movers
.Sensors
.Sources
.Storage
.Utilities

.HeatTransfer

.Media.ConstantPropertyLiquidWater
.GasesPTDecoupled
.GasConstantDensity
.IdealGases
.PerfectGases

.Utilities.Comfort
.Diagnostics
.IO.BCVTB
.Math
.Psychometrics
.Reports

Figure 1: Package structure of the Buildings li-
brary. Only the major packages are shown. Bold
indicates a new package and italic indicates exist-
ing packages with new models added.

ing simulation, many different indoor airflow mod-
els are generally used, such as multizone network
models [3], zonal models [12], computational fluid
dynamics [13], and fast fluid dynamics [18]. For in-
door airflow simulation, multizone network models
with the well-mixed air assumption are fast but
not appropriate if the air is stratified. By solv-
ing the Navier-Stokes equations and equations for
conservation of mass and energy, computational
fluid dynamics (CFD) is the most detailed and
accurate modeling method. However, computing
time for CFD is large for flow simulation in a large
building or over a long time horizon. To fill the
gap between multizone and CFD, fast fluid dy-
namics models solve the Navier-Stokes equations
with simplified schemes that are much faster but
less accurate than CFD.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

267

Currently, the Airflow package contains mul-
tizone airflow models in the package Multizone.
These models compute the airflow and contam-
inant transport between different rooms, as well
as between a room and the exterior. Multizone
airflow models assume that air and contaminants
in each room volume are completely mixed. The
driving force for the air flow is pressure difference
induced by flow imbalance of the HVAC system,
density difference across large openings (such as
open doors or windows), stack effects in high rise
buildings, and wind pressure on the building fa-
cade.

The air volume in each room is modeled by
an instantaneously mixed volume that provides
differential equations for conservation of mass,
species concentration, trace substances and inter-
nal energy. As in Modelica.Fluid, a parameter
can be used to switch between steady-state and
transient simulation, and to switch the initializa-
tion equations between steady-state initialization
and prescribed state variables.

The flow resistance between these volumes is
computed using the orifice equation

V̇ = CdA
√

2/ρ∆Pm, (1)

where V̇ is the volume flow rate, Cd is the dimen-
sionless discharge coefficient, A is the cross section
area of the opening, ρ is the density of the fluid,
∆P is the static pressure difference and m is the
flow exponent. Large openings are characterized
by m very close to 0.5, while values near 0.65 have
been found for small crack-like openings. Typical
values for Cd and m can be found in [15] and in
the citations therein. For pressure differences that
are smaller in magnitude than a user-specified pa-
rameter, equation (1) is regularized to ensure that
it is differentiable with a continuous derivative.

The model EffectiveAirLeakageArea com-
putes air leakage. It describes a one-directional
pressure driven air flow through a crack-like open-
ing. The opening is modeled as an orifice. The
orifice area is parameterized by processing the ef-
fective air leakage area, the discharge coefficient
and pressure drop at a reference condition. The
effective air leakage area can be obtained, for ex-
ample, from the ASHRAE fundamentals [1]. A
similar model is also used in the multizone airflow
modeling software CONTAM [5].

To compute the bi-directional flow across large
openings, such as doors, the opening is dis-
cretized along its height into compartments.
Then, the orifice equation (1) is used to com-
pute the flow for each compartment as explained

in [15]. The model DoorDiscretizedOpen de-
scribes a door that is always open, and the
model DoorDiscretizedOperable describes a
door whose opening area can be changed using
a control signal.

To model the pressure difference caused by stack
effect, one can use the model MediumColumn for
a steady-state and MediumColumnDynamic for a
transient model. The model MediumColumn com-
putes the pressure difference at its ports using

∆p = h ρ g, (2)

where h is the height of the medium column, ρ
is the density and g is the earth acceleration.
The model MediumColumn can be parameterized
to use for ρ the density of either port, or the den-
sity of the inflowing medium. The latter situa-
tion allows, for example, modeling of a vertical
shaft, such as a chimney, whose density may be
equal to the one of the inflowing medium. The
model MediumColumnDynamic contains, in addi-
tion to (2), also a mixing volume that may be
used to approximate the transient response of the
medium column, or to inject heat into the air
stream as may happen in a solar chimney in which
walls absorb solar radiation and heat the fluid in-
side the chimney to increase the buoyancy force.

The models ZonalFlow ACS and
ZonalFlow m flow can be used to exchange
a fixed flow rate between two volumes. As an
input, they use the air exchange rate per second
and the mass flow rate, respectively.

The Multizone package was implemented based
on the multizone package described in [15], which
has been contributed by the United Technolo-
gies Research Center (UTRC) for inclusion in the
Buildings library. However, several changes have
been done when migrating the models to Mod-
elica 3.1, which led to a simpler implementation
based on the stream function [9]. A comparison
between the two implementations is described in
Section 4.1.

3.2 Package Controls
The package Controls contains blocks that can

be used in conjunction with the controls mod-
els from the Modelica Standard Library to im-
plement controllers of building energy systems.
The package Controls.Continuous has a new
model LimPID, which can provide P, PI, PD, and
PID controllers with limited output, anti-windup
compensation and setpoint weighting. The pack-
age Controls.SetPoints has a new model Table,
which allows setting a time-varying set point.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

268

3.3 Package Fluid
The Fluid package contains component mod-

els for thermo-fluid flow systems. The level of
modeling detail is comparable with the mod-
els of the Modelica.Fluid library. Most mod-
els in Buildings.Fluid extend models from
Modelica.Fluid to form components that are
typically needed when modeling building energy
systems. The Fluid package is the largest pack-
age in the Buildings library, and it has 15 sub-
packages. This section will discuss seven sub-
packages to which new models have been added.

3.3.1 Package Fluid.Chillers

The package Fluid.Chillers contains two new
chiller models. The first chiller model is an elec-
tric chiller based on the EnergyPlus chiller model
Chiller:Electric:EIR. This model uses three
functions to predict its capacity and its power con-
sumption:

• a biquadratic function is used to predict its
cooling capacity as a function of condenser
entering and evaporator leaving fluid temper-
ature,
• a quadratic function is used to predict its

power input to cooling capacity ratio as a
function of the part load ratio,
• a biquadratic function is used to predict its

power input to cooling capacity ratio as a
function of condenser entering and evapora-
tor leaving fluid temperature.

The second implemented chiller model is an
electric chiller based on the model by Hy-
deman et al. [10]. This model is also
implemented in EnergyPlus as the model
Chiller:Electric:ReformulatedEIR and is sim-
ilar to the first chiller model. The main dif-
ference is that to compute its performance, this
model uses the condenser leaving temperature in-
stead of the entering temperature, and it uses a
bicubic polynomial instead of a quadratic func-
tion to compute the part load performance. This
model is reported to provide higher accuracy for
variable-speed compressor drive and variable con-
denser water flow applications compared to the
model Chiller:Electric:EIR.

The package Fluid.Chillers.Data contains
performance data for more than 300 chillers.

3.3.2 Package Fluid.Interfaces

Similarly to Modelica.Fluid.Interfaces,
there is a package Buildings.Fluid.Interfaces.
It contains partial models for algebraic and dy-
namic components that exchange heat or

mass with one or two fluid streams. The
model PartialLumpedVolume has been added
to provide a base class for an ideally mixed
fluid volume with the ability to store mass
and energy. This model is similar to the
partial model PartialLumpedVolume from
Modelica.Fluid.Interfaces, except that it
allows modeling the air humidity using a differ-
ential equation, while modeling the total mass
balance using a steady-state equation.

3.3.3 Package Fluid.Actuators

The package Fluid.Actuators contains mod-
els of actuators. There are models of valves with
two and three fluid ports and with various opening
characteristics as well as models of air dampers.
There are also models of motors that can be used
in conjunction with the actuators.

The main change to this package was a redesign
of the three-way-valves. The new implementa-
tion allows the optional addition of a fluid volume
where the two fluid streams mix. The fluid vol-
ume can be conditionally added or removed based
on the parameter dynamicBalance. The use of
this fluid volume often leads to a more robust and
faster simulation.

3.3.4 Package Fluid.HeatExchangers

This package contains algebraic and dynamic
heat exchanger models, some of which com-
pute condensation of water vapor that may
occur at a cooling coil. Several new models
have been added. For example, the model
HeatExchangers.DryEffectivenessNTU de-
scribes a heat exchanger without water vapor
condensation that is based on the effectiveness-
NTU relation [11]. This model transfers heat in
the amount of

Q̇ = ε Q̇max, (3)

where Q̇max is the maximum heat that can be
transferred, and ε is the heat transfer effective-
ness, defined as

ε = f(NTU,Z, flowRegime), (4)

where NTU is number of transfer units, Z is
the ratio of minimum to maximum capacity flow
rate and flowRegime is the heat exchanger flow
regime, such as parallel flow, cross flow or counter
flow.

Also new in this package are the models
DryCoilCounterFlow and WetCoilCounterFlow,
which are finite volume models of counter flow
heat exchanger without and with water vapor con-
densation if the air is cooled below its saturation
temperature.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

269

3.3.5 Package Fluid.Movers

This package contains component models for
fans and pumps. Four new models have been
added that can be parameterized by performance
curves that compute pressure rise, electrical power
draw or efficiency as a function of the flow rate.
The four models differ in their implementation of
the input signal, which can be a control signal, a
prescribed speed, a prescribed mass flow rate or a
prescribed pressure rise.

The models FlowMachine y and
FlowMachine Nrpm take a control signal or a
number of revolutions as an input, and then
compute the resulting pressure difference for the
current flow rate. The models FlowMachine dp

and FlowMachine m flow take the pressure differ-
ence or the mass flow rate as an input signal. The
pressure difference or the mass flow rate will then
be provided by the fan or the pump. These two
models do not have a performance curve for the
flow characteristics, because solving for the flow
rate and the revolution at zero pressure difference
can lead to a singularity.

All models can be configured to have a fluid
volume at the low-pressure side. Adding such a
volume sometimes helps the solver find a solution
during initialization and time integration of large
models.

All models compute the motor power draw Pele,
the hydraulic power input Whyd, the flow work

Wflo and the heat dissipated into the medium Q̇.
The governing equations are

Wflo = |V̇ ∆p|, (5)

Whyd = Wflo + Q̇, (6)

η = Wflo/Pele = ηhyd ηmot, (7)

ηhyd = Wflo/Whyd, (8)

ηmot = Whyd/Pele, (9)

where V̇ is the volume flow rate, ∆p is the pres-
sure rise, η is the overall efficiency, ηhyd is the
hydraulic efficiency, and ηmot is the motor effi-
ciency. All models take as a parameter an effi-
ciency curve for the motor. This function has the
form ηmot = f(V̇ /V̇max), where V̇max is the max-
imum flow rate. The models FlowMachine y and
FlowMachine Nrpm set V̇max = fc(∆p = 0, rN =
1) where fc(·, ·) is a user-specified flow characteris-
tic and rN is the ratio of actual to nominal speed.
Since FlowMachine dp and FlowMachine m flow

are not parametrized by the function fc(·, ·), the
parameter V̇max must be set by the user for these
models.

These models have similar param-
eters as the models in the package
Modelica.Fluid.Machines. However, the
models in this package differ primarily in the
following points:

• They use a different base class, which al-
lows having zero mass flow rate for the
fan and pump models. The models in
Modelica.Fluid.Machines restrict the num-
ber of revolutions, and hence the flow rate, to
be non-zero.
• For the model with prescribed pressure, the

input signal is the pressure difference between
two ports, and not the absolute pressure at
the outlet port.
• The pressure calculations are based on to-

tal pressure in Pascals instead of the pump
head in meters. This change has been made
to avoid ambiguities in the parameterization
if the models are used as a fan with air as
the medium. The original formulation in
Modelica.Fluid.Machines converts head to
pressure using the density of the medium. For
fans, head would be converted to pressure us-
ing the density of air. However, manufac-
turers of fans typically publish the head in
millimeters water (mmH20). Therefore, to
avoid confusion when using these models with
media other than water, our implementation
uses total pressure in Pascals instead of head
in meters.
• Additional performance curves

have been added to the package
Buildings.Fluid.Movers.BaseClasses.-

Characteristics.

3.3.6 Package Fluid.Sensors

This package consists of idealized sensor com-
ponents that provide variables of the medium.
These signals can be further processed with com-
ponents of the Modelica.Blocks library. One can
also build more realistic sensor models by fur-
ther processing their output signal (e.g., by at-
taching the block Modelica.Blocks.FirstOrder

to model the time constant of the sensor). The
new version of the library increased the number of
sensors from 4 to 22. Sensors are now available for
density, enthalpy, mass flow rate, volume flow rate,
pressure, relative humidity, dry bulb temperature,
wet bulb temperature, species concentration, such
as water vapor, and trace substances, such as car-
bon dioxide.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

270

3.3.7 Package Fluid.Sources

This package contains models for fixed or pre-
scribed boundary conditions for thermo-fluid sys-
tems. The new version of the library adds five
different combinations of boundary sources. For
example, the model Boundary ph prescribes pres-
sure, specific enthalpy, mass fraction and trace
substances. The model MassFlowSource T is an
ideal flow source that produces a prescribed mass
flow rate with prescribed temperature, mass frac-
tion and trace substances.

3.3.8 Package Fluid.Storage

This package contains models of ther-
mal energy storage tanks. For the model
StratifiedEnhanced, a new model using the
QUICK scheme [6] for the discretization of the
fluid volume has been implemented. It computes
a heat flux that needs to be added to each volume
in order to give the results that a third-order
upwind discretization scheme would give. If
a standard third-order upwind discretization
scheme were to be used, then the temperatures of
the elements that face the tank inlet and outlet
ports would overshoot by a few tenths of a Kelvin.
To reduce this overshoot, the model uses a first
order scheme at the boundary elements, and it
adds a term that ensures that the energy balance
is satisfied. Without this term, small numerical
errors in the energy balance, introduced by the
third order discretization scheme, would occur.

3.4 Package HeatTransfer

This package contains models for heat trans-
fer elements. Based on a single-layer con-
duction model ConductorSingleLayer, the
new version of the library adds the model
ConductorMultiLayer for one-dimensional
dynamic and steady-state heat conduction
through multi-layer constructions. In addition,
a convection model Convection and a model
for combination of convection and conduction
for opaque constructions ConstructionOpaque

are also implemented. The models for heat
convection are parameterized by different func-
tions that compute heat convection based on
temperature differences, or based on a constant
value. These functions are available in the package
HeatTransfer.Functions.ConvectiveHeatFlux.

3.5 Package Media

This package contains media models that
can be used in addition to the models from
Modelica.Media. Some of the media models

in this package are based on simplified state
equations and property equations. The sim-
plification can generally lead to a faster and
more robust simulation compared to the mod-
els of Modelica.Media. The new version adds a
sub-package Media.GasesConstantDensity. The
models in this sub-package use a constant mass
density to avoid having pressure as a state vari-
able in mixing volumes. The advantage of using
constant mass density is that fast transients intro-
duced by a change in pressure are avoided. The
disadvantage is that the dimensionality of the cou-
pled nonlinear equation system is typically larger
for flow networks.

3.6 Package Utilities

This package contains various utility mod-
els and functions, including diagnostics models,
mathematical functions and a package for co-
simulation with the Building Controls Virtual Test
Bed (BCVTB). The BCVTB is a middle-ware that
can connect Modelica with different simulation
programs, such as MATLAB/Simulink, Energy-
Plus and Radiance. The BCVTB can also link to
building automation systems through a BACnet
interface [2] and through analog/digital convert-
ers.

More interfaces, such as a model for
the boundary condition for HVAC sys-
tems that use a medium with moist air
BCVTB.MoistAirInterface and blocks for
temperature conversions BCVTB.to degC,
BCVTB.from degC, are introduced in the new
version to facilitate the communication between
Modelica and the BCVTB. For illustration, Fig. 2
shows an air-based heating system with an ideal
heater and an ideal humidifier in the supply duct.
The heating system is coupled to the BCVTB for
co-simulation with EnergyPlus. The heater and
humidifier are controlled with a feedback loop
that tracks the room air temperature and room
air humidity. These quantities are simulated in
the EnergyPlus building simulation program.
The component bouBCVTB models the boundary
between the domain that models the air system
(simulated in Modelica) and the room response
(simulated in EnergyPlus).

To assess comfort conditions in rooms, the new
version of the library adds a sub-package Comfort.
This package contains a model that computes
the thermal comfort according to the relations of
Fanger [1]. In Fanger’s model, the thermal sensa-
tion of a human is mainly related to the thermal

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

271

Figure 2: Modelica model that is used for co-simulation of a simple HVAC system that is connected
to an EnergyPlus building model.

balance of its body. This balance is influenced
by two groups of factors: personal and physical.
The activity level and clothing thermal insulation
of the subject form the group of personal factors,
while the environmental parameters (e.g., air tem-
perature, mean radiant temperature, air velocity,
and air humidity) compose the group of physical
factors. When the personal factors have been es-
timated and the physical factors have been mea-
sured, the average thermal sensation of a large
group of people can be predicted by calculating
the PMV (Predicted Mean Vote) index. The PPD
(Predicted Percentage of Dissatisfied) index, ob-
tained from the PMV index, provides information
on thermal discomfort (thermal dissatisfaction) by
predicting the percentage of people likely to feel
too hot or too cold in the given thermal environ-
ment.

4 Applications

4.1 Multizone Air Flow Model

The multizone air flow model in the Buildings

library is based on the library implemented by
UTRC, which is presented in [15]. We converted
the library to use the stream connectors [9], and
implemented it in the Buildings library. Fig. 3
compares model diagrams for modeling airflow in
three rooms. The diagram using stream connec-
tors in Fig.3(a) is much simpler than the one with-

out the stream connectors in Fig. 3(b). The mod-
els became simpler, since with stream connectors,
the inStream operator can be used to obtain the
properties of the medium inside the volumes that
are connected to the model that computes the
stack effect.

We also compared the mass flow rates through
the door and the openings in the walls. The mass
flow rates computed by the new version are the
same as in the original implementation [15], which
indicates that the implementation of the multi-
zone airflow models using stream connectors was
successful.

4.2 Modelica EnergyPlus Co-
simulation for the Control of a
VAV System

This example illustrates the use of co-simulation
between Modelica and EnergyPlus through the
BCVTB. In Modelica, we implemented a variable
air volume flow system for a building with five
thermal zones. The Modelica model implements
the airflow network, the fans and heat exchangers,
and the supervisory and local loop control. At the
air inlet and outlet of the five thermal zones, an
energy balance is made for the sensible and la-
tent heat exchange. These heat flows are then
added to the model of the thermal zones in Ener-
gyPlus. EnergyPlus then computes the new room
temperatures and water vapor concentrations, as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

272

oriOut…

oriOut…

volOut

oriW
e…

dooOp…
y

open

k=1

or
iE

as
…

system

g
de…

TTop

T=2…
K

TWes

T=2…
K

TEas

T=2…
K

(a) With stream connectors.

(b) Without stream connectors.

Figure 3: Comparison between diagrams of three
room problem implemented by Modelica multi-
zone airflow models with and without stream con-
nectors. Subfigure (b) is the model presented
in [15].

well as the current weather conditions. Energy-
Plus also computes the heat balance of the build-
ing and the lighting control as a function of the
available daylight. Thus, the co-simulation allows
users to utilize Modelica for the implementation
and performance assessment of control sequences,
and to utilize EnergyPlus for its whole building
heat transfer and daylighting models.

Fig. 4 illustrates the HVAC system as imple-
mented in Modelica. The total system model con-
tained 970 components that led to a differential
algebraic equation system with 5,000 scalar equa-
tions. The translated model had 90 continuous
time states and 20 nonlinear systems of equations
with dimensions up to 6. There are no numer-

ical Jacobians. The Modelica models are linked
through the BCVTB to EnergyPlus, as shown in
Fig. 5. For a more detailed description about this
system and its simulation results, see [17].

Figure 5: BCVTB model for the co-simulation be-
tween Modelica and EnergyPlus.

5 Ongoing Work
The next major addition to the Buildings li-

brary will be a package with models for a ther-
mal zone that compute heat transfer through the
building envelope and within a room. While the
Buildings library can already be linked to En-
ergyPlus, for some situations, it is more practical
to have all models implemented in Modelica. This
requires the implementation of such a room model
that can be used to assemble buildings with sev-
eral thermal zones.

For the building envelope, we have implemented
models for heat conduction through opaque multi-
layer materials, which are available in the pack-
age Buildings.HeatTransfer. Currently, we are
working on the implementation of models for win-
dow systems. The window model will compute
a layer-by-layer radiation, convection and conduc-
tion heat balance, using equations that are similar
to the ones in the Window 5 program [7].

We are also working on the implementation of
models for short-wave, long-wave and convective
heat transfer in a room. These models will be
similar to the models described in [14].

To obtain boundary conditions,
we have implemented a package
Buildings.BoundaryConditions, which will
be released in the next version. This package
includes models for the sky black-body temper-
ature, the path of the sun, and incidence angles
on tilted surfaces. There will also be a weather

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

273

(a) Plant of VAV system.

(b) Distribution of VAV system with five thermal zones.

Figure 4: Modelica model of the VAV system that is linked to EnergyPlus for co-simulation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

274

data reader. Weather data can be obtained for
free from http://www.energyplus.gov, and
then converted to Modelica format with a Java
program that is provided with the Buildings

library.

6 Conclusion
The Modelica Buildings library has been sig-

nificantly expanded since the last Modelica con-
ference. A new Airflow package has been added
for indoor air flow simulation. Many models have
been added into existing packages to provide more
functionality, and existing models have been re-
vised to improve the numerical efficiency. How-
ever, for large fluid flow systems with feedback
control, such as the ones shown in Fig. 4, com-
puting consistent initial conditions and perform-
ing the time integration can still lead to numerical
problems. The robust simulation of such systems
still requires further research.

7 Acknowledgments
This research was supported by the Assistant

Secretary for Energy Efficiency and Renewable
Energy, Office of Building Technologies of the U.S.
Department of Energy, under Contract No. DE-
AC02-05CH11231.

We would also like to thank the United Tech-
nologies Research Center for contributing the
Multizone package to the Buildings library.

References

[1] ASHRAE. ASHRAE fundamentals, 1997.

[2] ASHRAE. ANSI/ASHRAE Standard 135-2004,
BACnet, a data communication protocol for
building automation and control networks, 2004.

[3] J. Axley. Multizone airflow modeling in build-
ings: History and theory. HVAC&R Research,
13(6):907–928, 2007.

[4] DOE. Buildings energy data book. Technical Re-
port DOE/EE-0325, Department of Energy, 2009.

[5] W. S. Dols and G. N. Walton. CONTAMW 2.0
user manual, multizone airflow and contaminant
transport analysis software. Technical Report NI-
STIR 6921, National Institute of Standards and
Technology, 2002.

[6] J. H. Ferziger and M. Peric. Computational meth-
ods for fluid dynamics. Springer, Berlin, New
York, 3rd, rev. edition, 2002.

[7] E. U. Finlayson, D. K. Arasteh, C. Huizenga,
M. D. Rubin, and M. S. Reilly. WINDOW

4.0: Documentation of Calculation Procedures.
Lawrence Berkeley National Laboratory, Berke-
ley, CA, USA, 1993.

[8] R. Franke, F. Casella, M. Otter, K. Proelss,
M. Sielemann, and M. Wetter. Standardization
of thermo-fluid modeling in modelica.fluid. In
F. Casella, editor, Proc. of the 7-th International
Modelica Conference, Como, Italy, Sept. 2009.

[9] R. Franke, F. Casella, M. Otter, M. Sielemann,
H. Elmqvist, S. E. Mattsson, and H. Olsson.
Stream connectors: an extension of modelica for
device-oriented modeling of convective transport
phenomena. In F. Casella, editor, the 7th Inter-
national Modelica Conference, Como, Italy, 2009.

[10] M. Hydeman, N. Webb, P. Sreedharan, and
S. Blanc. Development and testing of a refor-
mulated regression-based electric chiller model.
ASHRAE Transactions, 108(2), 2002.

[11] F. P. Incropera and D. P. D. Witt. Fundamentals
of Heat and Mass Transfer. John Wiley & Sons,
5th edition, 2001.

[12] A. C. Megri and F. Haghighat. Zonal modeling
for simulating indoor environment of buildings:
Review, recent developments, and applications.
HVAC&R Research, 13(6):887–905, 2007.

[13] P. V. Nielsen. Computational fluid dynamics
and room air movement. Indoor Air, 14:134–143,
2004.

[14] M. Wetter. Simulation-Based Building Energy
Optimization. PhD thesis, University of Califor-
nia, Berkeley, 2004.

[15] M. Wetter. Multizone airflow model in model-
ica. In the 5th International Modelica Conference,
pages 431–440, Vienna, Austria, 2006.

[16] M. Wetter. Modelica library for building heat-
ing, ventilation and air-conditioning systems. In
the 7th International Modelica Conference, Como,
Italy, 2009.

[17] M. Wetter. Co-simulation of building energy and
control systems with the building controls virtual
test bed. In press: Journal of Building Perfor-
mance Simulation, 2010.

[18] W. Zuo and Q. Chen. Real-time or faster-than-
real-time simulation of airflow in buildings. In-
door Air, 19(1):33–44, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

275

http://www.energyplus.gov

Object-oriented sub-zonal room models
for energy-related building simulation

Marco Bonvini∗, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio 34/5, 20133 Milano, Italy
{bonvini,leva}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Simulation is important to evaluate the energy-related
performance of a building, and for reliable results,
reproducing the behaviour of the contained air vol-
umes is particularly relevant. For such a purpose, fully
mixed models (i.e., for instance, a single temperature
per room) easily prove inadequate, while Computa-
tional Fluid Dynamics (CFD) ones are too complex,
and difficult to formulate in a modular manner, to the
detriment of their usefulness if the simulator has to be
used throughout the project, and not only to assess its
final result. This manuscript presents an intermediate
solution based on the Modelica language.

Keywords: Building simulation; energy optimisa-
tion; object-oriented modelling; modular modelling;
scalable detail.

1 Introduction

In the research on building simulation, probably the
toughest challenge is to deliver tools that can effec-
tively confront the multi-physic nature of such com-
plex systems. The energy performance of a building
in fact results from phenomena of heterogeneous type
(hydraulic, thermal, electric and so forth) together with
the operation of several control systems and the ac-
tions of the inhabitants. Better still, energy perfor-
mance is determined by the interaction of all those
phenomena [22].

Traditionally, the design of a building is treated in
practice as the partially disjoint (explanations follow)
design of its “subsystems”. Although there is no stan-
dardised nomenclature, in fact, virtually the totality of
engineering tools broadly distinguish (a) the “build-
ing” stricto sensu, i.e., walls, doors, windows and so
on, (b) the contained air volumes, possibly divided in
zones, (c) the Heating, Ventilation and Air Condition-

ing (HVAC) system, (d) automation and control sys-
tems, and (e) energy sources/sinks owing to the build-
ing utilisation, e.g., the heat released by occupants, in-
dustrial machines, or whatever is installed. The sub-
systems’ interaction is accounted for by having some
of them provide boundary conditions for the design of
some other.

This is apparently very far from a really integrated
approach, whence the term “partially disjoint” applied
above to current design practices, but tools that address
the simulation of all (or at least part) of the subsystems
in a coordinated way are at present little more than
research objects [12, 23, 22].

The main reason for such a scenario are the very
different issues posed by the various subsystems. For
example, control system models are made of oriented
blocks and may need sometimes a continuous-time
and sometimes a digital representation depending on
the simulation purpose; models for HVAC, conversely,
live invariantly in the continuous-time domain, but are
typically zero- or one-dimensional, while models of
phenomena that occur in continua such as a wall or an
air volume often cannot avoid three-dimensional spa-
tial distributions. As a result, it is difficult to devise
simulation models that address all the necessary phe-
nomena, and can be organised in a modular way, to the
advantage of their construction, parametrisation, and
maintenance.

2 Literature review

In building simulation, modelling air volumes requires
to treat temperature and heat flow distributions in a
coordinated way with respect to how the same distri-
butions are addressed in solid bodies (e.g., walls) and
possibly other fluids (e.g., heat conveying ones).

A widely used modelling paradigm is that of zonal

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

276

models or zoning, where the air within a building is
split into zones, typically rooms. Zones are macro-
volumes with respect to the scale of the spatial temper-
ature and flow distribution, allowing for a small num-
ber of simulated variables, but posing non-trivial prob-
lems for the determination of average fluid properties.

However the zonal approach allows to clearly char-
acterise the relationships between a zone and the adja-
cent entities, thus to create modular models, typically
distinguishing “storage” elements (like the air vol-
umes) and “flow” ones, that describe the mass and en-
ergy flow among the storages. Many literature works
and engineering tools adopt the zonal approach: exam-
ples are COMIS, CONTAM, POMA, see [4, 7, 20, 10],
and EnergyPlus [3].

On the opposite side with respect to the zonal
paradigm stands the CFD one, that provides far more
accuracy, but the computation-intensive, and does not
allow to separate easily the (partial) differential equa-
tions that hold within a volume from the boundary
conditions, making the creation of modular models a
complex task. There exist CFD tools applied to build-
ings, e.g. Fluent [8, 9], but their use is most frequently
limited to static problems, and hardly ever considered
in system level studies.

In recent years, various attempts are being made to
join air models with the description of other elements
such as containment, HVAC, and possibly the electric
system, the behaviour of inhabitants, weather condi-
tions, and so forth, see e.g. [5]. To achieve such
ambitious a goal, a promising paradigm is Object-
Oriented Modelling (OOM), see [21], and in particular
the Modelica language [17] and [6] To date, however,
OOM-related research enforces modularity by relying
on the zonal models idea, which is the easiest way to
go, but definitely not the most accurate.

In the last years a somehow intermediate proposal,
termed sub-zonal modelling or sub-zoning, was formu-
lated in an attempt to join the best of zoning and CFD
[16, 14, 25]. This improves accuracy at the cost of
a (moderate) complexity increase, but still poses non-
trivial issues with respect to modularity, especially if
air models need to be connected to heterogeneous enti-
ties such as prescribed boundary conditions (e.g.. from
the external environment), walls, piping, and so on.

This manuscript aims at filling the gap just sketched,
proposing the innovative model structuring described
below, and maintaining compatibility with other
Modelica-related research on the matter [22, 23].

3 The proposed modelling approach

With respect to the way equations are formulated, the
distinctive characteristic of this work is that the mo-
mentum balance is introduced explicitly, contrary to
previous (specifically, non-CFD) literature. An ad hoc
spatial discretisation of said equation makes it natu-
ral to account for gravity and any possible other mo-
tion driving force. With respect to model structuring
and implementation, the object-oriented paradigm is
strictly followed.

3.1 Balance equations

This work starts from the three Navier-Stokes equa-
tions for mass, energy and momentum, that for the
purpose of this work can be written as

∂ρ

∂ t
+∇·(ρv) = 0 (1a)

∂ (ρe)
∂ t

+∇·(ρvcpT) = ∇·(k∇T) (1b)

∂ (ρv)
∂ t

+∇·(ρvv)+∇P = ∇f (1c)

where the scalars p, T , e and ρ are respectively the
fluid pressure, temperature, specific energy and den-
sity, the vectors v and f are the fluid velocity and
the possible motion driving forces, and the scalar pa-
rameters k and cp are the fluid thermal conductivity
and constant-pressure specific heat capacity. In the
cases of interest for this research the fluid (air) can
be considered a mixture of ideal gases, which allows
to express the specific energy e as cvT , where cv is
the constant-volume specific heat capacity. As fur-
ther simplification, Newtonian fluid model is adopted,
thereby rewriting (1c) as

∂ (ρv)
∂ t

+∇·(ρvv)+∇P = ∇ · (µ∇v) (2)

where µ is the fluid dynamic viscosity, and then the
the scalar projection is brought in.

The set of equations (1a), (1b) and (2), are spa-
tially discretised with reference to finite volume ele-
ments (not necessary uniform) of parallelepiped shape.
To deal with said spatial discretisation, a staggered
grid of points [15, 19] is defined in the spatial do-
main of interest, as illustrated in figure 1. For sim-
plicity the figure refers to a 2-dimensional case, exten-
sion to 3-dimensional space is straightforward. In the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

277

Figure 1: Staggered grid adopted for the discretisation
(2D case).

grid there are elements that represent the volumes (cir-
cles) while other elements (horizontal and vertical ar-
rows) that represent the coupling element between ad-
jacent volumes, or between volumes and boundaries.
Within these elements the balance equations of mass,
energy and momentum are discretised. In particular
the mass and energy ones are integrated within the vol-
umes while the momentum balance ones are within the
coupling elements.

3.2 Other equations

To complete the model it suffices to complement the
balance equations introduced and discretised so far
with those pertaining to the fluid state, the energy
transfers not associated to fluid motion, and possibly
the required turbulence model.

3.2.1 Fluid state

The fluid considered here is air, treated as a mixture
of ideal gases: 78 % of nitrum and 22 % of oxygen.
Instead of using the ideal gas relationship, in order to
simplify the model, the linearisation

ρ =
p

R∗T
(ideal gas)

(3a)

ρ = ρo +
1

R∗To
P− po

R∗To
2 (T −To) (linearised)

(3b)

is here used, where ρ is the fluid density, R∗ is the
specific ideal gas constant, T the absolute temperature
of the gas, p the absolute pressure, ρo gas density at the
linearisation point, po and To are the values of absolute
pressure and temperature at the same point. Notice
the use of the relative pressure P = p− po, in order to

avoid numerical errors due to the large absolute pres-
sure values. The discrepancy between the ideal and the
linearised model is very limited in the typical operat-
ing range. In addition to the state equation, also the
specific energy and enthalpy equations are necessary:
here they are simply written, as partially anticipated,
in the form

e = cvT (speci f ic energy) (4a)

h = e+
p
ρ

(speci f ic enthal py) (4b)

3.2.2 Thermal exchanges not associated with fluid
motion

The heat fluxes due to thermal air conduction are com-
puted with the Fourier-like law

QA→B =
γ ·AAB

dAB
· (TA−TB) (5)

where QA→B is the thermal power flowing from vol-
ume A to volume B, γ is the fluid’s thermal conduc-
tivity (for air γ = 0.026[W/mK]), AAB is the surface
shared by the adjacent volumes, dAB is the distance be-
tween the volume centres, and TA,B are respectively the
temperatures of volumes A and B. Notice that (5) can
be shown to be the discretisation of the right hand side
of (1b).

In addition, when dealing with boundary conditions
such as walls, there is a convective heat transfer in-
stead of a conductive one. The thermal power flowing
from to an adjacent volume can thus be calculated as

QWall→Volume = h ·A · (TWall−TVolume) (6)

where h is the convective heat transfer, A is the por-
tion of area shared by the volume and the wall, TWall
and TVolume are respectively the temperature of the wall
and of the volume.

3.2.3 Simple turbulence modelling

For laminar flows, the results provided are natively ac-
curate and reliable. As witnessed by the CFD liter-
ature, the same is not true for turbulent flows. The
introduction of a turbulence model is most common
way to solve this problem, and a lot of such have been
studied and implemented.

The solution used here is based on the idea of “zero-
equation” turbulence modelling, first introduced by
Prandtl, at the beginning of the nineteenth century.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

278

After Prandtl’s work, many effort were made to ex-
tend the applicability of his theory [24], and among
the so obtained results, those of [2] were chosen for
this work, given their simplicity and the available val-
idations in a context (HVAC) similar to that addressed
here. Starting from the quoted work, the viscosity µ

in the momentum equation, when dealing with turbu-
lent flows, is thus replaced by the “effective” dynamic
viscosity

µe f f = µ + µT (7)

that is a sum of the intrinsic fluid dynamic viscosity
µ and a turbulent viscosity µT , that according to [2]
comes from an algebraic function of local mean veloc-
ity V and at a length scale l given by

µT = 0.03874ρV l (8)

The function (8) was here implemented consider-
ing as mean velocity V the velocity of the air flowing
through the coupling element, and as length scale l as
the distance between the centres of the volumes linked
by the coupling element.

4 Discretised equations

In order to develop a model representing the air con-
tained within a room (or more in general an ambient)
the basic equations of mass (1a), energy (1b) and mo-
mentum (2) preservation have to be discretised as an-
ticipated in section 3. These equations are discretised
accordingly to the grid structure shown in figure (1)
and finite volume elements (not necessary uniform) of
parallelepiped shape, Ax,y,z being the areas of the two
element faces having as normal the x, y and z axis ver-
sors, and V the element volume. The mass and energy
equations are treated in quite standard a manner, giv-
ing rise to the two scalar ones

V
∂ρ

∂ t
= wx− +wx+ +wy− +wy+ +wz− +wz+ (9a)

V
∂ (ρe)

∂ t
= wx− ·hx− +wx+ ·hx+ +wy− ·hy−

+wy+ ·hy+ +wz− ·hz− +wz+ ·hz+

+Qx− +Qx+ +Qy−

+Qy+ +Qz− +Qz+ +Qg (9b)

where wa−,a+ are the mass flow rates across the
two surfaces orthogonal to axis a, assumed positive
when entering the element, ha−,a+ are the specific en-
thalpies transported by fluid motion across said sur-
faces, Qa−,a+ the thermal powers crossing the same

Figure 2: Staggered grid evidencing pressure and ve-
locities nodes (left), and grid application to the x (cen-
tre) and z (right) momentum equations.

surfaces without fluid motion (due e.g. to diffusion),
and Qg the thermal power possibly generated within
the volume.

As anticipated before, contrary to previous works
that introduced empirical correlation instead of in-
troducing the momentum balance equation, here the
problem is treated. In this work is adopted an ad hoc
approximation for the velocities’ second derivatives,
and a corresponding treatment of the boundary volume
elements.

First the Newtonian fluid simplification is adopted,
thereby rewriting (1c) as (2). Second the convective
term ∇ ·(ρvv) has been intentionally neglected since it
is not relevant in the context addressed. Thus after the
mentioned manipulation, and considering for brevity
the 2D case

∂ρvx

∂ t
=+

∂ p
∂x

+
∂

∂x

(
µ

∂vx

∂x

)
+

∂

∂ z

(
µ

∂vx

∂ z

)
(10a)

∂ρvz

∂ t
=−ρg+

∂ p
∂ z

+
∂

∂x

(
µ

∂vz

∂x

)
+

∂

∂ z

(
µ

∂vz

∂ z

)
(10b)

Spatial discretisation is managed as described in the
following, referring to the two-dimensional case with
the x and z (vertical) axes only (the three-dimensional
extension is trivial and would only unnecessarily com-
plicate the notation). With reference to the staggered
grid (figure 1), these equations are discretised within
volumes that are centred respectively on horizontal
and vertical arrows.

For the discretisation of the x and z-axis momentum
equations (10) the grid of figure 2 (centre and right) is
considered, and in this treatise the only moving force
introduced is gravity (directed as the negative z axis);
generalisations to other forces are straightforward. In
figure 2 and the following analogous ones, arrows indi-
cate the positive velocity direction assumed when dis-
cretising the momentum equations.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

279

First, consider the x equation. The velocity to be
computed is Vx, while V x−

x , V x+

x , V z−
x and V z+

x de-
note respectively the x component of velocities in the
“west”, “east”, “south” and “north” surrounding ve-
locity nodes—a notation that figure 2 (centre) should
make self-explanatory. Analogously, px− and px+ are
the pressures of the west and east pressure nodes. The
distances between the node in which the Vx velocity is
computed and the surrounding ones where the x veloc-
ity components are accounted for, are denoted by δx− ,
δx+ , δz− and δz+ .

In (10a), three terms have to be spatially discretised.
The first one is ∂ p/∂x, that simply yields

∂ p
∂x
≈ px+− px−

1
2 δx− + 1

2 δx+
(11)

The second term is ∂ (µ∂vx/∂x)/∂x. Assuming the
viscosity µ uniform in the volume element, one can
write

µ
∂

∂x

(
∂vx

∂x

)
= µ

∂ 2vx

∂x2 (12)

For the partial second derivative of the x velocity with
respect to x, a second order polynomial function Vx ≈
ax2 +bx+c is taken as local approximant, consistently
with the quasi-3D spatial discretisation of a second
derivative, and readily parametrised as

V x−
x = a(x−δx−)2 +b(x−δx−)+ c (13a)

Vx = ax2 +bx+ c (13b)

V x+

x = a(x+δx+)2 +b(x+δx+)+ c (13c)

The required second derivative approximation is thus
2a, which yields

a =
V x+

x −Vx
δx+

− Vx−V x−
x

δx−

δx− +δx+
(14)

allowing to reformulate (12) as

µ
∂ 2vx

∂x2 ≈ 2µ

V x+
x −Vx
δx+

− Vx−V x−
x

δx−

δx− +δx+
(15)

The last term to be discretised is ∂ (µ∂vx/∂ z)/∂ z.
Also in this case since the viscosity is assumed uni-
form in the element, yielding

µ
∂

∂ z

(
∂vx

∂ z

)
= µ

∂ 2vx

∂ z2 (16)

and for the second partial derivative of the x velocity
with respect to z as a second order polynomial approx-
imant is again taken. With a reasoning similar to that

Figure 3: Boundary layer for x (left) and z (centre)
velocity, and grid for the x momentum equation on the
west boundary (right).

previously reported, (16) is thus approximated as

µ
∂ 2vx

∂ z2 ≈ 2µ

V z+
x −Vx
δz+

− Vx−V z−
x

δz−

δz− +δz+
(17)

Considering the z momentum equation, the same ap-
proach can be followed. The only difference with re-
spect to the x axis is the presence of gravity, that does
not need any discretisation.

The discretised momentum equations reported so
far are valid in the volumes within a cavity (a room,
a duct, a box...) but apparently not for the volumes
at the cavity boundaries. As shown in figure 3 (left
and centre), velocity nodes referring to volumes at the
boundary may not have west/east neighbours for the
x velocity case, and may not have north/south neigh-
bours for the z case. A special momentum equation
discretisation is thus required for boundary velocities.

For brevity, consider the x case in a velocity node lo-
cated on the west cavity boundary (the other cases are
analogous) illustrated in figure 3 (right). The equation
to be discretised is (10a), requiring the pressure gradi-
ent along x and the second derivatives of the x velocity
with respect to x and z. The pressure gradient can be
discretised as

∂ p
∂x
≈ px+− px−

δx+
2

(18)

For the second partial derivative with respect to z,
(17) is still valid. The only change is in the second
derivative of the x velocity with respect to x. A second
order polynomial function can still be used, but this
time the system to solve in order to parametrise it is

Vx = ax2 +bx+ c (19a)

V x+

x = a(x+δx+)2 +b(x+δx+)+ c (19b)

V x++

x = a(x+δx+ +δx++)2 +b(x+δx+ +δx++)+ c
(19c)

and thus to

µ
∂ 2vx

∂x2 ≈ 2µ

V x++
x −V x+

x
δx++

− V x+
x −Vx
δx+

δx+ +δx++
(20)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

280

Figure 4: Modelica connection scheme for a 3×3(×1) room.

5 Modelica implementation

The adopted discretisation approach is a very easy
modularisation of the obtained models. To show that,
based on the considerations above, some words are
now spent (exhausting the matter is not possible for
space limitations) how the devised models are realised
in the Modelica language [13, 18].

The grid on which the Navier-Stokes equation are
discretised can be represented in a modular way, where
volume models are connected together with coupling
models. Volume models are of a single type, while
coupling ones can be of “internal” or “boundary” type.
The staggered grid thus corresponds in Modelica to a
modular structure composed only by the main model
classes volume, coupling and boundary, with a uni-
form interface.

• Volume models contain the mass balance, the en-
ergy balance, the fluid state equation, the specific
energy equation, and the specific enthalpy equa-
tion.

• Coupling models contain the momentum balance,
the turbulence model, and the heat flow equation.

• Boundary models are similar to coupling ones but
also contain the heat equation.

• Connectors are in fact very simple with the
adopted choices, and are of two types. A first
type contains the information on the fluid state

and that used by the coupling elements to solve
the momentum equation, namely relative pres-
sure, absolute temperature, fluid velocity through
the face, heat flow rate through the face, specific
enthalpy flowing through the face, density of the
fluid flowing through the face, velocities asso-
ciated the other faces of the volume, and sizes
of the volume. The second type connects cou-
pling/boundary elements providing the velocity
of surrounding coupling elements, and the dis-
tance between said elements.

As a result, constructing a compound model is very
easy by means of array structures. A compound model
is spatially parametrised by just providing its dimen-
sions, and the number of volume divisions (not nec-
essarily evenly spaced) along the coordinate axes. At
present only (compounds) of parallelepiped shape el-
ements are allowed, extensions will be introduced in
the future.

Also, replacing the fluid state equation with a dif-
ferent one is very straightforward, as is modifying the
turbulence model. For example, figure 4 shows how
a room model with 3×3(×1) sub-zonal volumes is
viewed in a Modelica graphical editor. Note that in
said figure and in the following analogous ones rel-
ative to the examples, 2D arrangements are used for
simplicity and/or consistence with the literature refer-
ences used for the validation, but of course the devised
formalism is natively quasi-3D.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

281

6 Modelica Models

This section describes the Modelica implementation of
the most important components that, once connected
together, compose the model of the air within a room.

6.1 Connectors

The 2-dimensional room model in figure 4 shows how
the elements (volumes, coupling elements and bound-
ary conditions) are connected. Said elements are
strongly interacting, since each coupling element has
to know at least three velocity values (coming from
of its neighbours) in order to compute the momentum
balance (see section 4). To fulfil this need, specific
connectors are defined, that convey information about
velocities (and other useful data such as geometrical
ones). The requirements expressed so far have lead
to the implementation of two kinds of connectors: a
first one to connect volumes and layers, that contains
physical and velocities/geometrical information, and a
second one to connect layers with layers, that contains
velocities/geometrical informations only. The Phys-
ical/Information connector is written in Modelica as
follows.

connector faceA
SI.Pressure P;
SI.Temperature T;
SI.velocity v;
flow SI.HeatFlowRate q;
input Real h_ba; // Note: there exists also a B-type
output Real h_ab; // connector, where input and output
input Real rho_ba; // are reversed: an A-type is always
output Real rho_ab; // connected to a B-type
input Real V_ba;
output Real V_ab;
... other velocities ...
input Real dx_ba;
output Real dx_ab;
... other distances ...

end faceA;

The Information connector, conversely, corresponds
to the following Modelica code.

connector VelocityA
input Real V_ba; // Note: here too a B-type exists,
output Real V_ab; // see above
input Real d_ba;
output Real d_ab;

end VelocityA;

6.2 Volume

The volume represents a portion of the air where tem-
perature and pressure are assumed as uniform. It con-
tains the mass and energy balances, and corresponds to
the following Modelica code (only the essential parts
are reported).

model Volume
SI.Density rho "air density";
SI.Mass m "mass of air contained within the volume";
SI.Pressure P "relative pressure of the air within the volume";
SI.Temperature T(start = Tstart) "temp. of the air within the volume";

SI.SpecificEnthalpy h "spec. enthalpy of the air within the volume";
SI.SpecificEnergy e "spec. energy of the air within the volume";
...
other variables omitted for brevity
...
parameter SI.Temperature Tstart = 273.15 + 20 "initial temperature";
parameter SI.Pressure Po = 101325 "Pressure lin. value";
parameter SI.Temperature To = 298.15 "Temperature lin. value";
parameter SI.Density rho_o = Po/(R*To) "Density initial value";
parameter SI.SpecificHeatCapacity R=CONST.R*1000/28.97;
parameter SI.SpecificHeatCapacity cv = 1006 "air spec. heat";
parameter SI.Length height = 0 "distance between the volume ceiling";
parameter SI.Acceleration g = CONST.g_n "constant gravity acceleration";
parameter Real ComprCoeff = 1/(R*To) "air compressibility coefficient";
parameter Real ThermalExpCoeff = Po/(R*To^2) "air thermal exp. coeff.";
...
geometrical parameters
...
// thermal connector
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a HeatPort;
// Volumes connectors
faceA W "connector of west face";
faceB E "connectro of east face";
faceA S "connector of south face";
faceB N "connectro of north face";
faceA BO "connector of bottom face";
faceB TO "connectro of top face";

initial equation
rho = rho_o + ComprCoeff*(rho*g*height) - ThermalExpCoeff*(Tstart-To);
P = rho*g*height;

equation
// The linearised PV=nRT gas relationship
rho = rho_o + ComprCoeff*P - ThermalExpCoeff*(T-To);

// mass of the air volume
m = rho*V;

// mass conservation
der(m) = ww + we + wbo + wto + ws + wn;

// incoming and outgoing air mass flows
// along (x,y,z)-directions
ww = dy*dz*W.v*(if noEvent(W.v>0) then W.rho_ba else rho);
...
wn = - dy*dx*N.v*(if noEvent(N.v<0) then N.rho_ab else rho);

// specific energy
e = cv*T;

// specific enthalpy
h = e + P/rho;

// energy balance
der(m*e) = W.q + E.q + N.q + S.q + BO.q + TO.q + h_flow

+ HeatPort.Q_flow;

// enthalpy flows
h_flow = + ww*(if noEvent(ww>0) then W.h_ba else h)

...
+ wn*(if noEvent(wn>0) then N.h_ab else h);

...
other equations omitted for brevity
...

end Volume;

6.3 Coupling element

The coupling element represents the interaction be-
tween two adjacent volumes (in the Modelica code, the
coupling element model is called layer, boundary layer
when it is on the boundary of the domain). It con-
tains the momentum balance and heat transfer equa-
tions. There are various coupling elements, each one
intended for computing the momentum balance along
a given direction (x, y or z) and in a particular posi-
tion (at the room boundary or not). The code reported
below refers to a coupling element that computes the
momentum balance equation along the z-direction, not
at the room boundary (here too only the most impor-
tant parts are shown).

model LayerZ
SI.Velocity Vz "velocity of the air";
parameter Real gamma=0.026 "air thermal conductivity";

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

282

parameter Real mu = 1.83e-5 "air viscosity, laminar framework";
parameter SI.Acceleration g = CONST.g_n
"standard acceleration gravity on earth";

...
other geometrical parameters
...
// connectors
faceA BO "bottom connector: Volume-Layer";
faceB TO "top connector: Volume-Layer";
VelocityA W "west connector: Layer-Layer";
VelocityB E "east connector: Layer-Layer";
VelocityA S "south connector: Layer-Layer";
VelocityB N "north connector: Layer-Layer";

initial equation
// initialization for the considered average density
rho = 0.5*BO.rho_ba + 0.5*TO.rho_ab;

equation
// average and smoothed density
rho + 1*der(rho) = 0.5*BO.rho_ba + 0.5*TO.rho_ab;

// momentum balance equation
rho*der(Vz) = F

+2*MU*((W.V_ba - Vz)/dx_w - (Vz - E.V_ab) /dx_e)
/(dx_w+dx_e)

+2*MU*((BO.V_ba - Vz)/dz_bo - (Vz - TO.V_ab)/dz_to)
/(dz_bo+dz_to)
+2*MU*((S.V_ba - Vz)/dy_s - (Vz - N.V_ab) /dy_n)
/(dy_s+dy_n);

// force source term
F = -rho*g + (BO.P - TO.P)/dz;

// heat exchange between the volumes (conductive heat transfer)
BO.q = A*(BO.T - TO.T)*gamma/dz;

// no heat and mass storage within the element
BO.v = TO.v;
BO.q + TO.q = 0;

// zero equation turbulence model, eddy viscosity (ref: chen xu 98)
MU = (mu + 0.03874*Functions.sqrtReg(Vz^2,1e-8)*rho*dz);

...
other equations omitted for brevity
...

end LayerZ;

7 Validation

Several tests were performed to validate the proposed
models, basically by comparing their outcome with
that of CFD models. The verification is made by
checking that the sub-zones (that are “large” volumes
from the CFD standpoint) yield reasonably accurate
averages of the quantities that CFD models evaluate
on much finer a spatial discretisation. Other verifica-
tions were made against literature models realised with
various approaches.

As an example of said tests, a natural convection
case is reported, for which the experimental and simu-
lation results of [11] and [16] are taken as reference.
The experimental setup in the quoted works is the
MINIBAT test cell at CERTHIL, described in [1], that
consists of a 3,1 m×3,1 m×2,5 m room.

The case here shown has two lateral walls with im-
pressed temperature, one “cold” and one ”hot”. The
temperature distribution provided by the presented
models satisfactorily reproduces experimental data, as
can be seen by comparing the steady-state situation
shown in figure 5, obtained by linear interpolation and
subsequent colour coding, with figure 6 in [16], and
is also in good accordance with simulation data pro-

Figure 5: Simulated temperature distribution within a
room (◦C) with natural convection.

vided by other tools, see e.g. figures 4 and 7 in [16],
and figure 5 in [11]. Here too, efficiency is good: on a
standard PC, a 3000 s simulation takes approximately
1.5 s only with a 12×10 grid (the same resolution of
the quoted references).

8 Application example

To show how the proposed modelling approach allows
to efficiently integrate quasi three-dimensional models
with one-dimensional ones like for example the piping
of a heating system, another brief example is reported.
A room (4×1×6 volumes) is heated by a radiator fed
with hot water through a three-ways modulating valve,
and a PI controller regulates the room temperature.
The external conditions are kept constant, and a dis-
turbance is introduced in the form of a sudden drop of
the heating water temperature eight hours after the be-
ginning of the simulation. Figures 6 through 8 show
the results.

The heater is positioned in the lower left corner, and
two tests are reported in which the sensor is located
in two different positions. In the first case (“single-
Zone1” in the figures) on the same wall as the heater,
and above it; in the second one (“singleZone2”) on
the opposite wall with respect to the heater. As can
be seen, despite the measured temperature is kept at
the set point in more or less the same way, the differ-
ent sensor positions result in different behaviours of
the room mean temperature, shown in figure 6, thus
in different comfort conditions, and energy consump-
tion. Apparently, an analysis like that just sketched
would not be possible without the proposed sub-zonal
models. Incidentally, the simulation of 24 hours took
1.02 seconds, which is quite good a result.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

283

Figure 6: Application example - set point and mean room temperature (not the temperature sensor output) for
two sensor locations.

Figure 7: Application example - control signal (heater valve position in the range 0–1) for two sensor locations.

9 Conclusions and future work

An object-oriented modelling approach was proposed
to somehow emulate CFD-based results in the context
of building simulation. By means of an ad hoc equa-
tions’ formulation and model structuring, high mod-
ularity and simulation efficiency can be achieved. Of
course the presented models do not fully replicate CFD
results, but allow to preserve the relevant facts for
energy-related simulation studies. In addition, said
models can be readily integrated in a multi-physics en-
vironment, thereby avoiding the use of co-simulation
to the advantage of speed and model maintenance.

The proposed approach has already demonstrated
its validity in terms of modularity, simulation effi-
ciency, and ease of integration with heterogeneous
models. This make the approach particularly suited
for system level studies, including (but not limited to)
those relative to control.

Future work will be devoted to the representation of
complex geometries, and the inclusion of more articu-
lated fluid modelling (e.g., integrating accurate repre-
sentations of moist air). Further validations will also
be carried out, and the obtained models will be pro-
gressively integrated, also with others coming from
different research lines, in order to construct a general-
purpose building simulation library, always keeping in

mind the orientation to system studies, that in the opin-
ion of the authors is one of the major strengths of their
proposal.

References

[1] F. Allard, J. Brau, C. Inard, and J.M. Pal-
lier. Thermal experiments of full-scale dwellings
cells in artificial conditions. Energy and Build-
ings, 10:49–58, 1987.

[2] Q. Chen and W. Xu. A zero equation turbulence
model for indoor airflow simulation. Energy and
Buildings, 28(2):137–144, 1998.

[3] B. Drury and B. Crawley. EnergyPlus: energy
simulation program. ASHRAE Online Journal,
42(4):49–56, 2000.

[4] F. Allard F., V.B. Dorer, and H.E. Feustel.
Fundamentals of the multizone air flow model
COMIS. AIVC (technical note 29), 1990.

[5] F. Felgner, S. Agustina, R. Caldera Bohigas,
R.Merz, and L. Litz. Simulation of thermal
building behaviour in Modelica. Oberpfaffen-
hofen, Germany, 2002.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

284

Figure 8: Application example - power released to the room air for two sensor locations.

[6] F. Felgner, R. Merz, and L. Litz. Modular mod-
elling of thermal building behaviour using Mod-
elica. Mathematical and computer modelling of
dynamical systems, 12(1):35–49, 2006.

[7] H.E. Feustel. COMIS—An international multi-
zone air-flow and contaminant transport model.
Energy and Buildings, 30(1):3–18, 1999.

[8] Fluent Inc. Fluent 6.1 tutorial guide. 2003.

[9] Fluent Inc. Fluent 6.3 user’s guide. 2003.

[10] F. Haghighat, Y. Li, and A.C. Megri. De-
velopment and validation of a zonal model -
POMA. Building and Environment, 36(9):1039–
1047, 2001.

[11] C. Inard, H. Bouia, and P. Dalicieux. Prediction
of air temperature distribution in buildings with a
zonal model. Energy and Buildings, 24(2):125–
132, 1996.

[12] M. Janak. Coupling building energy and lighting
simulation. Kyoto, Japan, 2000.

[13] S.E. Mattsson, H. Elmqvist, and M. Otter. Physi-
cal system modeling with Modelica. Control En-
gineering Practice, 6:501–510, 1998.

[14] L. Mora, A.J. Gadgil, and E. Wurtz. Comparing
zonal and CFD model predictions of isothermal
indoor airflows to experimental data. Indoor Air,
23(2):77–85, 2003.

[15] S.V. Patankar. Numerical heat transfer and fluid
flow. Taylor and Francis, London, UK, 1980.

[16] Z. Ren and J. Stewart. Simulating air flow and
temperature distribution inside buildings using a
modified version of COMIS with sub-zonal di-
visions. Energy and Buildings, 35(3):257–271,
2003.

[17] A. Sodja and B. Zupanc̆ic̆. Modelling thermal
processes in buildings using an object-oriented
approach and Modelica. Simulation Modeling
Practice and Theory, 17(6):1143 – 1159, 2009.

[18] The Modelica Association. Modelica home page.
http://www.modelica.org/, 1997–2010.

[19] H.K. Versteeg and W. Malalasekera. An introduc-
tion to computational fluid dynamics: the finite
volume method. Pearson Prentice Hall, Upper
Saddle River, NJ, USA, 2007.

[20] G.N. Walton. CONTAM’96 users manual. NI-
STIR 6055, National Institute of Standards and
Technology, 1997.

[21] M. Wetter. Multizone airflow model in Modelica.
pages 431–440, Vienna, Austria, 2006.

[22] M. Wetter. Modelica-based modeling and sim-
ulation to support research and development in
building energy and control systems. Journal of
Building Performance Simulation, 2(1):143–161,
2009.

[23] M. Wetter. Modelica library for building heating,
ventilation and air-conditioning systems. Como,
Italy, 2009.

[24] D.C. Wilcox. Turbulence modeling for CFD,
third edition. La Canada, DCW Industries, 2006.

[25] E. Wurtz, J.M. Nataf, and F. Winkelmann. Two-
and three-dimensional natural and mixed con-
vection simulation using modular zonal models
in buildings. International Journal of Heat and
Mass Transfer, 42(5):923–940, 1999.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

285

Numerical coupling of Modelica and CFD
for building energy supply systems

Manuel Ljubijankic1 Christoph Nytsch-Geusen1 Jörg Rädler1
Martin Löffler2

1Universität der Künste Berlin, Lehrstuhl für Versorgungsplanung und Versorgungstechnik
Hardenbergstraße 33, 10623 Berlin

2TLK-Thermo GmbH, Hans-Sommer-Str. 5, 38106 Braunschweig
nytsch@udk-berlin.de m.loeffler @tlk-thermo.de

Abstract

This paper presents an integrated method for the si-
mulation of mixed 1D / 3D system models in the
domain of building energy supply systems. The fea-
sibility of this approach is demonstrated by the use
case of a solar thermal system: the sub-model of a
hot water storage is modeled as a detailed three-
dimensional CFD model, but the rest of the system
model (solar collector, hydraulics, heat exchanger,
controller etc.) is modeled as a simplified compo-
nent-based DAE model. For this purpose, the hot
water storage model is simulated with ANSYS CFD.
This detailed sub-model is embedded in the solar
thermal system model, which consists of component
models of the Modelica library FluidFlow and is si-
mulated with Dymola. The numerical coupling and
integration of both sub-models is realized by the use
of the co-simulation environment TISC. With a
comparison of a pure Modelica system model and a
mixed 1D / 3D system model of the same solar ther-
mal system, advantages and disadvantages of both
simulation approaches are worked out.

Keywords: Co-simulation; Mixed 1D/3D modeling;
energy building and plant simulation

1 Introduction

Up to now, the simplified world of DAE (Diffe-
rential Algebraic Equation) system simulation and
the detailed world of CFD (Computational Fluid
Dynamics) simulation have been two different
“modeling cultures” in the domain of building ener-
gy supply systems. Users of component based DAE
system simulation tools/approaches like Modelica

[1], MATLAB/Simulink [2], TRNSYS [3] analyze
the transient behavior of complex energy system
models, which include simplified physical sub-
models of the energy supply systems, models for the
supplied buildings and models for the control algo-
rithms of the energy management. Because the com-
plexity of these models is reduced (typically some
hundred up to 100,000 model variables), the time
periods in simulation experiments can be a week, a
month or a year.

In comparison to the simplified systems models,
detailed 3D CFD models are used to optimized the
thermal comfort of a room (e.g. to find suitable posi-
tions of inlet and outlet air passages, which guaran-
tee comfortable local air temperatures and air veloci-
ties) or to optimize the flow conditions and the heat
transfer within a building services component (e.g. to
design the inner geometry of a heat water storage).
The second type of models uses highly discretized
Finite Element Models (FEM) ore Finite Volume
Models (FVM) with up to several million equations.
For this detailed models, the used time period in
transient simulation experiments can be - restricted
by the currently existing numerical power - some
seconds up to some days.

The basic idea of this article is to combine both
worlds to a numerical integrated simulation approach
for building energy supply systems (compare with
Figure 1): the DAE simulation tool (e.g. Dymola)
produces with the help of its - component-based -
one-dimensional Modelica model transient (“intelli-
gent”) boundary conditions for the detailed three-
dimensional CFD tool/model and vice versa. In this
way, the most interesting part(s) of a system model
can be analyzed on a more detailed level, wherein
the system relationships are fully taken into account.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

286

1D-DAE
Simulation Tool

Dymola

3D-CFD
Simulation Tool

ANSYS CFD

Co-Simulation
Environment

TISC

Simplified (component based)
system model, based on

the Modelica library FluidFlow
for thermo-hydraulic systems

Detailed (geometric) sub model,
based on a continuous flow area

Figure 1: Numerical integrated simulation approach
for DAE / CFD modeling of building energy supply
systems

The numerical data exchange and the synchroni-
zation of the numerical solvers of several simulation
tools are realized by the use of the co-simulation en-
vironment TISC [12]. In this procedure, it is very
important to use “appropriate models” from the
DAE- and the CFD-world, this means the models use
a comparable physics, and they produce similar re-
sults on an aggregated level. Preliminary studies on
this have been undertaken by the authors [14, 15].

2 Use case: Solar thermal system

For doing the comparative system simulation studies
about the numerical coupling between the DAE-
approach of Modelica and the CFD-approach, a solar
thermal system for warm water production was used
as a reference system (see Figure 2).

solar pump storage pump

solar collector

solar loop

storage loop

controller

heat exchanger

weather

thermal
storage

Figure 2: Used solar thermal system for the simula-
tion studies

The most important components of the solar thermal
system are an evacuated tube collector (type Viess-
mann VITOSOL 200 T) with an aperture area of
3.17 m2 and a hot water storage with a volume of
400 liter. The roof collector is aligned to the south

and tilted with an angle of 30°. Here, the vertical
distance between the roof and the storage is 10 m.
The cylindrical shaped storage has a height of 1.45 m
and a diameter of 0.59 m and is isolated with 100
mm insulation (λ = 0.06 W/(m·K)). An external plate
heat exchanger (k·A = 1,000 W/K) transfers the pro-
duced thermal energy from the solar loop to the sto-
rage loop. With the help of a two-point-controller the
solar pump and the storage pump are switched on
(mass flow rate 0.0264 kg/s), if the collector outlet
temperature is 4°K higher than the temperature in the
lower part of the storage (hysteresis of 5°K). All hy-
draulic components of the solar thermal system are
connected with copper pipes with an inside diameter
of 26 mm, a wall thickness of 1 mm and an insula-
tion thickness of 30 mm (λ = 0.035 W/(m·K). For
the climate boundary condition Meteonorm [16]
weather data from Hamburg (Germany) were used.
In the simulation scenario the load process for the
thermal water storage over a time period of 24 h
(86,400 seconds) during a summer day were ana-
lyzed. At the beginning of the load process all the
fluid temperatures in the collector, in all pipes and in
the storage shall be 20 °C.

3 System simulation with Modelica

To obtain a reference system for the evaluation of
the coupled Modelica/CFD-model, in a first step the
solar thermal system was modeled as a pure Modeli-
ca model. For this purpose, the FluidFlow-library
was used.

3.1 Modelica FluidFlow library

The Modelica-library FluidFlow is being developed
at UdK Berlin for thermo-hydraulic network simula-
tion [4]. The main application field of this library is
the modeling of solar thermal systems, HVAC (Heat-
ing, Ventilation and Air-Conditioning)-systems and
district heating/cooling systems.
The FluidFlow-library comprises a set of “ready-to-
use” standard hydraulic models, such as pipes, el-
bows, distributors and pumps. Further, the library
includes more specialized models from several do-
mains (compare with Figure 3), such as solar thermal
technologies (collector models), thermal storage
technologies (storage models) or energy transforma-
tion technologies (e.g. models of heat exchangers,
absorption chillers and cogeneration plants).
The weather data sets are read and interpolated with
a new developed Modelica component, based on the
ncDataReader2 library, which provides access to
external data sets as continuous functions [5].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

287

Figure 3: Standard models (left) and specialized
models (right) of the thermal-hydraulic Modelica
library FluidFlow.

Up to now the main application field of the

FluidFlow-library was the modeling and simulation
of complex energy supply systems (heating and cool-
ing energy) for new planned city districts with resi-
dential buildings in Iran [6].

3.2 Modeling as pure Modelica system model

Figure 4 shows the system model of the solar ther-
mal system from the use case, solely modeled with
sub-components of the Modelica FluidFlow-library.

Figure 4: Solar thermal system, modeled as system
model with pure Modelica sub-components

The used physical models (solar collector, pipes, ex-
ternal heat exchanger, hot water storage) were vali-
dated from [7]. All the pipes were parameterized in a
way that a minimum of 1 numerical node per 1 m
pipe length can be ensured. The hot water storage

model is divided into 10 thermal horizontal zones.
This modeling approach leads to a system model
with 721 time variables. With the symbolic reduction
algorithm of the used simulation tool Dymola [8],
the DAE-system could be reduced to 419 time vary-
ing variables.

In order to define suitable and comparable inter-
faces to the Modelica/CFD system model, a sub-
system for the hot water storage and its boundary
conditions (connection pipes, inlet boundary condi-
tions, models for the pressure losses for the flow di-
lation and contraction) were introduced (compare
with Figure 5).

Figure 5: Modelica sub-system for the thermal sto-
rage and its boundary conditions

4 Modelica system simulation with
an integrated CFD sub-model

4.1 Modeling and simulation with ANSYS CFD

In order to determine the model state at any point of
the volume of the hot water storage (e.g. tempera-
tures, velocities, pressures), the three-dimensional
CFD method was used. In our case, the fluid region
of the hot water storage is modeled with ANSYS
CFD Release 12.1 [9], which works with CFD algo-
rithms, based on the Finite Volume Method (FVM).
The FVM method calculates approximated solutions
of the partial differential equation system, which de-
scribes the transport process of momentum, mass and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

288

heat transfer within the flow region (Navier-Stokes
equations):

Continuity equation:

∂ρ
∂t

+ ∇ • ρ U()= 0, (1)

Three momentum equations (vector notation with the
Nabla-operator for the three Cartesian coordinates):

∂ ρ U()
∂t

+ ∇ • ρ U ⊗ U()= −∇p + ∇ • τ , (2)

Total energy equation:

∂ ρ htot()

∂t
− ∂p

∂t
+ ∇ • ρ U htot()

= ∇ • λ∇T()+ ∇ • U•τ().

 (3)

For each element of the flow region a discretized
form of the mentioned 5 partial differential equations
is calculated from the ANSYS CFD numerical
solver.

4.2 3D CFD model of the hot water storage

An adequate three-dimensional model of the hot wa-
ter storage has to fulfill several aspects:

1. The discretization of the fluid regime has to be

fine enough to limit the numerical error. For this
purpose, the size of the elements has to be
adapted to the local geometries und the local ve-
locities.

2. The CFD model has to be fast enough for a
coupled transient simulation.

3. The location of the interface planes between the
three-dimensional CFD fluid regime and the
one-dimensional Modelica fluid regime have to
be chosen in a way, that the fluid flow at the in-
terface point can take place without a significant
disturbance, which can be induced by the inner
fluid flow pattern of the storage.

For this reason, the fluid regime of the cylindrical
storage was supplemented by two connection pipes
with a length of 0.275 m. This necessary length was
established by preliminary CFD flow pattern tests
with a typical mass flow from the storage pump
(0.026 kg/s). The compromise between a needed ac-
curacy and a desired numerical performance is a

mesh with all in all 21,904 numerical nodes (85,230
finite volume elements). Hereof 5,440 numerical
nodes (5,370 finite volume elements) are used for the
connection pipe models and 16,464 numerical nodes
(79,860 finite volume elements) for the storage mod-
el (compare with Figure 6). The used turbulence
model was a laminar model, because the range of
values of the Reynolds number of the fluid regime,
which can be assigned to the connection pipes,
reaches from of 1,290 (20 °C) up to 2,230 (47 °C).

Figure 6: Adapted Mesh of the finite volume storage
model: longitudinal section (above), horizontal view
on the storage with connection pipe (below left), ho-
rizontal sections close to the inlet (below middle)
and in the middle of the storage (below right)

4.3 Numerical tool coupling by TISC

TISC [12] - the TLK Inter Software Connector - is a
co-simulation environment for coupling different
simulation programs. The software is platform inde-
pendent and uses TCP/IP-sockets for communica-
tion. TISC provides interfaces to 1-D and 3-D simu-
lators (like MATLAB/Simulink, Dymola, KULI,
CFX, Star-CD) and more abstract interfaces written
in C, C++, Java and Fortran (see Figure 7).

Figure 7: TISC simulation environment

Tool coupling has several advantages (see [10]).

The best tool can be chosen to describe all parts of a
system. Present software and expert knowledge can
be used for modeling complex systems from diverse

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

289

physical and engineering domains (see [11]). In
some cases, it also makes sense to break down a
model or system into several sub-systems to de-
couple the time steps and accelerate the simulation.
Using TISC makes it also possible to integrate tran-
sient boundary conditions from different specialized
simulation tools. For example, the input and output
data from a detailed FEM or CFD simulation tool are
available for a DAE Modelica model in Dymola and
vice versa. Distributed computation of a system on
several cores also provides the opportunity to paral-
lelize a simulation calculation and get more compu-
tation performance.

The TISC environment is divided in two layers,
the Simulation-Layer and the Control-Layer. The
Control-Layer is responsible for starting and parame-
terizing all models at simulation start. It is also poss-
ible to configure a set of simulations and let them run
automatically one after another in batch-mode. This
is helpful for using computer resources efficiently.

After a simulation has started, the Simulation-
Layer is responsible for handling data-exchange and
synchronization. Using the Control-Layer is optional
and a distributed simulation can be performed using
only the Simulation-Layer.

Figure 8: TISC synchronization scheme

TISC supports sequential (“explicit”) synchroni-

zation, while parallel (“implicit”) synchronization
(see [13] and Figure 8) is often used. When using
parallel synchronization all models are being calcu-
lated simultaneously. With increasing number of
models this leads to a major increase in simulation
speed.

TISC uses fixed step-sizes for data-exchange be-
tween the models and the server. The synchroniza-
tion rate of the models has a highly influence on the
total simulation time, because every time a model
gets synchronized with the TISC server, depending
on the used simulation program, an event is generat-
ed and a convergent solution for the model has to be
found again. With an increasing synchronization rate
for system models with relative large time constants,

the number of synchronization events can be reduced
and the simulation experiment can be relevant acce-
lerated. It is also possible, that each model uses its
own synchronization rate.

4.4 Coupled Modelica / CFD system model

Figure 9 illustrates the coupled Modelica / CFD sys-
tem model of the solar thermal plant, where the one-
dimensional DAE hot water storage model was subs-
tituted by a container model, which includes the
coupled ANSYS CFD model and the corresponding
TISC coupling components.

Figure 9: Solar thermal system, modeled as system
model with coupled Modelica and CFD sub-
Components

Beside the interfaces for the inlet and outlet mass
flow, the Modelica / CFD sub-system models has
further interfaces to the storage environment temper-
ature and to the temperature sensor within the 3D
fluid regime, which is axially positioned 7.3 cm
above the bottom of the storage. The hot water sto-
rage model has to be exchanged both temperature
values with the “Modelica world” to determine the
heat loss through the storage insulation and to pro-
vide the measured storage fluid temperature as an
input for the two point controller model (compare
with Figure 10).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

290

Figure 10: Modelica / CFD sub-system for the ther-
mal storage

5 Comparative results of both simu-
lation approaches

The Simulation experiment for the pure Modelica
system model was performed with Dymola 7.4, us-
ing the DASSL solver with a tolerance of 1e-4. The
simulation model runs fast and needs only some
seconds simulation time for one day real time.

In comparison to this, the coupled Modelica /
CFD system model runs approximately half as fast as
real time (≈ 50 hours simulation time). For this simu-
lation experiment, an Apple MacPro workstation
with 8 Xeon cores (2.8 GHz) and 32 GB RAM with
the operation system Linux OpenSuse 11.2 was used.
Doing this, ANSYS CFD used 8 cores for the paral-
lelized CFD-simulation and Dymola used a separate
core for the monolithic DAE-simulation on another
Windows workstation. The synchronization rate of
TISC was set on 1 second.
Figures 11 to 14 illustrate the run of the curves for
the most important state and process variables of the
solar thermal system for a summer day in June
(174th day of the year).
Figure 11 shows the beam, diffuse and total solar
irradiation on the tilted solar collector. The value for
the total radiation exceeds 800 W/m2 at midday.

Figure 12 illustrates the inlet and outlet fluid
temperatures of the solar collector and the outside air
temperature for both simulation approaches. The ba-
sic running of the temperatures values is similar
(temperature levels, switching-on and –off events

etc.), but the values of the system with the CFD-
storage model are more differentiated. The most im-
portant reason for these differences consists in the
non-existent momentum model within the DAE sto-
rage model and its restricted space resolution to one
dimension.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 4 8 12 16 20 24

po
w

er
 in

 W
/m

2

time in h

collector Gdot total
collector Gdot direct

collector Gdot diffuse

Figure 11: Direct, diffuse, total solar irradiation on
the tilted collector

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 4 8 12 16 20 24

te
m

pe
ra

tu
re

 in
 C

time in h

collector T in
collector T in (coupled)

collector T out
collector T out (coupled)

collector T env

Figure 12: Collector input and output temperature for
the pure Modelica system model and for the coupled
Modelica / CFD system model

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 4 8 12 16 20 24

m
do

t i
n

kg
/s

time in h

pump mdot

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 4 8 12 16 20 24

m
do

t i
n

kg
/s

time in h

pump mdot (coupled)

Figure 13: Mass flow of the collector and the storage
pump for the pure Modelica system model (above)
and the coupled Modelica/CFD system model (below)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

291

Figure 13 demonstrates the switching characteris-
tic of the two-point controller at hand of the timeline
of the mass flow, transported by the pumps. The ba-
sic pattern of the mass flows for the pure Modelica
model and the mixed Modelica / CFD model is simi-
lar until 16 o’clock, when the solar irradiation inten-
sity drops significantly. Then, differences in the con-
troller behavior are clearly visible.

Figure 14 shows the inlet and outlet fluid temper-
atures of the connection pipes between the storage
sub-model and the rest of the solar thermal system
model (indices plane in , plane out). Further, 10 rep-
resentative temperatures within the storage fluid vo-
lume are represented. For comparing the 10 vertical
temperature values of the pure DAE Modelica model
with the detailed temperature field of the CFD mod-
el, integrated mean values over 10 horizontal vo-
lumes were used (indices volume 1 to volume 10).

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24

te
m

pe
ra

tu
re

 in
 C

time in h

plane in
volume 1
volume 2
volume 3
volume 4
volume 5
volume 6
volume 7
volume 8
volume 9

volume 10
plane out

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24

te
m

pe
ra

tu
re

 in
 C

time in h

plane in
volume 1
volume 2
volume 3
volume 4
volume 5
volume 6
volume 7
volume 8
volume 9

volume 10
plane out

Figure 14: Inlet, outlet and layer temperatures of

the thermal storage for the CFD/FVM-model (above)
and the Modelica/DAE-model (below)

The temperature levels in both storage models in-

crease during the day parallel to the stored thermal
energy. The impact of the switch-on/switch-off cha-
racteristic of the mass flows on the storage tempera-
ture values developing can be clearly recognized
during the morning hours and the evening hours. The
CFD storage model shows a significantly more com-
plex behavior: If the stored thermal energy flux

changes or the incoming mass flow switches be-
tween zero and its maximum value, the CFD model
shows an immediate reaction, because the momen-
tum transport and the natural convection are part of
the CFD algorithm.

Figure 15: Vertical section of the velocity field (left)
and temperature field (right) after the first switch on
event at 6:44 (above), at 13:00 (in the middle) and at
24:00, calculated by the coupled CFD/Modelica
model

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

292

An interesting phenomenon can be observed at
the point plan in after sunset (→ mass flow of the
storage pump equal to zero): During this time period,
the DAE Modelica storage model shows an obvious
temperature drop, while the temperature level on the
same point of the CFD storage model has only a
small decline. The reason for this difference lies in
the natural convection effect, induced by the compa-
ratively heat loss effect for the fluid in the small
connection pipe in contrast to of the heat loss effect
for the fluid within the storage. As a result, the natu-
ral convection compensates the increased heat loss of
the connection pipe by transporting additional ther-
mal energy from the highest (and hottest) layer of the
storage. This effect leads also to the greatest velocity
in the region of the inlet connection pipe. The same
phenomenon with the reinforced heat loss and the
resulting induced convection can be recognized with-
in the vertical sections of the temperature field and
the velocity field at the end of the day (24 o’clock,
compare with the third picture in Figure 15 and its
enlargement in Figure 16).

Figure 16: Natural convection phenomenon (velocity
field) at the inlet of the hot water storage CFD model
at 24:00

Figure 17 illustrates the comparison of the calculated
heat energies (supplied heat from the collector model
and the inducted heat into the hot water storage) for
the pure Modelica system model and for the coupled
Modelica / CFD system model as integrated power
values. During the whole load process there is only a
very small difference between both simulation ap-
proaches. The differences between the gained energy
from the collector and the inducted energy into the
storage are the thermal losses of the hydraulic com-
ponents.

 0

 2

 4

 6

 8

 10

 12

 14

 0 4 8 12 16 20 24

Q
 in

 k
W

h

time in h

supplied heat from collector (coupled)
inducted heat into storage (coupled)

supplied heat from collector (not coupled)
inducted heat into storage (not coupled)

Figure 17: Supplied heat from the collector model
and inducted heat into the hot water storage for the
pure Modelica system model and for the coupled
Modelica / CFD system model

6 Summary and Outlook

It could be demonstrated by the example of a solar
thermal plant, that the mixed DAE / CFD simulation
approach works. This, the pure Modelica system
model showed a qualitatively similar behavior (time-
lines of the temperature and of the discrete controller
events) and quantitative nearly identical energy val-
ues in comparison to the mixed model. In addition,
the detailed CFD sub-model of the hot water storage
allows analysis for detailed questions (e.g. to find an
optimized temperature sensor position or for study-
ing convection phenomena) with full consideration
of the surrounding system model. A sufficiently dis-
cretized CFD model requires at a up-to-date comput-
er hardware computing times twice as long as real-
time.

The next steps of the research will be a detailed
analysis of the pressures losses within the different
parts of the system (e.g. pressure fluctuations during
discrete controller switching events). In addition fur-
ther system models with more than one CFD sub-
model (e.g. a collector CFD sub-model and a storage
CFD sub-model) will be considered. For the accele-
ration of the computation time of the coupled system
model, the optimization of the numerical coupling
parameters (e.g. the synchronization rate between
both simulation tools) and parameter studies with
different fine discretized meshes of the hot water
storages will be considered.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

293

References

[1] Homepage Modelica Association:
http://www.modelica.org

[2] Homepage MATLAB/Simulink:
http:// www.mathworks.com/products/simulink

[3] Homepage TRNSYS: http://www.trnsys.com

[4] M. Ljubijankic, C. Nytsch-Geusen: Thermo-
hydraulische Simulation solarthermischer
Systeme mit Modelica. In Proceedings: 18.
Symposium Thermische Solarenergie, OTTI-
Technologiekolleg, Regensburg, 2008.

[5] Homepage ncDataReader:
http://www.j-raedler.de/projects/ncDataReader2

[6] Ederer, K.; Huber, J.; Nytsch-Geusen, C.;
Seelig, S.; Unger, S.; Wehage, P.: Konzepti-
on und Planung solarunterstützter Energie-
versorgungssysteme für New Towns im Iran.
In Tagungsband: 20. Symposium Thermische
Solarenergie in Staffelstein, OTTI-
Technologiekolleg, Regensburg, 2010.

[7] C. Nytsch, M. Poli, T. Schneider: Messtech-
nische Untersuchungen an einer solarthermi-
schen Versuchsanlage zur Validierung der
solartechnischen Modelle der Simulations-
umgebung SMILE. In Proceedings: 10.
Symposium Thermische Solarenergie in Staf-
felstein, OTTI-Technologiekolleg, Regens-
burg, 2000.

[8] Homepage Dymola:
http://www.3ds.com/products/catia/portfolio/dymola

[9] Homepage ANSYS CFD:
http://www.ansys.com/products/fluid-dynamics/cfd/

[10] Kossel, R.; Tegethoff, W.; Bodmann, M.;
Lemke, N.: Simulation of Complex Systems
using Modelica and Tool Coupling. In: Pro-
ceedings of the 5th International Modelica
Conference, Vienna, Austria, Modelica As-
sociation, September 2006, 485 – 490.

[11] Kossel, R.; Försterling, S.; Tegethoff, W.:
Einsatz hybrider Simulationstechnik für die
Bewertung mobiler Heiz- und Kühlkonzepte.
In: Brill, U. (Hrsg.) ; Haus der Technik
(Veranst.): Wärmemanagement des Kraft-
fahrzeugs VI Haus der Technik, Expert-
Verlag, Juni 2008 (Haus der Technik Fach-
buch 93). – ISBN 978–3–8169–2820–1, S.
150 – 162.

[12] Kossel, R.; Correia, C.; Loeffler, M.;
Bodmann, M. ; Tegethoff, W.: Verteilte Sys-
temsimulation mit TISC. In: ASIM-

Workshop 2009 in Dresden mit integrierter
DASS’2009, 2009.

[13] W. Puntigam et al., Transient Co-Simulation
of Comprehensive Vehicle Models by Time
Dependent Coupling. In: SAE 2006 Transac-
tion Journal of Passenger Cars: Mechanical
Systems, ISBN 978-0-7680-1838-7, pages
1516 - 1525.

[14] M. Ljubijankic, C. Nytsch-Geusen, S. Unger:
Modelling of complex thermal energy supply
systems, based on the Modelica-Library
FluidFlow. Proceedings 6th International
Modelica Conference. In Proceedings: 7th
International Modelica Conference, 20./22.
September, Como, 2009.

[15] M. Ljubijankic, C. Nytsch-Geusen: Combin-
ing different levels of detail in modelling for
an improved precision of HVAC plant simu-
lation. In Proceedings: Building Simulation
2009, International Building Performance
Simulation Association, Glasgow, 2009.

[16] Homepage Meteonorm:
http://www.meteonorm.com

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

294

A Thermo-elastic Annular Plate Model for the Modeling of
Brake Systems

José Luis Reyes Pérez∗, Andreas Heckmann∗ and Ingo Kaiser∗
∗German Aerospace Center (DLR), Institute of Robotics and Mechatronics

Oberpfaffenhofen, 82234 Wessling, Germany

Abstract

The friction forces generated during braking between
brake pads and discs produce high thermal gradients
on the rubbing surfaces. These thermal gradients may
cause braking problems such as hot spotting and the
associated hot judder phenomenon in the frequency
range below 100 Hz.

Some consequences of these undesirable vibra-
tions are comfort reductions, a defective braking pro-
cess, inhomogeneous wear, cutbacks of the brake per-
formance and even damage of brake components.

The present paper proposes a modeling concept
that is targeted on this field of application and in-
troduces the new Modelica class ThermoelasticPlate,
which is implemented in the DLR FlexibleBodies li-
brary.

Keywords: Disc brake, Modal multifield ap-
proach, Thermoelasticity

1 Introduction

Friction braking is necessarily related to high thermal
loads which lead to high thermal gradients at the sur-
face of brake discs. It is a known phenomenon that
these thermal loads can initiate the onset of unevenly
distributed hot spots or bands which in turn results
in thermally deformed brake discs [1], [2]. Since the
brake pads then slide upon a non-smooth surface while
the brake disc rotates, the brake system vibrates, noise
is generated and undesirable wear occurs.

Besides experimental studies the finite element
method (FEM) [3], [4], [5] [6] or analytical techniques
[7] [8] are utilized to analyze the thermo-elastic behav-
ior of brakes in literature. Both methods have advan-
tages and provide valuable results, but both methods
are not well suited, if complex scenarios such as the
interaction of brakes with suspensions or vehicle con-
trol systems are investigated and a system dynamical
point of view is adopted.

To this purpose the present paper proposes a novel
model of a moderately simplified brake disc. Depend-
ing on the user input the thermo-elastic behavior of
brake discs is described with approximately 100 up to
1000 degrees of freedom.

The thermal field of the disc is discretized in
three dimensions in Eulerian representation, an annu-
lar Kirchhoff plate is adapted to evaluate the deforma-
tions according to the quasi-static thermo-elastic the-
ory [9, Ch. 2].

In circumferential direction the disc is assumed
to be rotational symmetric, in axial direction differ-
ent layers with different heat capacity and conduc-
tion properties and multiple surfaces, where cooling
by convection occurs, may be defined.

In order to implement this concept the Modelica
class ThermoelasticPlate has been introduced into the
commercial DLR FlexibleBodies library. This paper
presents the underlying theory on thermal and thermo-
elastic fields, explains the user interface of the Ther-
moelasticPlate class and gives an simulation example.
The final section gives an outlook to further efforts in
research and modeling of friction brakes and its vali-
dation, which is supposed to be initiated by the novel
modeling approach.

2 Thermal Field

2.1 Weak Field Equations

In order to describe the thermal behaviour of the
brake disc the weak equations for the temperature field
ϑ(c, t) as functions of the spatial position in cylindri-
cal coordinates c = (r, φ, z)T and time t are deduced
from the principle of virtual temperature, see e.g. [10,
(7.7)] or [11, (1.3.33)]:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

295

∫
V

[−(∇δϑ)Tq+ρc ϑ̇δϑ] dV + . . .

. . .+
∫
B

qT
BnBδϑ dB = 0 ,

(1)

where ρ denotes the density, c the specific heat capac-
ity, dB the boundary element and nB the outer unit
normal vector. q symbolizes the heat flux according
to Fourier’s law of heat conduction depending on the
temperature gradient ∇ϑ and the thermal conductivity
matrix � [9, (1.12.16)]:

q =−�∇ϑ (2)

The boundary heat flux qB may be given explicitly
or, if convection occurs, may be specified by the film
coefficient h f and the bulk temperature ϑ∞ of the fluid
[9, Sec. 5.6]:

qT
BnB =−qB−h f (ϑB−ϑ∞) . (3)

2.2 Modal Approach

The discretization of the scalar temperature is per-
formed using the Ritz approximation that allows to
separate the thermal field description by a finite-
dimensional linear combination of two parts, the first
one considers thermal modes and is spatial depen-
dent, i.e. ΦΦΦϑ = ΦΦΦϑ(c) and the second one repre-
sent the modal amplitudes and is time dependent, i.e.
zϑ = zϑ(t):

ϑ(c, t) =ΦΦΦϑ(c)zϑ(t) (4)

The spatial mode functions are formulated using the
separation approach of Bernoulli for the spatial coor-
dinates as well, so that (4) may be rewritten as follows:

n

∑
i=1

Φϑi(c)zϑi(t) =
n

∑
i=1

Ri(r) Ψi(φ) Zi(z) zϑi(t) =

=
lm

∑
l=1

km

∑
k=0

mm

∑
m=1

Rl(r) ⋅ cos(kφ) ⋅Zm(z) ⋅ zϑi(t)+

+
lm

∑
l=1

km

∑
k=1

mm

∑
m=1

Rl(r) ⋅ sin(kφ) ⋅Zm(z) ⋅ zϑi(t) ,

with i = 1,2, . . . ,n , n = (lmmm)(2km +1) .

(5)

According to Walter Ritz [12], the trial functions
have to be linearly independent and components of a
complete system, so that the number of i may be in-
creased as needed in order to improve the approxi-
mation. For Rl(r) and Zm(z) cubic B-splines [13] as

Figure 1: Example set of cubic B-splines to discretize
the thermal field in radial and axial direction.

shown in Fig. 1 have been chosen as trial functions in
radial and axial direction, respectively.

The harmonic waves (or Fourier series expan-
sion) Ψi(φ) are appropriate in circumferential direc-
tion, since

∙ they allow to represent cyclic properties, i.e.
Ψi(φ) = Ψi(φ+2π),

∙ they are simple to integrate from 0 to 2π,

∙ their orthogonality leads to block-diagonal sys-
tem matrices, i.e. the entire system of equations
is split up into decoupled sub-systems,

∙ they will later on be exploited to provide a Eule-
rian description of the thermo-elastic plate.

2.3 Discretized Field Equations

If (5) is inserted into (1), the volume integrals can be
separated from the terms that dependent on time. As a
result, the linear thermal field equation is obtained:

Cϑϑżϑ +(Kϑϑ +KϑR)zϑ =QϑN qB +QϑR ϑ∞ , (6)

where the volume integrals are defined, inter alia using
the abbreviationBϑ :=∇ΦΦΦϑ, as follows [14, Tab. 2.5]:

the heat capacity matrix: Cϑϑ :=
∫

V
ρc ΦΦΦT

ϑ
ΦΦΦϑ dV

the conductivity matrix: Kϑϑ :=
∫

V
BT

ϑ
�Bϑ dV

the Robin load matrix: KϑR :=
∫

B
h f ΦΦΦT

ϑ
ΦΦΦϑ dB

the Robin load vector: QϑR :=
∫

B
h f ΦΦΦT

ϑ
dB

the Neumann load vector: QϑN :=
∫

B
ΦΦΦT

ϑ
dB

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

296

These volume integrals may therefore be evalu-
ated in advance to the simulation or time integration,
respectively.

2.4 The Eulerian Description

Figure 2: Coordinate transformation with angle χ, that
leads from the Lagrangian to the Eulerian description.

It is now considered that the brake disc performs
a rotation around its central axis specified by the angle
χ(t). So far the temperature field is described in the
so-called Lagrangian point of view [15, Sec. I.3], i.e.
the reference frame follows the rotation as it is shown
for the coordinate system named B in Fig. 2.

However for the specific use case treated here it
may make sense to resolve the temperature field of the
disc in frame A in Fig. 2. In other words, the observer
does not rotate with the disc but looks on the plate from
the outside, from a point in rest concerning the rotation
with angle χ(t).

This concept is the so-called Eulerian description
[15, Sec. I.4] and is widely used in fluid dynamics,
where the motion state of the fluid at a fixed point in
space is presented. Due to the rotational symmetry
properties of the brake disc the Eulerian description
can here be formulated in an elegant and convenient
way.

For theoretical derivation the coordinate transfor-
mation

φ = θ−χ (7)

is defined, where θ specifies the angular position of an
observed point on the brake disc resolved with respect
to the Eulerian reference system A in Fig. 2.

Furthermore it is assumed that for every trial func-
tion in (5) that employs a sin(kφ)-term an associated
trial function is present where the sinus- is replaced by
the cosinus-function only, but Rl(r), Zm(z) and k are
identical, so that mode shape couples c1 and c2 exist:

c1(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ sin(kφ) ,

c2(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ cos(kφ) .
(8)

If the following identities

sin(kφ) = sin(kθ)cos(kχ)− cos(kθ)sin(kχ) ,

cos(kφ) = cos(kθ)cos(kχ)+ sin(kθ)sin(kχ)
(9)

are inserted into (8), an associated mode couple
c̄1(r,θ,z) and c̄2(r,θ,z) defined with respect to frame
A appears:

c1 = RlZm sin(kθ)︸ ︷︷ ︸
:=c̄1(r,θ,z)

cos(kχ)−

−RlZm cos(kθ)︸ ︷︷ ︸
:=c̄2(r,θ,z)

sin(kχ) ,

c2 = c̄1(r,θ,z)sin(kχ)+ c̄2(r,θ,z)cos(kχ) .

(10)

As a result of suitable transformations it may also be
written:

c̄1(r,θ,z) = c2 sin(kχ)+ c1 cos(kχ) ,

c̄2(r,θ,z) = c2 cos(kχ)− c1 sin(kχ) .
(11)

The mode functions c̄1(r,θ,z) and c̄2(r,θ,z) are
defined in the Eulerian reference system A and are
linear combinations of the mode functions c1(r,φ,z)
and c2(r,φ,z) described in the Lagrangian frame B ,
whereas the combination depends on χ(t).

This information can be exploited in order to de-
fine a transformation: a thermal field resolved in the
Lagrangian frame can be transformed to be resolved in
the Eulerian frame and vice versa. Of course the phys-
ical temperature field itself does not change, but its
resolution does so that the numerical values describing
the field will be different in frame A or B , respectively.

In practice the transformation is formulated in
terms of the modal amplitudes zϑi(t) which are the
thermal states in (6):

z̄ϑi1(t) = sin(kχ(t))zϑi2(t)+ cos(kχ(t))zϑi1(t) ,

z̄ϑi2(t) = cos(kχ(t))zϑi2(t)− sin(kχ(t))zϑi1(t) .
(12)

Again, the new modal amplitudes in the Eulerian
frame z̄ϑi(t) are expressed as a linear combination of
modal amplitudes in the Lagrangian frame zϑi(t) and
it is just a matter of convenience and practicability in
which coordinates the thermal field equations are ac-
tually evaluated.

One particularity has been ignored so far. For
trial functions with k = 0 no mode couple with c1 and
c2 according to (8) exists, since no associated sinus-
function is introduced in (5). As a consequence the
transformation (12) is not defined for such modes.
However, trial functions with k = 0 represent rota-
tional symmetric fields since the dependency on φ is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

297

eliminated in (5) due to the term cos(kφ). As a conse-
quence mode shapes with k = 0 are invariant with re-
spect to rotations with angle χ or in other words: The
modal coordinates zϑi(t) related to k = 0 are identical
in the Eulerian and the Lagrangian description and no
transformation is needed.

3 Mechanical Field

The present paper is focused on the thermo-elastic in-
terrelation that rules the behavior of brake discs in
frequency range below 100 Hz. Note that there is a
complementary paper presented on this Modelica User
Conference which is dedicated to higher frequencies
in order to cope e.g. with brake squeal phenomena
[16]. However here, it is supposed that the excitation
is much lower than the lowest natural frequency of the
brake disc. In particular the following assumption are
made:

∙ The structural deformations of the brake disc are
dominated by its elasticity or thermo-elasticity,
respectively, while inertia effects are negligible.
The brake disc deforms in a quasi-static man-
ner. This statement is related to the so-called
Duhamel’s assumption which argues on the dif-
ferent time-scales with which changes in the tem-
perature or deformation field usaully proceed, cp.
[9, Sec. 2.5].

∙ A literature review on the characteristics of
thermo-elastic brake disc deformation give rea-
son to the assumption that plate bending in some
cases even plate buckling is the governing defor-
mation mechanism, see [7], [1], [4]. For example:
all experimental studies describe e.g. hot spots to
be located alternatively on the two disc surfaces
in anti-symmetrical configuration, so that the cir-
cumference is deformed similar to a sinuous line.
Therefore the deformation field of the brake disc
here is represented as an annular Kirchhoff plate.

Note that the description of the annular plate is lim-
ited to be linear in this initial implementation, so that
plate buckling phenomena are not covered, see [17],
[18, Ch. 1]. An extended formulation to consider ther-
mal buckling is a field of active research at the DLR.

3.1 Thermo-elastic Coupling

In [14, Sec. 2.2] the material constitution based on
a thermodynamical potential is harnessed to formu-
late the interrelation of the thermal and the mechanical

field. This approach is not suited here, since the influ-
ence of a 3-dimensional thermal on a 2-dimensional
displacement field is to describe.

Instead the so-called body-force analogy is em-
ployed, i.e. the thermoelastic problem is transfered
into an isothermal problem with equivalent distributed
body forces �ϑ [9, §3.3], whose non-zeros compo-
nents in radial and tangential direction read:

�ϑr = �ϑφ =−
1+ν

1−ν2 Eα ϑ , (13)

where α denotes the thermal expansion coefficient, E
Young’s modulus and ν the Poisson number. Together
with the relevant strain components in radial and tan-
gential direction εr and εφ expressed as functions of
the transversal plate deformation w

εr =−z w,rr , εφ =−z
(w,r

r
+

w,φφ

r2

)
, (14)

the associated virtual work δWϑ reads:

δWϑ =
∫
V

δ"T�ϑ dV =

= Eα
1+ν

1−ν2

∫
V

δ

(
w,rr

w,r
r +

w,φφ

r2

)T(z ϑ

z ϑ

)
dV

(15)

3.2 Weak Field Equations

The structural displacements u are evaluated on the
basis of the principle of virtual displacements [10,
(4.7)], which states that the virtual work of the internal
forces equals the virtual work of the external forces:∫

V

δ"T� dV +
∫
V

δ"T�ϑ dV = ∑
i

δuTfi , (16)

where " denotes the strain and � the stress field. fi

represent the applied external forces.

3.3 Modal Approach

Again a Ritz approximation is used to discretize the
deformation field u:

u(c, t) =ΦΦΦu(c)zu(t) (17)

The spatial shape functions in (17) are formulated
as function of cylindrical coordinates, i.e. ΦΦΦu =

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

298

ΦΦΦu(r,φ,z), w,r and w,φ are partial derivatives with re-
spect to r or φ:

n

∑
i=1

ΦΦΦuizui =

⎡⎢⎣ −z(cos(φ)w,r− sin(φ)
r w,φ)

−z(sin(φ)w,r +
cos(φ)

r w,φ)
w

⎤⎥⎦ ,
w =

lm

∑
l=0

km

∑
k=0

Rl(r) ⋅ cos(kφ) ⋅ zui(t)+ . . .

. . .+
lm

∑
l=0

km

∑
k=1

Rl(r) ⋅ sin(kφ) ⋅ zui(t) ,

with i = 1,2, . . . ,n , n = (lm +1)(2km +1) .

(18)

The trial functions in (18) correspond to the trial
functions in (5) except of the fact, that a 2-dimensional
field is discretized here, while the temperatures depend
on all three coordinates.

3.4 Discretized Field Equations

If (18) is inserted into (16) the linear field equation for
the displacements is yielded:

Kuuzu +Kuϑzϑ = ∑
i

ΦΦΦ
T
uifi . (19)

The stiffness matrix Kuu in (19) is defined using the
linear displacement-strain operator ∇u, the abbrevia-
tionBu := ∇uΦΦΦu and the elasticity tensorH:

Kuu :=
∫

V
BT

uHBu dV (20)

The thermo-elastic coupling matrix follows from (15):

Kuϑ := Eα
1+ν

1−ν2 . . .

. . .
∫
V

(ΦΦΦu,rr +
ΦΦΦu,r

r
+

ΦΦΦu,φφ

r2) z ΦΦΦϑ dV
(21)

In addition to the deformations, the motion of the
disc’s reference frame located at the center of grav-
ity is considered by the Newton-Euler equations [19,
(8.6),(8.21)]:

m ⋅a= ∑fi ,

I!̇+!×I! = ∑ci×fi +∑pi .
(22)

a denotes the translational acceleration of the refer-
ence frame, ! its rotational velocity. I symbolizes the
interia tensor, m its mass. fi presents the discrete ex-
ternal forces, pi discrete external torques.

4 User Interface

The user interface in Dymola is shown in Fig. 3: here
the BrakeForce module represents the input force ap-
plied on the brake pads, the PAD module defines the
specific locations of the ALE nodes where the one end
of the springs will be attached to and provide the kine-
matics which are fed into the CONTACT module. The
CONTACT module is the set of springs and dampers
which conects the brake pads with the brake disc.

Figure 3: User interface of the thermo-elastic plate.

Finally the thermalPlate module is the block
which contains the thermo-mechanical description of
the plate which has been derived in the previews sec-
tions and also includes the geometrical parameters to
model the annular plate (in Table 1).

PARAMETERS DESCRIPTION

r i Inner radius [m]
r a Outer radius [m]
th Thickness [m]
xsi[:,2] Specific points on the plate

Table 1: Geometrical parameters of the plate .

The thermalPlate module contains two types of
connectors: the frame of reference and two array
frames which represent specific points distributed over
the bottom and upper surface of the disc in ALE
description. The connectors nodes ALE upper and
nodes ALE bottom are defined by the array xsi. Each
row of xsi defines the radial and angular position of
one point over the parametrized disc surface contained
in the interval [0,1], i.e. if we have xsi[1,:]={0.5,
0.125} the point will be localized in the middle of the
distance between the outer radius and the inner radius
at 45∘ in angular position.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

299

In real applications brake discs are subjected to
very high increments of temperature during braking
which might have a negative impact on the braking
performance. In order to reduce the influence of such
temperature gradients the so called cooling channels
are integrated in the structure allowing the air to flow
through the mid part of the disc, providing a faster dis-
sipation of the heat transferred to the brake disc. The
impact of the cooling channels on the structural dy-
namics has been also taken into account when mod-
eling the thermo-elastic plate in a simplified way. The
idea was to divide the plate thickness in 3 regions (Fig.
4) where the outer regions have a different heat trans-
fer coefficient than the inner region. The calculation
of the heat transfer coefficients is not trivial; therefore
some assumptions had been done.

Figure 4: Cooling channels in a brake disc.

Note that conventional frame connectors from the
Standard Multibody Library are used within the Flex-
ibleBodies Library, so there is no restriction by con-
necting other bodies or elements to the nodes ALE
connectors. The thermalPlate module offers the possi-
bility to select the initial conditions to which the annu-
lar plate is exerted and also the discretization param-
eters that control the modal approach of the annular
plate:

∙ boundaryConditionRI: this parameter specifies
the boundary condition at the inner radius and
provides the options free, supported and clamped.

∙ boundaryConditionRA: this parameter specifies
the boundary condition at the outer radius and
provides the options free, supported and clamped.

∙ radialDiscretization: this is an integer vector
of arbitrary length, in which all nodal diameters
numbers to consider have to be given.

∙ angularlDiscretization: this is an integer vector
of arbitrary length, in which all nodal circles to
consider have to be given.

The model has been implemented in the Standard
FlexibleBody Library as a complementary example to
the already known Beam and ModalBody classes.

5 Simulation Example

The following example is a simplified representation
of a braking system which illustrates an application
of the thermo-elastic plate model. The mechanism
consists of two brake pads and a thermo-elastic plate.
The pads can only perform translations in the direction
of the z-axis whereas the thermo-elastic plate rotates
around the z-axis with a constant angular velocity. The
geometrical, mechanical and thermal properties of the
thermo-elastic plate are listed in Table 2.

PLATE DESCRIPTION VALUE

Inner radius [m] 0.075
Outer radius [m] 0.15
Thickness [m] 0.022
Density [kg/m3] 7850
Thermal conductivity [W/m.K] 47
Specific heat [J/kg.K] 70
Thermal expansion coefficient [1/K] 1.04e-5
Young’s Modulus [Pa] 2.1e11
Poisson’s Ratio 0.29

Table 2: Properties and dimensions of the plate .

During this simulation a force, called normal
force, is acting on both brake pads along the axial di-
rection. According to Figure 5 this force is set to zero
at the beginning and after certain time step (100 s) the
force is increased up to 5 kN. Once this force is ap-
plied, the brake pads will tend to move enforcing the
contact with the surfaces of the disc and thus the in-
crement of the temperature in the disc due to friction.

Figure 5: Sketch of the plate with the ALE nodes and
normal force.

The contact model consists of a system of dis-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

300

crete linear springs and dampers located at 9 specific
nodes on the pads and assembled with its correspond-
ing nodes on the disc. The nodes on the disc are se-
lected according to the ALE formulation (red dots in
Fig. 5) and they are fixed in space so that they do not
rotate with the disc. At these ALE nodes the forces
generated by the springs and dampers are applied to
the disc. Due to the sliding friction, heat is generated
and it is induced into the brake disc.

Figures 6 and 7 contain the displacement in z-
direction and the applied forces of the selected 9 ALE
nodes respectively. It is important to observe how the
deformation is increased as well as the forces at the
ALE nodes as a result of not only the external forces
(e.g. normal force) but also internal forces (e.g. ther-
mal stresses) acting in the brake disc.

Figure 6: Results of the thermalPlate model for the
deformation along z-axis.

Figure 7: Results of the thermalPlate model for the
normal forces acting on the ALE nodes.

As it was explained before the brake disc is rotat-
ing with a constant angular velocity. When the pads
are in contact with the disc the kinetic energy is trans-

formed into heat which results in an increase of the
temperature in the disc. Figure 8 shows clearly the
temperature propagation over the whole brake disc.
The produced ring-shaped zone has a higher temper-
ature than the rest of the disc due to the contact forces
that the disc is exposed to.

Figure 8: Heat propagation of the thermo-elastic plate
with constant angular velocity.

It should be mentioned that these preliminary re-
sults still must be validated; nevertheless the results
can be interpreted in a physical way and are plausible.

The example presented previously is the represen-
tation of a simplified brake disc model, including only
braked disc and brake pads, but it represents the basis
for a complete modeling of a braking mechanism.

Figure 9: Braking mechanism of a train.

The purpose of this project is to integrate the
thermo-elastic model into more complex scenarios,
such as: complete braking system of a train (Figure
9) which includes brake disc (thermo-elastic model),

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

301

brake pads, rockers, brake pad holders, calipers, hous-
ing, brake piston, etc., in order to analyze the in-
duced vibrations, due to the thermo-mechanical de-
formations, into the complete dynamics of the entire
system.

6 Conclusion

The present study investigates the thermo-mechanical
effects on the dynamics of a simplified braking system
by combining the FEM with the modal approach for
flexible bodies in multibody systems. Validation of the
presented analysis is still a pendent task; however the
results have shown a good agreement with the physical
description of this phenomenon giving a solid basis to
cope with some of the most common braking problems
such as hot spotting.

7 Acknowledgements

The authors highly appreciate the partial financial sup-
port of Knorr-Bremse Systems for Railway Vehicles in
Munich.

References

[1] S. Panier, P. Dufrénoy, and D. Weichert. An ex-
perimental investigation of hot spots in railway
disc brakes. Wear, 256:764 – 773, 2004.

[2] T.K. Kao, J.W. Richmond, and A. Douarre.
Thermo-mechanical instability in braking and
brake disc thermal judder: an experimental and
finite element study. In Proc. of 2nd Interna-
tional Seminar on Automotive Braking, Recent
Developments and Future Trends, IMechE, pages
231–263, Leeds, UK, 1998.

[3] A. Rinsdorf. Theoretische und experimentelle
Untersuchungen zur Komfortoptimierung von
Scheibenbremsen. Höppner und Göttert, Siegen,
1996.

[4] T. Steffen. Untersuchung der Hotspotbil-
dung bei Pkw-Bremsscheiben. Number 345 in
VDI–Fortschrittsberichte Reihe 12. VDI-Verlag,
Düsseldorf, 1998.

[5] T. Tirovic and G.A. Sarwar. Design synthesis
of non-symmetrically loaded high-performance
disc brakes, Part 2: finite element modelling.

Proc. of the I Mech E Part F: Journal of Rail and
Rapid Transit, 218:89 – 104, 2004.

[6] P. Dufrénoy. Two-/three-dimensional hybrid
model of the thermomechanical behaviour of
disc brakes. Proc. of the I Mech E Part F: Jour-
nal of Rail and Rapid Transit, 218:17 – 30, 2004.

[7] K. Lee and J.R. Barber. Frictionally excited ther-
moelastic instability in automotive disk brakes.
Journal of Tribology, 115:607 – 614, 1993.

[8] C. Krempaszky and H. Lippmann. Friction-
ally excited thermoelastic instabilities of annular
plates under thermal pre-stress. Journal of Tri-
bilogy, 127:756–765, 2005.

[9] B.A. Boley and J.H. Weiner. Theory of Ther-
mal Stresses. Dover Publications, Mineola, New
York, 1997.

[10] H.J. Bathe. Finite Element Procedures. Prentice
Hall, New Jersey, 1996.

[11] R.W. Lewis, K. Morgan, H.R. Thomas, and K.N.
Seetharamua. The Finite Element Method in
Heat Transfer Analysis. John Wiley and Sons,
Chichester, UK, 1996.

[12] W. Ritz. Über eine neue Methode zur Lösung
gewisser Variationsprobleme der mathematis-
chen Physik. Journal für Reine und Angewandte
Mathematik, 135:1–65, 1908.

[13] Carl de Boor. A practical Guide to Splines.
Springer–Verlag, Berlin, 1978.

[14] A. Heckmann. The Modal Multifield Approach in
Multibody Dynamics. Number 398 in Fortschritt-
Berichte VDI Reihe 20. VDI-Verlag, Düsseldorf,
2005. PhD thesis.

[15] J. Salençon. Handbook of Continuum Mechan-
ics. Springer-Verlag, Berlin, 2001.

[16] A. Heckmann, S. Hartweg, and I. Kaiser. An
Annular Plate Model in Arbitrary Lagrangian-
Eulerian-Description for the DLR FlexibleBod-
ies Library. In 8th International Modelica Con-
ference, 2010. submitted for publication.

[17] O. Wallrapp and R. Schwertassek. Representa-
tion of geometric stiffening in multibody system
simulation. International Journal for Numerical
Methods in Engineering, 32:1833–1850, 1991.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

302

[18] F. Bloom and D. Coffin. Handbook of Thin
Plate Buckling and Postbuckling. Chapman &
Hall/CRC, Washington, D.C., 2001.

[19] P.E. Nikravesh. Computer-aided Analysis of Me-
chanical Systems. Prentice Hall, Engelwood
Cliffs, New Jersey, 1988.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

303

An Interface to the FTire Tire Model

Volker Beuter
Kämmerer AG

Wettergasse 18, D-35037 Marburg
v.beuter@kaemmerer-group.com

Abstract

The FTire tire model [2] is a well established model for
calculating tire forces and torques, especially if the in-
ternal dynamics of the tire and higher frequencies have
to be considered. This tire model is available for most
multi-body simulation programs like ADAMS, Sim-
Pack, RecurDyn and for MATLAB. But up to now it
was not available in the Modelica world. As the FTire
model is only available as binary libraries it could not
be ported to a pure Modelica code, but an interface to
the existing implementation had to be written. This
paper describes the implementation of FTire package
making FTire tires available in Modelica (so this pa-
per is rather about interfacing than about tire model-
ing). The interface involves much more than just a set
of Modelica wrappers to C functions: Most callable
FTire functions are impure, some having only side
effects, no return values. Some considerations have
to be taken to ensure the FTire functions are called
just often enough. Above this basic Modelica in-
terface layer there is an embedding into the Model-

ica.Mechanics.MultiBody framework with some
features beyond FTire itself like non-standard orien-
tation or common definitions for several tires.

The moreover there are some related packages for
special interests: The FTireVDL demonstrates the
compatibility of the FTire interface to the Vehicle-

Dynamics package [5] from Modelon. Users of the
Visualization package [4] from DLR-RM can ap-
ply the FTireSimVis package to animate multi-body
models with FTire wheels with the SimVis program,
exceeding the animation capabilities of Dymola.

Keywords: FTire tire model; interface; MultiBody;
visualization

1 Introduction

Part of Kämmerer’s involvement in the Eurosyslib
project [13] was the development of interfaces to ex-

isting tire models. As the FTire libraries, headers etc.
were publicly available from the Internet we decided
to start with the FTire model. In order to prevent du-
plicate implementations there was an agreement with
Modelon not to implement tire models that had already
been implemented (as pure Modelica code) into their
VehicleDynamics library.

There had been plans to implement an interface to
the RMOD-K 7 tire model by Prof. Oertel, FH Bran-
denburg, Germany as well. Mr Oertel provided use-
ful ideas concerning the anticipated problems caused
by the fact that integrating a tire model equipped with
its own integrator into a simulation environment al-
ways means co-simulation. On his suggestion we im-
plemented a two masses oscillator model, where one
oscillator is modeled in pure Modelica the other by
an external C function solving its differential equation
by means of a simple explicit Euler integrator. But
finally Mr Oertel decided to implement a Modelica in-
terface to RMOD-K 7 on its own some day. Mean-
while there was no time any more to start interfacing
to another tire model so we concentrated on the inter-
face to FTire.

2 The FTire Tire Model

The FTire tire model was developed by Prof. M.
Gipser, FH Esslingen, Germany and is now distributed
by his company COSIN scientific software, Munich
[2].

The FTire tire model is available as a stand alone
simulator and for most multi-body simulation pro-
grams.

The name "FTire" means Flexible Ring Tire Model.
A tire is conceptually considered as a flexible ring of
masses connected by springs in a certain pattern.

But this work is not intended to be an introduction
into the FTire model. For the matters concerning here,
it is only important that a tire mainly interacts with the
rest of the model by means of a 3D force and a 3D

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

304

torque applied to a certain point in the model and de-
pends on the motion states (position, orientation, ve-
locity and angular velocity) of the wheel center. All
the internal structure of the FTire model we can forget
here (with the exception of the meaning of some op-
tional additional outputs). We do not build the internal
structure of the FTire Flexible Ring model by means of
the Modelica.Mechanics.MultiBody package, but
use the FTire libraries as a set of black boxes to calcu-
late tire forces and some other auxiliary tasks.

It is also important to note that the Modelica inter-
face to FTire does not fit into a decomposition frame-
work of calculating a contact point first, than determin-
ing velocities and slip quantities, calculating normal
forces and finally other force components [1]. Firstly
FTire does not follow this approach; calculations are
not based on a theoretical contact point. And even if
FTire did so, it is only possible to embed calculations
as a whole.

2.1 The FTire Data Files

All the parameters describing tire road interaction in
the FTire tire model are in principle stored in two files:

• All tire parameters are stored in a tire property
file (default extension .tir).

• The road geometry and properties are stored in
a road data file (default extension .rdf). Some
road data file types also refer to further files con-
taining the road geometry.

This means most parameters concerning FTire tires
will not directly be provided in the Modelica model
but only those two files containing the parameters.

3 The COSIN Tire Interface (CTI)
and the FTire Tools

There are several options to access the FTire tire force
calculation from a third party software like Dymola in
our case. The most favorite way is the COSIN Tire In-
terface (CTI) [3]. It can be used from both FORTRAN
and C code, here we use the C versions of the routines.
The CTI is available for several operating systems, but
we are currently only concerned with the implementa-
tion for 32 Bit Windows. The CTI consists of a header
file, a small static library (which will be linked to the
dymosim executable) and a dynamic link library. The
static library calls the FTire calculation routines in the
.dll.

This is all that is needed to access FTire tires from
Dymola in Modelica models. But there are some con-
venient programs from COSIN related to the FTire tire
model also used by this interface. The first one, the an-
imation program COSIN/graphics consists just of one
executable file and directly comes with the CTI.

The moreover there is a whole suite of additional
programs, collectively called the FTire tools. Here we
especially need the FTire/editor: In principle a .tir

file is a text file which can be edited with any text ed-
itor. But there are two reasons why it is advisable to
use FTire/editor:

• FTire/editor provides all appropriate selections.
Key words do not have to be memorized and er-
roneous inputs are reduced.

• In order to speed up simulations FTire does not
directly use the input data provided by the user,
but does some preprocessing. This preprocessed
data is binary and is appended encoded as print-
able characters at the end of the tire data file.
FTire/editor automatically executes a new pre-
processing of these data if needed. This ex-
cludes simulations based on out-dated prepro-
cessed data.

For FTire version 2010-4 the structure of the
downloadable release has been changed. Now the
FTire/tools are always included and its version fits to
the CTI version. (Earlier versions had release numbers
instead of release quarters. The version before 2010-4
was 2.11)

The functions in the CTI generally only provide ac-
cess to time dependent inputs. Most of the parameters
(in the Modelica sense, i.e. not changing during a sim-
ulation) can only be provided in a tire property or road
data file. This determined the design of the Modelica
interface to FTire: A Modelica model with FTire tires
primary refers to .tir and .rdf files. Most tire pa-
rameters have to be changed in the tire property file
by using FTire/editor. We do not write any .tir and
.rdf with data entered into a Dymola GUI.

The CTI routines serve several purposes:

• There are data reading functions for the road data
and tire property files.

• There are functions which actually do the calcu-
lation of the tire forces and torques depending
on the current tire positions, velocity, orientation
and angular velocity. In principally this is just
one function, but there are variants returning the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

305

forces at the (rotating) wheel center or the (non-
rotating) hub or with a user defined road geome-
try. With this minimal set of routines tire simula-
tions can be done already. But in some situations
more routines are needed:

• A routine can apply reaction forces to the road
part. This is often needed in case the road is not
the absolute ground but some moving part, e.g. in
test rigs.

• There are routines providing time-dependent in-
puts in case they are not parameters from the tire
property files, e.g. an inflation pressure decreas-
ing during simulation.

• Moreover there are reporting routines returning
other calculated quantities than the tire forces
and torques. These outputs are either directly re-
turned or are written to special output files. These
routines can be used for debugging or visualiza-
tion purposes, but are also used for the embed-
ding into the MultiBody framework, especially
for visualization.

4 The Basic Modelica Interface to the
CTI

The lowest level of the Modelica interface to FTire is
a set of Modelica functions calling the corresponding
CTI routines – directly or indirectly – as external C
functions. There is one Modelica function for nearly
every function in the CTI. The current version has been
written for version 2010-4 of the CTI.

4.1 Calling CTI Routines as External C
Functions

Most CTI functions can be directly called from Mod-
elica as external functions. The name of each of the
Modelica interface functions is like the corresponding
CTI function, but in some cases the argument lists and
return values are modified due to Modelica require-
ments:

• The input argument providing a state is also used
as return value. This is done so that this function
need not only be used in an empty function call
but in an ordinary equation. This is useful, even if
the returned variable is just a dummy not used any
further: Being used in a real equation apparently
ensures that the function is called often enough.

(If used as an empty function call, no calls are
performed because from Dymola’s point of view
nothing depends on it.)

• Some of the function calls are formally not time
dependent (although they are to return time-
varying quantities) and Dymola does not evaluate
the function over time it seems when the original
argument list is used: The returned array is con-
stantly the zero array. By introducing a time de-
pendent variable (time itself) the function is eval-
uated as expected.

• A similar situation occurs at CTI functions where
an input in general is time dependent, but it may
also be a constant. Therefore an additional op-
tional input for the simulation time (not passed
to the CTI function) is introduced in order ensure
a time dependency to prevent Dymola from opti-
mizing away the function call.

Some of the functions here do not have a return
value. Their only purpose are their side effects, like
turning on or off verbosity. Usually they are only
needed once in the beginning of the simulation in order
to set a certain mode. A call to them ought to be made
as an empty function call in an initial algorithm

section.

4.2 C Wrapper functions around CTI rou-
tines with function pointer arguments

In some CTI functions added in the last versions there
are pointers to functions in their argument list. One
example for such a function a a tire force calculation
routine for a custom road model. Here a pointer to
a road evaluating function is one function argument.
(The road evaluation function returns among others the
height z at a given location (x,y) on the road at a time
t.)

Functional input arguments to functions are not sup-
ported in Modelica before version 3.2 and therefore
not available at the time of writing this article. In order
to support these CTI functions in the Modelica – FTire
interface yet, C wrapper functions have been written
for them. Such a wrapper has the same argument
list like the CTI function in question, only the argu-
ment for passing the pointer to the user function (like
the road evaluation function) is left out. The wrapper
function only calls the CTI functions with the passed
arguments and a pointer to an implementation of the
user subroutine. The wrapper function is interfaced as
an external C function in Modelica in the usual way.
By this method also the CTI functions with function

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

306

pointers can be supported in the interface but currently
the user functions have to be provided in C.

// wrapper around CTI function

#include "cti.h"

#include "UserRoadModel.c"

void ComputeForcesWithExtRoad(

int ti, double t, double* r,

double* a, double* v, double* w, int mode,

double* f, double* m, int* ier)

{

ctiComputeForcesWithExtRoad(

ti, t, r, a, v, w,

UserRoadModel, mode, f, m, ier);

}

In principle this is all what is needed to include
FTire tires into Modelica models. There are some test
models where motion states of the tire are calculated
and directly provided to the force calculation func-
tions, though.

Parallel processing versions of the CTI functions for
calculating tire forces are not yet supported (cf. sec-
tion 10.3).

Currently no external objects are used in interfacing
to FTire, but needed actions like reading tire and road
data files are done explicitly. Using a constructor func-
tion of an external object may be a cleaner way to do
so.

5 The FTire Wheel Model in the
MultiBody Framework

But of course this is no convenient modeling of a tire
from the user’s point of view. A wheel ought to be a
component which can be connected to other Multi-
Body components just by a connect equation to a
Frame connector. In principle this means the tire po-
sition and orientation from the Frame connector and
its time derivatives are passed to the force calculation
function. The force and torque variables of the frame
connector in turn are equalled to the returned forces
and torques. But there are some complicating factors:

5.1 Adjustment of the tire mass

When calculating tire forces FTire only considers the
share of the tire mass which is not connected rigidly
to the rim. The remaining share has to be considered
explicitly by the simulation program when calculat-
ing inertia forces. This share of mass and inertia is
reported by some CTI function. The moreover from

the user’s point of view when modeling a vehicle a
wheel with a tire ought to be handled together as sim-
ple as possible. Therefore the main component of the
FTire package is not a tire but a wheel model also
containing a wheel mass. The share of the tire mass
and inertia considered fixed to the rim (and therefore
not accounted for by FTire) is automatically added to
the user provided wheel mass.

5.2 Road Orientation

In FTire itself the orientation of the road is fixed:
Global z is pointing up, global x is pointing forward.
(This is called the FTire initial frame.) This orienta-
tion would impose a rather strict restriction on model-
ing vehicles with the FTire package. The moreover
it does not match the default orientation used in the
MultiBody package where global y is pointing up. It
was a design goal that with the FTire package the road
(and therefore the tire) can be oriented arbitrarily so
that any existing model can be equipped with FTire
tires without the need to re-orient the complete model.

A road orientation can be specified easily by two
direction vectors forward and up. (The defaults for-
ward = {1, 0, 0} and up = {0, 0, 1} mean that
the usual FTire road orientation is used; up = {0, 1,

0} means the usual MultiBody orientation.) These
direction vectors determine a rotation object from the
world to the road frame. FTire expects the tire mo-
tion states (position, orientation, velocity and angu-
lar velocity) resolved in the FTire initial frame. The
Frame connector provides the position and orientation
resolved in the world frame and the angular velocity
in the local frame (the translational velocity can be de-
rived from the position). So first the angular velocity
is resolved in the world frame by means of the orienta-
tion object of the connecting frame, then all quantities
are resolved in the FTire initial frame using the orien-
tation object from the world to the road frame. The
force calculation function returns forces and torques
resolved in the FTire initial frame. So here they are
first resolved in the world frame and then in the local
frame, because this is what has to be provided to the
connecting Frame. All these calculations and transfor-
mations are capsulated into a FTireForce model.

5.3 Tire Orientation

In other multi body programs the orientation of joints
and also tires is only determined by the orientation of
the connecting frames. But in the MultiBody pack-
age the joint axes are defined by some direction vec-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

307

tor(s) (resolved in the local frame). So we do not de-
fine the tire spin axis directly by the local frame (like
other multi body programs do, taking the local z-axis)
but by direction vectors spin and tire_up. (The
vector tire_up is only needed for uniquely deter-
mining the wheel orientation by providing a reference
for the rotation angle.) The defaults spin = {0, 1,

0} and tire_up = {0, 0, 1} mean that the wheel
rotates around its local y-axis. When the connector
frame is not rotated relative to the world frame the tire
can roll along the global x-axis. In case of the usual
MultiBody orientation (global y is pointing upwards,
i.e. road orientation vector up = {0, 1, 0}), spin
= {0, 0, 1} ought to be used.

Internally the tire orientation is modeled by a Fixe-
dRotation component. With the default tire direction
vectors its orientation is the null rotation.

5.4 Common Tire and Road Properties

In FTire itself all tire instances in a model are com-
pletely independent, i.e. they all have their own tire
property and road data file definitions. But except for
some test rigs and special situations all wheels of a ve-
hicle will run on the same road. This road will have the
same orientation for all tires and they in turn will have
the same orientation. The moreover in many cases
there will be the same tire for all instances, i.e. the
same tire property file.

In order to prevent the need for providing these
property files and the orientation vectors four or more
times for a vehicle a common properties model using
the inner / outer mechanism has been introduced:
Each tire model accesses a common property compo-
nent as outer object. In case a top level model con-
taining an FTire wheel model does not contain such a
common properties component a default component is
used. The values from a common properties object can
be overwritten by a wheel model: In case a tire prop-
erty or road data file string is provided (i.e. it is not
empty) or direction vectors are specified (i.e. they are
not zero vectors) they are used overwriting the values
from the common properties object. In this way it is
possible to make exceptions, e.g. providing road data
and tire property file by way of the common property
object, but using a different tire property file for one
wheel in order to model a defect tire.

In case all property files and direction vectors are
directly provided at all wheels the common property
object is not used at all. When there is only one wheel
in the model (like in a tire test rig) this is the easier
method.

5.5 Road Part Model

In FTire the road does not have to be associated to the
absolute ground but tire contact may be calculated to-
wards some movable road part. The FTire interface
package supports this feature by a model RoadPart.
Like the wheel models it possesses a usual MultiBody
Frame connector. The road part model consists of a
Body component to model its mass and inertia, a road
surface visualizer object and a RoadForce component.

The RoadForce model queries the road part motion
quantities (position, velocity, orientation and angular
velocity) and provides it to the FTire kernel by means
of a CTI function. When tire forces for the associated
wheel are calculated this not done based on the motion
relative to ground but on the relative motion to its road
part. Therefore each road part needs to have a unique
ID corresponding to a wheel. (When the same road
part is to be used for more than one wheel a Body com-
ponent (and a road visualizer if needed) can be used to-
gether with one RoadForce component for each of the
wheels running on that part.) The reaction forces from
the tire contact are applied to the road part. (Because
of the tire inertia this forces do not equal the forces to
the wheel with opposite signs.)

Here again it has to be considered that FTire itself
has a fixed orientation of the road whereas the Model-
ica model using the FTire interface package may use
some other orientation. Thus the motion states of the
road part resolved in the world frame are transformed
into the FTire initial frame before passing to the FTire
kernel. Conversely the CTI function returns the reac-
tion forces also in the FTire initial frame. They are first
transformed to the world frame before applying them
to the frame connector of the RoadForce component
resolved in this frame.

6 Tire and Road Visualization

For a tire model based on the theoretical contact point
concept a simple cylinder (with some mark to indi-
cate rotation) is all what is needed for tire visualization
seen from a technical point of view. The unloaded ra-
dius and the tire width (and possibly the radius of the
wheel rim to indicate too deep penetration of the tire
into the road) is all that is needed. Everything else is
a matter of nice animations, but does not bring much
new insights into the tire behavior.

Things are different when the internal dynamics of
the tire is also considered and the tire (and possibly
also road) deformation during simulation is also avail-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

308

able. In this case the animation of the deformed tire is
a good plausibility check on the tire simulation.

The CTI provides tire shape information by means
of the function ctiPutNodePositions. The name
may be a bit misleading here. It does not deliver the
position of one of the internal belt elements constitut-
ing the flexible ring modeling the tire. Instead, for any
point on the tire surface uniquely characterized by an
circumferential angle (scaled to the range [0,1]) and a
value for the position along the cross section (also in
the range [0,1]) the 3D position of that point is calcu-
lated. The position is returned in several coordinate
systems. We only use the position in the FTire initial
frame.

When the ctiPutNodePositions function is eval-
uated on a regular grid over [0,1]× [0,1] this consti-
tutes a representation of the tire surface. It is impor-
tant to note that the returned positions are variables,
not just parameters. The calculated grid is a represen-
tation of the dynamic tire deformations during a sim-
ulation. Here it has to be considered that the FTire
initial frame is not necessarily the MultiBody world
frame, so the surface coordinates have to be resolved
in the world frame using the rotation object from the
world frame to the FTire initial frame.

Things are similar for the road shape representation:
There is a CTI function ctiEvaluateRoadHeight

calculating the current height of a location (x,y) of the
road. Again with a grid of equally spaced evaluation
points on a range [xmin,xmax]× [ymin,ymax] the road sur-
face is determined. Usually the surface of a road is
static, it is calculated only at initialization time. By a
Boolean parameter it can be specified that the road sur-
face is (possibly) time-varying and has to be evaluated
at every simulation step. Interestingly the formulations
for the surface grid values are the same except for that
in the time-varying case the simulation time variable
time is passed to the road height evaluation function,
in the default case the constant 0. Dymola infers that
in the second case all the inputs to this function are
constants or parameters and therefore it does not need
to be evaluated again during continuous integration.

There are two ways these surfaces can be visual-
ized: The model is animated in the Dymola animation
window, tire and road are visualized by surface visu-
alizers from Kämmerer’s Visualizers package. Al-
ternatively the Visualization package with the ex-
ternal viewer SimVis from DLR-RM can be used like
described in the last subsection of this section.

6.1 Kämmerer’s Visualizers package

The Modelica Standard Library (MSL) contains
visualizer models for animation of geometrical
primitives like boxes, cylinders and spheres in Dy-
mola. All these visualizers are based on the model
MB.Visualizers.Advanced.Shape (respectively
ModelicaServices.Animation.Shape in Modelica
3.1). Unfortunately this model is not able to animate
so called polylines (connected sequences of straight
lines) or surfaces. But in the Dymola distribution with
the MSL come some tiny Modelica models for visual-
izers, also for polylines and surfaces. From these ideas
a package for visualization of (possibly) time-varying
geometric primitives has been developed. In particular
it contains several visualizer models for surfaces1 and
a simplified version of the standard visualizer form
the MSL applicable in some situations.

The surface geometry is defined by a matrix of
3D positions, i.e. by an input SI.Position[3]

grid[m, n] where m and n are Integer parameters.
The color and reflectance of the surface can be pro-
vided by inputs like at the usual MSL visualizer for
geometrical primitives. (This means there is an overall
color for the surface. Different colors for a surface can
only be realized by splitting up a surface into several
sub-surfaces.)

The most simple surface model is WorldSurface

where the grid input defines the surface in world co-
ordinates. The model Surface additionally has a po-
sition input r and an orientation object R constituting
a frame. Here the surface is defined in this frame.
(Compared to the usual MSL Shape model here we
abstained from additionally defining direction vectors
defined in that frame to further orient the surface.) The
model FixedSurface has a frame connector. It uses a
protected Surface component as a sub-model where
the position and orientation inputs are simply the ones
from the enclosing FixedSurface model. The sub-
model is conditionally disabled dependent on an ani-

mation flag. This is the same approach as with the
MSL FixedShape model. But there is also a ver-
sion FixedSurface2 where there is no Surface sub-
model, but the model is extended from it, simply mod-
ifying the position and orientation inputs. In using
this method there is no possibility to switch off ani-
mation by means of an animation flag. But on the

1A similar visualizer is now available in the latest version
3.2 of the MSL with Dymola specific implementation in the
ModelicaServices package to be used in Dymola 7.5. In con-
trast Kämmerer’s Visualizers package can also be used even
with the MSL 2.2.2 and Dymola 6.1!

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

309

other hand if this is not needed, this prevents a dupli-
cation of model parameter and variables to two model
levels.

The polyline model family is implemented in an
analogous way. There is also an alternative Fixed-

Shape model extended from the Shape model instead
of using it as a subcomponent.

The Visualizers package is used in the FTire

package for road and tire visualization.

6.2 Tire and Road Visualization with the
Visualizers package

The road visualizer model consists of a FixedSur-

face2 component where the surface is the grid with
the calculated heights. This surface is firstly oriented
in the FTire initial frame. In order to account for the
correct road orientation the surface visualizer is con-
nected to the outside connector via a FixedRotation
component with the orientation calculated from the
road orientation vectors and zero translation.

Figure 1: Tire and road visualization using Käm-
merer’s Visualizers package

The common properties and the RoadPart models
already contain a RoadVisualizer object. There-
fore a user only has to include a road visualizer into
a model explicitly when none of these models is used,
i.e. if the road is belonging to the absolute ground and
tire property and road data files are specified at the
wheel components.

Using this dynamic tire visualization directly within
Dymola supersedes to use a separate visualization of
the tire with the COSIN/graphics program. Although
calculating the dynamic tire shape costs CPU time it is
still faster than separate animation.

6.3 Using the Visualization Package in-
stead

DLR-RM has implemented a commercial Modelica
package "Visualization" [4] for advanced visual-
ization of multi body models. It does not use the built-
in visualization capacities of a Modelica environment

Figure 2: Tire animated with FTire animation tool
COSIN/graphics

like Dymola but animates a simulation in a separate
program called SimVis. It provides a lot of additional
animation features like atmospheric effects, lights and
cameras [7]. In particular it also contains visualizer
for arbitrary, time-varying surfaces. So this package
seemed to be suitable for tire animations.

In order to investigate this a separate package
FTireSimVis (using the FTire package) has been im-
plemented. Currently it contains independent tire and
road visualizer models based on the Visualization

package and an extended wheel model using this tire
visualizer and also an extended version of the common
properties object with the road visualizer for SimVis.
In some later release of the FTire and FTireSimVis

packages there ought to be partial visualizer models
for tire and road in the base package. The tire and
road visualizers in the FTire and FTireSimVis pack-
ages will be extended from these partial visualizers.
All models in the FTire containing visualizers will de-
clare them as replaceable. The FTireSimVis ver-
sions of the models will only have to redeclare the
visualizers.

Figure 3: Tire and road animated with SimVis viewer

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

310

7 Embedding into the Vehicle Dy-
namics Library from Modelon

Modelon developed and maintains a commercial pack-
age VehicleDynamics, also called VDL (for vehicle
dynamics library) [5]. It provides a set of tire mod-
els completely implemented in Modelica. But it did
not include any tire models which involve interfacing
to external libraries.2 So it is quite a natural question,
if the Modelica FTire interface discussed here fits into
the VDL framework.

To answer this question a new package FTireVDL

has been created, because it is not relevant to the basic
interface and the FTire package has to stay indepen-
dent from the VDL. The FTireVDL package mirrors
the structure of sub-packages as far as needed. There
are sub-packages for several layers of vehicle parts,
like vehicle, chassis and wheel.

The implementation of the FTire wheel for the VDL
package extending from the partial wheel interface
model Conventional is quite simple: An FTire wheel
component from the basic FTire package had to be
connected to the outside connector. As the VDL
uses another connector (containing besides the usual
MultiBody frame also a rotational flange to de-
scribe the rotation) a MultiBodyMount component
had to be placed in between. Additionally most of the
summary variables could be filled by the TYDEX out-
put variables of the FTire wheel. When some quan-
tity is not available the summary variable is constantly
zero.

As the FTire wheel has its own visualization, the
tire visualizer from the VDL is not needed. Some of
its nice features, like showing contact of the tire to the
ground by changing the color of the tire or force vec-
tors (but in this case located in the wheel center, as
there is no contact point at FTire) could be added eas-
ily in some further version.

Regarding test models there are versions of the
"GettingStarted" Sedan car. To this purpose there
is a version of its chassis equipped with FTire wheels
and also a vehicle model version using this chassis in
turn; all the other components are used like in the VDL
SedanTEKBakker vehicle. (So if there, in the chas-
sis and in the GettingStarted experiment model the
components had been redeclared replaceable, no new
FTire model versions for the chassis and the vehicle
had been required and we could simple extend the ex-
periment model and do the required redeclarations.)
There is also a simple tire test rig model. Both experi-

2Meanwhile there is an interface to the Delft tire model [6].

ments are available in two versions: In one version the
required tire property and road data files are directly
provided in the wheel component. An explicit road vi-
sualizer component is used to animate the road. The
other variant uses an FTire common properties object
to specify tire and road. Here we can use the road vi-
sualizer contained in that object.

Figure 4: Sedan car from the VDL equipped with
FTire wheels

A remark on the used integrator method: Usually
FTire preferably works when the solver of the call-
ing simulation tool uses a fixed step size integrator.
This also holds for the FTire package in Dymola: We
had the best results with the RKFix4 Integrator. Sur-
prisingly when running the examples in the FTireVDL
package the simulation fails due to numerical instabil-
ities of FTire itself. (The corresponding VDL models
with one of its own tire models works fine with a fixed
step size integrator.) This phenomenon deserves fur-
ther investigation.

In contrast to the FTire package the current
FTireVDL package is not to be seen as a package ready
to use, but as a demonstration that the integration of
FTire tires into the VDL framework using Kämmerer’s
FTire is possible. As the VDL is encrypted and some
of its models are not readable on the text layer, a full
integration will only be possible in close cooperation
with Modelon. The VDL contains a road builder. It
ought to be enlarged with the facility to create road
data files.

8 The FTire Interface in other Mod-
elica Environments

The FTire package and all related packages have been
developed and tested with several Dymola releases. In
order to use them with other Modelica environments
there are several central demands to that environments.
With decreasing importance these are:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

311

• Ability to call C functions by way of the exter-
nal keyword.

Without this feature no interfacing is possible at
all. If at least it is possible to call FORTRAN
subroutines the interface can be changed so that
the FORTRAN version of the CTI is used instead
of the C version.

• (At least partial) support of the Modelica.

Mechanics.MultiBody package. The FTire in-
terface packages themselves do not contain kine-
matic loops, so this is no demand to the Modelica
environment, but of course this would impose se-
vere limitations to the vehicle models to use the
tires.

Without support of the MultiBody package it is
still possible to use the primary interface func-
tions to the CTI functions. It could be possible
to build some simple vehicle models by means
of equations and to use FTire tires by directly
calling these interface functions. For some spe-
cial applications like longitudinal dynamics also
an embedding of this basic interface into the
Modelica.Mechanics.Translational pack-
age is conceivable.

• Ability to visualize surfaces like done in the Vi-

sualizers package. This means support of
the undocumented "magic" functions PackShape
and PackMaterial and the form numbers caus-
ing subsequent output variables having a meaning
for animation (like used in earlier versions of the
MSL, now moved to the Dymola version of the
ModelicaServices package since MSL 3.1).

If a Modelica environment at least recognizes
these functions (with some idle dummy imple-
mentation) the visualizers should not cause prob-
lems, but the models stay without tire or road vi-
sualization. If the surface visualizer model does
not even compile it can be replaced by a dummy
implementation easily.

9 Future Work Using upcoming
Modelica Features

Since about version CTI 2.9 FTire provides the feature
of using own tire or road models to incorporate into
FTire [3]. The CTI subroutines for doing so contain
pointers to functions in their argument lists. The cur-
rently used method of using C wrapper functions (cf.

section 4.2) has the drawback that the user subroutines
have to be provided as C functions too.

With the upcoming feature of using functions as in-
put argument to functions [8] it will be possible to
write these user subroutines directly as Modelica func-
tions and no C code will be needed any more.

10 Some Remarks on Modelica

But even with Modelica 3.2 there are still some issues
and limitations for further development:

10.1 No Way of passing Information from
Model to Function

Writing a function to evaluate the current height at a
position on a road is appropriate for some special solid
road geometry. But when it comes to write an elabo-
rate soft soil road model in Modelica it is quite natural
to use differential equations for doing so. This cannot
be done in a function but only in a model. On the other
hand a function has to be passed to the CTI function.
Due to the requirement that Modelica functions are al-
ways pure (i.e. functions in the mathematical sense)
there is no way of passing information from a model
to a function. So even with Modelica 3.2 it will not be
possible to use a user road model defined by a Mod-
elica model in the CTI function for force calculation
with user defined road.

10.2 Passing information for Co-Simulation

One aspect of the Modelica philosophy is that the user
ought to build physically sound models in the Model-
ica equations, perhaps provide function derivations or
inverses by means of annotations, but let the integrator
do his business in solving these equations.

This is quite ok as long as pure Modelica is con-
cerned. But this concept becomes questionable when
there is a co-simulation: FTire does not simply calcu-
late forces and torques based on the wheel center mo-
tion states as input quantities, but does its own integra-
tion (of its own internal model of the tire as a system
of elements connected by springs forming the flexible
ring).

When FTire is called from a variable step size inte-
grator it will happen that an integration step fails and
it will be repeated with some smaller time step. This
means time goes back for the force calculation func-
tion. The FTire force calculation functions provide
an input MODE for the "job control", i.e. here you can

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

312

inform FTire if the wheel input states are already ac-
cepted by the calling integrator or if they are not yet
accepted. Currently we are only left with the option
to call the function regardless if the the states are ac-
cepted or not. The FTire package works well with
fixed step size integrators (like it is recommend for
FTire usage anyway). But it can be expected that the
performance with variable step size integrators could
be improved if there were any means to communi-
cate such information from the calling integrator to the
FTire integrator somehow.

10.3 Multithreading

As far as we know currently no Modelica environment
supports multi-threading, i.e. the parallel execution of
parts of code and there are no means in Modelica to or-
ganize such parallelization. As long as just pure Mod-
elica is concerned it might be argued that is a matter of
the Modelica environment to see if parallelization is
possible based on the equations (possibly in the flat-
tened model). At least regarding external functions
this approach seams to be not feasible: The environ-
ment needs to know if a function is thread save (can
be parallelized without the risk of wrong results e.g.
due to overwritten memory) and on the other hand if
it is worth to parallelize the execution because it will
take considerable time.

The latest versions of the CTI also provide versions
of the force calculating functions for multi-core archi-
tectures. The forces of each tire instance are calcu-
lated by a separate thread. By this means the forces
at all tires of a vehicle are calculated in parallel. The
force calculation routine is split in two: There is one
routine to pass the wheel center states and to trigger
the force calculations in one separate thread for each
instance. A second function fetches the results of the
instances. In an algorithmic programming style for the
simulation of the complete vehicle both functions can
be used easily: In the algorithm for a single integra-
tor iteration after the (preliminary) calculation of the
wheel center states for all wheels there is first one loop
triggering the force calculation for all tires and second
another loop to fetch the results once the calculation
is finished. In contrast in the Modelica setting, where
external functions are called in some equation based
model it seems likely that the force fetching function
for the first instance is called before the calculation
triggering function for the other instances, i.e. in fact
there is no parallelization. This question needs fur-
ther investigation. Probably there will arise the need
to tell the Modelica environment (by way of some an-

notation) that such a pair of external function belongs
together, that the second one delivers the results of the
calculations triggered by the first one. 3

10.4 Automatic inner components

The common properties model also contains the road
visualizer as a sub-component. It can be turned on and
off by some Boolean parameter. Using this instance
of the road visualizer is sensible in all circumstances
except for the rare case that the road is not fixed to the
ground but to some other part (i.e. a RoadPart com-
ponent is used). Considering this the default value for
the road animation ought to be true.

But it is a (generally nice) feature of the Modelica
inner / outer mechanism that it is not required to
define an inner component explicitly in a top level
model using components referencing on this model as
an outer component: An implicit component is used
in such a case. In the case of the common properties
model here a component would have to be defined ex-
plicitly just to turn off road animation when it is not
desired. To prevent this the default value for the road
animation is false.

What were useful here is some function to deter-
mine in an inner model if an instance of it is the auto-
matically created or an explicit one. With this feature
it would be possible to set the value of the road an-
imation parameter to true only if the component is
explicitly defined.

11 Conclusions

The FTire package makes the FTire tire model avail-
able for the Modelica world. There are even some fea-
tures supported like dynamic tire and road shape an-
imation not yet available at the embedding in other
multi-body programs. On the other hand there are
many issues for further improvements like supporting
custom road and tire models in a convenient way or
parallelization of the tire force calculation for several
tires. The usability in other Modelica environments
has to be tested.

The original plan to develop also interfaces to other
tire models was not addressed anymore within the Eu-
rosyslib project due to lack of time but are subject to
further work. Although any interface to the FTire tire

3Recently there have been considerations on co-simulation in a
general frame in the Modelisar project [9]. It is not yet clear if the
current CTI implementation is compatible to this FMI approach
and in case it is, if this method of co-simulation is appropriate to
interface a set of external function to Modelica.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

313

model does not fit into the decomposition framework
of a contact point based tire model [1] some other com-
mon framework for interfacing to other tire model is
imaginable: Any tire model providing some API will
have comparable tasks like reading data files or doing
the force calculation. So above the CTI specific in-
terface level a new tire model independent interface
level may be established branching to the CTI rou-
tines or the counter-parts of some other tire model. In
this case it ought to be possible to implement the em-
bedding into the MultiBody framework independently
from the FTire model but only accessing the tire model
intermediate interface level.

12 Acknowledgements

The FTire (FTire interface for Dymola), FTireVDL
(FTire tires in the VehicleDynamics package frame-
work) and the FTireSimVis (FTire tires and roads
visualized with the SimVis program) packages and
the used geometry visualization package Visualiz-

ers have been developed as part of the ITEA2 Eu-
rosyslib project (WP 8.5).

Earlier versions of the FTire interface package have
been intensively tested in a diploma thesis [10] on a
model of Kämmerer’s side car vehicle "mython" [11]
and at Dassault Aviation [12] with aircraft models.
The package benefitted much from the reported bugs
and suggestions for improvements.

References

[1] ANDRES, Markus, ZIMMER, Dirk and CELLIER,
François E.: Object-Oriented Decomposition of
Tire Characteristics Based on Semi-Empirical
Models. Proceedings of the 7th Modelica Con-
ference, Como, Italy, 2009

[2] The FTire homepage: www.cosin.eu/

prod_FTire

[3] The CTI reference document: www.cosin.eu/

res/cti.pdf

[4] The Visualization package product page:
www.bausch-gall.de/vi1.htm

[5] The VehicleDynamics package product
flyer: www.modelon.se/DATAUPLOAD/File/

Flyer_dymola_VDL_Car.pdf

[6] DRENTH, Edo, GÄFVERT, Magnus: Modelica
Delft-Tyre Interface. Proceedings of the 8th Mod-
elica Conference, Dresden, Germany, 2011

[7] BELLMANN, Tobias: Interactive Simulations
and Advanced Visualizazion with Modelica. Pro-
ceedings of the 7th Modelica Conference, Como,
Italy, 2009

[8] Modelica 3.2 Language Specification,
12.4.2, Modelica Association, March 2010,
www.modelica.org/documents/ Modeli-

caSpec32.pdf

[9] Functional Mock-Up Interface for Co-
Simulation. Modelisar (07006). Document
version 1.0, October 12th, 2010

[10] ZAPF, Stefan: Aufbau und Validierung des
Gesamtfahrzeug-Mehrkörpersimulationsmodells
mit einem Hochfrequenzreifenmodell im Pro-
grammsystem Dymola, diploma thesis, Amberg,
Germany, 2009.

[11] The "mython" at Kämmerer’s homepage:
www.kaemmerer-group.com/mython/

[12] THOMAS, Eric and LAPEYRE, Arnaud: DTG
121069 FTire Model-Evaluation Report (unpub-
lished), 2010

[13] www.itea2.org/public/project_leaflets/

EUROSYSLIB_profile_oct-07.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

314

Implementation of the Spur Involute Gear Model on Modelica

Ivan Kosenko Il’ya Gusev
Russian State University of Tourism and Service, Department of Engineering Mechanics

Cherkizovo-1, Moscow region, 141221, Russia

Abstract

A procedure to build up a dynamical model of the
gearbox with spur involute mesh is being described.
The main attention is paid to the design technology
of the cylindrical bodies elastic contact models. To
track geometry of contact implicit equations of alge-
braic/transcendental or differential-algebraic type are
being used. At the same time dynamical models of
the bodies involved, gearwheels and gearbox housing,
continue to be three-dimensional. Analytical compu-
tational procedures to obtain gradients and Hessians
are constructed for implementing the contact tracking
algorithm for the involute guided cylindrical surfaces.
The known Johnson model is applied for computing
the contact elastic normal force. This force is defined
as an implicit function of the mutual penetration depth
at contact. Regular algorithm to compute the normal
elastic force is built up. This algorithm is proved to
be convergent. A detailed analysis of the virtual setup
dynamic model is carried out.

Keywords: spur gear; involute; Johnson model;
mesh properties; tracking algorithm

1 Introduction

Computer modeling and simulation of dynamics for
gearboxes of different kinds is a wide spread engineer-
ing task. One might highlight here two extreme poles
of approaches for models constructing. Firstly, the fi-
nite element method can be used for building up suffi-
ciently detailed dynamical models. It is clear that the
models created using such an approach consume quite
significant amount of computational resources. Sec-
ondly, on the other pole of models range one might
find simplified models of gearboxes dynamics allow-
ing a very fast models for machines and their units
to develop. Examples of such models are presented,
for instance, in the Modelica Standard Library. In ad-
dition, there exist well developed models taking into
account friction forces during the mesh processes in

gearboxes [1]. One might also find several other inter-
esting examples of the machinery applications includ-
ing gearboxes models on Modelica [2, 3].

It is important to us to consider models incorporat-
ing both the rigid body dynamics sufficiently effective
from the computational viewpoint and more detailed
mesh models with different types of compliant con-
tacts between teeth of gearwheels. The simplest prob-
lem in this way is the spur involute gear model imple-
mentation.

2 Cylindrical symmetry of 3D-bodies
contact

Staying in frame of the spatial multibody dynamics
classes previously developed [4, 5] it is quite natural
to use additional rigid bodyC playing the role of plat-
form, for implementing a relative planar motion of the
bodies, two gearwheels denoted asA andB in our case.
These bodies assumed to have cylindrical shapes and
are able to move in the plane orthogonal to their gen-
eratrix. LetOCxyzbe a coordinate system rigidly con-
nected with the bodyC, and for definiteness letOC be
its center of mass. Assume the generatrix is always
collinear to the axisOCz which can be expressed by
the geometrical conditionkα = kC (α = A,B), where
kα are the axisOαzα unit vectors andkC is the unit
vector of the bodyC axisOCz. To keep bodies’ motion
parallel to the coordinate planeOCxyone has to require
two algebraic conditions for the bodiesA andB mass
centersz-coordinates:zOA = const,zOB = const to be
satisfied. All coordinates are assumed with respect to
(w.r.t.) the frameOCxyz.

Algebraic equations mentioned can be easily imple-
mented in implicit form if one uses, for instance, con-
straints of the joint type [4] to fix the bodiesA andB in
the bodyC. In this case, the bodyC itself can perform
arbitrary spatial motions. We consider its movement
as being convective in compound motions of the bod-
ies A andB w.r.t. certain inertial frame of reference.
Thus it is quite natural to call the bodyC as a gear

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

315

housing,andthe bodiesA andB are supposed to play
the role of gearwheels.

One might build up mechanical tools for the cylin-
drical bodies contact using 2D-geometry techniques
with aid of the above reduction to the planeOCxy. For
instance, the cylinders contact tracking model might
be written, similarly to [6], in the form of six, alge-
braic or transcendental, equations as follows

gradgA(rPA) = λgradgB(rPB) ,
rPA− rPB = µgradgB(rPB) ,

gA(rPA) = 0, gB(rPB) = 0,
(1)

whererPα = (xPα ,yPα)
T (α = A,B) are the radius vec-

tors for the pointsPA, PB under tracking w.r.t. the hous-
ing coordinate systemOCxy; functionsgα(r) express
equations for the curves bounding planar figures of the
bodiesA andB w.r.t. the axesOCxy; λ, µ are the aux-
iliary scalar variables. Totally the system (1) has six
scalar equations w.r.t. six scalar variablesxPA, yPA, xPB,
yPB, λ, µ.

To complete classes corresponding to models of
contact one has to define contacting curves in the bod-
ies own planar coordinate systemsOαxαyα in the form
fα (xα,yα) = 0. If Tα is an orthogonal 2× 2-matrix
defining current orientation of the bodyα planar figure
then obviously the relationsgα(r) = fα

[
TT

α (r − rOα)
]
,

gradgα(r) = Tα gradfα
[
TT

α (r − rOα)
]

ought to take
place.

Similarly, following the paper [7] one might easily
construct a model to track the cylindrical contact by in-
troducing a system of differential-algebraic equations
of the form

ṙPA = uPA, ṙPB = uPB, λ̇ = ξ, µ̇= η, (2)

[ωωωA,gradgA]+TAHessfATT
A (uPA−vPA)−

ξgradgB−
λ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
uPA−uPB−ηgradgB−

µ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
(gradgA,uPA)−

(
gradfA,TT

A vPA

)
= 0,

(gradgB,uPB)−
(
gradfB,TT

B vPB

)
= 0,

(3)
where the vectorsvPA, vPB are relative, w. r. t. the body
C, velocities of the bodies physical points currently lo-
cated at the geometrical pointsPA, PB. One might cal-
culate them according to the Euler formula

vPα = vOα +[ωωωα, rPα − rOα] (α = A,B),

whereOA, OB are the bodies mass-centers mentioned
above,ωωωA, ωωωB are relative w. r. t. the housing angu-
lar velocities of the bodies, always directed along the

OCz-axis. Note that the pointsOA, OB might be lo-
cated at different levels of theOCz-axis of the gearbox
housing. But nevertheless one should regard the equa-
tions (2), (3) in their planar version as being projected
onto the planeOCxy.

In this case, for complete implementation of the
contact model, we need to compute the gradients
gradfα and Hessians Hessfα at opposing pointsPα in
bodies own coordinates.

3 Geometry of the spur involute gear

One has to consider the involute equation in the plane
Oαxαyα of the gearwheel coordinate systemOαxαyαzα
for resolving the problem which has been formulated
above for the case of the spur involute meshing. For
this one has to apply polar coordinatesRα, θα defined
for each bodyα in the following known way:xα =
Rα cosθα, yα = Rα sinθα. For the involute unwinding
counterclockwise an equation for the polar coordinates
can be deduced from the known relations [8] in the
form

√
R2

α− r2
αb

rαb
−arccos

rαb

Rα
−θα = 0, (4)

whererαb is the involute base circle radius. To com-
pute gradfα and Hessfα one has to use formulae of the
transformation(xα,yα) 7→ (Rα,θα) and apply an auxil-
iary Jacobi matrices arising in the process of analytical
calculations.

The contact tracking algorithm developed requires
equation of a curve in the formf (x,y) = 0 instead of
equation (4). Introducing the notation

p(R,θ) =

√
R2− r2

b

rb
−arccos

rb

R
−θ (5)

onecansee easily that

p(R,θ) = f (Rcosθ,Rsinθ). (6)

This equation is a starting point for producing all the
formulae for gradients and Hessians. Indeed by virtue
of (6) we have

gradp = (fx, fy)
(

xR xθ
yR yθ

)
= gradf

∂(x,y)
∂(R,θ)

(7)

since gradp = (pR, pθ). Therefore

gradf = gradp

[
∂(x,y)
∂(R,θ)

]−1

. (8)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

316

Onecansee from (5) that

gradp =

√
R2− r2

b

rbR
,−1

 , (9)

andfrom the polar coordinates definition the relation

∂(x,y)
∂(R,θ)

=
(

cosθ −Rsinθ
sinθ Rcosθ

)
.

follows. Hence,

[
∂(x,y)
∂(R,θ)

]−1

=

(
cosθ sinθ

−sinθ
R

cosθ
R

)
. (10)

To complete the computation of gradf as a function of
x, y one can remark that

R=
√

x2 +y2, cosθ =
x

R(x,y)
, sinθ =

y
R(x,y)

.

(11)
From(7) for the Hessian computation note that

Hessp =
(

∂(x,y)
∂(R,θ)

)T

Hessf
∂(x,y)
∂(R,θ)

+

fxHessx+ fyHessy,
(12)

wherethefollowing notation has been used

Hessp =
(

pRR pRθ
pθR pθθ

)
=

rb

R2
√

R2− r2
b

0

0 0

 ,

Hessx =
(

xRR xRθ
xθR xθθ

)
=

(
0 −sinθ

−sinθ −Rcosθ

)
,

Hessy =
(

yRR yRθ
yθR yθθ

)
=

(
0 cosθ

cosθ −Rsinθ

)
,

Now one can obtain from equation (12) a formula
for the Hessian we sought

Hessf =

[(
∂(x,y)
∂(R,θ)

)T
]−1

×

(Hessp− fxHessx− fyHessy)
(

∂(x,y)
∂(R,θ)

)−1

.

All the objects included here on the right hand side
have explicit expressions in polar coordinates. It is ev-
ident, these expressions can be resolved w. r. t. coor-
dinatesx, y with aid of transformation (11).

4 Contact force model

The geometrical properties have been implemented as
a class parameter for the base template described in [5]
for the model outlined above with contact of involutes.
Along with the geometrical properties model, the con-
tact elastic normal force model plays a key role as well.
According to the results of [9] the Johnson contact
model [10] seems to be the most acceptable one for
the case of the cylindrical bodies contact. The model
can be expressed as an equation written for the case of
so-called external contact

h =
N

πE?

[
ln

4πE? (ρA +ρB)
N

−1

]
, (13)

representinganimplicit function N(h) for the specific
normal elastic force, per unit of length along the cylin-
der generatrix, depending on the depthh of mutual ap-
proach (penetration). Here in equation (13)E? is the
composite modulus of elasticity for the contact. It sat-
isfies the equation

1
E?

=
1−ν2

A

EA
+

1−ν2
B

EB
,

whereEA, EB areYoung’s moduli of bodies’ material,
νA, νB are Poisson ratios. ValuesρA, ρB are radii of
curvature for involutes in the mesh each computed at
current positions of the pointsPA, PB respectively.

Remark 1 Staying in frame of the Hertz model con-
ditions, we assume the contact area dimensions small
as compared with the sizes of contacting bodies. Thus,
the cylindrical involute surfaces in vicinities of points
PA, PB are approximated by the circular cylinders
with an accuracy of order higher than two. Appli-
cation of equation (13) means that we virtually re-
place the cylindrical surfaces with involutes as guides
by the circular cylinders with the same radii of cur-
vature at any current instant of simulation time. Evi-
dently these cylindrical surfaces, involutive and circu-
lar ones, have mutual tangency of the second order.

Computational implementation of formula (13) in-
version reduces to an equation w.r.t. dimensionless
variablesx, y defined in the following way:

x =
e

4(ρA +ρB)
h, y =

e
4πE? (ρA +ρB)

N.

Then(13)becomes equivalent to the equation

y· lny =−x (14)

defining the implicit functiony(x).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

317

To resolve equation (14) correctly in vicinity of its
evident solutionx = 0, y = 0 one has to find a seg-
ment of monotonicity of the left hand side of (14). The
zero solution corresponds to the case of beginning of
the contacting process. In this case, a contact patch,
generically rectangular area, degenerates into the 1D-
line segment along the cylindrical surfaces generatrix.
It is easy to see that the segment sought is

[
0,e−1

]
.

Within this segment the left hand side function of (14)
decreases monotonically from zero to−e−1. Thus
one can define an area of applicability of the Johnson
model by the following inequalities

h≤ 4(ρA +ρB)
e2 , N≤ 4πE? (ρA +ρB)

e2 . (15)

Fromtheinvolute properties and using Figure 1 the
relation ρA + ρB = |KAKB| is satisfied to within the
(small enough) valueh. For this reason, if the material
stiffness is sufficiently large then the depthh is small
enough, and then the left condition of (15) is always
satisfied. Here, the pointsKA, KB are the points of a
tangency between the line of action and base circles of
gearwheels.

For real materials even the conditionh¿ |KAKB|
is satisfied. Then for Young’s moduli large enough
the Johnson model is surely valid on the segment
y∈ [

0,e−1
]

of monotonicity for the left side of equa-
tion (14). Since the derivative for the left side of equa-
tion (14) at y = e−1 is equal to zero then we may
furthermore restrict ourselves by set of strict mono-
tonicity corresponding to the condition 0≤ x < e−1,
or equivalently to 0≤ y < e−1.

Moreover, equation (14) has a singularity at zero.
Therefore, we shall construct an algorithm for com-
puting the functiony(x) taking into account that 0<
x < e−1. To proceed with the algorithm replace an un-
known functiony(x) in equation (14) by the function
η(x) according to the formulay(x) = xη(x). Then a
new equation has the form

η(lnx+ lnη)+1 = 0. (16)

Let us introduce here a new known independent
variableµ instead of the old onex according to the
equation

ν =− 1
lnx

.

Thevalueν is small and positive if the valuex is small
and positive. Then equation (16) is transformed to the
form

η = ν(1+η lnη) (17)

more suitable for investigating and computing the so-
lution for the given value ofν.

To overcome the problem we need in an algorithm
with the behavior regular enough in vicinity of zero.
It turned out equation (17) delivers also an iteration
process in the explicit form

ηn+1 = ν(1+ηn lnηn) , n = 0,1, . . . (18)

One might set any valueη0 satisfying the condition
0< η0≤ e−1 as a guess value of iteration process (18).
It is easy to see the numeric sequence{ηn}∞

n=0 built
up using process (18) is strictly positive and bounded:
0 < ηn < ν. Therefore, this sequence has at least one
limit point η?. It is equivalent to an existence of the
subsequence{ηnk}∞

k=0 converging to this limitηnk −→
η? ask−→ ∞.

This limit is unique. Indeed, by virtue of (18) the
limit satisfies equation (17). If there would be another
different limit η?? then equation (17) should have at
least two different solutions on the set[0,1). Then as
a consequence equation (14) should have two different
solutions on the set[0,e−1) what is impossible because
it has exactly one solution on this set.

Computations show that iteration process (18) con-
verges fast enough. Merit of the process is that it
works equally well for all admissible values ofx. If
x becomes close to zero then the valueν > 0 is also
small. Besides, for any arbitrarily smallη > 0 the
functionη lnη always stays uniformly bounded. Thus
the iteration operator conserves its regularity for any
admissiblex.

Other class parameters of the contact model tem-
plate in our case are following: (a) normal viscous
term was selected similar to the implementation de-
scribed in [7]; (b) tangent friction force model for defi-
niteness and simplicity, similar, for example, to the pa-
per [11], was selected as a regularized Coulomb fric-
tion law having a shape of the piecewise linear func-
tion of relative velocity at contact [6]. There are no
difficulties for changing the corresponding class pa-
rameter and for applying any different model, more
complicated than ones mentioned above.

5 Algorithm of teeth pairs switching

To describe the algorithm we assume gearwheels in
rotational motion each such that the pinion, wheelA,
rotates clockwise, and the gear (B) does it counter-
clockwise. We consider a process of initial data gener-
ation later. When boosting the pinion tooth in generic
case starts to penetrate the corresponding gear tooth

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

318

Figure1: The mesh scheme

because of the compliance at contact. Suppose for
simplicity this penetration continues during the mo-
tion without any backlash. The backlash possibility
requires additional complications of the model.

Remind the pointsPA andPB of involutes are oppos-
ing each other at contact. Then using known properties
of an involute one can prove the following

Assertion 1 The points PA and PB always lie on the
line of action KAKB, see Figure 1.

Generally, due to the compliance of contact the
point PB will be located on the lineKAKB to left from
the pointPA and above it, see Figure 1. Thus while the
pinion rotates by a pitch angle∆γA, and the pointPA

reaches the positionb (starting from its initial position
a of the mesh cycle), contact itself does not really van-
ish. This may happen only after the pointPB had also
passed the positionb.

On time interval, while the geometrical pointb had
been passed initially by the pointPA and then byPB,
contact model has to be more complicated than the
Johnson one being applied here. This model strongly
depends on the tooth tip relief had been implemented
in the gearbox. The tip may be assumed sharp, as a
point of the involute and addendum circle intersection,
or curved with smoothed edges. For instance, it may
have circular profile of the radius small enough be-
tween the involute and the addendum circle.

Exactly at the instance of the pointPA passing
through the positionb, the similar pointPA of the next
teeth pair, denote it by primeP′A, passes through the
position a. Really to this time, contact between the

next teeth pair may already be existed. But require-
ments of the Johnson model will be implemented only
after the pointP′B of the next pair contact will pass
through the positiona.

Thus in case of the compliant contact one cannot
avoid a presence of two simultaneous contacts: (a)
“decreasing” contact in vicinity of the positionb ex-
isting at this position after the pointPA had passed
throughb; (b) “increasing” contact in vicinity of the
position a arising ata before the pointP′B will pass
through it. Remind that all these stages of transition
arise simultaneously.

In our simplified approximate contact model we
assume that exactly at the moment when the point
PA passes through the positionb the Johnson contact
model instantly switches from the pointb of the cur-
rent teeth pair to the pointa of the next one. Exactly at
this moment the pointP′A passes the positiona. Denote
this time instant ast?.

First of all one should set that

rPA (t?) = ra.

To define the vectorrPB (t?) it is sufficient to find
a distance between pointsP′A andP′B of the new teeth
pair. It is not difficult to check that this distance is
equal exactly to the one between pointsPA andPB at
the same instant. Note that simultaneously pointsP′A
andP′B should lie on the lineKAKB, first P′A thenP′B if
counting fromKA to KB. Thus one can also set that

rPB (t?) = rPA (t?)+ rPB (t?−)− rPA (t?−) .

To obtain starting valuesλ(t?), µ(t?) for the next
mesh cycle one has to compute norms of gradients

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

319

|gradgA|, |gradgB| (co)vectorsand then use the first
and the second equations of the system (1). Gradients
are to be computed at pointsP′A andP′B respectively.
Since we always suppose that gradients are directed
“outside” the bodies at contact, we have to assume that

λ(t?) < 0, µ(t?) < 0.

Furthermore, since functionsgA, gB are derived from
the functionsfA, fB by translatory and rotary motions
of the three dimensional spaceR3 then the following
condition is satisfied

|gradgα|= |gradfα| (α = A,B).

To compute the value|gradfα| let us apply equa-
tions (8), (9), (10) from above in the following way

gradfα =

√
R2

α− r2
αb

rαbRα
,−1

cosθα sinθα

−sinθα

Rα

cosθα

Rα

=

√
R2

α− r2
αb

rαbRα
,− 1

Rα

(
cosθα sinθα
−sinθα cosθα

)
,

whereRα, θα arethepolar coordinates in the bodyα
coordinate systemOαxαyα. One can see easily from
last equation that the (co)vector gradfα is a result of
the (co)vector

√
R2

α− r2
αb

rαbRα
,− 1

Rα

rotationby the angleθα. Then one can write down the
norm sought as

|gradgα|= |gradfα|= 1
rαb

(α = A,B).

Thusthe gradient (co)vector of the function defin-
ing the involute has a constant norm inversely propor-
tional to the base circle radius. Now from the first and
the second equations of the system (1) we have respec-
tively

λ(t?) = −|gradgA|
|gradgB| =− rBb

rAb
,

µ(t?) = −|rPB (t?−)− rPA (t?−)|
|gradgB| =

−rBb|rPB (t?−)− rPA (t?−)| .

And usefulin all aspects result was obtained by the
way:

Assertion 2 In case of involutes the equation

λ =− rBb

rAb

represents an integral of motion for the contact track-
ing system of DAEs (2), (3).

Indeed, one can see from above that the variableλ
keeps its initial value all time of simulation

λ(t)≡ λ(t0) = λ(t?) =− rBb

rAb
.

This propertymay be very useful to control an accu-
racy of computations during the simulation process.

6 Some details of implementation

As it was already mentioned the template

ContactConstraintBaseTemplate

developed earlier [5] has been applied for implement-
ing the contact model of two gearwheels with spur in-
volute gearing. The template has four class parameters
defining models of: (a) the normal elastic force, (b)
the normal force of viscous resistance, (c) the tangent
force of resistance for relative slipping at contact, (d)
geometry of surfaces in vicinity of contact, in our case
they are the cylinders guided by an involute.

As it was already noted we guess approximately that
a contact patch is the rectangular strip, in general thin
enough. The normal elastic force is assumed to be uni-
formly distributed in one dimension along the genera-
trix of cylinder over the patch.

Let us consider in more details an implementation
of the class parameter responsible for geometry prop-
erties of the contact. This class is implemented as a
four-level hierarchy of inheritance for the properties
and behavior:

CylindricCompliantConstraint
↓

CylindricCompliantConstraintAddOn
↓

CylindricSurfacesOfConstraintDifferential
↓

InvoluteAndInvoluteDifferential

A differential-algebraic equations are applied here for
implementing the contact tracking algorithm.

A base class for all geometry classes implement-
ing cylindrical contact is the modelCylindric-

CompliantConstraint. This class is responsible
for computation of geometric and kinematic proper-
ties of the pointsPA andPB under tracking w. r. t. the
third bodyC, the gearbox housing. These properties
are described in particular by the following variables:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

320

• rAr, rBr arethe pointsPA andPB relative posi-
tions;

• gradgAr, gradgBr are the cylindrical surfaces
gradient vectors computed at pointsPA, PB re-
spectively in the frame of coordinatesOCxyz;

• normAr is the unit vector normal to an outer sur-
face of the bodyA computed at the pointPA w. r. t.
the coordinate systemOCxyz;

• vrAr, vrBr are relative velocities of bodies’A, B
points currently occupying the geometric points
PA, PB locations;

Modelica code of the current class under descrip-
tion, its section of equations, reads

equation
rA = InPortC.r + InPortC.T*rAr;
rB = InPortC.r + InPortC.T*rBr;
gradgA = InPortA.T*gradfA;
gradgB = InPortB.T*gradfB;
normA = gradgA/ sqrt(gradgA*gradgA);
gradgAr = (transpose (InPortC.T)*

InPortA.T)*gradfA;
gradgBr = (transpose (InPortC.T)*

InPortB.T)*gradfB;
normAr =

gradgAr/sqrt(gradgAr*gradgAr);
vrA = InPortA.v + cross(InPortA.omega,

rA - InPortA.r);
vrB = InPortB.v + cross(InPortB.omega,

rB - InPortB.r);
vrAe = InPortC.v +

cross(InPortC.omega,
rA - InPortC.r);

vrBe = InPortC.v +
cross(InPortC.omega,

rB - InPortC.r);
vrAr = transpose(InPortC.T)*

(vrA - vrAe);
vrBr = transpose(InPortC.T)*

(vrB - vrBe);
end CylindricCompliantConstraint;

In the derived classCylindricCompliantCon-

straintAddOn:

• PA,PB are variables for coordinates of the points
where a resultant contact forces are applied, in
directions of bodiesA andB respectively;

• relvnr is the normal component, in case ofPA

= PB, of the velocity for the pointPAof the body
A relative to the bodyB;

• relvtr is the tangent component of the the body
A relative velocity atPA = PBw. r. t. the coordi-
nate systemOCxyz;

• kappa is the contact indicator which is: (a) equal
to zero for the case of the surfaces touching each
other by segment of strait line, (b) positive and
equals to the distance between the surfaces for the
case of contact absence, (c) negative and charac-
terizes depth of mutual penetration for the case of
contact, contact patch has a rectangular shape;

• kappaA , kappaB are the parameters defining
elastic properties of bodiesA andB respectively.

Section of equations/behavior for this model has the
following code

equation
kappa = sqrt (gradgBr*gradgBr)*mu;
if noEvent (kappa <= 0) then

PA = kappaA*rB + kappaB*rA;
PB = PA;

else
PA = rA;
PB = rB;

end if;
vPA = transpose (InPortC.T)*

(InPortA.v + cross(InPortA.omega,
PA - InPortA.r));

vPB = transpose (InPortC.T)*
(InPortB.v + cross(InPortB.omega,

PB - InPortB.r));
relv = vPA - vPB;
relvnr = relv*normAr;
relvn = InPortC.T*relv*normAr;
vPAn = vPA*normAr;
vPBn = vPB*normAr;
vPAt = vPA - vPAn*normAr;
vPBt = vPB - vPBn*normAr;
relvtr = vPAt - vPBt;
relvt = InPortC.T*(vPAt - vPBt);
relvtsqrt = sqrt (relvt*relvt);
OutPortA.F = Forcet +

Forcen*normA + Forcev*normA;
OutPortA.P = PA;
OutPortB.P = PB;

end CylindricCompliantConstraintAddOn;

The next derived classCylindricSurfacesOf-

ConstraintDifferential implements the DAE
system (2), (3). Its Modelica code is similar to one of
the classSurfacesOfConstraintDifferential

described in [7] for the generic case of the Hertz-point
model. The difference concerns an account of the
cylindrical symmetry for the current case.

Finally, the contact surfaces, rather curves bounding
planar figures of bodies, specifications are defined in
the last class of the inheritance chainInvoluteAnd-

InvoluteDifferential . This model implements
an algorithm described in Section 3 for computing of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

321

gradientsandHessians in bodies’ coordinates systems.
As one can see from Section 3 corresponding Model-
ica code has to be bulky enough.

It is clear that when working two teeth of gear-
wheelsA and B cannot stay in the meshing process
during long time. One can see in Figure 1 that in case
of the pinion rotation clockwise the contact point (seg-
ment of line), or rather contact patch small enough,
moves from the pointa to the pointb of the line of
actionKAKB. At the very moment of contact loss for
the current pair of teeth at the pointb the next pair ar-
rives at contact, the pointa, and new “point” of contact
starts its motion along the meshing strait line of action.

One has to note here that for simplicity we consider
a mesh process without overlapping of time intervals
for the teeth pairs contacting. If they are overlapped
then one should create at least two contact objects
“connecting” the objects of bodiesA andB. These ob-
jects are to be activated/deactivated alternatively when
arriving at/departing from the pointa/b.

While the contact patch moves from its positiona
to the positionb each of gearwheelsA, B rotates by
the pitch angle∆γA, ∆γB respectively. The last class of
the inheritance line considered above besides the com-
putation of gradients and Hessians implements also a
switching process for the pairs of gearwheels thus syn-
chronizing this switching with the corresponding an-
gles of rotation for the bodiesA andB.

This mechanism for discontinuous jumps of the
contact points is implemented by the Modelica event
handling facility. Code of the classInvoluteAnd-
InvoluteDifferential fragment concerning re-
quired switching reads

...
der(phirel_A) = Active*omegarel_A[3];
der(phirel_B) = Active*omegarel_B[3];
Deltar = rBr - rAr;
when abs (phirel_A) > gamma_A +

gamma_Astep then
reinit(gamma_B, abs (phirel_B));
reinit(rAr[1], rA0[1]);
reinit(rAr[2], rA0[2]);
reinit(rBr[1], rA0[1] + Deltar[1]);
reinit(rBr[2], rB0[2] + Deltar[2]);
reinit(lambda, lambda0);
reinit(gamma_A, gamma_A +

gamma_Astep);
end when ;

...

Here the variablesphirel_A, phirel_B are to ac-
cumulate an angles of rotation for the bodiesA, B
w. r. t. the housingC. They are the model state

variables having derivatives defined asz-components
of the wheels relative angular velocities vectors
omegarel_A andomegarel_B.

In the code fragment above, variablesrA0, rB0, in
addition to ones already described, correspond to the
pointsPA, PB initial position, at the pointa in Figure 1,
vectors in the contact tracking algorithm. Relative,
w. r. t. PA, position of the pointPB for the new teeth
pair being directed, as we know, along the line of ac-
tion KAKB, has to be equal, because of rigidity, to the
similar position for the previous pair losing contact at
the event. This relative position is tracked by the vari-
ableDelta.

The variablesmu, lambda correspond to the vari-
ablesµ, λ in equations (2), (3);lambda0 correspond
to the λ initial value at the positiona; gamma_A,
gamma_Bare the variables for the gearwheels angles
of rotation changing by the pitch values∆γA, ∆γB be-
ing stored in variablesgamma_Astep , gamma_Bstep.
Note that for correct handling of the switching pro-
cess it is sufficient to track only the pinion, body
A, angle of rotation and use only the variablesgam-

ma_A,gamma_Astep , phirel_A, omegarel_A. Ini-
tial depth of penetration, just after the contact switch,
for the new pair is defined by the variablemu remains
the same as for the previous pair of teeth in contact.
This is because the gradient, from the right hand side
of the second equation in system (1), norm stays con-
stant in case of the involute. This constant is equal to
the value 1/rBb. For definiteness the wheelA supposed
to rotate monotonically clockwise.

7 Computational experiments

To perform a computational testing program for the
gearbox model one builds up a virtual setup consisting
of two gearwheels: the pinionA and the driven gearB.
For simplicity one assumes the gearbox housingC be
fixed w. r. t. inertial frame of reference, and the ori-
gin OC of its coordinate systemOCxyzcoincides with
the pinion geometrical centerOA. Cylindrical revolute
joint connecting the bodiesA andC is also located at
the pointOC. The gearwheelB centerOB is located
on the horizontal axisOCx. Here, atOB, a cylindrical
revolute joint connecting the bodyB and the auxiliary
sliderS is located. The sliderS is in turn able to slip
freely w. r. t. the bodyC along the axisOCx, though
this sliding performs with a resistance of the spring of
high stiffness with the damper. This spring connects
bodiesC andSbetween one another.

We introduced in the current experimental setup un-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

322

Figure2: The Virtual Setup Visual Model

der description a compliance between the bodiesB and
C. This compliance is implemented by the auxiliary
slider mentioned and is directed along the lineOAOB

connecting the wheels centers and lying on the axis
OCx. Such a construct prevents the static indefinite-
ness in the model for the case of rigid contact at the
mesh point of gearwheelsA andB. A visual model of
the setup is shown in Figure 2.

7.1 Parameters of the model

The following independent parameters are defined in
the mesh model:

• zA = 20 is number of teeth for the pinion;

• zA = 30 is number of teeth for the driven gear-
wheel;

• rA = 0.2m is the pinion pitch circle radius.

After that the remaining geometry parameters of the
mesh are computed as follows:

• n = zB/zA is the transmission ratio;

• rB = nrA is the pitch circle radius of the driven
gearwheel;

• ∆γA = 2π/zA, ∆γB = 2π/zB are the gearwheels an-
gular pitches;

To define the mesh further it is essential to set the
pressure angleαw value. It can be chosen using the
condition

αw > αwinf ,

whereαwinf = inf αw is the lower bound for all the
pressure angles permissible by the parameters above.
Its value is defined by the formula

αwinf = arctan
2π

zA(1+n)
.

For definiteness we will use the following value

αw = 1.05αwinf .

Furthermore, using the pressure angle and transmis-
sion ratio one cam compute sequentially all geomet-
rical parameters needed which are shown in Figure 1.
First the base circles radii can be found as

rαb = rα cosαw (α = A,B).

Then one can compute a full length of the line of action
as follows

|−−−→KAKB|= rA(1+n)sinαw.

At the same time a length of any segment[a,b]
along this line is exactly the length of arc for any of
the base circles corresponding to the pitch angle∆γA

or ∆γB

|−→ab|= rα∆γα (α = A,B).

Initial distance between the gearwheels centers is
equal to the valueL = rA+ rB. To compute initial con-
ditions for the contact tracking system of DAEs (2), (3)
we need in additional computations. From the descrip-
tion above we have for absolute initial coordinates of
the pointsOC andOA

rOC = rOA = (0,0,0)T .

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

323

Thusaninitial position of the gear center is defined by
the equation

rOB = (L,0,0)T .

Initial positions of the pointsKA andKB can be com-
puted easily, see Figure 1, with use of the following
vector formulae

rKA = rOA + rAb(cosαw,sinαw,0)T ,

rKB = rOB− rBb(cosαw,sinαw,0)T .

After that the line of action directing vector can be ob-
tained as

−−−→
KAKB = rKB− rKA. And now one can define

a position of the pointa, where the contact process be-
gins, in the form

ra = rKA +
1
2

(
|−−−→KAKB|− |−→ab|

) −−−→
KAKB

|−−−→KAKB|
,

and also an initial position of the pointb, where the
contact losses, has the representation

rb = ra +
|−→ab|
|−−−→KAKB|

−−−→
KAKB.

After the endpointsa, b of an active segment of the
line of action have been defined it is time to compute
the addendum radiusrBa of the gear as a distance be-
tween the pointa and the initial position ofOB, see
Figure 1. The addendum radiusrAa of the pinion is in
turn a distance between an initial position of the point
b andOA. These radii are defined by the equations

rAa = |rb− rOA| , rBa = |ra− rOB| .

To compute initial angles of rotation for the pinion
and gear we assume that at an initial instant of simu-
lation teeth of an initial pair are touching each other
geometrically without any pressure, and, as a result,
mutual penetration is absent. An initial angular veloc-
ities of the gearwheels assumed equal to zero. For defi-
niteness we also assume that the axisOAxA of the body
A crosses the base circle exactly at a root point of the
involute. This involute defines a surface of the tooth
contacting with its mate exactly at the pointa. Sim-
ilarly, the bodyB axis OBxB passes through the root
point of the contact involute of the bodyB at initial
instant.

One can compute the polar angles of each the invo-
lute mentioned above using the equations (4) with the
following equations (α = A,B)

θα =

√
|ra− rOα |2− r2

αb

rαb
−arccos

rαb

|ra− rOα |
,

Thuswe can define an initial values for the angles
of rotation of bodiesA andB in the form

ϕα (t0) = argζα−θα (α = A,B),

where complex numbersζA, ζB are defined via the vec-
torsra− rOα components as

ζα = (xa−xOα)+ i (ya−yOα) (α = A,B).

Note that the function arg of complex argument has a
computer implementation as a standard library func-
tion atan2.

Initial quaternions of bodiesA andB orientation are
defined using known formulae

qα (t0) =
(

cos
ϕα (t0)

2
,0,0,sin

ϕα (t0)
2

)T

(α = A,B).

Statevariables of the DAE system (2), (3) tracking
contact are to satisfy the following initial conditions

rPA (t0) = rPB (t0) = ra, µ(t0) = 0, λ(t0) =− rBb

rAb
.

Noteherethat in case of the involute the state vari-
ableλ(t) turned out to be constant value

λ(t)≡ const= λ(t0) .

Thus this equation represents exactly integral of mo-
tion, and it can be used effectively to control an accu-
racy of computations.

Finally, in the example under consideration the con-
stant driving torqueMA = (0,0,−1N ·m)T assumed
being applied to the pinionA while the viscous torque
of resistanceMB = (0,0,−10ϕ̇B)T is applied to the
gearB. Gearwheels themselves assumed made of steel
with Young’s modulusEA = EB = 2·1011Pa and Pois-
son ratioνA = νB = 0.3, and have the same width,
along the axis of rotation, of 0.1m.

7.2 Dynamic transmission error

A value of the dynamic transmission error (DTE) has
been chosen for the computational verification. If
force of friction exists at contact then DTE is not con-
stant. First of all let us introduce the auxiliary variable

∆ =−rAbϕA− rBbϕB. (19)

This value characterizes a mismatch for the base cir-
cles arc lengths. If teeth in pairs contacting have
an ideal “rigid” unilateral constraints without compli-
ance, and switching between teeth pairs is also ideal
then the value of∆ has to be an identical zero.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

324

Figure3: Comparison of the discrepancy (Delta) and the depth of penetration (Depth)

To undertake an analysis more detailed let us con-
sider the results of numeric experiments. Firstly, one
can remark that in case of the involute mesh a dis-
crepancy∆(t) from (19) has to be identical with the
depth of mutual penetration of rigid teeth in vicinity
of contact point. Indeed, the discrepancy (19) is ex-
actly the difference between the arc distances of base
circles while each of the wheelsA andB rotates. This
difference is accumulated from the very initial instant
of simulation.

On the other hand it is known that the segmentPAPB

is a perpendicular common to the teeth involutes pen-
etrating each other, and simultaneouslyPAPB lies ex-
actly on the lineKAKB and its length is exactly the
depth of teeth mutual penetration. Then there exists
the only geometric possibility: the condition

|−−→PAPB| ≡ κ(t)≡ ∆(t)

has to be satisfied. The functions∆(t), κ(t) derived
independently in the model are compared in Figure 3.

An effect obtained in an angular displacements due
to pressing and subsequent penetrating in the John-
son contact model is certainly like one derived due to
torsional deformations of elastic gearwheels [12, 13].
Moreover, finite element modeling do not disturb in
any essential degree the whole dynamical picture if
used to simulate teeth bending when contacting [14].

Indeed, one can compute the DTE according to the
formula

δ =−rAbψA− rBbψB (20)

similar to (19). Here the valuesψA, ψB are the angular
displacements of the pinion and gear from their mean
nominal positionsΦA(t), ΦB(t) such that the following
equations fulfill

ϕα(t) = Φα(t)+ψα(t) (α = A,B).

These nominal valuesΦα(t) correspond just to the
case of rigid contact satisfying evidently the following

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

325

kinematicidentity

−rAbΦA(t)− rBbΦB(t)≡ 0.

Hence, it turns out in frame of our considerations that
the identity

∆(t)≡ δ(t)

takes place.
Let us investigate now sources of the DTE presented

in Figure 3. If one eliminates completely in the model
the friction between teeth surfaces then the valueδ(t)
will grow asymptotically to its limit value thus provid-
ing a systematic error of transmission, see Figure 4,
blue curve. The reason for this error is evidently a
mutual penetration of the compliant contact model of
Johnson.

Figure4: The DTE without (blue) and with (red) fric-
tion

If one introduces to the whole gearbox model, the
simplest model of the Coulomb friction with the coef-
ficient f = 0.3 then the systematic error will be super-
imposed by the periodic one, see Figure 4, red curve.
This latter error has discontinuities at instants of the
contact teeth pair changes and at the instant when the
contact patch passes through the pitch pointP, see Fig-
ure 1. The periodic DTE almost completely coincides
with similar curves presented in papers [12, 13]. In the
graphs of these papers one can note only small varia-
tions from exact curves of our Figures 3,4. An origin
of these variations is evidently additional small devi-
ation derived due to more exact account of the elastic
torsion oscillations considered in [12, 13]. Additional
splash of weak torsional oscillations one can observe
in [12, 13] exists because of the multiplicity of teeth
contacts in that model: time segments overlap for the
mesh cycles of the nearby pairs. So when contact of
the previous teeth pair vanishes then additional elas-
tic disturbance arises. Remind that for simplicity we

Table 1: Comparative efficiency

Typeof the Coefficient CPU
contactmodel of friction time

Johnson’s 0.3 20.4
Johnson’s 0 16.1

rigid 0.3 13
rigid 0 11.4

considerin our model the case of mesh ratio which is
equal to one.

7.3 Comparison with a rigid contact

A goal of our further numerical experiments is to com-
pare two contact models when meshing: (a) the John-
son model, (b) the rigid contact model without com-
pliance. The results of models under comparison sim-
ulation run showed for illustration in Figure 5. The
normal contact force is counted along they-axis of the
plot. Case of the Johnson model corresponds to the
blue curve while the red one is for the case of rigid
contact model.

Comparison of the simulation results shows in Fig-
ure 5 that both contact models, the Johnson one and the
rigid contact, bring the same dynamic result. The only
difference is that the Johnson model generates addi-
tional oscillations of the normal contact force being su-
perimposed on the normal force behavior for the rigid
case. Moreover, one can see from detailing shown in
Figure 5 that rigid contact model looks like a result of
the procedure of averaging for the dynamics with the
compliant contact, Johnson, model.

An advantage of the latter case is that this case of
the contact model makes it possible to apply an arbi-
trary number of contacts for the body in the multibody
system dynamics model without any restrictions. At
the same time the rigid contact model does not allow
such a possibility.

On the other hand, any contact model based on the
FEM code application requires much more computa-
tional resources than in case of the “simple” compli-
ant model analysed above. To compare an effective-
ness of the Johnson contact model and the model using
the rigid unilateral contact constraint consider Table 1
with preliminary relative estimations of the CPU time,
in seconds, needed for both cases with addition of the
friction force influence. Here the results of the simu-
lation run are presented, without any optimization, for
the model time of 5 seconds.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

326

Figure5: Comparison of the models with (blue) and without (red) compliance at contact

One can note easily from Table 1 that the Johnson
model increases computational time in some degree,
not larger than twice, in compare with the fastest case
of the rigid contact. And simultaneously this model
with compliance increases considerably the flexibility
and universality of simulation tools in a wide range of
applied problems.

8 Conclusions

Comparing our previous results with the above ones
we can conclude that:

• since cylindrical contact models are restricted to
the 2D-geometrical considerations they are sim-
pler in a certain sense than the 3D-models;

• on the contrary, dynamical models became more
complex in some degree because the Johnson
model forces us to deal with the transcendental
equation having a singularity at zero;

• involute meshing requires additional analytic ef-
forts causing additional computational complex-
ity increase;

• compliant models create an effect similar to one
generated by the torsional elastic deformations of
gearwheels;

• compliant model built up showed an efficiency
high enough comparable with the fastest case of
geometrically rigid constraint;

• the computer model built up makes it possible in
an evident way to construct models of gearboxes
of any complexity for the spur involute type of
meshing.

9 Acknowledgements

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, projects 08-01-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

327

00600-a,08-01-00718-a,08-08-00553-a.

References

[1] Pelchen, C., Schweiger, C., Otter, M., Model-
ing and Simulating the Efficiency of Gearboxes
and of Planetary Gearboxes. In: Proceedings
of the 2nd International Modelica Conference,
Deutsches Zentrum für Luft- und Raumfahrt e. V.
(DLR), Oberpfaffenhofen, Germany, March 18–
19, 2002, pp. 257–266.

[2] Schlegel, C., Bross, M., Beater, P., HIL-
Simulation of the Hydraulics and Mechanics
of an Automatic Gearbox. In: Proceedings
of the 2nd International Modelica Conference,
Deutsches Zentrum für Luft- und Raumfahrt e. V.
(DLR), Oberpfaffenhofen, Germany, March 18–
19, 2002, pp. 67–75.

[3] Schweiger, C., Otter, M., Modeling 3D Mechan-
ical Effects of 1D Powertrains. In: Proceed-
ings of the 3rd International Modelica Confer-
ence, Linköpings Universitet, Linköpings, Swe-
den, November 3–4, 2003, pp. 149–158.

[4] Kosenko, I. I., Loginova, M. S., Obraztsov, Ya.
P., Stavrovskaya, M. S., Multibody Systems Dy-
namics: Modelica Implementation and Bond
Graph Representation. In: Proceedings of the 5th
International Modelica Conference, arsenal re-
search, Vienna, Austria, September 4–5, 2006,
pp. 213–223.

[5] Kosenko, I., Aleksandrov, E., Implementation
of the Contensou–Erismann Model of Friction
in Frame of the Hertz Contact Problem on
Modelica. In: Proceedings of the 7th Interna-
tional Modelica Conference, Como, Italy, 20–
22 September 2009. Francesco Casella, editor.
Linköping University Electronic Press, 2009.
ISBN 978-91-7393-513-5. Linköping Electronic
Conference Proceedings, ISSN:1650-3740. DOI:
10.3384/ecp0943, pp. 288–298.

[6] Kossenko, I. I., Implementation of Unilateral
Multibody Dynamics on Modelica. In: Pro-
ceedings of the 4th International Modelica Con-
ference, Hamburg University of Technology,
Hamburg–Harburg, Germany, March 7–8, 2005,
pp. 13–23.

[7] Kosenko, I. I., Alexandrov, E. B., Implementa-
tion of the Hertz Contact Model and Its Volumet-
ric Modification on Modelica. In: Proceedings of
the 6th International Modelica Conference, Uni-
versity of Applied Sciences Bielefeld, Bielefeld,
Germany, March 3–4, 2008, pp. 203–212.

[8] Litvin, F. L., Fuentes, A., Gear Geometry and
Applied Theory. Cambridge University Press,
Cambridge – New York – Melbourne – Madrid
– Cape Town – Singapore – Sao Paulo, 2004.

[9] Pereira, C. M., Ramalho, A. L., Ambrosio, J.
A., A Critical Overview of Internal and External
Cylinder Contact Force Models. Nonlinear Dy-
namics, Published Online: 18 September 2010.

[10] Johnson, K. L., Contact Mechanics. Cambridge
University Press, Cambridge, UK, 2001.

[11] Förg, M., Engelhardt, T., Ulbrich, H. Compar-
ison of Different Contact Models within Valve
Train Simulations. Proceedings of ACMD2006,
The Third Asian Conference on Multibody Dy-
namics 2006, Institute of Industrial Science, The
University of Tokyo, Tokyo, Japan, August 1–4,
2006.

[12] Vaishya, M., Singh, R., Sliding Friction–Induced
Non–Linearity and Parametric Effects in Gear
Dynamics. Journal of Sound and Vibration,
2001, Vol. 248, No. 4, pp. 671–694.

[13] Vaishya, M., Singh, R., Strategies for Modeling
Friction in Gear Dynamics. Journal of Mechani-
cal Design, 2003, Vol. 125, Iss. 2, pp. 383–393.

[14] He, S., Effect of Sliding Friction on Spur and He-
lical Gear Dynamics and Vibro–Acoustics. PhD
thesis, The Ohio State University, 2008.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

328

Import and Export of Functional Mock-up Units
in JModelica.org

Christian Anderssona,c Johan Åkessonb,c Claus Führera Magnus Gäfvertc

aDepartment of Numerical Analysis, Lund University, Sweden
bDepartment of Automatic Control, Lund University, Sweden

cModelon AB, Sweden

Abstract

Different simulation and modeling tools often use their
own definition of how a model is represented and how
model data is stored. Complications arise when try-
ing to model parts in one tool and importing the re-
sulting model in another tool or when trying to ver-
ify a result by using a different simulation tool. The
Functional Mock-up Interface (FMI) is a standard to
provide a unified model execution interface. In this
paper we present an implementation of the FMI spec-
ification in the JModelica.org platform, where support
for import and export of FMI compliant models has
been added. The JModelica.org FMI import interface
is written in Python and offers a complete mapping
of the FMI C API. JModelica.org also offers a set
of Pythonic convenience methods for interacting with
the model in an object-oriented manner. In addition,
a connection to the simulation environment Assimulo
which is part of JModelica.org is offered to allow for
simulation of models following the FMI specification
using state of the art numerical integrators. Genera-
tion of FMI compliant models from JModelica.org will
also be discussed.

Keywords: JModelica.org; Assimulo; Sundials;
FMI, FMUs

1 Introduction

In an effort to provide a unified model interface for
different simulation tools and modeling environments,
the MODELISAR consortium defined an open inter-
face called the Functional Mock-up Interface. The
idea is that both Modelica-based and non-Modelica-
based tools may generate and exchange models that
follow the FMI specification. FMI compliant models
are referred to as Functional Mock-up Units (FMUs).

This enables users to create specialized models in one
modeling environment, connect them in a second and
finally simulate the complete system using a third sim-
ulation tool. This in turn, facilitates tool interoperabil-
ity and model exchange.

In this paper, we present an implementation of the
Functional Mock-up Interface in the JModelica.org
platform, [2]. The implementation consists of support
both for exporting FMUs from JModelica.org and im-
porting FMUs generated by other tools.

Python was selected as the implementation lan-
guage for the interface. The choice of Python for
the integration was based on several reasons. The
main advantage is that Python is a powerful and dy-
namic programming language with an clear and read-
able syntax with a low threshold for users to cre-
ate their own simulation scripts, regardless of if you
come from an MATLAB environment or a low-level
programming language such as C. There are several
packages that make Python a good option for scien-
tific computing. One example is Scipy together with
Numpy [13], which contains mathematically relevant
functions , another is Matplotlib [10] for visualization
in a MATLAB like format. There are also Python
packages aimed specifically at interfacing code writ-
ten in other programming languages. One such pack-
age is CTYPES [9], which makes connection to C and
loading of dynamic linked libraries possible. This is a
necessity for implementation of the FMI standard.

Another reason for choosing Python is that for part
of the implementation, functionality could be reused
with little or no modification as similar functionality
already exists in JModelica.org. The XML framework
needed to load and generate FMUs is already in-place
in JModelica.org and the connection to the simulation
environment Assimulo is similar to that of the connec-
tion between a model generated from JModelica.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

329

and Assimulo.
The paper is outlined as follows. In Section 2,

a brief background is given about the JModelica.org
platform and the simulation package Assimulo to-
gether with an overview of the Functional Mock-up
Interface. The implementation is described in Section
3. In Section 4, the Van der Pol oscillator and the Full
Robot from the Modelica Standard Library is simu-
lated. The result is compared with a simulation using
Dymola [6]. An example from the Air Conditioning li-
brary is also given. Finally, Section 6 summarizes this
paper.

2 Background

2.1 JModelica.org

JModelica.org [2] is an "extensible Modelica-based
open source platform for optimization, simulation and
analysis of complex dynamic systems"1 with the mis-
sion:

“To offer a community-based, free, open
source, accessible, user and application ori-
ented Modelica environment for optimiza-
tion and simulation of complex dynamic
systems, built on well-recognized technol-
ogy and supporting major platforms.”

The platform offers compilers for Modelica, [15]
and Optimica, [1], a simulation package called As-
simulo and a direct collocation algorithm for solving
large-scale DAE-based dynamic optimization prob-
lems. The user interface in JModelica.org is based
on Python, which provides means to conveniently de-
velop complex scripts and applications. The platform
is designed both for large-scale industrial needs and
for prototyping in a research environment. It pro-
vides synergies between state of the art methods re-
sulting from research and problems industrially rele-
vant problems. JModelica.org supports the major plat-
forms Windows, Mac and Linux.

2.2 Assimulo

Assimulo, [3], is the default simulation package in
JModelica.org. It is a Python package consisting of
several solvers for solving explicit ordinary differen-
tial equations (ODEs),

ẋ = f (t,x), x(t0) = x0 (1)

1http://www.jmodelica.org

as well as differential algebraic equations (DAEs),

F(ẋ,x,w, t) = 0,

x(t0) = x0, ẋ(t0) = ẋ0, w(t0) = w0.
(2)

Examples of solvers supported by Assimulo are a
fifth-order three-stage Radau method, explicit Euler
with fixed step-sizes, and a fourth-order Runge-Kutta
method. By interfacing to SUNDIALS [11], state-
of-the art implementations of multistep methods for
ODEs and DAEs are available through Assimulo. The
solvers CVode and IDA in SUNDIALS are the lat-
est development branch of codes implementing multi-
step methods dating back to the 80s, also including
DASSL. CVode is a variable-order, variable-step mul-
tistep algorithm for solving ordinary differential equa-
tions. CVode includes the Backward Differentiation
Formulas (BDFs), which are suitable for stiff problems
as well as Adams-Moulton formulae for highly accu-
rate simulation of non-stiff systems. The solver IDA is
a DAE integrator based on BDF.

Assimulo consists of mainly two parts. First, a
skeleton of a simulation problem, which allows for
defining all the necessary methods needed for simu-
lation of a hybrid ODE and DAE, such as the right-
hand-side, root functions and time-events. These
skeletons are defined in the Explicit_Problem and
Implicit_Problem classes for the ODE and DAE
case respectively. The second part contains the ac-
tual integrators and interprets the information from the
problem specification and performs the simulation.

In order to use Assimulo together with JModel-
ica.org, the problem classes from Assimulo needed to
be extended to allow for handling of how the models
are defined in JModelica.org. In Figure 1 an overview
of the implementation is shown.

Figure 1: Overview of the interaction between JMod-
elica.org, Assimulo and Sundials.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

330

2.3 FMI

The Functional Mock-up Interface defines a standard
for model exchange consisting of a set of C functions
and an XML schema for model interaction. The math-
ematical formalism upon which FMI is based is that of
hybrid ordinary differential equations (ODEs), i.e. or-
dinary differential equations with some discrete states.
FMUs are distributed as compressed files containing:

• A shared object file (DLL), containing implemen-
tations of the FMI functions. In addition, or alter-
natively, the FMU may contain the source code
corresponding to the compiled DLL.

• An XML file, containing the variable definitions
and meta information for the model, together
with information about how it was generated.
The file also contains value-references for the
variables, which uniquely identifies variables and
which are used when retrieving data from the
model.

• Optional files containing bitmaps, documenta-
tions, tables etc.

The C functions contained in the FMU are typically
called by a simulation environment, in order to per-
form a simulation experiment. The simulation en-
vironment needs then to be able to handle simula-
tion of hybrid ODEs, which are often stiff. Also, the
model meta data contained in the XML file needs to
be loaded by the simulation environment in order to
extract model information, e.g. variable names.

Instantiate Initialize

FreeTerminate

Simulation

Preparation

Termination

Perform
Step

Accept
Step

Check
Events

Handle
Event

Set Start
Values

Retrieve
Values

Set Inputs
Set Time/States

Evaluate Derivatives
Evaluate Event Ind.

Completed
Step

Retrieve
Values

Yes

No

Event Update

Retrieve
Values

Figure 2: Overview of the calling sequence for an
FMU.

In Figure 2, an overview of the calling sequence for
an FMU is described. Prior to a simulation experi-
ment, the model has to be instantiated. This includes

extracting the files in the FMU, loading the DLL and
XML files and calling the instantiation function avail-
able in the DLL. A model can be instantiated multiple
times for which the function fmiInstantiateModel

is provided. The model is then initialized by calling
fmiInitialize.

Once the model is instantiated and initialized it can
be simulated. The simulation is performed by up-
dating time and states in the model, via fmiSetTime

and fmiSetContinuousStates, and by calculating
the derivatives via fmiGetDerivatives.

During the simulation, events are monitored
via the functions fmiGetEventIndicators and
fmiCompletedIntegratorStep. State-events are
detected by looking for sign changes in the event in-
dicators while step-events are checked in the model
after calling the completed step function when an inte-
gration step was sucessfully completed.

At an event, the function fmiEventUpdate has to
be called. This function updates and re-initializes the
model in order for the simulation to be continued. In-
formation is also given about if the states have changed
values, if new state variables have been selected and
information about upcoming time events.

To retrieve or set variable data during a simulation,
value-references are used as keys. All variables are
connected to a unique number defined by the export
tool and provided in the XML-file. This number can
then be used to retrieve information about variables via
functions in the interface or can be used to set input
values during a simulation. There are functions for
setting and getting values for Real, Integer, String and
Boolean values, fmi(Get/Set)(Type).

After a simulation, memory has to be deallocated.
The function fmiTerminate deallocates all memory
that have been allocated since the initialization and
the function fmiFreeModelInstance dispose of the
model instance.

3 FMI Implementation

3.1 Export

The FMI specification standardizes an execution inter-
face for hybrid ODEs. Modelica models, on the other
hand, are usually translated into systems of index-1
DAEs. Therefore, a Modelica-based tool needs to
transform DAEs into ODE form. Starting with the
DAE

F(ẋ,x,w,u, p, t) = 0 (3)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

331

where x ∈Rnx are the states, w ∈Rnw are the algebraic
variables, u ∈ Rnu are the inputs, p ∈ Rnp are the pa-
rameters and t ∈ R is the time. The objective of this
transformation is to obtain an ODE on the form

ẋ = f (x,u, p, t). (4)

Notice that this transformation is conceptual in most
cases in the sense that the function f cannot be com-
puted explicitly. Rather, a commonly employed strat-
egy is to regard the function F as a system of non-
linear system equations, where ẋ and w are unknown
and x, u, p and t are known. This strategy relies on
the assumptions that i) start values for the states are
available, possibly computed by solving a system of
initialization equations, and ii) that the matrix[

∂F
∂ ẋ

∂F
∂w

]
(5)

is square and has full rank. The latter condition means
that a solution to the system of equations exists, at least
locally, and holds if the DAE is of index 1, see [5] for a
definition. Indeed, Modelica models commonly have
index higher than 1, but it is here assumed that the in-
dex has been reduced by an index reduction algorithm,
[12].

The DAE (3) is often highly structured and has in
addition a sparse Jacobian, properties that can be ex-
ploited in order to perform the transformation more
efficiently. A common approach for exploiting this
structure is to decompose the DAE system into a se-
quence of smaller systems. This can be done by means
of Tarjans algorithm, see [14, 8, 7] for details. Ad-
ditional performance is gained typically as in typical
cases several of the decomposed systems can be solved
directly without the need to employ iterative Newton-
type solvers. The usually few remaining non-linear
systems of equations are solved during simulation by
means of iterative techniques. In the FMUs gener-
ated by JModelica.org the KINSOL algorithm, which
is part of the SUNDIALS suite, is used. In order to
increase the robustness of the algorithm, KINSOL has
been extended to support regularization to handle even
the case of an initially singular Jacobian. See [16] for
a detailed treatment. As a result of the presence of
non-linear equation systems requiring iteration, ODE
form (4) is conceptual rather implicit than explicit.
Nevertheless, from the point of view of the simula-
tion environment, the model is regarded as an explicit
ODE, where the derivatives are computed given values
of the parameters, the states, the inputs and the cur-
rent time. The algorithm for computing the derivatives

as outlined above is made available in the FMI func-
tion fmiGetDerivatives. In addition to providing
a function for evaluating the derivatives of the ODE,
hybrid constructs resulting in events need to be sup-
ported in the simulation run-time system in the FMU.
Examples of hybrid constructs in Modelica are instan-
taneous equations (expressed as when-clauses) and re-
lational expressions. During continuous integration, a
set of event indicator functions, provided in the func-
tion fmiGetEventIndicators, are monitored. If a
sign change of one of the indicator functions is de-
tected, an event has occurred and the simulation en-
vironment then informs the FMU by calling the func-
tion fmiEventUpdate. From the point of view of the
simulation environment, this procedure is straight for-
ward, since many integration algorithms provide na-
tive support for localization of events. For the inter-
nal simulation run-time system in the FMU, the situa-
tion is more complicated. For example, one event may
trigger other events, which requires an event iteration
scheme to be employed. In JModelica.org, the simula-
tion run-time system performs a fixed point iteration to
resolve dependent events. For more information about
hybrid constructs in Modelica and how they are han-
dled in the context of simulation, see [4].

Before an FMU can be simulated, consistent initial
conditions need to be found. In the FMUs generated
by JModelica.org, this is done similarly to how the
derivatives are computed. The BLT transformation is
applied to the initialization system, consisting of the
index-1 DAE augmented by initial equations, in order
to obtain a sequence of equation systems, which can
be solved for the states, the derivatives and the alge-
braic variables. Also in this case, the modified version
of KINSOL, supporting regularization, is used.

3.2 Import

Integration of the FMI to JModelica.org requires a few
key features to be present.

• Ability to decompress a compressed archive.

• Ability to couple functions provided in a DLL to
Python.

• Ability to read and interpret an XML-file.

These features are provided by use of several Python
packages such as ctypes [9], lxml and zipfile.
ctypes enables loading of a dynamic linked library
(DLL) into Python. The functions of the DLL can
then be retrieved and defined in Python which enables

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

332

them to be called directly. The functions have to be
explicitly defined together with their arguments and
return arguments so that the correct type is returned
back to the DLL. lxml provides methods for handling
of XML-files, such as querying and traverse complete
files. This feature was already available in JModel-
ica.org as an extended FMI XML format, which is
used to handle generated model data from JModel-
ica.org. Finally, zipfile offers methods for extract-
ing information from compressed directories, such as
an FMU.

The FMI import implementation in JModelica.org
centers around a Python class, FMUModel where the
constructor takes as input an FMU and performs the
necessary tasks to enable manipulation and simula-
tion of the FMU. The constructor also calls the XML
import interface which reads the complete XML-
file and populates data structures with information
about all model variables including start-values, value-
references, aliases and types. The interface consists
of a raw mapping of the functions defined in the
FMI specification easily available and accessible from
Python. The methods are named according to the
specification with a leading underscore. For example,
the FMI function fmiGetDerivatives(...) corre-
sponds to the following method in our Python class,
FMUModel,

FMUModel._fmiGetDerivatives (...)

Providing a complete mapping to the original FMI
functions enables users to create scripts tailored to
their specific purposes.

JModelica.org also provides a Pythonic and object-
oriented connection to an FMU with high-level meth-
ods for setting and retrieving values. We demonstrate
this by computing the derivatives at time t and state y
using the FMU:

FMUModel.time = t

FMUModel.continuous_states = y

rhs = FMUModel.get_derivatives ()

The high-level methods propagate the information
and call the underlying FMU functions.

To retrieve or set values of an arbitrary variable, in-
stead of looking for the value reference, the name is
used in the call to set/get methods:

FMUModel.get('der(x)')

FMUModel.set('g', 9.81)

The methods retrieve information about the vari-
able, type and value reference from the XML data and
then call the underlying FMU functions.

In addition to the high-level methods in JModel-
ica.org, a connection to the simulation package As-
simulo is also offered. The connection is based on ex-
tending Assimulo’s problem class in the same way as
models generated from JModelica.org are interfaced,
see Figure 1.

As a problem class in Assimulo is just a skeleton of
a model together with its methods, interfacing is just a
matter of providing the information.

In order to connect the calculation of the derivatives
of an FMU to Assimulo, the right-hand side function
(rhs) must correspond to:

class FMIODE(Explicit_Problem):

def f(t,y):

#Moving data to the model

FMUModel.time = t

FMUModel.continuous_states = y

#Evaluating the rhs

rhs = FMUModel.get_derivatives ()

return rhs

where Explicit_Problem is Assimulo’s skeleton
class of an ODE problem. If there are any inputs, they
are calculated and provided to the model as well.

Events are monitored and detected by provid-
ing methods for the state-, step- and time-events
which in Assimulo correspond to implementing
the methods state_events, time_events and
completed_step. They are implemented similarly to
the calculation of the derivatives.

If an event is detected, either be it state, time or step,
a call is made to a method called handle_event in
the problem which has been implemented so that it is
directed to the FMI function fmiEventUpdate.

These methods provide a full-fledged connection to
Assimulo and to state of the art numerical integrators.
The current implementation is fully functional and re-
lies on Sundials CVode solver.

4 Examples

4.1 The Van der Pol Oscillator

The Van der Pol oscillator stated in Equation (6) is
used here to demonstrate the functionality of export-
ing an FMU using the JModelica.org platform and also
to demonstrate the import process. In addition, it will
be shown how the same problem is solved using Sun-
dials CVode solver. The problem is also solved for a
set of initial values to demonstrate how to run multi-
ple simulations in a single sweep. Simulation of per-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

333

turbed values can be useful for analyzing and evalu-
ating model sensitivity with respect to uncertainty in
physical parameters or initial conditions. The dynam-
ics of the Van der Pol oscillator is given by

d2x
dt2 − (1− x2)

dx
dt

+ x = 0. (6)

The problem can be described in the Modelica lan-
guage by introducing the state variables x1 = x and
x2 = dx

dt , which gives

dx1

dt
= x2

dx2

dt
= (1− x2

1)x2 − x1.

(7)

The Modelica specification for the Van der Pol os-
cillator is given in Listing 1, where the initial values
are set to x1(t0) = x10 and x2(t0) = x20 .

model VDP
/ / The p a r a m e t e r s
p a r a m e t e r Rea l x1_0 = 1 . 0 ;
p a r a m e t e r Rea l x2_0 = 0 . 0 ;

/ / The s t a t e s
Rea l x1 (s t a r t = x1_0) ;
Rea l x2 (s t a r t = x2_0) ;

e q u a t i o n
d e r (x1) = x2 ;
d e r (x2) = (1 − x1 ^2) ∗ x2 − x1 ;

end VDP;

Code Listing 1: The Van der Pol oscillator described
in Modelica.

Creation of an FMU from a Modelica model con-
sists of several steps. Primarily, the equations have to
be translated and possibly manipulated by for instance
an index reduction algorithm to produce a source code
file, in our case a C file. Variable data needs to be
extracted and populated into an XML structure. In
JModelica.org, these steps are collected in a Python
method, compile_fmu, which is demonstrated below.

from jmodelica.fmi import compile_fmu

fmu_name = compile_fmu("VDP", "VDP.mo")

The commands produce an FMU of the Modelica
model VDP located in VDP.mo which can be distributed
to any software supporting the Functional Mock-up In-
terface.

Steps for simulating the Van der Pol oscillator are
similarly straight forward where the FMU first must
be loaded into JModelica.org.

from jmodelica.fmi import FMUModel

model = FMUModel(fmu_name)

FMUModel takes the name of an FMU, in our case
VDP.fmu as an argument in the constructor. A number
of internal steps are then taken when a model is loaded.
First, the FMU is unzipped and the XML data together
with the binary containing the model functions are ex-
tracted. Second, the functions in the model binary is
connected to Python and instantiated according to the
FMI specification.

Simulation of the Van der Pol oscillator is then per-
formed by the simulate method.

result = model.simulate(final_time=10)

The Van der Pol oscillator is simulated from t = 0.0
to t = 10.0 using default options. In Listing 2, the run-
time statistics is shown, which is printed in the prompt
after a simulation, when solving the Van der Pol oscil-
lator using JModelica.org and Assimulo together with
the solver CVode (BDF).

F i n a l Run S t a t i s t i c s : VDP

Nbr o f S t e p s : 148
Nbr o f F u n c t i o n E v a l u a t i o n s : 208
Nbr o f J a c o b i a n E v a l u a t i o n s : 3
Nbr o f F−Eval Dur ing Jac−Eval : 6
Nbr o f Root E v a l u a t i o n s : 0
Nbr o f E r r o r T e s t F a i l u r e s : 11
Nbr o f N o n l i n e a r I t e r a t i o n s : 204
Nbr o f N o n l i n e a r Conv F a i l u r e s : 0

Code Listing 2: Simulation statistics of the Van der
Pol oscillator.

The result object returned from a simulation makes
the simulation data and simulation trajectories easily
available for either visualization or manipulation.

x1 = result["x1"]

x2 = result["x2"]

time = result["time"]

For visualization, the package Matplotlib [10] is
used.

import matplotlib.pyplot as plt

plt.figure(1)

plt.plot(time ,x1 ,time ,x2)

plt.xlabel("Time [s]")

plt.legend (("x1", "x2"))

plt.title("Van der Pol")

plt.show()

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

334

The resulting trajectories for x and dx
dt are shown in

Figure 3.

0 2 4 6 8 10
Time [s]

3

2

1

0

1

2

3
Van der Pol

x1
x2

Figure 3: Solution of the Van der Pol oscillator show-
ing x and dx

dt .

An extension of performing a simulation of the Van
der Pol oscillator is to perform a parameter sweep. A
parameter sweep is executed by varying a parameter
and performing a simulation for each value. In our
case, we consider holding x1(t0) fixed while varying
x2(t0) in the interval [−3,3]. The resulting script is
shown below.

import numpy

nbr_points = 11

x1_0 = 0.0

x2_0 = numpy.linspace(-3.0, 3.0, 11)

for i in range(nbr_points):

model.set('x1_0',x1_0)

model.set('x2_0',x2_0[i])

result = model.simulate(final_time=20)

x1=result['x1']

x2=result['x2']

plt.plot(x2 , x1 ,'b')

plt.title("Van der Pol")

plt.ylabel("x1")

plt.xlabel("x2")

plt.grid()

plt.show()

First, the initial values are defined as x10 = 0.0 and
x20 being a uniformly distributed array in the interval
[−3,3] with 11 values. Second, the simulation com-
mand is iterated over the initial values which are set
with the model.set() method. In each iteration, the
model is simulated from 0.0 to 20 seconds and the so-
lution trajectories for x1 and x2 are retrieved and plot-

ted. The resulting phase plot is shown in Figure 4.

4 3 2 1 0 1 2 3 4
x2

3

2

1

0

1

2

3

x1

Van der Pol

Figure 4: Solution of the Van der Pol oscillator show-
ing a phase plot of x and dx

dt .

4.2 A Robot Model

The Full Robot from the multibody examples in the
Modelica Standard Library will be used to demon-
strate that the implementation can handle industrially
relevant problems. The example is also intended to
demonstrate that JModelica.org is able to simulate
models generated by third party software supporting
the FMI specification. In Figure 5, the diagram layer
of the robot is depicted.

The robot consists of brakes, motors, gears and path
planning. The model consists of 36 continuous states
and around 700 algebraic variables together with 98
event indicators and a few thousand constants/param-
eters.

The FMU was generated using Dymola 7.4 [6].

Figure 5: Overview of the Full Robot.

Simulation of the robot is performed following the
same steps as in the Van der Pol example by first load-
ing the model2 and then invoking the simulate method.

2The name of the FMU has been shortened to save space in the
article.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

335

from jmodelica.fmi import FMUModel

robot=FMUModel('Modelica ... fullRobot.fmu')

result = robot.simulate(final_time=1.8)

The robot is simulated from t = 0.0 to t = 1.8 using
default options. In Listing 3, the run-time statistics is
shown.

F i n a l Run S t a t i s t i c s : Model ica_ . . . _ f u l l R o b o t

Nbr o f S t e p s : 1834
Nbr o f F u n c t i o n E v a l u a t i o n s : 2386
Nbr o f J a c o b i a n E v a l u a t i o n s : 65
Nbr o f F−Eval Dur ing Jac−Eval : 2340
Nbr o f Root E v a l u a t i o n s : 2223
Nbr o f E r r o r T e s t F a i l u r e s : 42
Nbr o f N o n l i n e a r I t e r a t i o n s : 2202
Nbr o f N o n l i n e a r Conv F a i l u r e s : 0

Code Listing 3: Simulation statistics of the Full Robot
using JModelica.org.

Trajectories for the joint velocities are extracted
from the result object and visualized using Matplotlib
in the same way as in the Van der Pol example.

dq1 = result['der(mechanics.q[1])']

dq6 = result['der(mechanics.q[6])']

time = result['time']

import matplotlib.pyplot as plt

plt.plot(time ,dq1 ,time ,dq6)

plt.legend(['der(mechanics.q[1])',

'der(mechanics.q[6])'])

plt.xlabel('Time (s)')

plt.ylabel('Joint Velocity (rad/s)')

plt.title('Full Robot')

plt.show()

The result of the simulation is shown in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Jo
in

t
V

e
lo

ci
ty

 (
ra

d
/s

)

Full Robot

der(mechanics.q[1])
der(mechanics.q[6])

Figure 6: Solution of the joint velocities q[1] and
q[6].

4.3 Verification of the Full Robot

For verification of the result, the Robot is simulated us-
ing Dymola 7.4 and the trajectories are compared. In
Listing 4, the run-time statistics is shown when simu-
lating the robot using Dymola and the solver DASSL.

Number o f r e s u l t p o i n t s : 1001
Number o f GRID p o i n t s : 1001
Number o f (s u c c e s s f u l) s t e p s : 1482
Number o f F−e v a l u a t i o n s : 10562
Number o f H−e v a l u a t i o n s : 2794
Number o f J a c o b i a n−e v a l u a t i o n s : 353

Code Listing 4: Simulation statistics of the Full Robot
using Dymola.

In Figure 7 the resulting comparison between the
simulation result from JModelica.org and Dymola is
shown. The simulations are both performed with a rel-
ative tolerance of 10−4 and the absolute tolerance (in
JModelica.org) was set to 0.01 times the relative toler-
ance times the nominal values of the continuous states,
0.01 · rtol ·nominal. The number of output points is set
to 1000 in both cases.

Figure 7: Difference of the state mechanics.der(q[1])
(joint velocity) between JModelica.org and Dymola.
The model is simulated using default tolerances to-
gether with 1000 output points.

Timing results are shown in Table 1. Dymola native
corresponds to simulating the robot directly from the
Modelica standard library without using the FMI. Dy-
mola FMU corresponds to loading a generated FMU
into Dymola and performing a simulation. JModel-
ica.org corresponds to the actual integration time and
the time for I/O operations for storing the result.

Platform Simulation Time
Dymola Native 1.26 s
Dymola FMU 4.97 s
JModelica.org 3.49 s

Table 1: Benchmark results of the Full Robot.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

336

4.4 Twin Evaporator

The TwinEvaporatorCycle model from the commer-
cial Air Conditioning library is demonstrated to show
that the implementation can handle large models. It is
a model of an A/C-cycle from a typical European pre-
mium car with individual front and rear climate zones.
The model describes the cooling performance of the
refrigerant cycle, and includes the compressor, front
condenser, expansion control valve and two evapora-
tors. The front evaporator is located under the dash-
board and cools air for the driver and front seat pas-
senger, while the rear evaporator is located between
the seats and cools the air that flows to the back seat.
The model diagram, shown in Figure 8, also includes
dynamical display components for simulation analy-
sis, e.g. the pressure-enthalpy diagram of the refriger-
ant R134a.

Figure 8: Overview of the Twin Evaporator.

The model consists of 130 states together with 1090
event indicator functions. The number of parameters
and constants is close to 20.000, resulting in a model
description file of 170.000 lines.

The model was simulated using JModelica.org from
t = 0.0s to t = 180.0s with a relative tolerance of
rtol = 10−5 and an absolute tolerance corresponding
to atol = 0.01 · rtol ·nominal, as in the Full Robot ex-
ample. The simulation statistics from JModelica.org
can be found in Listing 5.
F i n a l Run S t a t i s t i c s : . . . _TwinEvapo ra to rCyc l e

Nbr o f S t e p s : 827
Nbr o f F u n c t i o n E v a l u a t i o n s : 1434
Nbr o f J a c o b i a n E v a l u a t i o n s : 39
Nbr o f F−Eval Dur ing Jac−Eval : 5070
Nbr o f Root E v a l u a t i o n s : 830
Nbr o f E r r o r T e s t F a i l u r e s : 44

Nbr o f N o n l i n e a r I t e r a t i o n s : 1422
Nbr o f N o n l i n e a r Conv F a i l u r e s : 8

Code Listing 5: Simulation statistics of the TwinEvap-
oratorCycle using JModelica.org.

The model was also simulated with Dymola using
the same options of the tolerances. The result can be
found in Listing 6. Note that the Dymola simulation
was performed on the Modelica model, not the FMU.

Number o f r e s u l t p o i n t s : 1004
Number o f GRID p o i n t s : 1001
Number o f (s u c c e s s f u l) s t e p s : 302
Number o f F−e v a l u a t i o n s : 3859
Number o f H−e v a l u a t i o n s : 1303
Number o f J a c o b i a n−e v a l u a t i o n s : 136

Code Listing 6: Simulation statistics of the TwinEvap-
oratorCycle using Dymola.

In Table 2, timing results of simulations with both
JModelica.org and Dymola are listed. The simulation
time corresponds to the actual integration time, includ-
ing writing the result. The total time also includes time
for the initialization.

Platform Simulation Time Total Time
Dymola Native 57.6 s 79 s
Dymola FMU 125 s 175 s
JModelica.org 90 s 130 s

Table 2: Benchmark results of the Twin Evaporator.

The execution time measurements indicate that the
performance of the JModelica.org FMU import is on
par with state of the art commercial tools.

5 Limitations

While fully FMI compliant FMUs are generated by
JModelica.org, both in terms of the DLL functions and
in terms of the XML files, the Modelica language com-
pliance of the compiler front-end is not complete. The
support is continuously improving and recent addi-
tions include support for hybrid and sampled systems.

The FMI standard specifies how several FMUs can
be simulated jointly by connecting their inputs and
outputs. One application of this feature is to include
FMUs in Modelica models, and another application
is co-simulation. These features remains to be imple-
mented.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

337

6 Summary

In this paper, an implementation of the Functional
Mock-up Interface for Model Exchange in the JMod-
elica.org platform has been presented. The export
functionality enables users to generate FMI compliant
models, FMUs from Modelica models and to use them
in different FMI compliant tools.

The FMU import is based on Python. Models can be
imported into the Python environment, where FMUs
are represented by objects of a Python class. The FMU
model class provides the user with a one to one map-
ping of the FMI functions, as well as convenient high-
level methods for setting parameter values and simu-
lating models.

This paper also shows that simulation of Functional
Mock-up Units using JModelica.org produce results
comparable to those produced by a state of the art com-
mercial tool.

Future extensions include support for sparse Jaco-
bians in the FMI specification.

This work was partially funded by the ITEA2
project OPENPROD.

References

[1] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[2] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization with
Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimiza-
tion problem. Computers and Chemical Engi-
neering, 34(11):1737–1749, November 2010.
Doi:10.1016/j.compchemeng.2009.11.011.

[3] Christian Andersson. A new Python-based class
for simulation of complex hybrid daes and its in-
tegration in jmodelica.org. Master’s thesis, De-
partment of Mathematics, Lund University, Swe-
den, 2010.

[4] Willi Braun, Bernhard Bachmann, and Sabina
Pross. Synchronous events in the OpenModelica
compiler with a petri net library application. In
3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools,
2010.

[5] K.E. Brenan, S.L. Campbell, and L.R. Petzold.
Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Society for In-
dustrial and Applied Mathematics, 1996.

[6] Dassault Systemes. Dymola web page, 2010.
http://www.3ds.com/products/catia/

portfolio/dymola.

[7] Hilding Elmqvist. A Structured Model Language
for Large Continuous Systems. PhD thesis, De-
partment of Automatic Control, Lund University,
Sweden, May 1978.

[8] Jan Eriksson. A note on the decomposition
of systems of sparse non-linear equations. Bit
Numerical Mathematics, 16(4):462–465, 1976.
DOI: 10.1007/BF01932730.

[9] Python Software Foundation. ctypes: A for-
eign function library for Python, 2009. http:

//docs.python.org/library/ctypes.html.

[10] J. Hunter, D. Dale, and M. Droettboom. Mat-
plotlib: Python plotting, 2010. http://

matplotlib.sourceforge.net/.

[11] Center for Applied Scientific Computing
Lawrence Livermore National Laboratory.
SUNDIALS (SUite of Nonlinear and DIf-
ferential/ALgebraic equation Solvers), 2009.
https://computation.llnl.gov/casc/

sundials/main.html.

[12] Sven Erik Mattsson and Gustaf Söderlind. In-
dex reduction in differential-algebraic equations
using dummy derivatives. SIAM J. Sci. Comput,
14(3):677–692, May 1993.

[13] T. Oliphant. Numpy Home Page, 2009. http:

//numpy.scipy.org/.

[14] R.E Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Computing, 1(2):146–160,
1972.

[15] The Modelica Association. The Modelica As-
sociation Home Page, 2010. http://www.

modelica.org.

[16] Johan Ylikiiskilä, Johan Åkesson, and Claus
Führer. Improving Newton’s method for initial-
ization of Modelica models. In 8th International
Modelica Conference, 2011.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

338

Implementation of

Modelisar Functional Mock-up Interfaces

in SimulationX

Christian Noll, Torsten Blochwitz, Thomas Neidhold, Christian Kehrer

ITI GmbH

Webergasse 1, 01067 Dresden, Germany

noll@iti.de, blochwitz@iti.de, neidhold@iti.de, kehrer@iti.de

Abstract

This document describes the implementation of the

Modelisar Functional Mock-up Interfaces (FMI) in

SimulationX. It presents the code generation of

Functional Mock-up Units (FMU) for Model Ex-

change and Co-Simulation as well as the import of

an FMU into SimulationX.

Keywords: Simulation; Modelisar; Functional

Mock-up Unit (FMU); Functional Mock-up Inter-

face (FMI)

1 Introduction

FMI stands for “Functional Mock-up Interface” [1]

and was specified in the ITEA2 Modelisar project

[2]. The intention is that dynamic system models of

different software systems can be used together for

software/model/hardware-in-the-loop simulation and

for embedded systems. Using SimulationX Code

Export, the functionality of a complete simulation

model can be transformed into an FMU (Functional

Mock-up Unit), which implements the FMI (Func-

tional Mock-up Interface). A so created FMU can be

instantiated by SimulationX or another simulation

tool and accessed via the FMI functions. An FMU

may either be self-integrating (Co-Simulation) or

require the simulator to perform the numerical inte-

gration (Model Exchange).

2 FMU Support in SimulationX

There are two different FMI specifications (see Fig-

ure 1: FMI specifications), FMI for Model Exchange

and FMI for Co-Simulation. Both are supported by

SimulationX.

Figure 1: FMI specifications

2.1 FMU Code Export

Using SimulationX Code Export, the functionality of

a complete simulation model can be transferred into

an FMU (Functional Mock-up Unit). An FMU is

distributed in the form of a zip File (*.fmu) and con-

sists basically of the following components:

1. Exported Model + Interface

The exported model functionality is accessible

through standardized C-functions (FMI). By us-

ing the programming language C high portabil-

ity is guaranteed. This component can be pre-

sent as pure source code or as a binary (DLL).

The FMI-Interface includes:

 Functions for instantiation, initialization,

termination and destruction.

 Support of Real, Integer, Boolean and

String inputs, outputs and parameters.

 Set and Get functions for each type, e.g.

fmiSetReal(...).

 Functions for exchange of simulation da-

ta, e.g. fmiGetDerivatives(...)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

339

mailto:noll@iti.de
mailto:blochwitz@iti.de
mailto:neidhold@iti.de
mailto:kehrer@iti.de

There is no explicit function call for the compu-

tation of the model algorithm. The FMU de-

cides on its own, depending on which data have

been set and the data being sought, which cal-

culation is initiated. For efficiency it is im-

portant that variables are not newly computed,

if they have been computed already at an earlier

step. Instead they shall be reused. This feature

is called “caching of variables” in the sequel.

2. Model Description Scheme

This scheme is represented by an XML file that

contains the description of the required data for

the information flow between the FMU and the

simulation tool. Through the description of the

model within an XML file, the provider of sim-

ulation tools are not forced to use a specific rep-

resentation of data structures.

3. Data and Documentation (optional)

Additional data and documentation of the mod-

el can be included.

2.1.1 FMI for Model Exchange

The intention of FMI for Model Exchange is to al-

low any modeling tool to generate C code or binaries

representing a model which may then be easily inte-

grated into another simulation environment.

The following illustration (see Figure 2: FMI Code

Export for Model Exchange) shows the schematic

workflow for transferring a SimulationX model into

an FMU for Model Exchange.

After all desired inputs, outputs and parameters have

been defined by the user in the Code Export Wizard,

the code export process starts.

During the code export the following steps are exe-

cuted. At first a special symbolic analysis will trans-

fer the model into ordinary differential equations.

Based on this equations and the defined interface,

the C-code that includes the model functionality and

the specific FMI interface functions, is generated.

Furthermore the XML model description file is gen-

erated. At the end of this process a zip-file (*.fmu),

with all necessary files, is created to distribute the

FMU.

2.1.2 FMI for Co-Simulation

The FMI for Co-Simulation is an interface standard

for the solution of time dependent coupled systems

consisting of subsystems that are continuous in time

Figure 2: FMI Code Export for Model Exchange

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

340

(model components that are described by differential

equations) or time-discrete (model components that

are described by difference equations like, e.g. dis-

crete controllers).

The FMI for Co-Simulation defines interface rou-

tines for the communication between a master and

the individual simulation tools (slaves) in the co-

simulation environment. The data exchange is re-

stricted to discrete communication points in time and

the subsystems are solved independently between

these communication points.

The following illustration (see Figure 3: FMI Code

Export for Co-Simulation) shows the schematic

workflow to transfer a SimulationX model into an

FMU for Co-Simulation.

After all desired inputs, outputs and parameters have

been defined by the user in the Code Export Wizard

the code export process starts. During the Code Ex-

port the following steps are executed: At first a spe-

cial symbolic analysis will transfer the model into

ordinary differential equations. Based on this equa-

tions and the defined interface, the C code, that in-

cludes the model functionality, the specific FMI in-

terface functions and a Solver (CVODE), is generat-

ed. The Sundials CVODE solver [4] uses a BDF var-

iant and is well suited for stiff models.

Furthermore the XML model description file is gen-

erated, where all information about the slaves, which

is relevant for the communication in the co-

simulation environment, is provided. In particular,

this includes a set of capability flags to characterize

the ability of the slave to support advanced master

algorithms. One of these flags is canHandleVaria-

bleCommunicationStepSize that specifies whether

the slave can handle variable communication step

size. Another flag is canRejectSteps that indicates

the slave’s capability to discard and repeat a com-

munication step. This will be supported in a future

SimulationX release.

The flag canInterpolateInputs defines that the slave

is able to interpolate continuous inputs. In this case,

calling of fmiSetRealInputDerivatives(...) has an ef-

fect for the slave. At the end of the export process a

zip-file (*.fmu) is created to distribute the FMU.

2.2 FMU Import

The SimulationX FMU import consists of unzipping

the *.fmu file and the generation of Modelica code

including the calls of FMI functions based on the

XML model description. A re-export via code export

is supported.

The main idea of embedding a FMU into a Modelica

model is to construct an external object and some

external functions to interact with that model.

The automatic import process is started by selecting

the menu Insert/Functional Mockup Unit….

Thereupon the following dialog (see Figure 4: FMU

Import Dialog) for importing a FMU appears.

Figure 3: FMI Code Export for Co-Simulation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

341

Figure 4: FMU Import Dialog

During the import process the DLL and Lib files (if

any exist) are copied to the External Function folder.

To link an FMU with a Modelica model Simula-

tionX uses an External Object. The fmiInstantiate-

Model(…)/ fmiInstantiateSlave(…) and fmiFree-

ModelInstance(…)/ fmiFreeSlaveInstance(…) func-

tions are called as constructor and destructor, respec-

tively. All other functions are called as external

functions with an external object as first parameter.

Because the fmiInitialize(…) function has to forward

function pointers for several purposes, this function

is redirected through a special built-in function.

2.3 Tool Coupling

The current version 1.0 of the FMI for Co-

Simulation standard not only allows the coupling of

specially prepared software modules (FMU), but can

also be used for direct coupling of CAE tools.

Thereto the particular application with its proprie-

tary interfaces is made available via a special wrap-

per (see Figure 5: Tool coupling via wrapper DLL)

that implements the standardized Functional Mock-

up Interface and provides it for other applications.

From the outside, the particular application behaves

like a Functional Mock-up Unit.

For SimulationX such a wrapper will be available.

The implementation is based on the existing COM

interface of SimulationX. For integrating a Modelica

model in such a co-simulation an adequate prepara-

tion is necessary. Especially the inputs, outputs and

parameters of the model have to be defined. All this

information is stored as a "real FMU" in a zip ar-

chive. The model itself or a link to this model in the

local file system or on the network must also be

stored in this file.

3 Implementation Difficulties

During the implementation of the FMU import into

SimulationX as a Modelica simulator a few difficul-

ties had to be overcome.

The first problem is related to a type mismatch be-

tween fmiBoolean and Modelica Boolean, which

leads to a type cast for scalar fmiBoolean variables

and the necessity of restoring fmiBoolean arrays.

Figure 5: Tool coupling via wrapper DLL

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

342

Further, there is an issue concerning the fmiInstanti-

ateModel function, because the argument

fmiCallbackFunctions is a struct that holds function

pointers. In Modelica there is no possibility to gen-

erate such a record.

Also, it is not easy to implement that the function

fmiInitialize is called only once, because according

to Modelica language specification the body of a

when initial() clause may be traversed several times

during initialization.

Changing of discrete variables is only allowed in

Modelica at event steps, not during continuous inte-

gration, but the fmiSetXxx functions returns fmiS-

tatus as a Modelica integer variable, which is a dis-

crete variable. Hence a Modelica compiler may call

such functions only at event time instances. But the

fmiSetXxx functions have to be called during contin-

uous integration too.

The functions fmiCompletedIntegratorStep,

fmiEventUpdate, and fmiTerminate are impure and

thus may not be treated like constant functions. But,

there is no possibility in Modelica to mark a function

as impure.

There are two difficulties related to the FMI calling

sequence. First, there is no possibility in Modelica to

be informed about the reason for a model computa-

tion. But, it is relevant to distinguish between calling

for instance fmiEventUpdate or fmiCompletedInte-

grationStep. Secondly, Modelica does not provide

the functionality to trigger an event step and call

fmiEventUpdate.

Modelica has no functionality to provide event indi-

cators (evi) directly. According to FMI specification

FMUs have to add a small hysteresis to the evi. A

Modelica tool may do the same with its internal root

functions. Hence the hysteresis is added twice and

events caused by the FMU are located a little bit in-

accurately.

We solved these problems by using some internal

Modelica extensions in SimulationX, which we also

proposed to the Modelica Language Design Group

and accordingly to the FMI standard committee.

4 Conclusions

With the Modelisar FMI standard exists a vendor-

neutral interface that allows the exchange of simula-

tion models between different tools and platforms.

The chances to establish FMI as a standard are pretty

good, because software vendors and users were in-

volved right from the start. At the end, the success of

this interface is measured by how the tool vendors

will integrate FMI into their products. In addition to

reliability and numerical stability the ease of use will

determine this success.

References

[1] Functional Mock-up Interface:

http://www.functional-mockup-

interface.org/index.html

[2] ITEA2 Modelisar Project:

http://www.modelisar.com

[3] Arnold M., Blochwitz T., Clauß C., Neid-

hold T., Schierz T., Wolf S., FMI for Co-

Simulation: Multiphysics Simulation - Ad-

vanced Methods for Industrial Engineering.

Bonn, June 2010.

[4] M. Otter, T. Blochwitz, H. Elmqvist, A.

Junghanns, J. Mauss, H. Olsson: Das Functi-

onal Mockup Interface zum Austausch Dy-

namischer Modelle. Plenary talk at the

ASIM workshop. Ulm, 4. - 5. March 2010.

[5] Neidhold T. Tool Independent Model Ex-

change Based on Modelisar FMI. Indus-

trietag Informationstechnologie. Hal-

le(Saale), May 2010.

[6] SUNDIALS:

https://computation.llnl.gov/casc/sundials/ma

in.html.

[7] FMI for Model Exchange v1.0:

http://www.functional-mockup-

inter-

face.org/specifications/FMI_for_ModelExch

ange_v1.0.pdf

[8] FMI for Co-Simulation v1.0:

http://www.functional-mockup-

inter-

face.org/specifications/FMI_for_CoSimulati

on_v1.0.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

343

http://www.functional-mockup-interface.org/index.html
http://www.functional-mockup-interface.org/index.html
http://www.modelisar.com/
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf

Experiences with the new FMI Standard
Selected Applications at Dresden University

Christian Schuberta Thomas Neidholdb Günter Kunzea

aDresden University of Technology, Chair of Construction Machines and Conveying Technology
Münchner Platz 3, 01187 Dresden, Germany

bITI GmbH, Webergasse 1, 01067 Dresden, Germany

January 31, 2011

Abstract

This paper describes how the new FMI stan-
dard is used at Dresden University to provide a
universal model exchange. By employing the
new standard exchange format a single simula-
tion model can be used for different purposes
in different software tools. Specific applica-
tions and their advantages will be presented as
well as the development effort for their reali-
sation. Special attention is paid to how FMI
enables SimulationX models to be run in an in-
teractive simulation on a motion platform. Fi-
nally, the benefits and drawbacks of the FMI
interface are discussed from a user’s perspec-
tive.

Keywords: FMI, Modelisar, Virtual Reality,
SimulationX, Motion Platform, SARTURIS

1 Introduction

Simulation has become an indispensable tool
in the field of machine construction and design.
It is especially beneficial for Heavy Mobile
Machinery since their low quantities and high
production costs render real prototypes uneco-
nomical. During the design process, there are
many tasks which can be supported by simula-

tion such as comparing the effect of different
parameter combinations and model variations.

In order to achieve maximum efficiency, ver-
ified models should be reused as often as pos-
sible. However, this can only be possible if
there exists a common standardised interface
for model exchange between different software
tools for different applications.

Modelica has already proven to be a valu-
able contribution towards the simulation of
Mobile Machinery [1, 2]. On the one hand
it features an inherent support of multidomain
models, on the other hand it features a seam-
less transition between a mathematical and a
graphical model definition allowing for com-
plex but structured models at the same time.
Although Modelica is tool independent and can
thus be used to exchange models between cer-
tain simulation environments, it cannot be used
as a general model interface. The reason is,
that every tool used for import would have to
parse, flatten and optimise the Modelica code
for which no general purpose library is avail-
able. The new Functional Mockup Interface
(FMI), a result of the MODELISAR project
[3], overcomes the aforementioned problem.

The next chapter features a brief descrip-
tion of the FMI standard. It is followed by an

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

344

overview of the work and the employed soft-
ware tools at the Chair of Construction Ma-
chines and Conveying Technology at Dresden
University before FMI has been introduced.
Chapter four presents the benefits which have
been achieved by implenting and applying FMI
to this software environment. Special attention
is paid to what has been changed and what had
to be implemented. One major achievement of
integrating the FMI standard is the option to
run SimulationX models on the motion plat-
form at Dresden University and is described in
chapter five. It allows the evaluation of differ-
ent machine configurations and their parame-
ters within an interactive simulation. The paper
concludes with a discussion of the advantages,
drawbacks and possible solutions when using
FMI from a user’s perspective.

2 The FMI Standard

FMI, short for Functional Mockup Interface,
is a new standard for model exchange [4] as
well as co-simulation defined within the MOD-
ELISAR project. It describes a set of functions
and their parameters which shall be part of a
binary .dll (Dynamic Link Libary) file or .so
(Shared Object) file under Windows or Linux
respectively. The binary file is complemented
by an XML file which includes a description
of the model and all its variables. The sepa-
ration of model and description data leads to
very efficient code, which may even be run
on embedded systems, while maintaining us-
ability for more powerful systems by offering
the complementary XML documentation. Us-
ing a simple binary format has the advantage
that it can be included at minimal effort in al-
most any application that allows incorporating
user code. Thus, the FMI standard fills the gap
between abstract Modelica models and vendor
dependent co-simulation.

3 Initial Situation at Dresden
University

One research topic of the Chair of Construc-
tion Machines and Conveying Technology at
Dresden University is concerned with studying
and optimising Heavy Mobile Machinery and
its components by using interactive simulation
methods. Therefore a modular software frame-
work called SARTURIS has been developed
[2]. It allows real time simulation of technical
systems in a virtual reality (VR) environment
and features easy and flexible hardware inte-
gration in addition to a powerful visualisation.
SARTURIS is based on C++, uses freely avail-
able libraries and is platform independent. The
software framework provides a diversity of ap-
plications for models of technical systems. It
is suited for both the analysis of machine be-
haviour on a PC or laptop as well as an inter-
active simulation on a motion platform (Figure
1).

Figure 1: Motion Platform at Dresden Univer-
sity

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

345

In order to create simulation models, to run
task-specific simulations or to evaluate simula-
tion results different custom-designed software
tools are used. Thereby the interaction of two
or more tools can be useful and an exchange of
data between them is necessary.

Figure 2 depicts the initial situation. Five
basic proprietary exchange algorithms already
existed or have been implemented for specific
tools or tool combinations, providing the basis
for different tasks:

1. Simulation tools based on Modelica for
instance, are able to exchange models in
general.

2. Many commercial tools like Simula-
tionX, Simpack and Dymola support co-
simulation with MATLAB/Simulink.

3. Other tools offer a wide range of output
formats like PyMbs [2], a software for the
realtime simulation of multibody systems.

4. Pynacolada, a software that supports re-
curring analysing tasks, features a broad
range of input formats like MATLAB,
SARTURIS and general HDF5 [5] data
sets.

5. Specialised auxiliary tools or wrappers
had to be developed to accomplish the
exchange of required model data from
OpenModelica and Simpack for an inter-
active simulation with SARTURIS.

Such tool couplings are important since expe-
rience has shown that general simulation en-
vironments are not always the best option for
specialised engineering tasks. Next to classical
simulations, models of technical systems can
be used to solve other problems like inverse
kinematics or finding optimal constructive ge-
ometries. Software designed for such tasks can
only produce reliable results if the technical

system regarding the problem is described ac-
curatly enough. Those specialised tools how-
ever are rarely convinient modelling environ-
ments. If one can establish a comfortable and
efficient data and model exchange, both soft-
ware strategies could be combined with their
advantages. Thus an expanded range of appli-
cations could be achieved.

Individiual solutions for coupling tools (see
option 5) have the great disadvantage that they
are very specific and need constant attention.
Extending the coupling to another tool usually
calls for a different specialised data exchange
strategy. This leads to the circumstance that
not all possible exchange paths have been re-
alised although many other tool interactions
would be benefitial. The new FMI standard
is a promising approach to provide a com-
mon foundation for universal model exchange
and thus increasing flexibility while reducing
maintenance efforts.

4 Integration of FMI

The introduction of FMI as the common inter-
face between all tools led to a great simpli-
fication, see Figure 3. Now every tool sim-
ply exports FMI, imports it or supports both.
Thus one single model can be made available
to other tools very easily. There is no need for
specialized utilities or wrappers anymore to es-
tablish data or model exchange between two
tools. As soon as a tool features an FMI import
or export it can be incorporated in every tool
chain without any extra effort. Current ver-
sions of Modelica tools, such as SimulationX,
JModelica and Dymola already feature FMI
exports as well as FMI imports. For the Open
Source alternative OpenModelica, the FMI ex-
port is currently being developed in a coop-
eration between Linköping and Dresden Uni-
versity and will be available in future releases.
Outside the Modelica community FMI gains in

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

346

Figure 2: Tool Chains Before FMI

Figure 3: Tool Chains After FMI

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

347

importance as well. SIMPACK as a partner in
the MODELISAR project for instance is de-
veloping an FMI import enabling SIMPACK
users to include Hydraulics into their multi-
body models using specialised software.

Unfortunately, no FMI implementation for
MATLAB is known to the authors yet.
Hence the authors started developing an
import wrapper for both MATLAB and
Simulink as well as an export for MAT-
LAB Simulink models based on the C-Code
generated by the Real-Time-Workshop (see
http://code.google.com/p/fmi2matlab/).

Equipping self developed tools with FMI ca-
pabilities, proved to be a reasonable amount
of effort. Due to the comprehensive docu-
mentation [4] as well as the FMU Software
Development Kit provided by QTronic [6] an
easy to understand reference implementation is
available. Thus PyMbs, Pynacolada and SAR-
TURIS do now support FMI.

5 SimulationX Models in Inter-
active Simulation via FMI

A particular interesting application of the new
FMI based tool chain is the investigation of vir-
tual prototypes using interactive simulation via
the motion platform at Dresden University, see
Figure 1. Whereas motion platforms are tra-
ditionally used to evaluate the influence of the
machine and its complexity on the human oper-
ator, the aim of the Chair of Construction Ma-
chines and Conveying Technologies is the op-
posite. The motion platform is intended as a
tool for studying the influence of the human
operator on the machine. Thus it is possible
to obtain joint forces and pressure distributions
dependent on the behaviour of the operator and
generally gain a deeper understanding of the
machine and the ways to optimise it while it is
in operation.

In order for the results to be significant a de-
tailed model comprising mechanis, hydraulics,
drivetrain and control systems has to be simu-
lated. A way of developing such models has
been presented by the authors in [2]. Due to
the newly implemented FMI functionalities of
SARTURIS one can now use SimulationX as
well to set up models for the motion platform.
Thus the full range of the SimulationX model
libraries can be used which can considerably
shorten the modeling effort.

To test the FMI based tool chain a model of
a wheel loader, see Figure 4, has been devel-
oped together with ITI GmbH. In addition to
the multibody system it consists of hydraulic
cylinders and valves, a reduced drivetrain and
Paceijka tire models. Furthermore it consid-
ers contact between the bucket and the under-
ground. The model has been developed and
thoroughly tested within SimulationX and it is
capable of running in realtime.

As the new SimulationX offers FMI Export,
the model can now be easily transferred to
SARTURIS which in turn controls the motion
platform. Within SimulationX all inputs which
should be provided by the operator are defined
as well as all outputs needed for visualisation
and the evaluation of the model. The wheel-
loader modelled with SimulationX is now run-
ning within an interactive simulation on the
motion platform and can be driven through a
virtual environment.

Along with the described benefits, there are
problems that had to be overcome and shall be
discussed in the following.

6 Visualisation

Although importing the model via FMI is easy
to accomplish, the visualisation of the techni-
cal system has to be set up twice. Once in the
modeling software for assembling the multi-
body system and a second time in the simu-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

348

Figure 4: Model of a Wheel Loader in SimulationX

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

349

lation software for visualising the results. FMI
does not incorporate any additional data con-
cerning the graphics. According to the FMI
philosophy, where the binary file is supposed
to only contain the vital model information so
that it can be run on embedded platforms, these
additional information should not be stored in
the code but either within the accompanying
model description or within an extra file. Pos-
sible approaches might involve usage of the
standards X3D [7] or COLLADA [8].

7 External Functions

7.1 Problem

It is often required to use the same vehicle
model for different simulation tasks on differ-
ent test tracks. Every vehicle model is there-
fore stored in a separate FMU. When per-
forming contact detection, as needed for de-
termining the tire contact point or general col-
lisions, an extensive communication between
the model and the track is needed.

Using FMI this can either be achieved by us-
ing inputs and outputs or linking user defined
code statically. Statically linked user defined
code is unsuitable since it would be difficult
to communicate with the simulation environ-
ment. Even if it could be accomplished, the re-
sulting FMU can only be used in combination
with that particular environment. Using inputs
and outputs are not suitable as well since their
number may grow very large the more often a
specific function is used. Also iterative meth-
ods would be hard to implement.

7.2 Possible Solution

What is needed is a coupling of the FMU and
the simulation environment at runtime prefer-
ably via callbacks. Unfortunately, the current
FMI interface does not support such a feature.

That is why for our models we extended the
FMI interface by the following function
f m i S t a t u s f m i S e t E x t e r n a l F u n c t i o n (

fmiComponent c ,
v a l u e R e f e r e n c e ∗vr ,
void ∗ f u n c t i o n P o i n t e r) ;

passing a void function pointer to an fmiCom-
ponent. Therefore the accompanying modelde-
scription XML has been extended by all exter-
nal functions, that can be set at runtime with
their valueReference as well as their input and
output parameters. Thus almost no additional
code has to be included into the model itself.

7.3 Compatibility

Such an FMU may still be compatible to gen-
eral purpose simulation tools. When instan-
tiating an FMI component, all external func-
tions and their signature are known from the
modeldescription XML file. Thus, a user may
choose an external function from all functions
that are known to the tool and have the same
signature.

7.4 Modelica

In order to create such an FMU from a Mod-
elica tool, these functions have to be marked.
This can either be done by introducing a new
annotation or by extending the Modelica lan-
guage. In fact, the Modelica standard 3.2 al-
ready offers Functional Input Arguments To
Functions ([9], section 12.4.2). If this feature
was to be carried over from functions to gen-
eral models a clear description had been found.

7.5 Example

In order to illustrate this idea, a simple exam-
ple shall be given. Consider the bouncing ball
example:
model B o u n c i n g B a l l

c o n s t a n t Rea l g = 9 . 8 1 ;
p a r a m e t e r Rea l c = 0 . 9 ;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

350

p a r a m e t e r Rea l r a d i u s = 0 . 1 ;
Rea l h e i g h t (s t a r t = 1) ;
Rea l v e l o c i t y (s t a r t = 0) ;
i n p u t H e i g h t F u n c t i o n h e i g h t F u n ;

e q u a t i o n
d e r (h e i g h t) = v e l o c i t y ;
d e r (v e l o c i t y) = −g ;
when h e i g h t <= (r a d i u s + h e i g h t F u n (t ime)

) t h e n
r e i n i t (v e l o c i t y , −c∗ p r e (v e l o c i t y)) ;

end when ;
end B o u n c i n g B a l l ;

The type HeightFunction may be defined as
p a r t i a l f u n c t i o n H e i g h t F u n c t i o n

i n p u t Rea l t ;
o u t p u t Rea l h e i g h t ;

end H e i g h t F u n c t i o n ;

returning the height of the underground at a
given time t.

A complete test model might look like
f u n c t i o n S i n u s H e i g h t

e x t e n d s H e i g h t F u n c t i o n ;
a l g o r i t h m

h e i g h t := s i n (t) ;
end S i n u s H e i g h t ;

model SinBounce
B o u n c i n g B a l l b a l l ;

e q u a t i o n
b a l l . h e i g h t F u n = S i n u s H e i g h t ;

end SinBounce ;

If the model BouncingBall were translated
into an FMU the function pointer heightFun
could be treated like any other component
mapping it to void* and including it into the
modeldescription.xml. In addition the xml de-
scription should include the signature of the
function (inputs and outputs) as well as its
comment which should be used as a short de-
scription what this function does.

8 Model Exchange Across
Company Borders

One major advantage of FMI is that the model
exchange described in this paper does not need
to be limited to one institution or company
only. Using FMI might also be a valuable

tool for cooperation between OEMs and their
suppliers. Since it is virtually impossible to
deduct information from models in binary for-
mat, suppliers can safely provide models to
OEMs without revealing too much of their
knowledge. However, in order to exchange a
model in binary format only, all target plat-
forms have to be known in advance. True plat-
form independence is achieved by exchang-
ing source code allowing more insight into the
model.

9 Conclusion

It has been shown that powerful modeling tools
are not always the best option for specialised
simulation tasks. However, software designed
for special tasks can only be as good as their
underlying models of the technical system.
Thus it is beneficial to exchange models be-
tween such tools.

Before FMI it has always been a very spe-
cialised solution which was hard to maintain.
Using FMI at Dresden University has helped
to unify the modeling and simulation software
environment. It reduced the need for aux-
iliary tools establishing the model exchange
and the time spent on developing and main-
taining them. A major benefit is the option
to run multidomain models created in Simula-
tionX within an interactive simulation on the
motion platform at Dresden University which
can be used to study the influence of the oper-
ator on the machine and its components. Open
problems like visualisation and calling external
functions have been adressed as well as politi-
cal advantages when using FMI.

References

[1] Beater, P.; Otter, M.: Multi-Domain Sim-
ulation: Mechanics and Hydraulics of an

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

351

Excavator, Proceedings of the 3rd Inter-
national Modelica Conference, November
2003, pp. 331-340

[2] Frenkel, J.; Schubert, C.; Guenther, K.:
Using Modelica for Interactive Simula-
tions of Technical Systems in a Virtual
Reality Environment, Proceedings of the
7th International Modelica Conference,
Como, September 2009

[3] MODELISAR consortium:
MODELISAR Project Profile,
http://www.itea2.org/public/project_leaflets/
MODELISAR_profile_oct-08.pdf

[4] MODELISAR consortium: Functional
Mock-up Interface for Model Exchange,
http://modelisar.org/specifications/
FMI_for_ModelExchange_v1.0.pdf

[5] The HDF Group: HDF5,
http://www.hdfgroup.org/HDF5/

[6] QTronic GmbH: FMU SDK 1.0.1,
http://www.qtronic.de/en/fmusdk.html

[7] web3D Consortium: X3D Specification,
http://www.web3d.org/x3d/specifications/

[8] Khronos Group: COLLADA - Digital As-
set Exchange Schema for Interactive 3D,
http://www.khronos.org/collada/

[9] Modelica Association: Modelica - A Uni-
fied Object-Oriented Language for Physi-
cal Systems Modeling - Language Specifi-
cation Version 3.2, March 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

352

Modeling of Coal-Fired Power Units with ThermoPower
Focussing on Start-Up Process

Sebastian Meinke1 Friedrich Gottelt2 Martin Müller1 Egon Hassel1
1 University of Rostock, Chair of Thechnical Thermodynamics

A.-Einstein-Str. 2, 18059 Rostock, Germany
2XRG Simulation, Harburger Schlossstr. 6-12, 21079 Hamburg, Germany

sebastian.meinke@uni-rostock.de gottelt@xrg-simulation.de

Abstract

Governmental encouragement of renewable energies
like wind energy led to an extensive increase of in-
stalled wind energy capacity worldwide. In order to
allow a complete integration of this continuously fluc-
tuating energy source, it is necessary to have a highly
flexible operation management as well as power sta-
tions which are able to follow the high dynamics of
the wind power production.

In this context the component fatigue and opera-
tional limitations of current and future power stations
have to be investigated under the influence of en-
hanced plant dynamics.

For this purpose a detailed Modelica model of the
hard coal fired steam power plant of Rostock, Ger-
many is presented and extensively validated. The
model makes use of the well-known non-commercial
library ThermoPower. This Modelica Library is ex-
tended by models for common solid fuel burners and
radiation-dominated firing zones. In addition to this,
different approaches for modeling two-phase contain-
ers like the feed water tank are discussed. The derived
model is used to compare different operation modes
with respect to the occurring component wear.

Keywords: ThermoPower, coal fired power plants,
firing modeling, two phase tank, power unit start up

1 Introduction

In a future power grid with high renewable power feed,
especially from wind power, it becomes more impor-
tant as well as economically beneficial for conven-
tional power plants to be able to adjust the production
in order to balance the renewable energies. But due to
the long life time, the majority of current power plants
have been designed decades ago mainly for steady

state operation. Consequently, the focus was put more
on reliability and preservative operation than on high
dynamics.

The recent and ongoing changes in the energy mar-
ket in Germany will lead to an increased number of
start-ups and load changes, which cause additional life
time consumption. Improvements of the existing tech-
nologies are required to enable higher dynamics at lim-
ited additional stress during transient operation.

This is especially true for coal fired power plants
because of the fuel pulverization in coal mills. These
mills have a slow and often unknown dynamic and
limit the load gradient of coal fired units. Addition-
ally, the boiler itself shows a slow transient response
due to its big metal and water masses as well as uncer-
tainties like degradation of the heat transfer due to ash
build up on the heating surfaces. To overcome this, the
load change rates are made sufficiently slow. Improve-
ments to this conservative approach could be achieved
by the use of advanced control systems, e.g. state ob-
servers and model based control systems or additional
sensors, like for example coal dust measurement [1].

For the evaluation of such optimizations of the pro-
cess and the control system, computer aided simula-
tion of the power plant process could be a powerful
tool.

2 Scope of Investigations and Ther-
modynamical Model

In order to judge the expected impacts of a more
dynamic power plant operation a detailed, transient
model consisting of one-dimensional or lumped inter-
linked sub models, based on thermodynamic funda-
mental equations, is presented. The 550 MW hard coal
power plant Rostock, that started its operation in 1994,
has been used as a reference. The power plant repre-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

353

sents the state of the art and is due to its long rest life
time heavily effected by future changes of the energy
market.

2.1 Object of Investigation

The power plant Rostock has a conventional, hard coal
fired steam generator. This is a single direction once-
through forced-flow boiler in Benson design, which is
run in modified sliding pressure operation. The boiler
is equipped with four superheater and two reheater
heating surfaces. The fuel supply is carried out by a
coal dust firing with direct injection. The combustion
itself takes place in 16 NOx-lean vortex staged burn-
ers, which are distributed on 4 burner levels with each
2 burners on the front and back side.

The main characteristics are provided in the follow-
ing table (1):

Table 1: Key data of power unit Rostock, Germany [2]

power unit data gross electric power 550 MW
net efficiancy rate 43.2 %
district heating 300 MJ/s
max. degree of utilization 62 %

boiler manufacturer Babcock
design once-through forced-flow boiler

single direction design
single reheating

life steam production 417 kg/s
SH-pressure/ -temperature 262 bar/545 ◦C
RH-pressure/ -temperature 53 bar/562 ◦C
firing opposed firing, 4 levels

combined coal dust/oil
coal mills 4 roll wheel coal mill MPS 225,

hard coal
turbo gen set manufacturer ABB

design without regulating wheel
number of housings 1 HP, 1 IP, 2 LP
operation mode natural/modified sliding pres-

sure

2.2 Overview of the Power Plant Model

Base for this power plant model is the non-commercial
Modelica library ThermoPower [3]. Many of the com-
prised sub models in the ThermoPower library, like
pipes, valves, metal walls, mixers, etc. have been used
in this work or have been taken as a starting point for
self-developed models. One of the newly added mod-
els is a generic two phase tank, that can be used for
a feed water tank, preheaters, a start bottle or a con-
denser. Furthermore, models for cyclone separators, a
combustion chambers and segments of a flue gas duct
have been developed . Two of these new sub models
are presented in the following section 3.

The focus of the investigation has been put on the
water-/steam circuit, the combustion chamber of the
steam generator and the fresh air passage within the
coal mills, as well as their dynamics and the influence

of different operation modes on distinct devices e.g.
thick-walled headers and turbine shafts.

A simplified schematic of the model is shown in fig-
ure 1. Indicated are the feed water pumps, high pres-
sure preheaters (HPP), the steam generator, the differ-
ent turbine stages, as well as the forced draft and mill
fan, the air preheater and the coal mills. The low pres-
sure preheaters (LPP) are not part of the power plant
model, since they are not highly stressed, due to their
low temperature level.

firing

exhaust gas

coal

fresh
air

forced
draft fan

steam air
preheater

mill fan

air
preheater

coal mills

economizer

reheater 1

superheater 3

reheater 2

superheater 4
superheater 2
superheater 1

HP IP LP

feed water
pump

HPP

HPB

IPBevaporator

circula-
tion

pump

cyclone

start bottle

to condensor

from
feed water tank

to LPP

air
preheater

Figure 1: structure of power plant model

For making simulation-based statements about the
influence of different power plant operation modes the
thermodynamical model is coupled to a reduced copy
of the power plant control system, which is imple-
mented using the Modelica Standard Library compo-
nents.

The implemented control system uses the currently
calculated physical values (i.e. live steam parameter,
generated power at a specific coal input) and in a con-
sequence adjusts set values (e.g. life steam pressure)
and manipulated variables (e.g. rotational speed of the
feed water pump) of the water-steam cycle. Because
of this feedback the grade of details as well as the ac-
curacy of the modelled steam cycle and its interfaces
to the control system needs to be reasonably high.

In detail the power plant control system sets the ma-
nipulated values using a map based pilot control. The
expected control variable is predicted by a transfer
function based model of the process. The difference
between this predictive value and the corresponding
measurement is adjusted via a corrective control loop,
as described in the VDI/VDE guideline 3508 [7].

2.3 Level of Detail

In the following the degree of detail is explained by us-
ing the detailed reproduced boiler as an example. The
boiler model differentiates eight separate heating sur-
faces: economizer, evaporator, four superheaters and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

354

two reheaters. Between the superheaters SH1 and SH2
as well as SH3 and SH4 plus in between the reheaters
RH1 and RH2, spray atemperators are located for live
steam temperature control.

In compliance with the modular approach of Mod-
elica any of the boiler’s eight different heat exchang-
ers is composed of different base models, see figure 2.
Starting from highest temperature components the fol-
lowing modules can be found: The flue channel seg-
ment which models the energy storage as well as the
gas side heat transfer due to convection and radiation, a
sub model, that calculates the conductive heat transfer
inside the metal wall of the pipes and a third module
for the convective heat transfer occurring at the inner
wall as well as a one-dimensional pipe flow model.
The heat flow at the system boundary between these
modules is implemented using connectors. On the gas
side very complex heat and mass transfer conditions
occur defined by a large range of temperature and a
variety of geometric characteristics. To cope with this
complexity semi-empirical heat transfer correlations
for the different stages of the combustion chamber can
be distiguished while the three-dimensional flow field
is reduced to one dimension. The latter reduction ne-
glects any deviations from the perfect symmetric tem-
perature and flow field but is in congruence with the
"one-pipe"-approach of the water and steam side of the
boiler.

B
ou

nd
ar

y
co

nd
iti

on
:

am
bi

en
tt

em
pe

ra
tu

re
of

he
ad

er

Fl
ui

d
flo

w
w

ith
he

at
tra

ns
fe

rc
oe

ffi
tie

nt

A
da

pt
or

: A
xi

al

di
sc

re
tis

at
io

n
of

flu
id

flo

w
;

A
xi

al
 d

is
cr

et
is

at
io

n
of

he
ad

er
w

al
ls

H
ea

tc
on

du
ct

io
n

an
d

-s
to

ra
ge

 in

m
et

al
w

al
ls

he
at

tra
ns

fe
rc

oe
ffi

ci
en

t
fo

rt
he

su
rfa

ce
he

ad
er

-
am

bi
an

t

Outlet
header

Heating
surface

Inlet
header

steam
inflow

steam
outflow

exhaust
inflow

exhaust
outflow

ga
s

pa
ss

 s
eg

m
en

t o
f

pi
pe

 b
un

dl
e

he
at

ex

ch
an

ge
r

C

al
cu

la
tio

n
of

 g
as

 H
T

du
e

to
 c

on
ve

ct
io

n
an

d
ra

di
at

io
n

heat flux to
wall and

supporting
tubes

Figure 2: Dymola view of a generic superheater,
which distinguishes inlet and outlet header and heat-
ing surface

Before and after each of the bundle heat exchang-
ers a thick-walled header is located to allow a mixing

of several legs connected in parallel. Again, we find
models for convective and conductive heat transfer and
energy storage in the metal masses of the surrounding
walls. In addition, there are adapter modules to couple
components of different dimensionality. This is nec-
essary because the headers are discretisized in flow di-
rection while the thick header walls are discretisized in
heat flow direction which is perpendicular to the first
mentioned.

3 Addidtional Components

In the following chapter a selection of the developed
components are presented, section 3.1 explains the sub
models for the reproduction of the firing process and
gas side heat transfer. In section 3.2 the modeling of a
two phase tank is discussed.

3.1 Modelling of the steam generators gas
side

Due to the complex, unsteady and 3-dimenstional na-
ture of a real firing process, a model of the combus-
tion process, which is a part of an overall power plant
model, needs to be strongly simplified. For that rea-
son instant combustion is assumed and subsequently a
lumped gas volume model is used for the reproduction
of the combustion chamber, which works according to
the principle of a homogeneous agitating tub [6] with
uniform flue gas conditions (see figure 3).

The main input values for combustion calculation
are fuel and fresh air properties. The description of
the fuel is conducted by a raw coal composition and
the coal mass flow, which is delivered by a coal mill
model. The modeling of the coal mills has been done
according to work of Niemczyk et al., 2009 [4].

The raw coal composition can be obtained by an el-
ementary analysis and integrates a single ash and em-
bedded water fraction (equation 1). On the gas side
the ThermoPower component SourceW was used for
generating a combustion air mass flow. To indicate the
preheated air conditions the moist air media of Mod-
elica.Media has been applied. The air properties are
functions of the boiler load.

The essential of this model is a simple combustion
calculation without pollutants. Also implemented are
functions for lower heating value according (see equa-
tion 2 [5]) and air ratio in dependency of desired firing
power.

Other parameters are the ash fraction, which is sus-
pended in the flue gas and the unburnt carbon fraction

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

355

Hout = Hin

Qpipes

Hout

Qwall

pipe bundle

supporting tubes

duct wall

Qsupp

Hout = Hin

Qwallhomogeneous
temperature

duct wall

flue gas

coal composition
and mass flow

preheated
moisted air

xcoal , mcoalHair

Hslag

hot bottom ash
fl

u
e

g
a

s
d

u
ct

co
m

b
u

st
io

n
ch

a
m

b
er

So
u

rc
ew

a
ir

Figure 3: scheme of the combustion chamber and flue
gas duct

that remains in the solid ash. This data is important
for the particle radiation and is set to default values of
0.90 and 0.02, respectively. In result of the known en-
ergy balance the combustion model creates a flue gas
with its adiabatic combustion temperature. Therefore
the "simple flue gas" media model was introduced and
its properties can be transfered to an output flow con-
nector. (see equation 3).

xC + xH + xS + xO + xN + xW + xA = 1 (1)

Hu = 34.8(xC − xCu)+93.8xH +10.46xS

+6.28xN −10.8xO −2.45xW (2)

xi,RG =
m̂i,RG

m̂RG
(3)

The heat transfer from the flue gas to the different
surface areas is caused by two physical mechanisms,
radiation and convection. Convection is heat transfer
via particle transport and works on all overflowed sur-
faces. The formula 4 uses a heat transfer coefficient,
which depends on the fluid properties, the flow ve-
locity and the geometry of the surface (see equation
5). Every vertical surface (membrane duct wall and

the supporting tubes, which are carrying the pipe bun-
dles) is handled like an overflowed plate. The Nusselt-
number is calculated according to [6].

The streaming around the pipe bundle surface is a
forced flow across a tube. In this case the Nusselt-
number calculation is extended by a geometrical align-
ment factor [6]. The used flue gas properties are av-
eraged values between two nodes. For ribbed tubes
(economizer) an effective heat transfer coefficient will
be computed according to [5], which takes the rib ef-
fects into consideration.

Q̇conv = αconv ·Awall · (Tgas −TWall) (4)

αkonv =
Nu ·λ

l
(5)

Especially in higher temperature regions above
1000 ◦C (combustion chamber) the heat radiation is
the dominant heat transfer mechanism (see equation
6). The radiation sources are the flue gas, the con-
tained solid particles (dust) and the surfaces. The in-
fluences of these three sources are expressed in dif-
ferent dimension free emission (ε) and absorption (a)
coefficients.

In the flue gas only the components H2O and CO2
are relevant emitters. The combined emission coef-
ficient of both is calculated using equation 7 [6]. The
calculation of the emission coefficients for dust (in fact
unburnt carbon and flying ash) is also described in [6].
The implemented functions also consider the back ra-
diation from the wall to the flue gas represented by the
absorption coefficients.

Q̇rad = εgas/wall ·σ ·A ·(εgas/dust ·T 4
gas−agas/dust ·T 4

wall)
(6)

εgas/wall =
εwall

1− (1−agas/dust) · (1− εwall)
(7)

Considering the discharged heat flow to the mem-
brane wall the homogeneous temperature in the com-
bustion chamber is calculated by the energy balance.
The main parameter for adjustment is the introduced
fouling correction factor. This factor is implemented
into the energy balance and represents the fouling of
the heat surfaces. The fouling decreases with lower
flue gas temperatures.

Subsequently the exhaust gas is flowing to the flue
gas duct, which is the second part of the steam gener-
ator and located above the combustion chamber. For
effective modeling it is divided in segments - one for

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

356

every pipe bundle heat exchanger. Each sub model
is based on the 1-dimensional gas flow model of the
ThermoPower library. The modified models have
three heat transfer ports - one for the flue gas duct wall
(evaporator), the supporting tubes (superheater SH 1)
and the pipe bundle itself (superheaters, reheater and
economizer) - shown in figure 4.

An exception is the superheater SH 1, its pipe bun-
dle is at the lower end of the supporting tubes and the
heat transfer will be computed by empiric equations
[5]. For every flue section following parameters can
be defined: number of nodes, geometry and fouling
factor. In cooperation with the other models of the
ThermoPower library it is easy to construct direct- or
counter-current heat exchangers.

flue gas duct
models with
different heating
surfaces

cross section of
flue gas duct
(top view)

pipe
bundle

support-
ing
tubes

duct
wall

Figure 4: overview of the heating surfaces of the flue
gas duct

3.2 Two-Phase Tank

In order to decouple the low pressure part from the
high pressure part of the water-steam cycle a large
storage tank is located between the low pressure
preheaters and the feed water pump. This tank
typically contains both, steam and liquid water. The
two phases interlink to each other by heat and mass
transfer. During slow load changes and steady state
operation water and steam will be in an equilibrium,
i.e. the phases will be near the dew and boiling curve,
respectively. Due to limited heat transfer between
both phases a constant temperature difference between
the phases will arise. In contrast to this, during fast
state changes, as they may occur during condensate
hold-up, a significant fraction of steam may be present
in liquid phase and vice versa. To cope with this
effects a model solving energy and mass balance for
both phases separately was implemented, using the
central equations below. Herein the generic inlet and
outlet ports in and out are defined as ThermoPower
components flange :

//mass balance: Index v = vapor
// Index l = liquid
der(Mv) = in.w*x_in + out.w*x_out + w_ev
- w_con;
der(Ml) = in.w*(1-x_in) +
out.w*(1-x_out)- w_ev + w_con;
// energy balance vapor phase
der(Hv) - der(p*Vv) =
(in.w*x_in+wzero)*h_in_v +
(out.w*x_out+wzero)*h_out_v - Qflow +
(w_ev+wzero)*hvs - (w_con+wzero)*hls;
// energy balance liquid phase
der(Hl) - der(p*Vl) =
(in.w*(1-x_in)+wzero)*h_in_l +
(out.w*(1-x_out)+wzero)*h_out_l + Qflow -
(w_ev+wzero)*hvs + (w_con+wzero)*hls;
Thereby linking the two phases via the evaporation
and condensation mass flow rates and the heat ex-
change via the common surface:
w_ev = max(0,tau*(hl-hls)/(hvs-hls)*Ml);
w_con = max(0,tau*(hvs-hv)/(hvs-hls)*Mv);
Qflow = Asup*alpha*(Tv - Tl); The code
omits the heat exchange with the surrounding walls
for the sake of simplicity. However, the model makes
use of some unknown parameters, namely tau as
the time constant for phase change processes and
alpha as the heat transfer coefficient (HTC) at phase
interface. For this reason a parameter variation was
done to gain information about the influence of these
parameters.

For evaluation a temporary reduction of the conden-
sate mass flow entering the feed water tank is con-
sidered. Usually the condensate flow is controlled to
keep the feed water tank level at a defined set value
but when short-term generator power is needed the
condensate mass flow is reduced thus increasing the
turbine mass flow in an indirect manner. This con-
densate holdup is the state-of-the-art method for pri-
mary regulation. The scenario comprehends a reduced
condensate mass flow rate over approximately 13 min
starting at t = 60 min while a constant mass flow is
extruded by the feed water pumps. In consequence
the water level decreases, see figure 5. After finish-
ing the condensate holdup the controller starts filling
the container again by massively increasing the con-
densate inflow into the tank. Considering the varia-
tion of the heat transfer between the phase interface
we find that the time response of the level is not af-
fected by differing interface heat transfer coefficients.
In contrast to this the tank pressure is qualitatively and
quantitatively influenced by this parameter, see figure

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

357

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

F
ill

in
g

Le
ve

l i
n

m

Time in min

Filling Level Development During Condensate Holdup

alpha=1.5e4
alpha=1.5e5
alpha=1.5e6
alpha=1.5e7

Figure 5: Tank Pressure development during conden-
sate hold-up

6. The stationary tank pressure is lower for cases with
near-ideal heat transfer indicated by high heat transfer
coefficients α ≥ 1.5 · 107 W/(m2K). The scenario with
heavily reduced heat transfer leads to decreasing pres-
sures during condensate holdup because the effect of
the reduced cooling by the cold condensate is over-
compensated by the decompressing effect of the emp-
tying process. For the cases with a high energetic cou-
pling of the two phases we find the cooling effect of
the condensate to outweigh the emptying process. The
time constants for phase change have a similar phase-
coupling impact as the heat transfer but turns out to be
quantitatively of minor influence and is therefore not
discussed in detail.

0 10 20 30 40 50 60 70 80 90 100 110 120
11.98

11.985

11.99

11.995

12

12.005

12.01

12.015

12.02

P
re

ss
ur

e
in

 b
ar

Time in min

Pressure Development During Condensate Holdup

alpha=1.5e4
alpha=1.5e5
alpha=1.5e6
alpha=1.5e7

Figure 6: Tank Pressure development during conden-
sate hold-up varying the HTC

The question arising from figure 6 is how intense
the heat transfer between the liquid and gaseous phase
is. Analysis of continuous measurement data provided
by the power plant operator revealed a fairly constant
temperature difference between the liquid temperature
and the saturation temperature gathered from the tank

pressure ∆T ≈ 3.7K. This suggests a good heat trans-
fer between the phases referring to a heat transfer coef-
ficient of α = 1.5 ·105 W/(m2K). This high heat transfer
coefficient, typical for good inter-phase mixing, is en-
sured by the applied Stork spray injector.

When considering the pressure development and
the subcooling of the liquid water in the tank it
becomes clear that the implementation of separate
phase balancing has only minor influence on the
global behavior of the component. Therefore, the
model might be reduced using only one lumped
state into account. This state will be in the wet
steam region during proper operation of the tank, i.e.
0 ≤ level ≤ levelmax:
Mass balance for both phases:
der(M) = in.m+out.m;
Energy balance for both phases:
der(H) - V*der(p) = in.w*h_in +
out.w*h_out ;
With boiling vapor at the outlet of the liquid phase
interface:
h_out=hls

The reduced model shows - as stated - similar tran-
sient behavior concerning mass storage, see figure 7.
In contrast to this, a different time development of the
tank pressure has to be stated. The steady-state value is
slightly lower for the simplified model and differs dur-
ing transients. However, the deviation is below 1 %
relative error for both transient time period and steady
state and the pressure time derivatives show the same
sign.

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

Le
ve

l i
n

m

Time in min

Filling Level Development During Condensate Holdup

Simplified Model
Detailed Model

Figure 7: Filling level development during condensate
hold-up applying different levels of detail

The effect of model simplification on the required
condensate mass flow is shown in figure 9 and only
small deviations must be stated. Thus, for controller
design of the condensate pump the simplified model
may be sufficient.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

358

0 10 20 30 40 50 60 70 80 90 100 110 120
11.98

11.985

11.99

11.995

12

12.005

12.01

12.015

12.02

P
re

ss
ur

e
in

 b
ar

Time in min

Tank Pressure During Condensate Holdup

Figure 8: Tank pressure development during conden-
sate hold-up applying different levels of detail

0 10 20 30 40 50 60 70 80 90 100 110 120
0

50

100

150

200

250

300

350

400

M
as

s
F

lo
w

 R
at

e
in

 k
g/

s

Time in min

Condensate Mass Flow During Condensate Holdup

Simplified Model
Detailed Model

Figure 9: Condensate mass flow devepment during
condensate hold-up applying different levels of detail

The mentioned deviations of the tank pressure for
the detailed and simplified model may induce differ-
ing tapping mass flows. Tappings are controlled or
fixed steam extractions providing steam from the tur-
bines for heating of the low pressure preheaters and
the feedwater tank. If the tapping valve is not con-
trolled the corresponding mass flow rate is defined by
the pressure states in the turbine and the low pres-
sure path. Thus, the heating mass input may differ
between both models requiring different condensate
mass flows. In the consequence the effective turbine
mass flow in the low pressure turbine stages is dif-
ferent when integrating the tank models in a complete
steam cycle. Considering a conservative estimation in
a scenario of 80 % relative load this results in approx.
2 % relative error of the generator power.

Comparing the models presented both, advantages
and drawbacks, apply to each of the model approaches.
The detailed model considering two different phases

promises better numerical stability and more realistic
results, especially during short-term transients while
the simplified model is easier to initialize and will need
less computational effort. Testing the convenience of
the models under different usage conditions with re-
spect to initialization and simulation progress will be
a subject item of future investigations.

4 Validation of the Model

In order to check the created model on correctness,
comparative measurements have been recorded in the
power plant Rostock, which are shown below in con-
trast to the results of the simulation.

In the investigated period of time the power plant
begins operation after 37 hour shutdown period with
two subsequent positive load changes up to 95 per-
cent. The development of the desired net power shown
in figure 10 is the input to the model and is processed
by the control system to a desired firing power signal
and subsequently transfered to the coal mills and oil
burners. Despite the simplifications in the reproduced
control system of the power plant model a good re-
production could be achieved, differences between the
model and measurement could be caused by parame-
ter changes of the process, especially during a start,
like a drifting heating value, uncertainties in the mill
dynamic or degradation of the heating surfaces.

40 80 120 160 200
0

20

40

60

80

100

time in min

de
si

re
d

po
w

er
 in

 %

desired Net power
des.firing power − simulation
des.firing power − measurement

Figure 10: Definition of validation setup - power re-
quest from the load dispatcher and corresponding de-
sired firing power

Beneath the power request the plant model needs
two additional inputs, the state of the condensate wa-
ter, which is provided by a load dependent table and
the composition of the used coal. Since coal is not an
homogeneous fuel the mass fraction of containing ash
and water of the modeled coal are fluctuating in ran-
dom intervals by +/- 1%. All other boundary condi-
tions for the model, like furnace outlet and condenser

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

359

pressure as well as air inlet temperature have constant
values.

Since the dynamic behavior of the overall process is
mainly dominated by the fuel pulverization in the coal
mills and the transient response of the boiler, it would
be beneficial to validate the sub models for those two
systems independently. But this is not possible, be-
cause the measurement of the system response of the
coal mills, the coal dust mass flow rate upstream of the
burners, is only possible with high efforts and low ac-
curacy. Thus, such a measurement system is not stan-
dard and is not available. In a consequence, validation
of the overall model is conducted by the use of the
steam properties in the boiler and the generator out-
put.

The live steam pressure and mass flow arise from
the current heating by the furnace and the cooling from
the working medium due to the feed by the feedwater
pump. In figure 11 simulated and measured pressures
at outlet of the boiler are compared. After 50 min the
power plant is in sliding pressure operation and the
life steam pressure is changing proportional with the
load. In general a good conformity of both graphs can
be stated. Variations (e.g. between 40 and 70 min)
could be explained with differences in the firing power.
Considering this, a good reproduction of the hydraulic
characteristic can be stated.

40 80 120 160 200
0

50

100

150

200

250

300

350

time in min

pr
es

su
re

 in
 b

ar

simulation
measurement

Figure 11: Comparison of calculated and measured
life steam pressure at the boiler outlet

In figure 12 the development of the boiler inflow
(Eco in) and outflow (life steam) mass flow rate is
shown. In the first 50 min the boiler is in circulation
mode and a minimum amount of 143 kg/s of feedwater
is entering the economizer and the unevaporated water
fraction is separated after the evaporator and looped
back to the boiler inlet. Then the power plant switches
to Benson operation and the feed water as well as the
life steam mass flow rate is proportional to the load.

In order to verify the proper representation of the

40 80 120 160 200
0

100

200

300

400

time in min

m
as

s
flo

w
 r

at
e

in
 k

g/
s

simulation Eco in
measurement Eco in
simulation life steam
measurement life steam

Figure 12: Comparison of calculated and measured
economizer in and superheater out mass flow rate

heat transfer from the exhaust gas to the different heat-
ing surfaces by the model, the calculated steam tem-
peratures at the outlet header of each heating device
are compared to the corresponding measurement. In
the following some representative plots are discussed.
In figure 13 the water temperature entering the boiler
at the economizer inlet and the steam temperature after
the evaporator is brought out with respect to time.

40 80 120 160 200
100

200

300

400

500

time in min

te
m

pe
ra

tu
re

 in
 °

C

simulation Eco in
measurement Eco in
simulation evaporator out
measurement evaporator out

Figure 13: Comparison of calculated and measured
fluid temperature at inlet of the economizer and after
evaporator

Whereas the simulated evaporator outlet tempera-
ture shows a good agreement with the measurement -
the mean relative error is about 3.3 %, the economizer
inlet temperature shows a deviation between 10 and 30
min with a maximum error of 28 %. This is caused by
a difference in the circulation rate: in the simulation
a large quantity of cold feed water is lowering the eco
inlet temperature in contrast to the measurement. This
means that a higher amount of almost boiling circu-
lated water, as can be seen in figure 12 as the difference
of the eco in and life steam flow, is leading to a high
eco inlet temperature. In Benson operation the error is
less than 5.2 % and shows a very good correlation.

The trend of the temperature after superheater SH 1

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

360

shows analogue results, hence the furnace and heat
transfer model is capable to reproduce the heat trans-
fer of the boiler and its temporal behaviour (see figure
14).

40 80 120 160 200
200

300

400

500

600

time in min

te
m

pe
ra

tu
re

 in
 °

C

simulation SH 1 out
measurement SH 1 out
simulation life steam
simulation HP−Turbine in
measurement life steam

Figure 14: Comparison of calculated and measured
steam temperatures after the first and the last super-
heater

In the same diagram the simulated and measured
live steam temperatures are plotted. During the first
phase of a start with low flow through the life steam
pipes to the turbines, an inhomogeneous tempera-
ture distribution and the unknown location of the sen-
sor complicates a validation, but the measurement is
within the model temperatures at the in- and outlet of
the life steam pipe.

During sliding pressure operation again a very high
correlation between simulation and measurement can
be stated. This can only be achieved by copying the
cascaded PI-controller of the spray attemperators, that
ensures the right tempering of the live steam.

40 80 120 160 200
0

5

10

15

20

time in min

m
as

s
flo

w
 r

at
e

in
 k

g/
s

simulation
measurement

Figure 15: Comparison of calculated and measured in-
jection mass flow rates at the first HP-injector (after
first superheater)

Figure 15 shows the comparability of the imple-
mented temperature control by comparing the simu-
lated and measured injection mass flow rates. Both
measured and simulated injection flow rates agree

qualitatively very well and show similar dynamics.
The figure shows that the attemperator is operated

at its limits which leads to quite extreme changes of
valve opening between fully opened and fully closed.
This behavior is uncritical, since the task of the first in-
jector is it to keep the second injector within its proper
operation limits.

As can be seen in figure 16 the net generator power,
whose behavior is effected by the dynamics of the en-
tire power plant process, shows a good correlation.
Thus, it can be stated, that the dominating and relevant
effects are reproduced by the model and the validation
shown above approves the accuracy and the validity of
the model assumptions.

40 80 120 160 200
0

20

40

60

80

100

time in min

ne
t g

en
er

at
or

 p
ow

er
 in

 %

simulation
measurement

Figure 16: Comparison of the simulated net generator
power and corresponding measurement

5 Evaluation of Component Strain

With this existing model it is possible to predict tem-
peratures and temperature gradients at points which
are inaccessible to measurements like wall tempera-
tures of highly stressed components.

For the first 90 min of the presented soft start the
occurring wall temperatures of the superheater outlet
header are displayed in figure 17. Obviously the metal
temperature at the outside of the wall follows the in-
ner temperature with a certain delay and its amplitudes
are considerably smaller. This effect can be explained
with time specifics of the heat conduction and energy
storage. The noticeable phase shift of the temperatures
leads to relative high temperature differences between
the inner and outer fiber in case of sharp edged changes
in evaporator heating or cooling.

The evaluation of metal temperatures offers the pos-
sibility to benchmark different controller parameter
sets with a view to preserving operation at concur-
rently high load dynamics.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

361

10 20 30 40 50 60 70 80 90
200

250

300

350

400

time in min

te
m

pe
ra

tu
re

 in
 °

C

inner wall
outer wall

Figure 17: Metal temperatures in the superheater SH 2
outlet header

Quantification of the effects of thermal stress on the
different components of a plant is a challenging task
as the processes of fatigue are complex and highly sta-
tistical. For this reason the results of a fatigue predic-
tion in this context can only be of qualitative nature
and should be understood as a trend indicator that is
capable of identifying the most stressed components
and predict possible side effects of innovative con-
trol strategies on this complex system. For a detailed
investigation of certain components a FEM-analysis
should be carried out considering the installation sit-
uation (and with it possible pretensions in the compo-
nent) and the exact geometry.

However, for a first estimation of the effects of more
dynamic plant operation in the future two different ap-
proaches are used and should be discussed in the fol-
lowing:

The guidelines of the Deutsche Dampfkesselauss-
chuss (2000) TRD 301 [8] and 508 [9] give directives
for the estimation of fatigue of thick-walled boiler
components under smouldering pressure and temper-
ature due to start-up processes. For this purpose an
effective stress range is evaluated with a Wöhler dia-
gram for crack initiation. The following equation gives
the law for calculating the stress range ∆σ .

∆σi =

(
αm

dm

2sb

)
∆p+

(
αϑ

βLϑ Eϑ

1−ν

)
∆Θ (8)

Herein αm, αϑ , dm, βLϑ , Eϑ , ν , ∆p and ∆Θ denote
for mechanical and thermal correction factor for stress
superelevation at branches, mean diameter, mean wall
thickness, linear expansion coefficient, Young’s modu-
lus, Poisson’s ratio and the range of pressure and tem-
perature difference during load change, respectively.
Figure 18 shows qualitatively the evaluation of the
working stress during load change. The maximum
number of load changes comparable to the actual one

is generated from the Wöhler-curve. The percentile
fatigue of the actual load change is then:

e =
1
N

100 (9)

This estimation leads to conservative results in order
to handle the numerous uncertainties in calculation of
working stresses at complex components and material
properties.

Kapitel 2 Grundlagen der Lebensdauerberechnung in der Kraftwerkstechnik

Abbildung 2.4: Qualitativer Verlauf einer Wöhlerlinie [LLW90]

Bereich der Kraftwerkstechnik be�ndet man sich häu�g in diesem Ermüdungsbereich. Auf-
grund der hohen Belastungen müssen bei der Auslegung plastische Verformungen akzeptiert
werden.

• Z ist der Bereich der Zeitfestigkeit bzw. Zeitschwingfestigkeit. Meistens wird hier ein Bereich
in etwa zwischen 5 ·10

4 und 2 ·10
6 Lastwechseln angegeben. Die Wöhlerkurve ist in diesem

Bereich bei doppeltlogarithmischer Auftragung nahezu eine Gerade.

• D ist der Bereich der so genannten Dauerfestigkeit. Liegt die Spannungsamplitude unter-
halb der Dauerfestigkeit kann das Bauteil theoretisch unendlich viele Lastwechsel ertragen
ohne das ein Versagen auftreten wird.

Für die Lebensdauervorhersage liefert die Wöhlerlinie die bei einer vorgegeben Bauteilbelas-
tung maximal mögliche Lastwechselzahl. Zur Ermittlung der Anrisszahl bei einem bestimmten
Lastfall i geht man ausgehend vom zu untersuchenden Spannungswert σi auf der Ordinate waag-
recht bis zur Wöhlerlinie und liest die maximale Lastwechselzahl bis zum Anriss NA auf der
Abszisse ab. Umgekehrt kann entsprechend nach Vorgabe einer bestimmten Anzahl an Lastwech-
seln die dafür maximal zulässige Betriebsbelastung ermittelt werden. Der Lebensdauerverbrauch
nach einem Lastzyklus beträgt dann in Prozent:

ew,i =
1

NA

· 100 (2.10)

Aufgrund der Ableitung der Wöhlerlinien aus Versuchsreihen besitzen die Werte folglich nur
eine statistische Genauigkeit. Man kann den aus Wöhlerlinien ermittelten Lebensdauerverbrauch
somit als groben Richtwert verwenden, der für die Auslegung noch mit den nötigen Sicherheiten
beaufschlagt werden muss. Die Realität kann dadurch aber natürlich nicht völlig exakt wieder-
geben werden. [Kla80], [LLW90]

10

Figure 18: Principle of evaluation of component stress
for cyclic loading [11].

This method allows to benchmark different opera-
tion modes in terms of their level of deterioration to
different components. In figure 19 the fatigue of a soft
start and several load changes is plotted for the inlet
and outlet headers of the superheaters and reheaters.
Please note that currently normal operation is between
50 % and 100 % load, so the shown load change of
60 % could be considered as an unconventional oper-
ation.

SH1i SH1o SH2i SH2o SH3i SH3o SH4i SH4o RH1i RH1o RH2i RH2o
0

1

2

3

4

5

6
x 10

−3

fa
tig

ue
 in

 %

warmstart
load change > 60%
load change > 40%
load change > 20%

Figure 19: Fatigue of heating surface in- and outlet
headers for different base stress situations

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

362

It can be obtained, that the outlet header of super-
heater SH 4 is effected the most, whereas the headers
of the reheaters are not or lowly stressed. Furthermore
it can be derived, that load changes less than 40 %
barely cause any fatigue, because the stress levels are
below the endurance strength.

Considering the flaw growth of predamaged compo-
nent gives a far more sensitive view on the operation
mode. The German Forschungskuratorium Maschi-
nenbau [10] gives guidelines for the calculation of
crack progress. Figure 20 gives a general overview
on crack propagation rate as function of the range of
stress intensity factor ∆K.

Figure 20: Overview on crack propagation under
cyclic load [10].

According to figure 20 there is a certain load that
does not leads to crack propagation (∆K ≤ ∆Kth). In
region I to III there is a stable propagation to be ex-
pected (∆Kth ≤ ∆K ≤ ∆Kc) which can be conserva-
tively estimated by the law of Paris and Erdogan:

da
dN

=C∆Km (10)

Where a, N, C, m denotes for crack length, num-
ber of cycles, a case-specific factor and a load specific
exponent, respectively. The stress intensity factor has
to be calculated depending on the flaw’s geometry and
size and its position within the component. With this
tool it is possible to detect the most strained compo-
nents by comparing the crack growth over a certain
reference time period.

In an analogue manner as in figure 19 the flaw prop-
agation is shown for thick-walled headers in figure 21.

SH1i SH1o SH2i SH2o SH3i SH3o SH4i SH4o RH1i RH1o RH2i RH2o
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

fla
w

 g
ro

w
th

 in
 m

m

warmstart
load change > 60%
load change > 40%
load change > 20%

Figure 21: Flaw growth in potentially pre-damaged
thick-walled in- and outlet headers for different base
stress situations

In contrast to the fatigue also low stress levels
of small load changes cause impairment and conse-
quently with this estimation a method is given to eval-
uate the deterioration potential of normal operation.

6 Conclusion and Outlook

A detailed model of a coal-fired power unit has been
implemented and extensively validated. The model
makes use of the open-source Modelica library Ther-
moPower. A number of components especially for
modeling of start-up-specific components, like the cy-
clone separator and the start-up bottle as well as mod-
els for the description of the fuel conversion and heat
transfer in the firing of the plant have been imple-
mented.

As an example for an application of the devel-
oped model some base operation scenarios, like load
changes and a soft start, have been evaluated in terms
of life time consumption. In a next step the influence
of increased load gradients will be investigated.

The modular structure of the model allows the easy
replacement of single components, e.g. life steam
temperature control, which enables the benchmark of
advanced control systems or the implementation of
different or additional hardware for different opera-
tion scenarios. In this way, future demands on power
plants, which might become necessary in order to real-
ize wind integration successfully at controllable costs,
can be benchmarked. This aspect of power plant oper-
ation management will probably become more impor-
tant due to highly increasing wind power production

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

363

and its fluctuating characteristic.
The detailed manner of the plant model does not al-

low long term simulation over years or even weeks due
to high computing time at this actual state of develop-
ment. Therefore the fatigue has to be extrapolated in a
first step assuming a constant or a repetitive operation
mode for a long time period. Future work could cover
a model reduction to increase its efficiency.

References

[1] Dahl-Soerensen, M.J./ Solberg, B. Pulverized
Fuel Control using Biased Flow Measurements.
In: IFAC Symposium on Power Plants and Power
Systems Control, Tampere, 2009.

[2] Hojczyk,B./ Hühne,W./ Thierfelder,H.G.
Das Steinkohlekraftwerk Rostock. In: VGB
Kraftwerkstechnik 77, 1997.

[3] Casella,C./ Leva,A. Open Library for Power
Plant Simulation: Design and Experimental Val-
idation. In: proceedings of 3rd. International
Modelica Conference, Linköping, 2003.

[4] Niemczyk,P./ Andersen,P./ Bendtsen,J.D. /Soen-
dergaard Pedersen,T. /Ravn,A.P. Derivation and
validation of a coal mill model for control. In:
IFAC Symposium on Power Plants and Power
Systems Control, Tampere, 2009.

[5] Effenberger Dampferzeugung. Berlin, Springer-
Verlag, 2000.

[6] Verein Deutscher Ingenieure VDI-Wärmeatlas,
10. Auflage. Berlin, Springer-Verlag, 2006.

[7] VDI/VDE-Gesellschaft Mess- und Automa-
tisierungstechnik VDI/VDE - Richtlinie
3508: Block-Führung/-Regelung von
Wärmekraftwerken, 2002.

[8] Deutscher Dampfkesselausschuss Technische
Regeln für Dampfkessel (TRD) 301 Berechnung
auf Wechselbeanpruchung durch schwellenden
Innendruck bzw. durch kombinierte Innendruck-
und Temperaturänderungen. Carl Heymanns Ver-
lag KG, 2000.

[9] Deutscher Dampfkesselausschuss Technische
Regeln für Dampfkessel (TRD) 508 Zusätzliche
Prüfungen an Bauteilen berechnet mit zeitab-
hängigen Festigkeitswerten. Carl Heymanns Ver-
lag KG, 2000.

[10] Forschungskuratorium Maschinenbau Bruch-
mechanischer Festigkeitsnachweis für Maschi-
nenbauteile. VDMA-Verlag, 2001.

[11] Lewin,G./ Lässig, G./ Woywode,N. Apparate
und Behälter: Grundlagen Festigkeitsrechung.
Berlin, Verlag Technik, 1990.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

364

Dynamic modelling of a combined cycle power plant with
ThermoSysPro

Baligh El Hefni Daniel Bouskela Grégory Lebreton
EDF R&D

6 quai Watier, 78401 Chatou Cedex, France
baligh.el-hefni@edf.fr daniel.bouskela@edf.fr gregory.lebreton@edf.fr

Abstract

A new open source Modelica library called “Ther-
moSysPro” has been developed within the frame-
work of the ITEA 2 EUROSYSLIB project. This
library has been mainly designed for the static and
dynamic modeling of power plants, but can also be
used for other energy systems such as industrial
processes, buildings, etc.
To that end, the library contains over 100 0D/1D
model components such as heat exchangers, steam
and gas turbines, compressors, pumps, drums, tanks,
volumes, valves, pipes, furnaces, combustion cham-
bers, etc. In particular, one and two-phase wa-
ter/steam flow, as well as flue gases flow are han-
dled.
The library has been validated against several test-
cases belonging to all the main domains of power
plant modeling, namely the nuclear, thermal, bio-
mass and solar domains.
The paper describes first the structure library. Then
the test-case belonging to the thermal domain is pre-
sented. It is the dynamic model of a combined cycle
power plant, whose objective is to study a step varia-
tion load from 100% to 50% and a full gas turbine
trip. The structure of the model, the parameterization
data, the results of simulation runs and the difficul-
ties encountered are presented.

Keywords: Modelica; thermal-hydraulics; combined
cycle power plant; dynamic modeling; inverse prob-
lems

1 Introduction

Modelling and simulation play a key role in the de-
sign phase and performance optimization of complex
energy processes. It is also expected that they will
play a significant role in the future for power plant
maintenance and operation. Regarding for instance
plant maintenance, a new method has been devel-

oped to assess the performance degradation of steam
generators because of tube support plate clogging,
without having to wait for the yearly plant outage to
open the steam generators for visual inspection [1].
The potential of Modelica as a means to efficiently
describe thermodynamic models has been recognised
for quite a while [2, 3] and lead to the initiative of
developing a library for power plant modeling within
the ITEA 2 EUROSYSLIB project.
This library is aimed at providing the most fre-
quently used model components for the 0D-1D static
and dynamic modelling of thermodynamic systems,
mainly for power plants, but also for other types of
energy systems such as industrial processes, energy
conversion systems, buildings etc. It involves disci-
plines such as thermalhydraulics, combustion, neu-
tronics and solar radiation.
The ambition of the library is to cover all the phases
of the plant lifecycle, from basic design to plant op-
eration. This includes for instance system sizing,
verification and validation of the instrumentation and
control system, system diagnostics and plant moni-
toring. To that end, the library will be linked in the
future to systems engineering via the modeling of
systems properties, and to the process measurements
via data reconciliation.
Several test-cases were developed to validate the
library in order to cover the full spectrum of use-
cases for power plant modeling:
- static and dynamic models of a biomass

plant [8],
- dynamic model of a concentrated solar power

plant,
- dynamic model of steam generators for sodium

fast reactor [7],
- dynamic model of a 1300 MWe nuclear power

plant covering the primary and secondary loops,
- dynamic model of a combined cycle power

plant.
This paper is an introduction to ThermoSysPro li-
brary, and presents the combined cycle power plant
test-case.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

365

Using dynamic models for combined cycle power
plants (as well as for any other type of power plants)
allows to go beyond the study of fixed set points to:
- check precisely the performances and the design

given by the manufacturers (commissioning),
- verify and validate by simulation the scenario of

large transients such as gas turbine trips,
- find optimised operating points,
- find optimised operation procedures,
- perform local and remote plant monitoring,
- build correction curves,
- etc.
In order to challenge the dynamic simulation capa-
bilities of the library, a step load variation from
100% to 50% and a turbine trip (sudden stopping of
the gas turbine) were simulated.

2 Introduction to ThermoSysPro

2.1 Objectives of the library

From the end-user’s viewpoint, the objectives of the
library are:
- Ability to model and simulate thermodynamic

processes.
- Ability to cover the whole lifecycle of power

plants, from basic design to plant operation and
maintenance. This implies the ability to model
detailed subsystems of the plant, and to model
the whole thermodynamic cycle of the plant, in-
cluding the I&C system.

- Ability to initialize the models for a given oper-
ating point. This is essentially an inverse prob-
lem: how to find the physical state of the system
given the values of the observable outputs of the
system.

- Ability to perform static calculations (for plant
monitoring and plant performance assessment)
and dynamic calculations (for operation assis-
tance) faster than real time.

- Ability to fit the plant models against real plant
data using for instance data assimilation tech-
niques.

- Ability to use the models to improve the quality
of measurements using the data reconciliation
technique.

- Ability to use the models for uncertainty studies
by propagating uncertainties from the inputs to
the outputs of the model.

From the model developer’s viewpoint:
- The library should be easy to read, understand,

extend, modify and validate.
- The library should be sharable at the EDF level,

and more.

- The library should be truly tool independent.
- The library should be stable across language and

tools versions.
- The library should be validated against signifi-

cant real applications.
- The library should be fully documented. In par-

ticular, all modeling choices should be clearly
justified.

2.2 General principles of the library

The library features multi-domain modeling such as
thermal-hydraulics (water/steam, flue-gases and
some refrigerants), neutronics, combustion, solar
radiation, instrumentation and control.
The library is founded on first physical principles:
mass, energy, and momentum conservation equa-
tions, up-to-date pressure losses and heat exchange
correlations, and validated fluid properties functions.
The correlations account for the non-linear behaviour
of the phenomena of interest. They cover all wa-
ter/steam phases and all flue gas compositions. Some
components such as the multifunctional heater con-
tains correlations that were obtained from experi-
mental results or CFD codes developed by EDF. An
early Modelica implementation of the IAPWS-IF97
standard by H. Tummescheit is used for the compu-
tation of the properties of water and steam.
The level of modelling detail may be freely chosen.
Default correlations are given corresponding to the
most frequent use-cases, but they can be freely modi-
fied by the user. This includes the choice of the pres-
sure drop or heat transfer correlations. Special atten-
tion is given to the handling of two-phase flow, as
two-phase flow is a common phenomenon in power
plants. The physics of two-phase flow is complex
because of the mass and energy transfer between the
two phases and the different flow regimes (bubbles,
churn or stratified flow…) [4]. Currently, mixed and
two-fluids 3, 4 and 5 equations flow models are sup-
ported. For instance, 3 equations are used for the
homogeneous single-phase flow pipe model, 4 equa-
tions for the drum model, and 5 equations for the
separated flow pipe model. The different flow re-
gimes are accounted for by appropriate pressure drop
and heat transfer correlations. The drift-flux model
may be used to compute the phase velocities. Also,
accurate sets of geometrical data are provided for
some heat exchangers.
Flow reversal is supported in the approximation of
convective flow only (the so-called upwind scheme
where the Peclet number is supposed to be infi-
nite [5]). It is planned to investigate the interest of
taking diffusion into account for a more robust com-
putation of flow reversal near zero-flow.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

366

The components are separated into 4 groups: yellow
components for static modelling only, green compo-
nents for static and dynamic modelling, blue compo-
nents for dynamic modelling only, and purple com-
ponents for fast dynamic modelling (waterhammer).
All components are compatible with each other, but
many yellow components do not withstand zero-
flows, so they cannot be used to model transients that
involve flow reversal for instance. The green com-
ponents group is composed of singular pressure
losses in the approximation of zero-volume, so that
the coefficients of the derivative terms of the balance
equations are equal to zero. Hence, one should only
use yellow or green components for static modelling
only.
The library components are written in such a way
that there are no hidden or unphysical equations, that
components are independent from each other and to
ensure as much as possible upward and downward
compatibility across tools and library versions. This
is particularly important in order to control the im-
pact of component, library or tool modifications on
the existing models.
To that end, only the strictly needed constructs of the
Modelica language are used. In particular, the inheri-
tance and stream mechanisms are not used, and no
physical meaning is assigned to the fluid connectors:
they are considered as a means to pass information
between components, so they are not part of the
physical equations.
The components are connected together using the
fluid connectors according to the staggered grid
scheme [5]. This scheme divides the components
into two groups: volumes and flow models. Volumes
compute the mass and energy balance equations,
whereas flow models compute the momentum bal-
ance equations. Volumes may have any number of
connectors, whereas flow models have exactly two
connectors (they look like pipes, although they are
not necessarily pipes). The staggered grid scheme
states that flow models should be connected to vol-
umes only, and volumes should be connected to flow
models only. It is however possible to connect flow
models together without breaking the staggered grid
rule, by considering that the intermediate volume has
a zero-volume capacity.

2.3 Structure of the fluid connectors

The structure of the fluid connectors is of particular
importance as it reflects the overall structure of the
library.
As already stated, the fluid connectors do not bear
any physical meaning. They are only considered as a
way to pass information between components, and

should therefore be eliminated from the physical
equations system after compilation of the model.
However, as connectors are sensitive to the compo-
nents graph orientation rules, they define the conven-
tion for the sign of the flows, or in other words,
which direction in the graph is assigned for positive
flows, and which direction is assigned for negative
flows.
For flow orientation, two alternatives are possible.
The first is to have a flow orientation at the compo-
nent level: the flow is positive when it enters the
component, and negative when it leaves the compo-
nent. The second is to have a flow orientation at the
graph level: the flow is positive under normal operat-
ing conditions, and negative in case of reverse flow
conditions, the latter being most often transitory. The
second alternative has been preferred over the first
one for the fluid connector, as it gives a flow sign
convention closer to the end-user perception of the
operation of the system.
From these requirements, and also from the fact that
the staggered grid and the upward schemes are used,
the structure of the connector follows.

connector FluidInlet
 SIunits.Pressure P;
 SIunits.SpecificEnthalpy h;
 SIunits.MassFlowRate m_flow;
 SIunits.SpecificEnthalpy h_flow;

 input Boolean a=true;
 output Boolean b;
end FluidInlet;

connector FluidOutlet
 SIunits.Pressure P;
 SIunits.SpecificEnthalpy h;
 SIunits.MassFlowRate m_flow;
 SIunits.SpecificEnthalpy h_flow;

 output Boolean a;
 input Boolean b;
end FluidInlet;

There are actually an inlet connector and an outlet
connector. These two connectors have the same
physical structure (P, h, m_flow, h_flow), but differ-
ent flow orientations enforced by the Booleans a and
b. The flow is positive when entering the component
at the inlet or leaving the component at the outlet.
The keywords input and output prevent connecting
inlets or outlets together (see Figure 1 where inlets
are blue and outlets are red).
Notice that the Modelica prefix flow is not used for
m_flow and h_flow. The reason is that (1) the mass
balance and energy balance equations are not gener-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

367

ated by the connections, but fully implemented in the
volumes, (2) and that the sign convention for posi-
tive flows is not compatible with the sign convention
of the Modelica flow prefix, which stipulates that all
flows should be of the same sign (positive or nega-
tive) when entering the component via the connector.
As a consequence, multiple connections are not al-
lowed as in Modelica.Fluid for instance, so that
mergers or splitters must be modeled using volumes.
In practice, this is not considered as a restriction, as
in most cases, mergers or splitters do have non trivial
physical behaviours which could not be simply rep-
resented by multiple connections.

Figure 1: connecting components

P and h denote resp. the average fluid pressure and
specific enthalpy inside the control volumes. m_flow
and h_flow denote resp. the mass flow rate and spe-
cific enthalpy crossing the boundary between two
control volumes (see Figure 2).

P2, h2P1, h1
m_flow
h_flow

Control volume 1 Control volume 2

Figure 2: finite volume discretization

P, h and m_flow are the state variables of resp. the
mass, energy and balance equations. h_flow is not a
state variable. The purpose of h_flow is to compute
the fluid specific enthalpy using the upwind scheme.
P and h are computed within volumes, whereas
m_flow and h_flow are computed within flow mod-
els (see Figure 3).

P1, h1

Volume 1 Flow model Volume 2

21)_()_(_ hflowmshflowmsflowh ⋅−+⋅=

)_,,(_ 21 flowhPPfflowm =
P2, h2

Figure 3: staggered grid scheme

According to the upwind scheme:
21)_()_(_ hflowmshflowmsflowh ⋅−+⋅=

where s denotes the step function:
0)(=xs if 0≤x and 1)(=xs if 0>x

2.4 Organization of the library

The library is subdivided into application domains.
Each application domain corresponds to a connector
type. Each application domain is divided into pack-
ages corresponding to broad component types:
boundary conditions, connectors, heat exchangers,
machines, pressure losses, sensors, volumes, etc. (see
Figure 5 in the Appendix).

Components may be written in plain Modelica text,
or constructed by connecting other components from
the library, as shown in Figure 4.

Figure 4: model component of a gas turbine

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

368

3 Model of the combined cycle power
plant

3.1 Description of the model

Actually, two models are used: one to simulate the
power generator step reduction load (see Figure 6 in
the Appendix), the other to simulate the full GT trip
(see Figure 7 in the Appendix). In the model used to
simulate the GT trip, the gas turbine is replaced by a
boundary condition.
The model contains two main parts: the water/steam
cycle and the flue gases subsystem. Only one train is
modelled, so identical behaviour is assumed for each
HRSG and for each gas turbine.

HRSG model
The model consists of 16 heat exchangers (3 evapo-
rators, 6 economizers, 7 super-heaters), 3 evaporat-
ing loops (low, intermediate and high pressure), 3
drums, 3 steam turbine stages (HP, IP and LP), 3
pumps, 9 valves, several pressure drops, several
mixers, several collectors, 1 condenser, 1 generator,
several sensors, sources, sinks and the control system
limited to the drums level control.
 An important feature of this model is that the ther-
modynamic cycle is completely closed through the
condenser. This is something difficult to achieve,
because of the difficulty of finding the numerical
balance of large closed loops.
The list of component used for the development of
the HRSG model is given in Table 1.

Table 1: library components used in the HRSG model

Type Model name in the library
Condenser DynamicCondenser
Drum DynamicDrum
Generator generator
Heat ex-
changer

DynamicExchangerWaterSteamFlueGases
=
DynamicTwoPhaseFlowPipe
ExchangerFlueGasesMetal
HeatExchangerWall

Pipe LumpedStraightPipe
Pump StaticCentrifugalPump
Sensor SensorQ
Steam tur-
bine

StodolaTurbine

Valve ControlValve
Water mixer VolumeB, VolumeC

Type Model name in the library
Water split-
ter

VolumeA, VolumeD

Heat Exchanger : Flue Gases/ Water Steam
Based on first principles mass, momentum and en-
ergy balance equations, the following phenomena are
represented:
- transverse heat transfer,
- mass accumulation,
- thermal inertia,
- gravity,
- pressure drop within local flow rate.

Drum and Condenser
Based on first principles mass and energy balance
equations for water and steam, the following phe-
nomena are represented:
- drum level and swell and shrink phenomenon,
- heat exchange between the steam/water and the

wall,
- heat exchange between the outside wall and the

external medium.

Steam turbine
Based on an ellipse law and an isentropic efficiency.

Pump
Based on the characteristics curves.

Pressure drop in pipes
Proportional to the dynamic pressure ± the static
pressure.

Mixer/splitter
Based on the mass and energy balances for the fluid.

GT model
The model consists of 1 compressor, 1 gas turbine, 1
combustion chamber, sources, sinks and 1 air humid-
ity model.
The list of component models used for the develop-
ment of the GT model is given in Table 2.

Table 2: library components used in the GT model

Type Model name in the library
Air humidity AirHumidity
Compressor GTCompressor
Gas turbine CombutionTurbine
Combustion
chamber

GTCombustionChamber

Gas turbine
Based on correlations for the characteristic.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

369

Compressor
Based on correlations for the characteristic.

Combustion chamber
Based on first principles mass, momentum and en-
ergy balance equations. The pressure loss in the
combustion chamber is taken into account.

3.2 Data implemented in the model

All geometrical data were provided to the model
(pipes and exchangers lengths and diameters, heat
transfer surfaces of exchangers, volumes…).
The plant characteristics are given below.

Gas Turbine (GT)
Compressor compression rate: 14

Steam Generator (HRSG)
HRSG with 3 levels of pressure.
High pressure circuit at nominal power: 128 bar
Intermediate pressure circuit at nominal power: 27
bar
Low pressure circuit at nominal power : 5.7 bar

Steam Turbine
High pressure at nominal power : 124.5 bar, 815 K
Intermediate pressure at nominal power : 25.5 bar,
801 K
Low pressure at nominal power : 4.8 bar, 430 K

Condenser
Steam flow rate: 194 kg/s
Water temperature at the inlet: 300 K

3.3 Calibration of the model

The calibration phase consists in setting (blocking)
the maximum number of thermodynamic variables to
known measurement values (enthalpy, pressure)
taken from on-site sensors for 100% load. This
method ensures that all needed performance parame-
ters, size characteristics and output data can be com-
puted.
The main computed performance parameters are:
- the characteristics of the pumps,
- the ellipse law coefficients of the turbines,
- the isentropic efficiencies of the turbines,
- the friction pressure loss coefficients of the heat

exchangers and of the pipeline between the
equipments,

- the CV of the valves and the valves positions
(openings).

3.4 Simulation scenarios

For simulation runs, two scenarios were selected.
The first scenario is a power generator step reduction
from 100 to 50% load:
- Initial state (combined cycle): 100 % load
- Final state (combined cycle): 50% load (800 s

slope)
The second scenario is a full GT trip (sudden stop-
ping of the gas turbine):
- Initial state (GT exhaust): 894 K, 607 kg/s
- Final state (GT exhaust): 423 K, 50 kg/s (600 s

slope)

The following phenomena are simulated:
- flow reversal,
- local boiling or condensation,
- swell and shrink effect in drums,
- drums levels and condenser level,
- drums pressure control

3.5 Simulation scenarios

Simulation runs were done using Dymola 6.1.
The simulation of the scenarios were mostly success-
ful. However, some difficulties were encountered
when simulating large transients, mainly stemming
from the large size of the model:
- poor debugging facility,
- slow simulation,
- large number of values to be manually provided

by the user for the iteration variables,
- no efficient handling of these values.

In particular, it has been observed that sometimes
Dymola cannot calculate the initial states, even when
all iterations variables are set very close to their solu-
tion values. This was the main difficulty that was
encountered when closing the loop through the con-
denser.
When Dymola stops before the end of the simula-
tion, no clear message is delivered to analyse the
causes of the failure.
Tool improvements were analysed and reported as
part of the EDF contribution to the EUROSYSLIB
project, in partnership with Politecnico di Mi-
lano [6].

3.6 Simulation results

The model is able to compute precisely:
- the air excess,
- the distribution of water and steam mass flow

rates,
- the thermal power of heat exchangers,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

370

- the electrical power provided by the generator,
- the pressure temperature and specific enthalpy

distribution across the network,
- the drums levels and the condenser level,
- the performance parameters of all the equip-

ments,
- the global efficiencies of the water/steam cycle

and gas turbine.

The computational time is faster than real time (with
Dymola 6.1).
The results of the simulation for 100% load are given
below.

Gas Turbine (GT)
Nominal power: 2*230 MW,

Steam Generator (HRSG)
Thermal power: 2*350 MW,

Steam Turbine
Nominal power: 275 MW,

Condenser
Thermal power: 423 MW.
Outlet water temperature: 306 K
Vacuum pressure: 6100 Pa

The results of the simulation runs are given in Figure
8 and Figure 9 in the Appendix. They are consistent
with the engineer’s expertise.
However, when the GT trip reaches full stopping of
the plant, the recirculation flows in the evaporators
do not go to zero as expected, for reasons that are not
yet fully understood.

4 Conclusion

A new open source Modelica library called ‘Ther-
moSysPro’ has been developed within the frame-
work of the ITEA 2 EUROSYSLIB project. This
library has been mainly designed for the static and
dynamic modeling of power plants, but can also be
used for other energy systems such as industrial
processes, buildings, etc. It is intended to be easily
understood and extendable by the models developer.
Among other test-cases, a dynamic and rather large
model of a combined cycle power plant has been
developed to validate the library. This model com-
prises the flue gas side and the full thermodynamic
water/steam cycle closed through the condenser.
Two difficult transients were simulated: a step reduc-
tion load of the power generator and a full gas tur-
bine trip. The results are mostly consistent with the
engineer’s expertise.

Despite of some simulation difficulties because of
the lack of debugging tools for Modelica models,
this work shows that the library is complete and ro-
bust enough for the modelling and simulation of
complex power plants. However these two essential
qualities for a power plant library should continu-
ously be improved and maintained in the long run.

Acknowledgements

This work was partially supported by the pan-
European ITEA2 program and the French govern-
ment through the EUROSYSLIB project.

References

[1] Bouskela D., Chip V., El Hefni B., Faven-
nec J.M., Midou M. and Ninet J. ‘New
method to assess tube support plate clog-
ging phenomena in steam generators of
nuclear power plants’, Mathematical and
Computer Modelling of Dynamical Sys-
tems, 16: 3, 257-267, 2010.

[2] El Hefni B., Bouskela D., ‘Modelling of a
water/steam cycle of the combined cycle
power plant “Rio Bravo 2” with Mode-
lica’, Modelica 2006 conference proceed-
ings.

[3] Souyri A., Bouskela D., ‘Pressurized Wa-
ter Reactor Modelling with Modelica’,
Modelica 2006 conference proceedings.

[4] Collier J.G., and Thome J.R., ‘Convective
Boiling and Condensation’, Mc Graw-Hill
Book Company (UK) limited, 1972 Clar-
endon Press, Oxford, 1996.

[5] Patankar S.V., ‘Numerical Heat Transfer
and Fluid Flow’, Hemisphere Publishing
Corporation, Taylor & Francis, 1980.

[6] Casella F., Bouskela D., ‘Efficient method
for power plant modelling’, EDF report H-
P1C-2010-01929-EN, 2010.

[7] David F., Souyri A., Marchais G., ‘Model-
ling Steam Generators for Sodium Fast
Reactors with Modelica’, Modelica 2009
conference proceedings

[8] El Hefni B., Péchiné B., ‘Model driven op-
timization of biomass CHP plant design’,
Mathmod conference 2009, Vienna, Aus-
tria.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

371

Appendix

PackagesPackages ComponentsComponents

Sub-packagesSub-packages

Figure 5: organization of the library

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

372

Figure 6: model of the combined cycle power plant used for the power generator step reduction load

Mass flow rates

GT exhaust
FlueGases

Figure 7: model of the combined cycle power plant used for the full GT trip

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

373

Figure 8: power generator step reduction simulation (-50%)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

374

Figure 9: GT trip simulation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

375

Implementation of Models for reheating processes
in industrial furnaces

Daniel Rene Kreuzer Andreas Werner
Vienna Universtiy of Technology , Institute of Energy systems and Thermodynamics

Getreidemarkt 9/302, 1060 Wien

Abstract

Components were developed for the modeling of in-
dustrial furnaces in the iron and steel industry like
pusher-type and walking beam furnaces. A cell model
on the basis of the dynamic pipe model of the Mod-
elica Fluid Library was designed. The cell model
computes the heat transfer between furnace walls, flue
gas and the processed steel goods. The radiative heat
transfer is modeled by a 1-dimensional method based
on Hottel’s net radiation method. Furthermore, mod-
els for furnace walls, slabs, hearth and the transport of
the slabs were designed. The models are suitable for
analyzing operation modes and designing control con-
cepts
Keywords: reheating; furnace; simulation; radiation

1 Introduction

Currently the manufacturing industry has focused on
increasing energy efficiency of their production pro-
cesses. The effective and sustainable use of energy
is becoming more important, due to the issues of cli-
mate change and therefore the demand of reducing
CO2 emissions. The iron and steel industry in partic-
ular incorporates a multiplicity of reheating processes
in the production chain of their commodities. For in-
stance the reheating of slabs in pusher type or walking
beam furnaces to set up the right temperature interval
before hot rolling as well as annealing of steel coils in
continuous or batch furnaces to trigger the micro struc-
ture and therefore the properties of the steel products.
The furnaces mentioned are commonly operated by
using natural gas and off gas from blast furnace, coke
oven and basic oxygen furnace. While in the past the
development of reheating processes was concentrated
on increasing the production output, recently the de-
crease in energy consumption became more and more
important. Raising energy efficiency requires the op-
timization or redesign of the reheating process steps,

Figure 1: Walking beam furnace

e.g. by implementing advanced control concepts or
by analyzing and assessing different operation modes.
These engineering tasks indicate the need for accurate
dynamic furnace models. There exists a variety of fur-
nace models as e.g. described in [5],[8], [4], [2]. Sev-
eral models which are used by the industry are based
on experimental modeling (system identification) or so
called black box modeling. The disadvantage of such
models is the restricted validity to the considered sys-
tems. The main intention of the presented work is the
design of highly reusable models contained within a
library which are able to simulate the unsteady heat
transfer phenomena of reheating steel goods in indus-
trial furnaces. Due to the focus on modeling the phys-
ical phenomena and the reuse ability of the models the
Modelica language standard and the simulation envi-
ronment Dymola were chosen for the modeling task.

2 Basic considerations

Figure 1 shows the layout of a typical reheating fur-
nace which can be used for heating semi-finished
steel products before hot rolling. Basically they
work as counter current heat exchangers, therefore
the transport direction of the processed goods is di-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

376

Figure 2: Heat transfer mechanisms of reheating process

rectedagainst the main flow of the flue gas. Reheat-
ing furnaces usually consist of a convective, heating
and soaking zone. The heating and soaking zone are
commonly operated by gaseous fuel-type burners, and
the main heat transfer phenomenon is radiation. Due
to the high flue gas temperatures up to 1400◦C, fur-
naces are lined with refractory. The walls have a typi-
cal multiple layer configuration of different materials.
During processing, the steel goods are positioned on a
hearth, which has to be cooled for e.g. by evaporative
cooling. The basic phenomena of reheating processes
which have to be modeled are

• Heat transfer due to radiation between walls, flue
gas, flame and processed goods

• Heat transfer due to convection between flue gas
and walls as well as flue gas and processed goods

• Heat conduction in furnace walls, processed
goods and hearth

• Combustion of gases (burners)

• Transport of flue gas - Fluid Flow Models (FFM)

• Transport of processed goods - Solid Flow Mod-
els (SFM)

Figure 2 depicts the appearing heat flow rates of re-
heating slabs in a walking beam furnace. The further
presented models consider primarily the reheating of

slabs in walking beam or pusher-type furnaces. How-
ever the models for heat transfer phenomena are gen-
erally valid and may only need a minor adaptation for
use at other reheating processes. The major diversi-
ties in modeling reheating processes are evident for the
SFM and their impact on the heat transfer models.

3 Fluid Flow

The general concept of the reheating process mod-
els is based on a homogeneous cell model which in-
corporates fluid flow and heat transfer. The dynamic
pipe flow model of theModelica.Fluid.Library
is used for modeling the 1-dimensional fluid flow
of flue gases in the furnaces. A comprehen-
sive description of solving the fluid transport equa-
tions with theModelica.Fluid.Library is given in
[3]. Properties of the fluids are determined by the
Modelica.Media.Library , e.g. internal energy,
specific enthalpy, density, thermal conductivity, dy-
namic viscosity. The heat transfer between the gases,
the walls and the slabs is realized by designing a new
heat transfer model which replaces the standard mod-
els.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

377

Figure 3: Cell model based on Modelica fluid library

Figure 4: Net radiation heat flow of surface i in a cell
containingthe emitting gas

4 Heat Transfer

4.1 Radiative heat transfer

The radiative heat transfer plays a key role in mod-
eling high temperature industrial furnaces. The dif-
ferent mathematical radiation models can be classified
by their dimensionality. in literature 0-dimensional, 1-
dimensional and 3-dimensional models are discribed.
3D-models achieve the highest accuracy but require
high efforts in modeling and computing time, those
kind of models are usually implemented in commer-
cial CFD-packages. 0D-models are based on the
stirred-tank reactor and give only a rough estimation
for the radiative heat transfer of the regarded systems.
1D-models are in between the two aforementioned
types and seem to be a proper trade-off in accuracy
and modeling effort. For modeling the radiative heat
transfer a 1D-model derived by [6] was selected. It
has been developed from the net radiation method of
Hottel, which is described in [7], [1]. Scholand [6]
depicts the equations needed for calculating radiative
heat exchange between radiating surfaces in an enclo-
sure comprising isothermal radiative gases.

Figure 5: Discretization of a combustion chamber

4.1.1 Governing Equations

The following section states the equations according
[6] used for the radiative heat transfer model. The
grey and diffuse radiating surfaceAi , shown in Figure
4, receives the radiative heat flowHi composed of the
heat flow emitted by the different grey surfaces and the
gas. The grey surface i again emits with its tempera-
tureεiEbi and reflectsHiρi . The net-radiation heat flow
of the surface i, which exchanges heat with n different
surfaces of the enclosure, yields

q̇i = Wi −Hi (1)

at which the outgoing radiative heat flow is given by

Wi = εi ·Ebi +ρi ·Hi (2)

εi is the emissivity of the grey wall andEbi = σ ·T4
i is

the hemispherical total emissive power of a black body
whereasσ is the Stefan-Boltzmann constant andTi the
surface temperature. The incoming radiative heat flow
is given by

Hi = εgi ·σT4
g +

1
Ai

n

∑
j=1

A jWjFji τ ji (3)

and equation 1 results in

q̇i = εi ·Ebi − εi · εgi ·σT4
g − εi ·

1
Ai

n

∑
j=1

A jWjFji τ ji (4)

εgi is the emissivity of the gas andTg is the gas
temperature.Wj is the outgoing heat flow of the jth-
surface element,Ai andA j are the associated surface
areas,Fji is the view configuration factor between sur-
face j and surface i andτ ji is the transmittance of the
gas. The discretization of a furnace is done by con-
necting several of the above described cells. The heat
transfer due to radiation between those cells is real-
ized by a diathermic wall approach depicted in figure
5. The diathermic wall presents the interface between

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

378

two cells, e.g. the relation between celln andthe cell
n−1 yields:

Hi,n = Wi,n−1 (5)

Hi,n−1 = Wi,n (6)

The above stated equations presume a grey gas entirely
surrounded by grey walls. For a grey gas the depen-
dency of emissivity, absorptivity and transmittance is
given byαg+τg = 1, αg = εg andρg = 0, whereas for
a grey bodyτ = 0, α + ρ = 1 andε = α . A real gas
like flue gas from a combustion reaction is composed
of several species which have different properties. Im-
portant radiative gases likeCO2 andH2O are selective
emitters which means their emissivity , absorptivity
and transmittance strongly depend on the wave length
interval. Due to this fact the assumption of a single
grey gas surrounded by grey walls has to be abandoned
whereas the assumption of grey body radiation of the
walls remains valid. Therefore the equation 4 yields:

q̇i = εi ·Ebi − εi ·

∫ ∞

λ=0
ελgi ·σT4

g dλ (7)

−εi ·
1
Ai

∫ ∞

λ=0

n

∑
j=1

A jWjFji τ ji dλ (8)

The clear-gray gas model approach according to [9] is
used for the calculation of the emissivity, absorptiv-
ity and transmittance of the gas mixture. The emit-
ting species are considered as grey gases and the other
species are concentrated as non emitting clear gas. The
emissivity of a gas mixture withH2O andCO2 as emit-
ting gases is hence:

εG =
3

∑
i=1

ai(1−e−kgi·pg·SG) (9)

wherekgi is the absorption coefficient of the different
constituents,pg equals the sum of the partial pressure
of pH2O andpCO2, SG is the radiation beam length and
ai are weighting factors which are given by a linear
approach

ai = b0i +b1i ·TG (10)

and the conditional equation

3

∑
i=1

ai = 1 (11)

The absorptivity is calculated with a similar approach
to equation 9 and 10, only the weighting factors are de-
termined with the wall temperatures instead of the gas
temperature. For solving the equations of the radiative
heat transfer the calculated radiative gas properties are
applied to equation 4.

Figure 6: Cell model for heat transfer

4.2 Convective heat transfer

The convective heat transfer can simply be added to
the net-radiation equation of the surface i

q̇i = Wi −Hi + q̇conv (12)

q̇conv= α · (Tg−Ti) (13)

The heat transfer coefficients for the single surfaces
are determined with the relation of forced convection
at a single plate according to [9]

4.3 Thermal conduction

The transient heat conduction problem in walls, slabs
and hearth is modeled by Fourier’s 1-dimensional par-
tial differential equation

∂T
∂ t

= a·
∂ 2T
∂x2 +

Q̇e

ρcp
(14)

4.4 Implementation of heat transfer models

4.4.1 Radiation and convection models

The net-radiation method and the convective heat
transfer equations presented in section 4.1 and
4.2 were integrated into a new designed model
RadiationAndConvectionHeatTransfer . The
model calculates all the data necessary for the heat
transfer mechanisms, e.g. the view configuration
factors of the involved bodies, the radiative properties
of the gases, the Nußelt-Numbers, the convective heat
transfer coefficients etc. Those data in conjunction
with the temperatures lead finally to the net-radiation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

379

Figure 9: Code for computation ofQb_dot_radconv for a single cell

Figure 7: HeatPort_Radiation Connector

Figure 8: GeometryPort_Radiation Connector

and convective heat flows. A bottom-cell and a
top-cell are developed for the discretization of the
furnaces to take the different geometric configurations
into account. For the energy exchange between fluid,
walls, slabs, hearth and the neighbouring cells a new
type of connectors HeatPort_Radiation was devel-
oped. It is not working like real physical connector
due to the fact that it may be connected to diathermic
walls. A diathermic wall usually represents the
interface between two discretized cells. Unlike a real
wall a diathermic wall has to enable a heat flow in
both directions at the same time. Therefore another
flow variable Q_flow_res and the corresponding
potential variableT_g which is equal to the gas
temperature of the cell were introduced. The radiative
heat transfer depends on the temperature differences
of the involved bodies and it depends on the position,
attitude, propagation and emissivity of the emitting
surfaces. That fact leads to a further none physical
connector GeometryPort_Radiation which transmits
the necessary data from the involved bodies to the
heat transfer model and vice versa. The generated
connectors are combined to composite connectors.
Figure 6 shows the heat transfer model of a top-cell
and the connections to walls, slabs and the hearth.
Two further connectors are present one which sends a
signal with needed data for heat conduction between
slabs and hearth and the other one which realizes a
heat flow due to radiation between a top and a bottom
cell via a diathermic wall.
The connection between the heat transfer model and
the fluid flow model is made via the energy balance

Figure 10: Surface configuration of top cell

for a cell stated by [3] for a single flow segment i.

der(Us[i])=Hb_flows[i]+Ib_flows[n]+Qb_flows[i]

Figure 9 shows the code for the computation of
vector Q_dot_radconv for n different flow seg-
ments. An accurate implementation of heat transfer
allows only the discretization of one flow segment.
The vector Qb_flows is set equal to the vector
Q_dot_radconv which is determined from the heat
flow vectorsq and q_res of the participating m+7
surfaces. The number of surfaces is determined from
the number of slabs m which are present during the
simulation, the number of furnace walls, the hearth
surface and the surface of the gap between slabs and
hearth. For all real wallsq_res is equal to 0 andq is
the net heat flow due to radiation and convection. The
net heat flowq of the slabs is set to 0 if the slab is
not present in the considered cell. The vectorA_agg

aggregates the surface areas of all participating bodies.

4.4.2 Wall, hearth and slab models

The wall hearth and slab models are based on the
Modelica.Thermal.HeatTransfer.Components,
which provide a solution for the 1-dimensional
heat conduction equation. Figure 11 shows
the model of a layered wall which is dis-
cretized with the elementsHeatCapacitor and
ThermalConductor. The models have connectors
to the heat transfer model which represents the
connection to the radiative and convective trans-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

380

Figure 11: Layered slab and wall model

fer equations and a connectorHeatPort of the
Modelica.Thermal.HeatTransfer.Components

which serves to set up the boundary conditions. The
interface between the connectors of the cell and the
Modelica.Thermal.HeatTransfer.Components

is realized by a special surface element. This element
represents the emitting surface and is the first dis-
cretization of the wall and it is based on the equations
of a theHeatCapacitor. The slabs and the hearth
are modeled in the same way as the layered wall.
The slab model possesses two surface models for the
heat transfer between a top cell and a bottom cell,
further it has connections to the hearth for the heat
transfer due to conduction and radiation as well as
to the solid flow model which determines the slab
position. The hearth model is split into a model for a
top cell and a bottom cell and presents an equivalent
system for the real configuration, because the exact
geometry configuration can hardly be modeled due to
the characteristics of a 1-dimensional analysis. The
HearthBottom model has a connector for the cell
and one for a boundary condition which is usually
a temperature condition. TheHearthTop model
possesses connectors for the heat conduction with the
slabs, the radiative and convective heat transfer with
the cell, the radiative heat transfer with the slabs and
a signal connector which transmits needed data for
computing the phenomena mentioned before. Figure
13 shows the parameter needed for a layered wall.
The number of layers, the number of discretization
per layer, the thickness of the single layers and
the material properties of each layer as well as the
start temperatures of the different layers have to be
supplied.

5 Combustion

The release of energy in reheating furnaces is typically
realized by the combustion of gaseous fuels. The fun-
damental combustion calculation is utilized to deter-

Figure 12: Hearth model for bottom and top cell

Figure 13: Parameter window for layered wall

minethe required mass flow of air, the flue gas amount
and the flue gas composition. The energy input of the
fuels is considered by the lower heating valueHu. The
designed models neglect the dynamics of the combus-
tion reactions. ThePartialLumpedVolume serves as
base class for the combustion model.The energy bal-
ance for the combustion volume is given by

∂ (ρuV)

∂ t
= ṁAir ·hAir + ṁFuel(hFuel +Hu) (15)

−ṁFlueGashFlueGas+∑Q̇

For the adiabatic combustion∑Q̇ = 0. For in-
stance,∑Q̇ can be used to define heat transfer due
to flame radiation but the geometric configuration
and the propagation of the flame has to be known
as well as the flame emissivity. The volume model
has connections for the combustion air, the gaseous
fuel and the flue gas. It is assumed that the en-
tire volume is filled with homogeneously distributed
flue gas. The flue gas in the volume model is
completely combusted without any residues of com-
bustibles. Three new ideal gas mixtures were defined
with the Modelica.Media.Library . The mixture
FuelGaseous which consists of the speciesH2, N2,
CO2, CO,H2S, CH4, C2H2, C3H8, C4H10,C3H6, C2H2

and C4H8, FlueGas which consists ofO2, Ar, N2,
CO2, H2O, SO2 andAir which consists ofO2, Ar, N2,
CO2, H2O. The combustion is realized by computing
the rate of change dependent on time of the single flue

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

381

Figure 14: Volume for combustion of gases

gasmasses
∂mO2

∂ t ,
∂mN2

∂ t , ∂mAr
∂ t ,

∂mCO2
∂ t ,

∂mH2O

∂ t ,
∂mSO2

∂ t ac-
cording to the fundamental combustion equations and
a predefined excess air.

6 Solid Flow Model

The solid flow model consists of 3 different mod-
els shown in figure 15. One model represents the
heating goods, in this case slabs and therefore the
SlabDistributer. It possesses the same connectors
as the slabs and aggregates all slabs, which are present
during simulation. The number of slabs m has to be
specified before starting a simulation and determines
how many objects "slab" are present. Every single
object slab has to be connected to each heat transfer
cell, which is done via theSlabDistributer. The
SlabFeedmodel is the most important element for the
solid flow because it computes the position of the sin-
gle slab models, refers the slab properties to the slab
models and triggers the slab feed movement. Com-
puting the slab positions and the heat transfer between
slabs and the other involved bodies led to the intro-
duction of a reference coordinate system. Therefore
all models which represent geometric objects, e.g. the
cells, walls slabs etc., get an origin referenced to the
introduced coordinate system. The propagation of the
models is specified into the positive direction of the
x(1)-, y(2)- and z(3)-axis. The fluid flow is defined
positive in the positive x-direction and the solid flow
is directed against the positive x-axis. TheSlabFeed
has a connection to theSlabDistributer and trans-
mits slab position and properties. A further connec-
tion is needed via boolean input to a pulse generator.
At every pulse the slabs are moved one step forward
and a new slab is fed into the furnace or cell. The
slab transportation occurs step wise which means they
are allocated to a certain discrete position at each time
step of the simulation. That means that the time of slab
movement is equal to 0. Due to the nature of a pusher

Figure 15: Solid Flow Models

typeor a walking beam furnace all slabs are moved si-
multaneously through the cells as long as they are in
the furnace. If they leave the boundaries of the furnace
the slabs are brought to an end position. If more then
m slabs are processed during one simulation the posi-
tion of the completed slabs is reset to a starting posi-
tion, new property values and new input temperatures
are set. TheSolidFlowSystem model is defined as
an inner system wide component which provides im-
portant data for most of the models, e.g. maximum
number of slabs in simulation, slab properties, general
furnace data etc..

7 Testing the heat transfer models

Figure 16: Configuration of reheating furnace

The heat transfer models are tested by modeling
three zones of a reheating furnace depicted in figure
16. The regarded furnace incorporates two heating
zones, a convective zone and the soaking zone. The
reheating furnace is operated by natural gas and the
energy input is evenly distributed over the two heating
zones. The combustion air is preheated in a recupera-
tor, which is not considered in the model.

7.1 Experimental setup

For the experimental setup the two heating zones and
the convective zone are modeled. The soaking zone
is neglected because it serves only to ensure that the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

382

Figure 17: Discretization of furnace

coreof the slab reaches the target temperature. Fig-
ure 17 shows the discretization of the furnace zones.
Each zone is discretized by two cell models, a top cell
model and a bottom cell model. The heating zone
1 is represented by cell2T and cell2B, heating zone
2 by cell1T and cell1B and the convective zone by
cell3T andcell3B. The postfix ’B’ and ’T’ distinguish
between bottom and top cells. The heating zones are
equipped with 12 burners, which are modeled by the
burner elements. One burner model represents 6 burn-
ers and is connected to either a top or a bottom cell.
The cells of the convective zone (cell3T and cell3B)
are not connected to burner elements. The top cells
and bottom cells are connected via the fluid connec-
tors and the diathermic walls among each other. Top
and bottom cells are not connected via fluid connec-
tors, there exists no fluid exchange between the top
and the bottom cells. There is only an exchange of
heat due to radiation between the top and the bottom
cells. Furthermore the cells are connected to the wall
models, the slab models and the hearth models. Figure
18 and 19 show the burner elements and the connected
cell model. Figure 20 shows the whole configuration
in Dymola.

Figure 18: Model of burner elements

Figure 19: Model of connected cell and wall models

Figure 20: Model of the furnace zones in Dymola

7.2 Simulation

For the simulation of the modeled furnace configura-
tion the number of slab objects was set to m=25. That
implies a maximum number of 25 slabs can be simul-
taneously processed by the furnace. Each slab is dis-
cretized into 5 layers subdividing the thickness of the
slab and two surface elements. It is necessary to set
start positions and temperatures for the slabs, which is
basically done via the solid flow model. The walls are
built of different layers of refractory, which are com-
mon for those type of furnace, each layer is equal to
a discretization of the heat conduction model. The
outside connectors of the walls and further the wall
models need proper temperature start values. The cells
have a fixed position according to a reference coordi-
nate system and values for the propagation in x-, y-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

383

and z-direction. The position of the cell origin is im-
portant for the calculation of the view factors. The
furnace has a length of 26.5 m in x-direction. The heat
conduction between slabs and the hearth had to be pre-
vented because of high values of the cell dimensions
(8mto 10.5m) in x-direction compared to the width of
the slabs(≈1.5m). The heat conduction between the
slabs and the hearth of each cell is computed with the
mean temperature of all slabs which are present in a
cell. The energy input via the burners is set constant
for the whole simulation time at 68.75MW, the heat-
ing value of the natural gas is set to 48.9kJ/kg, the sin-
gle constituents of the gas remain constant during the
simulation and the temperature of the preheated com-
bustion air is set to 350◦C. The emissivity of all walls
and the hearth is set to 0.9 and of the slabs to 0.8. The
slab movement starts after 500sand after the duration
of 553sthe slabs are moved one step forward as well
as a new slab is fed into the furnace. The value of
the forward step is determined by the x-dimension of
the incoming slab. 15000sof the furnace operation are
simulated by using the integration algorithm RadauIIa
for stiff systems. The integration time for the simula-
tion of 15000slasted 1711.39s.

7.3 Results

Figure 21 shows the temperature distribution over the
simulation time of two different slabs. Figure 22
shows the discrete position of the slab origin over
simulation time of the slab 19, furthermore it depicts
the position during a whole pass of the slab element
through the furnace. The dimensions of slab 19 at that
time areL(x) = 1.397m,H(y) = 0.218mandD(z) =
12.12m. At 1053sthe slab 19 is fed into the furnace.
The processing of the slab ends at 11560swhich gives
a time of residence of about 10507s. At the end of pro-
cessing slab 19 has a surface temperature of 1351◦C
at the top and a temperature of 1335◦C in the middle
layer. The surface temperature at the bottom shows to
be similar compared to the top temperature. The tem-
perature rise of the slabs show also the transport from
one zone into another by a change in the temperature
slope. After the heating process slab 19 is fed to an end
position where new properties and dimensions can be
defined, e.g. a new input temperature. Afterwards the
slab is fed to a predefined position in front of the fur-
nace where it remains until processing is started again.
Figure 24 shows the temperature distribution of the gas
and the top wall of the top cells. It can be seen that
the temperature is strongly influenced by the incom-
ing and outgoing slabs. During the slab movement a

high amount of energy contained in the outgoing slab
is leaving the system and another much lower amount
of energy connected to the incoming slab is entering
the system. The resulting difference in enthalpy leads
to a temperature drop at each slab movement. Fig-
ure 25 shows the emissivity and the absorptivity of gas
for the irradiating top wall oaf cell1T. The emissivity
depends on the gas temperature but it is independent
from the wall temperature. As expected it decreases
with increasing temperature. The absorptivity of the
gas depends on the temperature of the irradiating wall,
as a result it has not the same values as the emissivity
of the gas.

8 Conclusion

Components for modeling dynamic heat transfer in in-
dustrial furnaces like pusher-type or walking beam-
type have been developed. They can be used to model
single zones or entire furnace systems. Those physi-
cal models would be particularly suitable for designing
advanced control concepts for the operation of the fur-
naces. The simulation of the test configuration shows
satisfactory results. The most important future task is
the validation of the heat transfer models by modeling
an existing reheating furnace and comparing the sim-
ulation with measurement results.

9 Symbols

Symbol Physical value

Ai(m2) surface area of wall i
ai(−) weighting factor gas radiation
b0i(−) coefficient of weighting

factor polynomial
b1i(1/K) coefficient of weighting

factor polynomial
cp(J/kgK) specific heat capacity
Eb(W/m2) hemispherical total emissive

power of a black body
Fi j (−) view configuration factor

from surface i to j
h(J/kg) specific enthalpy
Hi(W/m2) incoming radiative

heat flow of surface i

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

384

Symbol Physical value

Hu(J/kg) lower heating value
kgi(1/m·bar) absorption coefficient

of species i
ṁ(kg/s) mass flow
Q̇e(W) power source
q̇i(W/m2) net-radiation heat flow

of surface i
q̇conv(W/m2) convective heat flow

of surface i
SG(m) radiation beam length
Ti(K) temperature of wall i
Tg(K) gas temperature
u(J/kg) specific internal energy
V(m3) volume
Wi(W/m2) outgoing radiative heat flow

of surface i
αi(−) absorptivity of surface i
αg(−) absorptivity of gas
εg(−) emissivity of gas
εi(−) emissivity of surface i
λ (m) beam length
ρi(−) reflectivity of surface i
σ(W/m2K4) Stefan-Boltzmann constant
τ(−) transmittance of gas

References

[1] CLARK , J. A., KORYBALSKI , M. E., AND AR-
BOR, A. Algebraic methods for the calculation of
radiation exchange in an enclosure.Wärme und
Stoffübertragung 7(1974), 31–44.

[2] D IETZ, U. Einsatz mathematischer Modele
zur Simulation industrieller Feuerräume unter
besonderer Berücksichtigung des Strahlungsaus-
tausches. PhD thesis, Universität Stuttgart, Insti-
tut für Verfahrenstechnik und Dampfkesselwesen,
1991.

[3] FRANKE, R., CASELLA , F., SIELEMANN , M.,
PROELSS, K., OTTER, M., AND WETTER, M.
Standardization of thermo-fluid modeling in mod-
elica.fluid. In 7th Modelica Conference, Como,
Italy, Sep. 20-22,(2009).

[4] HACKL , F. Eine betriebsorientierte Methode
zur Berechnung der instationären tehermischen
Vorgänge in Wärmeöfen. PhD thesis, Montanisi-
tische Hochschule Leoben, 1974.

[5] K IM , M. Y. A heat transfer model for the anal-
ysis of transient heating of the slab in a direct-
fired wlking beam type reheating furnace.Inter-
national Journal of Mass and Heat Transfer 50
(2007), 3740–3748.

[6] SCHOLAND, E. Ein einfaches mathematisches
Modell zur Berechnung des Strahlungswärmeaus-
tausches in Brennkammern, vol. Fortschr.-Ber.
VDI-Z Reihe 6 Nr.111. VDI-Verlag GmbH-
Düsseldorf, 1982.

[7] SIEGEL, R., AND HOWELL, J. R. Thermal Ra-
diation Heat Transfer. Hemisphere Publishing
Corporationher Publishing CorporationTaylor &
Francis, 1992.

[8] STRACKE, H. Mathematisches Modell für
brennstoffbeheizte Industrieöfen unter beson-
derer Berücksichtigung der Gasstrahlung,
vol. Forschungsberichte des Landes Nordreihen-
Westfalen Nr. 2821/Fachgruppe Maschinenbau
Verfahrenstechnik. Westdeutscher Verlag, 1979.

[9] V EREIN DEUTSCHER INGENIEURE, V.-G. V.
U. C., Ed.VDI-Wärmeatlas 10. Auflage. Springer-
Verlag, 2006.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

385

0 2500 5000 7500 10000 12500 15000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

time [s]

te
m

pe
ra

tu
re

 [°
C

]

surface temperature top slab 19
surface temperature bottom slab 19
temperature middle layer slab 19
 surface temperature top slab 22
surface temperature bottom slab 22
temperature middle layer slab 22

Figure 21: Slab temperature

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
−2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28
29

time [s]

P
os

iti
on

 in
 x

−d
ire

ct
io

n
R

F
[m

]

x−Position of origin slab 19
furnace exit
origin of cell2T
origin of cell3T
furnace entrance
origin of cell1T

Figure 22: Discrete Slab positions during simulation

0 2500 5000 7500 10000 12500 15000
0

2

4

6

8

10

12

14

16

18
x 10

5

time [s]

he
at

 fl
ow

 [W
]

heat flow top surface slab 19
heat flow bottom surface slab 19

Figure 23: Heat flow at top and bottom surface of slab 19

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

386

0 2500 5000 7500 10000 12500 15000
200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

time [s]

te
m

pe
ra

tu
re

 [°
C

]

gas temperature of cell1T
gas temperature of cell2T
gas temperature of cell3T
top wall temperature cell1T
top wall temperature cell3T
top wall temperature cell2T

Figure 24: Gas and wall temperature of top cells

0 2500 5000 7500 10000 12500 15000
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

time [s]

α ga
s
, ε

ga
s
[−

]

emissivity of gas in cell1T
absorptivity of top wall in cell1T

Figure 25: Gas emissivity and absorptivity

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

387

Modeling a Mains connected PWM Converter with
Voltage-Oriented Control

Anton Haumer Christian Kral
AIT Austrian Institute of Technology GmbH

Giefinggasse 2, 1210 Vienna, Austria

Abstract

The majority of industrial controlled induction ma-
chine drives are connected to the mains via a diode
bridge. However, if reduction of harmonic currents
and / or regenerative operation is desired, replacing
the diode bridge by an active front-end (AFE) is
required. This paper describes two models of an AFE:
a power balance model disregarding switching effects,
and an ideal switching model of a pulse width modu-
lation (PWM) converter. Both models are controlled
utilizing space phasors in a voltage oriented refer-
ence frame. Voltage oriented control (VOC) of the
mains converter can be compared with field oriented
control (FOC) of a machine converter. Design and
parametrization of the main parts—synchronization
with mains voltage, current controller and DC voltage
controller—are described in detail. Additionally,
simulation results proving the implementation and
demonstrating possible investigations as well as an
outlook on further enhancements are presented.

Keywords: Active Front-End, PWM Converter,
Voltage-Oriented Control

1 Introduction

The standard solution for industrial controlled drives
consists of an induction machine, fed by a voltage
source inverter. The drive usually is field-oriented con-
trolled, as described e.g. in [1]. In many cases, the DC
link is connected to the mains via a diode bridge due
to cost saving reasons. However, some goals cannot
be fulfilled by a diode bridge:

• Regenerative / recuperative operation

• Reduction of harmonic currents

• Control of reactive power

va

vb

vc

Ra

Rb

Rc

La

Lb

Lc

C
d
c

lo
a
d

Figure 1: Model of an AFE with PWM converter

Replacing the diode bridge by an IGBT bridge as
shown in Fig. 1 allows to address these topics. Be-
tween the mains and the AFE a mains reactor has to
be used to limit the current slope and current harmon-
ics, respectively.
The control of such an active front-end can be de-
signed in several ways, as described in [2, 3, 4, 5, 6, 7].
In this paper, the voltage-oriented control with cas-
caded current control and DC voltage control has been
chosen. This control scheme is comparable to the
field-oriented control of the machine converter:

• Synchronization to: mains voltage position –
field position

• Current controller for the space phasor

• DC voltage controller – speed controller

Both VOC and FOC utilize space phasor representa-
tion of voltages and currents; space phasor transfor-
mation is defined by

v =
2

3

(
v1 + av2 + a2v3

)
(1)

a = ej
2π
3 (2)

v0 =
1

3
(v1 + v2 + v3) (3)

with respect to a static reference frame. This transfor-
mation is power invariant:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

388

Mains voltage line-to-line 400 V rms
Mains frequency 50 Hz
Short-circuit apparent power 35 MVA
Short-circuit power factor 0.2 -
Inductance of mains reactor 400 µH
Resistance of mains reactor 25 mΩ

Nominal AC current 140 A rms
Switching frequency 5 kHz
DC capacitance 30 mF
Nominal DC voltage 693 V

Table 1: System parameters

p =
3

2
(+vReiRe + vImiIm) (4)

q =
3

2
(−vReiIm + vImiRe) (5)

Transformation of the space phasor to a rotating refer-
ence frame (index K) is done according to

vK = ve−jϕ (6)

ϕ = ϕ0 +

∫
ωKdt (7)

However, the product rule of differentiation has to be
obeyed, which leads to:

di

dt
=
diK
dt

e+jϕ + jωKiKe
+jϕ (8)

The parameters used for all simulations are summa-
rized in Tab. 1. To achieve more realistic simulations,
the grid is not only modeled as a stiff voltage source,
but an inductance and a resistance according to the
grid’s short-circuit apparent power have been added.

2 AFE Modeling

An AFE controls a power conversion bridge such way,
that desired AC active and reactive currents are on-
tained. The following components have been implem-
neted in a library, additionally summarized in ready-
to-use models (Fig. 2):

• AC measurement box mBoxAC (subsection 2.1)

• mains reactor mainsReactor

• six pulse bridge b6, being either an instance
of PowerBalance or IdealSwitching (subsec-
tion 2.2)

data

mBoxAC
M mainsReactor

=

b6

dcCapacitor
mBoxDC

L

p
w
m

voc

AC

pDC

nDC

busMC

Figure 2: Mains converter with power balance model

• either a pwmDelay or a spaceVectorPWM block
(subsection 2.2)

• buffer capacitor dcCapacitor; grounding has to
be used carefully, to avoid undefined potentials or
short-circuits; therefore, a grounding via a high
earthing resistor is included

• DC measurement box mBoxDC (subsection 2.3)

• voc voltage oriented control block (subsec-
tion 2.4)

• busMC signal bus (subsection 2.5)

• parameter record data (subsection 2.6)

To the signal bus, either a reference input for active
and reactive current is required, or a vDCController

block (subsection 2.7) has to be connected. The DC
controller takes the reference parameters or inputs for
the set points of the DC voltage and the reactive AC
current, controlling the AC active current to obtain the
desired DC voltage.

2.1 MBoxAC

The MBoxAC measures AC voltages and currents. The
voltage can either be measured at the mains terminals
(i.e. mains reactor input), or at the converter AC input
terminals (i.e. mains reactor output). For the latter
case, the voltage drop across the mains reactor is added
to the measured converter input voltage to acquire the
desired mains voltage.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

389

P
+1 +1

I

V

d
c
V
o
lt
a
g
e

d
c
C
u
rr
e
n
t

a
c
V
o
lt
a
g
e

a
c
P
o
w
e
r

d
c
P
o
w
e
r

v
R
e
f

+

Figure 3: Power Balance model

According to subsection 3.1, reference angle and an-
gular velocity of the mains voltage are determined by
means of a synchronization block. Voltages and cur-
rents are transformed to space phasors and—using the
reference angle—rotated to the voltage oriented refer-
ence frame. All quantities are fed to the bus (subsec-
tion 2.5).

2.2 Power Conversion Models

2.2.1 Power Balance Model

The PowerBalance model (see Fig. 3) consists of a
three-phase voltage source, prescribing the AC refer-
ence voltages of the current controller. The DC current
is determined by an integral power controller, compar-
ing AC power and DC power.
The three-phase reference voltages are pre-processed
by a block, limiting the amplitude according to the cur-
rent DC voltage. Additionally, the reference voltages
are delayed by half of a switching period 0.5/fPWM

to consider the dead time delay of a real PWM. The
delay is modeled by means of a PT1 for simplicity rea-
sons.

2.2.2 Ideal Switching Model

The IdealSwitching model is built from two three-
phase IGBT models (IdealGTOThyristor) and two
anti-parallel three-phase diodes, taken from the Mod-
elica Standard Library.
The switching states of the IGBTs are determined by a
space vector PWM block, as described e.g. in [8] and

phi reference angle of mains voltage
omega angular velocity of mains voltage
iRef[2] space phasor of reference current
iAC[2] space phasor of actual mains current
vAC[2] space phasor of actual mains voltage
vDC actual DC voltage
iDC actual DC current

Table 2: Bus signals

[9]. Additionally the duty cycles are limited accord-
ing to the current DC voltage at the beginning of each
switching period 1/fPWM .

2.3 MBoxDC

The MBoxDC measures DC voltage and current. The
current can either be measured between DC capaci-
tor and load terminals, or between converter DC out-
put and DC capacitor terminals. For the latter case,
the current drawn by the DC capacitor is added to the
measured converter output current to get the desired
load current. All measured quantities are fed to the
bus (subsection 2.5).

2.4 Current Controller Block

According to subsection 3.2, all components of the
current controller have been summarized in this block.
The relevant input signals are taken from the con-
trol bus (subssection 2.5). The controller output—
the three-phase reference voltage—is propagated via
a signal output connector.

2.5 Bus

The expandable connector busMC contains all signals
to be exchanged between measurement models and the
different control blocks (Tab. 2). Bus adapters are im-
plemented to connect signal sources for reference val-
ues to the bus.

2.6 Parameter Record

This record summarizes all parameters of the ready-
to-use models in a convenient way. Additionally, the
controller settings (see subsection 3.2 and 3.3) are cal-
culated but can be overwritten by the user, if desired.

2.7 DC Voltage Controller Block

According to subsection 3.3, all components of the DC
voltage controller have been summarized in this block.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

390

The desired set point for the DC voltage is defined ei-
ther as a parameter, or as a signal input. Additionally,
the desired reactive reference current can be defined
either as a parameter or as a signal input. The con-
troller output—space phasor components of the refer-
ence current—are fed to the control bus (subsection
2.5).

3 Controller Design

3.1 Synchronization

Providing a proper synchronization to the base har-
monic of the mains voltage even under unbalanced
and / or distorted voltage conditions is a crucial task
([10, 11, 12]). Standard solutions use a filter, trans-
form the mains voltages to a space phasor with respect
to a static reference frame and rotate this space phasor
to the voltage oriented reference frame, using the refer-
ence angle that is the output of such a synchronization
block. If this rotation is done correctly, the imaginary
part of the rotated space phasor should be zero. Thus
it could be used as an indicator for a phase locked loop
loop (PLL), both determining the angular velocity and
the phase angle of the mains voltage space phasor.
Instead of a PLL, the function Modelica.Math.atan2

is applied to the voltage space phasor with respect to
the static reference frame, thus generating the desired
phase angle for synchronization. Detecting the mains
frequency or rather angular velocity (i.e. the timely
derivative of the phase angle) of the space phasor—
especially under unbalanced / and or distorted voltage
conditions, even with a filter—is much more compli-
cated. In order to keep the models simple, the constant
mains frequency is just fed to the bus (subsection 2.5).
Since even the ideal switching power conversion
model (subsection 2.2.2) causes voltage harmonics
when the grid’s stiffness is not infinite, a multi vari-
able filter design ([13, 14]) working on the voltage
space phasor with respect to the static reference frame
is used (Fig. 4).
Analyzing the filter circuit, we can write

dy

dt
= k

(
u− y

)
+ jωNy. (9)

For a single harmonic with angular frequency ω the
frequency response is

y

u
=

k

k + j (ω − ωN)
. (10)

The parameter k = 2πfB defines the bandwidth of the
filter. It is obvious that the filter’s center frequency

-

k=2*pi*fB

{-1,+1}

{+1,+1}

+

{+1,+1}

{-1,+1}
I

extract={2,1}

u[2] y[2]

o
m
e
g
a

Figure 4: Multi variable filter

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

f [Hz]

a
b
s

fB=1Hz
fB=2.5Hz
fB=10Hz

Figure 5: Multi variable filter: gain versus frequency
for different bandwidths

ωN can be adopted simultaneously, e.g. by feeding the
current frequency of the PLL. The filter characteristics
for various bandwidths are shown in Fig. 5 and 6; at
the center frequency gain is 1 and phase shift is 0.

3.2 Current Control Loop

Using the voltage-oriented reference frame, the system
can be described using space phasors:

vC = vM −Ri− jωLi− L
di

dt
(11)

In this equation the index M and C designate the mains
and converter side, respectively, and the parameters
R and L are the mains resistance and inductance, re-
specively. Separating the real and imaginary part of
this equation and using Laplace transform leads to

vCRe = vMRe + ωLiIm −R (1 + sτ) iRe,(12)

vCIm = vMIm − ωLiRe −R (1 + sτ) iIm,(13)

where τ = L
R is the characteristic time constant.

The complex equation formed by (12) and (13) can
be decoupled by means of ωL (iIm − jiRe) such

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

391

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

f [Hz]

a
r
g

[
r
a
d
]

fB=1Hz
fB=2.5Hz
fB=10Hz

Figure 6: Multi variable filter: phase versus frequency
for different bandwidths

that simple PI controllers can be used for control-
ling the current. Either measured mains voltage
(vMRe + jvMIm) can be feed-forwarded, or the inte-
grator states of the PI controllers will meet those val-
ues. Compensation of the current’s PT1 behavior leads
to the controller parameters

kCurrent = kDynCurrent
1

R
, (14)

TiCurrent = τ, (15)

where the factor kDynCurrent is used to tune the cur-
rent controller performance. Neglecting the small
dead time delay due to the PWM, the closed current
control loop behaves like a PT1 according to

i = iRef
1

1 + sτ/kDynCurrent
. (16)

The current controller has been investigated with the
test example presented in Fig. 7, using the parameters
shown in Tab. 1 and a choice of kDynCurrent = 8. The
gray box emphasizes nearly all components that are
included in a ready-to-use model. The DC side of the
converter is connected to a constant DC voltage. At
time t = 0.10 s, a step of the active reference current
of 100Arms (i.e. a real part of the reference space
phasor of

√
2 · 100A), and at time t = 0.15 s, a step

of the reactive reference current of −100Arms (i.e.
imaginary part of the reference space phasor of

√
2 ·

100A) is applied.
Fig. 8 and 9 show the real and the imaginary part of
the reference and AC current space phasor. Replac-
ing the power balance model b6 by an ideal switching
model, as well as the delay component pwm by a space

grid

dataMC

mainsReactor
mBoxAC

M

=

b6

d
c
V
o
lt
a
g
e

p
w
m

v
o
c

vDCIn

iRef

Figure 7: Test example: current control

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

time [s]

c
u
r
r
e
n
t

[
A
]

iAC.Re
iRef.Re

Figure 8: Test example - current control - power bal-
ance: real parts of reference current and AC current
space phasor

vector PWM block, the results in Fig. 10 and 11 are
obtained. The comparison of the power balance and
the switching models, however, shows the same quali-
tative behavior.

3.3 DC Voltage Controller

To describe the relationship between DC voltage, load
current and mains current, power balance

pAC =
3

2
vMReiRe = pDC = vDCiDC (17)

can be used, neglecting the losses of the mains in-
ductor (17). Compared with (4), we see that due
to the usage of the voltage oriented reference frame,
vMIm = 0. Thus we can derive the factor between the
real part of the AC current space phasor and the DC

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

392

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

time [s]

c
u
r
r
e
n
t

[
A
]

iAC.Im
iRef.Im

Figure 9: Test example - current control - power bal-
ance: imaginary parts of reference current and AC cur-
rent space phasor

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

time [s]

c
u
r
r
e
n
t

[
A
]

iAC.Re
iRef.Re

Figure 10: Test example - current control - ideal
switching: real parts of reference current and AC cur-
rent space phasor

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

time [s]

c
u
r
r
e
n
t

[
A
]

iAC.Im
iRef.Im

Figure 11: Test example - current control - ideal
switching: imaginary parts of reference current and
AC current space phasor

load current for stationary operation:

kACDC =
iDC

iAC,Re
=

√
3

2

VAC,rms,line−to−line,Nominal

VDC,Nominal

(18)

Using Laplace transform and taking the reference
tracking performance of the current control loop (16)
into account, we obtain:

kACDC
iRef,Re

1 + sτ/kDynCurrent
= iDC,load + sCDCvDC

(19)
Using factor kDynV oltage to tune the performance of
the DC voltage controller, we choose a PI controller,
parametrized according to the symmetrical optimum
(standard choice a = 2). The gain and time constant
of this controller are:

kV oltage = kDynV oltage
CDC

kACDC

a

TiV oltage
(20)

TiV oltage = a2τ/kDynCurrent (21)

The measured load current can bee feed-forwarded to
enhance the performance of the DC voltage controller.
The DC voltage controller has been investigated with
the test example presented in Fig. 12, using the pa-
rameters shown in Tab. 1, choices of kDynCurrent = 8
and kDynDCV oltage = 2, and with feed-forward of
the measured DC load current. The gray box em-
phasizes all components that are included in a ready-
to-use model. The reference of the DC voltage has
been set to nominal DC voltage, the reference of the
reactive AC current has been set to zero. At time
t = 0.10 s, the DC side is loaded with a constant power
of vDC,Nominal · 100A.
Fig. 13 shows the DC voltage and Fig. 14 show the
real part of the reference and the AC current space pha-
sor. Replacing the power balance model b6 by an ideal
switching model, as well as the delay component pwm
by a space vector PWM block, the results Fig. 15 and
16 are obtained. The comparison of the power balance
and the switching models, however, shows the same
qualitative behavior.

4 Complete Example

Finally, the ready-to-use models have been investi-
gated with the test example depicted in Fig. 17, us-
ing the parameters shown in Tab. 1, kDynCurrent = 8,
kDynDCV oltage = 2, and without feed-forward of the
measured DC load current. A DC voltage controller

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

393

grid

dataMC

mainsReactor
mBoxAC

M

=

b6 mBoxDC

L

d
c
C
a
p
a
c
it
o
r

p
w
m

v
o
c

vDCcontroller

d
c
P
o
w
e
r

P

pDCRef

Figure 12: Test example: DC voltage control

0.05 0.1 0.15 0.2
680

685

690

695

700

time [s]

v
o
l
t
a
g
e

[
V
]

vDC
vDCRef

Figure 13: Test example - DC voltage control - power
balance: reference and actual DC voltage

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

250

time [s]

c
u
r
r
e
n
t

[
A
]

iACRe
iRefRe

Figure 14: Test example - DC voltage control - power
balance: real parts of reference current and AC current
space phasor

0.05 0.1 0.15 0.2
680

685

690

695

700

time [s]

v
o
l
t
a
g
e

[
V
]

vDC
vDCRef

Figure 15: Test example - DC voltage control - ideal
switching: reference and actual DC voltage

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

250

time [s]

c
u
r
r
e
n
t

[
A
]

iACRe
iRefRe

Figure 16: Test example - DC voltage control - ideal
switching: real parts of reference current and AC cur-
rent space phasor

is connected to mains converter mc1; mains converter
mc2 controls active and reactive current, thus creating
a DC load for mains converter mc1. At time t = 0.10 s,
a step of the active reference current of 100A (i.e. a
real part of the reference space phasor of

√
2 · 100A)

is applied to the mains converter mc2; the set point
of reactive reference current remains 0. The AC ter-
minals of both mains converters are connected to the
same mains, thus the grid delivers only active current
to cover losses (of the mains reactors). Since both con-
verter models contain a DC capacitor (which is initial-
ized at nominal DC voltage), the DC terminals have to
be connected via small bus bar resistances.
Fig.18 shows real parts of reference and AC current
space phasor of mains converter mc2. The resulting
real parts of reference and AC current space phasor of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

394

g
ri
d

=

mc1

=

mc2

dataMC1 dataMC2

barPos

barNeg

v
D
C
c
o
n
tr
o
lle
r

iRef

Figure 17: Complete example

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

250

time [s]

c
u
r
r
e
n
t

[
A
]

mc2.iAC.Re
mc2.iRef.Re

Figure 18: Complete example - power balance, Con-
verter2: real parts of reference current and AC current
space phasor

mains converter mc1 are depicted in Fig. 19. DC volt-
age is controlled very well, as demonstrated in Fig. 20.
Replacing the power balance models mc1 and mc2 by
ideal switching models, the results Fig. 21–23 have
been obtained. The comparison of the power balance
and the switching models, however, shows the same
qualitative behavior.

5 Conclusions

All components needed to implement ready-to-use
models of an AFE, i.e. a mains connected PWM con-
verter with voltage oriented control, have been pre-
sented and tested by means of simulations. A complete
example demonstrates the usage of the ready-to-use

0.05 0.1 0.15 0.2
−250

−200

−150

−100

−50

0

50

time [s]

c
u
r
r
e
n
t

[
A
]

mc1.iAC.Re
mc1.iRef.Re

Figure 19: Complete example - power balance, Con-
verter1: real parts of reference current and AC current
space phasor

0.05 0.1 0.15 0.2
680

685

690

695

700

time [s]

v
o
l
t
a
g
e

[
V
]

vDC
vDCRef

Figure 20: Complete example - power balance: refer-
ence and actual DC voltage

0.05 0.1 0.15 0.2
−50

0

50

100

150

200

250

time [s]

c
u
r
r
e
n
t

[
A
]

mc2.iAC.Re
mc2.iRef.Re

Figure 21: Complete example - ideal switching, Con-
verter2: real parts of reference current and AC current
space phasor

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

395

0.05 0.1 0.15 0.2
−250

−200

−150

−100

−50

0

50

time [s]

c
u
r
r
e
n
t

[
A
]

mc1.iAC.Re
mc1.iRef.Re

Figure 22: Complete example - ideal switching, Con-
verter1: real parts of reference current and AC current
space phasor

0.05 0.1 0.15 0.2
680

685

690

695

700

time [s]

v
o
l
t
a
g
e

[
V
]

vDC
vDCRef

Figure 23: Complete example - ideal switching: refer-
ence and actual DC voltage

models. The user can choose between a power balance
model and an ideal switching model. As expected, the
power balance model—neglecting switching effects—
speeds up simulation by a factor of more than 100, of
course dependent on the PWM switching frequency.
Using these AFE models, a lot of investigations can be
carried out, like:

• Behavior of the AFE under unbalanced or dis-
torted mains voltage

• Parallel operation of AFEs at the same DC bus

• Stability of an AFE under weak grid conditions
or connected to a synchronous generator

• Implementation of power controllers for wind
turbines or solar converters

• Usage of an AFE as reactive power compensation

Further development is planned for:

• Coupling the AFE models with drive models
from the SmartElectricDrives library

• Enhancing the synchronization

• Adapting current control to mains-side LCL fil-
ters

References
[1] J. V. Gragger, H. Giuliani, C. Kral, T. Bäuml,

H. Kapeller, and F. Pirker, “The SmartElectricDrives
Library – powerful models for fast simulations of
electric drives,” The 5th International Modelica Con-
ference, pp. 571–577, 2006.

[2] M. Malinowski, M. Kazmierkowski, and A. Trzy-
nadlowski, “Review and comparative study of con-
trol techniques for three-phase pwm rectifiers,” Math-
ematics and Computers in Simulation, vol. 63, p.
349–361, 2003.

[3] M. Malinowski, M. P. Kazmierkowski, and A. M.
Trzynadlowski, “A comparative study of control tech-
niques for pwm rectifiers in ac adjustable speed
drives,” IEEE Transactions On Power Electronics,
vol. 18, no. 5, pp. 1390–1396, May 2003.

[4] S. L. Sanjuan, “Voltage oriented control of three-
phase boost pwm converters,” Master’s thesis,
Chalmers University of Technology, Gothenburg,
2010.

[5] F. Blaabjerg, R. Teodorescu, Z. Chen, and M. Liserre,
“Power converters and control of renewable energy
systems,” International Conference on Power Elec-
tronics, ICPE 2004, pp. 2–20, 2004.

[6] T. Østrem, “Reliable electric power conversion for
connecting renewables to the distribution network,”
Ph.D. dissertation, Norwegian University of Science
and Technology, 2008.

[7] S. E. Evju, “Fundamentals of grid connected photo-
voltaic power electronic converter design,” Master’s
thesis, Norwegian University of Science and Technol-
ogy, 2007.

[8] J. V. Gragger, A. Haumer, C. Kral, and F. Pirker, “Ef-
ficient analysis of harmonic losses in PWM voltage
source induction machine drives with Modelica,” In-
ternational Modelica Conference, 6th, Bielefeld, Ger-
many, pp. 593–600, 2008.

[9] A. Boglietti, G. Griva, M. Pastorelli, F. Profumo, and
T. Adam, “Different PWM modulation techniques in-
dexes performance evaluation,” IEEE International
Symposium on Industrial Electronics, ISIE’93 - Bu-
dapest., pp. 193–199, 1993.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

396

[10] F. D. Freijedo, J. Doval-Gandoy, O. Lopez,
C. Martinez-Penalver, A. G. Yepes, P. Fernandez-
Comesana, J. Malvar, A. Nogueiras, J. Marcos,
and A. Lago, “Grid-synchronization methods for
power converters,” 35th Annual Conference of IEEE
Industrial Electronics, IECON 2009, pp. 522–529,
2009.

[11] A. Nagliero, R. A. Mastromauro, M. Liserre, and
A. Dell’Aquila, “Synchronization techniques for grid
connected wind turbines,” 35th Annual Conference of
IEEE Industrial Electronics, IECON 2009., pp. 4606–
4613, 2009.

[12] A. Timbus, R. Teodorescu, F. Blaabjerg, and M. Lis-
erre, “Synchronization methods for three phase dis-
tributed power generation systems. an overview and
evaluation,” IEEE 36th Power Electronics Specialists
Conference, PESC 2005., pp. 2474 – 2481, 2005.

[13] T. Østrem, W. Sulkowski, L. E. Norum, and C. Wang,
“Grid connected photovoltaic (pv) inverter with robust
phase-locked loop (pll),” IEEE PES Transmission and
Distribution Conference and Exposition Latin Amer-
ica, 2006.

[14] M. C. Benhabib, F. Wang, and J. L. Duarte, “Improved
robust phase locked loop for utility grid applications,”
13th European Conference on Power Electronics and
Applications, EPE 2009, pp. 1–8, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

397

A real

Germa

Abstract

In this pape
cell online
proposed.
equivalent
tables of ce
laboratory t
and validat
battery pack
ROboMObi
Keywords: B
(StateOfCha
BEV (Batter

1 Intro

Nowadays
important.
hope that in
transport c
secondary c
main develo
Besides of
mixtures fo
is also nece
and advanc
systems an
The aim o
estimation
and health
complex du
with high p
no direct m
of the cell
characterist
model for
suggested w

l time ca

an Aerospac

jon

t

er a modeling
monitoring
It combin

electric circ
ell type cha
tests. The m
ted with cel
k of DLR res
il.
BMS (Batter
arge); EKF
ryElectricVe

oduction

electric mo
New manu
n the near f
can be full
chemical en
opment task
f the devel
or higher pow
essary to dev
ced algorithm
nd global en
of these sy
for actual a
monitoring

ue to the no
performance
measurement
l is availab
ic parameter
use with re
which gives

apable ba
using

Jonatha
ce Center (D

Muenchn
athan.bremb

g approach f
and offline

nes physica
cuit represen
aracteristic in
model is full
lls used in t
search roboti

rieManagem
F (Extende
ehicle);

obility gets
facturing m

future vehicl
ly electrifie

nergy storage
s in the auto
lopment of
wer density
velop new em
ms for batte
nergy distrib
ystems is t
and future po
g. This requ
onlinear beh
Lithium-Ion
method wit

ble to deter
rs and states

ecursive onli
s a good tr

attery m
g optima

an Brembec
DLR) Oberp
ner Strasse 2
beck@dlr.d

for a Lithium
benchmarkin

al modeling
ntation with
nformation
ly parameter
the HighVol
ic electric ve

entSystem);
edKalmanFil

more and m
methods give

es for indivi
ed. The use
es is one of
omotive indu
f new chem
and durabili

mbedded sys
ery managem
bution strate
to give a g
ower availab

uirement is
havior, espec
n cells. Curre
thout destruc

rmine the m
s. In this pap
ine estimatio
rade-off betw

model for
al estima

ck
pfaffenhofen
20, D-82234
de Sebastian

m-Ion
ng is
g in

grid
from
rized
ltage

ehicle

SOC
lter);

more
e the
idual
e of
f the
ustry.
mical
ity, it
stems
ment

egies.
good
bility
very

cially
rently
ction

major
per a
on is
ween

mod
low
(non
succ
with
a re
deve
Mec

Figu

The
Batt
simu
there
varia

2

2.1

To m
thing
exam
from
sepa

r electric
ation met

Sebastian W
n, Institute o
4 Wessling,
n.Wielgos@

deling accura
order sys

n)linear subs
cessfully imp
hin the RObo
esearch plat
eloped at th
chatronics.

ure 1: ROboM

suggested
teryElectricV
ulations of th
e applied f
ation.

Differen
modeling

Models fo

model the ele
g to do is t
mple for thi
m [Böh08] i
arated into th

c mobilit
thods

Wielgos
of Robotics
 Germany

@schaeffler.c

acy and real
stem or a
systems. The
plemented, p
oMObil proj
tform for f
he DLR Ins

MObil test drive

model is
Vehicle mo
he overall sy

for offline a

t appro
g

or offline pu

ectric behavi
to use an eq
is type of m
is presented
hree time do

ty applic

s and Mecha

com

l-time requir
minimal

e proposed
parameterize
ect (Figure

future electr
stitute for R

e

also integra
odel for d
ystem in [E
analysis and

oaches

urposes

ior of a cell,
quivalent cir
modeling, th
d. The cell
omains. The

cations

atronics

rements like
number of
algorithm is
d and tested
1, [Bre11]),
ric mobility

Robotics and

ated in the
drive cycle
ng10] . It is
d parameter

for cell

 the obvious
rcuit. As an
he approach
behavior is

e impedance

e
f
s
d
,
y
d

e
e
s
r

l

s
n
h
s
e

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

398

determines the short-time range while the long-term
behavior is incorporated by a voltage source.
Finally, the transitional behavior is captured by a
number of exponential functions which are overlaid.
Another possibility for cell modeling is based upon
impedance spectroscopy measurements. An example
for this class of models can be found in [Sti08] with
its enhanced equivalent circuit. The level of detail is
significantly higher compared to [Böh08] due to the
continuous formulation from low to high frequency
effects. The following cell characteristics are
considered: ohmic resistances, parasitic inductances,
charge transfer and double layer capacity, diffusion
processes and formation of solid electrical interface.
For purposes of cell design, the Comsol Batteries
and Fuel Cells Module ([Com10]) is an advanced
modeling method. The model is so accurate that it is
possible to simulate the concentration of the
electrolyte and therefore enables battery engineers to
test different combinations of materials and
dimensions to optimize the cell behavior.

2.2 Models for online purposes

The presented offline models are not applicable to
embedded control systems due to their modeling
approaches and the relatively complicated
representations. Available BatterieManagement
Systems, e. g. the widely used system from I+ME
Actia, use a predetermined cell characteristic table
and a current counting method without considering
the transient behavior of the cell.
Another and more advanced approach is the
EnhancedSelfCorrecting model by Plett proposed
in [Ple04] , [Ple04b] , [Ple04c] and [Ple04d] . The
cell is considered as a system with input "cell
current" and output "terminal voltage". The
StateOfCharge ݈ is included in the state vector and
therefore can be estimated by means of an
ExtendedKalmanFilter. The basis of the model is
the OpenCircuitVoltage ܷை and the ohmic loss.
This is represented in the equivalent circuit in
 Figure 2.

Figure 2: Equivalent circuit representation

Beyond that, this approach takes into account
hysteresis effects. The remaining cell dynamics is
described by means of a current filter. Therefore,
this results in the following output equation:
ݑ ൌ ܷைሺ݈ሻ ݄ െ ܴ ⋅ ݅ (1)ݑ
where ݄ is the hysteresis voltage and ݑ represents
the influence of the current filter.
The implementation of the ESC model shows
significant optimization potential. There are several
better discretization methods than the proposed
explicit Euler 1 method. This helps in simulation
stability and accuracy for online and offline purpose
(see section 3.3 for details). The formulation of the
current filter also seems unnecessary complex, It is
formulated as an IIR Low Pass Filter as follows:
ݏݏܽܲݓܮ	 ൌ 1 െ .,ݏݏ݄ܽܲ݃݅ܪ
Furthermore the computational costly online
parameterization of the filter by the use of a dual
estimation approach (see [Ple04d]) can be done
offline. In this way the system order can be reduced
and therefore the online performance increases.
Moreover, the first implementations of the ESC
model at DLR have shown problems with the
determination of SOC. In addition, the effects of
current and temperature on the actual cell capacity
are not considered in the ESC model. These can
have an enormous influence on the calculation of the
SOC, cf. Figure 3.

Figure 3: Capacity variation due to temperature and
current (ܥோ௧ ൌ (ܫ/ேܥ

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

399

2.3 Proposal of the modifiedESC model

Since we are convinced of the basic approach with
the ESC model, we will introduce a modified version
that is different in several aspects. In the mESC
approach, the battery cell is represented by a
continuous state space model. Through this scheme,
the discretization algorithm can be changed and
methods with higher accuracy, such as Runge-Kutta
4, can be used. Due to the complex structure and
time consuming parameterization of the current
filter, it is replaced by a critical damping FIR filter
that only contains one parameter. Additionally, the
calculation of the SOC is improved by an
empirically determined correction factor that
accounts for the dependency of temperature and
current on the actual cell capacity. Lastly, the model
is parameterized using an offline optimization with
real training data and then verified by validation
data.

3 mESC model details

3.1 Derivation and model structure

The mathematical description of the mESC model is
given by the following:

 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
!
!
݈
!
!

!
!
݄
!
!

!
!
!
!

݂

!
!
!
ے!
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
ሶ

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ െ

ߟ ⋅ ݇
ேܥ

⋅ ݅

ฬ
ߛ ⋅ ߟ ⋅ ݇

ேܥ
⋅ ݅ฬ ⋅ ሺܯ െ ݄ሻ

െ߱ ⋅ ݂ଵ ߱ ⋅ ݅
߱ ⋅ ݂ଵ െ ߱ ⋅ ݂ଶ

߱ ⋅ ݂ଶ െ ߱ ⋅ ݂ଷ

߱ ⋅ ݂ଷ െ ߱ ⋅ ݂ସ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(2)

ݑ ൌ ܷைሺ݈ሻ ݄ െ ܴ ⋅ ݂ସ (3)

The differential equation for the SOC ݈ depends on
the cell current ݅, the nominal cell capacity ܥே,
the Coulombic efficiency ߟ and the correction
factor ݇. This factor takes into consideration the
variation of the cell capacity as shown in Figure 3.
Following [Gra02] the correction factor is
determined by:

 ݇ ൌ

ە
۔

ۓ
ܿ ⋅ ݅ ݇		݂ݎ

																					 ݅ 0	ሺ݄ܿ݃ݎ. ሻ
݁⋅ ሺ݇ െ 1ሻ	݂ݎ

																			݅ ൏ 0	ሺ݄݀ܿ݃ݎ. ሻ

 (4)

ܿ is a positive constant leading into a straight line
for positive cell current, which intersects the
ordinate at ݇. For negative cell current the

correction factor is described by an exponential
function. The parameters c୧ and k are gathered
from capacity tests replacing the simple straight line
with more accurate look-up tables.
The hysteresis voltage ݄	 is described by a more
complex equation taking into account the additional
factors ܯ (polarization voltage) and ߛ (time
constant). The remaining four differential equations
describe the optimized fourth order critical damping
current filter with the only remaining parameter ߱
and its four states ݂௫.
The output equation (3) is similar to the ESC
model’s output equation but aggregates the influence
of the cell current (ohmic loss and current filter) into
one summand.

3.2 Important variables and parameters

The internal resistance is one of the cell’s
descriptive variables, which depends on SOC, cell
current and temperature resulting in a three
dimensional look-up table. This relationship is
visualized for room temperature in Figure 4.
Considering equation (3) one can imagine easily that
the resulting cell voltage varies highly in case of low
SOC and high currents due to increase of the internal
resistance of the cell. In such cases the cell is in a
critical situation and can be damaged irreversible.

Figure 4: Internal cell resistance for T =25°C

Another important cell variable is the
OpenCircuitVoltage, whose characteristic curve
incorporates the relationship between SOC and
OCV, as shown in Figure 5. This depiction also
shows the hysteresis effects very well. The blue and
red curves are measured during charging and
discharging of the cell with very low currents
respectively. This minimizes excitation of the cell
dynamics so that the cell terminal voltage can be
considered unloaded. In addition, the influence of
the internal resistance is eliminated during the data

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

400

analysis. Th
half of the
therefore als

Figure 5: Op

In Figure
depending
temperature

Figure 6: Po

Finally, Fi
exemplary
temperature
discharge an
the data is c

0 0.1
3

3.2

3.4

3.6

3.8

4

4.2

4.4

C
el

l v
o

lta
g

e
 [

V
]

he polarizati
difference b

so depends o

penCircuitVol

6 the pola
on the temp

es below

olarization vol

igure 7 sho
correction

e. Measurem
nd stored in
calculated us

0.2 0.3 0.

ion voltage
between the
on the OCV.

ltage

arization vo
perature. It

 have the h

ltage

ows the de
factor on

ment data is c
a look-up tab
ing equation

4 0.5 0.6

 is define
two curves

oltage is plo
is apparent

highest influe

ependency o
 at r

collected only
ble. For char

n (4).

0.7 0.8 0.9

Charg
Disch
OCV

ed as
s and

otted
that

ence.

of a
room
y for
rging

Figu

The
part
offli
man
impl
ROb
The
depi

Figu

3.3

The
curr
quan
accu
quan
the u
This
benc
estim
equa
take
Kalm

1

ge
arge

ure 7: Exempla

discussed m
of DLRs RO

ine simulat
nagement stra
lemented in
boMObil usi

resulting
icted as follo

ure 8: mESC m

mESC m

proposed m
rent, and on
ntities can
uracy even
ntity is the c
use of a ther
s is the same
ch (see sectio
mation perf
ation is impl
e constraints
man Filter.

-150 -100
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Measured
Paramete

ary identificat

model is impl
OMOEnerge
tions to
ategies of the
n the centra
ng a rapid p
implementat

ows.

model impleme

odel and Ka

mESC mod
ne output, c

be directly
in embedd

cell temperat
mocouple se
e method as
on 4 for deta
formance, a
lemented. Th
s into acco

For this

-50 0

d data
erized equation

tion of for

lemented in
etic library. I
optimize t
e vehicle con
al control

prototyping e
ation in DY

entation in DY

alman filteri

del has one
cell voltage.
y measured
ded systems
ture. It is de
ensor on the
s applied in
ails). To ach
a second m
he idea in pr
ount with
purpose an

50 100

r T=25°C

Modelica as
It is used for
the energy
ntrollers and
unit of the

environment.
YMOLA is

YMOLA

ing

input, cell
These two
with high

. The third
etermined by
cell surface.
the cell test
ieve a better

measurement
rincipal is to
a recursive

n additional

150 200

s
r
y
d
e
.
s

l
o
h
d
y
.
t
r
t
o
e
l

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

401

fictitious measurement is introduced. It can be
weighted through the tuning of the output covariance
matrix. This method is well known as perfect
measurements ([Sim06] chp. 7.5.2). In this way the
output equation extends to:

ݕ ൌ ቂ
ݑ
݈ ቃ (5)

The first equation is identical to formula (3) and the
second one can be derived as follows:

ݑ ൎ ܷைሺ݈ሻ െ ܴ ⋅ ݅	

⇒ ܷைሺ݈ሻ ൎ ݑ ܴ ⋅ ݅	
⇒ 	݈ ൎ ݈௦ ൌ ܷை

ିଵ ሺݑ ܴ ⋅ ݅ሻ
(6)

The measured SOC is calculated through the inverse
OCV/ܷைିଵ look-up in combination with a low pass
filtering afterwards. This extension allows the
ExtendedKalmanFilter to adjust SOC directly and
therefore to enforce a physically correct estimation.
To use the proposed mESC model in an embedded
system for state estimation an EKF is implemented.
It handles the nonlinearities through linearization in
each time step. In Table 1 the algorithm for discrete
systems is shown as found in standard literature (e.
g. [Sim06]).
Table 1: Extended Kalman Filter Algorithm

Initialization
ොݔ ൌ 	ሻݔሺܧ

ܲ
ା ൌ ݔሾሺܧ െ ොݔ

ାሻሺݔ െ ොݔ
ାሻሿ	

For ݇ ൌ 1,2, …	
ොݔ
ି ൌ ݂ିଵሺݔොିଵ

ା , 	ିଵሻݑ

ܲ݇
െ ൌ Φ݇െ1ܲ݇െ1

 Φ݇െ1
ܶ ܳ	

Φିଵ	݁ݎ݄݁ݓ ൌ
߲ ݂ିଵ

ݔ߲
ฬ
௫ොೖషభ
శ
	

݇ܭ ൌ ܲ݇
െ݇ܪ

ܶ ⋅ ሺ݇ܲ݇ܪ
െ݇ܪ

ܶ ܴሻെ1	

ܪ	݁ݎ݄݁ݓ ൌ
߲݄
ݔ߲

ฬ
௫ොೖ
ష
	

ො݇ݔ
 ൌ ො݇ݔ

െ ݇ܭ ⋅ ൫݇ݕ െ ݄݇ሺݔො݇
െሻ൯

	 ܲ
ା ൌ ሺܫ െ ܭ ⋅ ሻܪ ⋅ ܲ

ି		

Through the fact that our estimation model
(equations (2) and (5)) is in a continuous state space
formulation, it is necessary to discretize the model in
each time step. This can be done by several methods.
The easiest way is by the use of an Euler1 method.
Because of the poor stability (all poles have to be
placed within the unit circle of the time dependent
complex pane) we suggest using a Trapezoid method
(eq. (7)). It guarantees that the prediction step (ݔොି)
is always stable, even for a large sampling time ௦ܶ,
as long as all poles of the continuous system stay in
the left half of the complex pane.

ሻݐሶሺݔ ݐሶሺݔ ௦ܶሻ

2
ൌ
ݐሺݔ ௦ܶሻ െ ሻݐሺݔ

௦ܶ
 (7)

After some calculations the prediction step is
described as follows,

ො݇ݔ
െ ൌ ො݇െ1ݔ

 ൬ܫ െ
ݏܶ
2
െ1൰݇ܨ

െ1

⋅ (8) ݂݇ݏܶ

where ܨିଵ is the Jacobi matrix of the continuous
system with state vector ݇ െ 1. To receive the
transition matrix	Φ݇െ1	we have to solve the
following equation:

 Φ݇െ1 ൌ ൬ܫ െ
ݏܶ
2
െ1൰݇ܨ

െ1

⋅ ൬ܫ
ݏܶ
2
 െ1൰ (9)݇ܨ

For reason of numerical stability all matrix
inversions are done by solving a linear equation
problem of the form		ܣ ⋅ ݔ ൌ ܾ. This can be done
with LU_solve2 from ModelicaStandard. In
conclusion we have an Extended Kalman Filter
algorithm which has ܱሺ݊ݔଷሻ-flops more than the
original filter, but outperforms it due to the fact that
the sampling time can be chosen much larger. This
is only limited by Shannon’s sample theorem for
sampling the measured signals in real-time. Another
limit is that the linearization of the EKF causes a
mean and covariance propagation which is only
valid to the first order. This is due to Taylor series
expansion being truncated after the first term. The
second issue can be improved by the use of higher
order methods like the Unscented Kalman Filter,
[Mer04] .

4 Parameterization and validation

In the ROboMObil project we were able to obtain a
high performance cell from Li-Tec industries. It has
a nominal capacity of 40 Ah and with its security
features it is fully capable for series production. All
cell measurement for parameterization, testing, and
validations were done with a Vötsch VT4011
environment simulator and a BaSyTec battery testing
system. The model parameter optimization is
accomplished with MOPS (see [Joo08] for more
information) on the Linux cluster of DLR RM
Institute. The detailed procedure and the necessary
test cycles are explained in [Wie10] . The list of
tuned parameters is given in Table 2.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

402

Table 2: List of optimized parameters

 Time constant for rate of change of the ߛ
hysteresis voltage

݂ Cut-off frequency of the fourth order
current filter with critical damping

݂ Cut-off frequency of the first order low
pass filter for smoothing the "measured"
SOC needed due to the extended output
equation

ܳ, ܴ Covariance matrices for optimal EKF
settings (weighting of prediction by
means of the model and correction due to
the measured values)

The optimization process can be summarized as
shown in Figure 9. As quality criterions cell voltage
and SOC are compared to their respective references
using the so-called fit value. The fit value weights
the reference to the simulated characteristic vector
and can be calculated as follows:

ݐ݅ܨ ൌ

ۉ

ۈ
ۈ
ۇ
1 െ

ට∑ ቀหሺݕ; െ หݕ
ଶ
ቁ

ୀଵ

ඨ∑ ൬ቚݕ െ
1
݊ ⋅ ∑ ݕ

ୀଵ ቚ
ଶ

൰
ୀଵ

ی

ۋ
ۋ
ۊ
⋅ 100 (10)

Since a direct comparison of SOC is not possible,
the actually and effectively moved amount of charge
at the terminals of the cell is used.

T
Model

Simulation & Analysis

Calculation
of quality criterions

Scaling &
Weightening

of quality criterions

On-line

visualisation

Optimizer

S

G
C

C
T: Tuning parameter
S: Simulation result
G: Quality criterion
C: Normed quality criterions

MOPS

On-
linevisualisation

Figure 9: MOPS optimization process

For the validation of the estimated model parameters
a testbench experiment by means of a simulated
drive cycle is used. The observer scheme is shown in
Figure 10. The aim is to produce an accurate
estimate of the battery StateOfCharge, which is a
decisive input for the function of the energy
management strategy. In this observer, the input u of
the battery model is the measured current, while the
model output ym is the voltage of a single cell.

Figure 10: mESC observer structure

The model used in the observer was parameterized
by an offline optimization that uses measurements
test cycles and the characteristics of a single cell as
training data. In order to validate the resulting
parameterization, the battery was connected to an
electrical power supply/load and tested with a
simulated drive cycle. For this simulation, a model
of the longitudinal dynamics of the ROboMObil was
developed in Modelica which calculates the energy
flow of all the power consumers in the electrical
system [Eng10] .

Figure 11: Artemis Road velocity profile and power
consumption

0 5 10 15
0

20

40

60

80

100

120

Time [min]

V
e

lo
ci

ty
 [k

m
/h

]

0 5 10 15

-30

-20

-10

0

10

20

30

Time [min]

P
ow

e
r

[K
W

]

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

403

A closed-loop controller calculates the actuator
demands in order to follow the specified driving
cycle. In this way, the required electrical power is
calculated. Figure 12 shows a normalized Artemis
Road cycle, which is synthesized by stochastic
calculations from real recorded driving data [And04]
. This reflects real driving behavior significantly
better than the purely synthetic ECE15 driving cycle
used in the homologation of European vehicles. The
calculated electrical power flow is then taken from a
Dymola simulation and scaled to one battery cell.
This data is used on the HIL test bench to give the
Lithium-Ion cell the appropriate load current. The
results of this test, including the current, voltage, as
well as the cell temperature are used to test the
mESC model with EKF in the offline simulation.
The test results are shown in Figure 12, where the
measured and estimated values are compared to each
other. Evidently, the voltage values agree very well.
With almost 93% accuracy, the accordance of the
effective charge amount delivers a good result and
shows that the selected approach with the model-
based observer is of practical use.

5 Conclusions and future work

We have introduced a modeling approach for
Lithium-Ion cells that shows good performance and
was implemented within a practical application
(ROboMObil). Future development will extend the
model with real-time capable temperature dynamics
as suggested in [Che09] , [Mi07] and [Mat08] . This
should lead to better results in prediction of power
availability during critical situations like sub-zero
temperatures. Furthermore validation tests on the
rapid prototyping embedded systems in the
ROboMObil are planned. In the first weeks of

January 2011 we are able to accomplish roller bench
experiments with the ROboMObil. We are looking
forward to gaining new insights from the recorded
measurement data of the energy system. The results
will be presented in an upcoming publication.

6 Acknowledgment

We would like to thank Prof. M. Otter for his
support regarding implementation. His extensive
knowledge of robust and reliable numerical matrix
calculus was instrumental in achieving these good
results. Furthermore we would like to thank
LionSmart GmbH for the open discussions in points
of model implementation.

References

[And04] André, M. (2004). The ARTEMIS European
driving cycles for measuring car pollutant
emissions. Science of The Total Environment ,
334-335, 73-84.

[Com10] Batteries and Fuel Cells Module. Retrieved
2010, from
 http://www.comsol.com/showroom/gallery/686/

[Böh08] Böhm, K. A. (2008). Charakterisierung und
Modellierung von elektrischen Energie-
speichern für das Kfz. Aachen: Shaker Verlag.

[Bre11] Brembeck, J., Ho, L. M., Schaub, A., Satzger,
C., & Hirzinger, G. (2011). ROMO – the
robotic electric vehicle - Submitted for
publication. IAVSD

[Eng10] Engst, C., Brembeck, J., Otter, M., & Kennel, R.
(2010). Object-Oriented Modelling and Real-
Time Simulation of an Electric Vehicle in
Modelica. Technische Universität München

0 2000 4000 6000 8000 10000 12000
3

3.5

4

Reference characteristic
Estimated characteristic (Fit=100.00%)

0 2000 4000 6000 8000 10000 12000

-40

-20

0

Reference characteristic
Estimated characteristic (Fit=92.96%)

Figure 12: Experiment results from Artemis Road Drive Cycle Test

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

404

[Che09] Cheng, L., Ke, C., Fengchun, S., Peng, T., &
Hongwei, Z. (2009). Research on thermo-
physical properties identification and thermal
analysis of EV Li-ion battery., Vehicle Power
and Propulsion Conference, 2009. VPPC '09.
IEEE, 2009, 1643 -1648

 [Gra02] Graaf, R. (2010). Simulation hybrider
Antriebskonzepte mit Kurzzeitspeicher für
Kraftfahrzeuge. Ika RWTH, Aachen.

[iME10] i+ME ACTIA. (n.d.). Retrieved 11 2010, from
http://www.ime-actia.com/download/
IR11652_BMS_GB.pdf

[Joo08] Joos, H.-D., Bals, J., Looye, G., Schnepper, K.,
& Varga, A. (2008). MOPS: Eine integrierte
optimierungsbasierte Entwurfsumgebung für
mehrzielige, parametrische Analyse und
Synthese. DGLR Workshop Systemident-
ifizierug, Parameterschätzung und Optimierung.

[Lio10] LionSmart. (2010). Retrieved 11 2010, from
http://www.lionsmart.com/

[Mat08] Matsushita, T., Yabuta, K., Tsujikawa, T.,
Matsushima, T., Arakawa, M., & Kurita, K.
(2008). Construction of three-dimensional
thermal simulation model of lithium-ion
secondary battery., Telecommunications Energy
Conference, 2008. INTELEC 2008. IEEE 30th
International, 2008, 1 -6

[Mer04] Merwe, R. , Wan, E., & Julier, S. (2004). Sigma-
Point Kalman Filters for Nonlinear
Estimation and Sensor-Fusion: Applications
to Integrated Navigation, AIAA Guidance,
Navigation, and Control Conference and Exhibit,
2004

[Mi07] Mi, C., Li, B., Buck, D., & Ota, N. (2007).
Advanced Electro-Thermal Modeling of
Lithium-Ion Battery System for Hybrid
Electric Vehicle Applications., Vehicle Power
and Propulsion Conference, 2007. VPPC 2007.
IEEE, 2007, 107 -111

[Ple04] Plett, G. (2004). High-performance battery-
pack power estimation using a dynamic cell
model. Vehicular Technology, IEEE
Transactions on , 53 (5), 1586-1593.

[Ple04b] Plett, G. L. (2004). Extended Kalman filtering
for battery management systems of LiPB-
based HEV battery packs: Part 1. Back-
ground. Journal of Power Sources , 134 (2),
252-261.

[Ple04c] Plett, G. L. (2004). Extended Kalman filtering
for battery management systems of LiPB-
based HEV battery packs: Part 2. Modeling
and identification. Journal of Power Sources ,
134 (2), 262-276.

[Ple04d] Plett, G. L. (2004). Extended Kalman filtering
for battery management systems of LiPB-
based HEV battery packs: Part 3. State and
parameter estimation. Journal of Power
Sources , 134 (2), 277-292.

[Sim06] Simon, D. (2006). Optimal State Estimation:
Kalman, H Infinity, and Nonlinear
Approaches (1. Auflage ed.). Wiley & Sons.

[Sti08] Stiftl, J. (2008). Modellierung und Bewertung
von Fahrzeugen mit seriellem Plug-In
Hybridantrieb. Hochschule Karlsruhe –
Technik und Wirtschaft: Diplomarbeit.

[Wie10] Wielgos, S., Brembeck, J., Otter, M., & Kennel,
R. (2010). Development of an Energy
Management System for Electric Vehicles
Design and System Simulation. Technische
Universität München.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

405

Use of Modelica language to model an MV compensated electrical

network and its protection equipment : comparison with EMTP

Olivier Chilard Jean-Philippe Tavella Olivier Devaux

EDF Research and Development

1, avenue du général de Gaulle, 92140 Clamart France

olivier.chilard@edf.fr jean-philippe.tavella@edf.fr olivier.devaux@edf.fr

Abstract

Today, neutral compensation based on Petersen coils

is being applied in many MV electrical networks.

The main reasons for this are :

- an important expansion of the underground net-

work in rural environment. This leads to high

phase-to-ground capacities of the outgoing feed-

ers, which increases fault currents in networks

using impedant grounding,

- an increased sensitivity of the customers to the

quality of supply,

- changes in international standards (insulation

coordination).

The introduction of arc suppression Petersen coils

allows both to reduce the current in single phase-to-

ground faults and to improve the quality of supply by

reducing short supply disconnection.

Adapting this solution to the existing networks made

it necessary to change the protection system, by us-

ing zero sequence wattmetric relays.

The feedbacks of the zero sequence wattmetric re-

lays operating today show the need of an evolution

of this protection equipment specifications. To ad-

dress this need, EDF R&D has investigated the use

of Modelica language for the electrical system mod-

eling.

At first the relevance of Modelica language for elec-

trical systems modeling has been studied. This work

was made from a comparison of simulation results

with those traditionally obtained with EMTP soft-

ware, normally used by EDF R&D. This paper de-

tails this approach and underlines the interest of

Modelica for the electrical network fields. The next

step will be the use of the ModelicaML profile in

order to establish a new version of the protection

system specification.

1 Introduction

Currently, in order to design new control devices

such as protection equipment, Matlab and EMTP are

widely used. The solutions obtained are then vali-

dated on the field. Once a final solution is retained, a

specification paper is then written and sent to the

manufacturers which provide industrial solutions.

However, paper specifications are not formal,

thus they may be interpreted differently by manufac-

turers and lead to some difficulties in conception

phases. Moreover, when an equipment has been in

operation for several years, if the initial solution has

to be upgraded, the initial specification paper might

be difficult to exploit again. Indeed, the informal

description of the expected equipments often leads to

a paper with redundant, missing or interpretable re-

quirements.

In this context, a new approach based on the

Modelica language has been studied. Modelica has

been applied first in the particular case of the zero

sequence wattmetric relay used in MV compensated

networks. Moreover, this approach is intended to be

used both for the development and specification

phases.

This paper presents the modeling work and gives

a comparison with a more traditional approach using

EMTP-RV [3]. The simulation results are also pro-

vided and compared.

The final objective will be to provide a formal

executable specification of the expected equipment.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

406

2 Description of the use case retained

The use case refers to the modeling and the simu-

lation of two zero sequence wattmetric protections

and a simplified MV compensated network. The pro-

tection is described in a specification paper estab-

lished by EDF R&D. It has been developed to pro-

tect MV neutral compensated networks against mean

and medium resistive single phase faults. This pro-

tection denoted PWH, is based on the analysis of

both transient and steady state values of residual cur-

rent and residual voltage available in the compen-

sated MV substation.

Let’s briefly recall the principle of a compensated

network and that of the PWH.

In rural MV distribution networks, each feeder is

mainly constituted of an overhead line and thus,

when a fault occurs, the phase-to-ground capacitance

current values are low (Figure 1). Therefore in these

cases the neutral of the HV/MV transformer is

grounded through a resistor and the fault current is

equal to the neutral current.

Figure 1 : Principles of compensated networks

In mixed MV Distribution networks, an important

part of each outgoing feeder is composed of under-

ground cables. Therefore, contrary to the previous

case, when a single fault occurs, the total capacitor

current value seen at the MV busbar is important.

Thus the resistor of the MV neutral grounding is re-

placed by a coil (a resistor in parallel with an induc-

tor, refer to Figure 1) in order to compensate the zero

sequence capacitor current and thus limit the current

according to the international standard (insulation

coordination). Consequently, if the mismatch of the

coil is adjusted to zero Amps, the fault current is li-

mited to the active neutral current part of the coil.

Concerning the network modeling, a simplified

MV compensated network is considered. The follow-

ing assumptions are made :

- The single phase fault is considered close to

the MV busbar. Thus, the reactance of each

outgoing feeder is neglected and only the

phase-to-ground capacitance is considered,

- The MV substation three phase voltage

source is assumed to be balanced,

- Consumption and reactive power compensa-

tors are not considered.

Figure 2 : MV compensated network retained

Therefore, the simplified MV network scheme re-

tained is given in Figure 2. The substation is defined

by its HV/MV transformer, its coil inserted on the

neutral grounding and its MV busbar. One faulty

feeder and two unfaulty feeders are considered. The

second unfaulty feeder (without protection)

represents an aggregation of all other unfaulty feed-

ers. Two PWHs are also considered and respectively

allocated to the faulty feeder and to the first unfaulty

feeder (Figure 2). Its aim is to eliminate the single

phase fault. To do that, the PWH has to send a trip to

the circuit breaker of the faulty feeder.

A PWH is based on the analysis of both transient

and steady state values of residual current and resi-

dual voltage measured at the MV substation.

PWH selective action is based on the known fact

that the active component of the residual current in

the faulty feeder is of the opposite direction and

much greater than on any of the unfaulty feeders.

Therefore, on the faulty feeder, the zero-sequence

wattmetric relays detects negative zero sequence ac-

tive power. On contrary, the protection placed on the

unfaulty feeder detects a positive zero sequence ac-

tive power.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

407

The PWH protection has to protect the network

against two types of phase-to-ground faults :

- A permanent fault which involves residual

current with a preponderant component at

50 Hz, after the transient phenomena due to

the occurrence of the fault,

- A series of self-extinguishing faults, which is

considered as the same fault.

In order to detect a permanent fault, the RMS

values of the residual voltage & current and the resi-

dual active & reactive power are calculated for a

cycle of 20 ms. For the two types of faults, residual

power mean value is also calculated for a cycle of

60 ms (Figure 3).

Depending on the results of these calculations,

according to a condition test, a positive or negative

residual power message is send to the logical part of

the protection which elaborates a trip protection

message toward the circuit breaker of the faulty

feeder.

Figure 3 : Principles of the PWH

x
Vr(t)

Ir(t)

DPP

DPN

TMDP

DPPM AMI

DPNM

AVI

AVT

TAV

DPNMT

TMDN

&

&

IIM

IIM

+

TMI

DPPM
II

IIM DPNM

Vr > Sv

&

(x) : produit pour obtenir la puissance wattmétrique homopolaire
DPP : détection de puissance positive
TMDP et TMDN : temps de maintien égal à 200 ms
DPPM : détection de puissance positive maintenue
AMI : amont instantané
DPN : détection de puissance négative
DPNM : détection de puissance négative maintenue
AVI : aval instantané
IIM : inhibition interne maintenue
TAV : temporisation aval (de 100 à 3000 ms)
DPNMT : détection de puissance négative maintenue temporisée
AVT : aval temporisé
II : inhibition interne
IIM : inhibition interne maintenue
TMI : temporisation module d’inhibition égale à 550 ms
Vr : tension résiduelle
Sv : seuil de réglage ajusté par le constructeur pour avoir un fonctionnement
correct du module d’inhibition interne

3 Overview of the use case model im-

plemented with EMTP-RV

3.1 Overview of EMTP-RV

EMTP-RV (ElectroMagnetic Transient Program) is a

well-known software used for the simulation analysis

of electrical power system.

The program is meant for solving problems such as :
- Switching transients and overvoltages,

- Short term analysis of disturbances,

- Overcurrent calculations,

- Control of electric drives,

- FACTS.

3.2 Use case modeling

3.2.1 EMTP Modeling approaches

Two types of components can be used under

EMTP : traditional electrical components for elec-

trical circuits and block diagrams for the description

of automatic control of electrical systems. Most of

the electrical components are not modifiable by us-

ers. Thus, if a new component is to be implemented,

the user has the option of building it with block dia-

grams and elementary electrical components.

Another possibility is to compile a DLL or an S-

function. The DLL approach consists of a causal de-

scription of the component according to the numeric

solver of EMTP-RV. Thus, the DLL is a discretiza-

tion of the mathematical representation of the com-

ponent written in C language.

The S-function can be, for instance, provided by a

model previously established under Simulink or

Dymola tools. With this feature the numeric solver

of the model is included in the S-function and can be

different from EMTP’s.

3.2.2 Use case modeling

The MV compensated network model implemen-

tation is immediate. A predefined RL coupled im-

pedance has been used in order to respectively de-

fine :
- The resistor and inductor (in parallel) of the neu-

tral grounding impedance,

- The short circuit impedance of the three phase

voltage source.

These components represent an equivalent model

of both the transformer and the neutral impedance

connected in its MV terminals (Figure 2). To do so,

the positive, negative and zero sequence parameters

are chosen for each element.

A simple capacitor grounding has been placed at

each phase of each feeder.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

408

Figure 4 : The use case implementation under EMTP

For the zero sequence wattmetric relays imple-

mentation a combination of different block diagrams

has been used in order to model the PWHs. The re-

sulting model, derived from the structure given in

Figure 3 is shown in Figure 5.

Figure 5 : PWH model under EMTP

4 Overview of the use case model im-

plemented with the Modelica lan-

guage

Like under EMTP-RV, the simplified MV com-

pensated network model implementation is imme-

diate with Modelica. To do so, the components in-

side the official “Modelica.Electrical.Multiphase”

package provided with the language have been used.

In order to simulate the use case, the Dymola tool

based on the Modelica language has been chosen. It

provides the numeric solvers required for the simula-

tions and allows a graphical representation of the

model.

Figure 6 : Use case implementation with Modelica

In order to do a first assessment of the possibili-

ties provided by the “Modelica.Electrical.Machines”

package, an alternative model with a transformer has

been implemented too (Figure 7).

Figure 7 : Alternative modeling with a transformer

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

409

It is denoted that the RL coupled component is

not available in the Modelica libraries. Thus, the Rn,

Xn and Xmo given in Figure 6 and Figure 7 are de-

fined as 1/3 of the difference between the zero se-

quence and positive sequence impedances expected

with the positive sequence impedance placed in each

phase (Figure 6 : N_Rn, N_Xn / Figure 7 : Xmd).

In order to assess the Modelica language possi-

bilities, the distribution MV Network has been also

implemented without the use of the Modelica “Mod-

elica.Electrical.Multiphase” package (Figure 8). In

this case, coupled components have been created. To

do so, the voltage and current variables of each con-

nector are defined as a column vector with three

elements belonging to each phase (Figure 9). Thus,

each component has been defined by inheritance and

from matrix equations (Figure 10).

Like EMTP-RV, zero sequence and positive se-

quence input parameters are given for each of these

components.

Figure 8 : Use case implementation without the use of

the “Modelica.Electrical.Multiphase” package

Figure 9 : Example of the „two pin‟ partial model

created without any standard component

Figure 10 : Inductor L coupled model

Xd and Xo respectively correspond to the positive

and zero sequence impedances. The negative se-

quence impedance is taken equal to the positive one.

The three previously described Modelica models

(with and without “Modelica.Electrical.Multiphase”

package components) are equivalent as showed by

the simulation results obtained in Figure 11.

Figure 11 : Fault current curves from the three models

TThhee ffaauulltt iiss
eelliimmiinnaatteedd bbyy tthhee
PPWWHH ooff tthhee ffaauullttyy

ffeeeeddeerr The fault
occurs

For the zero sequence wattmetric relays implementa-

tion, a combination of the different block diagrams

has been used in order to model the PWHs. Howev-

er, these blocks have been created with the Modelica

language in order to facilitate this work. The result-

ing model is presented in the Figure 12.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

410

Figure 12 : PWH model under Modelica/Dymola

5 Modelica and EMTP

5.1 Validation of Modelica modeling

Some simulations have been done in order to va-

lidate the model developed with the Modelica lan-

guage.

To do so, EMTP has been considered as the

benchmark tool.

Under Dymola and EMTP, all the electrical signals

belonging respectively to the PWH and the MV net-

work are identical. In this paper, only the fault cur-

rent is presented (Figure 13).

It is obtained from simulations performed on

models given in Figure 4 and Figure 8. The fault cur-

rent values are identical such as the fault clearance

time due the PWH action.

Figure 13 : Phase-to-ground fault current

Blue : EMTP Red : Modelica/Dymola

TThhee ffaauulltt iiss
eelliimmiinnaatteedd bbyy tthhee
PPWWHH ooff tthhee ffaauullttyy

ffeeeeddeerr

TThhee ffaauulltt ooccccuurrss

5.2 Modelica and EMTP modeling comparison

The Modelica model, with all components created

by the user (Figure 8) is compared with the EMTP

model (Figure 4). EMTP has, for the electrical power

part, implicit components and, for the control com-

mand part, elementary explicit blocks. These com-

ponents are not modifiable and thereby to develop

new components, the user has to :

 Either create more or less difficult elementa-

ry components associations,

 Or build a DLL with S-function.

For the use case considered in this paper, only

explicit and implicit blocks were used. Thus, given

the basic components available in EMTP, some

tricks have been used to model the treatment of the

multiplier outputs named DPN and DPP (Figure 14).

From this very simple case, it is not difficult to un-

derstand that it would be very difficult to implement

and verify more complex systems such as distance

protections or advanced functions developed in the

SmartGrid. Although this may not be unfeasible (to

be validated according to the available basic blocks),

these developments would be difficult without any

guarantee of success. Moreover, the level of reada-

bility of such models would be bad and this approach

leads to an increase of the number of variables and

thus unnecessarily constraints the solver.

In the opposite, Modelica models are simpler be-

cause the different blocks of the explicit PWH can be

defined by the user. In other words, rather than asso-

ciating basic blocks of the native library of Modeli-

ca, the user can create more adapted components or

modify some existing blocks. Moreover, the Modeli-

ca language provides all specific language paradigms

for algorithm developments and so, unlike EMTP,

statements related to the treatment of the multiplier

are close to the description given in the PWH speci-

fication paper (Figure 14 and Figure 15).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

411

Figure 14 : Treatment of the PWH multiplier outputs

(DPP & DPN)

Model under EMTP

Modelica Model

Figure 15 : PWH specification extract focused on

the processing of the multiplier outputs DPN & DPP

Regarding the models related to the signal

processing, for example the one in charge to calcu-

late the RMS value of the busbar residual voltage,

the description in EMTP and Modelica are similar.

However, with EMTP, it is defined according to a

connection of some basic blocks while it is mathe-

matically declared in Modelica (Figure 16). By the

other, it should be denoted that, although the type of

the input/output blocks in the two cases are causal,

with Modelica, unlike EMTP, the integral equation is

acausal. It is a very important feature of Modelica

that allows the user to declare a system without wor-

rying about the order of the equations.

Figure 16 :Model providing the RMS value of

the busbar residual volatage

Model under EMTP

Modelica Model

Moreover, contrary to EMTP, it is important to

underline that all Modelica components are not solv-

er dependent. Under EMTP, both with a source code

or a DLL, a C code program of the discretized equa-

tions of the system should be created according to

the EMTP solver. In the opposite, this task is auto-

matically performed by the symbolic solver in the

Dymola tool.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

412

6 Conclusions

It is undeniable that the opening provided by

Modelica allows an unmatched flexibility in model-

ing. Contrary to EMTP, the PWH model is very

close to the description given in the paper specifica-

tion. In other words, Modelica description corres-

ponds to a formal version of the specification while

under EMTP, given the basic blocks available, the

model obtained is rather a translation of the specifi-

cation.

In addition our study shows the great interest of

the Modelica language for power electrical system

modeling and for electrotechnical studies.

So, for EDF R&D, the following steps will be :

 To use actual measurements as input to

the PWH Modelica model in order to

study more precisely the behavior of the

protection,

 If required, to update the model and

create a new release of the specification

including the textual Modelica model.

For this work, one of the intended goals will be to

examine the ModelicaML profile [2] as an opportu-

nity to graphically specify a system behavior.

References :

[1] Spécification Technique EDF

HN 45-S-54

Régime de neutre compensé -

Spécification de la Protection Watt-

métrique Homopolaire

[2] http://www.openmodelica.org/index.

php/developer/tools/134

ModelicaML - a UML profile for

Modelica

[3] http://www.emtp.com/

EMTP-RV - Computational Engine

[4] Principles of Object-Oriented

Modeling and Simulation with

Modelica 2.1

Peter Fritzson

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

413

http://www.openmodelica.org/index.php/developer/tools/134
http://www.openmodelica.org/index.php/developer/tools/134
http://www.emtp.com/

The Vehicle Dynamics Library:

New Concepts and New Fields of Application

Johan Andreasson

Modelon AB

Ideon Science Park

SE-22370 LUND

johan.andreasson@modelon.com

Abstract

The Vehicle Dynamics Library is a commercial

Modelica library for vehicle dynamics applications.

This paper highlights recent development with focus

on extended usability. Key changes are improved

interoperability with other tools, improved simula-

tion performance, extended vehicle system simula-

tion, and expanded analysis. Examples are given

from efficient simulation of drivelines, development

of active safety systems, and quasi-steady-state anal-

ysis, among others.

Keywords: Vehicle dynamics; mechanics, active sys-

tems, quasi-steady-state analysis

1 Introduction

The Vehicle Dynamics Library (VDL) [2] is a com-

mercial Modelica library providing a foundation for

model-based vehicle dynamics analysis. Since the

introduction of the library in 2006, there have been

significant extensions and improvements. In this pa-

per, some of these and their fields of application are

discussed.

The scope of VDL spans from classic vehicle

mechanics analysis to full vehicle system simulation

and evaluation. One of the fundamental guiding

principles of the library is the ability to mix between

behavioral and physical models to make it possible

to conveniently change, not just between different

configurations, but also between different levels of

detail.

As such, VDL is designed with several aspects in

mind and in this paper, the contents is focused on

four main aspects; Section 2 focuses on the work on

the mechanical models of the vehicle while Section 3

treats the system aspects of the vehicle, in this case

meaning the part of the vehicle that is used to control

the vehicle mechanics. Section 4 describes further

options to interface VDL with other tools and Sec-

tion 5 describes extensions to the scope of analysis.

As this paper presents the incremental work rela-

tive to what is presented in [2], it is strongly recom-

mended referring to that work for a more thorough

background to VDL and its architecture.

2 Vehicle Mechanics

Here, the focus is on the work driven by improve-

ments in configurability and simulation speed. The

two first sub-sections explain the improvements of

the suspension models while the latter focus on me-

chanics related to driveline and brakes.

2.1 Extended Suspension Templates

Typically, a suspension, just like any part of the ve-

hicle is configured from different templates. This

allows to conveniently exchanging joints and parts

while maintaining the topology. Main reasons for

this are to improve working efficiency and reduce

model maintenance [3].

To facilitate the configurability also of the sus-

pension topology, new components have been intro-

duced that allow also for topology changes to the

connection structure to be made based on parameter

settings. As illustrated in Figure 1, the stabilizer

mount (a) can be connected to the upper A-arm (b),

the upright (c) or the lower A-arm (d). In this exam-

ple also the spring mounts connections can be recon-

figured which in this case covers 18 different topolo-

gy configurations. Further customization is

straightforward for the user if necessary.

Unlike some other multi-body simulation soft-

ware, the Modelica formulation is transformed so it

can be integrated by standard index 1 solvers. This

method has several advantages and is one of the keys

to the inherent multi-engineering capabilities. One

implication is that a closed mechanical loop gene-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

414

rates implicit constraint equations that have to be

solved, either symbolically or numerically.

Figure 1 a reconfigurable suspension linkage template where

each element can be replaced.

To support symbolic solutions, which normally is

the much faster alternative, a dedicated formulation

was introduced in Modelica.Mechanics.MultiBody

[9,1] and is based on the idea that for a sequence of

joints that in total have six degrees of freedom, no

constraints are required if a composite model

representing all the joints is created.

This type of formulation can significantly im-

prove simulation speed as the lack of constraint equ-

ations also eliminates the corresponding nonlinear

systems of equations in the resulting simulation

code. This is important especially for real time simu-

lation. In VDL, the concept has been modified

slightly to allow for users to replace individual lin-

kage components within the composite model.

The concept is illustrated in Figure 2, showing the

same suspension topology as seen in Figure 1, with

the difference that the upper control arm (a), the

king-pin (b) and the tie rod (c) is represented as one

composite joint without any constraints. This me-

chanism defines the wheel carrier motion (d) given

the motion of the chassis (e), the lower control arm

(g) and the steering rack (f).

From a user perspective, there is no difference be-

tween the models in Figure 1and Figure 2, except for

the improved simulation speed; all other VDL fea-

tures such as force visualization remain the same.

2.2 Behavioral Suspensions Models

Behavioral suspension models are a common way to

represent suspension characteristics in a convenient

way. The idea is to record how the wheel carrier

moves depending on the degrees of freedom in the

suspension, and to capture that in functional repre-

sentations, e.g. by tables or polynomials.

Figure 2 the same suspension topology as in Figure 1, but

with an efficient model formulation to improve simulation

performance

In VDL, the focus has been on supplying a com-

plete functional representation so that the result

should be identical with any kinematically well de-

fined suspension. This includes not just the actual

characteristics, but also the transmitted reaction

forces and torques. This is essential especially for

steering design.

The suspension kinematics is represented by a set

of tables, where the number of dimension depends

on the degrees of freedom of the linkage. For an in-

dependent front suspension linkage, the representa-

tion uses two dimensions, one for suspension travel,

and one for steering, giving eight functions, three for

hub position and orientation, and one for spring and

damper compression, respectively.

The tabular representation has the same interface

as a multi-body variant. This modular approach al-

lows selecting parts of the chassis or suspension to

be implemented using tabular characteristics, and

other parts to be represented with traditional multi-

body implementations.

To address the compliance which typically is

present in a suspension, due to elastic bushing ele-

ments or material compliance, the effects of the

compliance is in the behavioral case super-positioned

on the kinematic motion. This can be done, either

separately for each linkage, or lumped for the whole

suspension.

The suspension compliance, just as the kinemat-

ics, can be calculated from a more complex model,

but a common scenario is to get compliance and/or

kinematic information from measurements on real

a b

c

d

d

 b

e

f

g

a

b

c

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

415

vehicles. Typically, the compliance information is

given as compliance matrix (inverted stiffness)

rather than stiffness as typically is used in simulation

software. For a model described as a spring-mass

system

the compliance data renders two problems: First,

 has to be generated but C is not necessarily

full rank and probably ill-conditioned. The reasons

may be many, for cost and time reasons for example,

often only parts of are measured. As a result, ma-

nual work and assumptions are often required to

compute . Second, the relation between and the

resulting are often such that the Eigen-frequency is

much higher than the frequency range you are consi-

dering when using this type of models. Simulating

this would lead to a significant performance loss.

The latter problem described above is in this con-

text actually an opportunity to reformulate the mod-

el. Since the inherent frequency of the system is un-

wanted, the compliance data can be used directly in a

model that is formulated as

with being a second order system with a de-

fined cut-off frequency. This frequency can be set by

the user so that the model’s static behavior is iden-

tical to the spring-mass system, and with a dynamic

response that is fast enough for the performed analy-

sis.

A further advantage with this approach is that the

arbitrary values in can be set to zero, correspond-

ing to the removal of degrees-of-freedom, without

the need to change the model topology. It is therefore

easy to switch between a compliant and a rigid ver-

sion of a suspension, by just modifying the parame-

ters. With the spring-mass approach, such a change

requires a recompilation of the model before it can

be simulated. The approach has been used in e.g. [8]

and is also suitable to use with kinematic models for

real time simulation purposes.

2.3 Driveline and brake mechanics

In [2,3] Rotational3D was introduced, a concept that

allows for the three-dimensional effects of 1D rota-

tional mechanics to be captured with a straight-

forward representation. Compared to the MultiBody

approach, simulation performance improvement is in

a typical case around a factor 20, the details are ex-

plained in [4].

Since then, focus has been on reducing computa-

tional cost in drivelines and brakes further by im-

proving the performance of the hybrid elements, es-

pecially friction. With the reached performance in-

crease, one can conveniently model and simulate

different active drivelines without any considerable

simulation slowdown. The new friction components

are provided with the Modelon.Mechanics library

and these are the recommended choice for vehicle

subsystems such as brakes and powertrains, especial-

ly in real-time critical applications.

The driveline topology has been reworked to faci-

litate the configuration of e.g. user defined differen-

tials. The idea is to use Rotational3D to build hous-

ings for e.g. the differential, and then to use compo-

nents based on the standard Rotational formulation.

This is illustrated for two differentials in Figure 4;

the open differential to the left consists of three Ro-

tational3D components corresponding to the bearing

of each axle (a), and two components for visualiza-

tion (b). The other components; the cut component

(c), the pinion-ring gear (d) and the differential (e)

are purely one-dimensional components.

Figure 3. The layout of an open differential using standard

Rotational components in a Rotational3D housing. Compo-

nents with blue icons represent graphical information only.

Figure 4. The differential from Figure 3, extended with a

clutch between the differential case and the right axle, used

for slip control.

One reason to separate the differential from the

ring-pinion gear is seen in Figure 4; the clutch con-

trolled differential is an extension with an additional

1D clutch (f) and a component for its visual proper-

a

b

a

a
b

c

d

e

f

g

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

416

ties (g). The clutch is connected to the differential

case and the right axle, allowing the differential to

lock.

To facilitate the analysis of the performance of

drivelines, Rotational3D has been extended with

built-in visualization of torque flow. The direction of

the torque flow visualization does not visualize the

sign of the torque but the direction of the power

flow. This gives a quite intuitive interpretation of the

visualization of the results. An example is given in

Figure 5.

Figure 5 Visualization of a driveline where more torque is

distributed to the right (top) shaft than to the left (bottom)

3 Vehicle Systems

The pure mechanical part of vehicle dynamics does

and will continue to decrease as different active sys-

tems play an increasing roll for vehicle behavior.

VDL was designed with this in mind from the start

and recent improvements have been focused on ex-

tending this functionality. One significant part of this

work is to include behavioral models that make it

easy to quickly get to a minimal representation of the

complete system, and then from there be able to se-

lect what details to focus on. There is a clear analogy

to the tabular suspension models in Section 2.1 that

are used to reduce complexity of the chassis. Here, it

is illustrated for two active safety systems on one

hand, and electrical or partly electrical propulsion on

the other.

3.1 Electronic Stability Control

Functional representations on common safety sys-

tems have been implemented, including the required

actuators and sensors, as well as sample architec-

tures. A first example is an embedded brake system

controller with anti-lock braking, yaw stabilization,

brake force distribution and traction control, as seen

in Figure 6. The signal bus is defined as an in-

ner/outer expandable connector, which is similar to a

globally available namespace. This allows for con-

trollers, sensors and actuators to be anywhere in the

model hierarchy.

Figure 6 Brake system with modulator, and embedded brake

system controller.

3.2 Brake Assist

The models can easily be copied and modified by the

user to fit their specific needs. An example of a

brake assist controller illustrates this. It is based on

the previous example, and extended with a centra-

lized vehicle controller that incorporates information

from a distance sensor to add brake action when ap-

proaching the object ahead either too fast and/or too

close.

Figure 7 Animation view of a test scenario for a vehicle

equipped with brake assist.

The modular approach makes it easy to add, extend

or modify the existing architecture or to build a new

one from scratch, whatever fits the application better.

In any case, a user can select what part of the safety

system should be modified, a typical scenario is to

use the ABS and ESC model when doing initial stu-

dies and switch to more detailed models for verifica-

tion purposes.

3.3 Electrical actuation

Modelica is of course a natural platform for multi-

disciplinary investigations with VDL and libraries

like Smart Electric Drives (SED) [11] or SPOT [12],

detailed models of vehicles with electrical actuators

can conveniently be modeled [7]. In many cases,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

417

however, the need to start on a more conceptual level

is fundamental.

To facilitate conceptual analysis, behavioral

models for electric systems are introduced. The idea

is to parameterize these based on a minimal set of

output-related properties such as power, torque and

efficiency for machines and then use this information

to calculate the electric power consumption.

The models are defined with the same interface,

mechanical and electrical connectors, to allow them

to be replaced with more detailed versions whenever

needed.

Figure 8. Hybrid electric driveline where components can be

exchanged. This allows for convenient switching between

detailed and behavioral models.

4 Interfacing

With the use of Dymolas source code and binary ex-

port capabilities, the use of VDL spreads to various

applications such as in customized track-side tools

and as vehicle models in driving simulators and other

vehicle dynamics simulation software [13]. This sec-

tion elaborates on some key improvements in VDL

to facilitate such applications.

4.1 External Ground Representations

VDL has a ground representation that is based on a

herring-bone representation, described as depending

on two independent coordinates. This allows for an

efficient representation with high resolution where

needed. The interface allows for various implemen-

tations, both in Modelica and as external code. By

supplying information about the position, heading

direction and normal based on these coordinates,

VDL is able to calculate contact points.

Recently, this has been extended to allow for user

to supply own routines for contact point calculation,

this in turn facilitates the use of external ground re-

presentations further and allow for more convenient

plug-in of VDL models in other types of environ-

ments, such as driving or traffic simulators.

For full functionality, three different contact point

calculation methods must be supplied as described

below and illustrated in Figure 9 and Figure 10.

Figure 9 Closest point on surface.

The closest point on the surface, Figure 9, is the de-

fault contact point, defined so that the third ground

coordinate corresponds to the height over ground

along the road normal. This representation is used

for e.g. ground impact models.

For a wheel, the first representation is however

not a suitable representation if the wheel is inclined

relative to the surface. This as the resulting point

would diverge from the actual tyre contact. In this

case the closest point on the surface that lies within

the plane of the wheel should be returned, Figure 10,

left.

The third method returns the intersection between

the ground and a line defined from the point along a

predefined vector a relevant representation, Figure

10, right.

Figure 10 Closest point on surface that lays within a plane,

left, and intersection point between line and surface, right.

4.2 Ground Generation

For the tabular ground representation, the Road-

Builder was introduced in [1]. It conveniently gene-

rates road data from input like curvature and bank-

ing. The functionality of the RoadBuilder has been

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

418

extended to also handle trajectories defined by

measured points, and closed loop circuits.

4.3 Ground Access

Information about the ground can always be ac-

cessed from within Modelica by direct function calls.

To facilitate usage and to make sure that the most

efficient calculations are used, a block set has been

developed that allow for users to conveniently build

own models that requires ground information.

In Figure 11 this approach is being used to allow

for simple tire models to be used on non-smooth sur-

faces. It works as follows: The original contact point

(a) is used as a reference to create a compression

profile of the tyre (b), and by a weighting of this in-

formation, the resulting contact point (c) can be cal-

culated. With this representation underlying surface

model can be made to work with standard single

contact point models.

Figure 11 application of contact point filtering for a wheel

traversing a cleat.

4.4 External Tire Models

The reconfigurability of VDL makes it easy to in-

clude external tire models. This can be done in sev-

eral ways. The two most common ways are to either

replace the VDL tire force calculation only while

maintaining contact point calculation in VDL, or to

replace the wheel including the contact point calcula-

tion. The first method is commonly used to incorpo-

rate in-house tire models while the latter is used to

interface e.g. DelftTyre [6] and FTire [5].

5 Analysis

Since earlier, VDL provides a various experiments

for dynamic simulation for full vehicles and subsys-

tems. This section especially focuses on how also

steady-state, and quasi steady-state analyses can be

performed. Also, an expansion of the capabilities of

the sensor suite is motivated.

5.1 Sensors

For the analysis of vehicle dynamics, sensors are

required that can generate forces with respect to dif-

ferent coordinate systems. A typical example is the

lateral acceleration of the car that with respect to the

car body corresponds to what you would measure on

a test drive, and with respect to the ground or the

trajectory that corresponds to the cornering capabili-

ties of the car.

To be able to conveniently change between dif-

ferent relevant coordinate systems, the standard set

of the sensors has been extended with further options

to resolve output. Especially, the vehicle frame pro-

jected onto the ground surface is added to support

cases as described above. This is defined either ac-

cording to the ground plane under the frame, or as a

plane defined by averaging the wheel contact points.

These planes coincide with the world horizon for flat

roads.

5.2 Steady state and quasi steady state analysis

In many analyses, the dynamic response of the ve-

hicle is not of interest; instead the focus is on the

steady-state characteristics. Particularly in racing this

type of analysis is a central part in balancing and

tuning of vehicles. In Modelica, the complete expe-

riment is defined as

with , , , and are parameters, input, states and

state derivatives, respectively. For dynamic simula-

tion, this is transformed into a formulation that a

standard integrator can handle, i.e.

Finding the steady state solution in many cases

means solving this equation for , where often

but not always are zeros. The unknowns are typically

combinations of . When approaching the prob-

lem from a solver point-of-view, the result is a non-

linear system of equations that in many cases is dif-

ficult to handle. There is ongoing work with Homo-

topy methods to improve the capabilities of the tools

in this respect [10].

Practically, there are some further aspects to con-

sider, and the most important one is that you want an

answer even if there is no mathematical solution. A

typical application is to take the car to its limit in

some sense. The purpose of the analysis is to figure

out where that limit is so any approach will at some

point shoot over the target.

VDL has been extended to handle this in a robust

way. The idea is to modify the model so that the

steady state formulation is presented to the solver as

a dynamic simulation. The states that describes the

a

c

b

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

419

principal motion of the car, , is separated from the

other states and is introduced for the correspond-

ing inputs. A set of residual flow variables, , is

introduced to match the principal states and then

is used to minimize . To the tool, this is pre-

sented as

where principal states now are inputs and principal

inputs now are states. The structure of this formula-

tion makes it straight-forward for the tool to trans-

form it into

which can be solved with standard integrators. From

this simulation one can gain knowledge of all the

resulting vehicle states as well as the required driver

input. At any point in time, , will give a measure

on the validity of the solution. Figure 12 shows the

result from a quasi steady-state analysis. The car is

set-up at a defined point along the race track, in this

case a corner. The speed is increased while cornering

curvature is maintained until the lateral acceleration

capabilities are exceeded. The screen shots shows the

car at different stages of this test.

Figure 12 Steady state corner exit solutions for 10, 50, 90, 95,

98, and 100 percent of the car’s capacity. Red wheel color

indicates saturation. Arrows indicate tire forces. Note the

change in steering wheel angle.

Summary

This paper highlights new features in VDL with em-

phasis on improved interoperability with other tools,

improved simulation performance, and an expanded

range of analysis.

References

[1] Andreasson J et al, Modeling of a racing car
with Modelicas MultiBody library. In: Pro-

ceedings of the Modelica 2000 workshop,

Lund, Sweden, October 2000

[2] Andreasson J et al, The VehicleDynamics

Library - Overview and Applications. In:

Proceedings of the 5th Modelica Conference,

Vienna, Austria, 4-5 September 2006

[3] Andreasson J, On Generic Road Vehicle

Modelling and Control, PhD thesis, ISBN

91-7178-527-2, 2006

[4] Andreasson J et al, Rotational3D - Efficient

modelling of 3D effects in rotational me-

chanics. In: Proceedings of the 6th Modelica

Conference, Bielefelt, Germany, 3-4 March

2008

[5] Beuter V, An Interface to the FTire Tire

Model. In Proceedings of the 8
th
 Modelica

Conference, Dresden, Germany, 21-22

March 2011.

[6] Drenth E et al, Modelica Delft Tyre Inter-

face. In Proceedings of the 8
th
 Modelica Con-

ference, Dresden, Germany, 21-22 March

2011.

[7] Gerl J et al. Multi-Domain Vehicle Dynam-

ics Simulation. In Proceedings of the 8
th

Modelica Conference, Dresden, Germany,

21-22 March 2011.

[8] Jonasson M et al, Modelling and parameteri-

sation of a vehicle for validity under limit

handling, In: Proceedings of the 9th Interna-

tional Symposium on Advanced Vehicle

Control (AVEC´08), Vol. 1, pp. 202–207,

Kobe, Japan, 2008.
[9] Otter M et al, The New Modelica MultiBody

Library, In: Proceedings of the 3rd Interna-

tional Modelica Conference, Linköping,

Sweden, November 2003

[10] Sielemann M et al. Robust Initialization of

Differential-Alegraic Equations Using Ho-

motopy. In Proceedings of the 8
th
 Modelica

Conference, Dresden, Germany, 21-22

March 2011.

[11] Smart Electric Drives,

https://www.modelica.org/libraries/SmartEle

ctricDrives

[12] SPOT,

https://www.modelica.org/libraries/spot

[13] Ziegler S et al, Extending the IPG CarMaker

by FMI Compliant Units. In Proceedings of

the 8
th
 Modelica Conference, Dresden, Ger-

many, 21-22 March 2011.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

420

https://www.modelica.org/libraries/spot

Modeling and Simulation of Gear Pumps

based on Modelica/MWorks
®

Chen Liping
1
 Zhao Yan

1
 Zhou Fanli

1
 Zhao Jianjun

1
 Tian Xianzhao

2

1
CAD Center, Huazhong Univ. of Sci. & Tech., Wuhan, China, 430074

1
Suzhou Tongyuan Software & Control Tech. Co., Suzhou, China, 215123

chenlp@hustcad.com zhaoyan808@foxmail.com

 {fanli.zhou,jjzhao168}@gmail.com, tianxz@tongyuan.cc

Abstract

In this paper, we present a new method of modeling

the hybrid external gear pumps based on Modelica

and assess it experimentally. We model the whole

working process of an external gear pump. The

chamber of the pump is divided into a set of Control

Volumes (CVs), whose effective volumes change

along with the rotation of the gears. The CVs take in

fluid from the inlet port and squeeze fluid out at the

outlet port. The whole model of the pump also takes

into account flow ripple, pressure distribution, leak-

ages, meshing conditions, etc. Details of each com-

ponent of the whole pump are provided. From the

pressure distribution in space of the gear tooth, we

can calculate radial force on shaft, based on which

the shaft motion can be simulated.

We carry out a set of predictions in MWorks and

report some results on the post processing. These

results are consistent with those from the experi-

mental data.

Keywords: Hybrid Gear-Pump Modeling; Control

Volumes; Pressure Distribution; Radial Force on

shaft; Modelica

Nomenclature

B the gear thickness

hc1 the radial clearance of the bearing

hc2 the axial clearance of the bearing

n the tooth number

1 Introduction

The gear pumps are among the oldest and most

commonly used pumps in the industry. It has become

the main choice for fuel system designers due to long

life, minimum maintenance, high reliability, capabil-

ity to operate with low lubricating fuel, low heat in-

put to fuel, small size, and low weight.

External gear pumps use a simple mechanism

(two gears) to generate flow and therefore have a

minimum number of parts associated with the design.

However, many factors ignored in the design, for

example the volumetric efficiency and the pressure

peaks, may greatly influence the performance of the

pump.

In order to improve the design of the pumps, a

good first step is to develop a mathematic model for

the simulation. Some work focusing on different as-

pects of this aim has been done in the past few years.

Manring and Kasaragadda [1] presented an ap-

proach to finding a solution for the instantaneous

length of action for the two contacting teeth in order

to study the flow ripple. In theoretical research,

pumps are considered in an ideal case: (1) the fluid is

incompressible, (2) fluid leakage is neglected, and (3)

the pump parts are inflexible.

Heisler et al [2] used the computational fluid dy-

namics (CFD) to better analyze the effect of modify-

ing the design of an existing external gear pump.

This paper also developed a new approach to simu-

lating the helical gears. Although the computational

time and model complexity have been reduced,

simulations can be done only under some restrictive

assumptions, including restricted flow domain, defi-

nite values of the boundary conditions, and fixed

position of the gear axes.

Wahab [3] presented a simple analytical and ex-

plicit approach to predicting the leakage flow rate

under different inlet/outlet pressure differences.

Castilla et al [4, 5] studied experimentally the

movement of the shaft of a driven gear in a gear

pump, in particular the dynamics of the shaft in the

journal bearing of a gear pump.

Elia [6] developed a mathematical model that

simulates the running in of external gear pumps, tak-

ing into account the factors mentioned above. Be-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

421

sides, the model also estimates the quantity of mate-

rial taken away.

Following a different way, Vacca et al [7] provid-

ed a global description of the pump or motor. They

implemented a model, named HYGESim, in the

AMESim® platform. The model uses both standard

sub-models and C++ sub-models developed by the

authors.

Though valuable in some aspects, these studies

are unable to develop a global hybrid model, which

is the goal of our paper. We construct a hybrid mod-

el of the external gear pumps by using a multi-

domain modeling language, Modelica on MWorks®

[8]. The model takes into account the leakages, com-

pressibility of the oil, flow ripple, pressure distribu-

tion, etc. It can also calculate forces and torques,

which are the base of modeling the shaft motion.

The paper is outlined as follows. Section 2 de-

scribes the mechanical system. Section 3 gives an

overview of the theory on which the pumps are mod-

eled based and details about each component of the

whole pump. Section 4 reports the simulation results

and campares them with those in [7]. Section 5 con-

cludes the paper.

2 Pump Description

Figure 1 shows a cross-sectional view taken through

the gears of a typical gear pump.

Figure1 Control Volumes Defined in the Fluid Dynamic

Model

Note: like most actual gear pumps, this pump has

two identical gears to displace fluid. The superscripts

g1 and g2 denote the driving and driven gears re-

spectively. The tooth number of gear 1 is the same as

that of gear 2. The Control Volumes (CVs) within

the tooth gaps are variables dependent on the gear

angle. The subscripts i is the index of these Control

Volumes. The Outlet and Inlet volumes are two fixed

volumes at the outlet and inlet ports respectively.

To produce a flow within a gear pump, fluid is

carried by the CVs from the intake side of the pump

to the discharge side of the pump through the transi-

tion zone. As the gears rotate, these CVs increase

their pressure to when reach the high-pressure cham-

ber. As the gear teeth mesh in the meshing zone, flu-

id is squeezed out of each tooth gap by the mating

tooth. When two tooth pairs contact, a trapped vol-

ume is generated. This may cause positive pressure

peaks and the onset of cavitation. (To avoid this, the

trapped volume must be connected to the high or low

pressure chambers, which is the role of the relief

grooves in the lateral bushes.) On the intake side, the

gear teeth are coming out of the mesh. The volumes

of CVs increase so that fluid is inhaled into the tooth

gaps. This process repeats itself for each revolution

of the pump and therefore displaces fluid at a rate

proportional to the pump speed.

3 Model Description

3.1 Overview

In this section, we first give an overview of the

pump model. Some components come from a free

library HyLibLight [9] based on Modelica.

The aim of this paper is to construct a hybrid

model of the external gear pumps. It considers the

leakages, compressibility of the oil, flow ripple,

pressure distribution, etc. Specifically, the pump is

modeled under the following assumptions:

1) The gears and the housing case are rigid; only

the oil is compressible.

2) The position of the shaft is known before the

simulation and is fixed during the simulation.

3) The pressure at every single isolated region

and fixed volume is well-proportioned.

4) The temperatures in all CVs are the same and

constant.

5) The tooth numbers of the two gears are the

same.

In Figure1, a pump is divided into 2n+2 control

volumes, where n is the tooth number of a gear. Fig-

ure 2 shows the flows between those control vol-

umes. This method is similar to but not the same as

that in [6]. There is no variation in the number of the

control volumes which causes variation in the num-

ber of differential equations.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

422

Figure 2 The Flows Between the Control Volumes

Note: arrows do not mean the flow directions; the

direction of the flow depends on the pressure differ-

ential and the rotation direction. As the gears rotating,

the channels of some flows are shutting down and

some of others (not shown in this figure) are turning

on.

Dark blue lines in the meshing zone represent the

leakages from a trapped volume on one gear to a CV

on the other gear.

The flow between CVi
g1 and CVi+1

g2 is the leakage

through the clearance between two meshing surfaces;

The flow between CVi
g1 and CVi

g2 is the leakage

through the clearance between two un-meshing sur-

faces.

Relief Grooves are chambers to which the CVs

connect in turn. Flows from the CVs to the Relief

Grooves in the meshing zone are shown in Figure 3.

Figure 3 Flows from the CVs to the Relief Grooves (RG)

RG1 on the outlet side is used to decrease the

peak of the pressure trapped in the CVs; RG2 on the

inlet side is used to restrain the cavitation.

As shown in Figure 3, the dashed line 1 means

the flow between CV8
g2 and RG1 is forming. Solid

line 2 and 4 mean that there is a fluid flow between

CV8
g1 and CV7

g2 through RG1. Dashed line 3 means

that the channel between CV7
g1 and RG1 is being

turned off.

Figure 4 Calculated Forces & Torques Acting on Gear 1

Figure 4 shows the calculated Forces and Tor-

ques acting on the driving gear, where Fp
g1 is the re-

sultant force of the pressure distributed along the

circle, Fc
g1 is the contact force, Fb

g1 is the force load

on the bearing of gear1 and Ti is the torque supplied

by the pressure in CVi.

Note: most of CVs, except those in the meshing

zone, do not have any effect on the gear rotation,

because the pressures in these tooth gaps counteract

and no torque is acting (for example, Ti+1 =0). De-

tails will be given in the next few sections.

The coordination system is shown in Figure 5.

Figure 5 Coordination System

3.2 Control Volumes

3.2.1 Volume

A Control Volume is the space between two adja-

cent teeth. The maximum volume (see Figure 5, the

gray region) of this gap is related to the gear dimen-

sions (e.g. tooth number, modulus, thickness, etc).

As the gears rotating, gear pairs mesh together. A

tooth on the other gear squeezes into the gap, so the

effective volume of the gap decreases (see Figure 5,

the blue region). The effective volume of CVi is a

function of the angle φi：

Figure 6 Effective Volume as a Function of Angle φ

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

423

This relationship can be expressed in an approxi-

mate equation:

max 1 2

3 2 1 max min

max min

, < - or > +

[() / 2
,

 cos(()) () / 2)]

V

x x x V VV
otherwise

f V V

where

3 31 32

2 21 22

1 11 12

cos(())

cos(())

cos(() 2)

x c f c

x c f c

x c f c

 1 22 / ()f

11 12 21

22 31 32

0.25 0.75 0.25

0.75 0.4 0.6

c c c

c c c

2 / (1) ,if 1

2 / (0.5) ,if not

n Index gear
phase

n Index

θ1 and θ2 are the critical angles (see Figure 7).

Figure 7 Critical Angles

3.2.2 Pressure distribution

The pressure in each CVi is given by the equation:

 ()champ q q
V

where

β oil bulk modulus

qcham the rate of the net flow that flows into the

chamber

p pressure of the volume

The pressure distribution is shown in Figure 4.

3.2.3 Radial Force Produced by Pressure

As shown in Figure 4, the load on a bear is the

sum of the loads produced by the distributing pres-

sure and the contact force. Ideally, the loads due to

the pressure of most CVs have only one radial com-

ponent (Fr in Figure 4), since we have assumed (in

section 错误!未找到引用源。) that the pressure in

any isolated region is well-proportioned.

When a CV turns into the meshing zone, the

chamber will be divided into 2 or 3 parts by the cou-

pling tooth on the other gear (see Figure 8). The

load due to the pressure in red zone 1 is equal to the

sum of Ft and Fr. And

2

1

2

1 1

()

(*)

g

t i m a

g

r i m

F B P r r

F B P r

Similarly, for zone 2 and zone 3 we have:

1

2

1

2 2

()

(*)

g

t i n m

g

r i m

F B P r r

F B P r

2

3 1

2

3 1 1

()

(*)

g

t i a n

g

r i n

F B P r r

F B P r

Then:

3 3

1 1i tj rjj i
F F F

Figure 8 The chamber of CVig1 divided into 3 parts

3.2.4 Torque

Because only the component Ft has an effect on

the gear rotation, the torque produced by CVi
g1 can

be calculated as follows:

1 2 1(() () ()) / 2t a m t m n t n aT F r r F r r F r r

Interfaces and Icon

The interfaces and icon are shown in Figure 9.

Figure 9 Icon of a Control Volume

3.3 Internal Leakages

Both gears rotate within the housing. The inter-

space is made because of lubrication between two

relative moving objects. The gap between two gear

teeth and casing is assumed to maintain a known

value. Leakage occurs through these internal clear-

ances due to both the pressure differences and the

relative motion.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

424

There are four types of sources of internal leak-

ages due to the pressure differences:

Qp: Flows from one CV to an adjacent one

through the tips of the gear teeth and the case.

Qz: Flows from the outlet volume to the inlet vol-

ume through the meshing zone.

Qm: Flows through the gap between two mating

surfaces.

Qd: Flows from the CVs to the drainage circle

through the interspace between the gear and the case.

There is another kind of leakage that is caused by

the relative motion and oil viscosity (see Figure 10,

Qw). It results in a little increase in the flow rate be-

cause the rotation brings oil to the outlet volume.

Figure 10 Internal Leakages

In general, for the first type of leakage it is as-

sumed that the pressure around the case rises linearly

across each tooth tip. Hence, the volumetric flow

from CVi
g1

 to CVi-1
g1

 due to the pressure drop is giv-

en by ([2]):

3 / (6)piQ dp G dp h b r

where dp is the pressure differential.

The diagram of leakage QP is shown in Figure

11.

Figure 11 Diagram of Leakage Qp

where n is the tooth number, LR is a laminar resistor

model [9].

Other leakages due to pressure are similar to Qpi,

see [2][4].

The volumetric flow produced by the relative mo-

tion has a uniform distribution from zero to v, where

v is the relative velocity of the tip with respect to the

case. The volumetric flow is defined as [2]:

1 / 2wi cQ h B v

The interfaces and icons of five types of leakages

are shown in Figure 12.

Figure 12 Icons of the Five Types of Leakages

3.4 Mechanical Parts

Mechanical parts contain the mounting, the bears

and the mesh models. Mounting is used to fix the

bears that support the gear pair. This paper does not

cover the position of the shaft. So we choose a com-

ponent FixedTranslation from Modelica.Mutibody to

fix the two gears. Model IdealGear is used to trans-

mit torque, which does not consider elasticity, damp-

ing or backlash. If we want to consider these effects,

the gears have to be connected to other elements in

an appropriate way.

The diagram of mechanical parts is shown in

Figure 13.

Figure 13 Diagram of the Mechanical Parts

1-Driving gear 2-Driven gear 3-IdealMesh 4-

FixedTranslation 5-flange that transmits a driving

torque

6-flange that transmits the resistance moment 7-

frame, forces on shaft1

Interfaces and icon of the mechanical parts are

shown as follows:

Figure 14 Interfaces and Icon of the Mechanical Parts

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

425

3.5 Radial Forces

Radial Forces produced by the CVs has been cal-

culated (see section 3.2.3). In the model of CV, radi-

al force is decomposed into x- and y- components,

which are then summed up in the model RadialForce.

Figure 15 shows the diagram of the RadialForce as

well as its interfaces and icon.

Figure 15 Interfaces, Icon and Diagram of Model Radi-

alForce

3.6 Channels from CVs to Inlet/Outlet Volumes

Along with the rotation of the gears, when a CV

comes to the position of CVi+2
g1, the channel between

it and the outlet volume opens; when it comes to the

position of CVi
g1, this channel becomes to close.

Critical angles, shown in Figure 16, are calculated in

respective models.

Figure 16 Critical Angles of Channel Model Connecting

CV and Outlet Volume

Equations of the critical angles are given as fol-

lows:

1 gapa

 2

where γ is a parameter about the pump dimension. η

can be calculated from Figure 16.

The hydraulic diameter of the channel connecting

a CV to the outlet volume is given by:

1 2,if < <

,otherwise

max

min

d
hd

d

Figure 17 Hydraulic-Diameter as a Function of Angle

φ

Interfaces and icons of a channel are shown in

Figure 18.

Figure 18 Interfaces and Icon of a Model connected to

Outlet Volume (High Pressure Chamber)

The channel between a CV and the inlet volume

is similar.

3.7 Viscosity Torque

In the ideal case, Viscosity models can be treated

as dampers. There are two types of viscosity torques

acting on a gear, the radial torque and the axial

torque (see Figure 19). The equations of these tor-

ques are given by:

2

1/r cA r h

 0
2

3

2

2
2 d

 4 / (3) ,if

ar

a
r

c

c 0

r r r
h

r h r r

Figure 19 Radial Torques and Axial Torques

Interfaces and icons of the torque models are

shown in Figure 20.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

426

Figure 20 Interfaces and Icons of Torque Models

Other resistance moments, for example those

caused by the bears, can be added as a component.

3.8 System Model

Combining all the components above, we obtain a

whole pump as follows:

Figure 21 Diagram of a Whole Pump

The interfaces and icon are shown in Figure 22.

Figure 22 Interfaces and Icon of a Pump Model

4 Simulation Results

We implement the simulation based on the model

shown in Figure 23 to enable the comparison be-

tween our results and the experimental results in [7].

Figure 23 Simulation system diagram

The simulation curves of the volumetric flow rip-

ple as well as the average flow rate (in L/min) is

shown in Figure 24.

Figure 24 Volumetric flow ripple and average flow

rate

The pressure distribution in a tooth space within a

complete rotation cycle is shown in Figure 25.

Note: the pressure distribution in Figure 25 is

very similar to the pressure distribution along the

circle of a gear. But actually they are not the same.

Figure 25 Pressure Distribution in a Tooth Space for a

Complete Rotation Cycle

Order:

(1e6) cos()

(1e6) sin()

x

y

p P

p P

The pressure distribution above is shown in Fig-

ure 26.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

427

Figure 26 (Left) Pressure distribution in a Tooth
Space for a Complete Rotation Cycle

The radius of the unit circle at the bottom is 10

bars.
Figure 27 (Right) Radial Force on Shaft 1 for a Com-

plete Rotation Cycle and its Components in the Coordi-
nation in Figure 5.

By changing the parameters (e.g. G0, G1 shown in

Figure 23), we obtain a set of predictions. Both the

simulation results and the experimental results from

[7] are listed in Figure 28Figure 29. It is clear that

the simulation and the experimental results are very

close.

Figure 28 Dimensionless Characteristics of the

Pump in Steady States

Figure 29 Dimensionless Values of the Volumetric
Efficiency of the pump in Steady Conditions

5 Conclusions and Future Work

We present a new method of modeling the hybrid

external gear pumps based on Modelica and assess it

via simulation. The model takes into account the

flow ripple, pressure distribution, leakages, meshing

conditions, etc. Details of the components that make

up the whole pump are introduced. Comparisons be-

tween the result and the experimental data are given

in the end. Good agreement between them is founded.

From the pressure distribution in the space of a

gear tooth, radial force on shaft can be easily calcu-

lated, on which the motion of the shaft can be simu-

lated based. This is left for future work.

Another weakness of the study is that there is lit-

tle comparison with real applications and measure-

ment data. It is a drawback as some minor malfunc-

tions and parameters probably could not be identified.

Such comparison is also left for future work.

Acknowledgments

The paper is supported by National Nature Science

Foundation of China (No.60874064, No.60704019,

No.60736019), Key Project of National High

Technology Research and Development Program

(2009AA044501).

References

[1] Noah D.Manring, Suresh B.Kasaragadda.

The Theoretical Flow Ripple of an External

Gear Pump. Journal of Dynamic Systems,

Measurement, and Control. Transaction of

the ASME 2003, September: 396-404

[2] Aaron S.Heisler, John J.Moskwa, Frank

J.Fronzak. SIMULATED HELICAL GEAR

PUMP ANALYSIS USING A NEW CFD AP-

PROACH. Fluids Engineering Division Summer

Meeting 2009-78472

[3] Abdul Wahab. ANALYTICAL PREDICTION

TECHNIQUE FOR INTERNAL LEAKAGE IN

AN EXTERNAL GEAR PUMP. Proceedings of

ASME Turbo Expo,GT 2009-59287

[4] R.Castilla, M.Gutes, P.J.Gamez-Monter,

E.Codina. Experimental Study of the Shaft Mo-

tion in the Journal Bearing of a Gear Pump. Jour-

nal of Engineering for Gas Turbines and Power,

2009-052502

[5] R.Castilla, M.Gutes, P.J.Gamez-Monter,

E.Codina. Numerical Analysis of the Shaft Mo-

tion in the Journal Bearing of a Gear Pump. Jour-

nal of Engineering for Gas Turbines and Power,

2010-012504

[6] G.Dalpiaz, G.D’Elia, E.Mucchi, A.Fernandez der

Rincon. MODELING RUN IN PROCESS IN

EXTERNAL GEAR PUMPS. Proceedings of

ESDA2006-95466

[7] Andrea Vacca, Germano Franzoni and Paolo

Casoli. ON THE ANALYSIS OF EXPERI-

MENTAL DATA FOR EXTERNAL GEAR

MACHINES AND THEIR COMPARISON

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

428

WITH SIMULATION RESULTS. International

Mechanical Engineering Congress and Exposition,

IMECE2007-422664

[8] Fan-Li Zhou, Li-Ping Chen, Yi-Zhong Wu,

Jian-Wan Ding, Jian-Jun Zhao, Yun-Qing

Zhang. MWorks: a Modern IDE for Model-

ing and Simulation of Multidomain Physical

Systems Based on Modelica. Modelica 2006,

September 4th – 5th: 725-732

[9] P.Beater. Modeling and Digital Simulation of

Hydraulic Systems in Design and Engineer-

ing Education using Modelica and HyLib.

Modelica Workshop 2000 Proceedings:33-40

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

429

Modeling and Simulation Vehicle Air Brake System

Li He, Xiaolong Wang, Yunqing Zhang, Jinglai Wu, Liping Chen
CAD Center, Huazhong University of Science and Technology, China

zhangyq@hust.edu.cn

Abstract

Air brake system has been widely used in heavy
trucks and intercity buses for its great superiori-
ty over other brake system. The practical per-
formance of air brake system may be greatly dif-
ferent from if we analyze it with static theory.
Thus, it is necessary to build an integrate air
brake system model to simulate the process of
brake accurately. However, the dynamic ma-
thematic model of air brake system is very com-
plicate, which makes the model hard to be
solved. In this paper, the components of air
brake system are decomposed to several basic
standard pneumatic components, and then build
the system based on these basic standard pneu-
matic components. The standard pneumatic
components which are built in the software-
MWorks based on Modelica language include
cylinder, nozzle, air reservoir, volume, and air
pipe. An air brake system which contains brake
valve, relay valve, brake chambers and pipelines
is made based on the standard pneumatic com-
ponents. The simulation results show the dy-
namic characteristics of air brake system.
Keywords: air brake system; dynamic model;

Modelica

1 Introduction

Brake system affects the safety of automotive
directly. The theories of brake system have been
well studied [1, 2, 3]. However, the theories of
brake system are almost limited to analyze the
system’s static characteristics such as the distri-
bution of brake force between the front and rear
axle, brake efficiency and so on. There is little
literature focus on the dynamic characteristics of
brake system.

The vehicle brake system can be generally di-
vided into hydraulic brake system and air brake
system. In fact, most tractor-trailer vehicles with
a gross vehicle weight rating (GVWR) over
19000 lb, most single trucks with a GVWR over
31000 lb, most transit and intercity buses, and
about half of all school buses are equipped with
air brake systems [4]. Generally, the air brake
system will show longer delay time than the hy-
draulic brake system for the response of air pres-
sure is relative slowly to hydraulic pressure. In
fact, the delay time for the pressure response has
enormous influence on the performance of the
vehicle brake system. Also the quick pressure
response is one of the most important indispens-
ible working conditions for the anti-brake sys-
tem (ABS) which has been widely used in auto-
motives. Thus, to shorten the pressure response
time is necessary. Roudlf [1] has given an em-
pirical equation to calculate the delay time for
the pressure response in air brake system, which
correlated with the brake chamber volume and
the length of pipelines. However, in practice we
often need a more accurate model to research the
delay time more exactly. So the model of air
brake system which can accurately predict the
pressure transmits from reservoir along the
brake pipelines to the brake valve, relay valve
and brake chamber should be build.
The mathematic model for dynamic responses of
air brake system is very complicated since many
differential equations need to be solved and
many parameters may be correlated with each
other, especially the parameters for the key
components, such as brake valve, relay valve
and pipelines. A non-linear model of the pneu-
matic subsystem of the air brake system which
relates the pressure in the brake chamber to the
brake valve plunger displacement and the supply
pressure to the brake valve has been developed
in [5,6]. The mathematic model is very compli-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

430

cated, which leads it hard to be solved. Wu [7]
studied the robust of pneumatic brake system in
commercial vehicle, where the dynamics model
is built in software-AMESim. In this paper, we
use the Modelica language [8, 9] to construct the
mathematic model, and we do not need to focus
on the solver, which simplifies the work largely.
In this study, the pneumatic brake system model
are built and simulated based on the Modelica
language. In section 2, the constitutions of air
brake system are presented; the air brake system
model is introduced in section 3. The simulation
results are shown in section 4, and some conclu-
sions are presented in the last section.

2 Air brake system components

An essential layout of the air brake system of a
commercial vehicle is shown in Fig.1. The air
brake system contains air compressor, storage
reservoirs, brake valve, relay valve, brake
chambers and some brake lines.

Air
Compressor Wet Reservoir

Front
Reservoir

R
ear

R
eservoir

Brake
Valve

Relay
 ValveFront Brake

Chamber
Rear Brake
Chamber

Bottom
Chamber

Top
Chamber

Supply portDelivery
 port

Control
 port

Supply
 port

Delivery
 port

Figure. 1 Schematic representation of an air brake

system

The driver applies the brake by pressing the
brake pedal on the brake valve. This action
makes the compressed air flow from the supply
port of the brake valve to its delivery port. For
the front circuit, the compressed air travels from
the delivery port in bottom chamber of the brake
valve through pipelines to the front brake cham-
bers mounted on the front axles. For the rear cir-
cuit, the compressed air travels from the delivery
port in top chamber of the brake valve through
pipelines to the control port of relay valve,
which opens the supply port of relay valve and
makes the air flow to the rear brake chambers
mounted on the front axles.

2.1 Brake Valve

The structure of brake valve is shown in Fig. 2.

Stem SpringPlunger

Top Piston

Top Piston
Return Spring

Top Valve
Return Spring

Top Valve
Assembly

Bottom Piston

Bottom Valve
Return Spring

Bottom Valve
Assembly

Fp

Exhaust

Top Supply

Bottom
Supply

Bottom
Delivery

Bottom
Delivery

Dtps

Dtvl

Ct

xp

xtp

xtv

Exhaust
Port

Inlet
Port

Dtpl

Cb

Rubber
Circuit

Figure. 2 Structure of brake valve

There are two supply ports, two delivery ports,
and an exhaust port in the brake valve. The top
supply port and bottom supply port are con-
nected to rear reservoir and front reservoir re-
spectively, while the top delivery port and bot-
tom delivery port are connected to relay valve
and front chambers respectively. For the top
chamber, when the driver applies pedal force to
the plunger, the force transmits to top piston
compressing the rubber plunger spring. If the
force acted on top piston is larger than the prel-
oad and friction, the top piston will move down.
The exhaust port will be closed when the top
piston touches the top valve, and the inlet port
will open if the force transmitted to top valve
can overcome the preload on top valve. Then the
compressed air in rear reservoir can flows into
top chamber, which makes the pressure in top
chamber increasing. The compressed air in top
chamber will produce a force that makes the top
piston and top valve move up, and the inlet port
will be closed gradually. The pressure keeps
constant for both the inlet port and exhaust port
are closed, thus the air pressure in top chamber

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

431

keeps constant. If the driver reduces pedal force,
the balance of top piston will be broken. The top
piston moves up for the force made by com-
pressed air larger than pedal force, which make
the exhaust port opened. Thus, the compressed
air flow to atmosphere and reduces the pressure.
The apply process of bottom chamber is similar
to the top chamber.
The flow areas of inlet port and exhaust port
have important effect on the characteristics of
brake valve. The positions of top piston and top
valve determine the flow areas of inlet port and
exhaust port, expressed by the following equa-
tions.

()
0

tp t

in
tvl tp t tp t

x C
A

D x C x Cπ

≤=
− >

 (1)

()

0
tps t tp tp t

ex
tp t

D C x x C
A

x C

π − ≤=
>

 (2)

Where Ct denotes the exhaust clearance, Dtvl and
Dtps are the geometry dimensions shown in Fig.
2, xtp is the displacement of top piston.

2.2 Relay Valve

The structure of relay valve is similar to the
brake valve, shown in Fig. 3.

Relay Piston

Relay Valve

Exhaust

Relay Supply

Control port

Return Spring

Relay Delivery

Figure. 3 Structure of relay valve

The difference between the brake valve and re-
lay valve is that the control signal for brake
valve is the force supplied by pedal while the
control signal for relay valve is the compressed
air from the brake valve. Relay valve can short-
en the delay time for the rear brake chambers
which are far from the brake valve.

2.3 Brake Chamber

Brake chamber is the component transiting air
pressure to mechanical force. When the com-
pressed air flows to the brake chamber, the air
pressure pushes the push rod move, and then the
mechanical force is transmitted to brake drum
which makes the vehicle decelerated. In this pa-
per, we simplify the rear service and spring
brake chamber as the front service brake cham-
ber (see Fig. 4).

Return Spring

Push Rod

Brake Chamber

Compressed Air

Diaphrgam

Figure. 4 Structure of brake chamber

3 Modeling vehicle air brake system

3.1 Standard pneumatic components

The standard pneumatic components include
air volume, cylinder, nozzle, and pipe. We as-
sume that the air temperature in volume is con-
stant, and the thermal dynamic process is called
isothermal. When the air flows to a constant vo-
lume, the pressure in the volume can be de-
scribed by:

P mRT V= (3)

Where P denotes the pressure, m denotes the air

mass in the volume, R denotes the ideal gas con-

stant, T is the temperature, and V is the volume.

 The cylinder is still assumed as isothermal, but
the volume is not constant. The volume can be
expressed as

0 c pV V A s= + (4)

Where V0 denotes the initial volume of cylinder
chamber, Ac is the effective area of piston, and
sp denotes the displacement of piston.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

432

The nozzles in pneumatic system can be mod-
eled as restrictions. The air flows from high-
pressure chamber (upstream) to low-pressure
chamber (downstream), the mass flow rate for
the nozzle can be expressed by

u
q m

u

Pm AC C
T

= (5)

Here, A is the flow area of nozzle, and Cq is the
flow coefficient which can be expressed as

2 3

4 5

0.8414 0.1002 0.8415 3.9

 4.6001 1.6827

d d d
q

u u u

d d

u u

p p pC
p p p

p p
p p

= − + −

+ −

 (6)

Cm is the flow parameter can be expressed by [7,

8,10,11]

12
1

1
1 1

2 2, if
1 1

2 2 2, if
1 1 1

d d d
cr

u u u
m

d
cr

u

P P P P
R P P P

C

P P
R P

γ γ
γ γ

γ
γ γ

γ
γ γ

γ
γ γ γ

+
−

− −

 ⋅ ⋅ − > = − + =

 ⋅ ⋅ ≤ = − + +

. (7)

Where γ denotes the specific heat ratio, Pcr den-
toes critical pressure ratio, P and T denote the
pressure and temperature respectively, subscript
u and d denote upstream and downstream re-
spectively. The pipelines can also be modeled as
restriction.

3.2 Air brake components

Build the air brake components models based
on the standard pneumatic model in software-
MWorks. The top chamber of brake valve is
shown in Fig. 5.

Figure. 5Structure of top chamber

The bottom chamber of brake valve is shown
in Fig. 6.

Figure. 6 Structure of bottom chamber

 The structure of relay valve is the same as the
bottom chamber of brake valve, so we would not
repeat it. Build the brake chamber based on the
standard pneumatic model, shown in Fig. 7.

Figure. 7(a) Structure of brake chamber

Figure. 7(b) Icon of brake chamber

3.3 Air brake system

Based on the components of air brake system,
construct the air brake system shown in Fig. 8.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

433

Figure. 8 Air brake system

4 Simulation results

Take the plunger force (enlarged pedal force) as
input signal and the pressure of air in brake
chamber as the output signal. Figure.9 shows a
specified plunger force variation curve. The
plunger force increases to 1200N from 0N dur-
ing the period between 0 second and 0.4 second
(apply phase), keep the force unchanged until
the time at 4 second (hold phase), and reduce the
force to 0N during the period between 4 second
and 4.4 second (exhaust phase).

Figure. 9 Plunger force

 The pressure in brake chambers are shown in
Fig. 10. The blue line denotes the pressure in
front brake chamber, and red line denotes the
pressure in rear brake chamber.

Figure. 10 Pressure in brake chamber

From the simulation results, we find that the
pressure in brake chamber is consistent with the
plunger force, but the pressure variation delays
to the plunger force. Through the simulation, we
can research the dynamic response of air brake
system further.

5 Conclusions

The dynamic model of air brake system is pre-
sented in this paper. The mathematic models of
some standard pneumatic components are intro-
duced and built in software- MWorks. The key
components of air brake system such as brake
valve, relay valve, and brake chamber are con-
structed based on the standard pneumatic com-
ponents. The integrate air brake system is also
built using the key components, and the simula-
tion results show dynamic characteristics of air
brake system. Through the dynamic simulation,
the delay time of brake system can be obtained
more accurately, which has helpful to improve
the performance of air brake system.

Acknowledgement

This work was supported by the National High-Tech
R&D Program, China (No. 2009AA044501).

References

[1] Limpert. R. Brake Design and Safety. SAE
Order No. R-198, 1999.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

434

[2] Limpert. R. Engineer Design Handbook,
Analysis and Design of Automotive Brake
Systems. US Army Material Development
and Readiness Command, DARCOM-P -
706-358, 1976.

[3] Bert. B, Karlheinz. H. Brake Technology
Handbook. SAE Order No.R-367, 2008.

[4] Williams. S. F, Knipling. R. R. Automatic
Slack Adjusters for Heavy Vehicle Air Brake
Systems. Nat. Highway Traffic Safety Ad-
ministration, Washington, DC, Tech. Rep.
DOT HS 807 724, Feb 1991.

[5] Subramanian. S. C, Darbha. S, and Rajagopal.
K. R. A Diagnostic System for Air Brakes in
Commercial Vehicles. IEEE Transactions on
Intelligent Transportation Systems, Vol.7,
No.3, September 2006, pp360-376.

[6] Subramanian. S. C, Darbha. S, and Rajagopal.
K. R. Modeling the Pneumatic Subsystem of
an S-cam Air Brake System. Trans. of the
ASME, J. of Dynamic Systems, Measure-
ment, and Control， Vol.126, 2004，pp36-
46.

[7] Wu. J, Zhang. H, Zhang. Y, Chen. L. Robust
design of pneumatic brake system in com-
mercial vehicles. SAE, 2009-01-0408.

[8] Fritzson P., Vadim V. Modelica -- A Unified
Object-Oriented Language for System Mod-
eling and Simulation. Proceedings of the
12th European Conference on Object-
Oriented Programming, 1998, pp.67 – 90.

[9] Zhou F, Chen L. and Wu Yi., etc. MWorks: a
Modern IDE for Modeling and Simulation of
Multidomain Physical Systems Based on
Modelica. Modelica 2006, September 4th –
5th, pp. 725-732.

[10] Bowlin. C. L, Subramanian. S. C, Darbha. S,
and Rajagopal. K. R. Pressure Control
Scheme for Air Brakes in Commercial Ve-
hicles. IEE Proc. Intelligent Transportation
Systems, Vol. 153, No.1, March 2006, pp21-
32.

[11] Peter. B. Pneumatic Drives. Springer-Verlag
Berlin Heidelberg, 2007.

[12] Burrows C R, Peckham R G (1977) Dynamic
characteristics of a pneumatic flapper valve.
Journal Mechanical Engineering Science.
19(3):113–121.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

435

A Modelica Library for Simulation of Elecric Energy Storages

M. Einhorn1 F. V. Conte1 C. Kral1 C. Niklas1 H. Popp1 J. Fleig2

1AIT Austrian Institute of Technology
Mobility Department, Electric Drive Technologies

Giefinggasse 2, 1210 Vienna, Austria
markus.einhorn@ait.ac.at

2Vienna University of Technology
Institute of Chemical Technologies and Analytics

Getreidemarkt 9/164ec 1060 Vienna, Austria

Abstract

This article gives an overview of the Electric Energy
Storage (EES) library, which is proposed for inclu-
sion in the Modelica Standard Library. The library
contains models with different complexity for simu-
lating of electric energy storages like batteries (sin-
gle cells as well as stacks) interacting with loads, bat-
tery management systems and charging devices. It is
shown how the models are defined and how they can
be parametrized. Finally, two example simulations are
presented.

Keywords: Energy storages, library, battery simula-
tion

1 Introduction

Simulation is a commonly used technique to reduce
costs during the design and development process. The
energy storage system is a key issue, especially for
electric vehicles. Basic models of electric energy stor-
ages (EES) are already included in the commercial
SmartElectricDrives (SED) library [1]. The
EES library, presented in this article, provides basic
as well as more complex models for battery cells and
for battery stacks. It includes models for battery mon-
itoring and measurement, chargers, loads, sensors and
battery management. This library can be used to simu-
late the behavior of electric energy storages in mobile
devices, stationary applications and in transportation
systems including hybrid as well as electric vehicles.
The models of theEES library are designed as univer-
sally as possible so that even very specific scenarios
can be simulated by varying the parametrization. In
the future it is intended to include theEES library in

Figure 1: Electric Energy Stroage (EES) library struc-
ture

theModelica Standard Library (MSL).
This article shows how theEES library is structured,

how the fundamental models are defined and which
parameters are needed. Finally, two example simula-
tions are presented. For implementing theEES library,
Dymola 7.4 and Modelica 3.2 are used [2–4].

2 Library structure

The EES library is structured as shown in Fig. 1. The
fundamental packages and models are now explained
in more detail.

2.1 Batteries

TheBatteries package contains models for cells as
well as for stacks withns serially connected cells and
np cells in parallel. Its structure is shown in Fig. 2.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

436

mailto:markus.einhorn@ait.ac.at

Figure 2: Structure of theBatteries packageas a
part of the EES library.

2.1.1 Cells

In the Cells package there are two different types
of cell models:Single andWithMeasurement.
While theSingle cell models are models of the bat-
tery cell only, theWithMeasurement cell mod-
els extend theSingle cell models with basic mea-
surement. Each of these models can either be a
simple cell model with just an ohmic impedance
(StaticResistance) or a more complex cell
model considering basic self discharge, a variable
ohmic impedance and a variable number of variable
RC elements (LinearDynamicImpedance).

Single
TheStaticResistance single cell model as well
as theLinearDynamicImpedance single model
are shown in Fig. 3 and combined in theSingle
package.

Both single cell models have a positive (pin_p),
a negative (pin_n) and an optional temperature
connector (heatPort). If theheatPort is not
used, it can be disabled and the model operates
at a fixed temperature (Toperational). The com-
mon parameters of theStaticResistance and
the LinearDynamicImpedance cell models are
given in Table 1. For theStaticResistance sin-
gle cell model additionally to Table 1, the parame-
ter given in Table 2 is necessary. Instead, for the
LinearDynamicImpedance single cell model,
additionally to Table 1 the parameters given in Table 3
are necessary.

Table 1: Common input parameters
of the StaticResistance and the
LinearDynamicImpedance cell model.

name unit description

SOCini initial state of charge
OCV table V lookup table for the open circuit

voltageOCV vs. the state of charge
SOC

ttotal s total cell life time
Qini C initial transferred charge
Qtotal C total transferable charge
C0 C capacity atTref for Qabs = 0 and

t = 0

kC t C/s linear t dependency of the capacity
C

kC Qabs
C/C linear Qabs dependency of the ca-

pacityC
xC factor at which value of the capac-

ity C SOHC = 0

useHeatPort boolean variable for using the heat
port

Toperational K operational temperature if the heat
port is not used

Tref K reference temperature
alpℎaRs K

−1 linear temperature coefficient ofRs

alpℎaC K
−1 linear temperature coefficient of the

capacityC

Table 2: Additional input parameter of the
StaticResistance cell model.

name unit description

Rsref Ω ohmic resistance at reference temperature
Tref

The output variables both for the
StaticResistance single cell model and
the LinearDynamicImpedance are given in
Table 4 and the calculation of them are presented in
the following.

Starting fromSOCini the

SOC = SOCini −
Q

C
, (1)

with the removed charge

Q =

tstop∫

tstart

I(t)dt. (2)

The open circuit voltageOCV of a battery cell
changes withSOC and can be extracted from a lookup
tableOCV table between the charging voltage limit
CV L and the discharging voltage limitDV L. This
linearly interpolated lookup table for a lithium ion (Li-
ion) battery cell [5] is exemplarily shown in Fig. 4.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

437

O
C

V

+
-

A

iC
e
ll

SOCOCVTable

R
s

i
C

SOC

calculator

cycles

SOH

T

t

fix
e
d
Te

m
p
e
ra

…

T
=

T
O

p
e

ra
ti
…

clock

startTime=tstart

K

temp

pin_n

pin_p

heatPort
intH…

(a) StaticResistance

O
C

V

+
-

A

iC
e
ll

i
C

SOC

calculator

cycles

SOH

T

t

SOCOCVtable

selfDischarge

i

t

fix
e
d
Te

m
p
e
ra

…

T
=

T
O

p
e

ra
ti
…

n
u
m

S
O

C
i

R
s

2
1

t

clock

startTime=tstart

K

temp

pin_n

pin_p

heatPort
inter…

(b) LinearDynamicImpedance

Figure3: Single cell model with a static impedance (a) and with a variable number of variable RC elements, a
variable ohmic impedance as well as with basic self discharge (b)

SOC

0 1

DVL

CVL

O
C
V

Figure 4: Linear interpolation of the measured open
circuit voltage (OCV) for different state of charge
(SOC) of a Li-ion battery cell [5].

The total transferred charge betweentstart andtstop is

Qabs = Qini +

tstop∫

tstart

∣I(t)∣dt (3)

and the equivalent number of cycles

cycles = cyclesini +

tstop∫

tstart

∣I(t)∣

2 ⋅ C
dt, (4)

with

cyclesini =
Qini

2 ⋅ C0+C(tstart,Qini,TℎeatPort)
2

, (5)

relatesthe total transferred charge to the cell capacity
C. Therefore, one cycle is equivalent to the charge
transfer (regardless in which direction) of one full dis-
charge and one full charge of the current capacityC.

Both cell models consider basic aging, which can be
divided into calendaric aging and aging due to cycling.
Calendaric aging of a cell is estimated from the time
t and the absolute transferred chargeQabs defines the
aging due to cycling. Aging of a battery mainly in-
fluences the capacityC (decreasing) and the internal
impedance (increasing).

The cell capacity

C = (C0 + kC t ⋅ t+ kC Qabs
⋅Qabs)

⋅ (1 + alpℎaC ⋅ (TℎeatPort − Tref)) (6)

is temperature dependent and decreases with increas-
ing timet (calendaric aging) as well as with increasing
transferred chargeQabs (aging due to cycling).

The difference between theStaticResistance
and theLinearDynamicImpedance single cell
model is the configuration of internal impedance on
the one hand and the self discharge on the other hand.

The StaticResistance single cell model
has just a single, temperature dependent, ohmic

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

438

Table 3: Additional input parameters of the
LinearDynamicImpedance cell model.

name unit description

Isd0 A self discharge current atTref for
Qabs = 0 andt = 0

ksd t A/s linear t dependency of self dis-
charge current

ksd Qabs
A/C linearQabs dependency of self dis-

charge current
alpℎasd K

−1 linear temperature coefficient of
self discharge currentIsd

Rs0 Ω series resistance atTref for
Qabs = 0 andt = 0

kRsSOC Ω linearSOC dependency ofRs
kRst Ω/C lineart dependency ofRs
kRsQabs

Ω/C linearQabs dependency ofRs
num number of series RC elements
< Rd0 > Ω array of lengthnum of Rd atTref

for SOC = 0, Qabs = 0 andt = 0

< kRdSOC > Ω array of lengthnum of linearSOC
dependency ofRd

< kRdt > Ω/s array of lengthnum of linear t de-
pendency ofRd

< kRdQabs
> Ω/C array of lengthnum of linearQabs

dependency ofRd
< alpℎaRd > K

−1 array of lengthnum of linear tem-
perature coefficient ofRd

< Cd0 > F array of lengthnum of Cd for
SOC = 0, Qabs = 0 andt = 0

< kCdSOC > F array of lengthnum of linearSOC
dependency ofCd

< kCdt > F/s array of lengthnum of linear t de-
pendency ofCd

< kCdQabs
> F/C array of lengthnum of linearQabs

dependency ofCd
xZ factor at which value of the internal,

ohmic impedanceZ SOCZ = 0

impedance, modeled as

Rs =

Rsref ⋅ (1 + alpℎaRs ⋅ (TℎeatPort − Tref)). (7)

It does not consider impedance increase due to aging.

In contrast, theLinearDynamicImpedance
single cell model has an ohmic impedance andnum
serially connected RC elements for the transient be-
havior of the electrodes of an electrochemical en-
ergy storage as shown in Fig. 5 [6, 7]. All ohmic
impedances (Rs, Rd 1 . . . Rd num) are temperature de-
pendent and have a linear dependency on state of
chargeSOC, on the timet (calendaric aging) as well
as on the transferred chargeQabs (aging due to cy-

Table 4: Calculated output variables
of the StaticResistance and the
LinearDynamicImpedance cell model.

name unit description

SOC stateof charge
OCV V open circuit voltage
Qabs C total transferred charge
cycles number of equivalent cycles
t s calendaric cell time
SOH state of health
SOS state of sickness
C C capacity
V V cell voltage

cling). The serial resistorRs is modeledas

Rs =

(Rs0 + kRsSOC ⋅ SOC + kRst ⋅ t+ kRsQabs
⋅Qabs)

⋅ (1 + alpℎaRs ⋅ (TℎeatPort − Tref)). (8)

Forn = 1 . . . num

Rd[n] = (Rd0[n]+

kRdSOC [n] ⋅ SOC + kRdt[n] ⋅ t+ kRdQabs
⋅Qabs)

⋅ (1 + alpℎaRd[n] ⋅ (TℎeatPort − Tref)). (9)

and since there is no temperature dependency for ca-
pacitances considered

Cd[n] = Cd0[n] + kCdSOC [n] ⋅ SOC

+ kCdt[n] ⋅ t+ kCdQabs
[n] ⋅Qabs. (10)

Moreover, theLinearDynamicImpedance sin-
gle cell model considers basic self discharge which is
linear dependent on the temperature, the time (calen-
daric aging) and the transferred charge (aging due to
cycling).

While with theStaticResistance single cell
model only the basic impedance behavior can be sim-
ulated, theLinearDynamicImpedance can be
used to simulate single cells very accurate if the
parametrization work is well done.

The capacity as well as the internal impedance (only
with the LinearDynamicImpedance single cell
model) can change due to aging and the state of health
SOH (and accordingly the state of sicknessSOS)
compares the current condition of a battery cell to its
ideal (initial) condition. TheSOH is divided into the
SOHC andSOHZ :

SOH = 1− SOS = SOHC ⋅ SOHZ , (11)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

439

Rd1

Cd1

Rs

OCV Vcell

Rd2

Cd2

Rdnum

Cdnum

Icell

Figure 5: Battery model with one ohmic impedance
andnum serially connected RC elements.

as shown in Fig. 6.
For a new cell,SOHC = 1 andSOHZ = 1 and

therefore alsoSOH = 1. When the capacityC de-
creases (due to calendaric aging or aging due to cy-
cling) to xC ⋅ C0 (e.g. withxC = 0.8), SOHC = 0.
Hence,

SOHC =
1

C0 ⋅ (1− xC)
⋅ C −

xC
1− xC

. (12)

Similarly, when the sum of all internal, ohmic
impedances

Z = Rs +Rd[1] +Rd[2] + . . .+Rd[num] (13)

increases (due to calendaric aging or aging due to cy-
cling) toxZ ⋅ Z0 (e.g. withxZ = 2), where

Z0 = Rs0+Rd0[1]+Rd0[2]+ . . .+Rd0[num], (14)

SOHZ = 0. Therefore,

SOHZ =
1

Z0 ⋅ (1− xZ)
⋅ Z −

xZ
1− xZ

. (15)

Fig.7 shows the dependency ofSOHC and SOHZ

from C andZ, respectively.

WithMeasurement
In the WithMeasurement package
there are two cell models with measure-
ment: The StaticResistance and the
LinearDynamicImpedance. Both contain
basic measurement and instances of the corresponding
single cell model. Fig. 8 shows for example the
LinearDynamicImpedance with measurement.
The voltage, the current and the temperature of the
single cell model are measured and provided with the
singleCellBus (cf. section 2.7). The cell models
with measurement have the same connectors as the
single cell models (pin_p,pin_n andheatPort)
but have additionally thesingleCellBus. There-
fore several instances of these can be connected

SOHZ
SOHC

S
O
H

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 6: Dependancy of the state of healthSOH
from SOHC andSOHZ .

0

C

1

0 C0xC ·C0

0.5

S
O
H

C

(a) SOHC

0

Z

S
O
H

Z

1

Z0 xZ ·Z0

0.5

C0

(b) SOHZ

Figure 7: Partial state of health with respect to the
capacityC and to the impedanceZ with paramters
0 < xC < 1 andxZ > 1.

together (serially and in parallel) and the basic
measurement of each cell is done.

The advantage of separating the cell models in
Single and WithMeasurement models shows
up when it comes to stacks and the current of
each cell should be measured. Fig. 9 shows the
icons for theSingle andWithMeasurement for
the StaticResistance cell as well as for the
LinearDynamicImpedance cell models with en-
abledheatPort.

2.1.2 Stacks

Stacks arens serially connected cells andnp cells in
parallel as shown in Fig. 10. TheStacks package
is structured in the same way as theCells package.
There areSingle andWithMeasurement stacks
where each uses either theStaticResistance or

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

440

A

V T

i

T

v

+

--

fix
e
d
Te

m
p
e
ra

…

T
=

T
O

p
e

ra
ti
…

i

T

v

pin_p

pin_n

heatPort

s
in

g
le

C
e
llB

u
s

inter…

Figure 8: Cell model with measurement. The mea-
suredcurrent, temperature and voltage are provided to
the outside via thesingleCellBus

+

--

(a)

+

--

(b)

+

--

(c)

+

--

(d)

Figure 9: Icons for the StaticResistance
(Single (a), WithMeasurement (b)) and for
the LiniearDynamicImpedance (Single (c),
WithMeasurement (d)) cell model with enabled
heat port.

theLinearDynamicImpedance cell models.
TheStaticResistance single stack model is a

stack with all equal cells and therefore only one cell
needs to be calculated and parameterized. It is basi-
cally aStaticResistance single cell model that
scales the parameters of the model components and be-
haves likens ⋅ np equally parameterized instances of
StaticResistance single cell models. For exam-
ple the value of the series resistance is thenRs0 ⋅ns/np

with the valueRs0 for a single cell. Hence, it is much
faster than a model withns ⋅ np instances of equally
parametrized cell models.

The LinearDynamicImpedance sin-
gle stack model hasns ⋅ np instances of the
LinearDynamicImpedance single cell model
and the serial and parallel connections are textually
generated with loops:

equation
//series connection
for s in 1:ns-1 loop
connect(cell[s,1].pin_n,cell[s+1,1].pin_p);

end for;

1,1

2,1

3,1

ns,1

1,2 1,np

2,2

3,2

ns,2

2,np

3,np

ns,np

Figure 10: Battery stack withns seriallyandnp con-
nected cells.

//parallel connection
for p in 1:np-1 loop
for s in 1:ns loop
connect(cell[s,p].pin_p,cell[s,p+1].pin_p);
connect(cell[s,p].pin_n,cell[s,p+1].pin_n);
end for;

end for;
//connector connection
for s in 1:ns loop
connect(cell[s,1].pin_p,pin_pCell[s]);
connect(cell[s,1].pin_n,pin_nCell[s]);

end for;
//top connection
connect(cell[1, 1].pin_p, pin_pPackage);
//bottom connection
connect(cell[ns, np].pin_n, pin_nPackage);
//heatPort connection
connect(cell[:,:].heatPort,heatPort[:,:]);

Each scalar parameter of the
LinearDynamicImpedance single cell model is
extended to an array of dimensionns×np and the array
parameters of theLinearDynamicImpedance
single cell model now have the dimension
ns × np × num. Each cell in this stack can be
parametrized individually and therefore also cell
variance in a stack can be simulated. All single
cell connectors and all temperature connector are
conditionally available. Fig. 11 shows the icons
for all different stack models. Therefore a separate
thermal model can be considered. With the single
cell connectors and an additional model even cell
balancing can be simulated [8].

From each single stack model
(StaticResistance and
LinearDynamicImpedance) there is also a
version with measurement (StaticResistance

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

441

(a) (b)

ns

np

(c)

ns

np

(d)

Figure 11: Icons for the Single (a),
WithMeasurement (b) StaticResistance
stack models with enabled heat ports and
the Single (c), WithMeasurement (d)
LinearDynamicImpedance stack models
with enabled heat as well as single cell ports .

Table 5: Parameters of theVoltageCycling bat-
tery management model.

name unit description

ns numberof serially connected cells
np number of parallel connected cells
Ifinal A final charging switch off current
Vmax V maximal cell voltage
Vmin V minimal cell voltage
tc s delay time after charging
td s delay time after discharging
ini true for initial discharging

andLinearDynamicImpedance) in theStacks
package.

2.2 Battery Management

In the current version of the EES library there is
a voltage cycling device (VoltageCycling) im-
plemented. Fig. 12 gives an overview about the
VoltageCycling model and its parameters are
given in Table 5

It basically has two boolean outputs to operate with
loads and charging devices (cf. section 2.3 and 2.4).
ThecellBus can either be connected to a cell or a
stack. During charging ifVmax of any cell is reached
and the charging current of all parallel connected cells
is below Ifinal, the boolean outputdischarging
gets true aftertc. WhenVmin of any cell is reached
during discharging, the boolean outputcharging
gets true aftertd. Therefore it is possible to cycle a
cell or a stack within its voltage limitsVmin andVmax

vMax

cycling

d…

vMin ch. f in.

ch.

yMax

yMin

u

vOut

i

v
f inishediOut

sumsum

cellBus[:, 1]

cellBus[1, :]

discharging

charging

c
e
llB

u
s

vM
a

x

vM
in

Figure 12: VoltageCycling model in the
BatteryManagement package.

(in combination with a charging device and a load).

2.3 Chargers

In theChargers package there is a constant current,
constant voltage (CCCV) charging device modeled. A
CCCV charging device charges a battery with a con-
stant current until itsCV L is reached (constant cur-
rent phase). Then a constant voltage is applied and the
current decreases (constant voltage phase). The charg-
ing device is switched off when the charging current
reaches the final charging switch off current (typically
5% of the 1h discharging current).

When the boolean input of the modeled charg-
ing device is true (e.g. the boolean charging output
charging from theVoltageCycling model de-
scribed in section 2.2), a current source provides a con-
stant current. This current is controlled by a voltage
input (e.g. the maximal cell voltage in a battery stack),
a reference voltage (parameterVmax) and limited by
the maximal charging current (parameterImax).

2.4 Loads

In theLoads package there are models to discharge
a cell or a stack to cover typical lab situations (for ex-
ample discharging a battery with a defined current or
power profile). In extension to the electrical current
sources (a current source parametrized with a negative
current can be used as a load) there are four different
loads considered:

∙ BooleanExternalControlledLoad

∙ BooleanConstantCurrent

∙ BooleanConstantPower

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

442

iOut

vOut

tempOut

vIn

iIn

tempIn

cellBus2

cellBus2

cellBus2cellBus1

cellBus1

cellBus1

c
e
llB

u
s
2

c
e
llB

u
s
1

(a) CellBus

sOCOut

sOHOut

cOut

cyclesOut

oCVOut

vOut

iOut

tOut

sOCIn

sOHIn

cIn

cyclesIn

oCVIn

vIn

iIn

tIn

controlBus2

controlBus2

controlBus2

controlBus2

controlBus2

controlBus2

controlBus2

controlBus2

controlBus1

controlBus1

controlBus1

controlBus1

controlBus1

controlBus1

controlBus1

controlBus1

c
o
n
tr

o
lB

u
s
2

c
o

n
tro

lB
u

s
1

(b) ControlBus

Figure 13: Structure of theCellBus (a) and the
ControlBus (b) with bus adaptors to all variables on
the bus (v, i, T for theCellBus andv, i, T , OCV ,
SOC, SOH, cycles, C for theControlBus).

∙ SignalPower

All Boolean models have a boolean inputon which
for example can be connected to the boolean output
discharging of the VoltageCycling model
(cf. section 2.2). Ifon is false the cell or the stack
is not being discharged.

2.5 Sensors

The Sensors package provides models to esti-
mate the energy, the charge and the absolute charge
from/to a cell or a stack. The models provided
in the Electrical.Analog.Sensors package
from theMSL are used and consequently extended.

2.6 Icons

In this package there are combined all icons used for
the packages.

Figure 14: Test cell at constant temperature in a cli-
matechamber.

2.7 Interfaces

There are two buses available: TheCellBus and the
ControlBus. TheCellBus contains only measur-
able variables such as the cell voltagev, the cell cur-
renti and the cell temperatureT . It can be used when
lab situations are simulated and only measurable vari-
ables are significant. It can also be used to test dif-
ferent battery monitoring systems, based oni, v and
T . TheControlBus contains the variables from the
CellBus and additional the following:OCV , SOC,
SOH, cycles andC. It could for example be the com-
munication between the battery management system
and the control units in an electric vehicle simulation.

In the Interfaces package there are also bus
adapters to extract/inject all these variables (Real
values) from/to theCellBus as well as from/to the
ControlBus. Figure 13 shows the structure of the
CellBus and of theControlBus with the usage of
all bus adapters.

3 Examples

Two different examples are presented:
First aLinearDynamicImpedance single cell

model with one (num= 1) RC element is param-
eterized according to [9]. A realistic current profile,
gained from the FTP72 cycle is continuously applied
to the parameterized model as well as to the real cell
[10]. The FTP72 cycle is a standardized real life driv-
ing cycle that simulates an urban route of12.07 km.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

443

V
c
e
l
l
(V

)

measured
simulated

t (min)

v
o
lt
a
g
e
e
r
r
o
r
(%

)

235 240 245 250 255 260

235 240 245 250 255 260

0

1

2

3.5

3.6

3.7

3.8

Figure 15: Comparison of the measured and simulated
cell voltage when applying the FTP72 current profile
to the real cell and to parameterized model (top). The
error refers to the measured voltage (bottom).

ns

np

stack

ground

p

switch

o
n

v

chargerload

on

cycling

dch.

ch.
Vmin

Vmax

Figure 16: Simulation arrangement for cycling a bat-
terystack.

This cycle is applied to a compact electric vehicle to
extract the realistic current profile. The current profile
is repeated starting from the full charged cell until it
reaches discharging voltage limitDV L. This experi-
ment is performed at constant temperature and Fig. 14
shows the test cell in a climate chamber. Fig. 15 com-
pares the simulated to the measured cell voltage. The
error, related to the measured voltage, between the
simulated and the measured voltage stays below 2%
at SOC ≈ 0.5 during one complete FTP72 cycle.
Therefore the chosen model approach is appropriate.

For the second example, three serially connected
cells using theLinearDynamicImpedance stack
model (without temperature and cell connectors) with
different capacities are simulated. The cell capacities
areC1 = 35Ah, C2 = 40Ah, C3 = 45Ah and

I
s
t
a
c
k

(A
)

t (h)
V
c
e
l
l

(V
)

cell 1
cell 2
cell 3

0 1 2 3 4 5

0 1 2 3 4 5

3

4

5

-50

0

50

Figure17: Current profile and voltage response from
the three cells from the example simulation.

parametrized using [5, 9]. The cells are cycled with a
40A charging and a40A discharging current between
CV L = 4.1V andDV L = 2.7V with a delay
after chargingingtc = 100 s and after discharging
td = 50 s. Cycling means continuously charging
and discharging, which is a typical lab application for
batteries. Fig. 16 shows the simulation arrangement
with the charging device (charger), the battery man-
agement (cycling), the battery stack (stack), the
discharger (load) and a switch (switch). Fig. 17
shows the battery stack current and the voltage from
all three cells.

4 Conclusions

The Electric Energy Storage library, which is intended
to be included in the Modelica Standard Library, has
been described. The structure of the library and key
parameters as well as the equations of the models for
determining the output variables have been presented.
Two typical lab tests for batteries have been simulated
as an example to show the interaction of the models
and to show the correctness of the model approach.

With the Electric Energy Storage library the user has
a powerful tool to cover various applications of energy
storages with simulation. In combination with existing
libraries, (e.g. theSED) the behavior of electric energy
storages and the interaction for example with the pow-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

444

ertrain of an electric vehicle can be analyzed in detail.
Futurework will focus on including of thermal mod-
els of electirc energy storages and the coupling with
the electrical models.

References

[1] J. V. Gragger, H. Giuliani, C. Kral, T. Bäuml,
H. Kapeller, and F. Pirker, “The smartelectric-
drives library - powerful models for fast simula-
tions of electric drives,”Proceedings of the 5th
International Modelica Conference, vol. 2, pp.
571–577, 2006.

[2] Modelica Association, “Modelica - a unified
object-oriented language for physical systems
modeling, language specification version 3.2,”
http://www.Modelica.org/, 2010.

[3] Dassault Systems, “Dymola 7.4,”
http://www.3ds.com/, 2010.

[4] P. Fritzson,Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. IEEE
Press, Wiley-Interscience, 2004.

[5] EIG ePLB C020 lithium ion polymer cell
datasheet, EIG, 2010.

[6] A. Jossen, “Fundamentals of battery dynamics,”
Journal of Power Sources, vol. 154, pp. 530–538,
2006.

[7] S. Buller, “Impedance-based simulation models
for energy storage devices in advanced auto-
motive power systems,”Aachener Beitraege des
ISEA, vol. 31, 2002.

[8] M. Einhorn and J. Fleig, “Improving of ac-
tive cell balancing by equalizing the cell en-
ergy instead of the cell voltage,”Proceedings of
the 25th International Battery, Hybrid and Fuel
Cell Electric Vehicle Symposium and Exposition
(EVS25), 2010.

[9] M. Einhorn, F. V. Conte, C. Kral, J. Fleig, and
R. Permann, “Parametrization of an electrical
battery model for dynamic system simulation in
electric vehicles,”Proceedings of the IEEE Ve-
hicle Power and Propulsion Conference (VPPC),
September 2010.

[10] FTP72 Urban Dynamometer Driving Schedule
(UDDS), U.S. Environmental Protection Agency.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

445

Implementation of a transmission line model
for fast simulation of fluid flow dynamics

Stéphane Velut Hubertus Tummescheit
Modelon AB, Ideon Science Park, 22370 Lund, Sweden

Abstract

An implementation of a lumped and 1-dimensional
pipeline model for simulation of fast pressure and flow
transients such as water-hammer effects is presented.
It is an extension of the classical Transmission Line
Model (TLM), a transfer matrix representation of a
pipeline, relating pressure and volume flow rates at
the extremities of a pipeline. The proposed model has
extended previous work in different aspects. The ex-
tensions were developed for the detailed operational
investigation of a pipeline for the transport of car-
bon dioxide from a carbon capture plant to a suit-
able location for the geological storage of supercriti-
cal, dense phase carbon dioxide. A lumped temper-
ature model, derived as the TLM model by integrat-
ing the distributed dynamics, has been added to de-
scribe the effect of heat losses in long pipelines. A
dynamic friction model that is explicit in the medium
and pipeline characterisitcs has also been included. Fi-
nally, it is shown that, with simple adjustments, the
model can reasonably well describe the pressure dy-
namics in turbulent flow conditions. Some simula-
tions have been carried out to compare the perfor-
mance of the proposed model to the one from the Mod-
elica Standard Library, and the results were also com-
pared to measurement results from the literature. The
resulting model has become useful for a wide vari-
ety of engineering applications: pipelines for gas and
oil, district heating networks, water distribution net-
works, wastewater systems, hydro power plants and
more. In the lumped, constant temperature version,
there are no discretization artifacts, and even in the dis-
cretized version taking into account spatial and tem-
poral changes in temperature, discretization artifacts
are much smaller than for the standard finite volume
model. Moreover, the short simulation times make the
model suitable for real-time applications.

Keywords: water-hammer; transmision line model;
dynamic friction; lumped model, CO2 transport

1 Introduction

A pipeline is a distributed system and its dynamics
is described by partial differential equations. Most
of the methods to compute flow transients are based
on a spatial discretization of the pipeline into small
segments. For accurate simulations of long ducts, a
high discretization level is necessary, which leads to
time-consuming computations. When only pressure
and flow at the extremities are of interest, it is possi-
ble to capture the pipeline dynamics with a low order
lumped model. The paper presents the implementation
of such a model, the Transmission Line Model, based
on the work presented in [5]. The original model has
been extended to include temperature dynamics, an
improved dynamic friction model, the effect of static
head and some handling of turbulent flow conditions.
The model presented in this paper captures the oscilla-
tions of the wave equation accurately with a lumped
model, under the assumption of constant or slowly
varying fluid properties. For suitable assumptions, the
model is both more accurate with respect to measure-
ments and has a much faster execution time than dis-
cretized models. It is suitable for simulation of larger
multi-domain systems with variable time-step solvers,
and also for pipeline systems with long (hundreds of
kilometers) pipes. In contrast to discretized models
that include momentum dynamics, the TLM model
works fast and reliably also for zero-flow conditions.

The model is used in Modelon’s Hydraulics Library
as the long-line model without the thermal effects, and
in Modelon’s CombiPlant Library including the ther-
mal effects.

2 Background

2.1 Fundamental equations

One dimensional pressure and flow dynamics in a
circular pipeline is described at low Mach numbers

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

446

(q/A≪ c) by coupled partial differential equations:

∂ p
∂ t

+
ρc2

A
∂q
∂x

= 0 (1)

∂q
∂ t

+
A
ρ

∂ p
∂x

+ f (q) = 0

whereq is the averaged flow rate at any section,p the
pressure,ρ the medium density,c the speed of sound
andA the cross-section area. The friction factorf (q),
which describes the pressure losses per unit of length
is defined by:

f (q) =
τwall

0.5×ρu2 (2)

whereu= q/A is the fluid velocity and the wall shear
stressτwall is related to the velocity gradient in the ra-
dial direction:

τwall = µ
∂u
∂y

(3)

andµ is the dynamic viscosity of the fluid.

2.2 Friction model

The friction factor, which depends on the medium vis-
cosity and on the flow regime may be experimentally
derived or in some cases analytically computed on
physical considerations. In the case of steady state
flow, f (q) is related to the Fanning friction factorλ (q)
by

fs(q) = λ (q)
πDu2

8
(4)

When the flow is laminar, the Darcy-Weisbach equa-
tion λ (q) = 64

Re, Rebeing the Reynolds number, leads
to

fs(q) =
32ν
D2 q (5)

and the equations (1) are therefore linear. In the case
of turbulent flow, the Fanning friction factor can be de-
scribed by the Colebrook-White equation and the re-
sulting equations (1) are not linear.

It is commonly assumed that the steady state rela-
tions for f are also valid dynamically, which is actu-
ally not the case during fast transients such as water-
hammers. Indeed, under fast transients, the average
flow is influenced by 2D effects that the static friction
model does not capture well. In [8], the author derived
a dynamic wall shear stress modelτwall(q) by solving

analytically the two dimensional Navier-Stokes equa-
tions for laminar flow, which resulted in the following
expression forf :

f (u) = fs(u)+ fu(u)

=
8ρν
R2 u+

ρν
R2

∫

W(t − τ)
∂u
∂ t

dτ (6)

where the unsteady termfu depends on the weighting
function W with an analytical but irrational expres-
sion in the frequency domain. It was approximated
in the time-domain for transient simulations with the
method of characteristics. Zielke’s approach was later
extended to derive a dynamic friction model valid in
turbulent regime, for smooth pipes [7] and rough pipes
[2]. The resulting model is as in the laminar case de-
scribed by an irrational transfer function, which is in
that case also dependent on the Reynolds number.

2.3 Implementation

Time-domain methods

Fluid flow transients in a pipeline may be simu-
lated using equation (1) together with a friction de-
scription and boundary conditions. Powerful com-
mercial solvers implementing various Computational
Flow Dynamics techniques such as Finite Element or
Finite Volume methods, are available to numerically
solve those equations. Most of the techniques are
based on a spatial discretization of the pipeline into
small segments. For an accurate result in case of long
pipelines, many segments are required, resulting in
long computation times. Another limitation is the dif-
ficulty to simulate multi-domain models with complex
time-varying boundary conditions.

A simpler and well-established technique for fluid
flow simulation is the method of characteristics
(MOC), which transforms the PDE (1) into two sets
of ODE that can successfully be solved by fixed-step
solvers. The fixed connection between the spatial and
the temporal discretizations is the main limitation of
the MOC technique: it results in many segments when
the pipeline is long and it cannot be connected to vari-
able step-solvers.

Frequency-domain methods

The second type of approach is based on a represen-
tation of the pipeline in the frequency domain. This
is a well-suited method for real-time simulations and
for system analysis such as control design or dynamic
optimization. The fundamental equations (1) are first

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

447

Laplace-transformed and thereafter analytically inte-
grated over the pipe lengthL:

(

P(s)
Q(s)

)

x=L
=

(coshΓ(s)L −Zc(s)sinhΓ(s)L

−

sinhΓ(s)L
Zc(s)

coshΓ(s)L

)(

P(s)
Q(s)

)

x=0
(7)

The equations involve non-rational terms and can-
not be efficiently implemented without approximation.
Two approaches are found in literature: the modal
description and the Transmission Line approach. In
the modal description, the irrational functions are ap-
proximated as truncated sum of low order linear filters
whereas the TLM approach makes use of both linear
filters and time-delays. As the TLM model describes
explicitely the inherent delay of the wave propagation
it results in lower orders model than the modal descrip-
tion.

The pipeline model that is described in the cur-
rent paper is based on [5]. A block diagram of the
pipeline model is shown in Figure 1. Every block in
the schematic representation has a well-defined inter-
pretation:

• Zc is the line impedance describing the immediate
and local effect of a flow change on pressure. It
is modelled by a static gain ρc

π(D/2)2

• R(s) is the hydraulic resistance of the duct and
determines the pressure drop to the flow at sta-
tionarity. It was described byR(s) = R0

κTs+1 where

R0 =
∆p∞
q∞

• e−sT = e−sL
c is the delay associated to the time

it takes for a pressure wave to travel through the
pipeline at the speed of soundc.

• Gf (s) = G1
f (s)G

2
f (s) is a dynamic filter that mod-

els the attenuation of the pressure disturbance
when the wave goes from one extremity to the
other. G1

f =
s/ω2+1
s/ω1+1 andG2

f (s) describe the effect
of static and dynamic frictions, respectively. The
frequenciesω1 andω2 are given byω1 = c/(κL)

andω2 = ω1e−
R0
2Zc . G2

f needs to be optimized for
every medium and pipeline charcateristics.

3 A novel lumped pipeline model

The transmission line model [5] has been implemented
in Modelica and further developped to describe the fol-
lowing characteristics:

• heat loss. When heat loss cannot be ne-
glected, temperature is not constant throughout

e−sT

e−sT

R

RZc

Zc
c1

c2
p1

p2

q1 q2

G1
f

G1
f

G2
f

G2
f

p1 = Zcq1+c1 p2 = Zcq2+c2

Figure 1: Schematic representation of the Transmis-
sion Line Model. Zc is the line impedance,R is the
hydraulic resistance,e−sT is a time-delay andG1

f G
2
f

describes the effect on static and dynamic frictions on
the travelling presure waves.

the pipeline. The temperature profile and its in-
fluence on the pressure wave dynamics need to
be included in the TLM model.

• static head, in the case of non-horizontal
pipelines.

• an improved description of the dynamic friction

• turbulent flow

3.1 Turbulent flow condition

Linearity of the continuity and momentum equation is
an essential assumption in the derivation of the trans-
fer matrix representation. The turbulent flow regime
introduces a nonlinearity in the friction termf and
the coupled PDEs (1) can no longer be integrated ex-
plicitely. It is still possible to consider small devia-
tions from an equilibrium point and linearize the equa-
tions (1) around a stationary point:

∂∆p
∂ t

+
ρc2

A
∂∆q
∂x

= 0 (8)

∂∆q
∂ t

+
A
ρ

∂∆p
∂x

+
∂ f
∂q

= 0

Moderate pressure and flow deviations from a sta-
tionary point can therefore be simulated by typically
changing the hydraulic resistanceR0 in the TLM
model with the linearized resistanceRl , which is a pa-
rameter used in bothR(s) andG1

f (s):

Rl =
∂ p
∂q

=
ρL
A

∂ f
∂qq0

(9)

To get correct stationary pressure drops under larger
pressure or flow changes, the parameterR0 in R(s)
has not been linearized andR0 =

ρL
q0A f (q0) has instead

been used. Note that the changes for handling turbu-
lent flows do not affect the orginal model in the lami-
nar flow regime.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

448

3.2 Dynamic friction

In the original TLM model from [5], the transfer func-
tion G2

f –describing the frequency dependent friction–
needs to be tuned for the considered pipe and medium.
To avoid this optimization, the friction model from [4]
that is explicit in both the medium properties and the
pipe characteristics has been implemented. In this
model, the transfer functionG2

f is expressed as a sum
of k linear filters, approximating the analytical solu-
tion:

G2
f (s) = 1−

8νL
cD2

k

∑
i=1

miαs
ni +αs

(10)

where α = 4D2/ν and mi and ni are medium- and
pipe-independent constants that affects the frequency
range in which the approximation should be most
accurate. Compared to [5] better agreement with
experimental data has also been reported.

The friction description from [4] is theoreticallly
valid only for laminar flow. In [1], it was found that
the laminar flow approximation of the dynamic fric-
tion model is a reasonable basis for transient turbulent
friction as long as the Reynolds number is moderate
(below 105). The advantage of this model compared
to [2] or [7] is that the dynamic friction model does
not depend on the Reynolds number.

3.3 Static head

The basic pipeline model can easily be extended to ac-
count for pressure variations due to height differences.
The equations at the pipe nodes are updated as follows

P1 = ZcQ1+C1−ρgL (11)

P2 = ZcQ2+C2+ρgL (12)

whereρ is the density of the medium at the pipe inlet,
g is the gravity constant andL is the length of the pipe
segment. In the previous equations it is assumed that
the pipe node 1 is at a higher altitude than the pipe
node 2.

3.4 Time-varying properties

Need for discretization

In the TLM model, it has been assumed that temper-
ature is both constant in time and space. When heat
loss along the duct is not negligible, this hypothesis is
not valid and the variations in the medium properties
cannot always be neglected. This is for instance true
when the duct is very long or poorly isolated and when

the mass flow is time-varying or low. The pipeline
needs somehow to be discretized into segments, each
segment being characterized by uniform but possibly
time-varying medium properties. The variations in
the medium properties are however slow because the
medium properties depend to a larger degree on tem-
perature than pressure and temperature dynamics is
slow.

To incorporate the temperature dynamics into the
pipeline model, a similar approach as in the TLM
model derivation has been used: the energy balance
is explicitely integrated along the pipeline to get a re-
lationship between the inlet and outlet temperature of
every segment. In that way, the pipeline can be dis-
cretized into a moderate number of segments, each
segment being the combination of a TLM model and a
temperature dynamic. The segment length is typically
much longer than in the MOC description and it is re-
lated to the amplitude of the temperature change along
the line as well as to the sensitivity of the medium
properties to temperature changes.

Lumped temperature dynamics

The one dimensional energy balance in the pipeline is
represented by the following partial differential equa-
tion:

∂T
∂ t

+
ṁ

πR2ρ
∂T
∂x

+
1

πR2ρcp
q(T(x)) = 0 (13)

whereq(T(x)) describes the heat loss to the surround-
ings along the line and depends on the boundary condi-
tions. The heat loss may often be described as a linear
function of the temperature difference between bound-
aries:

q(T(x)) = kS(T(x)−Tboundary) (14)

wherek is the heat conductivity of the surroundings
(water, soil) andS is the shape factor. The shape factor
Smay take the following form [3]:

S =
2π

acosh2h
D

(15)

for a pipe with diameterD, buriedh meters below the
ground surface at constant temperature, or

S =
2π

lnD∞
D

(16)

for a pipe with diameterD and surroundings at con-
stant temperature, a distanceD∞/2 away from the pipe
center.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

449

The equations (13) and (14) are linear and can be
integrated explicitely together with the boundary con-
dition from the inlet temperature:

T(x= 0, t) = Tin(t) (17)

When the mass flow is constant, it is sufficient to
Laplace-transform (13) and integrate over the pipe
length. An explicit solution to (13) can also be de-
rived in the case of time-varying flows by applying the
method of characteristics. Temperature at the outlet of
a pipe with lengthL is then given by:

T(L, t) = Tboundary+(Tin(t − τ)−Tboundary)e
−

τ
Tp (18)

The time-varying delayτ and the characteristic decay-
time Tp are given by

πR2L =
∫ t

t−τ(t)

ṁ(s)
ρ

ds (19)

Tp =
cpρπR2

kS
(20)

3.5 Modelica implementation

The proposed pipeline model has been implemented
in Modelica using the Dymola software. The basic
pipeline segment, characterized by constant medium
properties is composed of two models in parallel:

• a dynamic model describing pressure and flow
dynamics, see Section 3.1 to 3.3

• a dynamic model describing temperature dynam-
ics, see Section 3.4

The implementation of the pressure wave dynamics is
done using linear transfer function blocks as shown in
Figure 2. The implementation of the time-delays (as-
sociated with the wave propagation or the transport de-
lay) is based on the external C-function called "trans-
portFunction" available in Dymola. The functional
equivalent of that function is currently considered in
the Modelica Association to be included as operator
spatialDistribution() into the Modelica language. This
function allows to model delays based on a physical
transport mechanism, like flow in a pipe, also in the
case of bi-directional flow. Computation of the time-
varying delayτ in the temperature dynamic is per-
formed by using the differential form of Equation (19):

dτ
dt

= 1−
v(t)

v(t − τ)
(21)

wherev= ṁ
ρ is the fluid velocity.

Figure 2: Implementation of the mass and momentum
dynamics in Dymola.

4 Simulation

The original TLM model has shown very good agree-
ment with experimental data and other pipeline models
when the flow is laminar, see for instance [5] or [4].

4.1 Evaluation of the proposed model

Turbulent flow conditions

Simulations have been performed in Dymola to show
that the proposed model gives reasonable results even
in the case of turbulent flow and large pressure dis-
turbances. The considered medium is water and the
pipeline is characterized by a length of 1000 meters,
a diameter of 0.035 meter and a relative roughness of
0.005. The pipe inlet is connected to an ideal flow
source while its outlet is connected to an ideal pres-
sure source (p=20 bar). Pressure waves are generated
by fast variations of the inlet flow.

The TLM model is compared to an instance of the
pipeline model from Modelica Standard Library with
50 segments. In the MSL pipeline model, the par-
tial differential equations are treated with the finite-
volume mehtod and a staggered grid scheme for mo-
mentum balances. The dynamic friction model was
not included in the simulation because it is not im-
plemented in MSL. Note that such a friction model
would give between 50 and 150 additional states in
the MSL model (between 1 and 3 extra states per seg-
ment). Simulation results are shown in Figure 3. The
pipeline is initially at rest and the flow at the inlet is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

450

Figure 3: Comparison of the MSL and TLM pipeline
models. Top: pressure at the inlet, bottom: mass flow
rate at the outlet. The flow at the inlet is changed at
t=1s and t=40s.

varied at two time instants. The first flow increase, at
t = 1 s, generates pressure waves of relatively large
amplitude and moves the fluid in a very short time to
the turbulent regime (Re≈ 104). Despite this fast and
large transients into the turbulent regime, the perfor-
mance of the TLM model is good:

• As expected, the frequency of oscillations is very
good.

• The amplitude and the shape of the first peak is
very good.

• The overall attenuation rate of the travelling wave
is good. One can notice a slightly higher damping
with the TLM model.

• The noisy signals in the MSL model due to the
discretization artifacts are replaced with a smooth
signal.

• The simulation time is much shorter with the
TLM model: 8.6 instead of 100 seconds.

The second perturbation is smaller and results there-
fore in a better agreement between the models. A
slightly higher damping can again be observed with
the TLM duct model. To investigate whether the dif-
ference is mainly caused by the model structure or by
the parameter values, the static friction termG1

f has
been adjusted to give a slightly lower damping. For
that sake, the frequencyw2 has been changed from

w1e−
Rl

2Zc to w1e−
Rl

3Zc . The results shown in Figure 4
are much better and confirms that the model structure
may be suitable for turbulent flow simulations. Further
analysis and simulations are however required to fully
validate the model and to eventually derive a Reynolds

Figure 4: Comparison of the MSL and a slightly mod-
ified TLM pipeline models. Top: pressure at the in-
let, bottom: mass flow rate at the outlet. The flow is
changed at t=1s and t=40s.

dependent parametrization of the transfer functionG1
f .

Temperature dynamics

The reference model is again the pipeline model from
MSL and the pipeline characteristics are identical to
the ones given in previous section. Concerning the
heat transfer, an ideal heat transfer described by a
coefficientα = 10W/K/m2 has been chosen and the
pipeline surroundings have been assumed to be at
constant temperatureTboundary= 10oC. The effect of
changes in both the mass flow rate and the inlet tem-
perature on the outlet temperature are investigated.
Simulation results are shown in Figure 5. The initial
state is characterized by a mass flow rate of 0.25 kg/s
and an inlet temperature of 23.4oC. The resulting out-
let temperature at steady state is about 14.8oC with
both models. At time t=0.25h, the inlet temperature
is linearly decreased to 1.5oC. The dynamic response
of the TLM model differs substantially from the MSL
model. In the MSL case, the outlet temperature starts
decreasing before the cold water at the pipe inlet has
been transported to the outlet. This is due to the spatial
discretization of the pipeline model, which is equiva-
lent to a mixing effect. The TLM model, implemented
with a pure delay operator, does not present this mix-
ing property and captures well the effect of the trans-
port delay. When the number of nodes is increased the
response of the MSL model tends towards the TLM
solution, but at the cost of a longer simulation time.
At time t=2h, the mass flow rate is decreased to 0.1
kg/s. It has a slow but immediate effect on the outlet
temperature. The response of both models are compa-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

451

Figure 5: Temperature dynamics of the MSL and TLM
pipeline models. Top: outlet and inlet temperatures.
Bottom: inlet mass flow rate.

rable.
The simulation times are approximately 0.9 second

for the TLM model and 63.0 seconds for the MSL
model.

4.2 Application: transport of supercritical
carbon dioxide

Successful implementation of theCO2 capture and
storage techniques is largely dependent on the success
with whichCO2 can be economically and safely trans-
ported from the power plants to the storage sites. As
safety is of paramount importance, any risks that may
prevent the safe operation ofCO2 transport pipelines
must be identified and subsequently eliminated or con-
trolled. One of the risks is associated with the for-
mation of gas phaseCO2 within the pipeline resulting
from a decrease in pressure or increase in temperature.
Two phase flow can lead to the occurrence of cavita-
tion or water-hammer with the associated problems of
noise, vibration and pipe erosion and ultimately, pipe
failure.

The pipeline model presented in the current paper
has been used to investigate how the physical state of
CO2 is affected during normal and failure modes such
as quick shut-down, compressor stop or load changes,
see [6].

5 Conclusion

A lumped pipeline model for fast simulation of pres-
sure and flow transients in pipelines has been pre-

sented. It is an extension of the classical Transmis-
sion Line Model, a transfer matrix representation of
a pipeline characterized by constant medium proper-
ties and laminar flow conditions. The proposed model
has extended the basic TLM model to describe the in-
fluence of heat losses. A dynamic friction model that
is explicit in the medium and pipeline characterisitcs
has also been included. Finally, it is shown that, with
simple adjusments, the model can reasonably well de-
scribe the pressure dynamics in turbulent flow condi-
tions. Some simulations have been carried out to com-
pare the performance of the propsed model to the one
from the Modelica Standard Library. It turns out that
the model accuracy is satisfactory and that the short
simulation time makes it suitable for real-time appli-
cations. The model has also been applied to simulate
different operation modes in aCO2 transfer pipeline.

References

[1] H. Kuo-Lun A. E. Vardy, J. M. B. Brown,A
weighting function model of transient turbulent
pipe friction, Journal of Hydraulic research31
(1993), no. 4.

[2] J. M. B. Brown A. E. Vardy,Transient turbulent
friction in smooth pipe flows, Journal of Sound and
Vibration 259(2003), no. 5, 1011 – 1036.

[3] T. L. Bergman-A. S. Lavine F. P. Incropera, D.
P. Dewitt,Introduction to heat transfer, John Wi-
ley & Sons, 2007.

[4] D. N. Johnston,Efficient methods for numerical
modeling of laminar friction in fluid lines, Journal
of Dynamical Systems, Measurement and Control
128(2006).

[5] S. Gunnarsson P. Krus,Distributed simulation
of hydromechanical systems, Third Bath Interna-
tional Fluid Power Workshop.

[6] M. T. P. Mc Cann-H. Tummescheit S. Velut S. Lil-
jemark, K. Arvidsson,Dynamic simulation of a
carbon dioxide transfer pipeline for analysis of
normal operation and failure modes, 10th Interna-
tional Conference on Greenhouse Gas Technolo-
gies, 2010.

[7] A. E. Vardy and J. M. B. Brown,Transient turbu-
lent friction in fully rough pipe flows, Journal of
Sound and Vibration270 (2004), no. 1-2, 233 –
257.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

452

[8] W. Zielke, Frequency dependent friction in tran-
sient pipe flow, Ph.D. thesis, University of Michi-
gan, 1966.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

453

Fluid Simulation and Optimization using Open Source Tools

Kilian Link, Stephanie Vogel Ines Mynttinen
Siemens AG Technical University Ilmenau
kilian.link@siemens.com, vogel.stephanie@siemens.com, ines.mynttinen@tu-ilmenau.de

Abstract

Many open-source (OS) tools exist in the Modelica
universe. OS tools have the benefit that they are
freely available and fit well to Modelica as a non-
proprietary language. However, the industrial usage
of these tools seems to be very limited so far. De-
spite this fact, fluid modeling is possible if restric-
tions are taken into account.

In this contribution, we propose to use benchmark
models for the systematic investigation of the accu-
racy and the performance of Modelica OS tools. The
present implementation circumvents the limitations
of OpenModelica making it possible to simulate the
model system despite existing restrictions. Beside
simulation tasks Modelica-based optimization is pos-
sible using the OS tool JModelica. However, care
must be taken with respect to the model features. In
particular instantaneous transitions within the system
dynamics, such as phase transitions, switching of
valves with discrete behaviour or flow reversal rep-
resent a severe obstacle for optimization. In this arti-
cle, we present a parameter estimation problem in-
cluding instantaneous changes of the flow direction.
In addition, an example of model predictive control
(MPC) for a control task difficult to solve with con-
ventional methods is shown.

Keywords: Fluid Simulation; Optimization; OS
Modelica Tools

1 Introduction

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [1] due to
its applicability for multi-domain modeling of physi-
cal systems and the high degree of maintainability of
Modelica models. The Modelica Libraries Mode-
lica.Media and Modelica.Fluid provide basic ele-
ments to model pipe networks including, e.g.,
economizers, super heaters and evaporators which
are essential parts of each power plant. However the
flexible approach of Modelica.Fluid makes it unsuit-
able for daly buisness in a well defined application

area. Thus well proven models of these components
exist in the in-house library SiemensPower.
The commercial tool Dymola is used for modeling
and simulation. The alternative tool OpenModelica
[2] is an OS Modelica-based modeling and simula-
tion environment intended for industrial and aca-
demic usage, which has the large benefit that it is
freely available and fit well to Modelica as a non-
proprietary language. However, the tool support for
fluid modeling is limited due to some advanced
Modelica features, e.g. the usage of Modelica.Media
and Modelica.Fluid. Despite this fact, fluid modeling
is possible if the functions missing in OpenModelica
are called from external libraries. In order to measure
the quality of OS Modelica tools compared to the
established commercial software, e.g. Dymola with
respect to the accuracy and the performance
benchmark models are needed. In this way the
systematic investigation of models with increasing
size and complexity can reveal bottlenecks and
shortcomings in OpenModelica. To go beyond
simulation applications towards optimization, the
Modelica-based open source platform for
optimization, simulation and analysis of complex
dynamic systems JModelica [3] is the most prefer-
able choice. The main objective of the project is to
create an industrially viable open source platform for
optimization of Modelica models. The three-level
structure of the user interface is probably its main
advantage, since it allows for convenient
implementation of user specified applications. The
issues of compilation, data processing, setting up the
algorithm and starting the optimization are well
addressed in the Python script file. Furthermore, the
Python script file serves to store the data and to do
some customized plotting. These capabilities for
Python scripting considerably reduce the effort to
implement user applications. By means of the
Optimica extension to Modelica, the optimization
problem itself is formulated at the middle level
implementing the objective function and the
constraints using the special class optimization. At
the lowest level of the JModelica user interface the
dynamic model is defined. We used JModelica for
solving the parameter estimation problem of a hybrid
dynamic system as well as an off-line model

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

454

mailto:kilian.link@siemens.com
mailto:vogel.stephanie@siemens.com
mailto:ines.mynttinen@tu-ilmenau.de

predictive control (MPC) problem presented in
sections 3 and 4, respectively.

2 Simulation of Fluid Models with
OpenModelica

Fluid Modeling based on OpenModelica is not very
common so far. This is mainly due to the following
restrictions still present in OpenModelica. As men-
tioned above, the support of Modelica.Fluid and
Modelica.Media is limited. On the other hand, the
performance of the solver (the so called back-end) is
very poor, i.e. solving real life problems is not possi-
ble up to now. However enormous improvements are
on the way supported by joint efforts in the OPEN-
PROD [11] project. In order to evaluate the im-
provements, the availability of benchmarks and real-
istic test cases is a natural and essential first need.
The size and complexity of these benchmark models
should be easily adaptable. Furthermore, the model
is desired to be valid in different phase regions, since
phase transitions are crucial in fluid dynamics. In
addition, it is useful to build up the model from a set
of components, which are also well established in
real technical systems to facilitate the extension of
the model from a sandbox example to real world ap-
plication.

Figure 1: Heated pipe model

Figure 1 shows a model which can be used as such a
benchmark. The central part of the model is a heated
pipe which is connected to a water source and a heat-
ing element. The liquid channel of the pipe is discre-
tized along the flow direction. The connections be-
tween these elements are represented by nodes.
The left hand node is connected to the water source
which supplies the liquid flow. The heated metal
wall of the pipe is modeled as cylindrical tube with
the number of layers L in radial direction. The con-
stant heat flow is distributed equally over all axial
elements.

This quite simple model is very well suited as a
benchmark model for the following reasons:
 The problem size can be easily adapted by

changing the parameters for spatial discretiza-
tion, see Table 1.

 Dynamic changes in the mass flow, enthalpy and
pressure boundaries can be utilized to run
through different phase regions.

 Based on basic components (i.e. tube plus
 boundaries) more complex models could be set
 up easily.

Discretization Parameters:
 N – number of nodes in flow direction

 L – number of tube wall layers

 Continuous
states

N = 3, L = 3 13
N = 10, L = 3 41
N = 30, L = 3 121
N = 200, L = 3 801
N = 100, L = 6 701

Table 1: Number of states depending on the spatial
discretization of the heated pipe model

Although this model is very simple, some features of
Modelica.Media which are not yet implemented in
OpenModelica 1.6 are needed. To circumvent this
problem, the model is rewritten such that direct func-
tions compute all water properties without the use of
the Media package of the Modelica Standard Li-
brary. The necessary water-steam functions have
been substituted by external function calls of the
TTSE (Tabular Taylor Series Expansion) [4] library.
The TTSE uses a table of stored water properties and
derivatives calculated with IAPWS (International
Association for the Properties of Water and Steam)
with pressure and enthalpy (p, h) or density and en-
thalpy (ρ, h) as variables. On each cell, the thermo-
dynamic properties of water and steam are computed
using the Taylor series expansion. In this way, TTSE
offers fast computation with an acceptable accuracy
for dynamic simulation. For the first investigation a
small model corresponding to the first row in Table 1
has been used. The results from the well proven
modeling environment Dymola in version 7.4 have
been compared to those from OpenModelica version
1.6. In both tools 'dassl' with a tolerance of 1e-6 was
used.
The comparison of the results shows that they are
nearly identical. This suggests that the solver seems
to solve an identical problem in both cases. How-
ever, the differences in performance are huge. While
Dymola solves the problem in some milliseconds,
OpenModelica spends several minutes to solve the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

455

problem. Facing that enormous difference running
larger models does not make much sense.
Primary investigations are carried out to identify the
reasons for the poor performance of OpenModelica
1.6.0.
The pipe model was simulated with an increasing
number of continuous states depending on the nodes
in flow direction. Different simulation options were
used to identify the reasons for the poor perform-
ance.
OpenModelica 1.6.0 uses ‘dassl’ as standard solver.
Since ‘dassl’ is so slow, ‘dassl2’ has been tried. This
solver is considerably faster than ‘dassl’, but it still
takes at least seven times as long as Dymola 7.4 us-
ing ‘dassl’. Table 2 shows the simulation time de-
pending on simulation method. For higher discretiza-
tion in the flow direction ‘dassl2’ is at least 100
times faster than ‘dassl’ generating the same results.

N
(number of nodes)

solver Simulation time

3 dassl 289.29 s
3 dassl2 2.52 s
10 dassl 803.81 s
10 dassl2 6.92 s
19 dassl 1523.63 s
19 dassl2 16.04 s
Table 2: Simulation time depending on solver and dis-
cretization

All test cases use the ‘plt’ output format, which is
default and currently the only format capable of us-
ing plot functions. For testing it is better to use out-
put format ‘bin’ to speed up calculation. For N>19
the compilation failed with an internal OpenMode-
lica error. Probably the array sizes are too large.
We set up a special test case for external function
calls to find out whether they cause considerable dif-
ference in the simulation time. We can exclude that
the differences between Dymola 7.4 and OpenMode-
lica 1.6.0 depend on external function calls, sincethe
simulation time is quite similar for both simulation
enviroments.

3 Parameter Estimation for a Hybrid
System using JModelica

Parameter estimation is an important issue in many
fields of industrial engineering [1], since it allows
for efficient adaptation of system models.
Parameter estimation aims at extracting the best val-
ues of parameters determining the dynamics of the
system under consideration, based on a series of
measurements xjℓ

(m) of several state variables xj , j =

1,…,M at different time points tℓ , ℓ = 1,…,N. Due to
measurement error, the estimated parameters are
subject to some uncertainty. Assuming that the
measurement error is uncorrelated and normally dis-
tributed with variance σj

2, model parameters can be
estimated by minimizing the weighted least-squares
function

M

j

N

l j

m
jllj xtx

pJ 2

2)()(
)(

 (1)

subject to the DAE system representing the system
dynamics as equality constraints and variable
boundaries as inequality constraints.

In this study we consider a parameter estimation
problem for a hybrid system. Hybrid systems pos-
sess a mixed continuous and discrete behavior due to
instantaneous mode transitions. In fluid systems the
latter arises very frequently as a result of valves
with discrete behaviour, phase transitions or flow
reversal. Solving these kinds of optimization prob-
lems remains a challenging task and the use of avail-
able solvers is limited. The major difficulties lie in
the discontinuous function values and gradients.

To overcome the difficulties we studied reformula-
tion methods for hybrid systems. In these methods
the so-called switching condition Ψ determines the
value of a newly introduced continuous switching
variable φ(Ψ). In order to force this variable to
meaningful values to guarantee at least an approxi-
mate instantaneous switch either a relaxation or a
penalization method can be used. In this study we
apply the Smooth Step Function (SSF) Approach
with

 (2)
1

()
1 exp()

φ ψ
τψ

=
+ -

as a relaxation method with relaxation parameter
 and the Penalization of Incomplete Switching
(PICS) as a penalization method [6]. In order to ex-
amine the capabilities of reformulation methods in
parameter estimation for hybrid systems, we con-
sider a tank system similar to those used in [7], [8],
and [9].

The system consists of three tanks in a row con-
nected to each other (Figure 2). There are inflows
Qzi, i = 1, 3 to the left and the right tank. The pa-
rameter estimation problem can be stated as:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

456

Figure 2: Three-tank system

12 23

()
12 23

1 1 1 12 1

2 2 12 23 2

3

,

1 3 23 3 33

min () (()

(2b)

2 | (2c)

(,) {(1,2), (2,3)}

1 1 (2

,)

s.

)

t.

|

,

d

N
m

j j

z L

L

z L

ij ij ij ij

ij i

A A
j

j

j

i

J A h t h

A

A

A

A

h Q Q Q

h Q Q Q

Q

Q φ g ψ

ψ i j

h Q Q Q

h

φ

A

h

 (2a)

The objective function (Eq. (2a)) is to be minimized
subject to the dynamic model equations and bounds
of the switching variable φ (Eq. (2b-d)). The dynam-
ics of the tank levels hi (i = 1, 2, 3) are given by the
mass balance of the tanks (Eq. (2b)). The outflows
QLi, Q3 and the flows between the tanks are modeled
by Torricelli’s law (Eq. (2c)). In the original formu-
lation, a sign function switches the direction of the
flow between two tanks abruptly from +1 to −1 or
vice versa, when the condition Ψij = hi−hj = 0 is
passed. Since the gradient of the flow diverges to
infinity at this point, in our reformulation the sign
function in Eq. (2c) is replaced by the switching
variable φ. The correct switching behavior should be
ensured by the relaxation or penalization methods
mentioned above.

We used JModelica for solving the nonlinear opti-
mization problem. Here we exploit the three-level
structure of JModelica's front end as described
above. JModelica does not allow optimization prob-
lems including instantaneous mode transitions since
in this case the gradients of the objective function or
the constraints needed by the optimization algorithm
are expected to be not well defined. However, the

relaxation and penalization methods used in this
study lead to differentiable objective functions and
constraints. The reformulation method can easily be
implemented in JModelica.

Our aim is to estimate via minimization of the objec-
tive function (Eq. (2a)) the flow parameters Aij based
on (simulated) measurement data hℓ(m), ℓ = 1...10 of
the tank levels taken equidistantly within the time
horizon (t0, tf) = (0, 20) s. The data are generated via
simulation of the original model with added Gaus-
sian noise. The optimal state trajectories found for
the parameter estimation problem are shown in
Figure 3).

Figure 3: State trajectories SSF (solid) and PICS
(dashed) as well as the measurements of h1 (diamonds)
and h2 (triangles)

Figure 4: The corresponding switching variables φ 12
(blue) and φ 23 (green)

They agree quite well with each other. In particular,
the crossing points of the levels h1 and h2 and the
levels h2 and h3 nearly coincide. This reflects the fact
that the correct switching behavior is obtained in
both cases as shown in Figure 4. It can be seen that
using the relaxation method the switch is smooth and
rather slow, which apparently has almost no impact
on the trajectories. In contrast, when using the pe-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

457

nalization approach the switch takes place almost
instantaneously. Table 3compares the optimal pa-
rameter values estimated by the two methods. With
penalization we obtain a very good value for the pa-
rameter A12, but the deviation of A23 from the exact
value is considerable. This is mainly due to the fact
that the objective function is much more sensitive to
A12 than to A23. The relaxation method results in
moderate deviations for both parameters. In sum-
mary, both approaches provide reasonably accurate
results.

 exact Relaxation Penalization

A12 [10-5m2] 6.0 6.51 6.06

A23 [10-5m2] 2.0 2.29 2.98

Table 3: Optimal parameter values

We also studied the ability of the SSF algorithm to
cope with random errors in the data set, which is in-
evitable in real data acquisition. The variance of the
measurement is varied in the range σM = [0.5, 10] ·
10−4 m. The parameter estimation is carried out for
50 series of h2 for each σM and the mean parameter
values as well as their variance σp are achieved (see
Figure 5).

It can be seen that the mean values of the parameter
stay constant over a wide range of random errors.
Obviously, a higher variance of measured data leads
to a higher variance of the estimated parameter
value. A strict proportionality of σM and σp is ex-
pected in the case of the measured quantity (here h2)
linearly depending on the parameter (here A12).

Figure 5: Mean parameter value A12 (crosses) and cor-
responding variance σp (diamonds) in dependence on
the variance of measurement σM.

4 Nonlinear Model Predictive Con-
trol using JModelica

Nonlinear model predictive control (NMPC) is an
advanced technique to solve challenging optimal
control problems. In this method, the optimal control
problem is formulated as constrained dynamic opti-
mization problem, where the constraints are given by
the dynamic model of the plant and the process re-
strictions. This problem is solved for the so-called
prediction horizon Tp (see Figure 6). The resulting
optimal controls within the so-called control horizon
Tc are applied to the plant. At t = Tc, the time horizon
of the optimal control problem is moved to this new
initial point. The measurement of the present plant
state serves as feedback. The initial conditions are
accordingly updated and the problem is solved again.
Since the optimal control problem is solved once per
move of the time horizon, Tc is the CPU time avail-
able to solve the problem.

Figure 6: Principle of NMPC [9]

It is straight forward to carry out the NMPC based on
power plant models primarily developed for dynamic
simulation applications. The choice of test cases will
naturally focus on optimal control problems which
are difficult to solve by conventional controllers.
Besides that, one has to take into account the size
and complexity of the plant model as a limiting fac-
tor with respect to the computational effort.

In this study, the temperature control of live steam
with intermediate water injection (see Figure 7) was
chosen as a test case, since even this system although
quite simple, is difficult to control.

The aim of the NMPC is to reach and to hold the set-
point. Thus, the objective function to be imple-
mented in the Optimica class of JModelica

endt

t

mixref
tm

dttTT

0

2

)(
)(min

contains the squared deviation between the tempera-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

458

ture set-point Tref and the current temperature Tmix(t)
of the steam cooled by water. The objective is sub-
ject to the model equations and a maximum con-
straint for the injected water mass flow m(t). The
dynamic model is composed of proven components
already existing in the library SiemensPower. To
meet the model requirements of JModelica, the func-
tions of the water and steam properties have been
approximated.

Figure 7: Temperature control of live steam with in-
termediate water injection.

For now, the NMPC problem has been implemented
off-line. Instead of the real plant, the optimal control
is applied to the plant model which simulates the
behavior of the real process. This simulation pro-
vides the “measurements” of the states required for
the feedback loop as described above.

Figure 8 shows the temperature profiles Tmix(t) con-
trolled by the NMPC (red) and a conventional con-
troller typically implemented on present-day plants
(blue). After some seconds the temperature con-
trolled by NMPC reaches the set-point and is capable
of maintaining this withnegligible deviations. In con-
trast, the classical control is not able to avoid re-
markable deviations from the set-point. Clearly, the
NMPC is far superior to the conventional control and
its on-line implementation should be seriously con-
sidered. However, the real time criterion has to be
met. Running the application on a standard desktop it
is not yet satisfied in all cases (see Figure 9Figure 8).

In the example the control horizon is set to Tc = 1s,
but the computation of the control profiles for one
step needs more than one second, in particular for the
former time horizons up to n = 27. As can be seen
the computational effort for these early time horizons
is higher than that of subsequent ones. This is pre-
sumably due to the fact that subsequent NMPC steps
the temperature is already close to the set-point and
the control input needs only slight modifications.
Since for this quite simple model the computation
time already represents a limitation, the computa-
tional effort will presumably be too large for more
complicated or faster systems. Hence, in many cases

some performance improvements will be needed to
run the applications on-line. An efficient algorithm is
presented in [8] but it requires a more elaborate im-
plementation which may be realized in the future.

Figure 8: Temperature controlled by the NMPC and
classic temperature control.

Figure 9: CPU time needed to solve the dynamic opti-
mization problem for each moving prediction horizon
with initial time tinit=nTc.

5 Conclusions

In order to develop benchmark and realistic test
cases, we implemented simple models for the sys-
tematic investigation of performance improvements
of the OpenModelica tool chain. Some primary in-
vestigations have been carried out. Besides that the
restricted functionality of OpenModelica with re-
spect to water and steam properties has been sup-
plemented by the usage of TTSE.
Parameter estimation and nonlinear model predictive
control for fluid systems have been solved.
In fluid dynamics, we often have to deal with valves
with discrete behaviour, flow reversal and phase
transitions which considerably complicate the opti-
mization of such problems. To overcome these diffi-
culties we studied reformulation methods for hybrid

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

459

systems and showed their capability of tackling the
problem of discontinuity of state trajectories and
gradients which occur due to instantaneous transi-
tions.
For nonlinear model predictive control a simple off-
line example has been implemented. The model-
based control proved to be superior to the recently
applied classic control. Thus, the online application
of the described solution should be seriously consid-
ered.
The support by German Ministry BMBF (BMBF
Förderkennzeichen: 01IS09029C) within the ITEA
project OPENPROD is gratefully acknowledged.

References

[1] www.energy.siemens.com

[2] www.openmodelica.org

[3] www.jmodelica.org

[4] Miyagawa, K., Hill, P.G., Tabular Taylor Se-
ries Expansion (TTSE) Method Based on
IAPWS-IF97 Double Precision Enthalpy-
Density Version, IAPWS Task Group TTSE,
2001-07-13

I. Weber, K. Knobloch, I. Kodl, H.-J.
Kretzschmar, Test Report Of „Documenta-
tion and Software of TTSE Method applied
to IAPWS-98 as an Example“, TTSE Evalua-
tion Task Group, July 2002

[5] Tummescheit H. Design and Implementation
of Object-Oriented Model Libraries using
Modelica. Lund, Sweden: PhD thesis, De-
partment of Automatic control, Lund Insti-
tute of Technology, 2002.

[6] Mynttinen, I. and Li, P.: A Reformulation
Scheme for Parameter Estimation of Hybrid
Systems. ESCAPE 2010, submitted

[7] J. Till, S. Engell, S.Panek, O. Stursberg ,
“Applied hybrid system optimization: An
empirical investigation of complexity,” Con-
trol Eng. Pract., vol. 12, pp. 1291–1303,
2004.

[8] B. T. Baumrucker, L. T. Biegler, “MPEC
strategies for optimization of a class of hy-
brid dynamic systems,” J. Process Contr.,
vol. 19, pp. 1248–1256, 2009.

[9] J. M. M. Tamimi. Development of Efficient
Algorithm for Model predictive Control of
Fast Systems, PhD thesis, Technical Univer-
sity Ilmenau, 2011

[10] JModelica 1.4.0 User Guide,
http://www.jmodelica.org/api-
docs/usersguide/1.4.0, Modelon AB 2010.

[11] www.openprod.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

460

http://www.energy.siemens.com/
http://www.openmodelica.org/
http://www.jmodelica.org/
http://www.jmodelica.org/api-docs/usersguide/1.4.0
http://www.jmodelica.org/api-docs/usersguide/1.4.0
http://www.openprod.org/

Modeling of hydraulic axial piston pumps including specific signs of
wear and tear

Christian Bayer Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits, Division Design Automation

Zeunerstrasse 38, 01069 Dresden, Germany
{Christian.Bayer; Olaf.Enge}@ eas.iis.fraunhofer.de

Abstract

Reliability of machines and facilities has played an
important role since many years. Nowadays, atten-
tion is also paid to maintenance times. Maintenance
standstills are to be reduced as far as possible. On the
other hand, technical systems are subject to signs of
wear and tear which are in general growing slowly
and imperceptibly. The gradual abrasion of applied
tools may lead to poor production tolerances or to a
component’s standstill. Hence, a condition-based
maintenance strategy will be of increasing impor-
tance. Such a strategy requires a permanent condition
monitoring during operation. To this end, reliable
high-performance algorithms for signal processing,
feature extraction, and classification are needed.
Modeling the process of wear and tear may be useful
to find the particular steps of the condition monitor-
ing system’s signal processing. This strategy was
investigated by means of one very important device
from automation engineering, a hydraulic axial pis-
ton pump. The procedure of getting signals by an
appropriate Modelica model of the main parts of the
pump is shown within the paper. Additionally, the
manipulation process for the signals and the steps of
classification are shortly presented to give an over-
view to the possibilities of model-based signal gen-
eration based on a Modelica model. The advantages
of the multi-physics modeling language are empha-
sized because the axial piston pump model combines
the mechanical and the hydraulic domain in a very
efficient way.

Keywords: condition monitoring; classification;
signal processing

1 Introduction

Long-lasting correct operation and the highest level
of availability are important requirements concerning
machines and facilities in today’s industry. While
reliability has played an important role since many

years, more and more attention has been paid to the
times needed for maintenance processes in the last
decade. The number of maintenance standstills has to
be reduced to decrease the total cost of ownership
(TCO). This is enforced by the increasing business
rivalry of today’s economy. On the other hand, tech-
nical systems are subject to a proceeding deteriora-
tion and often to a certain wear. But signs of wear
and tear are in general growing slowly and impercep-
tibly. The gradual abrasion of applied tools may lead
little by little to poor production tolerances or even
to a standstill of a component or a complete produc-
tion facility. Hence, a condition-based maintenance
strategy will be of increasing importance. Such a
strategy requires a permanent condition monitoring
during operation based on efficient behavior analysis
procedures. Condition monitoring systems analyze
various measured signals using application-specific
algorithms. In this context, reliable high-
performance algorithms for signal processing, fea-
ture extraction, and classification are needed.

Modeling the process of wear and tear may be use-
ful to find the particular steps of signal processing
which are suitable for a certain condition monitoring
system. This strategy was investigated by means of a
hydraulic axial piston pump, which is a very impor-
tant device from automation engineering and is still
an intense subject of computer aided modeling [1, 2].

In section 2, two models of the standard pump are
explained first. Both models combine a mechanical
and a hydraulic sub-model. Physically motivated
inter-modular connections are established. In section
3, a parameter optimization method is presented and
discussed. This method is applied to fit unknown
parameters of the mechanical sub-model. Measured
time signals are used for comparison. Afterwards,
some signs of wear are implemented in the model.
This is presented in section 4. Two of the most prob-
lematic cases leading to the main failures are shown.
Characteristic features deduced from Fourier trans-
forms of vibration signals are used for classification
of good pumps and pumps having failures.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

461

2 Modelica model

2.1 The axial piston pump

For demonstration of the above mentioned condition
monitoring approach we chose an axial piston pump.
Those devices basically consist of a certain number
of cylinders and pistons to pump hydraulic oil under
high pressure conditions. The cylinders are evenly
aligned around a rotating axis, whereas the pistons
are attached to a tilted cam, which is called swash
plate. Due to rotation, the pistons can perform an
axial motion and thus pump the oil through inlet and
outlet ports respectively. Figure 1 shows a rough
schematic of the pump, which is captured from a 3D
Dymola animation [3]. The oil flow is controlled by
a distributor plate, which e.g. connects the outlet port
to the cylinders with high oil pressure. The plate is
not shown in Figure 1 as the flow control is imple-
mented within the hydraulics model.

2.2 3D model

Modelica is capable of simulating multi-body dy-
namics as well as models based on user-specific dif-
ferential equations. A good reference of the Mode-
lica language can be found in [4].

Our initial model was a spatial model (3D) ex-
ploiting the MultiBody package for mechanics and
using further differential equations for hydrodynam-
ics. Unfortunately, a lot of parameters, for example
certain friction coefficients or spring rates, are not
known exactly, even not by the manufacturer. Hence,
the model must be suited for parameter optimization
algorithms in terms of computational effort. Since
the 3D model is very complex, we reduced the model

to the very essential parts and developed a 1D
equivalent. To justify this approach we evaluated the
forces acting to the pump’s housing. The device ro-
tated at constant speed of 1500 revolutions per min-
ute. Figure 2 shows axial and radial forces during a
section of 1/9 of a full revolution of the pump. Obvi-
ously, the translational motion of the pistons is the
main source of vibration, which is the value we want
to measure and simulate. In an ideal case, the rota-
tion itself does not contribute to vibration. Only the
slight tilt of the cylinders against the rotational axis
causes a radial force, which is directly related to the
sine of the tilt angle. Since this angle is small, the
radial force can be neglected. Therefore, the reduced
model considers axial motion only and thus becomes
a 1D representation.

Since we focused on the 1D model, the 3D im-
plementation will not be explained in detail here.

2.3 1D model

The reduced mechanical model is depicted in Fig-
ure 3. Each element of the schematic relates to a
dedicated Modelica sub-model, which in turn is de-
scribed by certain differential equations and an indi-
vidual set of parameters. Our 1D model complies
with the conventions of Modelica’s translational me-
chanics library and we also used a few basic compo-
nents thereof. The elements are chained exactly as
shown in Figure 3 and form lines or parallel lines
respectively.

The housing of the pump is modeled as a simple
mass, which embraces all other parts of the model. It
is therefore connected in parallel to both sides of the
pump’s interior element chain. The mass is not fixed
and its movement gives rise to the acceleration value
and thus vibration. On the left side of the chain a

Figure 1: Schematic of the modeled axial piston
pump with 9 cylinders. Only mechanical parts are
shown.

Figure 2: Comparison of axial and radial forces act-
ing on the housing. The results are based on the 3D
model.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

462

mass with spring damper follows the housing. It
sums up certain masses inside the pump and con-
nects them to the housing by means of a spring. This
indeed approximates the real assembly of the pump.

The next element in the row is the tilted swash
plate, represented by the sine curve in Figure 3. It
causes all pistons to follow a sinusoidal motion with
individual phase offset. This effect is implemented
by time dependent displacements as follows:

piston

abrel

ba

t
N

s

sss

FF

60
2

cos1ˆ

0

 (1)

F denotes forces at the sub-models flanges and s is
the distance between flanges or the position of them.
φ is the absolute revolution angle of the pump. The
swash plate model can only drive one of the 9 pis-
tons with specific phase offset. At this point the
model chain breaks up into 9 individual lines in par-
allel. Each line consists of a swash plate model fol-
lowed by slipper pad, piston and the cylinder oil vol-
ume. All 9 lines finally merge into the right hand
frame of the housing mass.

The connection between piston and swash plate is
established by slipper pads. They offer a tight con-
nection to the piston with small play, which extends
as a result of wear. The sub-model allows a small
distance of free motion until the piston hits one of
the two limiting boundaries. Once in contact with the
limitation, the model switches to a damped spring
mass system behavior with spring rate D, as can be
seen in the equations below.

*
2

2

*
1

1

22

11

:

0:0

:

0:0

0:

:

:0

Rotherwise

v
R

Rotherwise

v
R

otherwise

ssDs
t

Rss

sDs
t

Rs

F

sss

FFF

gaprelrelgaprel

relrelrel

abrel

ba

 (2)

R corresponds to friction coefficients and v to the
velocity of the related piston. It turned out, that the
simulation results improve, if there is no friction
when the piston pulls apart from a boundary. The
equations for Ri therefore depend on the sign of v.

The piston itself is a simple mass of length L with
friction and inertia. Stribeck friction is not used in
the model as it would introduce too many unknown
parameters. The piston equation reads

Lsss

s
t

Rs
t

mFF

abrel

aaba

2

2

. (3)

The sub-model of oil volume V approximates the
conditions within a cylinder and finally links hydrau-
lic quantities to the mechanical part of the model. In
[5] this was done by incorporating two different
software packages for hydraulics and mechanics. We
used Modelica for both physical domains to merge
them into one model.

Pressure p inside a cylinder causes fluid flow q
through the ports as well as force to a piston’s
flange. The oil is considered as compressible fluid
with bulk modulus K. It flows either through the inlet
or the outlet port, which depends on the relative an-
gular position of cylinder block and distributor plate.
Both ports are modeled as valves with variable cross
sections and, thus, have time dependent hydraulic
conductance G. For a single cylinder the valves’
cross sections are shown in Figure 4. Other cylinders
experience the same characteristic, but with a phase
offset. The model assumes turbulent flow through a
valve [6], which finally leads to the equations

an
g

le
 o

f
ro

ta
tio

n

axial displacement

slipper pad
with axial play

piston

oil volume

axial position
on swash plate

housing

m
as

s
w

ith
sp

rin
g

da
m

p
er

an
g

le
 o

f
ro

ta
tio

n

axial displacement

slipper pad
with axial play

piston

oil volume

axial position
on swash plate

housing

m
as

s
w

ith
sp

rin
g

da
m

p
er

Figure 3: Reduced 1D model of the axial piston
pump.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

463

pistonba

relpiston

minminin

maxmaxout

pistonrel

abrel

pAFFF
V

Q
Kp

t

s
t

AqQ

pPpPG

pPpPGq

AsV

sss

sgn

sgn

. (4)

The time dependent cross sections of inlet and out-
let are provided by the manufacturer. They were im-
plemented by using Modelica’s look-up table com-
ponent. As can be seen from equation (4), the oil
volume sub-model has two frames with variables s
and F. Hence, it can be easily connected to our chain
of other mechanical translational components.

3 Parameter optimization

3.1 Method

Each sub-model has an individual set of parameters.
Some of them are known, as is typically true for
geometric parameters. Others have to be estimated or
can be found by optimization. For this purpose, sev-
eral measurements with at least one undamaged
pump have to be done. With this reference data, an
optimization algorithm was used to find an appropri-
ate parameter set. This is a common method and was
also applied in [7] for example. We used MAT-
LAB® [8] for an automated parameter sweep in
Dymola. The goal function for minimization is sim-

ply the deviation of the simulation result from the
averaged measurement signal. The measurand equals
in both cases the acceleration of the housing in axial
direction. Unfortunately, the number of parameters is
quite high, which impedes a reasonable optimization
process. Within our reduced 1D model we identified
seven parameters, which significantly influence the
result and were used for optimization: The simula-
tion is very sensitive to the interaction of piston head
and slipper pad. Already four parameters can be ex-
tracted from this knowledge, two for each limiting
boundary. When hitting a boundary, the piston will
penetrate into the material of the slipper pad, squeeze
the oil film between pad and swash plate or strain the
pad. An easy but efficient way is to assume a spring-
like model with damping for that process. This gives
two parameters for each boundary, namely spring
rate and friction coefficient. Another important pa-
rameter is the friction of the piston within the cylin-
der. The last two parameters belong to the spring-
mass system, which is located between housing and
swash plate (see Figure 3).

One problem of the optimization is that there is
no unique ideal parameter set. The results differ with
the initial parameters. To account for this, we also
implemented a random sweep of starting values.
Once a good parameter set is found, the actual opti-
mization is performed. The algorithm used here was
the simplex search method.

3.2 Results

In spite of the complicated optimization process, we
found a set which fits the real measurement quite
well. Figure 5 shows the result. The signal itself has

Figure 4: Representative cross sections of inlet and
outlet valves for a single cylinder. The graph shows
conditions for one revolution of the pump.

Figure 5: Comparison of simulation results with
optimized parameter set and averaged measurement.
The signals correspond to the time resolved accel-
eration of the housing in axial direction. The graph
shows one revolution of the pump.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

464

some clear characteristics. During one revolution of
the pump, each piston accomplishes one period of its
sinusoidal movement. This leads to 9 equally shaped
pulses in the time signal. Both, simulated and meas-
ured signal, show this characteristic and are compa-
rable.

The axial piston pump is a rotating device. For
condition monitoring of this special application the
spectrum and evaluation of harmonics is far more
interesting than the time signal. Hence, the consis-
tency of simulated and measured signal in the fre-
quency domain is very important. Figure 6 compares
the results. Due to the 9 pistons and the rotational
frequency of 25 Hz, harmonics with a spacing of
225 Hz can be observed. Both spectra show a similar
distribution. However, within the measurement data
harmonics 4 to 7 seem to be rather suppressed, which
holds for all measurements, even for different pumps
with varying signs of wear. This effect might be
caused by the experimental setup. The pump is at-
tached to a motor and other machinery which can
vibrate as well. Our model does not consider the ex-
act environmental conditions and is not able to re-
produce the harmonics suppression. But it turned
out, that we can simply ignore these harmonics for
classification.

4 Modeling defects

4.1 Introducing defects

The main purpose of the simulation is the estimation
of measurement signals for worn pumps. Once the
model parameters are optimized for an undamaged
device, they can be modified slightly to introduce

defects. As a matter of course this requires the pa-
rameters to be related to certain signs of wear.

We investigated two types of defects. One of them
is cavitation pitting, which influences the hydraulic
conductance of the cylinder’s valves. Basically, the
cross section of each valve changes slightly with
gradual abrasion. Worn pumps give suitable infor-
mation on the modified cross section and we simply
exchanged the characteristic area functions, shown in
Figure 4. However, our results suggest that a reason-
able change of the functions has only a minor effect
to the axial vibration within the considered fre-
quency range. This is consistent with measured data,
where the difference is present but comparably
small. In the following we focus on a more signifi-
cant defect.

Each piston is attached to a slipper pad with a cer-
tain amount of play. This small gap increases with
time and leads to a defect referred to as axial piston
play (app). We introduced this effect in the slipper
pad sub-model by increasing the play parameter and
decreasing one of the spring rates, which models the
strain of the pad when pulled by the piston. Figure 7
compares measurements of a worn pump with axial
piston play and our simulation results. Since the
classification is done in the spectral domain, only the
Fourier transforms are shown. Ignoring harmonics 4
to 7, we can see a very similar trend of change in
both the simulation and measurement. The first 3
harmonics drop in amplitude, while others near
2 kHz increase. Based on such effects unique fea-
tures for classification can be found.

4.2 Classification

The classification method used here is based on the
first 17 harmonics of the signal’s spectrum excluding
harmonics 4 to 7. Several statistical parameters, like

Figure 6: Spectra of simulation result with opti-
mized parameter set and averaged measurement.
The spectra correspond to the Fourier transform of
the acceleration of the housing in axial direction.

Figure 7: Spectra of measurement signals of a worn
pump with axial piston play and simulation result.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

465

standard deviation or skewness were defined and
applied to specific harmonics arranged in groups of
at least 7. If the groups are thoroughly composed,
meaningful features can be extracted.

With subject to complexity a neural network (NN)
was employed to classify the condition of pumps. A
great advantage is the ability to train such a network
with simulation data instead of experimental data,
which would cause higher effort. However, in most
cases measurement data of undamaged devices
should be available. It is therefore reasonable to train
the NN with those measurements and in addition
with model data of all simulated defects and condi-
tions. In our case we modeled an undamaged pump
as well as one with axial piston play and presented
both simulation and measurement (undamaged) data
to the NN for training. The NN accepted 12 features
as input and had 3 output neurons. Thus, 3 classes
could be separated, but we used only two of them for
an undamaged pump and axial piston play.

The classification results are presented in Figure 8.
Only measurement data was presented to the NN for
testing. A value of 1 at an output neuron means that a
signal is strongly related to the specific class.
Smaller values indicate a lower probability of class
membership. The classification works well for our
presented model and is suitable for a CMS.

5 Conclusions

In this paper we presented a model-based method to
support the development of condition monitoring
systems (CMS). The basic idea is to replace an ex-
perimental setup by simulation or at least to reduce

the experimental effort during development of a
CMS. For demonstration an axial piston pump with
at least two signs of wear was modeled. The simula-
tion results agree comparatively well with experi-
mental data. Modeling has several advantages com-
pared to experimental setups. The investigation of
defects is much more flexible and one is able to find
correlations between those defects and detected sig-
nals. This approach also facilitates the development
of improved signal processing techniques and the
generation of better features for classification.

Acknowledgement

This project was funded in part by the German Fed-
eral Ministry of Education and Research (BMBF).
Associated partners are GEMAC GmbH (Chemnitz),
Fraunhofer Institute IIS (EAS, Dresden) and
Lenord+Bauer & Co. GmbH (Oberhausen).

References

[1] Ming Liu, Dynamisches Verhalten hydrosta-
tischer Axialkolbengetriebe. Bochum, Ger-
many: PhD thesis, Institute Product and Ser-
vice Engineering, Ruhr-Universität Bochum,
2001

[2] Liang Chen, Model-based fault diagnosis and
fault-tolerant control for a nonlinear electro-
hydraulic system, PhD thesis, TU Kaisers-
lautern, 2010.

[3] Dymola 7.3, Dassault Systèmes

[4] Fritzson P., Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
IEEE Press, 2004

[5] A. Roccatello, S. Mancò and N. Nervegna,
Modelling a Variable Displacement Axial
Piston Pump in a Multibody Simulation En-
vironment, J. Dyn. Sys., Meas., Control,
129(4):456, 2007.

[6] Zoebl H., Kruschik J., Strömung durch Rohre
und Ventile, Springer-Verlag Wien, Austria,
1978

[7] R. Petrovic, Mathematical Modeling and Ex-
perimental Research of Characteristic Pa-
rameters Hydrodynamic Processes of a Pis-
ton Axial Pump, Journal of Mechanical En-
gineering, 55(4):224-229, 2009

[8] MATLAB® 2010a, The MathWorks, Inc.

Figure 8: Classification result for an undamaged
pump (good) and axial piston play (app). Lines de-
note the expected output of the NN for ideal classi-
fication. Circles and crosses denote classification
results of measured data.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

466

Detailed Model of a Hydromechanical Double Clutch Actuator
with a Suitable Control Algorithm

Sebastian Nowoisky Chi Shen Clemens Gühmann
Technische Universität Berlin

Chair of Electronic Measurement and Diagnostic Technology
Sekr. EN 13, Einsteinufer 17, 10587 Berlin

{sebastian.nowoisky@, c.shen@mailbox., clemens.guehmann@}tu-berlin.de

Abstract

This paper presents the detailed model of a dou-
ble clutch actuator with a suitable control algorithm.
Firstly, there is an introduction into the theory of
a double clutch transmission and the aim of this
project. The simulation model with a Dymola R© and a
MATLAB R©/Simulink R© part is discussed. The library
of a vehicle model with a highly detailed hydrome-
chanical clutch is introduced, which includes models
with different levels of detail. The modeling of the hy-
draulic and the mechanic parts of the clutch actuator is
discussed, concentrating on the problem of determin-
ing the parameters of the actuator modules e.g., the
hydraulic valves. Some parts could not be used from
existing Dymola R© libraries, in those cases, new mod-
els are created based on Modelica code.
A translational lever is pictured with its source code.
Furthermore the non-linear behavior of the clutch ac-
tuator and control design is described. To verify this
model and the suitable closed loop controller, the algo-
rithm is tested with an up-shift cycle in a vehicle model
with a double clutch transmission. The simulation re-
sults are presented with a global view of the driver in-
puts, the speed, the torque of the vehicle model and the
gear status. Additionally the local view of the clutch
actuator is shown with the cylinder pressure, the clutch
position and the clutch capacity (torque). Finally there
is a summary and an outlook on the further develop-
ment of this library.

keywords: double clutch transmission, powertrain,
clutch, hydraulic, transmission actuator

1 Introduction

A modern powertrain with a double clutch transmis-
sion (DCT) combines the comfort of an automated
transmission with the efficiency of a manual transmis-
sion. Moreover, an uninterrupted shift process, a very
good ride comfort and easy handling are considerable
characteristics of an automated transmission with dou-
ble clutches [1, 2].
The double clutch transmission is similar to the hard-
ware design of a manual transmission. Instead of one
input shaft for the clutch, a double clutch transmis-
sion has two separated shafts with odd and even gears.
The two clutches can be continuously changed from
one input shaft to the other. The result is an automated
and uninterrupted shift process. The transmission con-
forms to different driving situations. In other words,
the shift process changes, depending on the driving sit-
uation.
The clutch control system is very important in relation
to driving behavior. When the vehicle accelerates very
fast, the clutch is used to control the speed by means
of a higher clutch capacity1. For effortless driving, the
input torque is followed by the torque capacity of the
clutch. In this case, the speed is controlled by the en-
gine controller.
Nowadays software functions for drive train applica-
tions are developed and tested in the model based V-
process [3]. To develop software for the nonlinear and
complex hardware a detailed model is necessary.
The clutch actuator consists of several non-linear sub-
systems e.g. the hydraulic valves or the mechanical
disc spring of the clutch. These parts have a hysteresis
behavior. To get a detailed clutch model, the existing
libraries e.g. Powertrain- or Vehicle Interfaces-Library
have been expanded. Important variables like position

1The clutch transfers the torque only, and this torque is termed
capacity.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

467

and torque (capacity) have been integrated.
In this paper we present the modeling, the control and
the simulation of a double clutch transmission with a
highly detailed model of hydromechanical clutch ac-
tuator. First, the model of the vehicle library with the
gear set is presented which comprises the hydraulic
and mechanic parts. In section 3, the control algorithm
for the hydromechanic clutch actuator is discussed.
Then, in section 4, the suitability of the models and
of the controls is demonstrated in a simulation runs.

2 Modeling

The modeling of the double clutch transmission and
the clutch actuator is based on a real transmission
for mid-size cars. This transmission is a seven speed
transmission with a dry double clutch and a torque
load up to 250 Nm.
For the modeling, two common tools are used. The
code of the Transmission Control Unit (TCU) and
the Engine Control Unit (ECU) had been developed
with MATLAB R©/Simulink R©. The powertrain and the
drive environment is modeled with Dymola R©. For the
interaction between both models, an interface is de-
fined. The interaction between the tools is pictured in
figure 1. For the simulation the Dymola R© powertrain
model is included as an embedded s-function in the
MATLAB R©/Simulink R© model. The model library

MATLAB/Simulinkr Dymolar

FFriction

FAir

FAcceleration

FClimb FWheel

ECU TCU Driver

Figure 1: Structure of the powertrain and control
model

has common parts such as the User Guide with
information for the users and the Examples or the
Interfaces. The Interfaces are models with an
input and output description, for each sub-module of
the transmission model. In the Engine module, there
is an engine model based on a simple look-up table.
The Transmission module has several sub modules,
which are shown in the second row of figure 2. The
Library is used for research and teaching, hence there
are two different designs of the transmissions in the
Gearset module. Some models have different levels

Engine TransmissionExamples Interfaces

Gearset Sensors Actuators

i

Components
Clutch

Gearbox
Hydraulic

User Guide

Figure 2: Modules of the DCT Vehicle Library

of detail. For example, a pair of gears exists as a plain
and as a complex model. The plain model consists
of the ratio and the inertia of the toothed wheel.
The complex model gear losses and bearing friction
are considered. The friction element corresponds to
the current transmission design. The Components

Clutch module is a top level module for this topic.
This module implies several clutch models with a
simple ideal model and a detailed hydromechanical
model. The Gearbox Hydraulic module includes
the models with the hydraulic components of the
transmission, for instance the hydraulic supply, valves
and the clutch cylinder. Furthermore the clutch mod-
els include mechanical parts such as the lever or the
disc spring. These mechanical parts are components
of the Actuator module. In the Sensor module there
are several types of sensors to measure the torque, the
speed and the acceleration.
Some blocks of the vehicle model are derived from the
Powertrain library, e.g., the vehicle model or the drive
environment. The Interfaces are derived from a former
research project [4]. The hydraulic part is modeled
with the Hydraulic Library (HyLib) from Modelon [5].

2.1 Hydraulic Components

The hydraulic components control and moves the
clutch plates in the transmission. Because of, the high
energy density, a hydraulic supply is used for mid-
size cars [6]. An electrical external toothed gear pump
supplies the actuator with the hydraulic energy. The
pump is switched on and off depending on the current
pressure level with a hysteresis switch. The typical
pressure supply for a small transmission is approxi-
mately 50 bar. This pressure is limited by two ’three
port valves’ to a level of approximately 16 bar. This
pressure level oscillates in a smaller range than the
original bang bang controlled hydraulic supply. Fur-
thermore these valves separate the pressure for the odd

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

468

Hydraulic Supply

Hydraulic Clutch

Hydraulic Clutch

inertia_ZMS

J=J_ZMS

Detailed_Clutch1

Detailed_Clutch2

Acc.
Speed

Torque

Acc.
Speed

Torque

Odd_Gears

Even_Gears_Re…

inertia_Inputshaft1

J=J_IS1

inertia_Inputshaft2

J=J_IS2

outputshaft

T_Engine

tau

transmissionControlBus

transmissionControlBus

S_CCV1

S_CCV2

S_PCV1

S_PCV2

transmissionBus

transmissionBus

transmissionBus

T_Shaft2

n_Shaft2
a_Shaft2

T_Schaft1

n_Shaft1
a_Shaft1

T_Engine

c
o
n
tr

o
lB

u
s

flange flange1

transmissionCon…

transmissionBus

Figure 3: Model of the transmission with replaceable
modules

and even gears and the two clutches. Behind this, six
other valves control the actuators to set the gears or the
clutches. The position between the friction plates of
the clutch is set by a single acting cylinder. The model
of the double clutch transmission with the hydraulic
supply is shown at the top of figure 3. Underneath the
hydraulic supply, the detailed model of the hydraulic
clutch system can be seen. Each system is replace-
able by using the defined interfaces. The parameters
correspond to values from literature of similar trans-
missions [7, 8, 9]. Some parameters were determined
at the transmission by means of measurement.

2.2 Mechanic Components

The input of the mechanic interface for the hydraulic
clutch actuator is a lever that changes the position of
the clutch. The rod of the hydraulic cylinder moves
outward when the chamber is filled with oil and simul-
taneously the rod presses against a lever. The force is
transferred from the rod to the clutch disc. This lever
system described above, is used to control the double
clutch capacity. Without hydraulic pressure the clutch
is automatically opened. In this instance, the clutch
capacity can not be built up anymore, in order to pro-
tect the clutch system.
The model of the clutch lever is made up of two rods.
One rod is fixed on the top, and the other is fixed in
the middle. Figure 4 shows two separately modeled
levers.
According to the different lengths of the rods, the
model of the rod with top-fix and middle-fix are ex-
pressed by Modelica as follows:

Fa

Fb

L_ab

L_bc
fixed

flange_b

flange_c

flange_a

(a) lever model with top-
fix

Fa

Fc

L_ab

L_bc

fixed

flange_a

flange_b

flange_c

(b) lever model with
middle-fix

Figure 4: The two sub models of the lever

Code example for Lever_TopFix (figure 4a)
model Lever_TopFix

Model ica . Mechanics . T r a n s l a t i o n a l .
I n t e r f a c e s . F l a n g e _ a f l a n g e _ a

Model ica . Mechanics . T r a n s l a t i o n a l .
I n t e r f a c e s . F lange_b f l a n g e _ b

Model ica . Mechanics . T r a n s l a t i o n a l .
I n t e r f a c e s . F lange_b f l a n g e _ c

Model ica . Mechanics . T r a n s l a t i o n a l .
Components . F ixed f i x e d

parameter Model ica . S I u n i t s . Length L_ab ;
parameter Model ica . S I u n i t s . Length L_bc ;

equat ion
f l a n g e _ b . f=− f l a n g e _ a . f ∗ ((L_ab+L_bc) / L_bc) ;
f l a n g e _ b . s= f l a n g e _ a . s ∗ (L_bc / (L_ab+L_bc)) ;

end Lever_TopFix ;

The code for the lever model with the middle fix is
similar to the top-fix model, only the equation is dif-
ferent. Every flange of the model provides two types
of information: one is the displacement which is de-
scribed in model with the character - ’flange_x.s’, the
other is the force, which is described with the charac-
ter - ’flange_x.f’.
The force within the clutch is transfered by the two
levers having two pivot points. The second clutch is
modeled similar to the first clutch. In contrast to the
first model, the two rods are modeled with the top-fix
model. Figure 5 shows an example for modeling the
lever mechanism of the first clutch. This lever model
consists of two sub-models, which are described in
figure 4. The first model (top-fix) output port is con-
nected with the second model (middle-fix) input port.
The lever works against the disc spring which has a
non-linear behavior [10]. The behavior of the disc
spring is modeled by some look-up tables. Within the
front range of the clutch position the lever presses the
pressure plate against the central plate. The clutch disc
is between both plates. As long as the clutch disc does
not touch the central plate the spring force increases
linearly. When the clutch disc touches the central plate
(touch point) the spring force starts to decrease. In or-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

469

lever_TopFix

lever_MiddleFix

flange_a

flange_b

Figure 5: Lever mechanism for clutch 1

PT

A

threePortValve pM
eas

Fixed1 Fixed2

positionSensor

s

k=1/100000

pa2bar

c1

CylinderA1

forceSensor_fr…

f

diaphragmSpring1diaphragmSpring1

F

1

tank

Adjusting

T_C1_actual

F_C1

F_zyl1

P_Cyl1_actual

S_C1_actual

port1

u1

tr
an

sm
is

si
on

B
us

y1

Figure 6: Detailed Clutch Model

der to disengaging the clutch, the parameters change
to a lesser value because of the hysteresis of the disc
spring [11].
Both the hydraulic one and the mechanic clutch sys-
tem are presented in figure 6. The output of the model
is the position of the lever. Furthermore the pressure
of the cylinder, the force and the torque of the clutch
system are also shown.

3 Control

There is an air clearance between the clutch disc and
the clutch housing. Before the clutch torque builds up,
the hydraulic system has to be filled with oil to gener-
ate the necessary pressure in the clutch cylinder. Then
the clutch plates come together up to the touch point
and the clutch torque can be built up. The time lag
of the clutch system is minimized by using the pre-fill
function. This function is active from a shift request
up to the touch point of the clutch (as shown in figure
7 phase II).
The behavior of the actuators is derived from the lit-
erature [12]. The control of the clutch can be divided

t

Prefill C2

C2 Enable

Torque shift

pC2

IV

TouchPoint 2

I II III

pC1

sC1

sC2

C1 Enable

TouchPoint 1

Prefill

Clutch position

Clutch capacity

Clutch enable

Cylinder pressure

TC1
TC2

Prefill

Figure 7: The basic function of the controller during
build up and reduction of the clutch torque

into four stages (as shown in figure 7):

1. Clutch deactivation or relief condition (Phase I -
C1);

2. Pre-filling (Phase II - C2);

3. Clutch activation (Phase I, II, III - C1, or Phase
III, IV - C2)

4. Emptying of the clutch cylinder (Phase IV - C1).

Figure 8 shows the control structure of the clutch.
The output signals from the clutch model are cylin-
der pressure (p_Cyl_actual [bar]) and clutch position
(s_C_actual [m]). The command signal is the input for
the clutch model. This signal is a normalized valve po-
sition signal (S_CCVx [−1 . . .1]), which is combined
with a non-linear spool dynamics block. The spool dy-
namics block contains hysteresis, friction and a limit
of the spool velocity [5]. The volume flow of the hy-
draulic oil is controlled by the spool position.

The inner loop is used to control the cylinder pres-
sure and the outer loop controls the clutch position (as
shown in figure 8). Both loops are realized by a PI
controller. The control parameters for the inner loop
circle have been empirically adjusted. The T Σ-method
provides the opportunity for calculating the parameters
of the outer loop circle [13]. To shorten the time for
the parameter settings, the nonlinear system was lin-
earized. With the linearized system the control param-
eter could be determined and it was possible to check
the stability.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

470

[Dymola]

MechanicHydraulic

sC targetTC target

Controller Controller

pCyl target SCCV

pCyl actual

sC actual

modulemodule

SCCV : valve control signal [−1, . . . , 1]
pCyl target: cylinder pressure (target) [bar]
pCyl actual: cylinder pressure (actual) [bar]
sCyl target: cylinder position (target) [m]
sCyl actual: cylinder position (actual) [m]

+
−

+
−

Figure 8: The control design of the clutch model

The control strategy is based on a condition-based cas-
cade control. This means that the pre-filling and the
emptying of the clutch cylinder takes place only when
the inner control system is active. If the clutch status is
enabled, the overall cascade control system is in pro-
cessing mode. To switch continuously from the "pre-
fill" status to the "clutch enable" status, the start value
of the integrator of the outer controller is set to the last
pressure value of the pre-fill phase. An anti-windup
process is used for counteracting the windup in the in-
ner controller, after pressure emptying of the clutch
cylinder. The valve control signal returns as quickly
as possible to the operation state (S_CCV x control sig-
nal is closed to zero) as shown in figure 10. Addition-
ally, a dither generator for the valve has been devel-
oped for overcoming the stick-slip-effect, which could
occur due to the inaccuracy of the valve control.

4 Simulation Results

In section 2 the simulations model with the inter-
face and the implemented control algorithm were pre-
sented. Now the clutch model, the suitable control al-
gorithm, the performance and the functional capability
of a basic shift strategy are shown in a simulation run.
The simulation can be executed with a driver model, so
it is possible to drive the driving cycles like the New
European Driving Cycle (NEDC) [14]. The model in-
puts are a boolean ignition signal and two real values
for the acceleration- and brake-pedal. Figure 9 shows
the first simulation result containing the input signals
accelerator-, throttle-position and the brake-pedal po-
sition. The throttle position is controlled by the en-
gine control unit. The driver starts the engine with
the ignition key. After the brake pedal is released by
the driver and the acceleration pedal is pushed. This
happens as long as the TCU has shifted up to the
seventh gear. The second row of figure 9 shows the

engine speed (n_Engine [rpm]) and the speed of the
two input shafts (n_Shaft1,n_Shaft2 [rpm]). The en-
gine speed has to follow the torque transferring in-
put shaft. If a higher gear is required, the synchro-
nization releases the actual gear and engages the re-
quired one. This happens before the torque transfer
begins. The next sub figure shows the induced en-
gine torque with engagement (T_Engine_i [Nm]), the
engine torque (T_Engine [Nm]) and the torque of the
input shafts (T_Schaft1,T_Schaft2 [Nm]). The next
row of the figure illustrates the target clutch capac-
ities (T_C1_target,T_C2_target [Nm]) and the actual
clutch capacities (T_C1_actual,T_C2_actual [Nm]).
The last sub figure shows the signal desired gear and
the current gear.
The vehicle accelerates and shifts up to the seventh
gear. Each of these shift processes is accompanied
by a continuous switch of the clutch capacities. The
engine speed is reduced by the throttle position con-
trol, which is a submodule of the ECU. If sporty be-
havior is requested by the driver, the clutch control
could be used to execute the speed-regulation. The
engine intervention is controlled by the transmission
control unit with a defined torque interface between
these two control units. Figure 10 shows the detailed
results of the third and the fourth gear for an up-shift
process. On the left side the simulation results for the
first clutch are shown. The right figure shows the re-
sults for the second clutch. In the first row, there are
the normalized input signals of the hydraulic three port
valves (S_CCVx [−1 . . .1]), followed by the results
for the cylinder pressure signals (p_Cylx_actual [bar]).
With the changing of the pressure signal there is a
change in the position of the clutch (sCx [m]), which
is shown in the next row of the results. In the last
row, the target and the actual clutch capacity are shown
(T_C1_target,T_C2_target [Nm]).
The results of the simulations show the expected be-
havior for the hydraulic clutch system. The results es-
pecially show the relationship between the clutch posi-
tion, cylinder pressure and clutch capacity. The qual-
ity of the model could not be determined without a
comparison with measurements data from the trans-
mission. The duration for the pre-fill function and the
shift process is related to other DCT application [15].

5 Summary and Outlook

A detailed model of a hydromechanical double clutch
actuator with a suitable control algorithm was pre-
sented. The model was integrated into a double clutch

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

471

0 2 4 6 8 10 12 14 16 18
0

0.5

1

time [s]

0 2 4 6 8 10 12 14 16 18
0

2000

4000

6000

0 2 4 6 8 10 12 14 16 18

0

100

200

300

0 2 4 6 8 10 12 14 16 18
0

100

200

300

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

n Engine n Shaft1 n Shaft2

acceleratorPedalPosition throttlePosition brakePedalPosition

[0
..
.1
]

[1
/
m
in
]

[N
m
]

[N
m
]

G
ea
r
st
at
e

T C1 target
T C1 actual

T C2 target
T C2 actual

T Engine i

T Engine

T Shaft1

T Shaft2

CurrentGear

DesiredGear

[0
..
.7
]

C
lu
tc
h
ca
p
ac
it
y

T
o
rq
u
e

S
p
ee
d

D
ri
ve
r

Figure 9: Simulation result of a up-shift cycle

7.5 7.6 7.7 7.8 7.9
-1

0

1

[-
1.

..
1]

Pushing upshift clutch 1

7.5 7.6 7.7 7.8 7.9
0

10

[b
ar

]

7.5 7.6 7.7 7.8 7.9
0

1

2

3
x 10

-3

[m
]

7.5 7.6 7.7 7.8 7.9
0

100

200

300

[N
m

]

8.6 8.7 8.8 8.9 9
-1

0

1

Pushing upshift clutch 2

8.6 8.7 8.8 8.9 9
0

10

8.6 8.7 8.8 8.9 9
0

1

2

3
x 10

-3

8.6 8.7 8.8 8.9 9
0

100

200

300 T C1 actual

T C2 actual
T C1 target

T C2 target

S CCV1

S CCV2

Prefill C1

Prefill C2V
al

ve
si

g
n

al
P

re
ss

u
re

P
o
si

ti
o
n

C
lu

tc
h

ca
p

ac
it

y

s C1 actual

s C2 actual

Prefill C1

Prefill C2

55

p Cyl1 actual

p Cyl2 actual

Prefill C1

Prefill C2

Figure 10: Detailed results of a shift process for the hydro-mechanic clutch actuator

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

472

transmission model with seven speeds. The main fo-
cus was the modeling of the mechanical lever system.
The detailed clutch model provides engineers the op-
portunity to develop new control algorithms in model-
in-the-loop simulations. As example a cascaded PI
controller was designed. The clutch model, the suit-
able control algorithm, the performance and the func-
tional capabilities of a basic shift strategy were shown
in a simulation run. The verification of the simula-
tion models with the real transmission is in progress.
Therefore a new transmission test bench at the TU
Berlin, Chair of Electronic Measurement and Diag-
nostic Technology is used. At the moment the extensi-
ble hydraulic interface is used to implement a detailed
synchronization model for the gear shift process. With
this synchronization model in combination with the
clutch model the calibration of the shifting and clutch
algorithms in a model-in-the-loop simulation is feasi-
ble.

References

[1] U. Eggert, C. Kraus, M. Leibbrandt and K.
Bernemann. The new family of Powershift
Transmissions at GETRAG FORD Transmis-
sions GmbH. In VDI Berichte 1943, Getriebe
in Fahrzeugen 2006, page 289...308, Düsseldorf,
2006. VDI Verlag.

[2] S. Rinderknecht and U. Knödel. Evolution and
Future Potential of Passenger Car Transmissions
in Layshaft Design. In VDI Berichte 2029,
Getriebe in Fahrzeugen 2008, Düsseldorf, 2008.
VDI Verlag.

[3] C. Gühmann. Model-Based Testing of Auto-
motive Electronic Control Units. In 3rd Inter-
national Conference on Materials Testing: Test
2005, 2005. Nürnberg.

[4] H. Isernhagen and C. Gühmann. Modelling of a
Double Clutch Transmission with an Appropri-
ate Controller for the Simulation of Shifting Pro-
cesses. In Bernhard Bachmann, editor, Proceed-
ings of the 6th International Modelica Confer-
ence, pages 333–339, Bielefeld, Germany, 2008.
Modelica Association and University of Applied
Sciences Bielefeld.

[5] Hylib (2009), version 2.7. Product help, Mode-
lon, 2009.

[6] G. Lechner, H. Naunheimer and S. Day. Auto-
motive Transmissions: Fundamentals, Selection,
Design and Application. Springer, Berlin, Hei-
delberg, New York, 1st edition, 1999.

[7] F. Rudolph, M. Schäfer, A. Damm, F.-T. Met-
zner and I. Steinberg. Das innovative 7-Gang-
Doppelkupplungsgetriebe für die Kompaktklasse
von Volkswagen. 28. Internationales Wiener Mo-
torensymposium, 639:242–264, 2007.

[8] D. Findeisen. Ölhydraulik: Handbuch für die
hydrostatische Leistungsübertragung in der Flu-
idtechnik. Springer, 2006.

[9] W. Staudt. Kraftfahrzeugmechatronik. Bil-
dungsverl. EINS, 2007.

[10] U. Kiencke and L. Nielsen. Automotive Con-
trol Systems, For Engine, Driveline, and Vehicle.
Springer, Berlin, Heidelberg, New York, 2nd edi-
tion edition, 2005.

[11] E. Kirchner. Leistungsübertragung in
Fahrzeuggetrieben. Springer Verlag, Berlin,
Heidelberg, New York, 2007.

[12] K. Reif. Automobilelektronik: Eine Ein-
führung für Ingenieure. ATZ-MTZ-Fachbuch.
Vieweg+Teubner, Wiesbaden, 3rd edition, 2009.

[13] L. Holger and W. Wendt. Taschenbuch der
Regelungstechnik. Verlag Harri Deutsch, 2009.

[14] Emission Test Cycles. Sum-
mary of worldwide driving cycles.
www.dieselnet.com/standards/cycles, 24.10.
2010.

[15] R. Kubalczik, M. Ebenhoch and H. Schneider.
7-Gang Doppelkupplungsgetriebe für sportliche
Anwendungen. In VDI Berichte 1943, Getriebe
in Fahrzeugen 2006, page 309...324, Düsseldorf,
2006. VDI Verlag.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

473

Germa

Abstract

At DLR, an
veloped tha
systems for
the use of n
generic con
prototype to
server mode
ly nonlinear
to be observ
tional Moc
model in F
form that en
er designs,
Filters. The
observer for
tric vehicle
Keywords: F

1 Intro

The ROboM
platform fo
the DLR In
fully centra
innovative
methods, a
required. U
measured di
In [Eng10]
actuators w
timator algo
the Function
This approa
least in prin
tomatically

b

an Aerospac

jonatha

t

n innovative
at requires
r proper func
nonlinear obs
ncept was dev
o automatica
el in Modelic
r) Modelica
ved. The app

ckup Interfac
FMI format
nables the ap

like EKF a
e approach is
r the nonline
of DLR.
FMI, FMU, K

oduction

MObil (Figu
or future elec
nstitute for R
alized contro

control stra
good knowl

Unfortunately
irectly and th
, a concept

was develope
orithms in M
nal Mockup
ach is enhanc
nciple, every

utilized in

ased on
with A

Jonatha
ce Center (D

Münchne
an.brembec

e electric veh
advanced, n

ctioning. One
servers for se
veloped and
ally generate
ca, given a c
model of the
proach is ba
ce (FMI), b
and importi

pplication of
and UKF n
s demonstrat
ear battery m

Kalman Filt

ure 1, [Bre1
ctro mobility
obotics and

ol architectur
ategies. For
ledge of all
y, many of
herefore hav
t for one of
d to implem
Modelica ma
Interface [FM
ced in this p
y Modelica m
a nonlinear

Nonlin
the Fun

Applicatio

an Brembec
DLR) Oberp
er Strasse 2

ck@dlr.de, m

hicle is being
nonlinear co
e central asp
everal modul
implemented

e a nonlinea
ontinuous (u
e physical sy
ased on the F
by exporting
ing it again
f different ob
nonlinear Ka
ted at hand o

model of the

er, EKF, UK

11]), a rese
y is develop
Mechatronic
re enables h
r most of
actuator stat
them canno

e to be estim
the ROboM

ment recursiv
anually base
MI10] , [FM
aper such th
model can b

observer. In

near Obs
nctional M
ons to E

ck, Martin O
pfaffenhofen
0, D-82234
martin.otter

g de-
ontrol
ect is
les. A
d in a

ar ob-
usual-
ystem
Func-
g the

in a
bserv-
alman
of an
elec-

KF

earch
ped at
cs. Its
highly
these
tes is
ot be

mated.
MObil
ve es-
ed on

MI11].
hat, at
be au-
n the

follo
mati
tion
base
expe
ROb
fram

Figu

2

In th
estim
velop
In th
linea
sketc
tive
vide
start

servers
Mockup
lectric V

Otter, Dirk Z
n, Institute o

4 Wessling,
r@dlr.de, di

owing sectio
ion algorithm
in Modelica

ed [Phy10] F
erimental res
boMObil in c

mework are d

re 1: ROboMO

Recursiv

his chapter, t
mation are s
pment leadin

he second pa
ar systems an
ched. Furthe
formulation
d in the stan
ing point for

Interfac
Vehicles

Zimmer
of Robotics
Germany
rk.zimmer@

ns, the utiliz
ms are summ
a is outlined,
FMI importe
ults with the
combination
emonstrated

Obil test drive

ve state es

the principle
summarized,
ng to the Ka
rt, this algor
nd finally the
er backgroun
s, and recen
ndard book
r the followin

ce

s and Mecha

@dlr.de

zed recursiv
marized, the i
, and a unive
er is present
e Lithium-Ion
n with this n
d.

e

stimation

e ideas of rec
and its (hi

alman Filter
rithm is exten
e latest devel
nd informati

nt developme
[Sim06] tha
ng explanatio

atronics

ve state esti-
implementa-
ersal Phyton
ted. Finally,
n cells of the

new observer

cursive state
storical) de-

r is outlined.
nded to non-
lopments are
ion, alterna-
ents are pro-
at is also the
ons.

-
-
n
,
e
r

e
-
.
-
e
-
-
e

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

474

2.1 Principles

At first, we consider an estimation of a constant sig-
nal on the basis of several noisy measurements. This
Weighted Least Squares Estimation problem is well-
known in system identification tasks (see, e.g.,
[Lju98]). Through the weighted formulation, the
user can assign different levels of confidence to cer-
tain measurements (or observations). This feature is
crucial for tuning Kalman Filters. The corresponding
minimization problem is formulated as follows:

ଵݕ
⋮
ݕ
൩ ൌ

ଵଵܪ … ଵܪ
⋮ ⋱ ⋮

ܪ ⋯ ܪ
൩ ⋅

ଵݔ
⋮
ݔ
൩

ଵݒ
⋮
ݒ
൩

ݒሺܧ
ଶሻ ൌ ߪ

ଶ			ሺ݅ ൌ 1,… , ݇ሻ
,Թ	߳	ݔ ,Թ	߳	ݕ Թ	߳	ݒ

(1)

The unknown vector ݔ is constant and consists of ݊
elements, ݕ is a ݇-element noisy measurement vector
and usually	݇ ≫ ݊. Each element of y - ݕ - is a line-
ar combination (ܪ∗) with the unknown vector x and
the variance of the measurement noise of the i-th
measurement ݒ. The noise of each measurement is
zero-mean and independent from each other, there-
fore the measurement covariance matrix is

 ܴ ൌ ሺ்ݒݒሻ ൌ ݀݅ܽ݃ሺߪଵଶ, … , ߪ
ଶሻ (2)

The residual

߳௬ ൌ ሺݔܪ ሻᇣᇧᇧᇤᇧᇧᇥݒ

ୀ௬

െ ොݔܪ (3)

is the difference of all measured values y with the
(unknown) x-vector minus the estimated vector ݕො
that is computed from the estimated vector ݔො. The
goal is to compute the estimated vector ݔො	such that
the weighted residual is as small as possible, i.e., to
minimize the cost function J:

 ܬ ൌ
߳௬ଵଶ

ଵߪ
ଶ ⋯

߳௬
ଶ

ߪ
ଶ (4)

To minimize	ܬ, it is useful to compute the partial de-
rivative with respect to the estimated ݔො vector and set
it to zero. In this way, an optimal solution for ݔො can
be calculated:

ܬ߲
ොݔ߲

ൌ 2 ⋅ ሺെି்ܴݕଵܪ ሻܪଵି்ܴܪො்ݔ ൌ 0

ොݔ	 ൌ ሺି்ܴܪଵܪሻିଵି்ܴܪଵݕ
(5)

(5) requires that R is nonsingular and H has full rank.
This is the “textbook” version of the algorithm. It is
inefficient and numerically not reliable.

Alternatively, (4) can be formulated as:

ܬ ൌ 	
߳௬ଵ
ଵߪ

…
߳௬
ߪ
൨ ∙

ۏ
ێ
ێ
ێ
ۍ
߳௬ଵ
ଵߪ
⋮
߳௬
ߪ ے
ۑ
ۑ
ۑ
ې

 (6)

To solve the following standard linear least squares
problem that minimizes the Euclidian norm of the
weighted residue vector:

min
௫ො

ฯ
߳௬ଵ
ଵߪ

…
߳௬
ߪ
൨	ฯଶ	

ൌ 	min	
௫ො
‖ܹሺݕ െ 	ොሻ‖ଶݔܪ

ൌ 	min	
௫ො
ොݔܪܹ‖ െܹݕ‖ଶ	

ൌ min
௫ො

ොݔܣ‖ െ ܾ‖ଶ	

ܹ ൌ ݀݅ܽ݃ሺ1/ߪଵ,… , 	ሻߪ/1

(7)

This minimization problem has a unique solution, if
A=WH has full rank. If A is rank deficient, an infi-
nite number of solutions ݔො exists. The usual ap-
proach is to select from the infinite number of solu-
tions the unique one that additionally minimizes the
norm of the solution vector: ‖ݔො‖ଶ → ݉݅݊. Given A=
WH and b = Wy, this solution vector can be comput-
ed with the Modelica function Modeli-
ca.Math.Matrices.leastSquares(...) from the Modelica
Standard Library which is a direct interface to the
LAPACK function DGELSX [Lap99].
This function uses a QR decomposition of A with
column pivoting together with a right multiplication
of an orthogonal matrix Z to arrive at:

min
௫ො

ቛሾܳଵ ܳଶሿ ቂ
ܷ 0
0 0

ቃ ොݔܼܲ െ ܾቛଶ (8)

where Q and Z are orthogonal matrices, P is a per-
mutation matrix, U is a regular, upper triangular ma-
trix and the dimension of the quadratic matrix U is
identical to the rank of A. Since the norm of a vector
is invariant against orthogonal transformations, this
equation can be transformed to:

min
௫ො

ฯ ቂܷ 0
0 0

ቃ ොݔܼܲ െ
ܳଵ்ܾ
ܳଶ
்ܾ
൨	ฯଶ (9)

This is equivalent to

min
௫ො

ฯቂܷ
0
ቃ ො̅ଵݔ െ

ܳଵ்ܾ
ܳଶ
்ܾ
൨	ฯଶ , ොݔܼܲ	=ෝ	ݔ (10)

from which the solution can be directly computed as
(taking into account b = Wy):

ොݔ ൌ ்ܼܷܲିଵܳଵ்ܹݕ (11)

In the following, only textbook versions of algo-
rithms will be shown, such as (5). Their implementa-
tion is, however, performed in an efficient and nu-
merically reliable way, such as (11), where matrices
R and H can be rank deficient.

The sketched approach, both (5) and (11), can be
used for offline estimation with a predetermined
number of measurements k.

In real-time applications, new measurements arrive
in each sample period to improve the estimation. Us-
ing (11) would require a complete recalculation with
ܱሺ݇ଷሻ-flops. One approach could be to use a moving
horizon and to forget the older measurements (still

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

475

costly). Another option is to reformulate the problem
into a recursive form that is updated at every sample
instant with the new measurements. A linear recur-
sive estimator can be written in the following repre-
sentation:

ݕ 	ൌ ݔܪ		 	ݒ
ොݔ 	ൌ 		 ොିଵݔ ܭ ⋅ ሺݕ െ ොିଵሻݔܪ

(12)

We compute ݔො based on the estimation from the last
time step ݔොିଵ and the information from the new
measurement	ݕ. ܭ is the estimator gain vector that
weights the correction term ݕ െ ොିଵ. Hence, weݔܪ
have to compute an optimal ܭ in a recursive way.
To this end, it is necessary to formulate another cost
function that minimizes the covariance in a recursive
way.

ܬ߲
ܭ߲

ൌ 	
ݎ߲ܶ	 ܲ

ܭ߲
ൌ 0

	 ܲ 		ൌ 	 ሺܫ െ ሻܪܭ ܲିଵሺܫ െ 	ሻ்ܪܭ
													ܭܴܭ

்	
ܭ 		ൌ ܲ	ିଵܪ

் ⋅ ሺܪ ܲିଵܪ
் ܴሻିଵ

(13)

(14)

(15)

This results in a recursive formula to update the es-
timation of the unknown, but constant, vector ݔ in
every sample with the latest measurements, based
only on the estimation from the last sample. Table 1
summarizes the whole algorithm.
Table 1: Recursive weighted least squares algorithm

Initialization

ොݔ ൌ 	ሻݔሺܧ

ܲ ൌ ݔሾሺܧ െ ݔොሻሺݔ െ 	ොሻሿݔ

For ݇ ൌ 1,2, …

ݕ ൌ ݔܪ	 	ݒ

ܭ ൌ ܲ	ିଵܪ
் ⋅ ሺܪ ܲିଵܪ

் ܴሻିଵ	

ොݔ ൌ ොିଵݔ ܭ ⋅ ሺݕ െ 	ොିଵሻݔܪ

ܲ ൌ 	 ሺܫ െ ሻܪܭ ܲିଵሺܫ െ 	ሻ்ܪܭ

													ܭܴܭ
்

For many real-time control problems, it is more in-
teresting to estimate the system states rather than
some constant parameters. Therefore the linear Kal-
man Filter was developed in the 60’s. It enables to
estimate the system states of a linear discrete-time
model in a recursive way. The fundamental assump-
tion is that the system and the output equations are
disturbed by white Gaussian noise. Both of these
noise processes are regarded as uncorrelated with
zero mean. This results in the following equations:

ݔ 	ൌ ିଵݔିଵܨ		 ିଵݑିଵܩ ିଵݓ
ݕ 	ൌ ݔܪ		 ݒ

ݓݓ൫ܧ
்൯ ൌ ܳߜି	

ݒݒሺܧ
்ሻ 	ൌ ܴߜି	

ݒݓሺܧ
்ሻ ൌ 0

(16)

At this point, we introduce the principle of every
Kalman Filter derivation (compare Figure 2). Subse-
quent to filter initialization, the first step in every
sample is the a-priori estimation of the mean (system
states) and the covariance (a gauge for the confi-
dence in them). This is called the prediction step and
all of the equations that are related with it contain a
“-“ in the superscript.

kx̂

kx̂

y

00 ,ˆ Px

Figure 2: Principle of recursive Kalman filter.

This forms the basis for the calculation of the opti-
mal Kalman gain that is used to correct the estimated
state vector with the information from the actual
measurements. Finally, the covariance matrix is up-
dated. This is called the correction step. In the next
sample, these values are used to restart again at the
subsequent prediction step. The algorithm can be
formulated as follows:
Table 2: Linear discrete Kalman Filter

Initialization

ොݔ ൌ ሻݔሺܧ

ܲ
ା ൌ ݔሾሺܧ െ ොݔ

ାሻሺݔ െ ොݔ
ାሻሿ

For ݇ ൌ 1,2, …	
ොݔ
ି ൌ ିଵݔିଵܨ

ା ିଵݑିଵܩ

ܲ
ି ൌ ିଵܨ ܲିଵ

ା ିଵܨ
் ܳ

ܭ ൌ ܲ
ܪି

் ⋅ ሺܪ ܲ
ܪି

் ܴሻିଵ

ොݔ
ା ൌ ොݔ

ି ܭ ⋅ ሺݕ െ ሻݔܪ

ܲ
ା ൌ ሺܫ െ ܭ ⋅ ሻܪ ⋅ ܲ

ି		

To determine the relationship between the Kalman
Filter and recursive weighted lest squares, we should
have a closer look at Table 2. The matrix ܳሺ்ݓݓሻ ൌ
݀݅ܽ݃ሺߪ௪ଵ

ଶ , … , ௪ଶߪ ሻ represents the covariance of the
system states (ݓ denotes the variance of the system
states). Its entries represent the confidence in the a-
priori estimation and can be tuned by the application
engineer. Large values represent high uncertainty
(probably due to an imprecise model), whereas small
values indicate good trust. The second tuning matrix
ܴ represents the confidence in the actual measure-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

476

ments. Its effect resembles our first estimation prob-
lem (eq. (1) to (5)). Furthermore, it can be shown
that if ݔ is a constant vector then ܨ ൌ ,ܫ ܳ ൌ 0
and ݑ ൌ 0. In this case, the Linear discrete Kalman
Filter algorithm (Table 2) reduces to the recursive
weighted least squares algorithm (Table 1). This
property is often exploited in the formulation of pa-
rameter estimation problems using Kalman Filter
algorithms.

2.2 Nonlinear Kalman Filter Algorithms

So far, we have discussed estimation problems for
linear discrete systems. This is generalized to nonlin-
ear systems starting from a continuous-time repre-
sentation in state space form:

ሶݔ ൌ ݂ሺݔ, 	ሻݑ
ݕ ൌ ݃ሺݔሻ

(17)

In section 3, it is sketched how such a model descrip-
tion can be generated from a Modelica model for use
in a nonlinear Kalman Filter using the Functional
Mockup Interface. In this way, it is possible to for-
mulate the synthesis models for the prediction step
(see Figure 2) with Modelica, even in implicit repre-
sentation, and shift all tedious tasks to the Nonlinear
Observer framework. This avoids calculus mistakes
and allows us to put the main focus on the design of
the algorithms.
In Table 3, the widely used extension of the discrete
linear Kalman Filter to the discrete nonlinear Kal-
man Filter with additive noise is presented. The dy-
namic system is represented as follows:

ݔ 	ൌ 		 ݂ିଵሺݔିଵ, ିଵሻݑ 	ିଵݓ
ݕ 	ൌ 		 ݄ሺݔሻ ݒ
w୩ ≅ ሺ0, Q୩ሻ	
v୩ ≅ ሺ0, R୩ሻ

(18)

The algorithm is very similar to a purely linear one.
To handle the nonlinearity, the system is linearized
around the last estimation point using a Taylor Series
Expansion up to the first term. This can be per-
formed numerically by the use of a forward differ-
ence formula.

Table 3: Extended Kalman Filter Algorithm

Initialization

ොݔ ൌ ሻݔሺܧ

ܲ
ା ൌ ݔሾሺܧ െ ොݔ

ାሻሺݔ െ ොݔ
ାሻሿ	

For ݇ ൌ 1,2, …	
ොݔ
ି ൌ ݂ିଵሺݔොିଵ

ା , 	ିଵሻݑ

ܲ݇
െ ൌ െ1ܲ݇െ1݇ܨ

 െ1݇ܨ
ܶ ܳ	

ିଵܨ	݁ݎ݄݁ݓ ൌ
߲ ݂ିଵ

ݔ߲
ฬ
௫ොೖషభ
శ
	

݇ܭ ൌ ܲ݇
െ݇ܪ

ܶ ⋅ ሺ݇ܲ݇ܪ
െ݇ܪ

ܶ ܴሻെ1	

ܪ	݁ݎ݄݁ݓ ൌ
߲݄
ݔ߲

ฬ
௫ොೖ
ష
	

ො݇ݔ
 ൌ ො݇ݔ

െ ݇ܭ ⋅ ൫݇ݕ െ ݄݇ሺݔො݇
െሻ൯

ܲ
ା ൌ ሺܫ െ ܭ ⋅ ሻܪ ⋅ ܲ

ି		

Since we have a nonlinear continuous-time system
representation, we have to linearize and discretize
our system at every sample instant. Discretization
means to integrate the system in the prediction step
from the last sample instant to the new one, e.g. with
the 	Trapezoidal or the Runge-Kutta 4 integration
method. The transition matrix ܨିଵ is calculated by
an analytic derivation of the system state Jacobian.
An alternative is the numerical calculation with, e.g.,
a forward difference formula:

For ݅ ൌ 1,2, … , ݊

ܬ
௫ොೖషభ
శ
ሾ:,୧ሿ ൌ

݂ሺݔොିଵ
ା ݄ ∙ :ሺܧ , ݅ሻ, ሻݑ െ ݂ሺݔොିଵ

ା , ሻݑ

݄

(19)

The transition matrix can be computed with function
Modelica.Math.Matrices.exp from the Modelica
Standard Library resulting in:
 ିଵܨ ൌ ݁

൬ෝೣೖషభ
శ ⋅ ೞ்൰

 (20)

The same procedure is necessary to calculate the
output Jacobian ܪ. Using this method, it is possible
to use a nonlinear continuous-time system within the
discrete nonlinear Kalman Filter algorithm.
The discussed EKF algorithm is widley used in many
applications. However, it often gives unsatisfactory
results or even does not converge if the system
nonlinearities are severe because the linearization
causes a propagation of the mean and covariance that
is only valid up to the first order. The following
section sketches the principles of the Unscented
Kalman Filter (UKF) and its advantages in nonlinear
state estimation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

477

2.3 Unscented Kalman Filter

In order to achieve higher accuracy, the UKF
calculates the means and covariances from disturbed
state vectors, called sigma points, by using the
nonlinear system description. As one side effect, the
Jacobians of fሺxሻ and hሺxሻ are no longer needed. See
[Mer04] for more detailed information. The structure
of the equation set, containing prediction and update,
is similar to the EKF. However, the calculation of
the covariances requires to integrate the nonlinear
system 2݊ 1 times from the last to the actual time
instant and is therefore computationally costly. The
symmetry of all the involved matrices is fully
exploited to reduce computational costs. An
additional reduction of computational effort is
achieved with the Square Root UKF (SR-UKF).

2.4 Square Root Unscented Kalman

The equations of the SR-UKF are identical to the
UKF, but the structure is utilized during the
evaluation: Although the covariance matrix P and
the predicted covariance matrix Pି are uniquely
defined by their Ckolesky factors ඥP and ඥPି
respectively, with UKF the covariance matrices are
calculated at each step. Furthermore, the sigma
points X can be computed with the Cholesky factor
ඥP, and the updated sigma points of the
measurement update with the Cholesky factor ඥPି
without using the covariance matrices. Moreover, the
gain matrix K is determined as solution of the linear
equation system

 K ⋅ P୷ೖ୷ೖ ൌ P୶ೖ୷ೖ (21)

that can be more efficiently solved by utilizing again
the Cholesky factorization. In the SR-UKF
implementation, the Cholesky factors are propagated
directly and the refactorization of the covariance
matrices is avoided [Mer01b] .
The EKF, UKF, and SR-UKF algorithms are imple-
mented as Modelica functions using LAPACK for
core numerical computations. Implementation details
of the numerical algorithms will be provided in an
upcoming publication by Marcus Baur.

3 Nonlinear Observers in Modelica

In this section a prototype implementation is
sketched for applying the nonlinear observers from
the previous section to Modelica models. The goal is
to start from a given (continuous, usually nonlinear)

Modelica model and provide automatically a nonlin-
ear observer for this model in form of a sampled data
system.
This task cannot be performed directly, because
Modelica has no means to discretize a continuous
model and to solve this discretized model with a us-
er-defined method (= integration + update of the next
state according to the observer equations).
Note, it is insufficient to simply integrate the nonlin-
ear models from the last to the new sample instant
(which could be achieved by using the “mapping”
annotation introduced in Modelica 3.1). Instead, the
extended Kalman filter additionally requires lineariz-
ing the model around the sample time and using it
together with the solution of the integration to com-
pute a new estimation of the state that is utilized in
the next step. On the other hand, the unscented Kal-
man filter requires integrating the model several
times with disturbed states from the last to the new
sample instant.
To summarize, there is no way to describe a nonline-
ar observer completely in Modelica and it is also
very unlikely that the Modelica language is extended
so that this becomes possible.
The basic approach is to export the Modelica model
in the FMI-format (see section 3.1), import it again
in Modelica and during import call the FMI-
functions in such a way that the model is discretized
and utilized in a nonlinear observer algorithm.

3.1 Functional Mockup Interface

The Functional Mock-up Interface (FMI) for Model
Exchange [FMI10] , [FM11] was developed in the
MODELISAR project to standardize the exchange of
dynamic models between tools. This interface is
supported already by Dymola, SimulationX, JModel-
ica.org, Silver and Simulink1. Other tools are plan-
ning to support it as well.
The goal of the FMI is to describe input/output
blocks of dynamic systems defined by differential,
algebraic and discrete equations and to provide an
interface to evaluate these equations as needed in
different simulation environments, as well as in em-
bedded control systems, with explicit or implicit in-
tegrators and fixed or variable step-size. Some de-
tails of the type of systems that can be handled are
shown in Figure 3 (from [FMI10]).

1 Dymola 7.4 can export Simulink models in FMI-format
via Realtime-Workshop of MathWorks.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

478

Figure 3: FMI for model exchange.

The interface consists of (a) a small set of standard-
ized “C-functions” to evaluate the model equations
and (b) an XML-file that contains all information
that is not needed during execution, such as the vari-
able definitions. Every variable has a handle (a 32 bit
Integer) that is used to identify the variable in the C-
function calls. The source and/or object code of the
C-functions, as well as the XML-file and optionally
other files, are stored in a zip-file with the extension
“.fmu” for “Functional Mockup Unit”.
In order to implement nonlinear observers for Mod-
elica models, the corresponding model has to be ex-
ported by one of the tools in FMI format. In a subse-
quent step, it has to be imported again. Unfortunate-
ly, a standard FMU-import as supported by Dymola
and other tools cannot be used, because these inter-
faces import a model as continuous model, if it was
exported as continuous model. For this reason, a new
FMU-import method was implemented (see section
3.3). From the Modelica perspective, it was neces-
sary to use the new feature of “functions as input
argument to functions”, as introduced in the Modeli-
ca Language 3.2. This feature is currently only sup-
ported in Dymola 7.5 Beta. So we used this Dymola
version for the prototype implementation.

3.2 FMU Definition in Modelica

The key point is that all FMI-functions of an import-
ed FMU need to be available for design methods in
Modelica. This is achieved in the following way:

1. A FMU (so a model exported by a Modelica
tool) is mapped to a replaceable package consist-
ing of (a) an external object that holds the “inter-
nal memory” of the model, (b) external functions
that call the FMU functions, and (c) a Modelica
model to instantiate and initialize the external
object optionally defining new values for the pa-

rameters. This is a similar approach as used for
media from the Modelica.Media package.

2. Design functions, such as computing the new
estimated state of a model, are implemented in a
model independent way. This is achieved by
providing functions (as input arguments) that
compute the needed information from a model.
Concrete implementations of these functions are
provided for FMUs.

Here is a more detailed sketch of this approach:

Package PartialFmiFunctions defines the interfaces
to all FMI functions:
partial package PartialFmiFunctions
 constant Integer nx=1 "# of states";
 constant Integer nu=1 "# of inputs";
 constant Integer ny=1 "# of outputs";
 constant Integer id_u[nu]"Input handles";
 constant Integer id_y[ny]"Output handles";

 replaceable partial class FmiInstance
 extends ExternalObject;
 replaceable partial function constructor
 input String instanceName;
 input Boolean loggingOn;
 output FmiInstance fmi;
 end constructor;
 replaceable partial function destructor
 input FmiInstance fmi;
 end destructor;
 end FmiInstance;

 replaceable partial function fmiSetTime
 input FmiInstance fmi
 input Real ti;
 input Real preAvail;
 output Real postAvail = preAvail;
 end fmiSetTime;

 replaceable partial function
 fmiSetContinuousStates
 input FmiInstance fmi;
 input Real x[:];
 input Real preAvail;
 output Real postAvail= preAvail;
 end fmiSetContinuousStates;

 ...
end PartialFmiFunctions;

It is important that the dimensions of the input, out-
put and state vectors, as well as the vector of handles
for the input variables (id_u) and for the output vari-
ables (id_y) are available in the package as con-
stants, since they are needed later by the specialized
functions for the design models.
Importing an FMU means to generate a FMU specif-
ic Modelica package of the form (below: <MODEL>
is the name of the FMU):
package <MODEL>_fmu
 model Model
 // Define parameters of the FMU
 // Define inputs, outputs of the FMU
 // initialize FMU

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

479

 parameter String name = "<MODEL>"
 Functions.FmiInstance fmi=
 Functions.FmiInstance(name);
 ...
 end Model;

 package Functions
 extends PartialFmiFunctions(
 nx=4,
 nu=1,
 ny=2,
 id_u={352321536},
 id_y={335544320,335544321});

 redeclare class FmiInstance
 extends ExternalObject;
 function constructor
 input String instanceName;
 input Boolean loggingOn;
 output FmiInstance fmi;
 external"C" fmi = <MODEL_init>
 (instanceName, loggingOn);
 end constructor;
 function destructor
 input FmiInstance fmi;
 external"C" <MODEL_close>(fmi);
 end destructor;
 end FmiInstance;

 redeclare function extends fmiSetTime
 external"C"
 <MODEL_ fmiSetTime>(fmi, ti);
 end fmiSetTime;
 …
 end Functions;
end <MODEL>_fmu;

The imported FMU is now available as a package
that contains a model to initialize the FMU and a set
of functions to operate on the initialized FMU.
Up to this stage, the code is completely independent
from the design that shall be carried out, and the
generated FMU package can be utilized for all kinds
of design tasks. For every specific design, like an
UKF observer, a model has to be implemented that
has the following basic structure:
model UKF_FMI "Unscented Kalman filter"
 import C =
 Modelica_LinearSystems2.Controller;
 import I = Modelica.Blocks.Interfaces;
 extends C.Interfaces.PartialDiscreteBlock
 (initType = C.Types.Init.InitialState);

 replaceable package FmiFunctions =
 PartialFmiFunctions;
 constant Integer nx = FmiFunctions.nx;
 constant Integer ny = FmiFunctions.ny;
 constant Integer nu = FmiFunctions.nu;
 parameter Real Q[nx,nx]=identity(nx);
 parameter Real G[nx, nx];
 parameter Real R[ny, ny];
 parameter Real P_init[nx,nx];
 parameter Real x_init[nx] "Initial states";

 input FmiFunctions.FmiInstance fmi;
 I.RealInput u[nu] "Input u";
 I.RealInput y_measure[ny] "Measured y";
 I.RealOutput x_est[nx] "Estimated x";
 I.RealOutput y_est[ny] "Estimated y";

 Real time_;
 Real P[nx,nx] "Error covariance matrix";
 Real K[nx,ny] "Kalman filter gain matrix";
 ...
protected
 outer C.SampleClock sampleClock ;
initial algorithm
 x_est :=FmiFunctions.fmiGetContinuousStates
 (fmi,nx,1);
 P := P_init;
 time_ := 0;
algorithm
 when sampleTrigger then
 (x_est,y_est,P,K) := UKF(
 function fFMI(fmi=fmi),
 function hFMI(fmi=fmi),
 pre(x_est),pre(u),y_measure, ...);
 time_ :=time_ + sampleClock.sampleTime;
 FmiFunctions.fmiSetTime(fmi,time_,1);
 FmiFunctions.fmiCompletedStep(fmi,3);
 end when;
end UKF_FMI;

The UKF_FMI design model uses the PartialFmi-
Functions as replaceable package to get access to the
FMU functions of the model (in the same way as a
medium is used in a fluid model), as well as an in-
stance of the external object in this package (Fmi-
Instance) to hold the internal memory of the FMU.
All data that the user has to provide for this design
method is provided via parameters and input signals.
The central code consists basically of a periodically
evaluated when-clause where in every sample inter-
val the UKF design function is called. This design
function, here: UKF(...), is generic and does not de-
pend on FMI. In case of the UKF, the design func-
tion requires two functions as inputs: fFMI(..) and
hFMI(..). In model UKF_FMI above, these (generic)
functions will internally call FMI functions, and
therefore the handle to the FMU external object is
provided as additional argument via a “function par-
tial application”.
Function “fFMI” integrates the FMU over one sam-
ple period, whereas “hFMI” computes the output
signals at the new sample time. For example, fFMI is
implemented as:

function fFMI
 input FmiFunctions.FmiInstance fmi;
 input Real u[:] "Input at instant k";
 input Real x[:] "State at instant k";
 input Modelica.SIunits.Time Ts;
 output Real x_new[size(x, 1)]
 "Predicted x at k+1";
algorithm
 FmiFunctions.fmiSetReal
 (fmi, FmiFunctions.id_u, u, 1);
 x_new := RkFix4(fmi,Ts,x);
end fFMI;

With “fmiSetReal”; the input values are set and with
function “RkFix4” the FMU is integrated from the
previous to the next sample instant using a Runge-
Kutta method of order 4 with a fixed step size. The

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

480

design function “UKF” finally is an implementation
of the algorithm sketched in section 2 using
LAPACK [Lap99] for its numerical part.
All pieces can now be assembled together. Assume
for example, that a crane model is exported as FMU
and that the importer of section 3.3 generated the
package “Crane_fmu” according to “<MOD-
EL_fmu>” from above. Then the code for an UKF
observer for this model has basically the following
structure:
model CraneObserver
 // FMU instance
 Crane_fmu.Model CraneFMU(...);

 // Unscented Kalman Filter
 UKF_FMI UKF(
 fmi = CraneFMU.fmi,
 redeclare package FmiFunctions =
 Crane_fmu.Functions,
 ...)

 // Connect input and measurement signals
 // to model UKF
end CraneObserver;

In the first statement an instance of the FMU model
is generated. In the second statement, the model of
the unscented Kalman filter is used and the FMU
instance as well as the FMU functions are provided
as arguments, besides Kalman specific settings.

3.3 FMU import using Python

To support the reimport of a FMU into a Modelica
model in the specific form of section 3.2, a tool box
has been developed in Python 3 [Phy10] . It consists
of a library of Python classes and a set of scripts rep-
resenting the end-user applications. Using this tool-
box, a developer can easily create its own re-import
functionality for FMUs, specially tailored to fit his or
her set of demands. The result of the final Python
script is Modelica package <MODEL>_fmu from
the last section representing the imported FMU. The
equired input consists in the XML-file that is ex-
tracted from the FMU zip-file, optionally additional
text-input by the user, and most important a template
file, see Figure 4. This template file consists of a
Modelica model file that contains mark-up elements
to be replaced by the Python Script.
The template file for FMUs for nonlinear observers
resembles the structure of package “<MOD-
EL>_fmu” sketched in section 3.2.
Using the Python tool-box, FMUs can be re-
imported into Modelica in a very flexible way suiting
a broad set of potential future applications.

Figure 4: Processing Scheme for the Python-based FMU
 Re-import

4 Example SOC estimation

Subsequently, the observer framework is demon-
strated in an application from the development of the
ROboMObil. The battery model introduced in
[Bre11b] is used as the synthesis model for the
FMU-Export. The observer scheme is shown in
Figure 5.

Figure 5: FMU based observer setup

In the top left corner of the model a FMU instance
block is placed. The free parameters of the imported
model can be tuned here before simulation. So it is
possible to modify system parameters, i.e. due to
changed conditions in the experiment, without the
necessity of repeating the importing procedure. With
these parameters and the system equations, the FMU
instance calculates the initial states of the prediction
model and instantiates the FMI object.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

481

The pointer
algorithm. T
In our case
Filter using
ver the user
the covarian
has to be p
tion, manua
([Bre11b])
In this e
StateOfCha
the battery
model outp
noisy SOC
perfect mea
with descrip
variable for
For experim
which is si
model([En
mand of the
mand of on
the single c
the cell ter
effective cu
Finally they
of the exper
In Figure 6
and benefit
server in rea
the SOC c
measuremen

Figure 6:

r to this insta
This can be d

we have ch
g SquareRoo
r has to tune
nce matrix or
performed in
ally or by o
).
example w

arge of a LiIo
model is the

put vector ym

which is c
asurements
ption text “L
r the SOC).
ment data we
imulated wit
g10]). The
e actuators is
ne cell. This
cell test benc
rminals, the
urrent flow a
y are used as
riment setup
we have pre

ts of using a
al-time appli
characteristic
nt.

Comparison

ance is passe
done via the p
hoosen an U
ot matrix cal
the free filte
r the sigma p

ndividually fo
offline optim

we like to
on battery ce
e measured c
m is the cell
calculated vi

(c.f. Figur
L Perf.”, wh

e use a FTP
th the RObo
calculated e
s converted t
is used as c

ch (Figure 7
surface tem

are recorded
s input and m
(Figure 5 bo

esented the e
a model bas
ications. The
c calculated

of observer vs

ed to the obs
parameter di

UnscentedKal
lculation. M
er parameters
point spread.
for every app
mization met

o estimate
ell. The input
current, whil
l voltage and
ia the metho
re 5, compo
ere L is the

P75 driving
oMObil ener
lectric powe
to the curren
urrent deman

7). The volta
mperature and
d during this
measurement
ottom left).
experiment re
sed recursive
e red curve sh

via the pe

s. model based

server
ialog.
lman-

Moreo-
s like
. This
plica-
thods

the
t u of
le the
d the
od of
onent
state

cycle
rgetic
er de-
nt de-
and to
age at
d the
s test.
t data

esults
e ob-
hows
erfect

Figu

It is,
noisy
pecia
resen
obse
SOC
tion
botto
that
mati
on,
Thro
and
to ze
code
with
desk
men
cont

d SOC charac

re 7: Current
 FTP75 d

, despite of
y. This chara
ally in comp
nts the outpu
erver correct
C that is less

which is ph
om right). In
the SOC d

ion. In this c
although th

ough our est
smoother es
ero (blue cur
e provided b
h a real time
ktop systems
t this observ
rollers within

cteristics

demand from
drive cycle

signal pre-fi
acteristic is
arison to the

ut of a pure m
tion. The pu
 than zero a
hysically im
n car applica
isplay would
ase it would
he battery
timation alg
stimation of
rve) at the e
by the FMI

factor great
s. Thereby,
er on embed
n the ROboM

m ROboMObil

iltering, very
qualitatively

e green curve
model simula
ure simulatio
at the end of
mpossible (c.
ations, this w
d show inco

d not be poss
is not exh

gorithm, we
the SOC tha

end. Due to
interface, th

ter than 100
it is possibl

dded or rapid
MObil.

in

y erratic and
y correct, es-
e, which rep-
ation without
on causes a
f the simula-
.f. Figure 7,
would mean
orrect infor-
sible to drive
hausted yet.
get a better

at converges
the efficient

his test runs
on standard

le to imple-
d prototyping

d
-
-
t
a
-
,

n
-
e
.
r
s
t
s
d
-
g

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

482

5 Conclusions and future work

We have demonstrated a way to develop a frame-
work for generic observer design. The algorithm part
is completely separated from the synthesis model.
This could be achieved by the use of the FMI reim-
port mimic and the new possibilities of Modelica 3.2
to pass functions as arguments to functions. The pre-
sented example of a battery state estimation and its
results make us confident that this framework can be
used for many control system tasks in the future, es-
pecially in the ROboMObil project. Furthermore, the
estimation algorithms will be extended to handle
constraints in a recursive way, [Sim09] [Kan08] and
to take “out of sequence measurements” into ac-
count, [Lar98] [Mer04] .

6 Acknowledgement

The financial support of DLR by BMBF
(Förderkennzeichen: 01IS08002) for this work with-
in the ITEA2 project MODELISAR
(http://www.itea2.org/public/project_leaflets/MODE
LISAR_profile_oct-08.pdf) is highly appreciated.

References

[And04] André M. (2004): The ARTEMIS European
driving cycles for measuring car pollutant
emissions. Science of The Total Environment,
334-335, pp. 73-84.

[Bre11] Brembeck J., Ho L. M., Schaub A., Satzger C.,
Hirzinger P. G. (2011): ROMO – the robotic
electric vehicle. IAVSD, Aug. 14-19, accepted
for publication.

[Bre11b] Brembeck J., Wielgos S. (2011): A real time
capable battery model (mESC) for electro
mobility applications using optimal estimation
methods. Modelica'2011 Conference, March 20-
22.

[Eng10] Engst C. (2010): Object-Oriented Modelling
and Real-Time Simulation of an Electric
Vehicle in Modelica. Master Thesis, Technische
Universität München, Lehrstuhl für elektrische
Antriebssysteme und Leistungselektronik.
Supervisors: J. Brembeck, M. Otter, R. Kennel.

[FMI10] The Functional Mock-up Interface for Model
Exchange,Version 1.0 (2010). ITEA2
MODELISAR Project. Download:
www.functional-mockup-interface.org/fmi.html

[FMI11] Blochwitz T., Otter M., Arnold M., Bausch C,
Clauß C., Elmqvist H., Junghanns A., Mauss J.,
Monteiro M., Neidhold T., Neumerkel D.,
Olsson H., Peetz J.-V., Wolf S. (2011): The

Functional Mockup Interface for Tool
independent Exchange of Simulation Models.
Modelica'2011 Conference, March 20-22.

[Kan08] Kandepu R., Imsland L., Foss B. (2008):
Constrained state estimation using the
Unscented Kalman Filter. Proceedings of the
16th Mediterranean Conference on Control and
Automation, pp. 1453-1458, June 25-27.

[Lap99] Anderson E., Bai Z., Bischof C., Blackford S.,
Demmel J., Dongarra J., Du Croz J., Greenbaum
A., Hammarling S., McKenney A., Sorensen D.
(1999): Lapack Users' Guide. Third Edition,
SIAM. Download: http://www.netlib.org/lapack

[Lar98] Larsen T. D., Andersen N. A., Ravn O., Poulsen
N. K. (1998): Incorporation of time delayed
measurements in a discrete-time Kalman
filter. Proceedings of the 37th IEEE Conference
on Decision and Control, vol. 4, pp. 3972-3977,
Dec. 16-18.

[Lju98] Ljung, L. (1998): System Identification:
Theory for the User. Prentice Hall, 2nd Edition.

[Mer01] Merwe R. V., Wan E. (2001): The square-root
unscented Kalman filter for state and
parameter-estimation. Proceedings of the
International Conference on Acoustics, Speech,
and Signal Processingvol. 6, pp. 3461-3464.

[Mer04] Merwe R. V., Wan E., Julier S. (2004): Sigma-
Point Kalman Filters for Nonlinear
Estimation and Sensor-Fusion: Applications
to Integrated Navigation. Proceedings of the
AIAA Guidance Navigation & Control
Conference, Providence, RI, Aug 2004.
Download:
http://www.csee.ogi.edu/~rudmerwe/pubs/pdf/va
nderMerwe_GNC2004.pdf

[Mod10] Modelica Association (2010): Modelica – A
Unified Object-Oriented Language for
Physical Systems Modeling. Language
Specification, Version 3.2. March 24, 2010.
Download:
https://www.modelica.org/documents/ModelicaS
pec32.pdf.

[Phy10] Phython 3.1.2- Documentation (2010):
Download: http://docs.python.org/py3k/

[Sim06] Simon D. (2006): Optimal State Estimation:
Kalman, H Infinity, and Nonlinear
Approaches. John Wiley & Sons Inc..

[Sim09] Simon D. (2010): Kalman filtering with state
constraints: a survey of linear and nonlinear
algorithms. IET Control Theory & Applications,
vol. 4, no. 8, pp. 1303-1318, Aug..

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

483

Using the Functional Mockup Interface as an Intermediate Format in
AUTOSAR Software Component Development

Bernhard Thiele*, Dan Henriksson+
*German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany

+Dassault Systèmes AB, Ideon Science Park, Lund, Sweden
Bernhard.Thiele@dlr.de, Dan.Henriksson@3ds.com

Abstract

This paper shows how the recently developed Func-
tional Mockup Interface (FMI) standard for model
exchange can be utilized in the context of AUTO-
SAR software component (SW-C) development. Au-
tomatic transformations between the XML schemas
of the two standards are utilized to convert FMI
models to AUTOSAR. An application example is
demonstrated, where a Modelica controller is ex-
ported through FMI, converted to an AUTOSAR
SW-C and then imported into an AUTOSAR tool.
The presented approach, with FMI as an intermediate
format, should be an attractive alternative to provid-
ing full-fledged AUTOSAR SW-C export.
Keywords: FMI; AUTOSAR; model-based design;
embedded software

1 Introduction

During the last two years, an open standard for ex-
change of simulation models, the Functional Mock-
Up Interface (FMI), has been developed within the
European ITEA2 research project MODELISAR.
This standardized interface supports exchange of
models that are described by differential, algebraic
and discrete equations with time-, state- and step-
events. The first official version, 1.0, of this standard
was released on January 26, 2010.

Apart from the obvious improvements for model
exchange between different tools and vendors, the
interface is also well suited, and designed, for soft-
ware components in embedded control systems.
Since one of the major industrial driving forces be-
hind the MODELISAR project is within the automo-
tive industry, interoperability of the lightweight FMI
with the comprehensive AUTOSAR standard for
automotive E/E applications is of high interest. This
paper examines the applicability of using FMI within

an AUTOSAR-based software component develop-
ment process.

The paper is organized as follows. Details of the
FMI and AUTOSAR standards are given in Sections
2 and 3, respectively. A mapping and conversion
between FMI and AUTOSAR is then described in
Section 4. An example application involving the
Dymola [1] and AUTOSAR Builder [2] tools are
presented in Section 5. Finally, Section 6 gives the
conclusions.

2 Functional Mockup Interface

Integration of components delivered by many dif-
ferent suppliers is a common task in modern product
engineering. To reduce costs, control complexity,
and accelerate development it is desirable to allow
this integration task to be done using a virtual repre-
sentation of the product, i.e., to build a digital mock-
up. Besides spatial integration of the different com-
ponents in a CAD tool, it is also required to let the
dynamic behavior of the product to be predicted and
checked by means of (physical) simulation.

Very often suppliers already have dynamic sys-
tem models of their particular component, developed
within their preferred simulation tool. However, in-
tegrating the various component models (possibly
each developed with a different simulation tool) into
an overall system model for joint simulation has
proven to be a rather difficult, time-consuming, and
numerically fragile undertaking.

The intention of the Functional Mockup Interface
(FMI) is that dynamic system models from different
tool vendors can be coupled together to form an
overall system model with minimal effort and high
numerical quality. To achieve that goal, the FMI de-
fines an open interface that needs to be implemented
by tools in order to import or export FMI system
models. In FMI terminology a system model that
implements the interface defined by the FMI specifi-
cation is called a Functional Mockup Unit (FMU).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

484

Figure 1 from the MODELISAR project profile de-
scription shows a use-case from an automotive
OEMs perspective.

Figure 1: A functional mock-up of a vehicle consisting
of several coupled Functional Mockup Units (source:
www.itea2.org)

3 Introduction to AUTOSAR

AUTOSAR is an automotive standard, which aims to
decouple hardware and software and to separate
communication from function. It achieves that by
introducing several layers of abstraction with stan-
dardized interfaces.

The development partnership AUTOSAR
(http://www.autosar.org) has released version 4.0 of
the AUTOSAR standard in December 2009. How-
ever, since most commercially available tools to this
date not yet support the 4.0 release, the following
discussion concentrates on the 3.1 release of the
standard.

The actual functional behavior (e.g. a model-
based control algorithm) is encapsulated in AUTO-
SAR Software Components (SW-Cs). These compo-
nents are decoupled through standardized interfaces
from specific characteristics of Electronic Control
Units (ECUs) and the given communication mecha-
nism (e.g., automotive buses like CAN, FlexRay,
LIN or inter-process communication if several soft-
ware components interact on the same ECU).

The benefit of this decoupling is that the software
components can be moved without adaption between
different ECUs. The interconnections between the
software components are handled by the Virtual
Functional Bus (VFB). The VFB is the sum of all
communication mechanisms and essential interfaces
to the basic (hardware-dependent) software provided
by AUTOSAR on an abstract level to software com-
ponents (see Figure 2).

Figure 2: Basic AUTOSAR approach for configuration
of an AUTOSAR system (source: [7], p. 9).

The mapping of the software components to the

physical ECUs, as well as the mapping of the soft-
ware component’s communication ports to the phys-
ical communication mechanism (e.g., CAN, Flex-
Ray, LIN, or shared memory) is provided in a later
configuration step. This allows starting the develop-
ment of the logical software functions independently
from the decision of the target platform (following
the concept of separation of logical system architec-
ture from the technical system architecture [3] [4]).

After that configuration, an AUTOSAR tool can

deduce what software/communication functionality
is required on a particular ECU and will be able to
generate the needed source code for the particular
ECU (target platform). This means that the abstract
communication connections modeled on the VFB
level are transformed to concrete communication
connections on the ECUs. The software layer that
provides the VFB communication services for the
SW-C is called AUTOSAR Runtime Environment
(RTE) and needs to be generated by the tool for
every ECU.

4 FMI to AUTOSAR Software Com-
ponent conversion

The development of the FMI is primarily intended to
provide a standardized exchange format for physical

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

485

http://www.autosar.org/

simulation models [1]. Nevertheless the intention to
use that standard also for software components in
embedded control systems is already stated in the
abstract of [6].

Compared to AUTOSAR, the FMI standard is
much smaller and more straightforward, and support
of the FMI standard is a more manageable task1.
Thus, a conversion from FMI to AUTOSAR SW-Cs
could be a cost effective alternative to providing ded-
icated AUTOSAR code generators (especially if
support for FMI is already available or planned).

4.1 Establishing a relation between FMI and
AUTOSAR software component specifica-
tion methodology

Both FMI and AUTOSAR use XML documents
for capturing the information about the (software)
model (see [6] and [7]). In each case, the structure of
the XML documents is defined in an associated
XML schema [8]. A notable difference is that the
AUTOSAR 3.1 schema occupies about 1000KB,
while the FMI 1.0 schema is limited to about
25.5KB.

Mapping between different XML schemas is a
common IT task and dedicated standards and tools
are readily available. The Altova MapForce [9] pro-
gram is a tool that allows defining mappings between
XML schemas in a graphical manner. Figure 3
shows an excerpt of a mapping from FMI to AUTO-
SAR 3.1 developed in MapForce which was utilized
in the first prototype mapping2.

There is no univocal relation between FMI and
AUTOSAR elements. Therefore design decisions
about the available alternatives need to be made.

1 In particular the import of AUTOSAR SW-Cs is much
more complex, than that of importing an FMU. The reason
for this is the great flexibility of the AUTOSAR standard
to define SW-Cs, which needs to be managed by an im-
porter. So using FMI as interchange format for embedded
software components could also facilitate the exchange of
embedded software.
2 In later versions the mapping in MapForce was dropped
in favor of a mapping developed in Scala [10] and Java
utilizing auto-generated XML data bindings from the Al-
tova XMLSpy tool [11]. The reason for that was the per-
ceived need for more flexible language expressiveness as
the mapping became more complex.

Figure 3: Excerpt of the mapping between the FMI
and AUTOSAR schema.

4.2 Mapping FMI inputs/outputs to AUTOSAR
SW-Cs Ports

The interaction between AUTOSAR Software
Components and other parts of the system (including
other AUTOSAR Software Components) is realized
over a set of ports with standardized interfaces.
Figure 4 shows the graphical representation of an
AUTOSAR SW-C with different ports at its interface
boundary.

Figure 4: Graphical representation of software-
components in AUTOSAR (source: [12], p. 20).

There are basically three kinds of port interfaces
supported by AUTOSAR:

 Client-server: The server is the provider
of operations and several clients can in-
voke those operations.

 Sender-receiver: A sender distributes in-
formation to one or several receivers, or
one receiver gets information (events)
from several senders.

 Calibration: Using or providing (static)
calibration data

A port can either be a “PPort” or an “RPort”. A
“PPort” provides the elements defined in a port in-
terface. An “RPort” requires the elements defined in
a port interface.

The FMI standard collects all visible/accessible
variables within one central data structure (in the
“ModelVariables” element). That element contains a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

486

sequence of elements of the type “fmiScalarVari-
able” as shown in Figure 5.

Figure 5: Structure of the fmiScalarVariable element

The information whether a variable is an input or

output to the component (and therefore interface re-
levant) is coded in the optional attribute “causality”
(condition: “causality = input/output”). Parameters
for potential calibration of the component are identi-
fied through the “variability” attribute (condition:
“variablity = parameter”). FMI inputs/outputs map
to the AUTOSAR sender-receiver port interface (in-
put maps to “RPort” and output maps to “PPort”).

 AUTOSAR supports different flavors of sender-
receiver port communication (explicit/implicit com-
munication, queued or un-queued communication,
sending/receiving of data or events). There is no
counterpart for these options in the FMI standard.
Consequently, the desired mapping needs to be de-
cided at the FMU import. For the further discussion
we assume that FMI inputs/outputs are mapped to
explicit, un-queued, data communication ports.

4.3 Mapping of FMI parameters to AUTOSAR
calibration ports

In FMI a parameter is identified by the condition
“variablity = parameter” within the variable defini-
tion (see above). Parameters can be set before initial-
izing the FMU. After initialization they are fixed and
may not change during runtime.

In embedded automotive software design, ma-
nipulation of parameters is termed calibration.
AUTOSAR provides flexible support for manipulat-
ing calibration parameters.

 Port-based calibration: Parameters are
explicitly visible on the VFB. This me-
chanism is meant for public parameters
of a SW-C (e.g. in Figure 8 the parame-
ters for the PI-controller are port-based,
public parameters).

 Private calibration parameters: These re-
side internally within a SW-C. They are
not explicitly visible on the VFB level.

The rationale for differentiating between “private”
and “public” parameters is that a supplier might want
to indicate which parameters are safe to be calibrated
by the OEM and which parameters the OEM should
better not touch. Additionally, AUTOSAR allows to
specify whether parameters may be calibrated on-
line (while the software function is running), or only
before initialization.

Like the previous mapping of FMI inputs/outputs
to AUTOSAR ports, there is no univocal mapping
from FMI parameters to AUTOSAR calibration pa-
rameters. However, it seems to be reasonable to map
FMI parameters to “public” calibration ports, explic-
itly visible at VFB level3.

4.4 Wrapping the FMU C-code into an AUTO-
SAR Runnable Entity

Through its ports, the AUTOSAR SW-C specifies
which information it requires from and provides to
other components. The actual implementation of a
component consists of a set of “runnable entities” (in
short runnable4), which are code sequences in the
SW-Cs that are activated through events, like timers
or the receiving of data.

In order to execute an FMU as an AUTOSAR
SW-C, it is necessary to wrap the C-function calls to
the FMU into an AUTOSAR runnable.

Every runnable entity provides an entry point and
an associated set of data. For components imple-
mented using C or C++ the entry point of a runnable
is implemented by a function with global scope de-
fined in the source code of the software component.
The RTE is the sole entity that can trigger the execu-

3 The current limitation of the FMI standard to allow pa-
rameters only to be set before initialization is in contrast
to the well-established practice of online-calibration of
controller algorithm parameters. Hopefully, future ver-
sions of the FMI standard will deal with that limitation.
4 A runnable runs in the context of a task. The task pro-
vides the common resources to the runnables such as con-
text and stack-space. On the operating system level a task
can be realized as either a full process or as a light-weight
thread.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

487

tion of a runnable. In [13], p.141 the signature of this
function is defined as
<void|Std_ReturnType> <name>([IN RTE_Instance <instance>],

[role parameters])

AUTOSAR provides various events that can trig-
ger a runnable (e.g. TimingEvent, DataReceived-
Event, DataReceiveErrorEvent, DataSendComp-
letedEvent, etc.). For using Modelica/FMU control-
ler models in AUTOSAR applications the cyclic in-
vocation plays the most important role. For that pur-
pose the TimingEvent is used as activation method
for FMU models.

Since the AUTOSAR activation of runnables is
targeted at discrete controllers it does not support the
concept of a solver, which is of course needed in the
FMI specification. As a consequence, an adequate
FMI solver must be wrapped inside the runnable
functions. A design decision is needed whether
FMUs with continuous states (“numberOfContinu-
ousStates > 0”) shall be supported by the AUTO-
SAR importer, or if the import is restricted to purely
discrete FMUs (superseding the need of wrapping a
numerical integrator into the runnable). For the pur-
pose of this work it is decided to only allow purely
discrete FMUs5.

Notably, FMI 1.0 does not include an attribute for
specifying a fixed sample period6. Thus, the sample
period for the TimingEvent needs to be given as a
parameter within the FMU import process.

5 Example application

The FMI to AUTOSAR conversion will be dem-
onstrated in an application example. In this scenario
we will consider export of a Modelica controller
from Dymola through FMI. The exported FMU will
then be converted to AUTOSAR and imported into
the AUTOSAR Builder tool.

In order to focus the discussion, a simple, instruc-
tive example of a controlled drive is used. The ex-
ample is modeled in Modelica using the Dymola tool
(see Figure 6). The reference trajectory is provided

5 This restriction is not as severe as it may seem on first
sight. If it is desired to use models with continuous states,
some tools (e.g. Dymola) provide options of exporting
such models as FMUs with inline integrators. As a result
the exported FMU has no external continuous states
(“numberOfContinuousStates = 0”), thus no integrator
needs to be provided for executing such an FMU.
6 Hopefully, future versions of the standard will allow
specifying a fixed sample period.

by the “reference” block. The “pIController” block
implements the closed-loop control of the plant.

Figure 6: Simple controlled drive example as Modelica
model in Dymola

The PI-controller (proportional-integral controller)
may be parameterized with the proportional gain “k”
and the time constant “T” of the integral term, as
shown in Figure 7.

Figure 7: Parameter dialog for controller calibration
in Dymola

Figure 8 shows how the example can be modeled
within an AUTOSAR VFB diagram. The parameters
are modeled as explicit inputs to the “PIController”
SW-C. The “PI_Init” runnable initializes the control-
ler and sets the provided parameters. The “PI_Run”
runnable is called periodically to provide the re-
quired actuating variable. Instead of the plant, Sen-
sor-Actuator SW-Cs have been introduced (“Tor-
queActuator” and “SpeedSensor”).

Figure 8: Simple controlled drive example as AUTO-
SAR VFB diagram (including sensor and actuator
components, as well as parameter ports for controller
calibration)

The Modelica PI-controller is exported from Dy-
mola as an FMU and transformed from the FMI
schema to the AUTOSAR schema. Similarly, the
required C wrapper code for the AUTOSAR run-
nable is automatically generated from the FMI
schema. In both cases Scala and Java are used as the
implementation languages of choice for carrying out

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

488

these transformations7. In Figure 9 an excerpt of the
Model Description File of the PI-controller as ex-
ported by Dymola is given.

Figure 9: Excerpt from the Model Description File of
the PI-controller (FMI schema compliant xml format)

The necessary workflow for transforming the
FMU to an AUTOSAR SW-C is depicted in Figure
10. The workflow is highly automated, since the cur-
rent version of the fmi2autosar program needs no
user interaction except of specifying the location of
the program’s input and the desired fixed sample
period. Basically, the import into AUTOSAR Build-
er works by just copying the files generated by
fmi2autosar into an AUTOSAR project directory and
“refreshing” the project8. The screenshot in Figure
11 shows the AUTOSAR Master Editor view, after
the PI-controller import.

7 The implementation effort was considerably reduced by
leveraging the functionality of the XMLSpy tool [11] to
automatically generate XML data bindings for the Java
language.
8 For further processing in AUTOSAR Builder, e.g., simu-
lation on VFB level and RTE generation, necessary build
dependencies and compiler flags need to be configured
manually in AUTOSAR Builder. Because the required
settings are highly tool- and application-specific no at-
tempt is made to provide default settings.

Import into AUTOSAR Builder

modelDescription.xmlsources

PI.fmu

A FMU description
consists of several
files which are
stored in a zip-file
with the extension
„.fmu“. The FMI
standard allows to
distribute the Model
Interface
implementation as
C-sources or as
binaries. Note that
cross-compilation
will only work with
C-sources.

autosar.xmlPI_Run.cPI_Init.c

AUTOSAR SW-C description (xml-file)
and C-sources files for the „Init“ and

„Run“ runnable

The generated C-
source files adapt
the interface of the
FMU C-sources to
a C-interface
compatible to
AUTOSAR
runnables

Import the
generated artifacts
into an AUTOSAR
Authoring Tool for
further integration
into the vehicle’s
E/E architecture

Run FMI to AUTOSAR
transformation program

fmi2autosar.jar
(executable jar file)

Run the
transformation

Figure 10: FMU to AUTOSAR-SW-C transformation
workflow demonstrated through the PI-controller ex-
ample

AUTOSAR allows a flexible structuring of ele-
ments through the use of packages and subpackages.
To achieve a well-arranged layout, which facilitates
integration into an AUTOSAR project, the proposed
transformation collects all elements resulting from an
FMU transformation into one package. The value of
the FMU’s “modelIdentifier” attribute is used as
base string for the package and subpackage names
(see Figure 11).

After the import the model can be further proc-
essed in AUTOSAR Builder. It can be integrated
with other SW-Cs and simulated on the VFB level
using the Geensoft ASim tool.

6 Conclusions

This paper has presented a mapping and conversion
scheme between the Functional Mockup Interface
(FMI) for model exchange and the automotive soft-
ware architecture standard, AUTOSAR. A suitable
subset of the AUTOSAR software component speci-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

489

fication was selected for the mapping and the ration-
ale for these decisions was motivated. The design
has been validated by importing the transformed
FMI models into an AUTOSAR Authoring Tool and
simulating the design on the Virtual Functional Bus
level.

The FMI to AUTOSAR mapping process has also
identified missing features in FMI that should be
worth considering for future versions of the standard.

Figure 11: Screenshot of the AUTOSAR Master Editor
after importing the FMU of the PI controller into the
Geensoft AUTOSAR Builder tool

6.1 Acknowledgements

Partial financial support of DLR by BMBF
(BMBF Förderkennzeichen: 01lS08002) for this
work within the ITEA2 project MODELISAR is
highly appreciated.

Dassault Systèmes AB thanks the Swedish fund-
ing agency VINNOVA for partial funding of this

work within the ITEA2 project MODELISAR (2008-
02291).

References

[1] Dymola Version 7.4. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
http://www.dymola.com, 2010

[2] AUTOSAR Builder Version 2010-2a. Das-
sault Systèmes, Brest, France (Geensoft).
Homepage: http://www.geensoft.com/, 2010

[3] Jörg Schäuffele, Thomas Zurawka. Automo-
tive Software Engineering, SAE Interna-
tional, 2005

[4] Hilding Elmqvist, Martin Otter, Dan
Henriksson, Bernhard Thiele, Sven Erik
Mattsson. Modelica for Embeeded Systems,
7th Int. Modelica Conference, 2009

[5] Barbara Lange. Verbunden; Austauschformat
für die Simulation, iX extra 10/2010, p. VIII

[6] MODELISAR consortium. Functional Mock-
up Interface for Model Exchange 1.0,
http://modelisar.org/specifications/FMI_for_
ModelExchange_v1.0.pdf, 2010

[7] AUTOSAR GbR. Technical Overview,
AUTOSAR, Part of Release 3.1, AUTO-
SAR_TechnicalOverview.pdf, 2008

[8] W3C. XML Schema Part 1: Structures Sec-
ond Edition. W3C Recommendation 28 Oc-
tober 2004,
http://www.w3.org/TR/xmlschema-1/

[9] MapForce 2010, Altova GmbH, Vienna,
Austria,
http://www.altova.com/mapforce.html, 2010

[10] Martin Odersky. The Scala Language Speci-
fication Version 2.8, http://www.scala-
lang.org/docu/files/ScalaReference.pdf, 9
November 2010

[11] XMLSpy 2010, Altova GmbH, Vienna, Aus-
tria, http://www.altova.com/xmlspy.html,
2010

[12] AUTOSAR GbR. Software Component
Template, Part of Release 3.1, AUTO-
SAR_SoftwareComponentTemplate.pdf,
2010

[13] AUTOSAR GbR. Specification of RTE, Part
of Release 3.1, AUTOSAR_SRS_RTE.pdf,
27.01.2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

490

http://www.dymola.com/
http://www.geensoft.com/
http://modelisar.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://modelisar.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.altova.com/mapforce.html
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.altova.com/xmlspy.html

Combining Advantages of Specialized Simulation Tools and Modelica
Models using Functional Mock-up Interface (FMI)

Yongqi Sun, Stephanie Vogel, Haiko Steuer
Siemens AG, Energy Sector, Erlangen, Germany

yongqi.sun@siemens.com, vogel.stephanie@siemens.com, haiko.steuer@siemens.com

Abstract

In power plant applications, detailed transient analy-
sis of the evaporator results in very large fluid sys-
tems, i.e. the model consists of many equations. This
is because the evaporator has many tubes and the
spatial discretization has to be quite fine in order to
appropriately model transient evaporation processes.
In such cases, due to performance and workflow rea-
sons, we use a specialized in-house tool Dynaplant
[1]. Coupling between Dynaplant and a Modelica-
simulator helps to benefit in addition from the possi-
bility of rapid development of new components in
Modelica.

Here, it is shown, how the Functional Mock-up Unit
(FMU) export from a Modelica model can be used to
perform a co-simulation with Dynaplant and an
FMU simulator. The FMU is defined via the Func-
tional Mock-up Interface (FMI) for Model Exchange
v1.0 [2]. Advantages but also restrictions and chal-
lenges are covered.

Keywords: Fluid; Co-simulation; FMU; FMI

1 Introduction

1.1 Modelica world versus Dynaplant

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [3] due to
the high degree of maintainability of Modelica mod-
els. In addition, new models can rapidly be devel-
oped.

Dynaplant is highly specialized for large fluid
systems (e.g. detailed evaporator models). Its per-
formance and usability fulfills our requirements: Per-
formance is increased by using fast water/steam
property functions and taking advantage of multi-
core CPUs. Usability features are data interface to
steady state design tool and restart ability. However,
the model library is quite restricted and the develop-
ment of new Dynaplant model is time-consuming.

1.2 Use cases, where best of two worlds is
needed

(A) Typically, there is already an evaporator model
in Dynaplant, such that the evaporator itself can eas-
ily be simulated in Dynaplant. Now assume some
urgent analysis request, which could be answered via
a transient simulation of the evaporator together with
some neighboring components. There is not yet any
Dynaplant model of this neighboring component, but
it can be rapidly developed in Modelica.

In this case, some coupling between Dynaplant
and Modelica models will be helpful. Here, the proc-
ess interface between Modelica and Dynaplant may
consist of a mass flow rate m_flow and enthalpy h
from the Dynaplant evaporator and a pressure p from
the new Modelica component.

m_flow

Figure 1: Typical use case (A) for coupling Dynaplant
with Modelica models.

Formerly, in such a case an iterative procedure had
been carried out. Here, the Dynaplant and the Mode-
lica model are solved alternating with time tables
containing the output of one model as input for the
other. After several iterations hopefully a conver-
gence is observed. This iterative procedure is very
time-consuming and does not guarantee any conver-
gence at all.

(B) The power plant block control is implemented in
another in-house software SPPA-T3000 [4]. Cur-
rently, there is a T3000-Modelica parser under de-
velopment generating Modelica models out of
SPPA-T3000. This way, the block control could be
easily modeled in Modelica. Then, the steam genera-
tor (and may be steam turbines) would be modeled in

p

h

Dynaplant
evaporator

model

Modelica
components

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

491

mailto:yongqi.sun@siemens.com
mailto:vogel.stephanie@siemens.com
mailto:haiko.steuer@siemens.com

Dynaplant and remaining parts of the power plant
including block control would be modeled in Mode-
lica. This enables the solution of the following use
cases for coupling Dynaplant and Modelica models:

• Testing of SPPA-T3000 control schemes us-
ing detailed Dynaplant process models

• Dynaplant process simulation using original
SPPA-T3000 control schemes

2 Routes to couple in-house tools
with Modelica using FMU

In the following two sections 2.1 and 2.2, the Func-
tional Mock-up Unit and its in-house simulator will
be introduced. Sections 2.3 and 2.4 present possibili-
ties to couple Modelica and Dynaplant models.

2.1 Introduction to FMU

The FMU is an implementation of the FMI for
Model Exchange [2] definitions. We used this in-
stead of the alternative specification (FMI for Co-
Simulation), since our long-term goal is to com-
pletely include the FMU model into a single simula-
tion environment. The intention is that dynamic sys-
tem models of different software systems (including
Modelica and non-Modelica tools) can generate C-
Code of a dynamic system model, which can be used
for simulation.

An FMU-file is a zipped archive which contains
at least:
1. A small set of easy to use C-functions for all the

needed model equations such as differential, al-
gebraic and discrete equations with events.
These C-functions can either be provided in
source and/or binary form.

2. An xml-file containing the definition of all vari-
ables in the model and other model information
needed to simulate the model.

The main features of FMU are:
1. It is possible to utilize several instances of a

model and to connect models hierarchically to-
gether.

2. A model is independent of the target simulator
because it does not use a simulator specific
header file as in other approaches.

3. An FMU may either be self-integrating or re-
quire an external solver to perform numerical in-
tegration.

Assume an FMU without self-integration. For cou-
pling this FMU with another simulator (e.g.

Dynaplant), one may either connect an FMU simula-
tor with the other simulator (co-simulation) or add
the FMU equations directly into the equation system
of the other simulator (single model, single solver).
The FMU simulator needed for co-simulation is de-
scribed in the next section. The remaining two sec-
tions cover both approaches mentioned.

2.2 Sadida: An Interface to FMU

Sadida is our in-house FMU simulator. It contains
solvers for integrating a given FMU. The model
equations from the FMU and the time integration
solver are wrapped together into several methods of
a simulator class. The most important methods are:

• Setup: Allocate memory for the FMU model,
and initialize the integrator.

• SetVariable
• GetVariable
• InitializeModel: Computes the initial state

corresponding to the FMU initial equations.
• ReAllocateModel
• Run: Perform time integration with required

time span and time step size.

Using Dymola 7.4 [5] with code export option, it is
possible to export a FMU from a Modelica model.
Our in-house FMU simulator Sadida then enables us
to integrate any Modelica model. The methods of
this FMU simulator can be called by Dynaplant.

2.3 Co-simulation: FMU simulator included in
Dynaplant

The first approach uses co-simulation in order to
couple the FMU model with the Dynaplant model.
Usually, a co-simulation is controlled by a tool like
TISC [6] organizing data exchange between several
simulators. In contrast, here, another kind of co-
simulation is done where Dynaplant (one of the
simulation partners) takes control of the co-
simulation:

Dynaplant calls methods from the FMU simulator
in order to manage data exchange and provides time
step sizes for both simulation partners.

The co-simulation is prepared using the following
procedure:

• Create an instance of the Sadida FMU simu-
lator class. The following steps are done us-
ing methods from this FMU simulator.

• Import FMU model
• Modify FMU model parameters
• Set input variables u(0) of FMU model from

Dynaplant’s initial state

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

492

• Initialize the FMU model
• Get initial values of output variables y(0)

from the FMU model

A Dynaplant integration of the time interval 1...n nt t +

is carried out using constant output ()ny t from

Sadida. After each such Dynaplant time step, the
following FMU simulator methods are called by
Dynaplant via Sadida:

• Set input variables 1()nu t + from Dynaplant.

• Integrate FMU model over time interval

1...n nt t + using constant 1()nu t + .

• Get output variables 1()ny t + from FMU

model

Figure 2: Co-simulation: The FMU model is solved by
the FMU simulator Sadida, the Dynaplant model is
solved by Dynaplant. Between both solvers, data ex-
change takes place.

This way, a co-simulation of both Sadida and
Dynaplant model can be performed. The interaction
of models and solvers is shown in Figure 2. The tim-
ing is illustrated in Figure 3. It leads to time discreti-
zation errors.

Figure 3: Timing of both Dynaplant and Sadida

solvers. First Dynaplant integrates a time step
1

...
n n

t t
+

assuming constant from Sadida. Then, Sadida

integrates this time interval using constant

from Dynaplant. This results in time discretization
errors.

()
n

y t

1
()

n+
u t

2.4 Next step: FMU equations included in
Dynaplant (single solver)

As shown in Figure 4, the next step will go beyond
co-simulation. Rather than solving the FMU model

with a second simulator, the FMU equations will
directly be added to the Dynaplant equation system
and solved with the Dynaplant solver. This way,
there will be no time discretization errors any more.

Figure 4: Next step: FMU equations are added to the
Dynaplant model and the total model is solved by a
single solver.

Dynaplant

Total model (FMU + Dynaplant)

Solver

 Sadida

Dynaplant
This approach is just an outlook with many open
questions. Especially the following Dynaplant fea-
tures have to be clarified:

• Fixed Jacobian structure (using potential
Jacobian non-zeros)

• Restart ability
• Nominal values dependent on type of vari-

able (e.g. fluid pressure)
• Less sophisticated event handling

3 Co-simulation Restrictions and
Challenges

So far the co-simulation approach for coupling
Dynaplant and Modelica models is realized. In this
chapter we share our experiences including restric-
tions and challenges.

3.1 Restrictions of co-simulation based on FMU

Due to the time discretization errors caused by the
exchanged variables, time intervals 1...n nt t + should

not be too large. Dynaplant uses time step adjust-
ments. The resulting time steps have to be restricted
to an appropriate upper limit: . 1 mt− ≤ Δ axn nt t+

The following restriction is Dymola specific but
motivates an extension of the FMI: An FMU ex-
ported by Dymola 7.4 without “code export option”
will result in an initialization failure on a PC without
Dymola. If there are license restrictions in the FMU,
it would be better to include license check methods
to the FMI rather than computational methods re-
turning FALSE.

A rule deserving notice is that, after the model
has been initialized, no parameter or constant vari-

Dynaplant

Sadida

nt

nt
1nt +

1nt +

()ny t

1nt +

1()ny t +

1()nu t +

FMU

Solver

Model

Solver

y

u

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

493

able of the model allows its value to be changed.
ReAllocateModel must be called if there is need
changing parameter. The values of the other vari-
ables can be changed at any time step.

3.2 Challenges

In this section some problems with the co-simulation
approach are mentioned.

Consistent initialization: In order to obtain a con-
sistent initial state of the FMU model, the inputs u(0)
from Dynaplant’s initial state have to be set first (by
the way: there was a similar bug in Dymola 7.4 for
which a patch is available). A consistent initializa-
tion of both FMU and Dynaplant model in total is
not yet realized, since the output of the FMU initiali-
zation may influence Dynaplant’s initial state.

Restart ability: One of the advantages of Dynaplant
is its ability to load the final state of a former simula-
tion as initial state of another simulation. Until now,
the final state of the FMU is not saved for this pur-
pose, such that the initial equations of the FMU may
be adapted for a restart.

Support of more than one FMU: Until now only
one FMU is supported. It will be possible to enable
several FMUs by creating a simulator instance for
each single FMU. However, since there have not yet
been a use case for this feature, it is not yet resolved.

Fluid connector interface: At the co-simulation
interface, there is no fluid connector like in the Mod-
elica Standard Library. Instead real inputs and out-
puts are used, assuming no flow reversal.

Accessibility of FMU variables for output: Until
now, not all variables of the FMU can be seen in the
Dynaplant output. FMU variables which shall enter
the Dynaplant output have to be selected individu-
ally. A tree view of all FMU variables would be
more usable.

3.3 First experiences

With the help of the co-simulation between FMU
and in-house simulator, a clear improvement of the
productivity was reached in comparison to the itera-
tive procedure (by factor 5). Up to now the co-
simulation seems to be robust, indeed, an easy
Modelica model (with few states) was used that indi-
vidually simulated also has no convergence prob-
lems.

A disadvantage is absolutely that the FMU is like
a black box and it is very difficult to identify errors
in the FMU model. Usability will be enhanced when
all FMU variables are accessible in the Dynaplant
output.

4 Conclusions

Coupling of Modelica models with in-house tools
combines advantages of both specialized simulation
tools and flexible Modelica models. The FMU export
of the Modelica model is helpful, since it contains
standard interfaces to exchange information with the
model.

In our co-simulation approach, an FMU simulator
is used to integrate the FMU model. Dynaplant takes
control over the time step adjustments and uses set,
run and get methods to exchange variables with the
FMU simulator. This approach is realized and re-
veals promising advantages.

Next step will go beyond co-simulation: It will be
even better to use the FMU gathering its equations in
order to add them to the equation system of the spe-
cialized simulation tool. In contrast to co-simulation,
the total model will be integrated by a single solver.

Tools importing FMUs should be enabled to gen-
erate meaningful error messages in case of license
failures. Therefore we propose to add some license
check method to the FMI.

Support by German Ministry BMBF (BMBF
Förderkennzeichen: 01IS09029C) within the ITEA
project OPENPROD [7] is gratefully acknowledged.

References

[1] K. Link, H. Steuer, A. Butterlin, Deficiencies
of Modelica and its simulation environments
for large fluid systems, Proceedings 7th Inter-
national Modelica Conference, Como, Italy,
Sep 20-22, 2009

[2] Functional Mock-up Interface for Model Ex-
change FMI_for_ModelExchange_v1.0.pdf
(Jan 26, 2010)

[3] www.energy.siemens.com

[4] www.energy.siemens.com/hq/en/automation/
power-generation/sppa-t3000.htm

[5] Dymola 7.4

[6] TISC from www.tlk-thermo.com

[7] www.openprod.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

494

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0034/0034.pdf
https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0034/0034.pdf
https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0034/0034.pdf
http://modelisar.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.energy.siemens.com/
http://www.energy.siemens.com/hq/en/automation/power-generation/sppa-t3000.htm
http://www.energy.siemens.com/hq/en/automation/power-generation/sppa-t3000.htm
http://www.3ds.com/products/catia/portfolio/dymola/
http://www.tlk-thermo.com/
http://www.openprod.org/

Symbolically Derived Jacobians Using Automatic
Differentiation - Enhancement of the OpenModelica

Compiler

Willi Braun Lennart Ochel Bernhard Bachmann
Bielefeld University of Applied Sciences, Department of engineering and mathematics

Am Stadtholz 24, 33609 Bielefeld
{wbraun,lochel,bernhard.bachmann}@fh-bielefeld.de

Abstract

Jacobian matrices are used in a wide range of
applications - from solving the original DAEs to
sensitivity analysis. Using Automatic Differentia-
tion the necessary partial derivatives can be pro-
vided efficiently within a Modelica-Tool. This pa-
per describes the corresponding implementation
work within the OpenModelica Compiler (OMC)
to create a symbolic derivative module. This
new OMC-feature generates symbolically partial
derivatives in order to calculate Jacobian matrices
with respect to different variables. Applications
presented here, are the generation of linear mod-
els of non-linear Modelica models and the usage
of the Jacobian matrix in DASSL for simulating a
model.

Keywords: Symbolic Jacobian, Automatic Dif-
ferentiation, Linearization, DASSL, OpenModel-
ica

1 Introduction

In the process of modeling and simulation the us-
age of derivatives in many stages of this process is
very common. The derivatives are useful for simu-
lating a model as well as for the sensitivity analysis
[1] or the optimization [4] of models. The deriva-
tives can be calculated in different ways. There
exist numerical methods like finite difference, or
symbolical methods as in algebra systems. But
there is another method containing characteristics
of both of them: Automatic Differentiation (AD)
is the better choice over other ways for computing
derivatives. It is accurate like symbolic differentia-
tion, since the results are not affected by any trun-
cation errors. AD is originally a numerical method

in contrast to numerical differentiation that evalu-
ates the derivative of a function specified by se-
quence of assignments in a computer program.
Since a Modelica program is written with symbolic
expressions, AD can be used to calculate symboli-
cally partial derivatives. In this work the OMC is
enhanced to provide the symbolic derivatives for a
Modelica model using AD. The new OMC feature
is applicable in a versatile way. As first application
it is used for the linearization of non-linear mod-
els. The linearization of a non-linear model needs
the calculation of partial derivatives with respect
to some specific variables of the Modelica model.
The partial derivatives are organized in so-called
Jacobian matrices. For the linear model it must be
calculated four different Jacobian matrices so that
the main task is the calculation of symbolic partial
derivatives for the linearization. A further appli-
cation of this new OMC capability, is the usage of
the derivatives for simulating a Modelica model.
The commonly used implicit integration method
DASSL is providing an interface for the symbolic
Jacobian matrix. This feature can be now used to
speed-up the solving time in OMC.

The structure of this paper is as follows: First,
methods from AD theory are shortly introduced in
order to calculate the symbolic derivatives. After-
wards a short introduction of the relevant Model-
ica language features is presented and the mathe-
matical representation of the corresponding Mod-
elica models is described. With this implementa-
tion we are able to differentiate almost the com-
plete Modelica language elements supported by
OpenModelica. Finally, the generation of a linear
model and the usage of the symbolic derivatives
for simulating a Modelica model with DASSL are
presented as applications.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

495

2 Automatic Differentiation

The calculation of the symbolic derivatives of a
Modelica model is possible by using automatic
differentiation (AD) methods. AD is an efficient
method to calculate the derivative value for an al-
gorithmic function. This technique is based on the
fact that the derivatives of a function can be calcu-
lated by repeatedly applying mathematical rules
to all the sequential elementary operations of a
coded function. The elementary operations can
be differentiated by applying the basic derivation
rules

∇(u± v) = ∇u±∇v
∇(uv) = u∇v + v∇u

∇(u
v
) =

(∇u− u
v∇v)

v

for the arithmetic operations and the chain rule

∇φ(u) = φ̇(u)∇u

for differentiable functions φ (e.g. such as the
standard functions sin(x), cosx, . . .) with known
derivatives. This approach is referred to in lit-
erature as "forward" mode [9].

For example, a function given by the formula 1
can be decomposed in the elementary operations
as in table 1.

f(x1, x2) = (x1 ∗ x2 + sin(x1))(3 ∗ x12 + x2) (1)

The basic rules of differentiation can be applied to
the decomposed arithmetic operations to obtain
the partial derivative of the function. Thus, the
final results are the values t9 = f(x1, x2) of the
function and its partial derivatives ∇f = ∇t9 =
[(t2 + cos(t1))t8 + 6t1t5, t1t8 + t5].

Since AD is originally a numerical method, it
is common to determine the values only. If these
terms are replaced by the original expressions that
are available inside a Modelica compiler the sym-
bolic derivative formulas are obtained. This auto-
matic differentiation method can be used analog-
ically in order to calculate the partial derivatives
to the optimized DAEs as they occur in Modelica.
This is possible, because the calculation of partial
derivatives is performed by consistently applying
the chain rule and the basic differentiation rules as
mentioned above.

3 Differentiate a Modelica Model

A Modelica model is typically translated to a basic
mathematical representation in terms of a flat sys-
tem of differential and algebraic equations before
being able to simulate the model. This translation
process elaborates on the internal model represen-
tation by performing analysis and type checking,
inheritance and expansion of base classes, mod-
ifications and redeclarations, conversion of con-
nect equations to basic equations, etc. The re-
sult of this analysis and translation process is a
flat set of equations, including conditional equa-
tions as well as constants, variables, and function
definitions. By the term flat is meant that the
object-oriented structure has been broken down to
a flat representation where no trace of the object
hierarchy remains, apart from dot notation (e.g.
Class.Subclass.variable) within names.

Flat Modelica DAEs could be represented math-
ematically by the equation:

0 = F (ẋ(t), x(t), u(t), y(t), p, t) (2)

Below the notations used in the equation above
are summarized:

• ẋ(t) the differentiated vector of state variables
of the model.

• x(t) the vector of state variables of the model,
i.e., variables of type Real that also appear
differentiated somewhere in the model.

• u(t) a vector of input variables, i.e., not de-
pendent on other variables, of type Real.They
also belong to the set of algebraic variables
since they do not appear differentiated.

• y(t) a vector of Modelica variables of type
Real which do not fall into any other cate-
gory.

• p a vector containing the Modelica variables
declared as parameter or constant i.e., vari-
ables without any time dependency.

This implicit equation is transformed to the ex-
plicit state-space representation by the so-called
block-lower-triangular (BLT) transformation re-
sulting in the optimized DAEs. This transforma-
tion is done by a matching and sorting algorithm
which results in a sequence of assignments so that
the variables can be solved sequentially [7]:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

496

Operations Differentiate(ti, {x1, x2}) ∇f
t1 = x1 ∇t1 = [1, 0] [1, 0]

t2 = x2 ∇t2 = [0, 1] [0, 1]

t3 = t1t2 ∇t3 = t1∇t2 +∇t1t2 [t2, t1]

t4 = sin(t1) ∇t4 = cos(t1)∇t2 [cos(t1), 0]

t5 = t3 + t4 ∇t5 = ∇t3 +∇t4 [t2 + cos(t1), t1]

t6 = t1 ∗ t1 ∇t6 = 2t1∇t1 [2 ∗ t1, 0]
t7 = 3 ∗ t6 ∇t7 = 3∇t6 [6 ∗ t1, 0]
t8 = t7 + t2 ∇t8 = ∇t7 +∇t2 [2 ∗ t1, 1]
t9 = t5 ∗ t8 ∇t9 = t5∇t8 +∇t5t8 [t2 + cos(t1))t8 + 6t1t5, t1t8 + t5]

Table 1: Decomposed function f(x1, x2) to elementary operations and the partial derivatives.

0 = F (ẋ(t), x(t), u(t), y(t), p, t)

0 = F (z(t), x(t), u(t), p, t), z(t) =

(
ẋ(t)
y(t)

)

z(t) =

(
ẋ(t)
y(t)

)
= g(x(t), u(t), p, t)

(
ẋ(t)
y(t)

)
=

(
h(x(t), u(t), p, t)

k(x(t), u(t), p, t)

)
(3)

This sequence of assignments can immediately
be used for calculating the partial derivatives sym-
bolically by means of automatic differentiation.
Thus the differentiation process is performed on
such optimized DAEs. These DAEs are separated
in two partitions, a state block and an algebraic
block. The function h represents the state block
and consists of all equations, which are necessary
to determine the differentiated states. The func-
tion k represents the algebraic block, which con-
tains all remaining equations.

Consider, for example, the following small
differential-algebraic system:

f1 := ẋ1 = a ∗ x1
f2 := ẋ2 = a ∗ x2 + ẋ1

f3 := a = sin(x1) + cos(x2)

To calculate all necessary partial derivatives
the system has to be sorted by the BLT-
Transformation based on the adjacency matrix:

ẋ1 ẋ2 a a ẋ1 ẋ2

f1
f2
f3

 1 0 1
1 1 1
0 0 1

 f3
f1
f2

 1 0 0
1 1 0
1 1 1

To get all partial derivatives with respect to the
states the whole system needs to be differentiated,
which means every equation has to be differenti-
ated with respect to the states. This requires the
derivatives of all known variables with respect to
the states. In a Modelica model it is assumed that
the known variables are the states and the inputs.
In this example only the states appear as known
variables: (

∂x1
∂x1

= 1 ∂x2
∂x1

= 0
∂x1
∂x2

= 0 ∂x2
∂x2

= 1

)

The next step is to take the sorted equations and
differentiate straight forward applying the rules
described above. With all the resulting partial
derivatives it is possible to organize the Jacobian
matrix with respect to the states x in equation
(4). In the following, Modelica language features
are described which need to be handled by the au-
tomatic differentiation.

Equations

The differentiation of ordinary equations is
straightforward. In the optimized DAEs the
matching algorithm provides information about
the variable which has to be solved for in each
equation. Therefore, the equations are rear-
ranged to a corresponding assignment and differ-
entiated. This also works for equations including
if-expressions, where each branch will be differenti-
ated, respectively. Non-linear equations will result
into equations depending linearly on the differen-
tiated variables (see example in the Algebraic loop
section).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

497

A =
∂f

∂x
=

(
∂f1
∂x2

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=

(
cos(x1)x1 + a − sin(x2)x1

cos(x1)x2 + cos(x1)x1 + a − sin(x2)x2 + a− sin(x2)x1

)
(4)

Algebraic loops

In many applications the transformation to the
optimized DAEs cannot achieve a true lower-
triangular form. It is at least possible to reduce
the DAEs to a Block-Lower-triangular form with
diagonal blocks of minimal size. These blocks are
called algebraic loops and must be solved simul-
taneously. In general, this results in a system of
linear and/or nonlinear equations.

For example the following equations have to be
solved simulataneously:

f(x, p, t) :=

(
ẋ1
ẋ2

)
=

(
ax1 +

1
2 ẋ2

2

bx2 − 1
2 ẋ1

2

)
The equations are differentiated with respect to

the state to determine the first row of the Jacobian
matrix: (

∂f1
∂x1

:= ∂ẋ1
∂x1

= a+ ∂ẋ2
∂x1

ẋ2
∂f2
∂x1

:= ∂ẋ2
∂x1

= −∂ẋ1
∂x1

ẋ1

)
The resulting equation must still be solved si-

multaneously to determine the expressions for the
first row of the Jacobian matrix. However, nonlin-
ear equations that are differentiated, result always
in equations depending linearly on the differenti-
ated variables, which in this case, yield a linear
system of equations to be solved.

Algorithms

Whereas equations are well suited to describe
physical processes, there are situations where com-
putations are more conveniently expressed by al-
gorithms in a sequence of statements. In con-
trast to equations, statements are fixed assign-
ments, i.e. the right-hand-side ones are assigned
to the left-hand-side ones. Several assignments to
the same variable can be performed in one algo-
rithm section. Besides of simple assignment state-
ments, an algorithm can contain if-, while-, and
for-clauses. The symbolic differentiation can han-
dle all of them.

Functions in Modelica

In Modelica, there exist two different types of func-
tions, a Modelica function, written in Modelica

code, and external functions that are written in
C/Fortran code. A Modelica function is defined
by an algorithm section that can be differentiated
in the same way as algorithms. From the result
a new Modelica function as the derivative to the
original one is generated. This derivative function
can be propagated by the derivative annotation
to other process that needs the derivative. For
external functions the numerical finite difference
method is used, if that functions do not provide
partial derivatives with the aid of the derivative
annotation.

4 Applications for Symbolic Ja-
cobian

4.1 Linear Models

A general nonlinear Modelica model is represented
by state-space equations with n state variables, m
input variables and k output variables:(

ẋ(t)
y(t)

)
=

(
h(x(t), u(t), p, t)

k(x(t), u(t), p, t)

)
Linearizing the state-space equations the Tay-
lor series expansion is applied and leads to a
continuous-time linear dynamical system that has
the form:

ẋ(t) = A(t) ∗ x(t) +B(t) ∗ u(t)
y(t) = C(t) ∗ x(t) +D(t) ∗ u(t)

A(t) = ∂h
∂x ∈ Rn×n, B(t) = ∂h

∂u ∈ Rn×m

C(t) = ∂k
∂x ∈ Rk×n, D(t) = ∂k

∂u ∈ Rk×m

The matrices A(t), B(t), C(t), and D(t) are
the Jacobian matrices of the non-linear Modelica
model. Thus the finding of linearization of a model
is done by the calculation of the Jacobian matrices
at a convenient time.

After all, the linear model can easily be gen-
erated when it’s possible to differentiate a set
of equations with respect to a set of variables.
Therefore functions are implemented, that apply
the method of forward automatic differentiation to
given sets of equations, algorithms and variables.
This function can deal with single equations, with

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

498

Figure 1: Schematic figure of inverse pendulum
model.

systems of equations as well as algorithm sec-
tions and generate symbolically the needed Jaco-
bian matrices for the linearization. The different
steps of this procedure are sketched by the fol-
lowing model in Listing 1 and the corresponding
schematic diagram of that model in Figure 1. In
this model an inverse pendulum is balanced by a
cart.
model InversePendulum
parameter Real M = 0 . 5 ;
parameter Real m = 0 . 2 ;
parameter Real b = 0 . 1 ;
parameter Real i = 0 . 0 0 6 ;
parameter Real g = 9 . 8 ;
parameter Real l = 0 . 3 ;
parameter Real pi = 3.141592653589793 ;
Real cart_x ;
Real cart_v ;
Real pendulum_theta ;
Real pendulum_w ;
output Real y [2] ;
input Real u ;

equation
der (cart_x) = cart_v ;
der (pendulum_theta) = pendulum_w ;
(M + m)∗der (cart_v) + b∗cart_v +
u = m∗ l ∗der (pendulum_w)∗ cos (pendulum_theta+pi)
−m∗ l ∗pendulum_w^2∗ s i n (pendulum_theta+pi) ;
(i+m∗ l ^2)∗der (pendulum_w)+
m∗ l ∗g∗ s i n (pendulum_theta+pi)=
−m∗ l ∗der (cart_v)∗ cos (pendulum_theta+pi) ;
y={cart_x , pendulum_theta } ;

end InversePendulum ;

Listing 1: InversePendulum model

The equations in Figure 2 are included into the
generated simulation program and with this in-
formation the matrices A and C linearized model
can be generated to any point in time. After com-
piling the generated C-code the evaluation of the
linearized model at point in time 0 yields the Mod-
elica model in Listing 2. The same simulation pro-
gram can generate the linear model at any other
point in time, i.e. equal 1, by simulating until then
and afterwards evaluating the symbolic differenti-

ated equations at this point.

model l inear_InversePendulum
parameter Integer n = 4 ; // s t a t e s
parameter Integer k = 1 ; // top−l e v e l inputs
parameter Integer l = 2 ; // top−l e v e l outputs
parameter Real x0 [4] = {0 ,0 , 0 , 0} ;
parameter Real u0 [1] = {0} ;
parameter Real A[4 , 4] =
[0 , 1 , 0 , 0 ;
0 , −0.1818181818181819 ,2 .672727272727272 ,0 ;
0 , 0 , 0 , 1 ;
0 , −0 .4545454545454546 ,31 .18181818181818 ,0] ;

parameter Real B[4 , 1] =
[0 ; 1 . 818181818181818 ;
0 ; 4 . 545454545454546] ;
parameter Real C[2 , 4] = [1 , 0 , 0 , 0 ; 0 , 0 , 1 , 0] ;
parameter Real D[2 , 1] = [0 ; 0] ;
Real x [4] (s t a r t=x0) ;
output Real y [2] ;
input Real u [1] (s t a r t=u0) ;

Real x_cart_x = x [1] ;
Real x_cart_v = x [2] ;
Real x_pendulum_phi = x [3] ;
Real x_pendulum_w = x [4] ;
Real u_u = u [1] ;
Real y_y1 = y [1] ;
Real y_y2 = y [2] ;

equation
der (x) = A ∗ x + B ∗ u ;
y = C ∗ x + D ∗ u ;

end l inear_InversePendulum ;

Listing 2: Linear Model of the InversePendulum
at point in time 0

Equations (16)
=========
1 : DERPcart_x$pDERcart_x = 0.0
2 : DERPcart_x$pDERcart_v = 1.0
3 : DERPcart_x$pDERpendulum_theta = 0.0
4 : DERPcart_x$pDERpendulum_w = 0.0
5 : DERPpendulum_theta$pDERcart_x = 0.0
6 : DERPpendulum_theta$pDERcart_v = 0.0
7 : DERPpendulum_theta$pDERpendulum_theta = 0.0
8 : DERPpendulum_theta$pDERpendulum_w = 1.0
9 : (M + m) * DERPcart_v$pDERcart_x +
m * (l * (DERPpendulum_w$pDERcart_x * cos(pendulum_theta + pi))) = 0.0
10 : (M + m) * DERPcart_v$pDERcart_v +
(b + m * (l * (DERPpendulum_w$pDERcart_v * cos(pendulum_theta + pi)))) = 0.0
11 : (M + m) * DERPcart_v$pDERpendulum_theta +
m * (l * (DERPpendulum_w$pDERpendulum_theta * cos(pendulum_theta +
pi) + (-der(pendulum_w)) * sin(pendulum_theta + pi))) -
m * (l * (pendulum_w ^ 2.0 * cos(pendulum_theta + pi))) = 0.0
12 : (M + m) * DERPcart_v$pDERpendulum_w +
m * (l * (DERPpendulum_w$pDERpendulum_w * cos(pendulum_theta + pi))) -
2.0 * (m * (l * (pendulum_w * sin(pendulum_theta + pi)))) = 0.0
13 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERcart_x =
(-m) * (l * (DERPcart_v$pDERcart_x * cos(pendulum_theta + pi)))
14 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERcart_v =
(-m) * (l * (DERPcart_v$pDERcart_v * cos(pendulum_theta + pi)))
15 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERpendulum_theta +
m * (l * (g * cos(pendulum_theta + pi))) =
(-m) * (l * (DERPcart_v$pDERpendulum_theta * cos(pendulum_theta + pi)
+ (-der(cart_v)) * sin(pendulum_theta + pi)))
16 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERpendulum_w =
(-m) * (l * (DERPcart_v$pDERpendulum_w * cos(pendulum_theta + pi)))

Figure 2: Equations for linear model matrices A
and C

Such linear models are used in control theory
for example as an observer to control the original
nonlinear model [5].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

499

4.2 Provide the analytical jacobian ma-
trix to DASSL

For accurate, high-speed solution of DAEs as they
occur in Modelica (see equation (2)) Petzold’s
Fortran-based DASSL(Differential-Algebraic Sys-
tem Solver) is the most widely used sequential code
for solving such DAEs. After all, the DASSL im-
plementation uses the following equation [8]

h(t, x, α̂x+ β) = 0,

where α̂ is a constant which changes whenever the
step size or the order changes, β is a vector which
depends on the solution at past times and t, x, α̂, β
are evaluated at tn. This equation is solved in
DASSL by a modified version of Newton’s method,

xm+1 = ym − cj(∂h
∂x

+ cj ∗ ∂h
∂ẋ

)
−1

h(t, x, α̂x+ β).

The iteration matrix

M =
∂h

∂x
+ cj ∗ ∂h

∂ẋ

is computed and factored, and is then used for as
many time steps as possible.

By default DASSL calculates the iteration ma-
trix M by the means of numerical finite differ-
entiation. However, it is also possible to equip
DASSL with an user-specific routine that provides
the symbolically calculated iteration matrix M .
On one hand, the symbolically calculated values
are more accurate and on the other hand, it is
faster to evaluate the symbolical formulas.

5 Conclusion and Future Work

The successful implementation of symbolically
generated partial derivatives for the correspond-
ing Jacobian matrices using automatic differentia-
tion methods in the OpenModelica Compiler has
been demonstrated. The new feature supports all
Modelica language elements and Modelica models
already handled by OMC. The corresponding sym-
bolic derivative module has been validated by cre-
ating linear models for non-linear Modelica mod-
els. Futhermore, providing the analytically de-
termined Jacobian matrix to DASSL, leads to a
faster simulation of the model. In addition to this,
this implemented methods offer a variety of dif-
ferent application fields (i.e. parameter identifica-
tion, sensitivity analysis, uncertainty calculation,

inline-integration methods, model reduction, opti-
mization . . .).

In future it is possible to improve this module in
two directions: First this module could be made
accessible for the user. The user could select some
functions of equations (3) and some depended vari-
ables. Thus the user can decide which symbolic
matrices is wanted in the simulation program. The
second direction could be to generate directly a
Modelica model with the symbolic derivative ex-
pressions. With this approach the symbolic matri-
ces could be made accessible during simulation in
a way so that the updated version can always be
used for controlling or optimization processes.

Other initiatives aim to extend the Functional
Mock-up Interface for model exchange [2] to sup-
port the evaluation of sparse Jacobians. This work
can easily be adapted to provide the required cal-
culations.

Acknowledgments

The German Ministry BMBF has partially
funded this work (BMBF Förderkennzeichen:
01IS09029C) within the ITEA2 project OPEN-
PROD (http://www.openprod.org).

References

[1] Elsheikh A., Noack S. and Wiechert W.: Sen-
sitivity analysis of Modelica applications via
automatic differentiation, 6th International
Modelica Conference, Bielefeld, 2008.

[2] MODELISAR: Functional Mock-
up Interface for Model Exchange,
http://modelisar.org/specifications/
FMI_for_ModelExchange_v1.0.pdf, Januar
2010.

[3] Fritzson P. et. al.: OpenModelica Sys-
tem Documentation, PELAB, Department of
Computer and Information, Linköpings uni-
versitet, 2010.

[4] Imsland L., Kittilsen P. and Schei T.: Using
Modelica models in the real time dynamic op-
timization - gradient computation, Proceed-
ings 7th Modelica Conference, Como, 2009.

[5] Lunze, J.: Regelungstechnik 2 – Beobachter-
entwurf, Springer-Lehrbuch, Springer Berlin
Heidelberg, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

500

[6] Modelica Association: Modelica – A unified
Object-oriented Language for Physical Sys-
tems Modeling Language Specification – Ver-
sion 3.2, 2010.

[7] Otter M.: Objektorientierte Modellierung
Physikalischer Systeme (Teil 4) Transforma-
tionsalgorithmen, Automatisierungstechnik,
Oldenbourg Verlag München, 1999.

[8] Petzold L. R.: A Description of DASSL: A
Differential/Algebraic System Solver, Sandia
National Laboratories Livermore, 1982.

[9] Rall L.B.: Automatic differentiation: Tech-
niques and applications, vol. 120 of Lecture
Notes in Computer Science, Springer, 1981.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

501

Cyber-Physical Systems Modeling and Simulation with Modelica

Dan Henriksson and Hilding Elmqvist
Dassault Systèmes AB, Ideon Science Park, Lund, Sweden

Dan.Henriksson@3ds.com, Hilding.Elmqvist@3ds.com

Abstract

This paper introduces the area of Cyber-Physical
Systems (CPS) and describes the relation to Modeli-
ca and Modelica-based tools. Special aspects of CPS
applications that should make Modelica well suited
for their modeling and simulation are highlighted.

Recent Modelica developments facilitating inte-
grated model-based system development applicable
to CPS are presented. Especially, it is shown how
detailed timing simulations, involving both real-time
task scheduling and network communication, are
realized in Modelica. A robot example is used to
demonstrate the new CPS simulation features.

Keywords: Cyber-physical systems, Modelica,
Model-based development, Timing simulation.

1 Introduction

During the last few years the field of Cyber-Physical
Systems (CPS) has emerged, mainly in the US, as
one of the most important academic and industrial
research topics for the future. CPS focus on the inte-
raction between computing/communication and the
physical world. The following definition of CPS is
taken from Wikipedia [1]

“A cyber-physical system (CPS) is a system fea-
turing a tight combination of, and coordination
between, the system’s computational and physical
elements.”

Embedded computing devices controlling physi-
cal processes are today found in many diverse appli-
cation areas, including automotive, aerospace, en-
ergy, and telecommunications. These traditional em-
bedded systems can be viewed as a sub-set of the
wider CPS definition. Typical CPS applications tend
to be large-scale distributed systems built up from
networks of computing/communication devices and
possibly also distributed physical plants, such as in
power grids. The complexity and scale inherent to

CPS should make Modelica well suited for modeling
and simulation of these systems.

The US National Science Foundation (NSF) has
identified cyber-physical systems as a key area of
research and several workshops have been organized
on various aspects of CPS. The international multi-
conference, CPSWeek, has been organized since
2008 and The Cyber-Physical Systems Summit was
held in conjunction with the first CPSWeek in St
Louis, Missouri. This resulted in a report [2] that
outlines the CPS field, including important applica-
tions and future research challenges. One of the ob-
servations in the report is that traditionally

“... the fields of computer science and control the-
ory have remained largely separate, both techni-
cally and culturally.”

To be able to build complex applications that
successfully combine computational elements with
elements from the physical world, it is important to
have a new, integrated approach to the design.
Modelica and Modelica-based tools should comprise
good environments for such integrated model-based
development. The report goes on to state that

“On the one hand, computer engineers and scien-
tists do not know how to translate requirements
for physical systems, such as stability, into compu-
tational requirements on performance, power con-
sumption, etc.”

“On the other hand, control and signal processing
theory abstract computers largely as infallible
numerical devices. This simplification ignores
many important aspects of computing, such as in-
creasingly larger timing variance due to caches
and energy management and increasingly higher
software error rates caused by complexity.”

Again, a unified modeling environment support-
ing integrated simulation of all these aspects is
needed. Finally, it is concluded that

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

502

“Simplifying assumptions are also made about
communications. Initial designs assume zero-loss,
zero-delay communications, while neither occur
in the wireless, low-power, shared, rapidly chang-
ing systems used in most CPS. The viability of fu-
ture CPS must also address noise in measure-
ments, inaccuracies in actuation, disturbances
from the environment, and faults and failures in
the computational process in a coherent, unified
framework.”

The motivation for this paper is to introduce the
CPS field to the Modelica community and to de-
scribe how recent Modelica developments will facili-
tate integrated modeling and simulation of the cyber
and physical parts of complex, hierarchical systems.
The presented framework allows simulation of non-
ideal behavior, such as delays, noise, and quantiza-
tion, as well as detailed timing simulations of real-
time task scheduling and network communication. A
robotics system will be used as demonstrator.

1.1 Related Work

The timing simulations presented in this paper are
based on the TrueTime simulator [3, 4] developed at
the Department of Automatic Control, Lund Univer-
sity, Sweden. The original version of TrueTime is
based on MATLAB/Simulink [5] and the first Mod-
elica-based version of TrueTime was presented in
[6]. The version in [6], however, only dealt with the
network simulation part of TrueTime, whereas the
timing simulations presented in this paper also in-
clude simulation of real-time task scheduling in
Modelica. In this paper, it is also shown how the tim-
ing simulations are integrated in a unified Modelica
framework for systems configuration and simulation.

Most of the material presented in this paper was
first prepared for a Modelica tutorial organized by
the authors at the 3rd international CPSWeek multi-
conference in Stockholm, April 2010.

1.2 Outline

The rest of this paper is outlined as follows. Section
2 continues the discussion on Modelica in the con-
text of CPS and presents the recent development of
Modelica for embedded systems with focus on fea-
tures for simulation of non-ideal effects in control-
lers. Detailed simulation of controller timing varia-
tions in this new Modelica framework is introduced
in Section 3. The cyber-physical simulation features
are demonstrated on a robot example in Section 4.
Finally, Section 5 gives the conclusions and direc-
tions for future work.

2 Modelica and CPS

The Cyber-Physical Systems Summit identified a
series of applications that should give substantial
societal impact while also presenting significant
challenges. Three of these applications were devel-
oped into main grand challenges for CPS; future dis-
tributed energy systems, future transportation sys-
tems, and next-generation healthcare systems.

The first two challenges represent areas where the
physical modeling capabilities of Modelica already
are very strong, and medical and biological systems
(third challenge) also contain physical elements well
suited for equation-based modeling. Other applica-
tions of CPS include autonomous automotive sys-
tems, automatic pilot avionics, and distributed robot-
ics.

There are, thus, many applications of CPS that
require detailed physical modeling. However, since
the physical modeling capabilities of Modelica are
well established, this paper focuses on recent Mod-
elica features that will allow modeling and co-
simulation of the “cyber” aspects of CPS together
with the physical models. The following aspects
need to be addressed:

 The scale and complexity of CPS require
compositional methods for integrated design
and modeling.

 Most CPS applications are built up from con-
trolled sub-systems, systems-of-systems, with
local interaction between physical systems
and controllers affecting global performance.

 Distributed sensing, actuation, and control
needs to be modeled and simulated.

 The interfaces between the cyber and physi-
cal needs to be identified and properties of
the interfaces should be easy to specify.

 New hybrid models may be needed to com-
pletely model all aspects of CPS.

2.1 Modelica for Embedded Systems

A first step towards accomplishing the aspects above
in Modelica has been performed in the ITEA2
project EUROSYSLIB [7]. Language constructs
were added to support embedded systems modeling
and configuration using Modelica. A support library,
Modelica_EmbeddedSystems, was developed as a
user-friendly interface to the new language con-
structs. The new language constructs and a prelimi-
nary version of this library were presented in [8].
The effort to improve the cyber aspects of Modelica

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

503

has continued in the ITEA2 MODELISAR [9]
project, focusing on timing simulations and connec-
tions to the AUTOSAR [10] standard.

The new Modelica language features for embed-
ded systems exhibit two important properties strong-
ly related to the CPS aspects outlined above.

1. In complex models, constructed as a hierarchy
of controlled sub-systems, a Modelica transla-
tor will be able to automatically deduce which
parts that are truly physical, and which parts
that are digital controllers (“cyber”).

2. Special communication blocks are inserted in
the interfaces between the cyber and physical
parts. These contain replacable components,
which makes it possible to easily define dif-
ferent properties (such as timing variations,
noise, and inaccuracies) without modifying
the structure of the original model.

2.2 Simulated Communication

The Modelica_EmbeddedSystems library contains
special communication block implementations al-
lowing simulation of non-ideal communication be-
tween controllers and plants. The effects that can be
simulated are; sampling, computational delay (frac-
tion of sample period), communication delay (un-
bounded), measurement noise, signal limitations, and
quantization.

These effects are easily configured in the parame-
ter dialog shown in Figure 1 below. The dialog is
accessed from the communication blocks that make
up the interfaces between controller and plant com-
ponents of the controlled sub-systems.

Figure 1: Parameter dialog for the simulated
communication block.

3 Timing Simulations

The simulated communication described above has
been extended to enable more realistic simulation of
timing effects. For example, latencies due to compu-
tation and/or communication are rarely constant but
will vary as a result of the chosen task scheduling
policy and communication protocol. These varia-
tions, called jitter, may also affect the actual sam-
pling interval and could have a degrading effect on
the performance of closed-loop control systems [3].

The developed timing simulations mimic the
temporal behavior of real-time operating systems
(RTOS) executing tasks in embedded processors and
transmission of messages over communication net-
works. Aspects that can be simulated include laten-
cies and jitter due to preemption and real-time task
scheduling, queuing in the sending and receiving
network nodes, latencies due to signal transmission,
and latencies and jitter due to collisions and media
access control (MAC) policies.

The simulations focus on control networks, i.e.,
networks sending relatively small packets regularly
with tight real-time constraints [11]. The following
real-time network protocols [12,13,14,15] are cur-
rently supported; Ethernet, CAN, TTCAN, FlexRay,
and static time-triggered communication (TDMA).

3.1 Simulation Configuration

Task and subtask configuration records, provided in
the Modelica_EmbeddedSystems library, are used to
specify the real-time attributes (periods, offsets,
priorities, and deadlines) of the simulated controller
tasks. In addition, special kernel and network simula-
tor models have been developed in Modelica to real-
ize the timing simulators. These blocks use Modeli-
ca_EmbeddedSystems configuration records as input
as shown for the kernel simulator in Figure 2.

Figure 2: Configuration of the kernel simulator.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

504

The kernel simulator is configured by providing
the desired scheduling policy, the number of simu-
lated tasks, and an array of subtask records. The ker-
nel simulator currently supports the following sche-
duling policies [16]:

 Fixed-priority scheduling

 Rate-monotonic scheduling

 Deadline-monotonic scheduling

 Earliest-deadline-first scheduling

The network configuration consists of general pa-
rameters (MAC policy, number of frames, data rate,
minimum frame size, and loss probability) and poli-
cy-specific parameters. Policy-specific parameters
needs to be specified for TDMA (Time Division
Multiple Access), TTCAN, and FlexRay and consist
of slot sizes and static communication schedules
(represented as arrays of frame identifiers). In addi-
tion, FlexRay configuration also needs a communi-
cation schedule for its dynamic segment and a net-
work idle time (in bits). The complete parameter di-
alog is shown in Figure 3.

Figure 3: Configuration of the network simulator.

3.2 Communication

Having configured the kernel and/or network si-
mulators, it is also required to configure individual
signals in the model to use the timing simulators.
This is done using the parameter dialog of the
communication blocks. This configuration in-
volves specifying the execution times of tasks, siz-
es and priorities of network frames, and references
to the kernel and network simulators associated
with the signal, see Figure 4.

Figure 4: Configuration of individual signals.

3.3 Simulation Output

The kernel and network simulator models generate
traces according to Figure 5. For each task in a
simulated kernel, a task activation graph is pro-
duced. The graph has three levels, corresponding
to idle, preempted by a higher-priority task, and
running. Similarly for network frames, it is shown
when a frame is being transmitted and when it is
waiting because another transmission is using the
bus. These graphs can be used to identify and veri-
fy timing properties.

Figure 5: Example of timing graph.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

505

3.4 Modelica Implementation

The original TrueTime simulator is a Simulink S-
function implemented in C++. The Modelica imple-
mentation uses the C external function interface to
call the simulator at appropriate time instants.

The simulator is event-based and triggered based
on internal and external events. Each time the simu-
lated real-time kernel or network is executed, it
computes the time for next internal, scheduled,
event. The Modelica wrapper of the simulator then
makes sure to generate a time event at the scheduled
event. Examples of scheduled events are the comple-
tion of a network transmission or a real-time task
finishing execution.

In between scheduled events, the kernel or net-
work simulators could also be triggered by external
events. External events include sending of a network
message and triggering of task jobs.

3.5 Use Cases and Possible Extensions

The timing simulations can be used both to generate
and to verify timing requirements of controller com-
ponents. For example, with the new FMI [17] inter-
face for model exchange and co-simulation it will be
straight-forward to import a controller component,
hook it up to the timing simulator and co-simulate it
with its physical environment.

The current timing simulations assume that accu-
rate execution time estimates are available for all
tasks. A future extension will be to integrate the task
simulations with tools for execution-time analysis. It
will also be investigated how to integrate the timing
simulations and task configurations with the timing
model available in the latest AUTOSAR specifica-
tion, version 4.0.

4 Simulation Examples

This section will demonstrate the simulation capabil-
ities on a simple robotics example. It will first be
shown how to simulate simple non-ideal behavior
using the various options in the simulated communi-
cation parameter dialog of Figure 1. Then it will be
demonstrated how to perform more detailed timing
simulations including high-priority tasks and net-
work transmissions.

4.1 Simulation Model

The simulation model, shown in Figure 6, contains
three main components on the top level, a path plan-

ner, a controlled servo, and the mechanical model of
a one-armed robot.

Figure 6: Simulation example.

The servo component contains a DC motor con-
nected to a non-linear gear controlled in a three-level
cascade with control loops for the motor angle, angu-
lar velocity, and motor current. Figure 7 shows the
internals of the servo component. The controller
component contains the angle and velocity P- and PI-
controllers, and it is shown how communication
blocks have been inserted at the interfaces between
the controllers and the physical plant.

Figure 7: Controlled servo extended with
 communication blocks.

4.2 Simulating Non-ideal Communication

The simulations below will consider a step change of
ten degrees in the angle reference and the plots will
show the angle, angular velocity and the controller
output of the velocity loop (used as reference to the
current controller). The ideal continuous case is in-
cluded for reference in the simulation graphs.

We will first consider the effects of using sam-
pled instead of continuous controllers. This is
achieved by marking the checkbox sampled and se-
lecting a sample rate (see Figure 1). In this case the
sample rate is deliberately chosen too slow in rela-
tion to the closed-loop dynamics, and the results of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

506

that simulation are shown in Figure 8. The effects of
too slow sampling are clearly seen in the velocity
signal and in the control signal.

Figure 8: Simulation of sampled controller.

Next we will impair the stability properties of the
system even more by also adding delay to the control
signal computations. The results are shown in Figure
9, and in this case the performance of the system de-
teriorates to the point where the system starts to os-
cillate.

Figure 9: Sampled controller with delay.

Figure 10 shows the effects of adding measure-
ment noise to the velocity measurement and it is seen
how the noise is propagated and amplified by the
velocity controller. Finally, Figure 11 demonstrates
the possibility to simulate limitations on signals and
signal quantization. In this case, the velocity control-
ler output is limited between -50 and 50 with a very
coarse resolution of only four bits.

Figure 10: Sampled controller with
 measurement noise.

Figure 11: Sampled controller with
 output quantization.

4.3 Timing Simulations

For the detailed timing simulations, we extend the
robot model with a configuration component (includ-
ing timing simulators and records to specify task
attributes) and disturbing computations and commu-
nication according to Figure 12.

Figure 12: Extended robot model for
 timing simulation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

507

We will first examine the effects of real-time task
scheduling. The simulated real-time kernel contains
four tasks, representing the angle controller, velocity
controller, current controller, and a disturbance task.
The angle and velocity controller tasks have a period
of 5 ms, whereas the current controller is executed
with a period of 1 ms. The disturbance task runs on a
10 ms period. The simulated execution times are 100
s for the controller tasks and 1 ms for the distur-
bance task.

Figure 13 shows the result when the disturbance
task is given the highest priority. In this case, the
disturbance task interferes with the controller tasks
every 10th sample and the timing variations, as
shown in the task schedule in Figure 14, causes the
performance to deteriorate.

Figure 13: Simulation performance with high-
 priority disturbance task.

Figure 14: Task schedule with high-priority
disturbance task.

By changing the scheduling policy to rate-
monotonic scheduling (the shorter period, the higher
priority), the controller task will automatically get
higher priority than the slow disturbance task. In this

case, the control performance is the same as for the 5
ms sampled simulation shown in Figure 8. The task
schedule for this simulation is shown in Figure 15.

Figure 15: Task schedule when using
 rate-monotonic scheduling.

Finally, we will consider also network communi-
cation. In this simulation we assume that the control
computer and the actuator reside on different nodes.
The control signal computed by the inner controller
(the current controller) then needs to be sent over the
network. We also assume that the disturbance node
sends high-priority traffic on the network.

We will compare two different network policies,
CAN and FlexRay. CAN schedules frames according
to priority, whereas FlexRay has a static segment
where frames get exclusive network access during
certain time slots. Figures 16 and 17 show the differ-
ent transmission schedules obtained for CAN and
FlexRay. For CAN, the disturbance frames interfere
with the control signal transmissions. In the case of
FlexRay, the controller frames are transmitted in the
static segment and are then not affected by the dis-
turbance frames.

Figure 16: Transmission schedule using CAN
configuration.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

508

Figure 17: Transmission schedule using FlexRay
configuration.

5 Conclusions

This paper has introduced the field of cyber-physical
systems (CPS) and has outlined some first steps in
supporting CPS modeling and simulation using
Modelica. It was shown how non-ideal controller
behavior could be conveniently configured and simu-
lated using the Modelica_EmbeddedSystems library.
The simulated phenomena included sampling, de-
lays, noise, limited signals, and quantization.

It was further demonstrated how detailed timing
simulations based on the TrueTime simulator has
been integrated in the Modelica_EmbeddedSystems
framework. The presented timing simulations in-
cluded both network simulations and simulations of
task scheduling in real-time kernels. A robot exam-
ple was used as a demonstrator of the presented si-
mulation features.

5.1 Future Work

Future work will mainly focus on three areas; inte-
gration with tools for execution-time analysis, con-
nections to the AUTOSAR 4.0 timing model, and
extensions to support simulation of wireless network
protocols. The first two areas were elaborated in Sec-
tion 3.5.

Most CPS applications rely on wireless sensor
networks in order to collect measurements that are
used to close feedback loops. Thus, modeling of
wireless network protocols and simulation of aspects
related to this, such as signal attenuation, fading,
packet losses, power consumption, etc is important
in order to fully support CPS modeling and simula-
tion. The Modelica version of TrueTime presented in
[6] supports the wireless network protocols IEEE
802.11b/g (WLAN) and 802.15.4 (ZigBee).

5.2 Acknowledgements

We thank the Swedish funding agency VINNOVA
for partial funding of this work within the ITEA2
project MODELISAR (2008-02291).

References

[1] http://en.wikipedia.org/wiki/Cyber-
physical_system

[2] http://varma.ece.cmu.edu/Summit/

[3] Cervin A., Henriksson D., Lincoln B., Eker
J., and Årzén K.-E. How Does Control Tim-
ing Affect Performance? Analysis and Simu-
lation of Timing Using Jitterbug and True-
Time. IEEE Control Systems Magazine, 23:3,
June, 2003.

[4] http://www.control.lth.se/truetime

[5] http://www.mathworks.com/

[6] Reuterswärd P., Åkesson J., Cervin A., and
Årzén K.-E. TrueTime Network – A Network
Simulation Library for Modelica. In Proceed-
ings of the 7th Modelica Conference, Como,
Italy, September, 2009.

[7] http://www.eurosyslib.com/

[8] Elmqvist H., Otter M., Henriksson D., Thiele
B., and Mattsson S. E. Modelica for Embed-
ded Systems. In Proceedings of the 7th Mod-
elica Conference, Como, Italy, September,
2009.

[9] http://www.modelisar.org/

[10] http://www.autosar.org/

[11] Lian F.-L., Moyne J., and Tilbury D. Net-
work Protocols for Networked Control Sys-
tems. In Handbook of Networked and Em-
bedded Control Systems (Hristu-Varsakelis
and Levine Eds.), 2005.

[12] Paret, D. Multiplexed Networks for Embed-
ded Systems, CAN, LIN, FlexRay, Safe-by-
Wire…, Wiley, ISBN 978-0-470-03416-3,
2007.

[13] http://www.can-cia.org

[14] http://www.can-cia.org/index.php?id=521

[15] http://www.flexray.com

[16] Liu J. W. S. Real-Time Systems. Prentice
Hall, 2000.

[17] http://www.functional-mockup-interface.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

509

Bootstrapping a Modelica Compiler aiming at Modelica 4

Martin Sjölund, Peter Fritzson, Adrian Pop

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden
{ martin.sjolund, peter.fritzson, adrian.pop}@liu.se

Abstract

What does it mean to bootstrap a compiler, and why do
it? This paper reports on the first bootstrapping (i.e., a
compiler can compile itself) of a full-scale EOO (Equa-
tion-based Object-Oriented) modeling language such as
Modelica. The Modelica language has been mod-
eled/implemented in the OpenModelica compiler
(OMC) using an extended version of Modelica called
MetaModelica. OMC models the MetaModelica lan-
guage and is now compiling itself with good perfor-
mance. Benefits include a more extensible maintainable
compiler, also making it easier to add functionality
such as debugging support.

This work is in line with the recently started Mod-
elica 4 design effort which includes moving implemen-
tation of language features from the compiler to a Mod-
elica Core library, allowing compilers to become
smaller while increasing correctness and portability.

 A number of language constructs discussed for
Modelica 4 are already supported in some form by the
bootstrapped compiler. Future work includes adapting
language constructs according to the Modelica 4 design
effort and extracting and restructuring parts of the
Modelica implementation from the OMC compiler to
instead reside in a Modelica Core library, making the
compiler smaller and more extensible.

Keywords: Compilation, Modelica, MetaModelica, me-
ta-programming, metamodeling, modeling, simulation

1 Introduction

Since user requirements on the usage of models grow
over time, and the scope of modeling domains increase,
the demands on the Modelica modeling language and
corresponding tools increase. This has caused the Mod-
elica language and model compilers to become increa-
singly large and complex.

One approach to manage this increasing complexity
used by several functional languages (Section 6) is to
define a number of language features in libraries rather

than in the compiler itself. After several years of dis-
cussion and a number of language prototypes, e.g.,
[3][8][9][23][30][32][37], this approach finally became
part of the new Modelica 4 effort started during the
67th Modelica design meeting [22].

1.1 Modeling Language Constructs

The Modelica specification and modeling language was
originally developed as an object-oriented declarative
equation-based specification formalism for mathemati-
cal modeling of complex systems, in particular physical
systems.

However, it turns out that with some minor exten-
sions, the Modelica language is well suited for another
modeling task, namely modeling of the semantics, i.e.,
the meaning, of programming language constructs.
Since modeling of programming languages is often
known as meta-modeling, we use the name MetaMode-
lica [8] [11][12] [30] for this slightly extended Modeli-
ca.

The semantics of a language construct can usually
be modeled in terms of combinations of more primitive
builtin constructs. One example of primitive builtin
operations are the integer arithmetic operators. These
primitives are combined using inference and pattern-
matching mechanisms in the specification language.

Well-known language specification formalisms such
as Structured Operational Semantics/Natural Semantics
[28] are also declarative equation-based formalisms.
These fit well into the style of the MetaModelica speci-
fication language, which explains why Modelica with
some minor extensions is well-suited as a language
specification formalism. However, only an extended
subset of Modelica here called MetaModelica is needed
for language specification since many parts of the lan-
guage designed for physical system modeling are not
used at all, or very little, for language specification.

Another great benefit of using and extending Mod-
elica in this direction is that the language becomes suit-
able for meta-programming and meta-modeling. This
means that Modelica can be used for specification and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

510

transformation of models and programs, including
transforming and combining Modelica models into oth-
er (lower-level) Modelica models, i.e., a kind of compi-
lation.

 Figure 1 shows typical translation stages in a Mod-
elica compiler.

 Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

Figure 1. The typical stages of translating and executing a
Modelica model.

2 Vision – Extensible Tools

Traditionally, a model compiler performs the task of
translating a model into executable code, which then is
executed during simulation of the model. Thus, the
symbolic translation step is followed by an execution
step, a simulation, which often involves large-scale
numeric computations.

However, as requirements on the usage of models
grow, and the scope of modeling domains increases, the
demands on the modeling language and corresponding
tools increase. This causes the model compiler to be-
come large and complex.

Moreover, the modeling community needs not only
tools for simulation but also languages and tools to
create, query, manipulate, and compose equation-based
models. Additional examples are optimization of mod-
els, parallelization of models, checking and configura-
tion of models.

If all this functionality is added to the model compi-
ler, it tends to become large and complex.

An alternative idea already mentioned in Section 1
is to add features to the modeling language defined in

library packages that can contain model analysis and
translation features that therefore are not required in the
model compiler. An example is a PDE discretization
scheme that could be expressed in the modeling lan-
guage itself as part of a PDE package instead of being
added internally to the model compiler.

2.1 Why Bootstrapping?

As mentioned, bootstrapping means that a compiler can
compile itself. What are the pros and cons of bootstrap-
ping?

 The implemented language becomes well tested,
since the developers are using it on a large applica-
tion (the compiler).

 The developers are motivated to make a high quality
implementation, since they are using it themselves.

 The developers are motivated to create a good de-
velopment environment, since they are using it
themselves.

 There is also a negative factor: since the tool must
be able to build itself, there is more work to do sig-
nificant changes to it – the implementation must be
good enough to be useable.

2.2 The Stages of Bootstrapping OMC

The bootstrapping of the OpenModelica Compiler
(OMC) has been a 5-year effort, consisting of the fol-
lowing stages:

1. Design of an early MetaModelica language ver-
sion [8] as an extended subset of Modelica,
spring 2005.

2. Implementation of a MetaModelica Compiler
(MMC) by adding a new compiler frontend to the
old RML compiler [13] [28], translating Meta-
Modelica into RML intermediate form, spring-
fall 2005.

3. Automatically translating the whole OpenMode-
lica compiler, 60 000 lines, from RML to Meta-
Modelica.

4. In parallel, developing a new Eclipse plugin,
MDT (Modelica Development Tooling), for
Modelica and MetaModelica [29][31], including
both browsing, debugging, semantic context-
sensitive information, etc., 2005-2006.

5. Switching to using this MetaModelica 1.0 (an ex-
tended subset of Modelica), the MMC compiler,
and the new MDT Eclipse plugin for the Open-
Modelica compiler development, 3-4 full-time
developers. This version 1.0 of MetaModelica is
described in [10][11]. Fall 2006.

6. Preliminary implementation of pattern-matching
[34] and exception handling [31] in the OpenMo-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

511

delica compiler, to enable future bootstrapping.
Spring-fall 2008.

7. Continuation of the work on better support for
pattern-matching compilation, support for lists,
tuples, records, etc. in OpenModelica, as part of
metamodeling support in the OMC Java interface
[33] Spring-fall 2009.

8. Implementation of function arguments to func-
tions (used in MetaModelica), also in OpenMo-
delica [1]. This also became part of the Modelica
3.2 standard [20]. Fall 2009, spring 2010.

9. The current work on finalizing the bootstrapping
reported in this paper. The bootstrapped compiler
supports MetaModelica 2.0, which includes both
standard Modelica as well as further improved
MetaModelica extensions aiming at Modelica 4
support. Fall 2010, spring 2011.

10. Further Adding, enhancing, and redesigning Me-
taModelica language features [12] based on usage
experience, the Modelica 4 design effort, and in-
spiration from functional languages and languag-
es such as Scala [26]. Refactoring parts of the
compiler to use the enhanced features.

3 MetaModelica

As already mentioned, MetaModelica provides lan-
guage extensions for language modeling and model
transformations. The basic language extensions are
briefly described here. Some features are defined in
libraries.

3.1 Pattern Matching

Pattern matching expressions [34] may occur where
expressions can be used in Modelica code. There are
two kinds of match-expressions in MetaModelica, us-
ing the match or matchcontinue keywords. The syn-
tax can be described (approximately) as follows.

matchcontinue (<var-list>)
 local
 <var-decls>
 ...
 case (<pat-expr>)
 equation
 <equations>
 then <expr>;
 ...
end matchcontinue;

Only local, time-independent equations may occur in-
side a pattern matching expression and this must be
checked by the semantic phase of the compiler. The
difference between a pattern matching expression with
the keyword match and a pattern matching expression
with the keyword matchcontinue is in the fail se-
mantics.

The <pat-expr> expression is a sequence of patterns.
A pattern may be:

 A wildcard pattern, denoted _.
 A variable, such as x.
 A constant literal of built-in type such as 7 or true.
 A variable binding pattern of the form x as pat.
 A constructor pattern of the form C(pat1,…,patN),

where C is a record identifier and pat1,…,patN are
patterns. The arguments of C may be named (for in-
stance field1=pat1) or positional but a mixture is
not allowed. We may also have constructor patterns
with zero arguments (constants).

3.1.1 Semantics

The semantics of a pattern matching expression is as
follows: If the input variables match the pattern-
expression in a case-clause, then the equations in this
case-clause will be executed and the matchcontinue
expression will return the value of the corresponding
then-expression. The variables declared in the upper-
most variable declaration section can be used (as local
instantiations) in all case-clauses. The local variables
declared in a case-clause may be used in the corres-
ponding pattern and in the rest of the case-clause. The
matching of patterns works as follows given a variable
v.

 A wildcard pattern, _, will succeed matching any-
thing.
 A variable, x, will be bound to the value of v.
 A constant literal of built-in type will be matched

against v.
 A variable binding pattern of the form x as pat: If

the match of pat succeeds then x will be bound to
the value of v.

 A constructor pattern of the form C(pat1,…,patN): v
will be matched against C and the subpatterns will
be matched (recursively) against parts of v.

3.1.2 Pattern Matching Fail Semantics

If a case-clause fails in an expression with the keyword
matchcontinue then an attempt to match the subse-
quent case-clause will take place. If we have an expres-
sion with the keyword match, however, then the whole
expression will fail if there is a failure in one of the
case-clauses. We will henceforth only deal with mat-
chcontinue expressions.

3.2 Data Types

List, Tuple and Option are algebraic data types that
are common in many languages used for meta-
programming and symbolic programming. The union-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

512

type is a recursive type required to represent trees and
directed acyclic graphs.

3.2.1 Lists

The following operations allow creation of lists and
addition of new elements in front of lists in a declara-
tive way. Extracting elements is done through pattern-
matching in match-expressions shown earlier.

 List(el1,el2,el3, ...) creates a list of ele-
ments of identical type. Examples: List()– the
empty list, List(2,3,4) – a list of integers.

 {} – denotes an empty reference to a list.
 cons – the call cons(element, lst) adds an ele-

ment in front of the list lst and returns the result-
ing list. Also available as a new built-in operator ::
(coloncolon), e.g. used as in: element::lst.

Types of lists and list variables can be specified as fol-
lows:
type RealList = List<Real>;

or directly in a declaration of a variable rlist that
denotes a list of real numbers:
List<Real> rlist;

3.2.2 Tuples

Tuples can be viewed as instances of anonymous
records. The syntax is a parenthesized list. The same
syntax is used in extended Modelica presented here,
and is in fact already present in standard Modelica as a
receiver of values for functions returning multiple re-
sults.

 An example of a tuple literal:
 (a, b, "cc")
 A tuple with a single element has a comma in order

to have different syntax compared to a parenthe-
sized expression: (a,)

 A tuple can be seen as being returned from a func-
tion with multiple results in standard Modelica:

 (a,b,c) := foo(x, 2, 3, 5);
 Access of field values in tuples is achieved via pat-

tern-matching or dot-notation, tupval.fieldnr,
analogous to recval.fieldname for ordinary
record values. For example, accessing the second
value in tup:
tup.2

The main reason to introduce tuples is for convenience
of notation. You can use them directly without explicit
declaration. Tuples using this syntax are already
present in the major functional programming languag-
es.

A tuple will of course also have a type. When tuple
variable types are needed, they can for example be de-
clared using the following notation:
type VarBND = Tuple<Ident, Integer>;

or directly in a declaration of a variable bnd:
Tuple<Ident, Integer> bnd;

3.2.3 Option Types

Option types have been introduced in MetaModelica to
provide a type-safe way of representing the common
situation where a data item is optionally present in a
data structure. In C-like languages this is often
represented by NULL pointers, which are not type-safe
and may cause program crashes.

 NONE() represents no data present
 SOME(e) represents e present

The option type is declared similar to the list type.
type MaybeResult = Option<Result>;

3.2.4 MetaModelica Array Types

There is also an array type in MetaModelica, which is
different from the Modelica array type. A MetaModeli-
ca array may be updated by a function other than the
function it was created in. It is mainly used to store side
effects, for example caching results of function calls or
efficient hash tables.

3.2.5 Union Types

The uniontype declaration in MetaModelica is used
to introduce union types. This is similar to the data-
type concept in the ML family of languages [18].
Consider for example a Number type, which can be
used to represent several kinds of number types such as
integers, rational numbers, real, and complex within the
same type.
uniontype Number
 record INT
 Integer int;
 end INT;
 record RATIONAL
 Integer dividend, divisor;
 end RATIONAL;
 record REAL
 Real real;
 end REAL;
 record COMPLEX
 Real re,im;
 end COMPLEX;
end Number;

The most frequent use of the union type is representa-
tion of trees or directed acyclic graphs. A tree is a re-
cursive data type, and representing these is as simple as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

513

using the name of the union type as the type of a field
in a record that is part of the union type. There are no
restrictions or special syntax required to defined mu-
tually dependent union types as shown by Expres-
sion.VAR and Subscript.SUBSCRIPT.
uniontype Expression
 record RCONST "A real constant"
 Real r;
 end RCONST;
 record ADD "lhs + rhs"
 Expression lhs, rhs;
 end ADD;
 record SUB "lhs - rhs"
 Expression lhs, rhs;
 end SUB;
 record MUL "lhs * rhs"
 Expression lhs, rhs;
 end MUL;
 record DIV "lhs / rhs"
 Expression lhs, rhs;
 end DIV;
 record VAR "name[sub1, …, subn]"
 String name;
 List<Subscript> subscripts;
 end Var;
end Expression;

uniontype Subscript
 record NOSUB end NOSUB;
 record SUBSCRIPT
 Expression subscript;
 end SUBSCRIPT;
end Subscript;

4 Implementation

This section provides the details about the implementa-
tion of the compiler and the runtime system for the Me-
taModelica extensions.

4.1 Compiler

The OpenModelica compiler is implemented mostly in
MetaModelica. The front-end, which is where most of
OpenModelica development is focused, takes up nearly
half of the source code. It elaborates Modelica and Me-
taModelica code, which is passed on to the backend
(for simulations) or directly to code generation (for
functions).

The numbers in Table 1 were generated by loading
the appropriate sources in the compiler and using the
list() command to pretty-print the sources. This re-
moves C-style comments, but includes the Modelica-
style string comments. The OpenModelica text genera-
tion template language Susan [14] is used in the compi-
ler to generate the code generation module.

Table 1. Sizes of OMC Compiler Phases, Lines of Code.

Compiler Phase Lines

BackEnd (from flat Modelica to sorted eq.syst.) 29190

Code generation (generated code) 35971

Code generation (template source code) 8957

FrontEnd (up to flat Modelica) 92192

OpenModelica scripting environment 21883

Template language Susan compiler 12119

Unparsing modules (pretty-printing data structures) 16984

Utility modules 12983

Total size (excl. generated code) 194218

OpenModelica also requires a runtime system. It is di-
vided into five parts:

 The basic runtime system contains all Modelica
builtin function definitions, such as String() or
div() and handles array operations. This runtime
needs to be linked to the compiler itself and any
source code it produces.

 The simulation runtime system contains the solvers
and does event handling.

 The compiler runtime system handles runtime op-
tions, settings, CORBA communication and system
calls.

 The parser sources are generated by ANTLRv3
[27]. They produce a MetaModelica abstract syntax
tree that the compiler can use without further trans-
formations.

 The builtin environment is a Modelica file that con-
tains a list of all builtin functions in the Modelica
language as well as the scripting functions that are
available in OpenModelica.

Since MMC and OMC external C functions are named
and defined differently, they call the same runtime base
functions which perform all the work. The lines of code
listed in Table 2 exclude the MMC wrapper functions.
Header files are included in these measurements, but
comments and blank lines are not counted in either
headers or source code.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

514

Table 2. Sizes of OMC Parser and Runtime.

Supporting functionality Lines

Parser (ANTLR sources) 1968

Parser (generated C sources) 49256

Parser (wrapper code) 339

Compiler runtime 6159

Simulation runtime 3405

Basic runtime (excl. MetaModelica and External) 9675

Basic runtime (External code that is maintained in

other projects; e.g. Fortran code from LAPACK)
13268

Basic runtime (MetaModelica) 1930

Modelica builtin environment 744

MetaModelica builtin environment 825

Total size (excl. generated and external code) 25045

4.2 Platform Availability

The OpenModelica compiler runs on all the major plat-
forms, including Windows, Mac, and a number of Li-
nux variants. It also runs under .net using its C# code
generator. A code generator emitting Java code is under
development.

4.3 Language Feature Implementations

4.3.1 Pattern Matching Implementation

There have been three main attempts to add this lan-
guage feature to the MetaModelica compiler. These
attempts all used a regular C stack and exception han-
dling to model matchcontinue. In MMC matchcon-
tinue is implemented using the continuation passing
style [22], which essentially makes exception handling
free, at the cost of not having a regular C stack. The
main reason for using a regular stack is debugging,
which then becomes much easier.

The first approach [34] introduced C-like constructs
to the intermediate representation so that it could be
mapped to the runtime at an early stage. It created a
DFA (Definite Finite Automaton, a deterministic state
machine) so that results of pattern-matching in earlier
cases could be remembered when matching later cases.
The implementation suffered on several points.

First, it worked directly on the abstract syntax,
creating a new expression to be elaborated (basically
converting the match-expression into an internal repre-
sentation of Modelica that contained goto, label,
try, throw and catch instead of match-expressions).

It is hard to change such an implementation or to op-
timize the code further.

Second, its semantics did not cover the exception
handling aspects of matchcontinue, so the whole
OpenModelica compiler could not be handled by it.

 Third, the ways in which it could be used was very
specific (only as an assignment statement with variable
names as input and output; it could not be nested). The
third limitation is minor, since the MMC implementa-
tion of MetaModelica did the same thing.

 The second attempt to implement match expres-
sions was based on the first one, but removing the DFA
part. This made the semantics of match/ matchcon-
tinue work more as expected. However, while match
expressions could now be nested, it still required varia-
ble names as input/output and worked directly on ab-
stract syntax.

Maintaining this code and adding special cases for
language constructs proved futile. Again, it was not
possible to completely cover the semantics of match-
expressions.

For example, it is impossible to translate the type of
the empty list back to abstract syntax (you cannot write
list<Any> in a program, even though the type system
uses this type for the empty list internally).

 The start of the final attempt was the implementa-
tion of pattern-matching assignments, e.g.:

(a,1.0) := fnCall(...)

Previously, this was handled by converting the state-
ment to nested matchcontinue blocks, which did not
always work. This implementation of pattern-matching
was then used to express match expressions, which are
now treated as expressions instead of statements.

They have result types like any other expression and
may even be the input of another match expression
match, e.g.:
match (match str
 case "Modelica" then true; else false;
end match)
 case true then 3.0; else 2.0;
 end match;

This approach is much simpler to maintain because it
works on the correct level of abstraction. It has access
to full type information while doing the translation.

While it does work correctly for all cases, it is a bit
slower than the first implementation. It no longer has a
DFA to avoid pattern-matching the same thing several
times. However, because the code for pattern-matching
is essentially created during code-generation instead of
during elaboration, it enables us to switch from a C++
runtime to something else if C/C++ is not powerful
enough. It also enables us to do optimizations based on
patterns. For example, we can detect dead code (un-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

515

reachable patterns) or detect if we can select a case di-
rectly instead of doing a linear search of all patterns.

4.3.2 Union Types Implementation

To add support for the Array, Option, List and
Tuple types to a Modelica compiler is not an easy task.
Array expressions sometimes need to be type converted
to lists, but there are more expressions than the array
data constructor that elaborate to the same expression.
For example, the fill(3,2) operator call produces an
array expression {3,3}. This expression can be con-
verted to a list.

The Option type was easier to implement than the
other types introduced in MetaModelica. The reason for
this is that its syntax does not overlap with arrays (like
lists), or multiple outputs of functions (like tuples).
Tuples are treated differently in the runtime depending
on if they are multiple outputs of a function or a tuple.

The union type syntax looks like it would be ac-
cessed by Package.Uniontype.RECORD, but in
MMC the record is implicitly added to the package
scope so it is accessed as Package.RECORD. In order
to bootstrap the compiler, the same principle is used in
OpenModelica. The type of a call to a record construc-
tor is the union type, not the record type itself, which
means accessing fields is limited to pattern-matching.

4.3.3 Polymorphism

 There could be several different ways to implement
polymorphic functions in a Modelica compiler. We use
Hindley-Milner-style type inference [15][17] to infer
the type of a function based on its interface.

That is, we only consider inputs and outputs of
functions when doing type inference. From the inputs
of a call expression, we create constraints that we unify.
If we succeed, we have determined the actual type of
each type variable, which is used to calculate the result
type of the call. All other variables have a type and no
type inference is done for local variables.

Note that neither Modelica nor MetaModelica has
the concept of a Number type (some Modelica builtin
operators take either Integer or Real as input, but
this cannot be represented in Modelica code). Because
there is no Number type, a call to valueEq(1,1.5)
would not pass type checking because the types are
different.

While implementing polymorphic functions in a
Modelica compiler is rather straight forward, there are a
lot of things to think about when solving the type con-
straints. The names of type variables can be from the
current scope, from the called function or from a func-
tion pointer used as an input argument. Keeping track

of the different sources is the key to getting the correct
semantics.

4.4 Runtime System

Because the OpenModelica compiler runtime only han-
dled the static Modelica structures we had to extend the
runtime system to handle the new functional constructs.

4.4.1 Data layout

The same layout of values (objects) in memory as for
the MMC compiler runtime was used. Basically all
values besides integers are boxes that contain a header
followed by the actual data. The pointers are tagged
(the small number 3 is added to them) to be able to dif-
ferentiate between pointers and other values such as
integers. The differentiation is needed for garbage col-
lection. The headers have 32 bits or 64 bits depending
on the platform (32/64 bit platforms). Inside the header
the bits are split intro:

 slots – represents the size of data in words
 constructor – represents the type of the data (i.e. in-

dex in an uniontype or string, real, etc)

On 32 bit platforms the slots are 22 bits and constructor
(the tag) is 10 bits. On 64 bit platforms the slots are 54
bits and 10 bits are devoted to the constructor (the tag).

Integers are either 31 or 63 bits depending on plat-
forms and are represented as even values (i.e. integer N
is represented as N << 1, N shifted left by 1).

Bit zero (0) is zero if the box (node) contains poin-
ters and 1 otherwise.

A list value is represented as a box containing a
CONS header, a pointer to the element and a pointer to
next. The end of the list is represented by a box con-
taining a NIL header with zero slots.

An Option value is represented as a box containing
a SOME header and a pointer to the element or a NONE
header with zero slots.

4.4.2 Builtin MetaModelica functions

New built-in functions are needed to perform opera-
tions on the MetaModelica boxed values. The functions
are can be used directly in the MetaModelica code or
they are generated in the C code from operators. We
can classify these functions based on the types they
operate on.

 Booleans: boolEq, boolString
 Integers: intEq, intLt, intLte, intGt, intGte,
intNe, intString, intAdd, intSub, intMul,
intDiv, intMod, intMin, intMax

 Reals: realEq, realLt, realLte, realGt,
realGte, realNe, realString, realAdd, real-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

516

Sub, realMul, realDiv, realMod, realMin,
realMax

 Strings: stringEq, stringCompare, string-
Hash, stringGet, stringAppend

 Lists: listAppend, listMember, listGet, li-
stReverse, cons (:: operator), stringAppend-
List

 MetaArrays: arrayCreate, arrayGet ([x] index
operator), arrayCopy, arrayUpdate

4.4.3 Garbage collection

Garbage collection (GC), i.e., automatic memory rec-
lamation, of un-used heap-allocated data is a must for a
functional language to be able to collect unused values
and reuse memory. The garbage collector used in
MMC is a simple 2-generational copying compacting
garbage collector [28][36]. It has two main memory
areas: a young generation where the objects where in-
itially allocated and an older region to which the ob-
jects are promoted if they survive a minor collection.
We could not reuse this old MMC garbage collector for
the OMC runtime because it moves pointers and makes
it hard to write external functions.

A new garbage collector (GC) has been imple-
mented in OMC. It is a mark-and-not-sweep GC which
does not move pointers to new addresses. Instead, it
marks the unused values (objects) and these can be
used for the new allocations. This kind of collector has
a better memory usage than the old MMC GC which
could only use half of available memory (the other half
was needed for the reserve region).

Currently GC can only happen immediately after a
function is entered. Basically, the GC starts from a list
of roots and marks all values that are reachable from
these roots (transitive closure). Then all regions that are
not marked become part of a free list (and is garbage)
that can be reused for new allocations.

Figure 2. Roots and memory regions during garbage
collection.

When we enter a function we add all inputs to the root
list and we mark the position in this list. If the function
fails we rollback the roots mark to the previous mark
and everything allocated above that mark becomes gar-
bage. If the function succeeds the roots mark is rollback
and the outputs are added to the roots.

As a future improvement we can allow local alloca-
tions in functions as part of roots and then GC could
run at any allocation. This way loops that allocate data
can perform GC and not exhaust memory. Also we
could remove from roots the pointers allocated in the
loops because when a loop is finished these pointers
should be reachable from variables in the enclosing
scope.

4.5 Issues

We identified problems with the tools we use, MMC
and OMC. However, there are also design issues in the
Modelica language that we needed to work around in
order to bootstrap OMC.

4.5.1 MMC Problems

The old MMC compiler has several problems. While it
has very good performance, maintaining the code is
cumbersome. We would like to have only one tool to
maintain, the OpenModelica Compiler. Still, before we
can switch to using the OpenModelica Compiler as the
default MetaModelica Compiler, we need to be able to
compile the same code as MMC during a transition
period. The problem is that the MetaModelica to RML
translator is very relaxed when it comes to what syntax
it accepts.

In order to find some common errors, we traverse
the whole abstract syntax and verify that all mat-
chcontinue expressions have the same input and out-
put as the function has. This is a limitation of MMC,
but it does not actually check that this assertion holds.
Moreover, while MMC does some type checking, it
does not do it for expressions of the type:

 x = fnCall(x);

For these expressions, the lhs and rhs x may have
different types and MMC may allow some code that is
not valid MetaModelica code. Finding such code and
rewriting it takes a lot of time, but does produce code
that is easier to maintain.

Other issues include allowing code like:
 import Env;
 type Env = Env.Env;

In the Modelica language the import will essentially be
ignored and the tool will probably get a stack overflow
because the type Env is recursive on itself.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

517

Code that looked like this had to be refactored.

4.5.2 OpenModelica Issues

Some parts of the compiler were rewritten so that it was
easier to detect common errors that MMC does not
handle. As a result, the OpenModelica Compiler now
has vastly better error messages for algorithmic code.
We have also started propagating file, line and column
information to more error messages because when you
have a large application that you want to fix, it is essen-
tial that you find the correct line quickly. Improving the
error messages probably saved more time than it cost to
implement and as a result, the compiler should be giv-
ing better error messages both for Modelica and Meta-
Modelica code.

OpenModelica has issues with shadowing certain
builtin operators. For example, creating a function
ndims and calling it in the same package will result in
the Modelica builtin ndims operator being used instead
of this function. A few of these functions existed in the
compiler and had to be renamed (rewriting Lookup in
OpenModelica is an alternative, but would take more
time).

4.5.3 Modelica Issues

The Modelica Specification [17] says that external
functions map Integer to int, with no way to change
their behavior. If external functions in the compiler
runtime need to access large integers, this is a problem.
Examples of such a function are referenceEqual,
which checks if two pointers are equal and the
stringHash family of functions. Values were being
truncated because of the limited precision of int on
64-bit platforms, so we had to move functions from
external C functions in the compiler into the MetaMo-
delica language itself.

5 Performance

 While we are not fully satisfied with the performance
of the compiler at the time of writing this text, OMC
compiled by OpenModelica has only been running for a
few weeks. This initial version lacks a garbage collec-
tor; we simply allocate memory until we run out. Even
without memory management, the majority of the
OpenModelica regression and unit tests run.

The performance of the working examples varied
widely and some tests could be heavily improved by
doing small changes.

In the first executable version (a few weeks ago) of
the bootstrapped compiler even simple test cases were
nine times slower than in the MMC version. Since the
new version of OMC uses a real C stack, it is possible

to use general-purpose debugging and profiling tools,
such as gdb, gprof or valgrind on it.

Using valgrind --tool=callgrind, we could
see that the PEXPipe example spent around 80% of its
time doing exception handling. The C++ try-throw-
catch feature had been used to implement the exception
handling [31] of matchcontinue expressions. C++
exceptions are slow because they are not supposed to
be used often. We rewrote the exception handling using
setjmp/longjmp. Since we do not use C++ classes or
C++-heap-allocated data, this level of exception han-
dling is sufficient for us.

The new exception handling resulted in a 10x
speed-up for certain examples (on the average 3x). Ex-
ception handling still uses approximately ~25% of the
compiler execution time. We also implemented optimi-
zations that rewrite matchcontinue to match auto-
matically as a compiler optimization. This reduced
some of the setjmp overhead.

5.1 Benchmarks
All benchmarks were performed using a laptop running
64-bit Ubuntu 10.10. The machine was equipped with a
dual-core Intel Core i7 M620 (2.67GHz) and 8GB of
memory. All file IO was performed on RAM-disk in
order to reduce disk overhead. Both compilers were
compiled using GCC 4.4.5 with optimization level set
to –O3.

The two implementations use virtually the same
parser, so speed here is identical. The Modelica Stan-
dard Library (MSL) is distributed in multiple files that
are parsed and merged into a single tree by the Open-
Modelica Compiler. The version of MSL used was 3.1.
MSL 3.1 is 7.8MB stored as a single file contains 922
models and 615 functions.

Unparsing the tree is the process of going from the
internal tree structure back to Modelica concrete syntax
(source code). Here MMC suffers from an additional
performance penalty because the tree was created in an
external C function and not directly on its heap.

Table 3 Compiler performance, parsing

Task MMC OMC Factor
Parse MSL3.1, single
file

1.577s 1.577s 1x

Parse MSL3.1, mul-
tiple files

1.297s 1.253s 0.97x

Parse
MSL3.1+Unparse

3.674s 2.172s 0.59x

Unparse only 2.377s 0.600s 0.25x

Table 4 shows the performance of OMC for simple
tests, ~1x the speed of MMC.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

518

Table 4 Compiler performance, simple tests

Task MMC OMC Factor
drmodelica, 104 flat-
tening tests

2.136s 2.049s 0.96x

mofiles, 548 flattening
tests

12.770s 13.409s 1.05x

msl 1.5, 60 flattening
tests

1.726s 1.578s 0.91x

mosfiles, 120 simula-
tion test

110.67s 107.96s 1.03x

The tests are limited to 5GB of virtual memory through
the use of ulimit. This rather low limit was chosen
because then swap memory would never be accessed.
Because of this limit, a few tests fail. The bootstrapped
compiler has issues running large models. For example,
running checkModel command on the Engi-
neV6Analytic model, which has 9491 equations, uses
roughly 7GB of memory. The overall performance
shown in Table 5 is acceptable.

Table 5 Compiler performance, big tests

Task MMC OMC Factor
EngineV6Analytic,
checkModel, time

55.908s 55.553s 0.99x

EngineV6Analytic,
checkModel, memory

400MB 7GB 17.5x

All 1379 tests, single
thread, time

24m8s 20m55s -

All 1379 tests, number
of failed tests

13 30 -

Excluding failing tests,
1349 total

17m25s 18m 1.03x

There is a difference in how the two tool chains

create the executable compiler. MMC is created by
translating each package into a C-file, compiling them
separately, and linking everything together. OMC is
created by translating all packages into a single 31MB
C-file. While this may produce a faster executable, the
whole compiler needs to be recompiled even if only
one package changes. We are working on supporting
both methods in the future, including fine-grained sepa-
rate compilation for faster turn-around.

As Table 6 shows, compiling OMC using OMC is
significantly faster than using MMC. The size of a non-
debug executable was calculated by stripping it of all
debug symbols and tracing functionality. Since the
bootstrapped compiler compiles quite fast, we can
spend more time on optimization algorithms. MMC
uses code instrumentation when compiling a debug
executable. The bootstrapped compiler has a C stack

and simply adding debug symbols is sufficient to run a
debugger or profiler on it.

Table 6 Compilation speed

Task MMC OMC Factor
Translate sources to C 98.8s 49.7s 0.50x
Compile C, gcc –O3 233.3s 152.0s 0.65x
Executable size 18.7MB 5.43MB 0.29x
Compile C, gcc –Os 218.9s 102.8s 0.47x
Executable size 10.3MB 5.10MB 0.50x
Debug version, gcc –g
–O3

1405s 152.5s 0.11x

Executable size 125MB 25MB 0.20x

6 Related Work

Functional programming languages often bootstrap
themselves during the build process. Some also include
integrated lexer and parser generators specific to their
own programming language, which is something Me-
taModelica is currently missing, but under develop-
ment.

In the Lisp family [35] bootstrapped compilers have
been available since the 1960's. These languages are
strongly typed, like MetaModelica, but defer the check
to runtime instead of compile-time. This often leads to
error messages that are hard to understand because you
don't always know where a piece of data originated if
you get a type error.

Objective Caml [25], SML/NJ [1] and MLton [19]
are examples of bootstrapped compilers in the ML fam-
ily. These languages are similar to MetaModelica in
that they both use very similar language constructs and
type inference. This should come as no surprise since
RML/MMC is written in Standard ML and compiles
using either SML/NJ or MLton. One major difference
is that all variables in MetaModelica have a specific
type while in ML each expression has a most general
type. MetaModelica can generate error messages that
are easier to understand because type inference only
has to be performed when calling a polymorphic func-
tion. However, it also results in more local variable
declarations since all temporary variables need to be
declared. This is both positive (you document what
type you expect a variable should have) and negative
(you end up with a lot of local variables).

The concept of the matchcontinue expression is
something that the ML family is missing. It is instead
possible to use explicit exception handling or use guard
expressions to prevent a case from actually matching a
pattern, which is often sufficient. The ML family of
languages also has lambda functions, which is currently
missing in MetaModelica.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

519

The matchcontinue expression is more general
than the match expression, which is common in func-
tional programming. It is related to clauses in logic
programming since it provides backtracking on failure.
However, in Prolog [24] there are usually many possi-
ble answers to a given logic program since it evaluates
combinations of clauses that satisfy the program. In
MetaModelica only the first valid answer is returned
and no subsequent case is evaluated. Thus, MetaMode-
lica is more efficient and consistently statically strongly
typed, whereas logic programs sometimes can be ex-
pressed more concisely.

7 Conclusions

We have demonstrated a Modelica compiler that is ca-
pable of compiling itself. Thus, it is possible to de-
scribe all of the semantics of Modelica in a slightly
extended version of Modelica. We have also shown
that the performance of the implementation is suffi-
cient. The effort to achieve these goals was higher than
initially expected, and included not only developing the
compiler but also a development environment including
an Eclipse plugin and a debugger.

Many of the MetaModelica language extensions that
allow language modeling are in line with the design
goals for Modelica 4 to allow modeling of language
features in libraries. We believe that this work will be
an important input and proof-of-concept to the Modeli-
ca 4 design effort.

7.1 Future Work

The garbage collection implementation needs to be fi-
nalized and tested before we can switch to using the
bootstrapped compiler for development work.

Once that is done, parts of the compiler can be re-
written/refactored using certain more powerful and
concise language constructs in MetaModelica 2.0 [12].

Furthermore, to realize important design goals, a
number of language features should be moved into li-
braries and an enhanced API for accessing compiler
functionality from such libraries need to be developed.

The debugger [32] in the Eclipse environment, in-
cluding a data inspector for the MetaModelica types,
needs to be ported to the bootstrapped OMC. Further-
more, the generated code needs to be annotated with
line numbers to support the debugger and performance
analyzer in mapping to Modelica source file positions.

8 Acknowledgements

This work has been supported by Vinnova in the
ITEA2 OPENPROD project, and by SSF in the Provik-

ing HIPo project. The Open Source Modelica Consor-
tium supports the OpenModelica work.

References
[1] Matthias Blume. The SML/NJ Bootstrap Compi-

ler User Manual. July, 2001.

[2] David Broman and Peter Fritzson. Higher-Order
Acausal Models. In Proceedings of the 2nd Inter-
national Workshop on Equation-Based Object-
Oriented Languages and Tools, (EOOLT'2008),
Pathos, Cyprus, July 8, 2008. Published by
Linköping University Electronic Press,
http://www.ep.liu.se/ecp/024/, July 2008.

[3] David Broman. Meta-Languages and Semantics
for Equation-Based Modeling and Simulation.
Dissertation No 1333, www.ep.liu.se, Linköping
University, October 1, 2010.

[4] Stefan Brus. Bootstrapping The OpenModelica
Compiler: Implementing Functions As Argu-
ments. Master thesis draft, 2009. www.ep.liu.se.
Finalized Spring 2010.

[5] Emil Carlsson. Translating Natural Semantics to
Meta-Modelica. Master Thesis, LITH-IDA-Ex--
05/073—SE, Linköping University, October
2005.

[6] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[7] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Environ-
ment. Simulation News Europe, 44/45, Dec. 2005.
http://www.openmodelica.org

[8] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proc. of the 4th International Modelica Confe-
rence, Hamburg, Germany, March 7-8, 2005.

[9] Peter Fritzson. Language Modeling and Symbolic
Transformations with Meta-Modelica. (Later ver-
sions[10], [11]), www.ida.liu.se/~pelab/Modelica,
and www.openmodelica.org Version 0.5, June
2005.

[10] Peter Fritzson. Modelica Meta-Programming and
Symbolic Transformations - MetaModelica Pro-
gramming Guide. (Slightly updated version of
[9], later update: [11]) http://www.openmodelica.
org/index.php/developer/devdocumentation. June
2007.

[11] Peter Fritzson and Adrian Pop. Meta-
Programming and Language Modeling with Me-
taModelica 1.0. (Almost identical to [10], but

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

520

tech. report). Technical reports in Computer and
Information Science, No 9, Linköping University
Electronic Press, http://www.ep.liu.se/PubList/
Default.aspx?SeriesID=2550, January 2011.

[12] Peter Fritzson, Adrian Pop, and Martin Sjölund.
Towards Modelica 4 Meta-Programming and
Language Modeling with MetaModelica 2.0.
Technical reports in Computer and Information
Science, No 10, Linköping University Electronic
Press, http://www.ep.liu.se/PubList/ De-
fault.aspx?SeriesID=2550, February 2011.

[13] Peter Fritzson, Adrian Pop, David Broman, Peter
Aronsson. Formal Semantics Based Translator
Generation and Tool Development in Practice. In
Proceedings of ASWEC 2009 Australian Software
Engineering Conference, Gold Coast, Australia,
2009.

[14] Peter Fritzson, Pavol Privitzer, Martin Sjölund,
and Adrian Pop. Towards a text generation tem-
plate language for Modelica. In Proceedings of
the 7th International Modelica Conference, Co-
mo, Italy, Sept. 20-22, 2009

[15] J. Roger Hindley. The principal type scheme of
an object in combinatory logic. Transactions of
the American Mathematical Society, 146:29-60,
Dec. 1969.

[16] Kenneth C. Louden. Programming Languages,
Principles and Practice. ISBN 0-534-95341-7,
Thomson Brooks/Cole, 2003.

[17] Robin Milner. A Theory of Type Polymorphism
in Programming. Journal of Computer and Sys-
tem Sciences, 17:248-375, 1978.

[18] Robin Milner, Mads Tofte, Robert Harper and
David MacQueen. The Definition of Standard
ML, 128 pages, MIT Press, 1997.

[19] MLton. Installation Instructions. Jan. 2011.
http://mlton.org/PortingMLton.

[20] Modelica Association. The Modelica Language
Specification Version 3.2, March 2010.
http://www.modelica.org.

[21] Modelica Association. Modelica Standard Li-
brary 3.1. Aug. 2009. http://www.modelica.org.

[22] Modelica Association. Minutes of the Modelica
Design Meeting 67, www.modelica.org, Atlanta,
Georgia, September 2010.

[23] Henrik Nilsson, John Peterson, and Paul Hudak.
Functional Hybrid Modeling from an Object-
Oriented Perspective. In Proc. of EOOLT’2007,
LIU Electronic Press, www.ep.liu.se, Berlin,
Germany, August, 2007.

[24] Ulf Nilsson and Jan Maluszynski. Logic, Pro-
gramming and Prolog. Wiley, 1995.

[25] Objective Caml 3.12.0 installation notes. Aug,
2010. http://caml.inria.fr

[26] Martin Odersky, Lex Spoon, and Bill Venners.
Programming in Scala. Artima Press, 2008.

[27] Terence Parr. ANTLR Parser Generator 3.3, Ac-
cessed November 2010. http://antlr.org/

[28] Mikael Pettersson. Compiling Natural Semantics,
Department of Computer and Information
Science, Linköping University, PhD Thesis No.
413, 1995. Published in Lecture Notes in Com-
puter Science No 1549, Springer Verlag, 1999.

[29] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, and David Akhvlediani. OpenMode-
lica Development Environment with Eclipse Inte-
gration for Browsing, Modeling, and Debugging.
In Proc 5th International Modelica Conf. (Mod-
elica'2006), Vienna, Austria, Sept. 4-5, 2006.

[30] Adrian Pop and Peter Fritzson. MetaModelica: A
Unified Equation-Based Semantical and Mathe-
matical Modeling Language. In Proceedings of
Joint Modular Languages Conference 2006
(JMLC2006) Published in Lecture Notes in Com-
puter Science No 4228, ISSN 0302-9743, Sprin-
ger Verlag. Jesus College, Oxford, England, Sept
13-15, 2006.

[31] Adrian Pop, Kristian Stavåker, and Peter Fritzson.
Exception Handling for Modelica. In Proceedings
of the 6th International Modelica Conference
(Modelica'2008), Bielefeld, Germany, March.3-4,
2008.

[32] Adrian Pop. Integrated Model-Driven Develop-
ment Environments for Equation-Based Object-
Oriented Languages. www.ep.liu.se, PhD Thesis
No. 1183, Linköping University, June 5, 2008.

[33] Martin Sjölund. Bidirectional External Function
Interface Between Modelica/MetaModelica and
Java. Master thesis, IDA/LITHEXA09/041SE,
Aug 2009.

[34] Kristian Stavåker, Adrian Pop, and Peter Fritzson.
Compiling and Using Pattern Matching in Mod-
elica. In Proceedings of the 6th International
Modelica Conference (Modelica'2008), Bielefeld,
Germany, March.3-4, 2008.

[35] Guy L. Steele Jr. and Richard P. Gabriel. The
Evolution of Lisp. In Proceedings of the Confe-
rence on History of Programming Languages.
New York, April, 1993.

[36] Paul R. Wilson, Uniprocessor garbage collection
techniques, Lecture Notes in Computer Science,
Volume 637/1992, page 1-42. Springer Verlag.
1992.

[37] Dirk Zimmer. Equation-Based Modeling of Vari-
able Structure Systems. PhD Dissertation, ETH
Zürich, 219 pages, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

521

A Scade Suite to Modelica Interface

Daniel Schlabe, DLR Institute of Robotics and Mechatronics - Daniel.Schlabe@dlr.de
Tobias Knostmann, Esterel Technologies GmbH - Tobias.Knostmann@esterel-technologies.com

Tilman Bünte, DLR Institute of Robotics and Mechatronics - Tilman.Buente@dlr.de

Abstract

This article presents implementation and utilization
details of the currently developed interface from Scade
Suite to Modelica. By a few clicks one can generate a
Modelica block from Scade Suite models that can be
directly used and simulated in Modelica. This block
calls an external function periodically, where the C-
code generated by Scade Suite is invoked.
The main purpose of the interface is to test the gener-
ated C-code within a simulated environment which is
also known as Software in the Loop (SIL).

Keywords: Scade Suite; Modelica interface; C-code
integration; Software In the Loop

1 Introduction

1.1 Scade Suite Description

The acronym Scade stands for Safety-Critical Applica-
tion Design Environment. The term describes a Suite
of model-based software development and verification
tools as well as the modelling language itself. This
language is formally defined and proven to be fully
deterministic, hence it allows certified and qualified
code generation for safety-critical systems. The tex-
tual base of the language is an extension [3] of the syn-
chronous dataflow language Lustre [10]. The textual
language is by default hidden behind a design envi-
ronment for graphical models featuring deterministic
state machines, dataflow block diagrams and decision
diagrams.
Most importantly, this formal technology allows to
create a seamless process to leverage a large degree
of automation:

∙ model editing

∙ verification by means of simulation and formal
methods

∙ traceability

∙ documentation generation

∙ code generation

It also enables circumvention of cumbersome activi-
ties demanded by today’s critical software standards
such as DO-178B, EN50128 or IEC61508 (see [5] and
[6]).
The qualification and certification of the Scade KCG
code generator demands that the produced code is
not altered in any way. Therefore, in order to adapt
the code regarding specific calling conventions of e.g.
Modelica functions, the developer needs to keep the
KCG code unchanged and add C-code to meet the in-
terface requirements.
To automate the generation of this glue code, Scade
offers a Tcl-based [12] scripting environment that runs
in parallel to the code generation process. It offers ac-
cess via a specific application programming interface
(API) to the model structure information and the trans-
lation patterns of Scade-language based objects to C
constructs. This method is used to provide adaptors
to various real-time operating systems and other code-
wrapping targets, all of which can be adapted to the
users needs. We will describe how we use this means
to create our Modelica adaptor.

1.2 Scope of the interface

Thinking of a Scade Modelica interface one can
imagine two possible interface “directions”. The first
one is to integrate Code generated by Scade Suite
in Modelica. The second one is to generate a Scade
Suite model out of a Modelica model. The herein
developed interface deals with the first interface
direction. Certainly, the second direction is very
interesting since the generated Scade code would be
certified. But this will still need a lot of investigations
and work. Furthermore it would be restricted to a
subset of Modelica and not the whole language. See
chapter 4 for an outlook of this point.
By using the herein developed Scade-Modelica
interface it is rather possible to test the generated
C-code at a very early stage of the design process

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

522

by means of simulated environments, also known
as Software in the Loop (SIL). This will reduce
development time since it is not always necessary to
implement the code on the target system. Furthermore
it is possible to specify requirements beforehand by
means of Modelica model environments that contain
simple placeholders for the functions to be developed.
This will reduce iteration loops with the client who
specified the requirements and enables therefore a fast
software development.
The integration of any C-code into Modelica could
be done manually indeed. However, this requires
creating and modifying interface files like C-code
or Modelica code every time the model is changed,
which is quite inconvenient. Using the developed au-
tomatic interface one can easily integrate new C-code
into Modelica and test it in the simulated environment.

1.3 Application Areas

Typical application areas will be the aerospace and au-
tomotive industry or any other field where a safety
critical function should be integrated into a complex
system. Any developed function or controller can be
tested in a simulated environment or object using the
interface. A Modelica block can easily be generated
as long as the Scade model fulfils the restrictions de-
scribed in section 2.1. For instance, energy manage-
ment for more/all electric aircraft or hybrid/electric ve-
hicles is a topic of rising interest that becomes more
and more complex, where interactions with the system
model as well as with other management functions or
controllers can often not be neglected. Therefore it is
useful to be able to simulate the management function
together with the aircraft or vehicle model.

2 Implementation

2.1 Basic principle and restrictions

The basic principle of the developed interface is to in-
tegrate C-code into Modelica through external func-
tions. Therefore, an adaptor for code integration to
Modelica has been developed for Scade Suite. So the
KCG-code can be used without any changes. The
adaptor generates some additional interface files and
a Modelica package. This folder contains:

∙ Unchanged KCG-code

∙ Additional C-code for the interface function and
for Scade state vector (see next sections for more

details)

∙ An image

∙ Modelica package containing one package.mo
file

The additional code, the folders and the .mo files are
generated via Tcl scripts. These scripts can be easily
executed during code generation in Scade Suite.
For the current version of the interface the following
restriction applies: only Integer, Boolean and Real are
allowed as input and output signal types. That means
that for each input a separate connector will be dis-
played in Modelica. On the one hand, this eases read-
ability. But on the other hand, with more complex
models having many inputs and outputs, the Scade
block will be very large. A vector of Boolean, Integer
and Real could technically be possible, but this would
seriously affect readability since the variable would be
identified with an index instead of its original name.
For this reason, this method was not implemented in
the current version. Also, records are not supported
yet. In fact, Dymola doesn’t support records in exter-
nal C-code correctly.
Provided that the input and output signals are of the
supported types as described previously, there is no
further restriction regarding complexity or internal
states of the Scade Model. The interface will also work
for large numbers of inputs and outputs, though the re-
sulting block illustrated in Modelica will be very large
as well.

2.2 Implementation Details

The implementation details will be illustrated by way
of an example. Figure 1 displays the Scade model of a

Figure 1: Speed Controller in Scade Suite

vehicle speed controller that outputs brake and accel-
eration pedal positions using the current speed of the
vehicle and the desired speed as an input. The Model-
ica adaptor for Scade Suite will generate an additional
tab. As shown in figure 2 just three items are required:

∙ The target directory,

∙ Modelica project name = Modelica package
name,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

523

∙ The Modelica version to be used.

Figure 2: Modelica Tab in Scade

The interface is tested for Modelica versions 2.2.2, 3.0
and 3.1. There were some changes in the annotation
syntax between Modelica 2.2.2 and 3.0, which the in-
terface takes into account. So if a wrong Modelica
version is chosen, important graphic elements like the
connectors will not be displayed.
The respective C-files and a Modelica Package are
now generated containing the following elements:

∙ block ScadeBlock

∙ class ScadeStateVector

∙ function ScadeStep

The basic element is the function ScadeStep, where
the C-code is integrated via external functions:

function ScadeStep

input Real vehicleSpeed ;

input Real desiredSpeed ;

input ScadeStateVector ssv;

output Real brakePedal ;

output Real accPedal ;

external "C" ScadeStep(vehicleSpeed,

desiredSpeed, ssv, brakePedal, accPedal);

annotation(Include="

#include <../SpeedControl.c>
#include <../PID_BaseClass.c>
...

",

uses(Modelica(version="3.0")));

end ScadeStep;

The C-code is included using absolute paths. So
the working directory doesn’t need to be the package

directory. This implies that one has to modify the
absolute paths here manually if the package is moved
or copied elsewhere.
The inputs and outputs of the Scade model are
mapped one-by-one to the Modelica function. If the
Scade model has any dynamic states one extra input
is needed for the function: the so called Scade state
vector. Since functions in Modelica are not allowed to
have any internal state, the previous state will be an
input for each call of the function. Going back to the
speed control example, the PID controller has some
internal states. The corresponding Scade state vector
is specified in Modelica as follows:

protected class ScadeStateVector

"External Scade States"

extends ExternalObject;

function constructor

output ScadeStateVector ssv;

external "C" ssv =

initScadeStateVector();

end constructor;

function destructor "Release storage of

ScadeStateVector"

input ScadeStateVector ssv;

external "C" freeScadeStateVector(ssv);

end destructor;

end ScadeStateVector;

Using external C-code generated by the Model-
ica adaptor, memory is allocated by the constructor
and freed by the destructor. The ScadeStep function
and the ScadeStateVector class are declared protected
since the user shouldn’t use them directly.
The user interface in Modelica is represented by
a Scade block (see figure 3) that can be used per
drag and drop. It just needs the sample period and a
starting time as parameters. In this Block the function

Figure 3: Scade Block in Modelica

ScadeStep will be called periodically as specified.
Furthermore the Scade state vector will be initialized
herein:

block ScadeBlock

"Scade Suite Block containing standard

interfaces generated by Scade"

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

524

protected

ScadeStateVector sSVector=

ScadeStateVector(); // call init

annotation (...)

public

parameter SI.Time samplePeriod(...)

"Sample period of component";

parameter SI.Time startTime=0 "First

sample time instant";

protected

output Boolean sampleTrigger "True, if

sample time instant";

output Boolean firstTrigger "Rising edge

signals first sample instant";

public

// ----------- Inputs ------------

Modelica.Blocks.Interfaces.RealInput

vehicleSpeed annotation (...);

Modelica.Blocks.Interfaces.RealInput

desiredSpeed annotation (...);

// ----------- Outputs ------------

Modelica.Blocks.Interfaces.RealOutput

brakePedal annotation (...);

Modelica.Blocks.Interfaces.RealOutput

accPedal annotation (...);

equation

...

when {sampleTrigger, initial()} then

(brakePedal ,accPedal)=ScadeStep(

vehicleSpeed, desiredSpeed, sSVector);

end when;

end ScadeBlock;

The display size of the block as well as the con-
nector locations are adapted to the specified number
of inputs and outputs in the annotations.
The next chapter will show the functionality of the
Scade block in a realistic model.

3 Automotive Example

As a realistic application example we chose the speed
control of a multibody vehicle model (see figure 4)
using the speed controller previously implemented in
Scade as already presented with figure 1 in section 2.2.
The total model is set up in the framework of the Vehi-
cleInterfaces library and uses some of the component
classes provided there [4]. As vehicle dynamics model
(chassis in figure 4) we used a multibody vehicle
model from the DLR VehicleControls library [9]. Pas-
sengers are represented by multibody models as well.

Figure 4: Total Model of the Vehicle in Dymola

The road definition complies with the OpenDRIVE
standard [11] while the used commercial OpenDRIVE
database plus visualisation was purchased from Vires
Simulationstechnologie GmbH. During the simulation
the vehicle drives along the OpenDRIVE road. Auto-
matic steering control is used for lane keeping. The
focus of our simulation, however, is on the automatic
speed control implemented (see figure 1) using the
Scade interface as shown in figure 5. The algorithm

Figure 5: Scade Block integrated into Driver Model

used to calculate adequate gas pedal and brake pedal
positions was adapted from a class out of the DLR
PowerTrain library [7]. The desired vehicle speed used
in the controller comes from an algorithm which com-
putes a reference speed profile for the upcoming road
section. Details can be found in [2]. The simulation re-
sults from the automatically driving vehicle using the
imported Scade speed controller were well matching
our expectations. The assessment was supported on-
line by animation using components and the external

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

525

viewer SimVis provided with the DLR Visualization li-
brary.

Figure 6: Visualisation in SimVis

4 Conclusion and way forward

A first version of an interface from Scade Suite to
Modelica has been presented in this paper. The in-
terface will be adapted to future versions of Modelica
and Scade Suite if needed. One planned enhancement
is the removal of absolute paths for including C-code.
This can be replaced by URIs introduced in Modelica
version 3.1. It is also possible to use the Functional
Mock-Up Interface (FMI) instead of external functions
for future versions.
Another very interesting thought is to generate Scade-
Models directly out of Modelica. This would enable
the automatic generation of certified code from a Mod-
elica model. Certainly it can be expected that some
restrictions will apply to the Modelica model. This
opposite interface direction can be a challenging task
for future investigations.

5 Acknowledgements

This work has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-
2013) for the Clean Sky Joint Technology Initiative
under grant agreement n∘ CSJU-GAN-SGO-2008-001
[8].

References

[1] Bellmann, Tobias (2009) Interactive Simula-
tions and advanced Visualization with Modelica.

In: Proceedings of the 7th International Model-
ica Conference. Linköping University Electronic
Press. Modelica Conference, 20.-22. Sept. 2009,
Como, Italien. ISBN 978-91-7393-513-5. ISSN
1650-3740

[2] Bünte, Tilman; Chrisofakis, Emanuel (2011) A
Driver Model for Virtual Drivetrain Endurance
Testing. In: Proceedings of the 8th Interna-
tional Modelica Conference. Linköping Univer-
sity Electronic Press. Modelica Conference, 20.-
22. March 2011, Dresden, Germany.

[3] Colaço, JeanLouis; Pagano, Bruno; Pouzet,
Marc (2005) A Conservative Extension of Syn-
chronous Dataflow with State Machines. In: EM-
SOFT’05 Sept. 9-22 2005, Jersey City, New Jer-
sey, USA.

[4] Dempsey, Mike. An introduction to the Vehi-
cleInterfaces package. Tutorial at Modelica con-
ference 2006, Vienna, 2006.

[5] Fornari, Xavier. Understanding How Scade
Suite KCG Generates Safe C Code. 2010.
White Paper of Esterel Technologies. [online]:
http://www.esterel-technologies.com/
technology/WhitePapers/

[6] Pagano, Bruno; Andrieu, Olivier; Moniot,
Thomas; Canou, Benjamin; Chailloux, Em-
manuel; Wang, Philippe; Manoury, Pascal; Co-
laço, Jean-Louis. Experience Report: Using Ob-
jective Caml to develop safety-critical embedded
tools in a certification framework. In: Proceed-
ings of the 14th ACM SIGPLAN international
Conference on Functional Programming. Edin-
burgh, Scotland, August 31 - September 02, 2009

[7] Tobolar, Jakub; Otter, Martin; Bünte, Tilman.
Modelling of Vehicle Powertrains with the Mod-
elica PowerTrain Library. In: Systemanalyse in
der Kfz-Antriebstechnik IV, Seiten 204-216. Dy-
namisches Gesamtsystemverhalten von Fahrzeu-
gantrieben, Augsburg, 2007.

[8] Clean Sky project homepage [online]:
http://www.cleansky.eu

[9] EUROSYSLIB Project Profile 2007 [online]:
http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf

[10] The synchronous dataflow program-
ming language LUSTRE (1991) [online]:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

526

http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.34.5059

[11] OpenDRIVE project [online]
http://www.opendrive.org

[12] Tool command language (Tcl). [online]:
www.tcl.tk or http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.38.8230

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

527

Towards a model driven Modelica IDE

Roland Samlaus1 ClaudioHillmann1 BirgitDemuth2 MartinKrebs2

Fraunhofer Institute for Wind Energy and Energy System Technology1

Technische Universität Dresden, Institut für Software- und Multimediatechnik2

Abstract

Model Driven Software Development evolved into a
common way of creating software products. Describ-
ing software in a more abstract way simplifies and
speeds up the development process and generated code
turns out to fulfill high quality standards. As a subcat-
egory of model driven development Domain-Specific
Languages concede to express problems in a domain
specific way. By defining a languages grammar, an
editor that provides basic support for developers can
be generated automatically. This paper describes how
these concepts are utilized for the creation of a Model-
ica Integrated Development Environment (IDE). Help-
ful functionality is implemented in a model driven way
to maximize assistance during the development pro-
cess. Thus the developer receives a tool that allows
to survey large scale projects and provides functional-
ity that is well known in other popular programming
languages. Furthermore an approach for semantical
verification of Modelica documents during the devel-
opment process is presented. This allows to detect and
correct errors early.

Keywords: Modelica, IDE, OCL, verification

1 Introduction

In the last years the importance of Modelica in the field
of engineering increased significantly. Many compa-
nies utilize the language for modeling and simulation
of physical systems. Thus the support for developers
became a vital issue to enable the survey of extensive
projects. One approach is the development of libraries
as done by the Modelica community. Libraries provide
common functionality that can be easily reused and ex-
tended and thereby increase the speed of development
and ensure high quality of the resulting models.

An additional approach is the usage of development
tools. These support the engineer during the imple-
mentation of big physical systems (e.g. Dymola1 and

1http://www.dymola.com

OpenModelica2). Although the above mentioned tools
turned out to be very helpful, supplementary features
are desired to ease the handling of complex models.
This topic is well known in the software engineering
community as well. Therefore we aim at transferring
main features to the Modelica world. The structure
of our Modelica Integrated Development Environment
(IDE) and how it was created by model driven tech-
nologies is explained in section 2.

Besides the goal to facilitate daily work for engi-
neers with Modelica, the quality of the outcome has
to be addressed. Regarding this purpose the developer
has to be encouraged to create syntactically and se-
mantically correct documents. While the syntax can
be checked easily, semantic correctness may be hard
to prove because semantic constraints may demand ex-
tensive calculations. This issue is addressed in sec-
tion 3 and our approach of utilizing Object Constraint
Language (OCL) for verification of Modelica models
is stated.

In section 4 some components of the IDE e.g. the
editor and views are presented. Finally a summary and
future work will conclude this paper in chapter 5.

2 The MDSD approach

Model Driven Software Development (MDSD) is an
approach that eases the development process by pro-
viding a higher abstraction level of the software that
is being developed. Compared to pure code-based de-
velopment, the architecture can be described in a more
conceptual and structured way. A common way is to
design the structure and behavior of software with the
help of Unified Modeling Language (UML) diagrams.
But graphical representation is not the only popular
way of an abstract description. In the MDSD commu-
nity the usage of Domain-Specific Language (DSL)s
became more and more important.

DSLs allow the definition of problems in a domain
specific way and therefore provide an easy way to ex-

2http://www.openmodelica.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

528

press ideas to the domain experts. This can be done
graphically as well as in a textual syntax. The Model-
ica language can also be seen as a textual DSL, since
it allows the developer to describe physical systems.

As Eclipse builds the basis for our IDE it is evident
to use Eclipse Modeling Framework (EMF) as plat-
form for our models. All data being processed by EMF
are based upon ECore that is more or less aligned on
Object Management Group (OMG)s Essential Meta
Object Facility (EMOF) 3 standard. All generated ob-
jects extend a basic interface that allows interoperabil-
ity between objects of different meta-models. More
details about the functionality of Ecore can be found
on the EMF website 4.

The project structure of the IDE has been defined
with the help of EMF tools. Several ways [8] of
describing an Ecore-based meta model are available,
like Java annotations or XML, whereas the usage of a
UML-like graphical editor might be the most appeal-
ing way for developers. The Modelica DSL was cre-
ated with Xtext5, an Open Source framework for the
development of DSLs. It also uses the functionality
provided by EMF and therefore enables to easily inter-
act with our data models as described in Section 2.2.

In the next sections the creation of the Modelica
DSL is described and the underlying data structure ex-
plained. Figure 1 gives an overview of the used tools.

2.1 Metamodeling of Modelica with Xtext

For the textual syntax definition of Modelica we use
the tool Xtext, that is part of the Eclipse Modeling
Project. Xtext’s syntax for defining language gram-
mars closely resembles the Extended Backus-Naur
Form (EBNF) notation. Based on this grammar several
components are generated automatically. A Tokenizer
splits the given text documents into parts that can be
interpreted by a parser. The parser that is generated
by the parser generator framework ANTLR [3][10]
creates an Abstract Syntax Tree (AST) and a Con-
crete Syntax Tree (CST) of the given text document.
Thereby we get an editable tree-like data structure that
can be processed by additional software components.
The AST represents the structure of a Modelica doc-
ument. Additionally the CST keeps all information
about the concrete representation inside the document
e.g. literals and white spaces. Based on the grammar,
syntax highlighting and basic code completion for the
generated editor is provided. The parser recognizes

3http://www.omg.org/
4http://www.eclipse.org/modeling/emf/
5http://www.eclipse.org/Xtext/

syntactical errors and displays them inside the editor
and in a separate problems view. The view contains
detailed descriptions of the errors and allows to jump
into the erroneous area of the document.

Eclipse Platform

Eclipse Views
Eclipse

Modeling
Framework

Eclipse
Text Editor

Xtext Modelica
Editor

Eclipse
OCL

Modelica GUI
Components

Modelica IDE

Figure 1: Overview of tools used in the Modelica IDE

Additional to these basic tools, other components
are generated that use the AST, for example an outline
view that represents the inner structure of opened doc-
uments, i.e. inner classes, sub-packages and compo-
nent declarations. One of the main amenities of Xtext
is the integrated resolution of references. Based on this
mechanism, the developer can jump to class defini-
tions to investigate implementation details. References
are also used as types for component declarations or as
extended classes. The references connect ASTs of dif-
ferent documents and thereby form a kind of overlay
graph. If referenced objects cannot be found, the af-
fected part of the document is again marked with an
error.

However, because of the complex structure of Mod-
elica documents and for performance reasons, special
index and linking mechanisms had to be implemented.
Based on the index information additional help func-
tions were created, e.g. the proposal of classes that can
be referenced at a certain position inside the document.

The usage of Xtext for grammar definitions is
covered below by a small example. Listing 1 de-
picts Modelica’s grammar definition for the element
ImportClause.

An import clause starts with the keyword
``import'' followed by an optional abbreviation
definition. Optional rules are defined by a question
mark. In many Modelica documents SIunits are
imported with the definition of an abbreviation:
``SI = Modelica.SIunits;''. This allows to
write shorter expressions when using type definitions
from the SIunits package.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

529

" i m p o r t " (ab b r e v =Name "=") ?
r e f e r e n c e =[A b s t r a c t C o n t e n t]
w i l d c a r d ?= " .∗ " ? comment=Comment ? ;

Listing 1: Import clause definition in Xtext

The next rule defines a reference to an
AbstractContent. AbstractContent is an-
other grammar rule that represents different kinds
of Modelica class contents, e.g. the standard class
structure or an extends clause. For more details on
the Modelica class structure see [9]. In Xtext square
brackets define references to other objects. This is a
Xtext specific feature that is not defined in EBNF. A
generic linking mechanism is provided that resolves
the reference by searching for an AbstractContent

whose name attribute of type String matches the
given input.

Import clauses are not restricted to import single
Modelica classes but also a set of sub-classes inside
a package. This is indicated by the use of a wild
card “*”. Using a reference to AbstractContent

does not respect the fact that only packages can be re-
ferred to when using wild cards. In this definition we
do not distinguish between Modelica classes, models,
packages and so forth on the syntax level. Therefore
the correctness of the rule has to be regarded by the
semantics of Modelica. This is surveyed in section 3.
Finally an optional comment adds additional informa-
tion about the import for developers.

Altogether the grammar definition consists of over
100 rules. Performance issues during parsing pre-
vented us from reusing the language definition from
the Modelica language specification [9], so that we
were forced to create an optimized version. More-
over, the complexity of the resulting AST would have
made it difficult to modify or investigate the parse re-
sults. As an example, the definition of expressions has
been simplified. We do not distinguish between logical
expressions, terms, or factors but only define a single
type of expression. If needed, the type can be derived
by investigating the operator of an expression. This
enabled us to reduce the number of rules to 4 com-
pared to 12 defined in the Modelica language specifi-
cation [9].

2.2 Project structure definition with EMF

For the sake of reuse, Modelica documents should be
structured in projects. When defining e.g. a wind en-
ergy plant, every component like Tower, Nacelle or
RotorBlade ought to be encapsulated in its own unit.
If the components are divided into different projects,

they can be interchanged easily. This helps the devel-
oper to survey the structure of the designed physical
systems. Furthermore, the reuse of functionality from
libraries like the Modelica Standard Library is essen-
tial.

Separating components into projects requires a
mechanism that enables linking between models in-
side separate projects. A WindTurbine e.g. reuses
the component Tower for the definition of a new wind
turbine. Therefore a link between the wind turbine’s
definition and the document where the tower is de-
fined in has to be established. This ensures the exis-
tence of the reused component and enables the user
to quickly display the tower’s definition. In order to
be able to find this kind of references quickly, meta
data must be provided that holds additional informa-
tion about the class structure and location of Model-
ica files. This data structure is defined with EMF. The
central data in this structure is called ModelResource.
A ModelResource can contain source folders. All
Modelica source files contained in these source folders
belong to the same ModelResource. When a source
file is parsed, the internal structure is analyzed and
stored in an index file. These files are again cou-
pled to the ModelResource. Hence ModelResources
know the name space of all contained models and
allow quick linking by the use of qualified names.
Qualified names distinctly address a component in-
side a name space like in Modelica.SIunits.Angle

whereas Modelica and SIunits represent packages
and Angle is a type definition inside this package.

At first sight the proposed project structure looks
quite similar to the one Eclipse uses for plug-in
projects. In fact many concepts are reused but also
altered to meet our requirements (see figure 2). Us-
ing ModelResources instead of projects as manage-
ment unit allows to have several name spaces inside
one project. This is important when simulations are
performed. The source files of several simulations can
be kept in the same project and allow to keep track
of source code changes between different simulations.
In the project based approach it would be impossi-
ble to keep multiple class definitions with the same
qualified name. To enable linking, every experiment
gets its own ModelResource that knows the files used
for simulation. The ModelResource mechanism is
also used to enable referencing other projects in the
workspace. Projects can be exported as compressed
and possibly encrypted libraries. The meta data are
kept inside the archive, therefore no further analysis
of the contained source files is needed when libraries

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

530

are reused. The creation of libraries serves two pur-
poses: First it allows to assemble specific function-
ality into one library that can be shared among users
or maybe even sold to customers; Secondly, using li-
braries speeds up the development process because
handling of a huge number of source files can lead to
a slow development environment and an increasing re-
action time of the systems on user interaction.

Using EMF turns out to be very helpful, because the
data defined in EMF automatically has a persistence
model. Also references between EMF-based files are
resolved automatically. Furthermore it provides a sys-
tem for change notification that allows to react on any
changes of the meta data.

Figure 2: Data structure of the Modelica IDE

3 Verification of Modelica documents

Enhanced verification of code is desired during devel-
opment to immediately ensure the correctness of the
created models. Two kinds of verification can be dis-
tinguished - dynamic and static verification.

3.1 Dynamic versus static verification

Dynamic verification of Modelica models is, at the
moment, a difficult topic because for this issue mod-
els have to be interpreted on instances. For instance,
to ensure that a parameter does not exceed a specified
value, the equations altering the variable must be cal-
culated. But currently these calculations are done by
translation of Modelica source code to a different pro-
gramming language like C++ and execution of the re-
sulting program code. That means no interpreter work-
ing directly on Modelica source code is available but
the code is transformed to another kind of program-
ming language and then executed.

The same problem is faced when trying to debug
Modelica code like it is done in other object oriented
languages, e.g. Java. It may be possible to implement

an interpreter for basic Modelica language constructs
and simple models that do not contain any equations.
But at the moment there is no solution available that
solves Differential Algebraic Equations (DAE)’s dur-
ing development time.

The MDSD-community is, by the way, facing the
same problem. Instead of generating code that has to
be executed, interpreters are often desired that create
functionality based on objects. Therefore solving the
problem of interpreting models directly could solve
the problem of debugging and verification as well as
reduce the required time during development.

However static verification is currently done for a
wide range of models (e.g. Modelica, UML, Java, . . .).
Several techniques are available for the verification of
models. One could write Java-Code or utilize special-
ized languages like Check, that is delivered with the
Xtext-Framework. In our IDE we use OCL [2] which
is a standard language of the OMG. It is spread in re-
search and industry and thus is typically to be under-
stood by many developers. The static verification of
Modelica with OCL is presented in the next section.

3.2 Static verification with OCL

In the Modelica specification the semantics of the lan-
guage is verbally specified. We interpreted the Model-
ica semantics as Well-Formedness Rules (WFR)s and
found 201 WFRs which we translated into OCL con-
straints. The WFRs differ from each other in terms
of complexity. Some constraints are quite easy to de-
fine and the execution time is short. Others are com-
plex and often recursive. The complexity and recursiv-
ity is conditional upon the underlying Modelica meta-
model and OCL as a language that specifies naviga-
tion paths through a model. This can cause the veri-
fication to take a long time because large parts of the
AST have to be considered during the interpretation of
the constraints. In the following OCL will be shortly
introduced. Then the definition of some WFRs is ex-
plained.

3.2.1 OCL

OCL is a language that allows the definition of con-
straints on objects. Originally it was designed to en-
able more precise UML diagram definitions. Later
OCL has been extended to a query language and is
generally in metamodeling. Figure 3 displays a sim-
ple example of an UML class where the attribute age

inside the class Person is constrained. The invariant

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

531

ensures that the age is higher than 17 to fulfill the re-
quirement of being an adult.

Figure 3: A simple OCL example

Besides invariants OCL also allows to define queries
to collect objects. Furthermore the definition of new or
derived model elements (attributes, associations, oper-
ations) is allowed and helpful to reuse common func-
tionality. OCL also defines a standard library that pro-
vides basic functionality like operations on collections
(e.g. checking if a set is empty). The language de-
scription and examples can be found in the OCL spec-
ification [2].

3.2.2 Modelica and OCL

As mentioned above, OCL is not restricted to be used
for UML diagrams but can principally be applied to
arbitrary object structures [5]. The only restriction
is, that the interpreters need to be able to handle the
constrained model. This usually means that the meta
model of the restricted language must be available and
the interpreter must be able to read the data format. As
we use Xtext for the definition of our Modelica lan-
guage, the resulting AST is based on Ecore. Hence
an Ecore based OCL interpreter is needed. Therefore
two popular OCL interpreters that fulfill this require-
ment were evaluated for verification, Eclipse OCL6

and Dresden OCL7 [13].
The basis for the verification of Modelica code is

the AST of a Modelica document. It is created by the
parser that Xtext generates based on the grammar def-
inition. Thus the AST represents the structure of the
Modelica document and can be used to check whether
the structure is correct. OCL constraints are defined
and evaluated on the AST.

The OCL constraints were used to measure the per-
formance of both tools mentioned above. Furthermore
the constraints were analyzed to find time consuming
rules. This is important when dealing with user inter-
faces because users do not accept lags when editing
documents because of verification tasks that are per-

6http://www.eclipse.org/modeling/mdt/?project=ocl
7http://www.reuseware.org/index.php/DresdenOCL

non-recursive recursive
constraints constraints

constant time x -
linear time x x

quadratic time x x
exponential time - x

Table 1: Classification of OCL constraints by their
complexity

formed in the background. Two categories with dif-
ferent complexity and calculation times were detected
(Table 1).

Short examples for non-recursive constraints will il-
lustrate the definition of Modelica WFR in OCL. List-
ing 2 represents a constraint that can be evaluated in
constant time:

inv p r e d e f i n e d _ s t r i n g _ t y p e :
name <> ’ S t r i n g ’

Listing 2: Non-recursive OCL with constant time con-
straint

Each component declaration in Modelica has a
name. In our grammar this is reflected as a rule
ComponentName with the attribute name. Because
Modelica reserves some names for components (i.e.
String), these names are not allowed for newly de-
fined components. The OCL invariant given in List-
ing 2 ensures that the name String is not assigned
to a component. As no other objects have to be con-
sidered, the calculation depends only on the object
ComponentName resulting in a constant calculation
time.

A linear non-recursive constraint is defined in List-
ing 3:

c o n t e x t Component
inv component_name_type :
not componentnames−> e x i s t s (
name = s e l f . t y p e . name)

Listing 3: Non-recursive OCL constraint with linear
time

Figure 4 shows the result of our validation in the
editor and the problems view.

Components in Modelica classes must not have
the same name as their type. It is e.g. prohib-
ited to define a component Angle Angle;. The
constraint in Listing 3 checks whether a name ex-
ists (componentnames->exists()) that is equal the
name of the components type (self.type.name).
The calculation time coheres directly with the num-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

532

Figure 4: Displaying verification errors

ber of instances that are defined in the component and
thus increases linearly.

Another problem is the test for uniqueness which
results in quadratic calculation time. If uniqueness
of element names in an enumeration shall be ascer-
tained, all elements have to be compared with each
other (as long as the model elements are not stored in a
relational database). Thus the calculation time grows
quadratically to the number of elements. The corre-
sponding OCL constraint is defined in Listing 4:

c o n t e x t E n u m e r a t i o n L i s t
inv u n i q u e _ e n u m _ l i t e r a l s :
e n u m e r a t i o n l i t e r a l s −>i s U n i q u e (
componentname . name)

Listing 4: Non-recursive OCL constraint with
quadratic time

Most of the OCL constraints defined for the verifi-
cation of Modelica documents are of recursive nature
because most WFRs originate in restrictions on inher-
itance structures. As a result many parts of the model
have to be considered for verification. Although the
effort of calculating non-recursive rules may result in
quadratic time as seen above, recursive rules are even
worse.

For complexity reasons, only one recursive con-
straint with exponential time is explained in this pa-
per (Listing 5). The Modelica specification defines
the rule: “The type prefixes flow, input, and output

shall only be applied for a structured component, if no
elements of the component have a corresponding type
prefix of the same category.” [9] The function defini-
tion in Listing 5 returns a Boolean value that indicates,
whether a Modelica class contains a component def-
inition with the prefix flow, input, or output (the
collection of components is defined in another func-

tion collectIOComponents()). Not only the ana-
lyzed class has to be considered for this constraint,
but all super classes from which the instance inher-
its. This requires the invoking of the same func-
tion containsIOPrefixes() recursively and results
in the complexity O(nr) where n describes the number
of super classes and r the recursion depth.

c o n t e x t A b s t r a c t M o d e l i c a C l a s s
d e f : c o n t a i n s I O P r e f i x e s () Boolean =

c o l l e c t I O C o m p o n e n t s ()−> s i z e >0
or

c o l l e c t E x t e n d s C l a u s e s ()−> e x i s t s (
c o n t a i n s I O P r e f i x e s)

Listing 5: Recursive OCL constraint with exponential
time

Because of the complexity of the resulting con-
straints not all WFRs from the Modelica specifica-
tion have been implemented yet. In a first version of
the Modelica IDE (Section 4 we decided to integrate
Eclipse OCL because of its better interpreter perfor-
mance. In addition to the rules from the specification,
further constraints may be helpful for daily work. E.g.,
warnings could be displayed if to many subclasses in
a document exist or the package structure is too deep.
This functionality may be integrated in a later version
of our IDE.

4 Modelica IDE

In this section the main parts of our IDE, which sup-
ports the developer in the creation and manipulation of
models are presented. First the features of the gener-
ated and enhanced Modelica editor are presented (Sec-
tion 4.1), then it is explained how additional views
simplify the development process (Section 4.2).

4.1 Editor

Modern Modelica IDEs support the user in the devel-
opment process by providing editors and related tools
that ease the handling of big projects. Editors pro-
vide syntax highlighting to emphasize language spe-
cific keywords and to reveal the structure of the written
code, making it easier for the developer to understand
the code. Highlighting and the recognition of syntacti-
cal errors is provided by Modelica specific lexers and
parsers that can either be hand written or generated by
tools like ANTLR as described in Section 2.1. Fur-
thermore semantical highlighting may be provided but
should only be checked where the calculation can be
done quickly. In Figure 5 the simple data type Real

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

533

(gray, italic) is highlighted semantically while all other
decorations are provided by the generated lexer. Code
folding allows to reduce the complexity of the dis-
played code, e.g. by hiding annotations that contain
arbitrary information. With the integrated mouse-over
help, details about utilized classes that are defined as
comments in the declaration can be explored by the
developer.

Figure 5: Xtext Modelica editor

Based on the index data, code completion supports
the developer in choosing sub-components of classes.
This is helpful during the definition of import clauses
or components and helps to speed up the development
process significantly.

Error markers for non-existent referenced classes
are automatically created. This is an advantage com-
pared to editors like the ones integrated in Dymola, or
Modelica Development Tooling 8 because developers
immediately recognize these kind of failures. A quick
fix using a comparable mechanism as code completion
tries to provide a suitable solution.

4.2 Views

The Modelica IDE has several views that display ad-
ditional information on the projects data. The main
view is the Eclipse project explorer that has been ex-
tended to fulfill the needs of a Modelica IDE. The con-
tained packages and classes of Modelica files as well
as the package structure of referenced libraries are dis-
played as shown in Figure 6. Each of these classes
can be inspected in the editor whereas library docu-
ments are opened read-only to avoid the modification
of the source code. References inside the documents
are linked to allow quick browsing through the source
code and the exploration of class declarations. The

8http://www.ida.liu.se/ pelab/modelica/OpenModelica/MDT/

Eclipse outline view displays the inner structure of the
opened document. All actions that are triggered in the
user interface are implemented as Open Services Gate-
way initiative (OSGi) 9 events. Together with an Xtext
based DSL that was specified for scripting purposes,
we are able to record these actions and save them in a
file. The engineer can edit or create a script document
for automatic execution of actions. This includes the
simulation of models with the coupled solvers Dymola
and Mosilab [1].

Figure 6: Modelica Project Explorer

5 Conclusion and future work

With the help of MDSD techniques we were able to
implement a Modelica IDE in a short period of time.
Generated code ensures high quality products and re-
duces the implementation time by automatic creation
of frequently used components like data structures and
serialization mechanisms. Since the generated code is
based on the same data description (Ecore), interoper-
ability is guaranteed. Therefore augmenting the gener-
ated editor with additional functionality became easy.

The introduced IDE enables the Modelica developer
to create models fast and easy. The verification and
referencing mechanisms ensure correctness through-
out the development process. The views on the Mod-
elica data structure help surveying large projects. En-
capsulating source code into libraries speeds up the
user interaction and encourages the developer to create

9Open Services Gateway initiative, http://www.osgi.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

534

models as components. This helps in creating frame-
works that can be shipped and reused as libraries.

During the development some performance issues
arose that should be considered in the future. This be-
came evident when the Modelica Standard Library was
imported as a source project. The low performance of
parsing all library files is engendered by the complex
Modelica grammar that causes a lot of back-tracking
during parsing. Allowing the use of a different parser
generator than ANTLR to generate a LR(k) parser

might help solving this issue. Also future modifica-
tions of the grammar definition might speed up pars-
ing, e.g. by defining a unique start and end termi-
nal sign for annotations. In many documents the per-
centage of annotations compared to executable code is
very high. These parts of code should only be parsed
if they are needed for example when visualizing the
models. Thus a second optimized parser could be in-
troduced for annotations.

Performance issues are a big problem in our ap-
proach. Comparing the parser generated by Xtext with
the one of the Modelica SDK[11] [12] which is based
on the same parser generator technology (ANTLR)
might be useful in finding the reasons for these prob-
lems. Furthermore the mechanisms of verification
should be compared regarding completeness and per-
formance.

A nice feature to have is an editor that allows the de-
veloper to compose models from components graphi-
cally, like Dymola does. As we use Ecore as basis
for our data, the Graphical Modeling Project Graph-
ical Modeling Project (GMP)10 might be a suitable
solution for this task. However, the embedding of
graphical information inside annotations of the Mod-
elica documents instead of separate files might cause
problems when using GMP. In our opinion, layout in-
formation and executable code should be separated as
both are independent concerns.

Furthermore, the refactoring of Modelica models
should be addressed in the future. Many of the refac-
torings introduced in [7] would be helpful in Model-
ica, as it is suitable for most object oriented languages.
In [6] an impressive way of source code refactoring by
role definitions is explained and demonstrated based
on EMFText11. At the moment serializing with Xtext
is error-prone and therefore prevented us from inte-
grating the refactoring tool into our project. This
will be done as soon as the serialization problems are
solved.

10http://www.eclipse.org/modeling/emf/
11http://www.emftext.org/index.php/EMFText

References

[1] J. Bastian, O. Enge-Rosenblatt, P. Schneider:
MOSILAB - a Modelica solver for multiphysics
problems with structural variability. Conference
on Multiphysics Simulation - Advanced Methods
for Industrial Engineering, January, 2010, Bonn,
Germany

[2] The Object Management Group
(OMG): OCL 2.2 Specification. 2010,
http://www.omg.org/spec/OCL/2.2

[3] T.J. Parr, R.W. Quong: ANTLR: A Predicated-
LL(k) Parser Generator. Software | Practice and
Experience 25(7) (1995) 789-810

[4] F. Budinsky, S.A. Brodsky, E. Merks: Eclipse
Modeling Framework. Pearson Education, 2003

[5] M. Seifert, R. Samlaus: Static Source Code
Analysis using OCL. In: Proceedings of the
Workshop OCL Tools: From Implementation to
Evaluation and Comparison, OCL 2008, Satel-
lite event of the 11th International Conference on
Model Driven Engineering Languages and Sys-
tems (MoDELS 2008), September 28 - October
3, 2008, Toulouse, France

[6] J. Reimann, M. Seifert, U. Assmann: Role-Based
Generic Model Refactoring. In: Lecture Notes in
Computer Science (LNCS 6395) - Model Driven
Engineering Languages and Systems, Springer,
2010, 78-92

[7] M. Fowler: Refactoring: Improving the Design
of Existing Code, Addison-Wesley, Boston, MA,
1999

[8] D. Steinberg, F. Budinsky, M. Paternostro, E.
Merks: EMF: Eclipse Modeling Framework,
Addison-Wesley, 2009

[9] Language Specification, Modelica - A Uni-
fied Object-Oriented Language for Physical
Systems Modeling Version 3.1, May, 2009,
https://www.modelica.org

[10] T. Parr: The Definitive ANTLR Reference:
Building Domain-Specific Languages, Prag-
matic Bookshelf, May, 2007

[11] M. Tiller: Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions, In: Proceedings of the 3rd International

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

535

Modelica Conference, November 3-4 2003,
Linköping, Sweden

[12] P. Harman, M. Tiller: Building Modelica Tools
using the Modelica SDK, In: Proceedings 7th
Modelica Conference, September 20-22 2009,
Como, Italy

[13] M. Krebs: Verifikation von Modelica-
Programmen mit OCL, Diploma thesis, TU
Dresden 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

536

Tool Support for Modelica Real-time Models

Michaela Huhn1, Martin Sjölund2, Wuzhu Chen1, Christan Schulze1, and Peter Fritzson2

1Clausthal University of Technology, Department of Informatics
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

2Linköpings Universitet, Dept. of Computer and Information Science
SE-581 83 Linköping, Sweden

Abstract

The challenges in the area real-time simulation of
physical systems have grown rapidly. To prepare a
simulation model for execution on a real-time tar-
get, an experienced developer usually performs sev-
eral adaptations on the model and the solver in order
to reduce runtime and communication needs.

Two-folded tool support for evaluating the effect of
such adaptations is presented here: (1) A ModelCom-
parator for the systematic comparison of simulation
results from different versions of the model and (2) an
RT-Profiler for measurements and analyses of function
calls during RT simulations. The ModelComparator
facilitates verification of a model adapted for real-time
execution to ensure that it will produce sufficiently ac-
curate results at selected operation points. The RT-
Profiler takes the specific code structure of simulation
models into account when measuring execution times.
It directs the developer to those parts that are most
promising for model adaptations.

We consider OpenModelica and SimulationX as
modeling and code generation frameworks for real-
time simulation. The procedure of model adaptations
and the use of the analysis tools therein are exempli-
fied in small case studies.

Keywords: simulation, Modelica, RT-profiling, op-
timization, hardware-in-the-loop

1 Introduction

Modeling and simulation has become an essential part
of the design process in mechanical engineering and
mechatronics. The object-oriented language Modelica
is widely accepted for physical modeling in many in-
dustries. Simulation has been applied for analysis and
validation in the concept and rapid prototyping phase
for a long time, but nowadays simulation models are
re-used in latter design phases for testing and verifi-

cation or even as part of the running system. The po-
tential of simulation models in later design phases is
to partially substitute costly physical components or
complicated conditions of the surroundings that are re-
quired to verify the control of a complex system within
its mechatronic environment. However, these usages
are most often based on online simulation. Hence,
simulation models need not only reflect the physics of
the modeled components properly from a functional
viewpoint, but also with respect to their timing behav-
ior. Thus, the interest in real-time simulation is in-
creasing rapidly.

Prominent usage scenarios for real-time simulation
of physical systems are Rapid Control Prototyping
(RCP) and Hardware-in-the-Loop (HIL)[12] where
the real-time simulation substitutes mechatronic com-
ponents during detailed design and verification of em-
bedded controllers. Another usage is Model Predictive
Control (MPC)[12] where the model becomes a part of
the controller used for predicting the short term behav-
ior of a physical component.

The challenge of simulating a Modelica model as
part of a real-time system is to meet the timing con-
straints and meanwhile keep the result accuracies and
resource consumption in a acceptable range. Espe-
cially when simulating in a hard real-time (HRT) con-
text, any violation of timing constraints during the
simulation may cause a fatal failure of the whole sys-
tem. Since the HRT case is more critical than a soft
real-time (SRT) case, it is worth the subject in this pa-
per.

We present two tools to assist the modeler with
the validation and verification of real-time simulation
models which may be used independently from any
specific Modelica framework: The ModelComparator
aims for verifying whether a model optimized for real-
time execution will operate with an acceptable accu-
racy by comparing its outputs to a reference model.
On the other hand, the RT-Profiler will aid the modeler

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

537

to understand better the timing behaviors and the inter-
nal complexity of the model. In profiling the code for
measurement of execution times, call frequencies or
resource consumptions will be inserted into the model
at places most interesting, which is known as instru-
mentation. As a consequence, instrumentation will
add extra instructions to the model and hence increase
the total execution time of it. So in general, the over-
head caused by instrumentation should be kept in a
minimal extent.

The rest of the paper is structured as follows: In Sec.
2 some techniques for adapting models for real-time
simulation are sketched. In the Sec. 3 the ModelCom-
parator is presented, whereas RT-Profiler in described
in Sec. 4. Sec. 5 illustrates tool usage in small case
studies. Section 6 concludes.

2 Strategies to adapt a model for
real-time execution

A key characteristic of HRT systems is time-
determinism. Thus, the first requirement on simula-
tion models for real-time execution is to ensure pre-
dictable timing behaviors. The second requirement is
that the simulation model shall react as fast as the orig-
inal (physical) system would do, which means that the
execution time must not exceed the step size.

Several Modelica simulation environments are ca-
pable of exporting Modelica models for real-time sim-
ulation already, to name but a few, SimulationX R©,
Dymola R©, OpenModelica, etc. In many cases, models
for real-time simulation are derived from off-line sim-
ulation models developed in an earlier design phase.
Such adaptations on a model are called real-time op-
timization (RTO) of the design model. Some parts
can be automated, but due to the diversity of model
domains and simulation goals, model engineers com-
monly need to manually optimize the models to en-
hance time determinism and performance for RT sim-
ulations [2].

The numerous variants to be performed on off-line
models can be roughly categorized into two groups:

• RTO by adapting the system behaviors

• RTO by mathematical reduction of complexity

2.1 RTO by adapting the system behavior

Hybrid dynamic systems can be adequately described
as a set of nonlinear differential algebraic equations

(DAEs) having a general implicit form as:

0 = f (x, ẋ,y,z,u, p, t) (2.1)

0 =g(x,y,z,u, p, t) (2.2)

with

x continuous state variables

ẋ time derivative of x

y outputs of the system

z discrete state variables

u inputs of the system

p parameters

t time

where equation (2.1) gives the evolutionary rule of the
state variables inside the dynamic system and equation
(2.2) implies the algebraic constraint of the system.
According to Implicit Function Theorem, assuming
Dyg (Jacobian of g) is not singular, ∃φ(x,z,u, p, t) = y.
Inserting this result into equation (2.2) then gives the
following DAEs:

0 = f (x, ẋ,φ(x,z,u, p, t),z,u, p, t) (2.3)

0 = g(x,φ(x,z,u, p, t),z,u, p, t) (2.4)

However, the above mentioned equation system is
still in an implicit form. Symbolic analysis and pos-
sibly associated manipulations for the index reduction
need to be performed on the DAE system to produce
an explicit ODE system. Although this can be auto-
matically processed either by commercial Modelica
compilers or free ones, some non-linear implicit re-
lations often remain on the RHS of the ODE system.
These mathematically complex interdependencies be-
tween state variables cause algebraic loops that signifi-
cantly contribute to execution times during simulation.
Breaking up algebraic loops, i.e. decoupling state vari-
ables, decomposes the system model into a set of sub-
systems that is computationally simpler to handle. We
briefly sketch some strategies for decoupling:

The most straightforward approach is to eliminate
state variables which are of minor relevance to sys-
tem dynamics, like for instance the fluid temperature
in a 1-D momentum equation. Library elements offer-
ing different model variants of the same physical en-
tity support the modeler with this strategy: The vari-
ants, which may be selected via parameters, may be
optimized for the calculation of different sets of in-
put/output variables. Such variants may exploit spe-
cific solvers for subproblems or differ wrt. numerical

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

538

accuracy or completeness of the physical effects be-
ing modeled. All this will result in differences in the
computational complexity and the real-time behavior.

As described in [3], knowledge on weak dynamic
interactions between system parts may be used to de-
couple the system by introducing pre-announced weak
dynamic state variables which are solved by implicit
integration. Such a decoupling leads to strong im-
provements on the Block Lower Triangle (BLT) trans-
formation, since the off-diagonal entries will decrease
inside the BLT structure.

An another alternative is the mixed-mode integra-
tion approach described in [11], which tries to partition
an entire dynamic system into separate fast/slow sub-
systems by analyzing the eigenvalues of the system.
In contrast to weak dynamic decoupling, mixed-mode
integration can be fully automated.

It has to be noted that all these approaches require a
modeler with strong backgrounds on the problem do-
main, as they are only applicable under certain con-
straints, e.g. a loose coupling system, a reasonable dif-
ference between subsystem dynamics, etc.

2.2 RTO by mathematical reduction of com-
plexity

A system’s complexity is characterized by the num-
ber of its state variables (or number of dimensions of
the model). Some state variables de facto dominate
the dynamic behavior of the system, which gives us a
possibility to reduce the complexity of the system by
disregarding some subordinate ones. Provided that a
DAE system has been transformed into the following
continuous generalized state-space form:

Eẋ = Ax+Bu (state equation) (2.5a)

y = Cx+Du (output equation) (2.5b)

with x ∈ Rn (state variables), u ∈ Rm (inputs), y ∈ Rl

(outputs), E ∈ Rn×Rn (descriptor matrix), A ∈ Rn×
Rn (system or state matrix), B ∈ Rn×Rm (input ma-
trix), C ∈ Rl ×Rm (output matrix) and D ∈ Rl ×Rm

(feed-through matrix).
In (2.5), if the number of state variables is very

large compared to the number of inputs and outputs
(n� l,n� m), it implies that redundancies might ex-
ist in the system. Hence, there is a chance to to come
up with an alternative system model not only with
much lower dimensions but also with adequate accu-
racies and the preservation of important system prop-
erties. This technique is called model order reduction
(MOR).

A brief introduction of the so-called projection-
based model oder reduction (PBMOR) will be given
here to show the philosophy of MOR. The PBMOR
can be roughly performed in three steps:
1) Choice of ansatz:
The state variables x ∈Rn is approximated by xq ∈Rq

(q� n):

x≈ xq =
q

∑
j=0

v jξ j = Vqξ (2.6)

where v j is the basis spanning a subspace Vq = span
{v1, . . . ,vq} called ansatz space of the reduced model,
ξ ∈ Rq and the matrix Vq = [v1, . . . ,vq] (q� n). The
choice of decent basis v j plays a significant role in PB-
MOR, there exist many methods on the market [8, 5].
2) Insert the ansatz:
Inserting the ansatz (2.6) into (2.5) delivers the follow-
ing over-determined system:

EVqξ̇ = AVqξ +Bu (2.7)

y = CVqξ +Du (2.8)

As there are more equations than unknowns in this re-
duced model representation, in general the residual of
the system will not equal zero.
3) Projection of the residual:
The residual is projected onto a subspace Wq spanned
by the columns of so-called weighting factors Wq.

WT
q EVqξ̇ = WT

q AVqξ +WT
q Bu (2.9a)

y = CVqξ +Du (2.9b)

Thus, an optimal solution of the over-determined
system can be attained in a least square sense. The
input-output properties of the reduced model de-
scribed in (2.9) depends only on matrices Vq and Wq.

2.3 Solver

In a real-time setting the well-established Euler For-
ward solver is considered most suitable for time inte-
gration. As an explicit fixed step solver it guarantees a
limited number of calculations and thereby predictable
execution times. Moreover, it offers acceptable inac-
curacies near discontinuities [2]. If the system con-
tains any non-linear behavior, then iterative solvers
have to be employed for solving nonlinear equations.
As a matter of fact, this will lead to unpredictable exe-
cution time, which is not preferable in real-time simu-
lation. The execution time when applying an iterative
solver depends on the number of iterations needed for

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

539

the solution to converge. Setting up an upper bound
for the iteration number will be a work-around to en-
sure the predictable timing behavior, but such treat-
ment might induce numerical inaccuracies and needs
to be taken in to account carefully. Thus, the two cen-
tral issues in real-time simulation, timing behavior and
accuracy, are reflected by the ModelComparator and
RT-Profiler in this paper.

3 Comparing model variants

In many cases, several RTO techniques have to be ap-
plied on a compound model to finally meet the real-
time constraints. However, simulating in time is just
a necessary but not a sufficient condition for RT sim-
ulations, because simulation results with instabilities
or large deviation errors will not make any sense. So
after having performed several RTOs on a model, the
quality of simulation results has to be assured. This
can be done with the help of the ModelComparator
by comparing the simulation results between the orig-
inal and optimized models. Although many Modelica
simulation environments - like SimulationX, Dymola
and OpenModelica - already offer the functionality for
comparing results for variants, these are limited in that
all variants must be modeled and simulated in the same
framework. The ModelComparator has however sur-
mounted this limit and it is capable to compare re-
sults from different frameworks. If the new Functional
Mock-up Interface (FMI) [1] standard will be widely
adopted by Modelica tool providers for model export,
the ModelComparator can be further extended for di-
rect manipulation of the model on source code level.

Moreover, the ModelComparator helps the devel-
oper to make a choice between a model leaning more
towards the RT performance and a model leaning more
towards the accuracy in a concrete application context,
for instance, the anti-lock breaking system employed
in automotive industry may prefer a more rapid re-
sponse of the RT model for HIL testing.

The ModelComparator is an application that was
developed with Java in Eclipse IDE with GUI support,
its outputs are shown in Fig. 8 and 14. The user may
load different models and select for each of them vari-
ables that will be plotted and compared to each other.
As it allows users to handily modify the parameters
for simulation and solver settings via the GUI, it is
very useful when carrying out a parameter optimiza-
tion, too. Another feature of ModelComparator is to
automate series of simulations and analyze them wrt.
thresholds: The user may specify threshold values be-

fore starting the simulation that indicate in some sense
exceptional behavior. The ModelComparator filters
the results and directs the user conveniently to those
instances of a series of simulations where the values
are exceeding the threshold. Currently it supports ex-
ported model from SimulationX under Windows, but
the scope of environment support will be extended.

4 RT-Profiling for simulation models

The purpose of profiling in the context of real-time
simulation is two-folded: (1) RT-profiling is a means
to verify whether an optimized model satisfies its real-
time requirements and (2) RT-profiling shall allow a
detailed analysis to determine those parts of the model
causing the major portion of the computational load.
Thus, RT-profiling shall support the modeler to iden-
tify the primary candidates in further optimization and
verification steps. Hence a RT-profiler tailored to the
specific code structure of simulation models is pre-
ferred to general purpose profiling tools like prof [6].

The structure of the C code generated from simula-
tion models was analyzed and the concepts for instru-
menting the code for RT-profiling were introduced in
[12]. The profiling was performed on the proprietary C
code from SimulationX for the assessment of RT per-
formance on RT target SCALE-RT R© 5.1.4 [7]. How-
ever, the concepts can be transferred to other frame-
works by adopting the instrumentation accordingly.

In general, source code automatically generated
from simulation models has a flat structure for which
profiling, i.e. an statistical evaluation of call frequen-
cies and execution times of functions, seems to be suf-
ficient. A model commonly consists of an initializa-
tion and a simulation phase. Each phase is split into
global solver steps. In a global solver step a series of
integration steps are performed followed by the calcu-
lations of the output variables. To guarantee the timely
delivery of results, either a fixed step solver is em-
ployed or the number of iterations is limited1. Within
each part, external functions may be called. In case
the algebraic loops cannot be solved analytically, a lo-
cal solver will numerically compute the solution. So,
a global solver step can be described by:

• nI· integration steps

– eI· external function calls

– cI· additional calculations

– aI· (non-)linear blocks

1with the well-known consequences on accuracy

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

540

∗ eaI· external function calls
∗ caI· additional calculations

• 1 · output of variables

– eO· external function calls

– aO· additional calculations

To analyze the allocation of execution time within
a global step the profiling will measure the execu-
tion time for each (non-)linear block and each external
function call, as well as for each integration step as a
whole and the calculation of outputs. The values are
stored separately, and in a post processing step aver-
age, variance and the maximum, which is most impor-
tant for verification of hard real-time requirements, are
calculated.

4.1 RT-Profiling SimulationX models

The C code generated by SimulationX from a simu-
lation model is instrumented in a post processing step
as follows: Whenever entering or leaving a function
or block a time stamp is recorded and a counter is in-
cremented. As the generated C code is well structured,
automation of code instrumentation is straightforward.
After determining the tokens at which instrumentation
has to be placed, template-based code transformation
can be realized easily. We used ANTLR [9] and cc65
[13] as two alternatives for this tasks.

4.2 Implementation on a RT Target

Whereas in [12] version 4.1.2 of Scale-RT was used,
we now have moved to the current version Scale-RT
5.1.4 which offers improved support for simulation
models by providing a framework that automatically
embeds a model in a kernel module that iterates the
global solver steps. It was already observed in [12]
that storing and evaluating the profiling data signifi-
cantly contributes to execution time. Thus it should
not be done by the task executing the model in the
Scale-RT real-time kernel, but by a task running in the
(non-real-time) user space. Consequently, we applied
the producer-consumer pattern and implemented the
profiling as two task communicating via a FIFO-buffer
(see Figure 1).

For each global solver step of the model, the profil-
ing methods record the following information:

• execution time and frequency of an integration
step

• execution time and frequency of each external
function call within the integration step that does
not reside inside a (non-)linear block

• execution time and number of loops of each (non-
)linear block within the integration step

• execution time and frequency of each external
function call within each (non-)linear block

• execution time of outputting variables at the end
of the current step

4.3 RT-profiling OpenModelica models

The OpenModelica implementation of the code in-
strumentation was done in the compiler itself, with
only slight modifications. The instrumentation is per-
formed by compiling a model with a preprocessor
macro set, and running the executable with the time
measurement flag. The time measurement uses the
real-time clock available on the platform used. All
measurements are accumulated using integer math and
output at each time step.

The code runs on all platforms supported by Open-
Modelica and is not limited to RT systems. Profiling
is of general interest because small changes to a model
may have a large impact on the simulation time. By
providing a profiler to both developers and users of a
simulation tool, performance issues can more easily be
discovered. As a result it should be easier to improve
the quality of the tool. By observing the output of the
profiler, you can see that in the SimpleNonLinear ex-
ample (Listing 1), sin(x) will be called 3 times in
each time step. While it is possible to determine the
value of x during compile-time or initialization, Open-
Modelica does not yet perform these optimizations.

Listing 1: Simple non-linear equation

c l a s s SimpleNonLinear
Rea l x = cos (x) ;

end SimpleNonLinear ;

The profiling also works for any user-defined func-
tion that is called. In the ArrayCall example (List-
ing 2), tenCos is called 10 times because arrays were
not handled properly by the compiler in this case. This
means cos is called 102 times in every timestep. If the
function is inlined, cos is only called 10 times instead.

Listing 2: Binding equation is an array

c l a s s A r r a y C a l l
f u n c t i o n t enCos

input Real r ;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

541

Realtime Linux

Kernel Space (RTAI-API) User Space

Source code

Model
(Kernel module)

Realtime Task

User Space
Application

data exchange

Buffer

Hard Drive

data storage

FIFO

Figure 1: Communication between user task and model task

output Real a r r a y [1 0] ;
a lgor i thm

a r r a y := cos (r ∗ (1 . 0 : 1 0 . 0)) ;
end t enCos ;

Rea l x [1 0] = tenCos (t ime) ;
end A r r a y C a l l ;

The output only contains the number of the equa-
tion blocks and names of functions. In the future, this
information will be augmented with the names of vari-
ables defined by the block and the line numbers where
those variables originate from. It is also of interest to
add the lines of the equations involved in solving the
block since it is hard for a user to understand which of
his equations caused a particular error. This is related
to the general problem of bug localization in debug-
ging equation-based models [10].

Much of this information is present in the Open-
Modelica backend, but only part of it is present in the
generated code. Once the information is present in the
code, the runtime system should be able to generate a
detailed report. In the code generated by SimulationX
information is present as well, however, it would be
the task of the instrumentation to extract and relate it
to the profiling results.

4.4 Mapping Profiling Results to Model Posi-
tions

Furthermore, additional work is planned for improving
the final report that the profiling gives. For example,
when displaying the time spent in a non-linear system
of equations, the tool should also report the variables
involved, what line of code they are defined in. When
possible, the tool should also display the line numbers
where the original equations were defined.

Much of this information is already available in the

OpenModelica Compiler backend but is not yet propa-
gated all the way into the source code. In the code gen-
erated by SimulationX information is present as well,
however, it would be the task of the instrumentation to
extract and relate it to the profiling results. Adding this
information as part of the runtime environment is also
of a more general interest to a user since it is hard for a
modeler to try and understand which of the equations
caused a particular runtime error.

This is related to the general problem of bug local-
ization in debugging equation-based models [10].

5 Case Studies

The case studies presented in this section are going
to show the procedures of carrying out RTO on orig-
inal models, testing model RT performance and vali-
dating the optimized models with facilities from RT-
Profiler and ModelComparator. It is also shown here
how the results from RT-Profiler can guide developers
to perform adaptations on design model for a better
RT performance. However, the design, modeling and
code exporting phases from physical dynamic systems
to RT models are not covered in this paper.

5.1 Case 1: Electric circuit with saturating
inductors

The first case is a simple electric circuit with inductors
showing non-linear behaviors (due to the saturation
effect of ferromagnetic materials): It is taken a vari-
ant of the basic components from the Modelica Stan-
dard Library 2.2.1 [4]. The saturation of an inductor is
approximately described by a non-linear function re-
lating the actual inductance with the changes in drive
current. The Modelica model is shown graphically in
Figure 2, where A and B are the observation points.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

542

Figure 2: Simple circuit with saturating inductors

5.1.1 System Description

In this model, a time-dependent sinusoidal voltage
source E and two nonlinear inductors SatIn1 and
SatIn2 are connected in series. By providing the nec-
essary parameters, e.g. nominal inductance Lnom, nom-
inal current Inom, inductance near zero current Lzer and
inductance at large current Lin f , the actual inductance
Lact can be calculated via Lact = f (I(t)), where I(t) is
the current flowing through the inductor, f : R 7→ R is
a nonlinear mapping. From Maxwell Equations it is
known that the magnetic flux Φ(1) and Φ(2) of the two
inductors can be computed through:

Φ
(1) = L(1)

act · I1 = f (1)(I1) · I1

Φ
(2) = L(2)

act · I2 = f (2)(I2) · I2

After manually performing an electric circuit analysis,
the following DAEs are obtained:

VA = E Voltage of the source (5.1a)

VA =V1 +V2 (5.1b)

V1 = der(Φ(1)) = der(f (1)(I1) · I1) (5.1c)

V2 = der(Φ(2)) = der(f (2)(I2) · I2) (5.1d)

I1 = I2 (5.1e)

5.1.2 Nonlinearity of the System

The DAE system (5.1) contains highly nonlinear be-
haviors due to the relation between voltage and current
within the saturating inductors. Moreover, the alge-
braic constraint on V1 and V2 forces the system to stay
as a holistic system. In order to solve this monolithic
(non)linear block, a numerical solver has to be called
iteratively, which leads to excessive and indetermin-
istic computation time. A workaround to handle the
non-determinism is to limit the maximal number of it-
erations, but this will sometimes lead to numerical in-
stability. However, the main issue is that it depends

on the tool whether such a workaround is possible or
not. So the timing behavior for solving the (non)linear
block are of a great interest in RT profiling.

Applying the profiling tool on the model in SCALE-
RT 5.1.4 [7] real-time environment yields the results
given in the following figure:

Figure 3: Workload in global steps

It is noticed from Figure 3 that the model runtime
of a global solver step is dominated by the number of
integration steps and the execution time of each inte-
gration step. In this RT simulation, the 10 integration
steps contribute more than 97% of the total work load.
The time for each integration, 24.2562 µs, is taken as
an average of 10 second simulation results. Time for
outputs, 0.1465 µs,is relatively small in this case and
the overhead caused by auxiliary operations, 6.9579
µs, is small as well. Time for outputs and overhead
are also averages of all measured results.

An insight of the workload in each integration step
can be achieved by tracing down to the generated
source code and through results from the profiling re-
sults of each integration step. This is given in Fig-
ure 4:

The average execution time for the nonlinear block
is 3.7001 µs and in each integration step the non-
linear solver is called 4.4281 times on the average,
so the total time for solving the nonlinear equations
is τtot_non = 16.3844 µs. There still exists a linear
system after the solution of the nonlinear one is ob-
tained, which is also solved iteratively. The average
execution time and the number of loops are 3,5555 µs
and 1.999 times, respectively, in each integration step,
which leads to a total time τtot_lin = 7.1106 µs. Com-
pared to the total time for solving nonlinear equations,
τtot_lin is less than half of τtot_non. Thus, the monolithic

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

543

Figure 4: Workload in integration steps

(non)linear block might be a candidate of bottlenecks
in the RT model and needs to be dealt with.

5.1.3 RTO by Introducing Capacities

As described above, the nonlinearity of the original
system causes computationally expensive algebraic
loops during the integration steps. The execution times
for solving the (non)linear blocks are more significant
than those for other operations. In order to break down
the large nonlinear system into smaller subsystems, a
capacitor can be introduced into the original system as
illustrated in Figure 5. As a result, the original DAE

Figure 5: Optimized simple circuit

system (5.1) is transformed as follows:

VA = E (5.2a)

VA =V1 +VC (5.2b)

V1 = der(Φ(1)) = der(f (1)(I1) · I1) (5.2c)

IC =C ·der(VC) (5.2d)

I1 = I2 + IC (5.2e)

V2 =VC (5.2f)

V2 = der(Φ(2)) = der(f (2)(I2) · I2) (5.2g)

Now the voltage V1 is directly related to the voltage
VC of the capacitor C instead of voltage V2. A conse-
quence of this transformation is the decoupling of the
dependency between V1 and V2. Thus, the equation
system in (5.2) is now decomposed into two smaller
subsystems. The profiling results of this decomposed
system are shown below.

Figure 6: Workload in global steps (optimized)

The results show a decrease of overall runtime in
each global step of about 30% workload compared to
the original model. The number of integration steps
is still 10, but now with 16.9406 µs average , and to-
gether they contribute about 95% of the total work-
load. The overhead has increased to 9.0531 µs and the
calculation of outputs remains almost the same 0.1433
µs as given in Figure 6

To check whether the reason for the runtime im-
provement is the decoupling of algebraic loops, an
analysis of the underlying integration steps has been
carried out in Figure 7.
From the automatically generated source code it also
can be seen there are two nonlinear subsystems. When
solving these two nonlinear subsystems, each takes
5.9968 loops and each has execution times of 1.3746

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

544

Figure 7: Workload in integration steps (optimized)

µs and 1.3317 µs. Summing them up, the total time
for solving the first nonlinear block is τ1

tot_non = 8.2432
µs, while the total time for solving the second nonlin-
ear block is τ2

tot_non = 7.9859 µs. Comparing these
results with the ones shown in Figure 4, although the
decoupling of the original system leads to two nonlin-
ear subsystems, which require more iterations, these
subsystems are usually easier and more efficiently to
be solved. The final effect is an improvement of RT
performance.

5.1.4 Deviation Analysis

A side effect of this RTO that introduces a capacitor is
an unwanted oscillation which can be observed for in-
stance at VB. This is because of the nature of capacitor
inside a dynamic electric circuit, which is described as
a differential equation in (5.2d). Nevertheless, these
oscillating errors are so small that it makes almost no
difference to the results as it can be seen from the
screenshot of the ModelComparator Figure 8.

5.2 Case 2: Nonlinear Thermal Resistor Cir-
cuit

An analogue to electric circuit in heat transfer con-
text is a thermal circuit. Consequently the heat flow,
temperature, thermal resistance, thermal capacity and
temperature source are represented respectively by the
current, voltage, resistor, capacitor and voltage source
in a thermal circuit. However, any components in a
thermal circuit might show nonlinear behaviors. In
this case study, the nonlinearities of two thermal re-
sistors are considered.

Figure 8: Error oscillations of VB

5.2.1 Case Description

In the thermal circuit given in Figure 9, there are
two temperature sources (T1 and T2) providing out-
put temperature consisting of constant offset temper-
atures and small pure sinusoidal perturbations Tout =
T + sin(t). Thermal resistances of the resistors (R1
and R2) are nonlinear functions of the temperature
R = f (T), where f : Rd 7→ R,d ∈ N is a nonlinear
mapping. For instance, the positive temperature co-
efficient (PTC) and negative temperature coefficient
(NTC) thermistor, R = f (T) is an expected physical
behavior.

Figure 9: Thermal Circuit with nonlinear resistors

In order to calculate temperature TA at point A,
the following purely algebraic equations have to be
solved:

q =
T1−T2

R1 +R2
(5.3a)

q =
T1−TA

R1
or q =

TA−T2

R2
(5.3b)

where q is the heat flow, TA is the temperature at point
A, R1 = f (T1,TA) and R2 = f (T2,TA) are the equivalent
thermal resistances of the two resistors. As (5.3) forms
a nonlinear equation, algebraic loops are expected in
each integration step. The profiling results performed
on the code executed on SCALE-RT are given in Fig-
ure 10.

The average number of integration steps of a global
step is 99.9021 and the average execution time per in-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

545

Figure 10: Workload in global steps

tegration is 12.2722 µs. Due to the ascent of the num-
ber of integrations per global step, the accumulated
overhead has a value of 39.4660 µs. At each global
step a calculation of outputs is performed and it takes
0.1574 µs, which is negligible compared to the aver-
age runtime 1266 µs in a global step. From these re-
sults, it is obviously to recognize that if a reduction
can be achieved on the execution times or number of
the integration steps, the RT performance will be en-
hanced significantly. A detailed view of the workload
contribution in every integration step is given in Fig-
ure 11. The data in this figure further stresses the fact
that the time for solving the nonlinear problem is the
bottleneck of this model, which needs be handled for
RT purpose.

Figure 11: Workload in integration steps

Figure 12: Optimized thermal circuit

5.2.2 RTO by Introducing Capacities

After introducing a thermal capacitor to the original
thermal circuit, a decoupling of thermal resistances R1
and R2 is obtained Figure 12. Now the temperature
at point A can be substituted by the temperature of the
capacitor C instead of solving the underlying nonlin-
ear equation. Assuming C.T, C.C, C.α and C.q are
temperature, thermal capacity, thermal coefficient and
heat flow of the capacitor C. q1 and q2 are heat flows in
R1 and R2. Amb.T is the temperature of the surround-
ing ambiance. Then we have:

TA =C.T (5.4a)

R1 = f (T1,TA) (5.4b)

R2 = f (T2,TA) (5.4c)

q =
T1−T2

R1 +R2
(5.4d)

q1 =
T1−TA

R1
(5.4e)

q2 =
TA−T2

R2
(5.4f)

C.q = q1−q2 (5.4g)

C.C ·der(C.T) =C.q−C.α(Amb.T −C.T) (5.4h)

The calculation here is pretty straightforward and no
algebraic loops should be observed during a RT sim-
ulation, so a performance improvement should be ex-
pected. This is proved by the profiling results, since no
algebraic loop inside integration steps has been mea-
sured. Instead of breaking up the algebraic loops into
small ones as shown in section 5.1, the formal exist-
ing algebraic loops have been completely eliminated.
Although the number of integration steps remains the
same as in the original model, the execution time has
been drastically reduced to 1.7042 µs. So the average
computation time for a global step has been reduced to
219.6088 µs, which can be seen as a triumph of opti-
mizations, see Figure 13.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

546

Figure 13: Workload in global steps (optimized)

5.2.3 Deviation Analysis

Model optimizations by introducing an element with
some capacity is a good idea to break up the algebraic
loops. But as shown in 5.1, one should be cautious
when applying this technique on a model. If the time
constant of the capacity is less than the integration step
size, this will cause instability in a system. Unlike in
case 1, where the voltage between those two inductors
depends on the time derivatives of the current flowing
through, here the thermal resistance R is just a func-
tion of the temperature. Hence R can be calculated
directly from C.T. The following figure gives the com-
parison of the temperature TA from original and opti-
mized models.

Figure 14: Error oscillations of TA

As it is shown in the lower diagram, a small time
shift of the solution TA is observed in Figure 14, which
causes the error in this case, but still in an acceptable
range.

Acknowledgement

The work of the 3d and 4th authors was par-
tially funded by the Federal Ministry of Education
and Research (BMBF), Germany, in the projects
TEMO (grant 01|S08013C) and OPENPROD (grant
01|S09029D).

We are thankful to Adina Aniculaesei and Mark
Wessel for implementation support.

6 Conclusion

Adapting simulation models for execution in a real-
time context is often a complex task that requires two-
folded verification. First, accuracy of the results ob-
tained with an optimized model and its stability have
to be proven. Second, it has to be shown that the
real-time constraints are met and if not, which are the
most promising parts for further improvements. We
presented two tools, a ModelComparator and the RT-
Profiling, to support the developer with these tasks and
illustrated their usage in two small case studies.

However, an open issue is how to relate the verifi-
cation results from both, model comparison and RT-
Profiling, back to the variables and equations of the
optimized model. To solve this issue will be a pre-
condition to enable real-time adaptation of models of
another scale of complexity.

References

[1] MODELISAR (ITEA 2 07006). Functional
Mock-up Interface for Model Exchange, January
26 2010.

[2] T. Blochwitz and T. Beutlich. Real-Time Sim-
ulation of Modelica-based Models. In Proc. 7th
Modelica Conference, pages 386–392. The Mod-
elica Association, 2009.

[3] F. Casella. Exploiting Weak Dynamic Interac-
tions in Modelica. In Proc. 4th Modelica Confer-
ence, pages 97–103. The Modelica Association,
2005.

[4] C. Clauß and A. Schneider. Modelica Standard
Library 2.2.1, 2007.

[5] W.H.A. Schilders et al. Model Order Reduction.
Springer Verlag, 2008.

[6] S. Graham, P. Kessler, and M. McKusick. An
Execution Profiler for Modular Programs. In

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

547

Software - Practice and Experience, volume 13,
pages 671–685, 1991.

[7] Cosateq GmbH & Co. KG. Scale-RT, 2010.

[8] A.K. Noor. Recent advances and applications of
reduction methods. Appl. Mech. Rev., 1994.

[9] Terence Parr. ANTLR, 2010.

[10] A. Pop, D. Akhvlediani, and P. Fritzson. To-
wards Run-time Debugging of Equation-based
Object-oriented Languages. In Proceedings of
the 48th Scandinavian Conference on Simulation
and Modeling (SIMS’ 2007), 2007. Göteborg,
Sweden. October 30-31.

[11] A. Schiela and H. Olsson. Mixed-mode Inte-
gration for Real-Time Simulation. In Modelica
Workshop 2000 Proceedings, pages 69–75. The
Modelica Association, 2000.

[12] C. Schulze, M. Huhn, and M. Schüler. Pro-
filing of Modelica Real-time Models. In
3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools
(EOOLT), pages 23–32. Linköping Electronic
Conference Proceedings, 2010.

[13] Ullrich von Bassewitz. cc65, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

548

High-speed train pneumatic braking system

with wheel-slide protection device :

A modelling application from system design to HIL testing

Lionel Belmon, Chen Liu

Global Crown Technology

Lanchoumingzuo Plaza, Chaoyangmenwai Avenue, Beijing, China

lionel.belmon@globalcrown.com.cn, chenl@globalcrown,com.cn

Abstract

Train pneumatic brakes are part of a train safety

system, and are thus critical components. This paper

illustrates how modeling can be applied to efficiently

design such system, from requirement definition to

HIL testing. The valves modeling is discussed along

with the system level model. Moreover, in order to

study the wheel-slide protection device, a model of

the wheel-rail interface has been developed.

The contact model, written in Modelica, has been

validated against measurement for different condi-

tions of contact (dry, wet…). The model is fully pa-

rametric and allows testing of various adherences.

Finally, the resulting system composed of pneu-

matic valves, wheel-rail interface and rolling-stock is

exported through c-code for integration into a HIL

system, providing an efficient test platform for the

electronic Brake Control Unit.

High speed train; braking ; adherence; pneumatic

1 Introduction

High speed train is under major development in

China and a lot of interest is put on the design of

subsystems. In particular the pneumatic braking sys-

tem, which is used for instance in emergency braking,

is a critical safety system. Much attention and efforts

are dedicated to the robustness and reliability of this

system, especially regarding its performance for

braking distance.

We introduce the main components of the brak-

ing system in Figure 1. The compressor system and

the emergency circuit have been omitted of the fig-

ure.

Figure 1 : Simplified schematic of pneumatic brakes [3]

The pressure is supplied by a large air tank. An

electro-pneumatic valve (EPV) adjusts the control

pressure for the flow amplifier. The flow amplifier

valves will work in such a way that the downstream

pressure is maintained at the input control pressure.

The EPV output pressure is directly controlled by the

Brake Control Unit (BCU) and depends on the brak-

ing level request.

The Wheel Slide Protection Device (WSP) con-

sists of a set of antiskid valves. These valves are con-

trolled by the BCU in such a way that, when wheel

speed is decreasing too fast, the valves modulate

brake pressure and prevent wheel blocking.

Besides this basic working principle, an emergen-

cy circuit is also available for emergency braking.

This circuit has different components and functions

but we will focus in this paper on the main braking

circuit.

We will now introduce how modeling and simu-

lation supports the design process. We choose the

Modelica platform SimulationX
®
 for its convenient

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

549

mailto:lionel.belmon@globalcrown.com.cn
mailto:chenl@globalcrown,com.cn

pneumatic and mechanical libraries. We should also

mention the SimulationX
®

TypeDesigner tool in

which has been quite useful in developing new mod-

els in Modelica.

2 Sizing and target pressure

The first step in the design process is to size the sys-

tem and define subsystems requirements. The EP

brake designer will receive as input requirement a

target deceleration at a given speed, as shown in Fig-

ure 2.

Figure 2 : target train deceleration as a function of

speed

The braking force in the train comes partly from the

electrodynamic braking but needs to be comple-

mented in certain case by the pneumatic braking sys-

tem.

Simulation is used at this stage in order to determine

the target pressure that the pneumatic brake system

should apply to brake cylinders. The model created

is a simple model of the rolling-stock, taking into

account mass of the cars, rotary inertia of the wheel-

sets, frictions (aerodynamic…) and electrodynamic

brake torque. The brakes model are also simplified

but take into account some specific friction effects

described later in section 3.4.

The model applies inverse computation in Simula-

tionX
®

in order to determine a target pressure to

reach the requested deceleration as a function of

speed.

The process is illustrated in the Figure 3 and some

example of results are provided in Figure 4. The ef-

fect of the speed-dependent brake friction coefficient

can be clearly seen between in the range [0-100]

km/h.

Figure 3 : Target pressure computation

Figure 4 : Computed target brake pressure

The possibility to do inverse computation makes this

sizing step smoother and easier to handle.

3 Components & Valves modeling

Once a target pressure is defined as a function of

speed and deceleration, detailed design can start. We

introduce in this part models that are used by valves

designers.

3.1 Pneumatic model - generalities

The gas properties for air are considered as ideal gas,

this model holds since the system works at pressure

below 10 bar, around room temperature.

Volumes are lumped volumes using mass and energy

balance to compute the pressure and temperature

derivatives in a pretty much conventional fashion.

Flow models for orifices are based on geometrical

flow area and a flow coefficient. Sonic flow is ac-

counted for when a given critical pressure ratio is

reached.

3.2 Valve models

We will only detail the Electro-Pneumatic Valve

(EPV) model, other models being similar. We intro-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

550

duce the basic working principle of the EPV in Fig-

ure 5.

Figure 5 : EPV working principle

The solenoid current is used to adjust the control

pressure applied in the brake calipers. The modeling

of the solenoid is discussed in the next part.

The model considers 2 moving bodies inside the

valve. For each moving body the forces of springs

and of pressure areas are taken into account. Sealing

friction can also be accounted for but can be usually

neglected.

The relative position of each bodies determines the

opening of the flow areas of the valve, connecting

the inlet pressure to the control pressure or control

pressure to exhaust. The variable flow area is defined

by an expression for the orifice area as a function of

the bodies position. This is achieved through an ori-

fice with time dependent parameter for its area. The

time dependent parameters in SimulationX
®
 is quite a

convenient feature because of the great flexibility it

gives to any component. For a flapper nozzle valve,

as found in the EPV, the flow area can be written as :

 ,

where D is the seat diameter.

 The resulting model structure is provided in Figure

6. The solenoid model is discussed in the next sec-

tion.

Figure 6 : EVP model structure

For pneumatic valves, it is also common to find de-

signs with membranes. Membranes are modeled as

pistons with variable effective area for the pressure

force. The effective area is computed from the mem-

brane volume variation by the equation :

 ,

Where V(x) is the membrane volume and Aeff is the

effective area of the piston.

We illustrate, in Figure 7, a key output for the EPV

model : the curve giving the control pressure as a

function of the current. The curve is computed with a

current ramp starting at 0 and going down to 0, we

can notice that the hysteresis of the output pressure is

predicted.

Figure 7 : EPV characteristic curve (Current/Pressure)

The detailed valve model presented helps designers

define flow areas, geometries, springs properties,

assess valve stability, and assess flow performance

along with pressure regulation performance. These

models are a key tool to achieve successful designs

of such valves.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

551

3.3 Solenoid model

The Solenoid is modeled by the use of a 2D table

giving the force as a function of airgap and current:

The table is directly implemented into the model de-

scribed in Figure 8. The data to feed the table can be

obtained from experiments or from FEA analysis. A

more detailed model, for design purpose of the sole-

noid, can be done using 1D lumped magenetic ele-

ment and FEM analysis for the reluctance of airgaps,

as shown in Figure 9. It is also possible to include

thermal simulation in this part and verify that the

solenoid temperature remains in acceptable ranges.

Figure 8 : EPV Solenoid model in SimulationX

Figure 9 : Detail of a FEM analysis for a solenoid airgap, flux

density and flux lines

Figure 10 : Solenoid force, as a function of airgap [mm]

and current [N]

3.4 Calipers and brake model

The calipers mechanical system consists of brake

cylinder connected to the brake pads through a lever

system, as shown in Figure 12. The corresponding

model is shown in Figure 12.

Figure 11 : Schematic of brake caliper

Figure 12 : brake cylinder – brake caliper mechanism

For the brake pad contact and brake torque, we use

the following equation:

 [N],

where T is the brake torque, R the mean application

radius, the friction coefficient between the

brake pad and the disk, as a function of the relative

speed and the normal applied on the brake

pad and disk. The variable friction coefficient as a

function of speed needs also to be taken into account

in the initial sizing step (part 2 of this paper) of the

braking system, since it will modify the required tar-

get pressure.

4 Wheel-rail interface

The wheel-rail interface is an important part for

simulating the Wheel Slide Protection device (WSP).

The role of the WSP is to prevent wheel slide under

all conditions. The properties of the rail contact have

a major impact on the wheel adherence and on the

WSP behavior. For this reason, we need to create a

model of the wheel-rail interface.

An important output of the wheel-rail contact model

is the creep relationship with creep force. Creep is

defined as the relative slip between the wheel and the

rail, creep force is the resulting force opposed to the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

552

direction of motion. Typical curves are provided in

Figure 15.

4.1 Summary of the contact theory

We introduce in Figure 13 the overall geometry

of the rail-wheel contact problem. The Hertz theory

is applied and provides a solution for the contact

patch between rail and wheel. The contact patch is an

ellipse of semi-axes a and b, as shown in Figure 14.

Figure 13 : Wheel-rail geometry

Figure 14 : contact patch geometry

The Hertz theory gives also a formula giving a rela-

tion for the semi-axes a and b :

 ,

where [N] is the normal force, [Pa] the Young

modulus of each body, the Poisson ratios and

the curvature radius at the contact point. The tangen-

tial force is computed according to the model

proposed in [9] which applies Kalker’s linear theory

and provides :

 ,

where is a variable friction coefficient computed

as :

 ,

with , A, B, being parameters of the model

and being the total creep velocity between rail and

wheel.

The proposed creep force model has only 5 parame-

ters that need to be identified on measurement. This

model have the advantage of being able to cover ac-

curately small creep and large creep conditions,

while being able to account for train velocity and

different rail-wheel interface conditions (ice, rain,

leaves, dry…).

The main output of interest of the model is the

creep force curve, as shown in Figure 15.

Figure 15 : Classical creep force / creep curves

4.2 Model implementation in Modelica

The model proposed described in 4.1 is implemented

into Modelica through the help of the TypeDesigner

in SimulationX
®
. The model extends a rotary inertia

element and represents a wheelset accounting for the

wheel-rail interface. We introduce the resulting icon

with 1 rotary mechanical connection in Figure 16.

Figure 16 : Wheelset model in SimulationX®.

4.3 Validation of rail-wheel contact model

Implementation validation and parameters identifica-

tion of the wheel-rail contact are done using mea-

surements from [9] , [10], [12], [13], [14].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

553

Figure 17 : Comparison of results from [9] with the modelica
implementation, Siemens locomotive S252 (dry, v=30km/h)

Figure 18 : Comparison of results from [9] with the
modelica implementation, Bombardier locomotive 12X
(wet, V=20 and 60 km/h)

We provide also an example of creep curves for 2

different cars under heavy rain. The front car has a

reduced adherence coefficient compared to car in the

middle of the train. We illustrate this effect in Figure

19.

Figure 19 : adherence coefficient at 300km/h under

heavy rain, comparison of front car and car 4.

The maximum adherence coefficients provided in

Figure 19 are consistent with the measurement on a

Japanese Shinkansen from [10], which gives values

around 0.02 for the front car and 0.05 for the car 4.

Overall, parameters for the following conditions

were identified :

 Dry – high adherence

 Dry – medium adherence

 Dry – contaminated surface

 Water/rain (multiple cars)

 Oil film

 Fallen leaves residues

The model being parametric, the user can also pro-

vide his values for the 5 relevant parameters.

Integrating the wheel-rail contact inside our pneu-

matic and mechanical model has several advantages

over using a full-blown 3D multi-body specialized

rail dynamics simulation package. The first advan-

tage is that there is no need for tool couplings or

model import/export. The other advantage is that we

obtain a very high performance in terms of simula-

tion time, with the possibility to easily integrate our

complete model into a HIL simulator.

5 Wheel Skid Protection device

With the availability of a predictive wheel-rail con-

tact model, it is possible to perform design and anal-

ysis of the Wheel Skid Protection (WSP) device. The

device consists of a set of valves piloted by an elec-

tronic controller. These valves modulates pressure in

order to maintain brake torque but without wheel

blocking. Each wheelset is equipped with a WSP,

requiring 2 valves by wheelset. One valve is used to

close pressure input port, the second valve is used for

venting the cylinder to exhaust if necessary. The

valves are controlled by the BCU control logic. We

show the WSP valve block model in Figure 20.

Figure 20 : WSP valve block model structure

We introduce some example of WSP action under

heavy rain in Figure 21.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

554

Figure 21 : WSP in action at 300km/h under heavy rain,

modulation of brake pressure

The pneumatic model coupled with the wheelset

model is used to assess the robustness of the WSP

device and optimize the control algorithm, balancing

wheel-slide protection and braking distance. The

models introduced in this section provide mechanical

and control designers with a valuable simulation tool

for achieving robust and reliable performance.

6 Rolling-stock

The rolling-stock is considered as one mass, or

several masses linked together through non-linear

spring-dampers. Rolling-stock models needs to ac-

count for aerodynamic friction, rolling friction and

dry friction. These are implemented as additional

forces depending on train velocity.

The system we consider in this article does not

use an air-spring load sensing system. If this was the

case, a simplified 3D mechanical model of the roll-

ing-stock could be created in order to assess the air-

spring pressure during braking.

7 System modeling and HIL simula-

tion

7.1 System model on the laptop

The models developed previously are integrated into

a system model :

 Compressors and feed lines

 pneumatic tanks, main valves, pipes

 WSP valves

 brakes model

 wheelset with wheel rail contact

 rolling-stock (car)

The system model on the laptop can be used for a

MIL (Model In the Loop) step to design the control

strategy. It can be used to assess the performance of

the Wheel Slide Protection (WSP) device before an

actual hardware implementation. The WSP device

should insure that the wheel cannot be blocked dur-

ing braking by modulating the caliper pressure but

also maintaining a short braking distance as stipu-

lated by safety regulations (<3000m at 250 km/h for

instance).

Multiple configurations can be evaluated and tested

very efficiently, including fault and failure simula-

tions on a complete train composed of 8 to 16 cars.

7.2 Real time model

Besides the need for laptop simulation, it is also

possible to use the models to test the controller

hardware in a HIL simulator. To achieve this, we

need real-time capable models, which will be differ-

ent than the detailed design models.

The real-time models for components and valves are

developed and integrated into a real-time system lev-

el model. The model is tested off-line with a fixed

step solver and its accuracy is compared with the

detailed model developed previously. Numerical sta-

bility of the solution is achieved around 1e-3 [s] time

step, while maintaining a safe margin for CPU time

compared to real-time.

7.3 C-code export and HIL simulator

The model can then be exported for the HIL simula-

tor that is used to develop and test the Brake Control

Unit. SimulationX c-code export is used. The c-code

can be either integrated into a s-function for Simu-

link and used then for exporting with RTW, but it is

also possible to directly export the model for a given

real-time target such as a dSpace system, a NI Veris-

tand system or a Cosateq Scale-RT based system.

Depending on the cases and requirements, it is poss-

ible to interface the input/output cards of the HIL

simulator directly inside the SimulationX model, us-

ing a I/O boards library.

8 Conclusions

A methodology for developing and testing high-

speed train pneumatic braking system has been dem-

onstrated. The existing modelica tools have been

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

555

extended with a wheel-rail contact model in order to

simulate the wheel-slide protection device.

The proposed tool can then cover needs from siz-

ing and requirements definition, detailed component

design down to HIL simulation for control validation

and testing.

References

[1] Analysis of the Braking System of the Korean

High-Speed Train Using Real-time Simulations,

Chul-Goo Kang, Journal of Mechanical Science

and Technology 21, 1048-1057, 2008

[2] Method of Analysis for Determining the Coupler

Forces and Longitudinal Motion of a Long

Freight Train in Over-the-Road Operation, G. C.

Martin, W. W. Hay, Civil Engineering Studies,

transportation Series No.2, June 1967

[3] Braking Systems - Railway Technology Today 7,

Izumi Hasegawa, Seigo Uchida, Japan Railway &

Transport Review 20, June 1999

[4] Modeling the longitudinal dynamics of long

freight trains during the braking phase, Luca Pugi,

Duccio Fioravanti, Andrea Rindi, 12th IFToMM

World Congress, Besancon (France), June18-21,

2007

[5] Investigation of the dynamics of railway bogies

subjected to traction / braking torque, Yunendar

Aryo Handoko, Centre for Railway Engineering,

Central Queensland University, Australia, Sept.

2006

[6] A Fast Wheel-Rail Forces Calculation Computer

Code, Oldrich Polach

[7] Railroad vehicle dynamics: a computational ap-

proach, Ahmed A. Shabana, Khaled E. Zaazaa,

Hiroyuki Sugiyama, CRC Press, 2008

[8] Modelling and model validation of heavy-haul

trains equipped with electronically controlled

pneumatic brake systems, M.Chou, X. Xia, C.

Kayser, Control Engineering Practice 15, 2007

[9] Creep forces in simulations of traction vehicles

running on adhesion limit, O. Polach, Wear 258,

2005

[10] Measurement and analysis of adhesion pheno-

mena in high speed train, Masanobu Nankyo,

Shin-ichi Nakazawa, Proceedings of IMECE2008,

IMECE2008-66455, 2008

[11] Brake Technology Handbook, Bert Breuer, Karl-

heinz H. Bill, 2006

[12] Adherence en freinage et anti-enrayeurs, docu-

ment technique DT257, M.Boiteux, M.Cadier,

J.King, W. Kunes, office de recherche et d’essai

de l’Union International des Chemins de fer, 1992.

[13] Effect of oil and water mixtures on adhesion in

the wheel/rail contact, R. Lewis, E A Gallardo-

Hernandez, Proc. ImechE vol 223 Part F, p 275

[14] The “leaves on the line” problem – a study of leaf

residue film formation and lubricity under labora-

tory test conditions, P.M. Cann, Tribology letters,

Vol. 24, No2, Nov 2006

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

556

An Advanced Environment for Hybrid Modeling
and Parameter Identification of Biological Systems

Sabrina Proß Bernhard Bachmann
University of Applied Sciences Bielefeld

Am Stadtholz 24, 33609 Bielefeld, Germany
http://www.fh-bielefeld.de/ammo

Abstract

Biological systems are often very complex so that an
appropriate formalism is needed for modeling their
behavior. Hybrid Petri nets, consisting of time-
discrete as well as continuous Petri net elements,
have proven to be ideal. This formalism was imple-
mented based on the Modelica language. Several
Petri net components are structured within an ad-
vanced Petri net library. A special sub-library con-
tains so-called wrappers for specific biological reac-
tions to simplify the modeling procedure.
The Petri net models developed with the Dymola
tool can be connected to Matlab Simulink to use all
the Matlab power for parameter identification, sensi-
tivity analysis and stochastic simulation.
This paper illustrates the usage of the Petri net li-
brary, the coupling to Matlab Simulink and further
processing of the simulation results with algorithms
in Matlab. In addition, the application is demonstrat-
ed by modeling the metabolism of Chinese Hamster
Ovary Cells.
Keywords: Biological Systems; Petri nets; Parame-
ter Identification

1 Introduction

The procedure of modeling and simulation is dis-
played in Figure 1. The beginning of the process is
founded by a set of objectives and purposes which
are translated together with current knowledge of the
system into a list of specific hypotheses.
The next stage is to find a formalism which can
model the defined hypotheses by specific mathemat-
ical equations. The modeling of biological systems
demand often a combination of continuous and dis-
crete equations, a differential equation system sole is
often not sufficient. Examples are gene regulation
and processes where the organism switches from
substance production to consumption or vice versa
when special environmental conditions occur. This

kind of process takes place within the metabolism of
Chinese Hamster Ovary Cells (CHO-Cells) which
switches from lactate and ammonium production to
consumption after a specific change of environmen-
tal conditions. In addition, the antibody production
starts only when special environmental conditions
occur. The concrete mechanism is part of section 5.

Figure 1: The modeling procedure

The hybrid Petri net concept, consisting time-
discrete as well as continuous Petri net elements,
fulfills all the required biological conditions and is
thusly applicable for the realization of the CHO-
model. The biological pools, like e.g. metabolites,
genes, proteomes and signals are represented by

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

557

places. The reactions between them can be modeled
by transitions. This transfer of biological systems to
Petri nets was first introduced by Reddy [1]. An in-
troduction in the basic Petri net concepts is given in
section 2.
Since the Modelica language provides all necessary
features to implement the Petri net formalism it has
been chosen to develop an advanced Petri net li-
brary, whereby the Petri net component models con-
sist of differential, algebraic and discrete equations.
Section 3 gives an introduction to the Petri net li-
brary.
On the basis of an established Petri net model, sev-
eral calibration and analysis methods can be applied
by coupling Dymola with Matlab Simulink. Section
4 gives an introduction in selected methods for pa-
rameter identification, sensitivity analysis and sto-
chastic simulation as well as their realization within
Matlab Simulink.
The modeling procedure is done if the model satis-
fies all determined objectives. Otherwise the math-
ematical formulation is wrong or the hypotheses are
not correct for the desired objectives. In this case the
modeling procedure has to be restarted at the respec-
tive stage.

2 Petri Nets

The Petri net formalism for graphical modeling of
concurrent and nondeterministic processes was first
introduced by Carl Adam Petri in 1962 [2]. A Petri
net is mathematically a directed, 2-colored and bi-
partite graph. The property 2-colored implies the
division in two unique node sets which are called
transitions and places and only places can be con-
nected to transitions or transitions to places accord-
ing to the bipartite attribute. The places are repre-
sented graphically by circles and transitions by rec-
tangles. A place models a state, for example of an
object or a condition, while a transition models the
change of states, for example activities or events.
Every place can contain an integer number of tokens.
These tokens are represented graphically by little,
black dots or numbers inside the places. A concrete
determination of the token number of a place is
called state of the place and a concrete determina-
tion of the token numbers of every place is called the
state of the Petri net. Furthermore, the directed edg-
es can have integer weightings which are written at
the edges.
Following all places in the previous area of a transi-
tion are called previous places and all in the past
area are called past places. Similarly, the transitions
in the previous area of a place are called previous

transitions and all in the past area are called past
transitions (see Figure 2).

Figure 2: Previous and past places, and previous and
past transitions

A transition is ready-to-fire if all previous places
have at least as much tokens as the edge weightings.
A ready-to-fire transition fires by removing as much
tokens as the edge weightings from all previous
places and by adding as much tokens as the edge
weightings to all past places.
Figure 3 shows at the top an example of a Petri net
where the transitions 𝑇1 and 𝑇2 are ready-to-fire
and the others not. The Petri net at the bottom dis-
plays the new state after firing transition 𝑇1 and 𝑇2.

Figure 3: Petri net example, top: transitions T1 and T2
are ready-to-fire, bottom: new state of the Petri net
after firing transition T1 and T2

In the last years, the basic Petri net concept, de-
scribed above has been more and more extended in
order to model different kind of applications (e.g.
biological systems). The first extension is that every
place in a Petri net has a lower and upper limit of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

558

tokens. These Petri nets are called Petri nets with
capacities.
Biological applications demand not alone capacitat-
ed places but also limitations especial for each edge
from places to transitions. In this conjunction, the
lower bound of an edge is called threshold, the up-
per bound is called inhibition and the Petri net is
called Petri net with edge bounds.
The fixed edge weightings can be replaced by dy-
namical ones which may depend on the current to-
ken number of a place. In this manner, not only inte-
gers can be written at the edges but also the name of
a place. This Petri net extension is called self-
modified Petri net and was first introduced by Valk
[3].
These self-modified Petri nets can be further ex-
panded to functional Petri nets by allowing func-
tions as edge weightings which may depend on to-
ken numbers of several places [4].
For the simulation of a Petri net it is necessary to
associate time with its behavior. One possibility to
do this is that every transition gets a delay. A delay
is the time period that the respective state change
takes. This Petri net concept is called timed Petri
net.
This concept can be modified to stochastic Petri nets
by random delays, i.e. the fixed values are replaced
by random numbers that change at every activation
point in time. The delays are exponentially distribut-
ed random numbers, whereby the characteristic pa-
rameter 𝜆 can depend on token numbers of several
places (see e.g. [5], [6]).
Biochemical reactions occur in most cases continu-
ously. In order to model these reactions, the discrete
Petri net concept has to be transferred to a continu-
ous one [7]. The most serious difference between
discrete and continuous Petri nets is that token num-
bers are real and that transitions fire continuously. A
function is assigned to every edge of a continuous
Petri net depending on token numbers of several
places just like functional Petri nets. These functions
specify the speed of the firing process and are the
right side of differential equations. A continuous
Petri net is an ordinary differential equation system
whose structure can change within time.
Additionally, the modeling of biological systems
demands often a combination of discrete and contin-
uous processes. Hybrid Petri nets which contain dis-
crete as well as continuous Petri net elements ac-
complish this [8].
The following connections are allowed within hy-
brid Petri nets
 discrete place → discrete transition
 discrete transition → discrete place
 continuous place → continuous transition

 continuous transition → continuous place
 continuous place → discrete transition
 discrete transition → continuous place

Not allowed are the connections
 discrete place → continuous transition
 continuous transition → discrete place

3 Petri Net Library

The advanced Petri net library described in this pa-
per bases on the previous ones developed in Modeli-
ca ([9], [10], [11]). The improvements are:
o Discrete Petri nets

- Edges can have integer or functional weight-
ings depending on token numbers of several
places

- Edges can have integer bounds (threshold and
inhibition values)

- If a place has a bottleneck, the connected tran-
sitions are enabled randomly with different
probabilities

o Continuous Petri nets
- Generalization of the discrete Petri net con-

cept to the continuous one
- Edges can have functional weightings depend-

ing on token numbers of several places
- Places can have minimum and maximum ca-

pacities and edges can have bounds (threshold
and inhibition values)

o Hybrid Petri nets
- Combination of discrete and continuous Petri

net elements to hybrid Petri nets
The advanced Petri net library is structured in five
sub-libraries: Discrete, Continuous, Stochastic, Re-
actions and Global. Additionally, there are packages
for Interfaces, Constants, Functions and Blocks
which are used within component models (see Fig-
ure 4). The Petri net elements of the library are rep-
resented by the icons in Figure 5.

Figure 4: Structure of the Petri Net library

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

559

Discrete Place

Continuous Place

Discrete Transition

Stochastic Transition

Continuous Transition

Figure 5: Icons of the Petri net library

The implementation details of places and transitions
can be found in [12]. This Petri net library has been
improved concerning the connectors of places and
transitions since new modeling features are available
in Modelica 3.2. The components have been up-
graded by using the connectorSizing annotation
[13].
parameter Real nPast=1 annotation

(Dialog(connectorSizing=true);
parameter Real nPre=1 annotation

(Dialog(connectorSizing=true);

The parameters nPast and nPre are used as dimen-
sion size of the vectors of connectors. The Dymola
tool set these parameters automatically, i.e. they ap-
pear not in the property dialog. If a new connection
is drawn, the respective parameters are incremented
by one and a new connect-equation is created for
the new highest index. Figure 6 shows a Petri net
example as component diagram and the correspond-
ing connect-equations that are created automatical-
ly by drawing a line from place to transition. In re-
gard to this upgrade, some of the parameters of the
place and transition models have to be entered as
vectors since they belong to their edges. Exemplary,
the vector parameter add of a transition which con-
tains all weightings of the edges to its past places (cp
section 3.2). The weighting of the edge from transi-
tion 𝑇2 in Figure 6 to place 𝑃2 is supposed to be 5
and the weighting of the edge from 𝑇2 to 𝑃3 is sup-
posed to be 8. Then the parameter add has to be
add={5,7}. The first entry in the add-vector corre-
sponds to the first connection starting from 𝑇2 in-
dexed with [1] and the second entry corresponds to
the second connection indexed with [2].
The drawback of this concept is that the knowledge
about the indices of the connections is needed to
guarantee the right assignment of the edge weight-
ings. When a connection is added or deleted one

must keep attention that the entries of the vector pa-
rameters are still in the right order. But on the other
hand the big advantage is that components can have
an arbitrary amount of previous and past, which
simplifies the modeling process enormously.

connect(P1.outTransition[1], T1.inPlaces[1]);
connect(P1.outTransition[2], T2.inPlaces[1]);
connect(T2.outPlaces[1], P2.inTransition[1]);
connect(T2.outPlaces[2], P3.inTransition[1]);

Figure 6: The connectorSizing annotation

3.1 Place Model

Table 1 contains the parameters which can be set in
all places (discrete, stochastic and continuous) and
Table 2 shows those that are only part of discrete
places. The parameter enablePast is explained in
Figure 7.
Table 1: Parameters of both places (discrete and con-

tinuous)

Identifier Description Type/
Default

startTokens The number of tokens that
the place contains at the
beginning of the simula-
tion. In the discrete case
nonnegative integer and
in the continuous case
nonnegative real numbers
can be entered.

scalar/
zero

minTokens The minimum number of
tokens that the place must
always contain. In the
discrete case nonnegative
integer and in the contin-
uous case nonnegative
real numbers can be en-
tered.

scalar/
zero

maxTokens The maximum number of
tokens that the place can
contain. In the discrete
case nonnegative integer
and in the continuous case
nonnegative real numbers
can be entered.

scalar/
infinite

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

560

Table 2: Parameters only of discrete places

Identifier Description Type/
Default

enablePast Enabling probabilities of
the past transitions. If a
place has not enough to-
kens to enable all its past
transitions, a random de-
cision must be made
whereby the respective
transition is chosen with
the entered probability.
The sum of all enabling
probabilities has to be one
(see Figure 7).

vector/
each entry

1
𝑛𝑃𝑎𝑠𝑡

enablePre Enabling probabilities of
the previous transitions. If
a place cannot gain tokens
from all its previous tran-
sitions due to its maxi-
mum capacity, a random
decision must be made
whereby the respective
transition is chosen with
the entered probability.
The sum of all enabling
probabilities has to be
one.

vector/
each entry

1
𝑛𝑃𝑟𝑒

Figure 7: Petri net example for the enablePast-
parameter: The place P has one token, not enough to
fire in T1 and T2 simultaneously since both edge
weightings are one. A random decision is applied
where T1 is chosen with the probability 0.9 and 𝑻𝟐
with the probability 0.1. The sum of all enabling prob-
abilities of a place has to equal one.

3.2 Transition Model

The parameters available in all transition models are
summarized in Table 3. Table 4 contains the pa-
rameters, which are only part of the discrete transi-
tion. Those that can be only set in stochastic transi-
tions are shown in Table 5.
Table 3: Parameters of all transitions (discrete, sto-

chastic and continuous)

Identifier Description Type/
Default

sub Weightings of edges start- vector/

ing from previous places.
In the discrete and sto-
chastic case nonnegative
integers and functions can
be entered and in the con-
tinuous one nonnegative
real numbers and func-
tions are allowed. With
the “.t”-notation one can
access the tokens of a
place for the edge weight-
ings, e.g.
sub={2.9*P1.t}.

each entry
1

add Weightings of edges end-
ing in past places. In the
discrete and stochastic
case nonnegative integers
and functions can be en-
tered and in the continu-
ous one nonnegative real
numbers and functions are
allowed. With the “.t”-
notation one can access
tokens of a place for edge
weightings, e.g.
add={0.45*P1.t}.

vector/
each entry
1

inhibition Upper bound of edges
staring from previous
places. Nonnegative inte-
gers can be entered in the
discrete and stochastic
case and nonnegative real
numbers in the continuous
case.

vector/
each entry
infinite

threshold Lower bound of edges
starting from previous
places. Nonnegative inte-
ger can be entered in the
discrete and stochastic
case and nonnegative real
numbers in the continuous
case.

vector/
each entry
zero

con Condition which has to be
true so that the transition
can become active and
can fire, e.g. time>9.7.

scalar/
true

Table 4: Parameter only of a discrete transition

Identifier Description Type/
Default

delay The time that a discrete
transition waits after its
activation before it fires.

scalar/
1

Table 5: Parameters only of a stochastic transition

Identifier Description Type/
Default

c Constant for the pre-
defined lambda functions
(see parameter
lambdaFunc)

scalar/
1

lambdaFunc Pre-defined function for
the lambda calculation;
choice between Stochas-

scalar/
Stochastic
mass

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

561

tic mass action hazard
function and Stochastic
level hazard function (see
[14])

action

lambda User-defined function for
lambda instead of the pre-
defined lambda functions
(Stochastic mass action
hazard function and Sto-
chastic level hazard func-
tion)

scalar

3.3 Reactions Sub-Library

The Petri net models of the Discrete, Continuous and
Stochastic sub-libraries can be wrapped into models
for different kinds of biological reactions to simplify
the modeling process. These model components are
organized in the sub-library Reactions which is also
divided in several sub-libraries for different reaction
types. Till now there are:
o Reaction kinetics
o Enzyme kinetics
o Growth kinetics
o Culture strategies
o Process activations

The detailed wrapping process is explained in [15].

3.4 Animation in Dymola

The simulation results can be displayed by either
plots of selected token numbers or by an animation.
By the latter the degree of redness changes during
time according to the token number of the place, i.e.
a red place has many tokens and a white place is
empty. The redness degree can be scaled from 0 to
100 by the green Settings-box which is a component
of the Global sub-library (see Figure 8).

Figure 8: Scaling of the redness degree by the Settings-
component of the global sub-library

This animation is realized by the annotation
DynamicSelect [13]
annotation(fillColor = DynamicSelect
({255,255,255},if scale<100 then
{255,255-2.55*tokenscale,255-
2.55*scale} else {255,0,0})

Figure 9 shows the redness change of a Petri Net
example during time. This animation offers a good
way for analyzing large and complex Petri Nets.

time = 0

time = 50

time = 100

Figure 9: Animation of a Petri net in Dymola; the to-
ken distribution of the Petri net example, top: at the
beginning of the simulation, middle: after a simulation
of 50 time units, bottom: after a simulation of 100 time
units; the degree of redness corresponds to the token
numbers, i.e. a red place has many tokens and a white
place is empty

4 Model Calibration and Analysis

Once a Petri net model is established, the next step
according to Figure 1 is to get further insight in the
model parameter characteristics by sensitivity analy-
sis, parameter identification and stochastic simula-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

562

tion. For this, a connection between the Petri net
model in Dymola and Matlab Simulink has to be
created to benefit from the power of Matlab.

4.1 Connection Dymola and Matlab Simulink

For parameter optimization, sensitivity analysis and
stochastic simulation, it is necessary to simulate the
model several times with different parameter set-
tings. Dymola offers a possibility to connect a Mod-
elica model to Matlab by a Simulink interface
(DymolaBlock) and a set of Matlab m-files [16].
Figure 10 displays at the top a Petri net modeled by
the Petri net library in Dymola and at the bottom the
corresponding Simulink model. If the token number
of a place over the time is needed in Matlab for fur-
ther calculations, one has to create a connector
above the respective place. This is an orange Inte-
gerOutput connector in the case of a discrete place
or a blue RealOutput connector if it is a continu-
ous place. In the Petri Net example of Figure 10 the
token numbers of the places 𝑃1, 𝑃5 and 𝑃7 are
needed in Matlab, whereby 𝑃1 is a discrete place
with an IntegerOutput connector and 𝑃5 and 𝑃7
are continuous with a RealOutput connector. The
DymolaBlock in Simulink generates a connector for
all places connected with an output connector in
Dymola. These connectors can then be connected
via a bus to an outport so that these simulation re-
sults are saved in a matrix and are available in the
Matlab environment for further calculations. In the
same manner it is also possible that Petri net models
get inputs from Matlab via a connection between a
Simulink source and a Modelica IntegerInput or
RealInput connector.
To connect a Dymola-model with Simulink, one has
to enter the model name and its path in the property
dialog of the DymolaBlock (see Figure 11). After
that, the model can be complied and the parameters
can be set. The parameters can be also set within
Matlab by special m-files.
[p,x0,pnames,x0names]=loaddsin(

'example.txt');
p=setParameterByName(pnames,p,

'param1',25);
setParametersFDsin('ex/example1',

pnames,p,x0names,x0)

For a detailed description see [16]. After the parame-
ter setting the Simulink model can be simulated by
the prompt
sim(model,timespan,options,ut).

Modelica/Dymola

Matlab/Simulink

Figure 10: Connecting Dymola and Matlab Simulink
by a Simulink Interface (DymolaBlock), top: Petri net
modeled by the Petri net library in Dymola, bottom:
Simulink interface of the Dymola-model in Matlab
Simulink

Figure 11: Parameter dialog of the DymolaBlock in
Simulink

4.2 Sensitivity Analysis

The goal of the sensitivity analysis is to apportion
the uncertainty in model output to the different
sources of uncertainty in the model input (e.g. model
parameter) [17]. It can uncover technical errors in
the model, identify critical regions in the input
space, establish priorities for research, simplify
models and defend against falsifications of the anal-
ysis [18]. The techniques can be divided in local and
global methods. The local sensitivity analysis con-
centrates on the local impact of the input factors on
the model and is usually performed by computing

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

563

the partial derivatives of the output functions with
respect to the input factors. In contrast, the global
sensitivity analysis considered the influence of the
input factors according to a given range of variation
and a probability density function.
The Petri net component models contain among oth-
ers discrete equations (e.g. when-equation). Follow-
ing, several events are detected within the simulation
of a Petri net so that the function of token develop-
ment over time is mostly not differentiable and not
continuous. This engender that the local sensitivity
analysis methods cannot be applied and one has to
access the global methods. Various global sensitivity
analysis methods are available (see e.g. [19]). Some
of them were implemented in Matlab and can be
chosen with respect to the model structure.
For the example in section 5 the extended Fourier
Amplitude Sensitivity Test (eFAST) has been ap-
plied. The eFAST is a variance-based method, i.e. it
uses the variance as indicator of the importance of
the input factors. The enormous advantage of this
method is its applicability independent of any as-
sumptions about the model structure. That means it
works for models with a linear as well as a non-
linear relationship between input and output and it is
unimportant if this relationship is monotonic or not.
The Fourier Sensitivity Amplitude Test (FAST) was
developed by Cukier and others in the 1970s ([20],
[21], [22]) and extended by Saltelli and others in
1999 [23]. The main idea behind the FAST is to
convert the 𝑚-dimensional integral of the mean val-
ue of the output 𝑌

〈𝑌〉 = �…�𝑌(𝒙) ∙ 𝑃(𝒙) 𝑑𝒙

into a one-dimensional integral in 𝑠 by using the
transformation functions, called search curves

𝑥𝑖 = 𝐺𝑖(sin(𝜔𝑖𝑠)),
where 𝒙 is the 𝑛-dimensional vector of input factors,
𝑃(𝒙) = ∏ 𝑃𝑖(𝑥𝑖)𝑚

𝑖=1 is the product of their probabil-
ity density functions, 𝑠 ∈ (−𝜋,𝜋) is the search vari-
able and {𝜔𝑖} is a set of integer angular frequencies.
If the frequencies 𝜔𝑖 and the search curves
𝐺𝑖(sin(𝜔𝑖𝑠)) are chosen appropriate, the expectation
of 𝑌can be approximated by

𝐸(𝑌) =
1

2𝜋
� 𝑌(𝑠)𝑑𝑠
𝜋

−𝜋
,

where 𝑌(𝑠) = 𝑌�𝐺1(sin(𝜔1𝑠)), … ,𝐺𝑛(sin(𝜔𝑛𝑠))�.
The variance of 𝑌 can be approximated by the Fou-
rier coefficients 𝐴𝑘 and 𝐵𝑘 [24]

𝑉𝑎𝑟(𝑌) ≈ 2 �𝐴𝑘2 + 𝐵𝑘2
∞

𝑘=1

,

where

𝐴𝑘 =
1

2𝜋
� 𝑌(𝑠) cos(𝑗𝑠)𝑑𝑠
𝜋

−𝜋

𝐵𝑘 =
1

2𝜋
� 𝑌(𝑠) sin(𝑗𝑠)𝑑𝑠
𝜋

−𝜋
.

The expressions 𝐸(𝑌) and 𝑉𝑎𝑟(𝑌) provides a way to
estimate the expectation and the variance of the out-
put 𝑌. Additionally, the application of the FAST
method demands a definition of the frequencies 𝜔𝑖,
the search curves 𝐺𝑖 and the number of sufficient
points at which the model is evaluated to allow a
numerical approximation of the expectation and the
variance. For this it is referred to ([20], [21], [24],
[23], [19]).
The contribution of factor 𝑥𝑖 to the variance of 𝑌 can
then be approximated by the partial variance

𝐷𝑖 = 2 �(𝐴𝑝𝜔𝑖
2 + 𝐵𝑝𝜔𝑖

2)
𝑀

𝑝=1

,

where 𝑀 is the maximum harmonic that is consid-
ered [22]. The ratios

𝑆𝑖 =
𝐷𝑖

𝑉𝑎𝑟(𝑌)

provide a way to rank the input factors according to
their contribution to the variance of output 𝑌, called
first-order sensitivity coefficients. An implementa-
tion of the FAST method can be found in [25].
This method has been improved by Saltelli and oth-
ers [23] to the extended FAST method (eFAST)
which computes the total (all-effects) contribution of
each input factor to the output variance. This is done
by assigning a usually high frequency 𝜔𝑖 to an in-
vestigated factor 𝑥𝑖 and a set of almost identical and
usually low, but different from 𝜔𝑖, frequencies 𝜔~𝑖
to all remaining factors. The partial variance of the
complementary set can be computed by

𝐷~𝑖 = 2 �(𝐴𝑝𝜔~𝑖
2 + 𝐵𝑝𝜔~𝑖

2)
𝑀

𝑝=1

,

whereby 𝐷~𝑖 measures the effect of any orders that
do not involve the factor 𝑥𝑖. The total sensitivity co-
efficients are then given by

𝑇𝑆𝑖 = 1 −
𝐷~𝑖

𝑉𝑎𝑟(𝑌).

For the choice of the frequencies and a detailed de-
scription of the eFAST method, it is referred to [23].

4.3 Parameter Identification

The parameter identification deals with methods that
estimate the unknown model parameter to adapt the
model behavior as good as possible to the reality e.g.
to the measured experimental data. The objective of
the optimization procedure can be for example the
least squares

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

564

𝑓(𝒙) = ���
𝑦𝑗(𝑡𝑙 ,𝒙) − 𝑑𝑗(𝑡𝑙)

𝑑𝑗(𝑡𝑙)
�
2𝑟

𝑙=1

𝑛

𝑗=1

→ min Eq. 1

where 𝒙 is the input vector, 𝑦𝑗(𝑡𝑙 ,𝒙) is the 𝑗-th mod-
el output corresponding to the input 𝒙 at time 𝑡𝑙,
𝑑𝑗(𝑡𝑙) is the measurement of the 𝑗-th output at time
𝑡𝑙, 𝑛 is the number of measured outputs and 𝑟 is the
number of measured points in time. Several numeri-
cal methods are well known to solve this problem.
An overview can be found in [26]. However, if the
underlying model is a Petri net the standard methods
like Gauss-Newton or Levenberg-Marquardt are in-
operative due to the non-differentiability and non-
continuity of the model output. Global optimization
methods has to be use that work without derivatives.
For an overview of global optimization methods it is
referred to [27]. In the example in section 5 a special
evolution strategy, the Covariance Matrix Adaption
Evolution Strategy (CMA-ES), is applied to estimate
the unknown model parameters. Evolution strategies
consist in general of the following steps:
1. Initialization: a specific number of individuals is

generated by a random procedure.
2. Recombination: one or more parents produce one

or more offspring. Several methods are docu-
mented (see e.g. [28]).

3. Mutation: minor change of the offspring.
4. Selection: a specific number of the best individu-

als form the parents of new generation. Several
methods can be found in [27]. The next iteration
begins with the recombination.

The parameter estimation with the CMA-ES algo-
rithm bases on the mentioned steps above and addi-
tionally two main principles plays an important role
[29].
The first is to increase the probability of a successful
mutation according to the maximum likelihood prin-
ciple. Therefore, the mean of the distribution is up-
dated such that the likelihood of previously success-
ful candidate solutions is maximized. Furthermore,
the covariance matrix of the distribution is updated
such that the likelihood of previously realized suc-
cessful steps to appear again is increased. These up-
dates can be interpreted as a natural gradient descent
and consequently the CMA conducts an iterated
principal component analysis of successful steps
while retaining all principle axes. The covariance
matrix adaption is to learn about the second order
model of the underlying objective function.
The second is to record two paths of time evolution
of the distribution mean of the strategy. Such a path
contains important information about the correlation
between consecutive steps. The first path is used for

the covariance matrix adaption procedure and the
second is used for a step-size control. A detailed de-
scription of the algorithm and its implementation can
be found in [29].

4.4 Stochastic Simulation

Stochastic simulation is to simulate many realiza-
tions of a stochastic model (stochastic Petri net) and
to study the arising results. One method is Gilles-
pie’s algorithm [30] which was created to simulate
chemical and biochemical reaction systems efficient-
ly and accurately. It is a modification of the Monte
Carlo method. The elementary steps according to an
underlying stochastic Petri net model are:
1. Initialization: Initialize the number of tokens in

the stochastic Petri net, reaction constants, and
the random number generators.

2. Monte Carlo step: Generate random number to
determine the next transitions to fire as well as
their delays. The delays are exponentially distrib-
uted random numbers, whereby the characteristic
parameter 𝜆 is proportional to token numbers of
the previous places.

3. Update: Update token numbers based on the fir-
ing transitions.

4. Iterate: Go back to step 2 unless the simulation
time has been exceeded.

5 Example: Modeling the metabo-
lism of Chinese Ovary Cells

The Chinese Hamster Ovary (CHO) Cells produce
antibodies which are part of many pharmaceuticals
[31]. Additionally, they release the waste-products
lactate and ammonium which can inhibit their
growth and antibody production when specific con-
centrations are exceeded ([32], [33], [34]).
Experiments were performed by growing the CHO-
Cells in shaking flaks, whereby they were fed with
the nutrients glucose and glutamine. They produced
by conversion of these nutrients antibodies, ammo-
nium and lactate. By the latter ones it is assumed
that they cannot only be produced by the CHO-Cells
but also consumed when the environmental condi-
tions are appropriate ([35], [36]). Figure 12 displays
these coherencies and Figure 13 represents the ex-
perimental data of CHO-Cells growing in shaking
flaks.
The experiments were performed by the University
of Applied Sciences Bielefeld, Biotechnology de-
partment [37]. The cells grow till day 4 (exponential
growing phase) afterwards they pass over to the sta-
tionary phase for 2 days where approximately as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

565

much cells grow as die. Finally, more cells die than
new ones grow thus the curve of living cells de-
creases and the curve of death cells increases (death
phase).

CHO-CELLS

Glutamine

Glucose

Antibodies

Lactate

Ammonium

Figure 12: The main metabolism of the CHO-
cells

The nutrient Glucose is exhausted at the end of the
experiment and the waste-product lactate is pro-
duced till day 4 and afterwards it is consumed. They
convert it back to pyruvate which enters the citric
acid cycle (TCA-cycle) [36]. Here, it is assumed that
they start the lactate consumption when a specific
lactate concentration is exceeded. Additionally, the
ammonium concentration decreases after 4 days and
the glutamine concentration increases. In this con-
junction, it seems likely that the CHO-cells can con-
vert ammonium back to glutamine when the gluta-
mine concentration falls below a specific value.
The Antibody production starts first after 2.5 days
and does not stop until the end of the experiment. At
this point the supposition is that the cells start the
production first when the glucose becomes limiting.

Figure 13: Experimental data of CHO-Cells growing
in shaking flaks

A continuous Petri Net models the dynamics of the
CHO-cells (see Figure 14). This Petri Net covers a
lot of different differential equation systems. Which
of them is chosen depends on the environmental
conditions. At the beginning of the experiment, it
represents the following ODEs
𝑑𝑋𝑡
𝑑𝑡

= 𝜇 ⋅ 𝑋𝑣
Eq. 2

𝑑𝑋𝑑
𝑑𝑡

= 𝜇𝑑 ⋅ 𝑋𝑣
Eq. 3

𝑑𝑋𝑣
𝑑𝑡

= (𝜇 − 𝜇𝑑) ∙ 𝑋𝑣
Eq. 4

𝑑𝐺𝑙𝑐
𝑑𝑡

= −𝑞𝑔𝑙𝑐 ⋅ 𝑋𝑣
Eq. 5

𝑑𝐺𝑙𝑢
𝑑𝑡

= −𝑞𝑔𝑙𝑢 ⋅ 𝑋𝑣 − 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢
Eq. 6

𝑑𝐿𝑎𝑐
𝑑𝑡

= 𝑞𝑙𝑎𝑐 ⋅ 𝑋𝑣
Eq. 7

𝑑𝐴𝑚𝑚
𝑑𝑡

= 𝑞𝑎𝑚𝑚 ⋅ 𝑋𝑣 + 𝑘𝑠𝑑 ⋅ 𝑋𝑣
Eq. 8

𝑑𝐴𝑏
𝑑𝑡

= 0
Eq. 9

𝑋𝑡(0) = 𝑋𝑡0, 𝑋𝑑(0) = 𝑋𝑑0, 𝑋𝑣(0) = 𝑋𝑣0,
𝐺𝑙𝑐(0) = 𝐺𝑙𝑐0,𝐺𝑙𝑢(0) = 𝐺𝑙𝑢0,
𝐿𝑎𝑐(0) = 𝐿𝑎𝑐0,𝐴𝑚𝑚(0) = 𝐴𝑚𝑚0,
𝐴𝑏(0) = 𝐴𝑏0

Eq. 10

where 𝑋𝑡 is the concentration of total cells
(108 cells/L), 𝑋𝑑 is the concentration of death cells
(108 cells/L), 𝑋𝑣 is the concentration of living cells
(108 cells/L), 𝐺𝑙𝑐 is the glucose concentration (mM),
𝐺𝑙𝑢 is the glutamine concentration (mM), 𝐿𝑎𝑐 is the
lactate concentration (mM), 𝐴𝑚𝑚 is the Ammonium
concentration (mM), 𝐴𝑏 is the Antibody concentra-
tion (mg/L), 𝜇 is the specific growth rate (1/d), 𝜇𝑑 is
the specific death rate (1/d), 𝑞𝑔𝑙𝑐 is the specific glu-
cose uptake rate (mmol/108 cells/d), 𝑞𝑔𝑙𝑢 is the spe-
cific glutamine uptake rate (mmol/108 cells/d), 𝑘𝑠𝑑 is
the constant for the spontaneous degradation of glu-
tamine, 𝑞𝑙𝑎𝑐 is the specific lactate production rate
(mmol/108 cells/d), 𝑞𝑎𝑚𝑚 is the specific ammonium
production rate (mmol/108 cells/d) and 𝑋𝑡0, 𝑋𝑑0,
 𝑋𝑣0, 𝐺𝑙𝑐0, 𝐺𝑙𝑢0, 𝐿𝑎𝑐0, 𝐴𝑚𝑚0 and 𝐴𝑏0 are the
initial concentrations.
The conversion from glutamine to ammonium can
take place in two different ways: the CHO-cells can
perform it (𝑞𝑔𝑙𝑢 ⋅ 𝑋𝑣, 𝑞𝑎𝑚𝑚 ⋅ 𝑋𝑣) and it can occur
within the medium by spontaneous decomposition
(𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢) [38].
No antibodies are produced at the beginning of the
experiment hence the differential equation is set to

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

566

zero. After a specific change of the environmental
conditions, the antibody production starts and Eq. 9
has to be changed to
𝑑𝐴𝑏
𝑑𝑡

= 𝑞𝑎𝑏 ⋅ 𝑋𝑣
Eq. 11

where 𝑞𝑎𝑏 is the antbody production rate (mg/108
cells/d). The supposition is that the decreasing glu-
cose concentration initiates the antibody production.
In terms
𝑑𝐴𝑏
𝑑𝑡

= � 0, 𝐺𝑙𝑐 ≥ 14 𝑚𝑀
𝑞𝑎𝑏 ⋅ 𝑋𝑣, 𝐺𝑙𝑐 < 14 𝑚𝑀

Eq. 12

A similar switching situation occurs by the lactate
concentration. At the beginning the dynamics are
represented by Eq. 7 and after a specific change of
the environmental conditions, especially the lactate
concentration passes a threshold, the dynamics are
described by
𝑑𝐿𝑎𝑐
𝑑𝑡

= �𝑞𝑙𝑎𝑐 ⋅ 𝑋𝑣 − 𝑞𝑙𝑎𝑐𝑠 ⋅ 𝑋𝑣, 𝐿𝑎𝑐 ≥ 19 𝑚𝑀
𝑞𝑙𝑎𝑐 ⋅ 𝑋𝑣, 𝐿𝑎𝑐 < 19 𝑚𝑀

Eq. 13

where 𝑞𝑙𝑎𝑐𝑠 is the specific lactate consumption rate
(mmol/108 cells/d). The glutamine consumption and
production, respectively, leads to the following
switching equation, whereby the change is initiated
by the decreasing glutamine concentration
𝑑𝐺𝑙𝑢
𝑑𝑡

Eq. 14

= �
−𝑞𝑔𝑙𝑢 ⋅ 𝑋𝑣 − 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢,𝐺𝑙𝑢 ≥ 0.4 𝑚𝑀

−𝑞𝑔𝑙𝑢 ⋅ 𝑋𝑣 − 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢 + 𝑞𝑔𝑙𝑢𝑠 ⋅ 𝑋𝑣,𝐺𝑙𝑢 < 0.4 𝑚𝑀

where 𝑞𝑔𝑙𝑢𝑠 is the specific glutamine production rate
(mmol/108 cells/d) and the corresponding dynamics
for the ammonium concentration are
𝑑𝐴𝑚𝑚
𝑑𝑡

Eq. 15

= � 𝑞𝑎𝑚𝑚 ⋅ 𝑋𝑣 + 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢,𝐺𝑙𝑢 ≥ 0.4 𝑚𝑀
𝑞𝑎𝑚𝑚 ⋅ 𝑋𝑣 + 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢 − 𝑞𝑎𝑚𝑚𝑠 ⋅ 𝑋𝑣,𝐺𝑙𝑢 < 0.4 𝑚𝑀

where 𝑞𝑎𝑚𝑚𝑠 is the specific ammonium consump-
tion rate (mmol/108 cells/d).
Figure 14 displays the Petri net modeling the dis-
cussed conditions above (Eq. 2-Eq. 5, Eq. 10, Eq. 12-
Eq. 15). All places and transitions are continuous.
Table 6 contains the places and their corresponding
substances and Table 7 summarizes the information
of the transitions. The orange Activation-boxes are
wrappers of the Reactions sub-library and they work
like a discrete switch. When the token number of the
connected place exceeds the entered value of the
parameter tres or fall below the entered value of
the parameter inhi, the connected transition be-
comes active and remains active until one of the
connected places becomes empty in contrast to the
threshold and inhibition values of the transitions.

Everything inside the brown cell mass occurs within
the cells and outside of this picture are the reaction
for the spontaneous decomposition of glutamine and
the substances that the cells release to the medium.
The total amount of cells, the sum of living cells and
death cells, is modeled by an algebraic equation
Xt_t=Xv.t+Xd.t.

Figure 14: Petri net model of the CHO metabolism in
Figure 12

Table 6: Places of the CHO-Model in Figure 14 and
the corresponding substances

Place Substance
Xv Concentration of living CHO-Cells
Xd Concentration of death CHO-Cells
Glc Glucose concentration
Glu Glutamine concentration
Lac Lactate concentration
Amm Ammonium concentration

The experimental data of Figure 13 are approximat-
ed by smoothing splines to get further insight to the
relations between the respective specific rates. The
rates at the beginning of the simulation can be calcu-
lated by the following equations

𝜇 =
1
𝑋𝑣

⋅
𝑑𝑋𝑡𝑜𝑡𝑎𝑙
𝑑𝑡

Eq. 16

𝜇𝑑 =
1
𝑋𝑣

⋅
𝑑𝑋𝑑𝑒𝑎𝑡ℎ
𝑑𝑡

Eq. 17

𝑞𝑔𝑙𝑐 = −
1
𝑋𝑣

⋅
𝑑𝐺𝑙𝑐
𝑑𝑡

Eq. 18

𝑞𝑔𝑙𝑢 = −
1
𝑋𝑣

⋅ �
𝑑𝐺𝑙𝑢
𝑑𝑡

+ 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢�
Eq. 19

𝑞𝑙𝑎𝑐 =
1
𝑋𝑣

⋅
𝑑𝐿𝑎𝑐
𝑑𝑡

Eq. 20

𝑞𝑎𝑚𝑚 =
1
𝑋𝑣

⋅ �
𝑑𝐺𝑙𝑢
𝑑𝑡

− 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢�
Eq. 21

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

567

The specific antibody production rate can be calcu-
lated after day 2.5 when the cells start with the pro-
duction

𝑞𝑎𝑏 =
1
𝑋𝑣

⋅
𝑑𝐴𝑏
𝑑𝑡

Eq. 22

The relations analysis yields the following equation
structures for the specific rates

𝜇 = 𝜇𝑚𝑎𝑥 ⋅
𝐺𝑙𝑢

𝐾𝐺𝑙𝑢 + 𝐺𝑙𝑢

Eq. 23

𝜇𝑑 = 𝜇𝑑𝑚𝑎𝑥 ⋅
𝐾𝐷𝐺𝑙𝑐

𝐾𝐷𝐺𝑙𝑐 + 𝐺𝑙𝑐

Eq. 24

𝑞𝑔𝑙𝑐 =
1

𝑌𝑋,𝐺𝑙𝑐
⋅ 𝜇

Eq. 25

𝑞𝑔𝑙𝑢 =
1

𝑌𝑋,𝐺𝑙𝑢
⋅ 𝜇

Eq. 26

𝑞𝑙𝑎𝑐 = 𝑌𝐿𝑎𝑐,𝐺𝑙𝑐 ⋅ 𝑞𝑔𝑙𝑐

= 𝑌𝑙𝑎𝑐,𝐺𝑙𝑐 ⋅
1

𝑌𝑋,𝐺𝑙𝑐
⋅ 𝜇

Eq. 27

𝑞𝑎𝑚𝑚 = 𝑌𝐴𝑚𝑚,𝐺𝑙𝑢 ⋅ 𝑞𝑔𝑙𝑢

= 𝑌𝐴𝑚𝑚,𝐺𝑙𝑢 ⋅
1

𝑌𝑥,𝐺𝑙𝑢
⋅ 𝜇

Eq. 28

𝑞𝑎𝑏 = 𝑘𝑎𝑏 Eq. 29

𝑞𝑙𝑎𝑐𝑠 = 𝑘𝑙𝑎𝑐𝑠 Eq. 30

𝑞𝑎𝑚𝑚𝑠 = 𝑘𝑎𝑚𝑚𝑠 Eq. 31

𝑞𝑔𝑙𝑢𝑠 = 𝑌𝐺𝑙𝑢,𝐴𝑚𝑚 ⋅ 𝑞𝑎𝑚𝑚𝑠 Eq. 32

with the parameters 𝜇𝑚𝑎𝑥 (1/d) as maximum specific
growth rate and 𝐾𝐺𝑙𝑢 as constant of the Monod ki-
netics, 𝜇𝑑𝑚𝑎𝑥 (1/d) as maximum specific death rate,
𝐾𝐷𝐺𝑙𝑐 as constant of the death kinetics (mM), 𝑌𝑋,𝐺𝑙𝑐
(108 cells/mmol), 𝑌𝑋,𝐺𝑙𝑢 (108 cells/mmol), 𝑌𝐿𝑎𝑐,𝐺𝑙𝑐
(mol/mol), 𝑌𝐴𝑚𝑚,𝐺𝑙𝑢 (mol/mol) and 𝑌𝐺𝑙𝑢,𝐴𝑚𝑚
(mol/mol) as yield coefficients, 𝑘𝑎𝑏 (mg/108 cells)
as constant of the antibody production, 𝑘𝑙𝑎𝑐𝑠
(mmol/108 cells) as constant of the lactate consump-
tion and 𝑘𝑎𝑚𝑚𝑠 as constant of the ammonium con-
sumption.
For performing a sensitivity analysis and afterwards
a parameter optimization for the 13 model parame-
ters, the Petri net model in Dymola (Figure 14) has
to be connected to Matlab via a Simulink interface
as described in section 4.1. The simulation results of
all token numbers are needed in Matlab, thus all
places have a blue RealOutput connector (Figure
14) so that a corresponding port at the Simulink in-
terface is provided.

Table 7: Transitions of the CHO-Model in Figure 14
and the corresponding reactions and the edge
weighting functions (Eq. 2-Eq. 5, Eq. 10, Eq.
12-Eq. 15)

Transi-
tion

Reaction Weightings Condi-
tions

Growth Cell growth Glc → Growth 𝑞𝑔𝑙𝑐 ⋅ 𝑋𝑣. 𝑡

Glu → Growth 𝑞𝑔𝑙𝑢 ⋅ 𝑋𝑣. 𝑡

Growth → Xv 𝜇 ⋅ 𝑋𝑣. 𝑡

Growth → Lac 𝑞𝑙𝑎𝑐 ⋅ 𝑋𝑣. 𝑡

Growth → Amm 𝑞𝑎𝑚𝑚 ⋅ 𝑋𝑣. 𝑡

Death Cell death Xv → Death 𝜇𝑑 ⋅ 𝑋𝑣. 𝑡

Death → Xd 𝜇𝑑 ⋅ 𝑋𝑣. 𝑡

TCA Lactate
consumption

Lac → TCA 𝑞𝑙𝑎𝑐𝑠 ⋅ 𝑋𝑣. 𝑡

Activation
Box

thres=19

Abprod Antibody
production

Abprod → Ab 𝑞𝑎𝑏 ⋅ 𝑋𝑣. 𝑡

Activation
Box

inhi=14

SpDec Spontaneous
decomposi-
tion of gluta-
mine to
ammonium

Glu → SpDec 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢. 𝑡

SpDec → Amm 𝑘𝑠𝑑 ⋅ 𝐺𝑙𝑢. 𝑡

ConvB Conversion of
ammonium
back to
glutamine

Amm → ConvB 𝑞𝑎𝑚𝑚𝑠 ⋅ 𝑋𝑣. 𝑡

ConvB → Glu 𝑞𝑔𝑙𝑢𝑠 ⋅ 𝑋𝑣. 𝑡

Activation
Box

inhi=0.4

Before the 13 parameters of the model are estimated
a global sensitivity analysis is performed to get fur-
ther insight in the parameter characteristics. This
analysis is the basis of the following parameter op-
timization since less sensitive parameters can be
fixed during the optimization process to increase the
chance of a converging optimization algorithm. The
global sensitivity analysis is performed by Matlab
with eFAST method explained in section 4.2. There-
fore, the model is simulated several times with dif-
ferent parameter settings and each time the objective
function in Eq. 1 is evaluated. The eFAST-method
measures the contribution of each parameter to the
variance of this objective function, whereby the pa-
rameters are varied in a specific range. If a parame-
ter contributes less to the variance, this parameter
cannot be identified within an optimization proce-
dure and has to be fixed on the other hand if a pa-
rameter contributes much to the variance of the ob-
jective function this parameter is identifiable.
The results of the global sensitivity analysis, i.e. the
contribution of each parameter to the variance of the
objective function, are displayed in Figure 15. It be-
comes clear that 7 of 13 parameters contribute 91 %
of the variance so that 6 parameters

 𝑌𝑋,𝐺𝑙𝑢, 𝜇𝑑𝑚𝑎𝑥 ,𝐾𝐷𝑔𝑙𝑐 , 𝑘𝑙𝑎𝑐𝑠 ,𝑌𝐿𝑎𝑐,𝐺𝑙𝑐 ,𝑌𝐴𝑚𝑚,𝐺𝑙𝑢
can be fixed during the optimization process and 7

𝑘𝑠𝑑 ,𝑌𝐺𝑙𝑢,𝐴𝑚𝑚 , 𝑘𝑎𝑚𝑚𝑠,𝑌𝑋,𝐺𝑙𝑐 , µ𝑚𝑎𝑥 ,𝐾𝐺𝑙𝑢, 𝑘𝑎𝑏
have to be optimized.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

568

Figure 15: Model variance contribution of every pa-
rameter according to the eFAST method

The parameter optimization is performed by CMA-
ES method explained in section 4.3. The optimiza-
tion procedure takes place in Matlab via a Simulink
interface. Figure 16 displays the results of this opti-
mization procedure which show a good agreement
with the experimental data.

Figure 16: Results of the parameter optimization pro-
cedure

To achieve a good model of the CHO-metabolism, it
is also possible to choose a stochastic approach, i.e.
a stochastic Petri net model and a stochastic simula-
tion according to Gillespie’s algorithm as described
in section 4.4. The edge weightings of the continu-
ous approach in Table 7 are now the dynamic values
of the characteristic parameter 𝜆 of the exponential
distribution by which the delay of the stochastic
transition is chosen randomly at every activation
point in time (cp. Section 2). The transformation of
the parameters of the continuous to the stochastic
model is well studied and can be found in [39]. Fig-
ure 17 displays the CHO-metabolism modeled by a
stochastic Petri net, whereby the places are discrete
and the transitions are stochastic. The tokens repre-
sent here different concentration levels like it is pre-
sented in [14]. One token equals to 0.5 (mM,

108Cells/l, mg/l), thus there are 𝑁 + 1 = 90 + 1
different levels since the maximum concentration
(𝑀) is set to 45. The values of 𝑀 and 𝑁 can be en-
tered in the green settings-box which has to be a part
of every model and can be found in the Global-
library. This stochastic Petri net model is also con-
nected to a Simulink interface in Matlab so that the
stochastic simulation can take place within an m-
file. The results are displayed in Figure 18 where
500 Simulation are accomplished and the means
were built with 10 simulations, respectively.

Figure 17: Stochastic Petri Net of the main CHO-
metabolism in Figure 12

Figure 18: The stochastic simulation results according
to Gillespie’s algorithm of the stochastic Petri Net
model in Figure 17

6 Conclusions

The Petri net library in Modelica is a good instru-
ment for hybrid modeling of biological systems. The
advantages of this approach are:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

569

• The object-oriented modeling language Modelica
is able to model discrete places and transitions as
well as stochastic and continuous ones. The plac-
es and transitions are models that easily can be
changed, modified, or expanded so that further
Petri net extensions can be implemented fast.

• The language allows the realization of hybrid
models by combining discrete and continuous
processes. The hybrid simulation with discrete
events and the solution of continuous differential
equations is then performed by Dymola or by an-
other Modelica-tool.

• The Reactions sub-library offers a fast and simple
way to build up a model and further reactions can
be easily added.

• The hierarchical modeling concept of Modelica
enables a structuring of the models on different
levels which is useful when the model is complex
and used by different persons with different aims.

• The Petri net animation of Dymola offers a way
to get insight of the token distribution of large
and complex Petri nets.

• The coupling of Dymola-models and Simulink-
models allows the simulation of a model many
times and use the arising simulation results for
subsequent calculations so that stochastic simula-
tion, sensitivity analysis and parameter identifica-
tion in Matlab is possible.

• The Petri net library can be integrated in other
Petri net modeling tools by parsing the Petri net
of the respective tool (e.g. XML-format) to Mod-
elica-text and simulate it via a batch process
where the simulation results are saved in a data
file.

In this manner the new Petri net library in combina-
tion with Matlab Simulink leads to a complete envi-
ronment for hybrid modeling of biological systems.

References

[1] V.N. Reddy, M.L. Mavrovouniotis, M.N.
Liebman (Eds.), Petri net representations in
metabolic pathways: Proc Int Conf Intell Syst
Mol Biol, 1993.

[2] C.A. Petri, Communication with automata,
Rome Air Development Center, Research and
Technology Division, 1966.

[3] R. Valk, Self-modifying nets, a natural exten-
sion of Petri nets, Automata, Languages and
Programming (1978) 464–476.

[4] R. Hofestädt, S. Thelen, Quantitative modeling
of biochemical networks, In Silico Biology 1
(1998) 39–53.

[5] F. Bause, P.S. Kritzinger, Stochastic Petri Nets,
Vieweg, 2002.

[6] M. Heiner, D. Gilbert, R. Donaldson, Petri nets
for systems and synthetic biology, Formal
Methods for Computational Systems Biology
(2008) 215–264.

[7] D. Gilbert, M. Heiner, From Petri nets to dif-
ferential equations-an integrative approach for
biochemical network analysis, Petri Nets and
Other Models of Concurrency-ICATPN 2006
(2006) 181–200.

[8] A. Doi, S. Fujita, H. Matsuno, M. Nagasaki, S.
Miyano, Constructing biological pathway mod-
els with hybrid functional Petri nets, In Silico
Biology 4 (2004) 271–291.

[9] P.J. Mosterman, M. Otter, H. Elmqvist, Model-
ing Petri nets as local constraint equations for
hybrid systems using Modelica, Citeseer, Reno,
Nevada, Proceedings of SCS Summer Simula-
tion Conference, 1998, pp. 314–319.

[10] S.M. Fabricius, Extensions to the Petri Net Li-
brary in Modelica, ETH Zurich, Switzerland
(2001).

[11] M. Otter, K.E. Årzén, I. Dressler (Eds.), State-
Graph-a Modelica library for hierarchical state
machines: 4th International Modelica Confer-
ence, 2005.

[12] S. Proß, B. Bachmann, A Petri Net Library for
Modeling Hybrid Systems in OpenModelica,
Como, Italy, Modelica Conference proceed-
ings, 2009.

[13] Modelica Association, Modelica - A Unified
Object-Oriented Language for Physical Sys-
tems Modeling Language Specification Version
3.2 (2010).

[14] D. Gilbert, M. Heiner, S. Lehrack (Eds.), A
unifying framework for modelling and analys-
ing biochemical pathways using Petri nets:
Proceedings of the 2007 international confer-
ence on Computational methods in systems bi-
ology, Springer-Verlag, 2007.

[15] S. Proß, B. Bachmann, R. Hofestädt, K.
Niehaus, R. Ueckerdt, F.J. Vorhölter, P. Lutter,
Modeling a Bacterium's Life: A Petri-Net Li-
brary in Modelica, Como, Italy, Modelica Con-
ference proceedings, 2009.

[16] Dynasim AB, Dymola-Dynamic Modeling La-
boratory-User Manual Volume 2,
Lund/Sweden, 2010.

[17] A. Saltelli, Sensitivity analysis in practice: a
guide to assessing scientific models, John
Wiley & Sons Inc, 2004.

[18] A. Saltelli, M. Ratto, T. Andres, Global sensi-
tivity analysis: the primer, John Wiley & Sons
Ltd, 2008.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

570

[19] A. Saltelli, K. Chan, E.M. Scott, Sensitivity
analysis, Wiley New York, 2000.

[20] R.I. Cukier, C.M. Fortuin, K.E. Shuler, A.G.
Petschek, J.H. Schaibly, Study of the sensitivity
of coupled reaction systems to uncertainties in
rate coefficients. I Theory, The Journal of
Chemical Physics 59 (1973) 3873–3876.

[21] J.H. Schaibly, K.E. Shuler, Study of the sensi-
tivity of coupled reaction systems to uncertain-
ties in rate coefficients. II Applications, The
Journal of Chemical Physics 59 (1973) 3879–
3888.

[22] R.I. Cukier, J.H. Schaibly, K.E. Shuler, Study
of the sensitivity of coupled reaction systems to
uncertainties in rate coefficients. III. Analysis
of the approximations, The Journal of Chemical
Physics 63 (1975) 1140–1149.

[23] A. Saltelli, S. Tarantola, K.P. Chan, A quantita-
tive model-independent method for global sen-
sitivity analysis of model output, Technomet-
rics 41 (1999) 39–56.

[24] R.I. Cukier, H.B. Levine, K.E. Shuler, Nonlin-
ear sensitivity analysis of multiparameter mod-
el systems, Journal of Computational Physics
26 (1978) 1–42.

[25] M. Koda, G.J. Mcrae, J.H. Seinfeld, Automatic
sensitivity analysis of kinetic mechanisms, Int.
J. Chem. Kinet. 11 (1979) 427–444.

[26] J. Nocedal, S.J. Wright, Numerical optimiza-
tion, Springer-Verlag New York Inc, New
York, Berlin, Heidelberg, 1999.

[27] T. Weise, Global Optimization Algorithms –
Theory and Application, 2009. http://www.it-
weise.de/.

[28] T. Bäck, Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary pro-
gramming, genetic algorithms, Oxford Univer-
sity Press, USA, 1996.

[29] N. Hansen, The CMA evolution strategy: a
comparing review, Towards a new evolutionary
computation (2006) 75–102.

[30] D.T. Gillespie, Exact stochastic simulation of
coupled chemical reactions, The journal of
physical chemistry 81 (1977) 2340–2361.

[31] Birch, JR, A.J. Racher, Antibody production,
Advanced drug delivery reviews 58 (2006)
671–685.

[32] N. Kurano, C. Leist, F. Messi, S. Kurano, A.
Fiechter, Growth behavior of Chinese hamster
ovary cells in a compact loop bioreactor. 2. Ef-
fects of medium components and waste prod-
ucts, Journal of biotechnology 15 (1990) 113–
128.

[33] M.S. Lao, D. Toth, Effects of ammonium and
lactate on growth and metabolism of a recom-

binant Chinese hamster ovary cell culture, Bio-
technology progress 13 (1997) 688–691.

[34] S.S. Ozturk, M.R. Riley, B.O. Palsson, Effects
of ammonia and lactate on hybridoma growth,
metabolism, and antibody production, Biotech-
nol. Bioeng. 39 (1992) 418–431.

[35] Y.S. Tsao, A.G. Cardoso, R.G. Condon, M.
Voloch, P. Lio, J.C. Lagos, B.G. Kearns, Z.
Liu, Monitoring Chinese hamster ovary cell
culture by the analysis of glucose and lactate
metabolism, Journal of biotechnology 118
(2005) 316–327.

[36] A. Provost, G. Bastin, S.N. Agathos, Y.J.
Schneider, Metabolic design of macroscopic
bioreaction models: application to Chinese
hamster ovary cells, Bioprocess and biosystems
engineering 29 (2006) 349–366.

[37] J. Link, Charakterisierung der Prozessparame-
ter tierischer Zellkulturen in Schüttelinkuba-
toren. Bachelor thesis, Bielefeld, 2010.

[38] S.S. Ozturk, B.O. Palsson, Chemical decompo-
sition of glutamine in cell culture media: effect
of media type, pH, and serum concentration,
Biotechnology progress 6 (1990) 121–128.

[39] D.J. Wilkinson, Stochastic modelling for sys-
tems biology, Chapman & Hall/CRC, 2006.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

571

Modelling of a Chemical Reactor
for Simulation of a Methanisation Plant

Bader, A.1 Bauersfeld, S.1 Brunhuber, C.2 Pardemann, R.1 Meyer, B.1
1 Technische Universität Bergakademie Freiberg

Department of Energy Process Engineering and Chemical Engineering
Fuchsmühlenweg 1, Haus 1, 09599 Freiberg, Germany

2 Siemens AG, Energy Solutions
Freyeslebenstraße 1, 91058 Erlangen, Germany

Abstract

The chemical and physical modelling and transient
simulation of a plant with chemical reactors can be
useful within dimensioning, optimisation, operation
studies and analysing of time critical processes. There-
fore, a reactor model for thermodynamic equilibrium
conditions has been implemented. The Model is based
on the free Modelica Fluid library and contains corre-
lations for heat and mass transfer and pressure drop.
The model contains the components: H2, CO, CO2,
H2O, CH4, N2

Keywords: chemical reactor; thermodynamic equi-
librium; part load; CO2; CO; H2; CH4; H2O

1 Introduction

It is well known that the oil and natural gas reserves
are limeted. The production of fuels is based almost
completely on oil and natural gas. Hence there is the
wish to extend availibility of a secure energy supply.
One solution is the conversion of coal or biomass to
synthetic or substitute natural gas (SNG) by gasifica-
tion and methanation. The reserves of coal will sub-
sist more than 150 years and biomass is a rebewable
energy source. The modelling of the SNG synthesis
focus only on the methanation step. The simulation
of a methanisation plant is in interest for plant manu-
factures and operators to optimise the construction and
the operation. Furthere interest are studies of critical
processes for understanding of complex physical and
chemical processes in order to increase the reliability
and availability of the plant during part load and plant
trips.

2 The SNG synthesis

The raw gas for the SNG synthesis contains mainly
H2, CO, CO2, H2O, CH4, N2. This composition of the
raw gas depends on the gasification technology. The
SNG synthesis is a heterogeneously catalysed process.
During the methanation, the following chemical reac-
tions execute. The hydrogenation of carbon oxides to
methane are the so called CO methanation reaction in
equation 1 and the CO2 methanation reaction in equa-
tion 2.

CO+3H2
 CH4 +H2O (1)

CO2 +4H2
 CH4 +2H2O (2)

Two further independent reactions are important:
the CO-Shift reaction in equation 3 and the Boudouard
reaction in equation 4.

CO+H2O
 H2 +CO2 (3)

2CO
 C+CO2 (4)

All the reactions of the methanation are exothermic,
see Table 1. The methanation is favoured at low tem-
peratures. Futhermore the methanation is benefited at
high pressure, as the reaction 1 and 2 execute with vol-
ume decreasing.

The major criteria of catalysed methanation reac-
tors is to achieve efficient removal of heat. The first
reason is to minimise catalyst deactivation due to ther-
mal stress. The second reason is to avoid a limitation
in the methane yield due to approaching the chemi-
cal equlibrium. The Topsøe recycle energy-efficient
methanation process (TREMP) from Haldor Topsøe is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

572

Table 1: Reaction heat at standard conditions
reaction reaction heat, ∆RH0

kJ/mol
1 -206
2 -165
3 -41
4 -172

Figure 1: Flowsheet of the Topsøe recycle energy-
efficient methanation process [1]

a suitable reactor concept for the production of SNG
[1], which is used for the modelling.

The TREMP consists of 3 adiabat fixed bed reac-
tors with gas recycle cooling and interstage cooling.
Efficient recovery of the reaction heat is essential for
the industrial methanation technology. That’s why a
counter current water cycle stream is used for the inter-
stage cooling. The water cycle is simultaneously used
for high pressure steam generation. The gas recycle at
the first reactor reduces the yield and the temperature
in the reactor.

3 Developed models

The aim of the modelling is to implement a library
with physical based models of components of the
TREMP methanation plant. The library enables inves-
tigations with models of a reactor, a heat exchanger, a
simple pump, a flash, a gas and water splitter. The im-
plemented library is based on the free Modelica Fluid
library, which offers a base with respect to the imple-
mentation of the three balance equations and the inter-
action through the fluid ports.

3.1 Reactor

It is necessary to calculate the thermodynamic equlib-
rium for the methanation reactor yield, as it will be

Table 2: Parameters A and B of equation 10
reaction A B

1 -29.3014 26248.4
3 -4.3537 4593.2

achieved both in the full load and the part load of the
methanation plant, Harms in [2]. The thermodynamic
equilibrium constant Ka is used in relation with the law
of mass action to determine the molar fractions of the
components and the yield of the reactions at the ther-
modynamic equilibrium. KP is the equilibrium con-
stant of the partial pressures, pi, of the species, which
is connected to the Ka with the fugacity coefficients,
Kα , in equation 5.

KP =
Ka

Kα

(5)

The law of mass action for the KP is described in
equation 6 for a chemical reaction like in equation 7.

KP =
pϑC

C · pϑD
D

pϑA
A · pϑB

B

(6)

ϑAA+ϑBB
 ϑCC+ϑDD (7)

The equilibrium constant of the molar fractions
(KX) is necessary to calculate the chemical equilib-
rium. KX can be compute with KP, the total pressure,
p, and the sum of stoichiometry coefficients of the
chemical reaction, how it is shown in equation 8. The
molar fraction of the species, Xi, can be determined
with equation 9.

KX = KP · p−∑ϑ i (8)

KX =
XϑC

C ·XϑD
D

XϑA
A ·XϑB

B

(9)

It has to be noted that the thermodynamic equilib-
rium constant is temperature dependent. The tempera-
ture can be approximated with equation 10.

ln(Ka) = A+
B
T

(10)

The parameters A and B of equation 10 are given in
Table 2.

Two simplification were assumpted for the calcula-
tion of the thermodynamic equlibrium. The first is the
assumption of ideal gas law for the species. Therewith
the fugacity coefficients can be neglected in equation
5, Kα = 1.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

573

The second simplification is the neglect of the
Boudouard reaction, equation 4, which occurs if the
stoichiometry ratio of equation 11 is lower than 3. In
that case, carbon is produced as a product of reaction
4. Carbon leads to catalyst deactivation by forming
of carbon deposition on the catalyst surface.This is the
technical aspect to elimate reaction 4.

H2 −CO2

CO+CO2
≥ 3 (11)

If the stoichiometriy ratio from the reactants of
equation 11 is at least 3 or more, CO reacts with H2
completly to CH4 and H2O according to equation 1.
The stoichiometry ratio of equation 11 can be adjusted
by converting CO with H2O to CO2 and H2 as long as
the H2O ist high enough, see Anderlohr in [3].
Finally the system of methanation reactions can be re-
duced to reaction 1 and 3, as the stoichiometry ratio of
equation 11 for all the gas streams in the TREMP are
higher than three. Therewith the molar fraction of the
species can be determined with the equations from 12
to 17, in which 0 stands for the start state and 1 for the
equilibrium state. The yield U1 and U2 is the yield of
the reactions 1 and 3, whose sum is the total yield of
CO, see equation 18.

XH2,1 =
CH2,0 −3CCO,0 ·U1 +CCO,0 ·U2

1−2 ·CCO,0 ·U1
(12)

XCH4,1 =
CCH4,0 +CCO,0 ·U1

1−2 ·CCO,0 ·U1
(13)

XH2O,1 =
CH2O,0 +CCO,0 ·U1 −CCO,0 ·U2

1−2 ·CCO,0 ·U1
(14)

XCO,1 =
CCO,0 −CCO,0 ·U1 −CCO,0 ·U2

1−2 ·CCO,0 ·U1
(15)

XCO2,1 =
CCO2,0 +CCO,0 ·U2

1−2 ·CCO,0 ·U1
(16)

XN2,1 =
CN2,0

1−2 ·CCO,0 ·U1
(17)

U1 +U2 =
CCO,0 −CCO,1

CCO,0
(18)

In order to determine the chemical equilibrium at
known temperature and pressure, a non-linear equa-
tion system of the above mentioned equations need to
be solved. The results of an example calculation are
given in Figure 2.

Figure 2: Thermodynamic equilibrium for the feed gas
in the range of 100-800 ◦C at 30 bar, start composition
in w.%: 4,97 H2, 13,80 CO, 11,97 CO2, 24,11 H2O,
44,12 CH4, 1,03 N2;

Table 3: Parameters A, B and C of equation 20
reaction A B C

1 0.0266 -47.7331 -205094.5788
3 0.0026 -7.4437 -41557.3842

The energy balance need to be completed by the
produced reation heat which influence the equilibrium
temperature. The amount of the produced reaction
heat is the higher the yield of the reactions is. A
high reaction heat leads to high temperatures. But the
higher the temperature, the lower is the yield. The re-
action heat, Q̇Rkt , can be determined by equation 19,
in which ∆h is the specific enthalpy of the reaction
and Mgas the mean molar mass of the gas. The tem-
perature dependency of the specific reaction enthalpy
is approximated with equation 20. The parameters of
equation 20 for reaction 1 and 3 are given in Table 3.

Q̇Rkt = (∆hR−1 ·U1 +∆hR−3 ·U2)

· ṁ ·
(

XCO,1

Mgas,1
− XCO,0

Mgas,0

)
(19)

∆h = A ·T 2 +B ·T +C (20)

The configuration of the reactor model is shown in
Figure 3. The model components are sNG_reaction
model, volume, heat capacity, temperature sensor and
linear valve with a constant block. The calcula-
tion of the thermodynamic equilibrium occurs in the
sNG_reaction model. The volume represents the vol-
ume of the reactor. The heat capacity model is the heat

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

574

capacity of the catalyst bed and the reactor wall. The
valve model is used to simulate the pressure drop of
gas flow through the catalyst bed.

Figure 3: Configuration of the reactor model

The reactor model has three main parameters: vol-
ume, pressure drop and heat capacity. The parameters
have different impact of the reactor performance. The
greater the reactor volume, the later will be the steady
state achieved. The pressure drop changes the pressure
and therewith the reactor yield. The pressure drop is
predefined by the user.The impact of the heat capacity
is more difficult. The reactor model need be splitted
in series identical reactor zones, which are duplicates
of the reactor model configuration in Figure 3, at high
heat capacities. The higher the heat capacity, the more
zones are needed to get the steady state for temper-
ature and methane at the same time, which is phys-
ically nescessary, because the temperature influence
the chemical equilibrium. The temperature would be
change slower than the chemical equilibrium, if the
number of zones is to low. An example of the transient
temperature behaviour for an 5 zone reactor model at
heat capacities in the range of 0 to 10 MJ/K is given in
Figure 4. The consequently methane concentration is
illustrated in Figure 5.

The reactor ignition or extinction can not be simu-
lated, because no attention is paid to kinetic effects of
the chemical reactions.

Figure 4: Temperature for a reactor model with 5
zones at heat capacities in the range of 0 to 10 MJ/K

Figure 5: Methane concentration for a reactor model
with 5 zones at heat capacities in the range of 0 to 10
MJ/K

3.2 Heat exchanger

The second important model for the modelling of the
methanisation plant is the heat exchanger, which is as-
sumed with a simple design. The heat exchanger de-
sign comprises of an outside tube, filled with hot SNG
gas, which has an inside tube filled with water, how it
is shown in Figure 6. The configuration of a heat ex-
changer zone is given in Figure 7. The zone consists of
two volume models. One volume model contains SNG
gas and the other water/steam. The volume model are
connected by a thermal conduction model. The heat
exchanger comprises of such series zones. The water
and the gas are in counter current flow as the fluid ports
are setted up in this way. Multiple zones are necessary
therewith the outflow of the cold side can be hotter
than the outflow of hot side, in certain cases. Further-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

575

more, a temperature profil can be generated accross
the heat exchanger because of the multiple zones.

Figure 6: Heat exchanger design

Figure 7: Configuration of a heat exchanger zone

The steady state results of an example simulation
are given in Figure 8. The water temperature is con-
stant in the beginning part of the heat exchanger, as the
boiling point is achieved at 318 ◦C at 110 bar. The gas
temperature is cooled down continuously.

4 Validation

The steady state results from the simulation will be
validated in the following section as well from the
single reactor model as the complexe model of the
methanation plant. The results are compared to two
references. The first one are the experimental results
of the TREMP which are published by Harms in [2].
The second reference are steady state simulation re-
sults with the software ChemCAD which assumes the

Figure 8: Temperatures of the heat exchanger model
at steady state

chemical equlibrium. The results of the reactor model
are compared with the data of these two references in
Table 4 and of the TREMP model in Table 5. The mis-
stake of the species is always lower than 4 % except
of hydrogen at low concentration, where the mistake
is under certain conditions up to 10 %.

Table 4: Comparison of the outlet gas composition of
the first reactor of the TREMP with the reactor model
in Modelica and in ChemCAD. Inlet gas: composition
in weight %: 4,97 H2, 13,80 CO, 11,97 CO2, 24,11
H2O, 44,12 CH4, 1,03 N2; temperature 300 ◦C; pres-
sure 30 bar

Unit Outlet Outlet Outlet
TREMP Modelica ChemCAD

Temp. ◦C 600 600 599
H2 w.% 2,47 2,40 2,41
CO w.% 2,01 2,04 1,97
CO2 w.% 12,13 11,79 11,92
H2O w.% 31,48 31,82 31,76
CH4 w.% 50,82 50,92 50,91
N2 w.% 1,10 1,03 1,03

5 Transient behaviour

The reactor and the heat exchager model, see section 3,
are used to build up the model of the methanstion plant
like it is shown in Figure 1. The model of the metha-
nation plant is utilised for transient simulation studies.
In the following, results of a part load simulation are
presented. The simulation of the load change is faster
than realtime. In order to realise the part load, the feed
mass stream was reduced to 50 % after the TREMP
model is steady state which is after 300 s simulation
time, see Figure 9. The steady state in part load is
achieved after the simulation time 1000 s.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

576

Table 5: Comparison of the outlet gas composition of
the first reactor of the TREMP with the TREMP model
in Modelica and in ChemCAD. Inlet gas: composition
in weight %: 13,08 H2, 51,76 CO, 11,49 CO2, 0,00
H2O, 22,54 CH4, 1,13 N2; temperature 150 ◦C; pres-
sure 30 bar. Recycle rate = 3,3

Unit Outlet Outlet Outlet
TREMP Modelica ChemCAD

Temp. ◦C 600 596 594
H2 w.% 2,47 2,34 2,34
CO w.% 2,01 1,91 1,83
CO2 w.% 12,13 11,64 11,73
H2O w.% 31,47 31,94 31,91
CH4 w.% 50,82 51,04 51,06
N2 w.% 1,10 1,13 1,13

Figure 9: Mass stream of the feed in the Modelica
TREMP model

The result are lower gas temperatures in the reac-
tors which leads to higher methane concentrations in
the gas, how it is shown in Figure 10 and 11. The feed
mass stream rise back up to 100 % after 1000 s simula-
tion time to full load. The steady state is got after sim-
ulation time 2000 s. The temperature and the methane
concentration achieve the same level as before the part
load.
Finally the gas product quality at part load is almost
equal to the full load. Furthermore, it is still possible
to produce steam, but the pressure of the steam need
to be adjusted.

Figure 10: Temperatures in the reactors in the Model-
ica TREMP model

Figure 11: Methane concentration in the reactors in
the Modelica TREMP model

6 Conclusion

A succesfull generation of a dynamic methanation
plant model could be realised. Therefore the develop-
ment of a simplified reactor and heat exchanger model
was necessary. The results of the reactor plant and the
plant model of the TREMP could be validated success-
ful of steady state performance with ChemCAD sim-
ulations and experimental data from Harms [2]. The
dynamic behaviour could be only validated by a plau-
sibility check.
The TREMP plant model is finally useful for the de-
velopment and check of control concepts, and fur-
thermore for the analysis of trip scenarios and load
changes.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

577

7 Outlook

It has to be mentioned that the solution of the nonlin-
ear equation system takes a long calculation time of
the CPU, because the slow mixed implicied/expliced
euler method is used for simulation. All the other inte-
grated numerical solution algorithms in Dymola lead
to instability. Hence, a faster and more stable solution
algorithm for the calculation of the thermodynamic
equlibrium is neseccary. One proposal is to work with
look up tables which are precalculated for certain re-
actor yields. The disadvantage of this solution is a re-
duced flexibility of the model. Another proposal is
the use of the so called method: minimisation of the
gibbs enthalpie, for the calculation of the thermody-
namic equlibrium, which is published by White et al.
in [4]. At this method solves mainly derivatives, the
equation system may be solved much faster and more
numeric robust.
Moreover, a kinetic model is necessary to estimate the
limits for the parameter therewith the assumption of
the thermodynamic equlibrium can be justified.

References

[1] Haldor Topsoe: From solid fuels to sub-
stitute natural gas (SNG) using TREMP,
http://www.topsoe.com

[2] Harms, H.; Höhlein, B.; Skov, A.;
Methanisierung kohlenmonoxidreicher Gase
beim Energietransport. In: Chemie.-Ing. Tech-
nik, (6) page 504-515, 1980.

[3] Anderlohr, A.; Untersuchung zu gleichzeit-
igen Methanisierung und Konvertierung
von CO-reicher Gase in einer katalytischen
Wirbelschicht. Karlsruhe, Germany: PhD thesis,
Fakultät für Chemieingenieurwesen, Tech.
Hochschule Karlsruhe, 1979.

[4] White, W.; Johnson, S., Danzig, G.: Chemi-
cal Equilibrium in Complex Mixtures. In: The
Journal of Chemical Physics 28(5), S. 751-755
(1958)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

578

Modelling of System Properties in a Modelica Framework

Audrey Jardin Daniel Bouskela Thuy Nguyen Nancy Ruel
EDF R&D, STEP Department

6 quai Watier, 78401 CHATOU Cedex, FRANCE
audrey.jardin@edf.fr daniel.bouskela@edf.fr nancy.ruel@edf.fr

Eric Thomas Laurent Chastanet
Dassault-Aviation

78 quai Marcel Dassault Cedex 300, 92552 St CLOUD Cedex, FRANCE
eric.thomas@dassault-aviation.com laurent.chastanet@dassault-aviation.com

Raphaël Schoenig Sandrine Loembé
Dassault-Systèmes

10 rue Marcel Dassault, 78946 VELIZY-VILLACOUBLAY Cedex, FRANCE
raphael.schoenig@3ds.com sandrine.loembe@3ds.com

Abstract

In order to improve the engineering processes and
especially the corresponding verification and valida-
tion phases, this article deals with the modeling of
system properties in a Modelica framework. The
term “property” is intended here to be generic and
refers to a system requirement or limitation as well
as a validity domain of a model. The choice of the
Modelica language is justified by a desire to use its
equation-based feature to model system properties in
an unambiguous and explicit way. Besides, choosing
only one formalism to describe the system properties
and the physical equations of the model should ease
the expression of the model validity domains.

After having introduced several theoretical con-
cepts to formally describe a system property, the de-
velopment of a dedicated library is explained and
illustrated on an industrial example taken from the
aeronautics domain. Some checks of system proper-
ties are thus performed by co-simulating behavioral
and properties models. Finally, some extensions of
the Modelica language are advocated in order to im-
prove the applicability range and efficiency of prop-
erties modeling for complex systems, and especially
to increase the rigor of their validations by enabling
formal proofs.

Keywords: Modelling;Checking;Property;Modelica.

1 Introduction

The study of performance and safety is today of
prime interest when designing complex systems. At
each stage of the design cycle, engineers should
check the conformance of their technical choices
with respect to the initial specifications. In such a
Verification & Validation (V&V) process, the mod-
eling and the verification of system properties are
thus a key activity. They enable to validate the cho-
sen implementation of the system but they also ease
the capitalization on the knowledge of the system.
Formalizing the requirements allows to enhance the
documentation of the engineering processes by keep-
ing track of design improvements, model refine-
ments, changes in the safety/operational expecta-
tions, and so on.

The difficulty of such a V&V approach lies, how-
ever, in the fact that, if some techniques and lan-
guages exist today to handle system properties, they
often involve specific models different from the ref-
erence engineering model (i.e. the model commonly
used to predict the physical behavior of the system,
that is the behavioral model). Such heterogeneity
may lead to some errors and thus to flaws in the
proof of safety or performance.

The modeling and the checking of system proper-
ties concern industries in charge of the design of new

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

579

products (e.g. automotive, aerospace) as well as the
ones responsible for the operation of long-life prod-
ucts and faced to retrofit due to some material obso-
lescence and changes in operational constraints (e.g.
energy producers). The properties model and the ref-
erence engineering model should thus apply for a
system involving several physical domains.

For the behavioral model, the increasingly use of
the non-proprietary Modelica language [1]-[2] in
various industries testifies of the Modelica efficiency
to conveniently describe multi-physics behaviors.
Besides, thanks to its equation-based and acausal
features, the Modelica language appears well-suited
to build models reusable and adaptable to the differ-
ent steps of the engineering cycle.

The objective of this article is thus to study to
what extent the properties of a system can be mod-
eled and checked in a Modelica framework.

A similar approach is currently ongoing, within
the ITEA2 OpenProd project [3], by linking a Mode-
lica behavioral model to a UML properties model
[4]. It actually implies the development of the so-
called ModelicaML UML profile [5]-[6]. However
the work presented here has been performed within
the ITEA2 EuroSysLib project [7] via a collabora-
tion between EDF, Dassault Aviation, Dassault
Systèmes and DLR. It takes a different point of view
in the sense that the modeling and the checking of
system properties are studied in a fully Modelica-
based environment. This choice can be explained by
a desire to reuse:

- the equation-based feature of Modelica to
model properties in a more formal way;

- the same formalism as the one chosen to de-
scribe the physical equations of the models
in order to ease the expression of their valid-
ity domains (which are actually a specific
kind of property).

Section 2 clarifies the concept of “property” with

no reference made to the way it can be implemented
in Modelica. It defines what is a property and sums
up the different types of properties. It also specifies
the users requirements regarding properties model-
ing, checking and visualization.

Section 3 aims at formalizing the way a property
can be modeled. Like in a formal Property Specifica-
tion Language [8], the idea is to introduce some
theoretical concepts especially useful to express a
property in an unambiguous and explicit form. Some
notions like “space/time locator”, “state” and “event”
are depicted and a list of “operators” to build several
types of system properties is given and illustrated on
realistic examples.

Section 4 focuses on the technical implementa-
tion of these concepts in Modelica. The development
of a dedicated library is explained and illustrated on
an industrial example taken from the aeronautics
domain. The assessment of some system properties is
in particular made by simulation using Dymola [9].

Section 5 advocates the extension of the Modelica
language in order to improve the applicability range
and efficiency of properties modeling for the valida-
tion of complex systems.

2 Properties modeling and checking

As mentioned above, the following sub-sections
are intended to set up the framework of the study.
Independently of the way it can be implemented in
Modelica, they are intended to clarify the concept of
“modeling and checking properties” and to show its
potential use in an industrial context. Notions like a
“properties model” or a “behavioral model” are in
particular introduced.

2.1 What is a property?

Definition 1: A “property” is an expression that
specifies a condition that must hold true at given
times and places. It results in a Boolean variable stat-
ing whether the property is satisfied or not.

A property may thus specify:
- an allowed operating domain the system

must not leave for safety reasons;
- an operational domain where, for instance,

the system operation is optimized for per-
formance;

- the validity domain of a model outside of
which the corresponding behavioral equa-
tions are no longer valid;

- …

Example: Some realistic properties can be formu-
lated in a textual form such as:

- The power plant should evolve in an allowed
(temperature, pressure)-domain;

- Cavitation should never happen in a pump
component;

- The characteristics of the pump are only
valid for a given range []21;QQ of flow
rates.

- …

Different categories of properties may actually be
distinguished. A first typology may be drawn de-
pending whether the properties are associated with

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

580

the system, a sub-system or a component. But, the
properties may also be classified depending on the
kind of expectations. Two main kinds of properties
may however be highlighted:

- a first kind where the properties characterize
the expectations of the designer but also the
limitations of the chosen system, sub-
systems and components. These properties
are expressed independently from any be-
havioral model;

- a second kind where the properties define
some validity domains and are thus attached
to specific behavioral models. These proper-
ties do not belong to the designer require-
ments. They only reflect how the designer
represents the implementation of its system.

From the tool and language perspective, modeling
system and components properties and expressing
validity domains are however essentially similar. For
the sake of simplicity, the term of “property” will
then be used all along the paper to refer to any re-
quirement/limitation the engineer wants to express
on its system/sub-system/component or on its
model/sub-model.

2.2 Uses of properties modeling

The modeling and the checking of properties may be
used in an industrial context to verify and validate
each stage of the system development cycle, in par-
ticular:

- to enhance the documentation of the system
regarding the description of the expected be-
havior as well as the description of the as-
sumptions made during the modeling of its
behavior. This may in particular be useful to
ease the capitalization and the transmission
of knowledge;

- to improve the engineering processes by ex-
pressing the requirements in an explicit and
unambiguous form and by keeping track of
any evolutions due to design improvements,
to changes in operational expectations, to
model refinements…

Once the properties have been modeled, a series
of tests can then be performed:

- to check the coherence and the completeness
of the requirements (e.g. by formal proofs
and consistency checks);

- to verify the conformance of the designed
system with respect to the initial specifica-
tions (e.g. by simulating both the properties
model and the behavioral model);

- to validate the Instrumentation & Control
(I&C) part of a process on the basis of the

services it should provide to the physical
process, during the specification phase, and
after the programming phase using hard-
ware-in-the-loop;

- to support advanced modeling approaches
like scenarios simulating sequential changes
of different operating modes (e.g. simulation
of a system entering a dysfunctional mode).

2.3 Distinction between a “behavioral equa-
tion” and a “property expression”

Behavioral equations describe a potential implemen-
tation of the system at the design phase, or how the
system actually works during operation. They are
based on physical or empirical laws.

Properties define what the system should guarantee,
or in other words what is the validity domain of the
system’s behavior. They can also be used to define
the validity domain of the model used to represent
the system’s behavior.

Example: Let us consider a valve. A behavioral equa-

tion can be “ () ()tQktP 2/ ⋅=∆ ρ ” (where ()tP∆ is
the pressure loss across the valve, ρ is the fluid

density, k is the pressure loss coefficient of the
valve and ()tQ is the mass flow rate through the

valve) whereas a property can be “For all t , ()tP∆

should be greater than minP∆ to avoid cavitation”.

This distinction is important because behavioral
equations and properties are fundamentally different:

- They correspond to different objectives: be-
havioral equations describe how the system
actually works (e.g. the dynamics of the sys-
tem) whereas properties define what the sys-
tem should do (e.g. which services it should
provide, the prescribed operation domain….);

- They are of different natures: behavioral
equations define system characteristics which
are always localized to a specific part of the
system, whereas properties define system
characteristics which may be global in time
or space, in the sense that they can constrain
variables across several periods of time and
different locations;

- They involve different expertise: writing
behavioral equations requires expertise in
physical system modeling, whereas defining
properties requires expertise in system opera-
tion;

- They have different lifecycles: the definition
of properties occurs during the requirement
phase, whereas the modeling of the system’s

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

581

behavior occurs during the design phase. For
instance, properties may capture the current
safety rules, while behavioral equations may
describe the current behavior of the system
under operation. The impact of the evolution
of safety rules on the operation of the system
may be assessed by modifying the properties
and checking them against the current sys-
tem’s behavior. Inversely, the compliance of
system’s modifications wrt. the current safety
rules can be checked by comparing the modi-
fied behavioral equations wrt. the current sys-
tem’s properties.

2.4 Requirements on properties modeling

A property has to be:

- in interaction with the behavioral model of
the system (since its satisfaction depends on
the evolution of the system);

- transparent wrt. the dynamic evolution of
the system (should not influence the evolu-
tion of the system);

- coherent with the behavioral model by not
implying a too low level of details (properties
should not refer to characteristics that are not
depicted in the behavioral model);

- readable for the sake of documentation and
transmission of knowledge;

- understandable to ease the interpretation of
its potential failure.

The modelling of properties must then be in accor-
dance with these different axioms and an adequate
data model has to be established in particular to
guarantee the transparency of the properties model
towards the behavioral model.

Behavioural Model

Physical
Model

I&C
Model

Human
Interactions

-Non Human
Environment

Properties Model

Nominal mode

Winter mode

System

Sub-system 1

Sub-system 2

… Behavioural Model

Physical
Model

I&C
Model

Human
Interactions

-Non Human
Environment

Human
Interactions

-Non Human
Environment

-Non Human
Environment

Properties Model

Nominal mode

Winter mode

System

Sub-system 1

Sub-system 2

…

Figure 1: Data model for modeling the system behav-
ior, the evolution of its environment and the properties
the system must guarantee

So as to bound the properties model with the behav-
ioral model in such a way that they remain dissoci-
ated, we suggest here to physically separate these
two kinds of models in two kinds of files. Such a

data model (Figure 1) thus corresponds to a model
organized in three different parts:

- the environmental model where the charac-
teristics and the evolution of the system envi-
ronment are specified. This part may in par-
ticular be used to set the inputs of the simula-
tion and so to specify some scenarios (e.g. in-
troduction of some component failures, simu-
lation of a series of operator intervention,…)

- the behavioral model where the intrinsic
characteristics and the evolution of the sys-
tem are described with behavioral equations.
In other words, this part corresponds to the
physical modeling of the process and its I&C
part;

- the properties model where the expected ser-
vices of the system and the validity domain of
the behavioral model are depicted.

In order to ensure the fact that the properties model
should be only an observer of the behavioral model,
the three parts of this data model must communicate
with each other such that:

- the properties model and the behavioral
model may access the data described in the
environmental model (the properties as well
as the behavior of the system may actually
change depending on the evolution of the sys-
tem environment);

- the properties model may access the data de-
scribed in the behavioral model in order to
evaluate whether the dynamic evolution of
the physical process and its I&C part stay
within the bounds of the prescribed properties
domain, but it cannot send any data to influ-
ence the behavioral model.

Besides, in order to ease the reading and the con-
struction of the properties model, it may be helpful to
organize it into a hierarchy. Depending on the mod-
eler expectations, this hierarchy may be based:

- on the architecture of the studied system;

- on the different states of the studied system
and its environment;

- or on a combination of the system architec-
ture and the different states (as in Figure 1).

A hierarchy based on the system architecture may be
useful in particular when the architecture of the sys-
tem changes and the modeler has then to remove or
to add some properties related to some specific sub-
systems or components. On the other hand, a hierar-
chy based on the states of the system and of its envi-
ronment may add further information on how the
system should behave (the description of these states

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

582

gives in general a better insight into the different op-
erating modes).

In practice, since a different properties model can be
built for each operating mode, several properties
models can be associated with the same behavioral
model.

An advanced data model has thus been imagined to
enable the handling of such a situation. As shown in
Figure 2, our suggestion is to add a statechart model
[10] where the different states of the system and of
its sub-systems and components are described. The
main idea is then that the statechart model is viewed
as a supervisor: it may access the data of the behav-
ioral model, decide in which states the system oper-
ates and select the appropriate properties model.

Behavioural Model

Human
Interactions

-Non Human
Environment

Properties Model

Statechart
Model

Nominal mode

Winter mode

… …

Nominal model

Dysfunctional model

Selection of the adequate
properties model

Selection of the adequate
behavioral model

Behavioural Model

Human
Interactions

-Non Human
Environment

Human
Interactions

-Non Human
Environment

-Non Human
Environment

Properties Model

Statechart
Model

Nominal mode

Winter mode

… …

Nominal model

Dysfunctional model

Selection of the adequate
properties model

Selection of the adequate
behavioral model

Figure 2: Advanced data model for switching proper-
ties models and behavioral models

With the same point of view, it may also be useful to
associate several behavioral models with the same
system. For instance, if the objective is to anticipate
the physical behavior of the system when a fault oc-
curs and to verify whether the corresponding behav-
ior remains in a safe domain, it may be helpful to
switch, during the simulation, between a model de-
scribing a nominal behavior and another model de-
scribing a dysfunctional behavior of the system.

For this particular use, the advanced data model of
Figure 2 can be adapted in such a way that the state-
chart model may:

- access the results obtained from the assess-
ment of the properties to detect if the validity
domain of the active behavioral model has
been crossed;

- activate, if needed, another behavioral model
with an appropriate validity domain.

In such application, let us note however that even if
the same statechart model supervises several proper-
ties and behavioral models, the hierarchy of the
properties may not necessarily correspond to the hi-
erarchy of the behavioral models.

2.5 Requirements concerning the checking, the
visualization and the analysis of a property

The question now is to study to what extent the
properties and the behavioral models should be cou-
pled together to check whether the properties are
satisfied or not.

Two kinds of checks may be imagined: a static check
by formal proof and a dynamic check by simulation.

Checks by formal proof can be used to verify the
coherence: (1) between the properties themselves
(e.g. to verify that properties are compatible between
themselves and do not define mistakenly empty op-
erating domains); (2) between the properties and the
behavioral model (e.g. to check that the behavioral
equations are mathematically compatible with the
properties).

Complementarily, checks by simulation can be used
to verify the properties all along a given scenario
such as the “Virtual Verification” method suggested
in [11].

Checks by formal proof require that properties and
behavioral models are described using high level
formal declarative languages such as Modelica.
Checks by simulation require the definition of sce-
narios with possible occurrences of dysfunctional
modes, injection of faults, changes because of human
interactions, and so on. Besides, to help the analyst
understand the reasons of properties violations, di-
agnostics tools should be provided, such as:

- generation of alarm when a property is vio-
lated: a pop-up may appear during the simu-
lation as soon as the non-verification of a
property is detected;

- change of component’s visual aspect: the
color of a component may change when its
corresponding properties are not satisfied;

- edition of a log file: to recap all the properties
violations and to signal at first glance when
and where the problems have appeared;

- properties filtering: the analyst may need to
make a distinction between safety properties
and properties indicating some pre-alarms,
optimal operating domains, constraints avoid-
ing damages, and so on. The possibility to tag
the properties with adequate flags may, for
instance, be considered.

This list is however far to be exhaustive, for instance
one can also imagine the possibility to introduce
some indicators like the probability of a property’s
failure.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

583

3 Theoretical concepts used for
properties modeling

By definition and similarly to the Behavior Engi-
neering approach [12], a property can be expressed
under the generic form: [Where][When][What].

Example: The avoidance of pump cavitation can be
expressed by: [In Pump1][for every instant when the
pump operates][the fluid pressure at the inlet should
be greater than a minimum value].

To meet one of the requirements which is to for-
malize the expression of the properties, the main idea
of the following sub-sections is namely to describe
the concepts related to the generic form of a prop-
erty. In more details, these sub-sections describe
what are the “attributes of a property” (i.e. what refer
to the where, when and what terms), what they imply
(i.e. what “kinds of objects” are used) and how they
can be built (i.e. which “operators” are used to con-
struct such attributes).
In order to set up a clear theoretical framework, the
following paragraphs are still voluntarily independ-
ent of any dedicated language. The implementation
in a Modelica environment is studied in Section 4.

3.1 Attributes of a property

As already stated, a property may be expressed under
the generic form [Where][When][What].

“Where” is a space locator that specifies which part
of the system is concerned by the property. The
space locator specifies a subset of “everywhere”. It
may involve a family of components (e.g. all the
pumps), a specific component (e.g. pump n°2), a part
of a component (e.g. a specific segment of a pipe), a
subset of objects that are in a given state or that are
satisfying a given condition (e.g. all the components
whose temperature exceeds 240°C). It may also be a
subset or a combination of other space locators.

“When” is a time locator to indicate at which in-
stants the property has to be satisfied. The time loca-
tor is a subset of “always”. It may involve a time
instant referring to all the occurrences of a specific
event (e.g. when a pump starts), a time period during
which a given condition holds true (e.g. as long as
the pump operates), a sliding time interval when a
given property needs to be satisfied only most of the
time (e.g. for no more than 3 minutes over any pe-
riod of 2 hours). It can also be a combination of sev-
eral time locators.

“What” refers to the condition the system should
guarantee (or the assumption the model should sat-
isfy in the case of a validity domain). It consists in an
expression that can be evaluated and which results in
a Boolean variable stating whether the property is
satisfied or not. Because of the variety of properties,
conditions can involve physical variables and/or
states probed at specific time instants or during spe-
cific time periods. They may also imply events, or
even a combination of these several kinds of objects
with some space and time locators.

3.2 Types of objects implied in the attributes of
a property

As shown above, a property may entirely be defined
by the association of a space locator, a time locator
and a condition to be satisfied. Due to the complexity
of the systems and the different types of properties
the designer is interested in, these attributes have to
deal with numerous kinds of objects such as:

- instances of models (e.g. Pump1, Sen-
sorMT018…);

- geometric data (e.g. segment[0.2…0.8] of
Pipe3);

- physical variables and/or parameters of dif-
ferent physical types;

- states of the system, sub-systems and com-
ponents (e.g. since the expected services are
often depending on the different operating
modes, a property may concern a component
only when it is not in a dysfunctional state);

- events that characterize external stimuli of
the system (e.g. human intervention, evolu-
tion of the system’s environment) or internal
changes of the sub-systems and their compo-
nents (e.g. fault during a valve opening);

- combinations of instances of models, geomet-
ric details, physical variables, states and
events built thanks to some specific opera-
tors (e.g. Pump1 and Pump2, for every in-
stant where Pump1 operates, all pumps ex-
cept Pump3…).

The two following paragraphs define in more details
what we mean by the notions of “state” and “event”
which may be less naturally intuitive. The concept of
“operator” to build adequate properties attributes is
then studied in Section 3.3.

3.2.1 State

Definition 2: A “state” is a discrete variable that
characterizes an aspect of a system, a sub-system or
a component. It can take its values only within a fi-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

584

nite set of enumerated values. It is defined according
to a specific point of view on the system.

Example: States may correspond to different operat-
ing modes (e.g. maintenance/normal operation), op-
erating conditions (e.g. cold winter/hot summer),
physical behaviors (e.g. pump/turbine mode)…

A state may have one (or several) attached sub-state
variable(s) and the same system, sub-system or com-
ponent may have multiple independent states.

As explained above, the notion of state can also help
to organize the properties and the behavioral models
into a hierarchy.

3.2.2 Event

Definition 3: An “event” is an object that is generated
at a given time instant to signal the occurrence of a
fact. It carries at least two pieces of information: the
date and the class of the event. The former indicates
when the change has occurred while the latter de-
fines what has happened. An event has no duration
and does not characterize what are the consequences
of the change on the system behavior.

Example: The starting of a motor may generate an
event.

In some cases, sub-classes of the event concept may
be created to provide further information such as a
probability distribution, a frequency of appearance,
and so on. A distinction may also be made depending
on the location of the change. For instance, internal
events are related to the evolution of some variables
in the behavioral models while external events corre-
spond to changes in the system’s environment.

The introduction of the event concept can especially
be used to define some simulation scenarios with
injections of faults, control or perturbation actions.

3.3 Operators to build property attributes

An operator is defined here as a function that con-
structs an object as output given one or several ob-
jects as inputs. Inputs and outputs may be of the
same type, or of different types. Operators are of
prime importance to build space/time locators or
even conditions:

- when a simple observation of the variables
available in the behavioral model is not suffi-
cient to describe what the system should
guarantee or when the model is valid (e.g.
when a behavioral model involves only a
mass flow rate variable and the corresponding
property is expressed in terms of volume flow

rate, an operator has to be used to perform the
unit conversion);

- or when it is easier to express it as a function
or a combination of other attributes.

Operators may be classified depending on the types
of their inputs and outputs. From the analysis of in-
dustrial needs based on EDF and Dassault-Aviation
use-cases, some operators have been identified as
particularly useful, such as:

- arithmetical operators and usual functions:
+, -, *, π, cosinus, absolute value,…;

- logical operators: and, or, …;

- set operators: all, in, œ, – (creation of a set),
» (sets union), … (sets intersection), ()card

(cardinal of a set), S (complement of a set), \
(subtraction of a subset), …;

- operators on time and events: for, when,
while, always, never, delay between two
events, duration of a time period, count of the
number of events, events synchronization;

- dedicated operators: >, <, ¥, (thresholds),
Õ, Ã (domain inclusion), D (ramp), A (ac-
cumulation), ()freq (frequency).

Among this (non-exhaustive) list, some operators
refer to well-known concepts in mathematics or
computer programming, while other correspond to
operators more specific to the modeling of properties
for physical systems. The aim of the following sec-
tions is to give a better insight into these dedicated
operators by furnishing their mathematical descrip-
tion and illustrating their uses. Their implementation
in Modelica will then be further discussed in Section
4.

3.3.1 Threshold operator

Definition 4: The “threshold operator” defines a
lower (or an upper) limit that a variable should not
exceed.

This operator may be used to build a time locator or
a condition.

Examples: In the case of an heat exchanger, an exter-
nal leakage may appear if the pressure and the tem-
perature both exceed given maximum values. An
internal leakage may also occur if the number of cy-
cles is superior to a specific limit. Air bearing can be
destructed if its rotational speed crosses a maximum
value. If the Mach number is superior to a specific
limit, the model of an air pipe may predict pressure
losses with less confidence.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

585

3.3.2 Domain inclusion operator

Definition 5: The “domain inclusion operator” de-
fines a continuous and delimited area that variables
should not go beyond. It can be seen as the generali-
zation of the threshold operator to the multi-variable
case.

This operator may be used to build a condition. The
delimited area may be defined by a set of given val-
ues or an analytical expression.

Examples: Figure 3 shows different (pressure ratio,
reduced airflow) domains for a centrifugal compres-
sor: the green area stands for the nominal operating
domain whereas the orange and the red ones denote
respectively the restricted and the destructive do-
mains.

Figure 3: Example of a (pressure ratio, reduced air-
flow)-map for a centrifugal compressor

3.3.3 Operator for monitoring a rate of change

Definition 6: The “ramp operator” ∆ can be defined
both on intensive and extensive variables. For an
intensive variable ()tGi (resp. extensible variable

()tGe), it provides the evolution of ()tGi (resp.

()tGe) per time unit during the time period []10,tt

such as:

() () ()
01

01
10,,

tt

tGtG
ttG ii

i −
−

=∆

() () ()
() ()010

01
10,,

tttG

tGtG
ttG

e

ee
e −⋅

−
=∆

Examples: In a heating system, the temperature in-
crease should not exceed 3°C per hour. The power
should not increase more than 2% per hour. For an
aircraft, the cabin altitude rate of change should cor-
respond to certain pressure bump duration (Figure 4).

Figure 4: Example of a (cabin altitude rate of change,
pressure bump duration)-map to ensure passenger
comfort in an aircraft

3.3.4 Operator for monitoring a time integration

Definition 7: The “accumulation operator” is relevant
for extensive variable only. For an extensive variable

()tGe , its accumulation during the time period

[]10,tt is defined such that:

() () () ()∑∫ ⋅Φ=−=
k

t

t

ekeee dtGtGtGttGA
1

0

0110 ,,

where () ∫ ⋅⋅⋅=Φ
A

eek dAgG νρ ; ρ is the mass

density; eg denotes the variable ()tGe per mass unit

and ν is the velocity through the surface A of the
control volume.

Examples: This operator can be used to monitor the
cumulative radioactive dose which is emitted by a
sub-system in a power plant. It may also prevent a
complete clogging of a cold heat exchanger by set-
ting up the condition

 “ ∫ ⋅⋅1

0

t

t
dtwMassAirFloyAirHumidit should be

inferior to a given value of mass”.

3.3.5 Operator for monitoring oscillations

Definition 8: The “frequency operator” allows to
quantify the time period between the occurrence of
some identical events.

Examples: For a regulating valve, the frequency of its
control signal should not exceed, for instance, 1 Hz
during more than 30 seconds in order to avoid any
impact on the valve’s Mean Time Between Failure.

3.4 Construction of a property

To recap the theoretical concepts introduced above,
we can state that a property can be formally de-
scribed as the association of three attributes (namely
a space locator, a time locator and a condition to be

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

586

satisfied) which are built through specific operators
from objects provided by the behavioral model(s).

The following examples serve as an illustration on
how a property expressed in a textual form may be
reformulated in a formal manner. Through some
combination processes, they also show how complex
properties may be entirely described from the short
list of formal concepts previously described.

Examples: To avoid the Pump1 cavitation, the pres-
sure at the inlet should be greater than a minimum
value � [In Pump1] [for all t | state = operating]
[condition P(t) > Pmin].

To ensure the performance of the cooling system, at
least two pumps should be operating � [In Cooling-
System] [Always] [condition cardinal (set (Pump |
state = operating)) ≥ 2].

To avoid the turbine wheel erosion, no liquid water
should enter at the inlet during more than 30 minutes
� [In Turbine][Always][condition duration (Inlet-
Water.state = liquid) ≤ 30 minutes].

4 Modeling of properties in a Mode-
lica framework

First, a Modelica library dedicated to the modeling
of properties that has been developed during the Eu-
roSysLib project is presented and illustrated on an
industrial use-case. Then, the current limitations of
this library are discussed. Finally, a rationale for a
Modelica language extension to support properties
checking by formal proof is given.

4.1 Modeling of properties with a dedicated
Modelica library

4.1.1 Purpose of the library

The aim of the library is to make checks on parts of
an architecture defined by a Modelica behavioral
model. Its particular features are the following:

- It enables checks during simulations, gets and
stores information in case of detected defect
for actions (e.g. stops the simulation and
starts the next one according to specified cri-
teria);

- It enables reuse of the properties by parame-
terizing them according to the potential uses
of the model (e.g. mission profile, specific
boundary or environmental conditions…),
stores the properties in a catalog for reuse;

- It enables dysfunctional analysis: check of
properties must not influence model simula-
tion (e.g. potential change of time step com-

ing from properties evaluation must not lead
to an unwanted decrease of results accuracy).
But, properties could be used to change the
behavior of models with defect (detected by
properties observers). In this case models
should be modeled with different behaviors
which could be activated on demand (with
currently smooth change between behaviors
due to the change of the equation structure).

The major particularity is that checks are not done as
post-processing, but on the fly at run-time.

4.1.2 Use-Case: Environmental Control System
(ECS)

The simple ECS used for testing properties is defined
by two main parts: (1) the Cold Air Unit (CAU),
made of pipes, heat exchangers, compressors and
turbines, and which controls air characteristics pro-
vided to the cabin and bays; (2) the bleed, which
provides air from the engines to the CAU (Figure 5).

Figure 5: Cold Air Unit and Bleed of the Environ-
mental Control System

The ECS must be compliant with many require-
ments. These requirements are classified according
to 6 categories:

1. threshold monitoring, which deals with
crossing of threshold (see paragraph 3.3.1
for examples of properties on the heat ex-
changer, air bearing and pipes);

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

587

2. operating domain monitoring, which
mainly deals with conditions regarding the
location of couple of values (or more) inside
a defined area or inside a volume. Currently
only requirements regarding 2D area is de-
fined here, but conditions with more than
two dimensions could occur (see paragraph
3.3.2 for example of allowed domains for a
compressor);

3. rate of change monitoring, which deals
with conditions with derivatives (see para-
graph 3.3.3 for criteria concerning the cabin
altitude rate of change);

4. accumulation monitoring, which deals with
conditions with integration (see paragraph
3.3.4 for example of a condition to prevent
the clogging of the exchanger);

5. oscillation monitoring, which deals with
conditions based on oscillation characteriza-
tions (occurrences, frequencies) (see para-
graph 3.3.5 for the example of a regulating
valve);

6. monitoring with space/time locators,
which test conditions linked to location of
components or events (see paragraph 3.4 for
the example of a property to avoid turbine
wheel erosion).

4.1.3 Structure of the library

The presented library is currently dedicated to the
ECS use-case (with behavioral components devel-
oped by Dassault-Aviation) and properties observers.

This use-case appears here as a library divided into
two main parts (Figure 6):

1. A generic part, called “PropertyObserva-
tion”. It contains:

a. examples, especially models from DLR,
which propose two ways (a direct link or
a bus) for connecting the properties to
the ECS model.

b. the ECS model using the second type of
properties connection since it appears as
the most generalized and readable way
for complex systems involving numer-
ous properties.

2. A second part which contains use-cases. It is
split into models and requirements:

a. The models are here focused on an ECS
system simulated with dry or moist air;

b. The properties are a collection of spe-
cific properties built as generically as

possible and classified into several types
of properties.

Figure 6: The two main parts of the library

4.1.4 Process for properties modeling and checking

4.1.4.1 Connecting models to properties

When a system must be checked regarding its com-
pliance with requirements, a good process is to inte-
grate the model inside a virtual test bench by extend-
ing it. In this way the model can be checked accord-
ing to several sets of requirements.

An expandable bus called RequirementBus is added
to the models by drag and drop from the library. Re-
quirements or sets of requirements are then con-
nected to the RequirementBus. Parameters of the
requirements can be adjusted according to the analy-
sis. All values which must be provided by the model
are then automatically available on the bus.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

588

Figure 7: ECS use-case

All the necessary interfaces must then be defined one
by one using components called Mode-
lica.Blocks.Sources.RealExpression from the Mode-
lica Standard Library.

The component RealExpression must be linked to a
variable in the model as in Figure 8 for the cabin
pressure.

Figure 8: Example of value of a component RealEx-
pression

When connecting the component, a window appears
for mapping variable selections (Figure 9). It allows
the user to select which variable must be mapped to
the component RealExpression.

Figure 9: Window appearing for connecting RealEx-
pression to input variable within Requirements

4.1.4.2 Hierarchical decomposition of properties

Requirements may be complex with many elements.
Therefore putting all requirements at the same level
may be cumbersome.

Figure 10: Requirements for a heat exchanger

A simple example on the ECS heat exchanger is
shown in Figure 10 where the properties are com-
posed of three main conditions:

- checkCycledCondition: counts the number
of pressure cycles seen by the heat exchanger
and sets a warning when this number is upper
a threshold;

- checkMechanicalStrength: computes an
equivalent stress within the heat exchanger
and compares it to an allowed maximum
stress;

- checkIcingCondition, checkDeIcingCondi-
tion and checkHXWater: check icing and
deicing conditions, and the amount of water
inside the heat exchanger. Typically, if the
mass of water is above a limit, the heat ex-
changer could be partially clogged and the
simulation could be not valid if the behav-
ioral model is not adapted to this particular
situation. When attaining this operating con-
dition, it is interesting to continue the simula-
tion with the properly modified behavioral
model to analyze the consequences of being
outside of the nominal domain (dysfunctional
analysis).

These requirements stand for the heat exchanger but
all the types of properties defined in Section 3 have
been investigated within the complete ECS use-case.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

589

In fact, many other properties observers could be
added and if we consider observers of other compo-
nents or sub-systems it seems to be cumbersome to
put them all in the same view. Therefore the library
has been enhanced to support hierarchical decompo-
sition of properties. In particular a component called
UpperLevel has been introduced to transmit the re-
sult as an OR function of its inputs.

4.1.5 Unit test for a heat exchanger

Properties components have been tested with speci-
fied inputs to check that their behaviors were correct.
Figure 11 shows different properties states for a heat
exchanger.

During simulation, the visual indicator stays green as
long as no defect is detected (state 1). When a defect
occurs, the edge of the indicator turns to red (state 2)
and goes back to green as soon as the defect detec-
tion disappears. To keep the memory of a defect de-
tected during the simulation, another outside red
square is added and remains until the end of the
simulation (state 3).

(a) State 1 (b) State 2

(c) State 3

Figure 11: Warning indicators of a set of properties

For a detailed analysis, it is possible to access the
internal warning indicators of each property as
shown in Figure 12.

Figure 12: Internal warning obtained at the lower level
of requirements (detailed level)

It is also possible to investigate more deeply what
has happened by plotting all variables of interest.

5 Formal modeling of properties with
Modelica language extensions

The previous section has shown that the develop-
ment of a dedicated Modelica library is efficient to
model the main properties implied in the ECS indus-
trial use-case. Two current limitations have however
to be mentioned.

Firstly, even simple properties cannot be modeled as
soon as they imply space or time locators.

Examples : Currently the following properties cannot
be modeled.

� [In Turbine] [Always] [condition dura-
tion (InletWater.state = liquid) ≤ 30 minutes]

� [In CoolingSystem] [Always] [condition cardi-
nal (set (Pump | state = operating)) ≥ 2].

Secondly, even if the properties library features the
all main operators needed to model properties, it
only supports the construction of the properties in a
block-diagram way: many components must be con-
nected to form one simple property. This approach is
quite in contradiction with the Modelica spirit as it
emphasizes a graphical modeling approach over a
formal equation modeling approach. Therefore, it
does not comply with the fundamental requirements
for the formal description of properties. This leads to
several potential limitations, such as the impossibil-
ity to check properties by static proofs, or the im-
practical association of validity domains to behav-
ioural equations.

As for the modeling of the physical behaviors, a
formal (i.e. an equation-based) approach presents
numerous advantages to model properties (Figure
13).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

590

model DCmotor
parameter Real R=8.0;
parameter Real L=0.001;
parameter Real kc=0.031;
parameter Real J m=0.000018;
parameter Real b m=0.0001;
Real phi, p m, w m;
Real u=10;

equation
der(phi) = -R*phi/L-kc*p m/J m+u
der(p m) = kc*phi/L – b m*p m/J m

wm= p m/J m

end DCmotor;

State-equation for phi

State-equation for pm

Output-equation

Block-diagram modeling Formal modeling

B
eh

av
io

ur
al

m
od

el
in

g
P

ro
pe

rt
ie

s
m

od
el

in
g property SRI

parameter Real RampQmax=10;
parameter Domain domainQT=

[15,2050;38,2050;15,3355;38,3355];
Real Q, T;

equation
ramp(Q)< RampQmax;
domainmonitoring(Q,T,domainQT);

end SRI;

A formal expression enhances reuse and legibility

model DCmotor
parameter Real R=8.0;
parameter Real L=0.001;
parameter Real kc=0.031;
parameter Real J m=0.000018;
parameter Real b m=0.0001;
Real phi, p m, w m;
Real u=10;

equation
der(phi) = -R*phi/L-kc*p m/J m+u
der(p m) = kc*phi/L – b m*p m/J m

wm= p m/J m

end DCmotor;

State-equation for phi

State-equation for pm

Output-equation

State-equation for phi

State-equation for pm

Output-equation

Block-diagram modeling Formal modeling

B
eh

av
io

ur
al

m
od

el
in

g
P

ro
pe

rt
ie

s
m

od
el

in
g property SRI

parameter Real RampQmax=10;
parameter Domain domainQT=

[15,2050;38,2050;15,3355;38,3355];
Real Q, T;

equation
ramp(Q)< RampQmax;
domainmonitoring(Q,T,domainQT);

end SRI;

A formal expression enhances reuse and legibility
Figure 13: Advantage of a formal (equation-based)
approach for behavioral and properties models

A formal description allows to:

- provide explicit and unambiguous specifica-
tion of properties and thus avoid some poten-
tial misunderstandings and mistakes;

- enhance the legibility and so the reuse of the
properties models;

- improve the test coverage by automating the
checking procedures;

- enable some static tests (i.e. tests performed
without any simulation) on the coherence and
the completeness of the properties.

- associate validity domains to behavioural e-
quations, and perform various checks on
them.

Examples: For a model where the two properties “[In
Pump1][Always][condition P(t) > Pmin]” (to avoid
pump cavitation) and “[Always][condition P(t) <
Pmax]” (to guarantee the flow direction of radioactive
leaks) should be satisfied, a first check should ensure
that there is no contradiction between the numerical
values of Pmin and Pmax.
In another model, if the two following properties
“ [For 0 °C < T < 15 °C][condition …]” and “[For
22 °C < T < 38 °C][condition …]” should be ful-
filled, one may wonder if there is some incomplete-
ness in the requirements and what should happen
when the temperature is between 15 °C and 22 °C.

Hence modeling the properties with an equation-
based approach will give the possibility to perform
formal transformations and verifications on both the
properties and behavioral models. This will contrib-
ute greatly to improve system validation by increas-
ing the coverage and the rigor of the verifications.

The use of Modelica for that purpose may only be
done by introducing natively in the language the
concepts of space/time locators and dedicated opera-
tors.

6 Conclusions

In order to improve the V&V process, this article
deals with the modeling and checking of system
properties. The study is made within a fully Mode-
lica-based framework and encompasses with the
term “property” the modelling of any require-
ment/limitation the engineer wants to express on its
system/subsystem/component or on its model/sub-
model.
Imagined as complementary to the ModelicaML ap-
proach, modelling system properties directly in
Modelica is justified here as a desire to: (1) use an
equation-based language to express the properties in
an unambiguous way; (2) choose a formalism closed
to the one used for expressing the physical equations
in order to ease the formulation of the validity do-
mains of the models.
After having introduced some theoretical concepts to
formally describe a property, some requirements
have been listed on how the properties and the be-
havioural models should communicate to check vir-
tually whether the properties are satisfied or not.
The development of a Modelica library dedicated to
the modelling of properties has then been explained
and illustrated on an industrial example taken from
the aeronautics domain. Even if several operators
have been especially built to cover the most types of
properties, two current limitations have however to
be raised: (1) even simple properties cannot be mod-
eled as soon as they imply some space or time loca-
tors; (2) the properties are actually modeled in a
block-diagram way which is inconsistent with the
ambition of performing formal proofs.
Further work has then to be investigated to make up
for these aspects and concrete proposals should be
made to introduce natively in the Modelica language
the concepts of space/time locators and dedicated
operators.

Acknowledgements

This work was partially supported by the pan-
European ITEA2 program and the French govern-
ment through the EuroSysLib project.

References

[1] Information available on the Modelica Asso-
ciation web site: http://www.modelica.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

591

[2] P. Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Wiley IEE Press, 944 pages, February 2004.

[3] Information available on the OpenProd web
site: http://www.ida.liu.se/~pelab/OpenProd/

[4] Information available on the official UML
web site: http://www.uml.org

[5] W. Schamai, P. Fritzson, C. Paredis, A. Pop,
Towards Unified System Modeling and
Simulation with ModelicaML: Modeling of
Executable Behavior Using Graphical Nota-
tions, in Proceedings of the 7th Modelica
Conference, Como, Italy, September 20-22,
2009.

[6] W. Schamai, Modelica Modeling Language
(ModelicaML): A UML Profile for Modelica,
technical report in Computer and Informa-
tion Science, n° 2009:5, Linköping Univer-
sity Electronic Press, 49 pages, 2009.

[7] Information available on the EuroSysLib
web site: http://www.eurosyslib.com

[8] Property Specification Language – Refer-
ence Manual, Accellera technical report,
USA, June 2004.

[9] Dymola software, Dassault Systèmes, infor-
mation available at: http://www.dymola.com

[10] D. Harel, Statecharts: A visual formalism for
complex systems, in Science of Computer
Programming, 8(3):231-274, June 1987.

[11] W. Schamai, P. Helle, P. Fritzson, C. Pare-
dis, Virtual Verification of Systems Design
against System Requirements – A Method
Proposal, in Proceedings of the 3rd Interna-
tional Workshop on Model Based Architec-
turing and Construction of Embedded Sys-
tems (ACES 2010), in conjunction with
MODELS 2010, Oslo, Norway, October 4,
2010.

[12] T. Myers, P. Fritzson, R.G. Dromey, Seam-
lessly Integrating Software & Hardware
Modelling for Large-Scale Systems, in Pro-
ceedings of the 2nd International Workshop
on Equation-Based Object-Oriented Model-
ing Languages and Tools (EOOLT 2008),
Paphos, Cyprus, July 8, 2008.

[13] Eurosyslib sWP7.1 DGT116083B Dysfunc-
tional Use Cases and User Requirements,
2010.

[14] EuroSysLib sWP7.1 DGT124618 Properties
Evaluation Report, 2010.

[15] EuroSysLib sWP7.1 Properties Modeling,
2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

592

Dynamic modeling of a solid oxide fuel cell system in Modelica

Daniel Andersson Erik Åberg Jonas Eborn
Modelon AB, Ideon Science Park, SE-223 70 Lund, Sweden

Jinliang Yuan Bengt Sundén
Department of Energy Science, Lund University, Box 118, SE-221 00

Abstract

In this study a dynamic model of a solid oxide fuel
cell (SOFC) system has been developed. The work has
been conducted in a cooperation between the Depart-
ment of Energy Sciences, Lund University, and Mod-
elon AB using the Modelica language and the Dymola
modeling and simulation tool. The objective of the
study is to investigate the suitability of the Modelica
language for dynamic fuel cell system modeling.
Fuel cell system modeling requires a flexible modeling
tool that can handle electronics, chemistry, thermody-
namics and the interaction between these. The core of
the fuel cell is the electrolyte and the electrodes. The
cell voltage generated depends on the fluid molar com-
positions in the anode and cathode channels. The inter-
nal resistance varies depending on several cell proper-
ties. The electrical current through the cell varies over
the cell area and is coupled to the rate of the chemical
reactions taking place on the electrode surface. Other
parts of the system that is also included in the model
are pre-processing of the fuel, combustion of the fuel
remaining after passing through the cell and heat re-
covery from the exhaust gas.
A cell electrolyte model including ohmic, activation
and concentration irreversibilities is implemented and
verified against simulations and experimental data pre-
sented in the open literature. A 1D solid oxide fuel cell
model is created by integrating the electrolyte model
and a 1D fuel flow model, which includes dynamic in-
ternal steam reforming of methane and water-gas shift
reactions. Several cells are then placed with parallel
flow paths and connected thermally and electrically
in series. By introducing a manifold pressure drop, a
stack model is created. This stack model is applied in a
complete fuel cell system model including an autother-
mal reformer, a catalytic afterburner, a steam genera-
tor and heat exchangers. Four reactions are modeled in
the autothermal reformer; two types of methane steam

reforming, the water-gas shift reaction and total com-
bustion of methane. Several simulations of systems
and individual components have been performed, and
when possible been compared with results in the liter-
ature. It can be concluded that the models are accurate
and that Dymola and Modelica are tools well suited for
simulations of the observed transient fuel cell system
behaviour.
Keywords: SOFC; fuel cell; system model; dynamic
reaction; reforming

Nomenclature

ASR Area specific resistance
C Cross-plane resistance area
D Diffusion coefficient
E Ohmic symmetry factor
F Faraday constant
G Gibbs free energy
H Specific Enthalpy
i Current density
i0 Exchange current density
J Non-dimensional strip width
L Characteristic length
ne Number of exchanged electrons
p Partial pressure
P Pressure
R Universal gas constant
r Reaction rate
t Thickness
T Temperature
V Voltage
X Cell pitch length
y Molar fraction

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

593

α Charge transfer coefficient
β Parameter in Eq. (10)
γ Pre-exponential factor
η Voltage loss
ν Effectiveness factor
ρ Resistivity
σ Conductivity
Ω Denominator in reaction kinetics

1 Introduction

A solid oxide fuel cell is an electrochemical device that
produces energy by oxidizing fuel from a replenish-
able source. A number of fuels are usable in SOFCs,
thanks to internal reformation of the fuel. The overall
reaction releasing energy is oxidation of hydrogen

2H2 +O2→ 2H2O (1)

and thus the only byproduct produced aside from
heat is water. The working principle is that oxygen
is ionized at the cathode electrode by electrons from
an external electrical circuit. The oxygen ions diffuse
through the electrolyte to the anode electrode where
they react with hydrogen gas, forming steam.

The solid oxide fuel cell is a high temperature fuel
cell, most oftenly operating at 750 - 800◦C. The high
temperature removes the need for expensive platinum
catalyst and allows gases such as natural gas to be
used as fuel directly. SOFCs are suitable for many
types of system configurations. These include all
sizes of combined heat and power applications, where
a stationary fuel cell system is used to provide both
electricity and heat to buildings, etc. The power gen-
eration in such systems can range from 2 kilowatts to
several megawatts. They can also be used as auxiliary
power units, or in hybrid systems where a fuel cell is
combined with a gas turbine [1, 2, 3]. For all types
of fuel cells it is important to keep track of the fuel
composition going into the cell, as this affects the
performance of the cell and in some cases can damage
the cell. In this study a model of a SOFC system
fueled with natural gas has been developed using
Modelica and Dymola. Hydrogen is obtained from the
natural gas via reformation. The fuel is reformed in an
autothermal reformer prior to entering the cell, as well
as during the flow through the cell channel; a process
known as internal reforming. Heat is recovered from
the exhaust gas and is used to generate steam from
liquid water, as well as pre-heating the natural gas and
air supplies.

Figure 1: Geometry of the cell for calculation of the
ohmic resistance

2 Single cell model

The ideal open circuit cell voltage is given by the
Nernst equation [4]:

VNernst =−
∆G
2F
− RT

2F
ln

(
pH2O p0.5

re f

pH2 p0.5
O2

)
(2)

where ∆G is Gibbs free energy from the reaction and
pre f is the standard pressure 0.1 MPa. When a cur-
rent is applied, the cell voltage drops due to ohmic,
activation and concentration losses, and thus the total
voltage over the cell can be expressed as

V =VNernst −ηOhmic−ηact −ηconc (3)

2.1 Ohmic loss model

The calculation of the ohmic loss is based on the for-
mulas for ohmic resistance of a cell with diagonal ter-
minals, which is based on the integrated planar cell
geometry as shown in Figure 1 [5]. For this geometry
the area specific resistance is given by

ASR =CJ
[

coth(J)+B
(

J− tanh
(

1
2

J
))]

(4)

where C is the cross-plane resistance area, given by:

C = ρctc +ρccctccc +ρeltel +ρata +ρccatcca (5)

B is given by

B =
E

(1+E)2 (6)

E =

(
tcca

ρcca
+

ta
ρa

)−1(tccc

ρccc
+

tc
ρc

)
(7)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

594

where E is the ohmic symmetry parameter. J is given
by

J =
X
L

(8)

L =

√√√√ ρeltel(
tcca
ρcca

+ ta
ρa

)−1
+
(

tccc
ρccc

+ tc
ρc

)−1 (9)

where X is the cell pitch length as indicated in Figure
1 and L is the characteristic length [5]. The ohmic con-
ductivities of the cell materials are temperature depen-
dent, and commonly (e.g. [5]) calculated according to:

σ = ρ
−1 = β1 exp

(
−β2

T

)
(10)

The voltage drop is then calculated from the cell
current density and the area specific resistance accord-
ing to:

ηOhmic = ASR · i (11)

2.2 Activation loss model

Activation losses occur at both the anode and cathode
and derives from the fact that the reacting species in
chemical reactions must overcome an energy barrier,
i.e. the activation energy of the reaction. The activa-
tion loss shows a nonlinear current dependency related
to a parameter known as the exchange current density,
i0. For current densities i < i0 the activation loss is
low, typically in the order of 0.01 V, and for current
densities i > i0 the activation loss grows according to
the Tafel equation:

ηact =
RT

2αF
ln
(

i
i0

)
(12)

For current densities i < i0 the activation loss is as-
sumed to be proportional to the logarithm of the cur-
rent density on the form:

ηact = k · ln i (13)

Activation losses occur at both the anode and cathode
sides which have different exchange current densities,
denoted i0,a and i0,c respectively. These are calculated
from the Arrhenius law and the composition of the re-
acting gases according to [5]:

i0,c = γc

(
pO2

pre f

)0.25

exp
(
−Eact,c

RT

)
(14)

i0,a = γa

(
pH2

pre f

)(
pH2O

pre f

)
exp
(
−Eact,a

RT

)
(15)

2.3 Concentration loss model

Concentration losses accounts for the fact that when
reactions occur, reactants and products must diffuse
from the bulk flow to the reaction sites (and vice
versa), through the porous electrodes. Because of this
the actual pressure of the reactants and products dif-
fer from those in the bulk flow, and the voltage over
the cell decreases. Typically this voltage drop is very
low until the current density reaches a limiting cur-
rent. Above this limit the concentration loss will have
severe impact on cell performance and life time. The
voltage drop is expressed as a function of the molar
fractions yi of the gases at the reaction sites as [5]:

ηconc =−
RT
neF

[
ln

(
y∗H2

yO
H2O

yO
H2

y∗H2O

)
+

1
2

ln

(
y∗O2

yO
O2

)]
(16)

where y∗ indicate molar fraction at the reaction site,
and yO indicate molar fraction in the bulk flow. The
molar fractions at the reaction sites are calculated from
those in the bulk, the current density through the elec-
trolyte, the thickness of the anode and cathode, the
bulk pressure and the diffusion coefficients [5], ac-
cording to:

y∗O2
= 1+

(
yO

O2
−1
)

exp
(

iRTtc
4neFDO2P

)
(17)

y∗H2
= yO

H2
− iRTta

2neFDH2P
(18)

y∗H2O = yO
H2O +

iRTta
2neFDH2OP

(19)

2.4 Simplified cell model

In addition to the complete polarization model, mod-
elling the internal losses physically as described
above, also a simplified cell model was developed. In
this model the internal losses are approximated by the
following empirical correlation for area specific resis-
tance [4]:

ASR(T) = ASR0 exp
(

Ea

R

(
1
T
− 1

T0

))
(20)

where the constant ASR0 is the area specific resistance
at temperature T0. This simple model is not as accurate
as the complete model, but gives shorter simulation
times.

2.5 Implementation

The cell models are based on a template model con-
taining common parts in all cell models. This includes

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

595

connectors for mass flow, heat transfer and electrical
current. Also a temperature state is introduced and en-
ergy balance is defined. The fuel and air compositions
have large variations along the flow path due to reac-
tions. To take this into account the cell is discretized
in the fuel flow direction. The cell model is prepared
for this by vectorizing all connectors and states that
vary along the flow path. There is no heat transfer di-
rectly between the temperature states, this is covered
by heat transfer to the surrounding wall and fluids,
which also have heat transfer to the surrounding tem-
perature states. The cell current is also discretized in
the same way. For each element the current is coupled
to the mass flow rate, and thereby the reaction rate at
the electrodes, according to Faraday’s laws of electrol-
ysis.

3 Substack model

The cell model is connected to flow channel models
in what we call a substack model. The flow channel
models are volume models, discretized in flow direc-
tion. Every discrete element has a unique fluid com-
position and energy content. The anode channel in-
clude reactions for steam reforming of methane (21)
and water-gas shift (22).

CH4 +H2O↔CO+3H2 (21)

CO+H2O↔ H2 +CO2 (22)

In the channel model these reactions are characterized
by a reaction object which contains the stoichiometry
matrix and calculates the equilibrium constants of the
reactions. The equilibrium constant is calculated from
Gibbs free energy of the reaction, which is evaluated
from the medium model, and the partial pressures
of the reactants. The actual reaction rate is then
calculated in the channel model from the deviation of
the fluid composition from the calculated equilibrium.
Medium properties are calculated by medium models
from Modelon’s CombiPlant library which is a model
library for combined cycle power plant simulation.
These medium models are compatible with the ones
in the Modelica Standard Library, but also includes
a model ReactionProperties which calculates
properties related to reactions, such as Gibb’s free
energy due to reaction and reaction constants.

The two channel models are connected to a cell
model according to Figure 2. The number of discrete
elements are equal in the channel models and the cell

Figure 2: Graphical layout of the substack model

Figure 3: Graphical layout of the stack model

model. Thus the connections for mass and heat trans-
fer are done per element, and each element in the cell
model has a unique fuel and air state to evaluate. The
substack models any number of cells by multiplying
the affected quantities with the number of cells. The
purpose of the substack model is to model a number
of cells in the stack which can be assumed to have the
same operating conditions.

4 Stack model

The complete stack is modeled by connecting several
substack models, electrically and thermally in series,
as shown in Figure 3. This model consists of a vec-
tor of substack models, inlet manifold volumes with
pressure drop, and outlet manifold volumes. The first
and last substacks in the vector are also thermally con-
nected to thermal masses, modeling the heat capac-
ity of the metal casing. The pressure drops in the in-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

596

Figure 4: Layout of the implemented fuel cell system

let manifold volumes generates a unique pressure at
each substack inlet, corresponding to a U-type man-
ifold form. The stack model thereby has 3D effects
from the heat boundary conditions and flow distribu-
tion.

5 System model

The system configuration is based on that presented in
[6], with some modifications. The system layout, pre-
sented in Figure 4, includes an autothermal reformer
(ATR), a steam generator and a catalytic burner.
The outlet gases from the stack are fed through heat
exchangers in order to pre-heat air and is then fed to
a catalytic burner. The hot burner exhaust gas is used
to vaporize liquid water to steam, which is needed for
the reforming reactions in the ATR and stack and to
pre-heat the natural gas from ambient temperature.

5.1 ATR unit

A large number of reactions can occur in an ATR unit,
but in order to reduce the number of calculations only
the most significant reactions are considered; steam re-
forming (23), (24), the water-gas shift reaction (25)
and total combustion of methane (26) [7]:

CH4 +H2O↔CO+3H2,

∆H = 206.2 kJ/mol (23)

CH4 +2H2O↔CO2 +4H2,

∆H = 164.9 kJ/mol (24)

CO+H2O↔CO2 +H2,

∆H =−41.1 kJ/mol (25)

CH4 +2O2↔CO2 +2H2O,

∆H =−802.7 kJ/mol (26)

The presented values for ∆H of the reactions are valid
at 298 K. These values are not used explicitly in the
model, but are presented to show the mix of endother-
mic and exothermic reactions taking place in the ATR
unit, allowing it to operate without any need for ex-
ternal heating or cooling systems. In our model en-
thalpies are evaluated from the medium model and de-
pends on the thermodynamic state and composition of
the gas in the ATR unit. The model is implemented as
a volume model with dynamic reactions. The reaction
rates are calculated as [7]:

R1 =
k1

p2.5
H2

(pCH4 pH2O−
p3

H2
pCO

KI
)× 1

Ω2 (27)

R2 =
k2

p3.5
H2

(pCH4 p2
H2O−

p4
H2

pCO2

KII
)× 1

Ω2 (28)

R3 =
k3

pH2

(pCO pH2O−
pH2 pCO2

KIII
)× 1

Ω2 (29)

R4 =
k4a pCH4 pO2

(1+KC
CH4

pCH4 +KC
O2

pO2)
2
+

k4b pCH4 pO2

1+KC
CH4

pCH4 +KC
O2

pO2

(30)

Ω = 1+KCO pCO +KH2 pH2+

KCH4 pCH4 +KH2O
pH2O

PH2

(31)

Here R1, R2, R3 and R4 are the corresponding reac-
tion rates to reactions (23), (24), (25) and (26), re-
spectively. k j is the Arrhenius reaction constant for
reactions j = 1, . . . ,4 and is calculated using parame-
ters from literature [7]. K j is the equilibrium constant
for reaction j and is listed in Table 1. The Van’t Hoff
species adsorption constants Ki and KC

i for species i
are calculated in a similar way according to [7]:

Ki = Koi× exp(
−4Hi

RT
) (32)

KC
i = KC

oi× exp(
−4HC

i
RT

) (33)

Reaction, j Equilibrium constant,K j

1 KI = exp(
−26830

Ts
+30.114)[bar2]

2 KII = KI ·KIII[bar2]

3 KIII = exp(
4400

Ts
−4.036)[bar2]

Table 1: Reaction equilibrium constants

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

597

The determined reaction rates are used for calculat-
ing the rate of formation of each substance. This is
done according to [7]:

rCH4 =−ν1R1−ν2R2−ν4R4 (34)

rO2 =−2ν4R4 (35)

rCO2 = ν2R2 +ν3R3 +ν4R4 (36)

rH2O =−ν1R1−2ν2R2−ν3R3−2ν4R4 (37)

rH2 = 3ν1R1 +4ν2R2 +ν3R3 (38)

rCO = ν1R1−ν3R3 (39)

The ν factors are effectiveness factors used to
account for the intraparticle transport limitation. Their
values are set to ν1 = 0.07, ν2 = 0.06, ν3 = 0.7
and ν4 = 0.05, which are average values obtained
from simulations of the various species inside the Ni
catalyst pellet [8]. The low values for all reactions
except the water gas shift reflect the severe limitation
on the catalytic conversion of methane to synthesis
gas due to intraparticle diffusion in the catalyst
pellets. Calculation of effectiveness factors using
various methods and a comparison of their effect on
simulation results is presented in [9].

5.2 Catalytic burner

The catalytic burner model includes reactions for oxi-
dation of methane (40), carbon monoxide (41) and hy-
drogen (42) [4]:

CH4 +2O2→CO2 +2H2O (40)

CO+
1
2

O2→CO2 (41)

H2 +
1
2

O2→ H2O (42)

The implementation of the burner is based on a
volume model with air and fuel inlet ports and an air
outlet port. It also has a port for heat flow to the envi-
ronment and a boolean input for ignition signals. The
burner operates in one of two states, either burning
or mixing, where the difference is the stoichiometry
matrix defining how the fuel components is mixed
into the air flow. The burner can be ignited if the
air/fuel ratio is low enough and the ignition signal is
true. The burner is set to mixing state if the air/fuel
ratio gets too high.
When combustion occurs a combustion rate defined as
the fraction of fuel burned is calculated dynamically.

Figure 5: Graphical layout of the hotbox

Figure 6: Graphical layout of the system model

5.3 System implementation

The system model is implemented in Dymola. Fig-
ure 5 shows a hotbox model, which includes the ATR
unit, the steam generator, a mixing volume for natu-
ral gas and steam, and two heat exchangers for heat
recirculation. In Figure 6 the complete system model
is shown. It includes the hotbox and stack models, as
well as the catalytic burner, a heat exchanger and flow
sources of natural gas, water and air. Note that the im-
plemented system uses co-flow of fuel and air in the
stack, counter-flow can be obtained by reversing the
air flow direction.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

598

Parameter Value
Anode thickness 1 mm
Cathode thickness 70 µm
Electrolyte thickness 10 µm
Cell pitch length 5 mm
Active cell area 361 cm2

Fuel molar fraction 26.3% H2, 17.1% CH4,
2.9% CO, 4.4% CO2,

49.3% H2O
Air oxygen fraction 23%

Table 2: Cell geometry and fuel composition used in
simulation

6 Results

Several simulations of the complete system and indi-
vidual components are carried out in order to show
their behaviour. Three of them are presented here. In
all simulations the cells were discretized with four el-
ements along the fuel flow direction. The effects of
varying the number of elements has been investigated
and four elements were found to give a good compro-
mise between accuracy and computation time. When
changing from 4 to 50 elements the resulting differ-
ence in cell voltage was 1.4%, and the difference in
total heat production was 1.8%. If the purpose of the
simulation is to locate hotspots or other local phenom-
ena in the cell, more elements should be used. The
cell geometry parameters and fuel composition used
during the simulations are presented in Table 2. The
values correspond to a 5 kW SOFC stack manufac-
tured by Forschungszentrum Jülich, Germany, which
is described in [2, 4].

6.1 Substack with simplified cell model

In this simulation the substack with the simplified cell
model is simulated with a constant inlet flow rate of
fuel and air. During the simulation the external cur-
rent is increased linearly from 1 to 150 A, which corre-
sponds to a cell current density of 27.7 to 4155 A/m2.
The resulting cell voltage and power generation is
shown together with simulation results from [4] in Fig-
ure 7. The reference model is a 0D SOFC model where
the Nernst potential is evaluated using an average fuel
composition between the stack inlet and outlet. The
marked upper and lower limits were obtained using
the fuel composition at the stack inlet and outlet re-
spectively. The difference between the results are not
very large, but except for the different modeling ap-
proaches also different handling of heat contributes to

Figure 7: Simulation results for: (a) cell voltage, (b)
cell power generation. Results from [4] is included for
comparison.

the deviation. In the reference model the temperature
was kept constant at 760◦C, whereas in our model the
stack was cooled only by heat transfer between the
gases and the inner surfaces of the fuel and air chan-
nels. This resulted in an increasing stack temperature
with increased current, varying from 750◦C to 810◦C.

6.2 Substack with complete cell model

In this simulation the substack with the complete cell
model is simulated with a constant inlet flow rate
of fuel and air. During the simulation the external
current is increased linearly from 10 to 520 A,
which corresponds to a cell current density of 277 to
14404 A/m2 and fuel utilization of 30% to 100% for
this specific cell.

In Figure 8(a) the cell voltage versus the cell current
density shows the expected characteristics with a fast
voltage drop for low current densities, a close to linear
behaviour for medium current densities and a faster
drop at high current densities. In Figure 8(b) the cell

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

599

Figure 8: Simulation results for: (a) cell voltage, (b)
cell power production and heat production in the four
discrete elements

shows maximum power production at 13000 A/m2.
Also shown is the heat production in every discrete
element, numbered from inlet to outlet. The heat pro-
duction grows with increased current density and is
roughly the same in each discrete element, except for
very high currents when the heat production in the
4th element decreases rapidly. Figures 9(a)-(d) shows
the fuel and air composition in every discrete element,
numbered from inlet to outlet. The gradual consump-
tion of hydrogen, methane and oxygen, and production
of steam, can be observed.

6.3 Complete system transient

The system in Figure 6 is simulated with a constant
external current of 150 A, corresponding to a cell
current density of 4155 A/m2. Three substacks are
included, the middle one modeling 30 cells, and
the top and bottom ones modeling 10 cells each.
The inlet flow rates to the hotbox are chosen such
that a steam carbon ratio of 1.2 and a oxygen gas
carbon ratio of 0.2 is achieved in the autothermal
reformer, and the stack temperature is initialized at
800◦C. The simulation results for the system transient
behaviour are presented in Figures 10 - 14. The
substacks are numbered in the fuel flow direction of
the manifold volume, i.e. substack 1 has the highest
inlet pressure. In Figure 10 the middle substack

Figure 9: Simulation results for: (a) anode methane
content, (b) anode hydrogen content, (c) anode steam
content, (d) cathode oxygen content. Results shown
for each discrete element, numbered from inlet to out-
let.

shows the highest voltage per cell, due to the higher
temperature than in the other substacks, as shown in
Figure 11(a). The voltage losses in the cell decrease
with increased temperature due to higher conductivity
of the cell materials, and increased exchange current
density which gives lower activation losses. The fuel
utilization, shown in Figure 11(b), is highest in the
lowermost substack, due to the pressure drop in the
manifold volumes, which gives lower mass flow rates
in the subsequent substacks. Presented in Figure 12
are the power and heat generation of the stack.

The resulting temperature profiles for the ATR unit
and the catalytic burner are presented in Figure 13, to-
gether with the conversion ratios of methane and oxy-
gen in the ATR. The oxygen conversion ratio is 1 ex-
cept for the the first seconds after start up. This is
desirable, as oxygen in the stack inlet fuel flow de-
creases the overall system efficiency and destroys the
stack as the Ni catalyst is oxidized. The high tem-
perature of the burner is required for steam generation
and pre-heating in the hotbox. The conversion ratio of
methane in the ATR gives the stack inlet fuel composi-
tion presented in Figure 14. The composition reaches
its steady-state value quickly, and then varies slightly
with temperature. This composition complies with the
results from similar simulations in [4].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

600

Figure 10: Dynamic simulation results for the voltage
of the stack and individual substacks

Figure 11: Dynamic simulation results for: (a) tem-
peratures of the substacks, (b) hydrogen utilization of
each substack

7 Conclusions

It is concluded that Dymola and Modelica are very
useful tools for fuel cell system modeling. The posi-
tive aspects are mainly the equation based language,
the multi domain possibilities, and the flexibility of an
object oriented structure.

All developed components were simulated indi-
vidually for verification. The comparison of the
substack with the simplified cell model is presented
in this paper. For the complete system it has not been
possible to make relevant comparisons of absolute
values, as geometry parameters and correlations for
different components comes from different sources.
The objective of this study was to assure that results
obtained are phenomenologically sound. This was
verified by running several simulations of the devel-
oped components under various boundary conditions
and studying the influence on the results. The results
of these simulations are presented in the original
thesis [10].

Figure 12: Dynamic simulation results for: (a) power
generation of stack and individual substacks, (b) heat
production of the substacks

Figure 13: Dynamic simulation results for: (a) burner
and ATR unit temperature, (b) ATR conversion ratio
of methane and oxygen

As discussed in the abstract and introduction,
modeling all relevant physics in a fuel cell system
requires a flexible tool capable of including several
physical domains in the same model. The equation
based language and possibility for acausal models
allows for physical models, which is very useful
if components are to be reused in multiple system
designs with different purposes. The system model
developed in this study includes the electrochemistry
of the cell, dynamic chemical reactions in the ATR
unit as well as in the cell flow channel and the catalytic
burner. It also includes heat exchanger models and a
small electrical system. The system could easily be
expanded to include a physical model of an electric
load, or redesigned to another system configuration
using the same component models.

One negative aspect can be mentioned. There is
no automatic way to perform discretization of partial
differential equations in Dymola, as some other non-
Modelica based tools provide. The discrete equations
must be stated directly by the user which makes it
harder and more time consuming than using tools de-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

601

Figure 14: Dynamic simulation results for the ATR
outlet fuel composition

veloped for this purpose. On the other hand this ap-
proach does not impose any limitations on how dis-
cretizations can be made and is thereby useable for
many different applications.

References

[1] J. Larminie and A. Dicks. Fuel Cell Systems Ex-
plained, Second Edition. Wiley, 2003. ISBN 0-
470-84857-X.

[2] M. Kemm. Dynamic Solid Oxide Fuel Cell Mod-
elling for Non-steady State Simulation of System
Applications. PhD thesis, Division of Thermal
Power Engineering, Lund University, 2006.

[3] S.H. Chan, H.K. Ho, and Y. Tian. Modelling
of simple hybrid solid oxide fuel cell and gas
turbine power plant. Journal of Power Sources,
109:111–120, 2002.

[4] J. Saarinen, M. Halinen, J. Ylijoki, M. Noponen,
P. Simell, and J.Kiviaho. Dynamic model of 5
kW SOFC CHP test station. Journal of Fuel Cell
Science and Technology, 4:397–405, 2007.

[5] P. Costamagna, A. Selimovic, M. Del Borghi,
and G. Agnew. Electrochemical model of
the integrated planar solid oxide fuel cell (IP-
SOFC). Chemical Engineering Journal, 102:61–
69, 2004.

[6] E. Fontell, T. Kivisaari, N. Christiansen, J.-B.
Hansen, and J. Pålsson. Conceptual study of
a 250 kW planar SOFC system for CHP appli-
cation. Journal of Power Sources, 131:49–56,
2004.

[7] M.H. Halabi, M.H.J.M. de Croon, J. van der
Schaaf, P.D. Cobden, and J.C. Schouten. Mod-
eling and analysis of autothermal reforming of
methane to hydrogen in a fixed bed reformer.
Chemical Engineering Journal, 137:568–578,
2008.

[8] Ann M. De Groote and Gilbert F. Froment.
Simulation of the catalytic partial oxidation of
methane to synthesis gas. Applied Catalysis A:
General, 138:245–264, 1996.

[9] Krzysztof Gosiewski, Ulrich Bartmann, Marek
Moszczyński, and Leslaw Mleczko. Effect of the
intraparticle mass transport limitations on tem-
perature profiles and catalytic performance of the
reverse-flow reactor for the partial oxidation of
methane to synthesis gas. Chemical Engineering
Science, 54:4589–4602, 1999.

[10] Daniel Andersson and Erik Åberg. Dynamic
modeling of a solid oxide fuel cell system in
Modelica. Master’s thesis, Department of Energy
Sciences, Lund University, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

602

The OnWind Modelica Library for Offshore Wind Turbines -
Implementation and first results

M. Strobel F. Vorpahl C. Hillmann X. Gu A. Zuga U. Wihlfahrt
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES)

Michael.Strobel@iwes.fraunhofer.de

Abstract

At Fraunhofer IWES a Modelica Library including
all major components needed for load calculations of
current offshore wind turbines is developed. The li-
brary additionally includes models for external condi-
tions, like wind, soil and waves, and their respective
influence on the structures. The library constitutes a
large effort in the creation of a highly coupled multi-
physics model with Modelica for an industrial project.
The results obtained with this library are compared to
the results from the IEA Wind Task 23 project OC31

(Offshore code comparison collaboration). The OC3
project is an international effort to define a set of load-
cases and a reference wind turbine that are used to ver-
ify simulation systems on a code-to-code basis. In this
paper the status and the implemented theories of the
individual models at IWES are explained and verifica-
tion results are presented and discussed.

Keywords: offshore wind turbine simulation; aerody-
namics; hydrodynamics; OC3 project; fully coupled
simulation

1 Introduction

The use of wind energy as a renewable and compara-
bly cost effective energy source has grown rapidly over
the past decades. While today the majority of the tur-
bines are mounted onshore, we are now facing a rapid
development offshore as well.

This paper starts with an introduction to wind turbine
simulation in general before describing the compo-
nents of the OnWind library. In the last section the
simulation results of this library are verified in com-
parison to results obtained in the OC3 project.

1www.ieawind.org/

2 Wind turbine system simulation

Wind turbines are designed and analyzed using sim-
ulation tools (i.e. design codes) capable of predict-
ing the coupled dynamic loads and responses of the
system. Land-based wind turbine analysis relies on
the use of aero-servo-elastic codes, which incorpo-
rate wind-inflow, aerodynamic (aero), control system
(servo) and structural-dynamic (elastic) models in the
time domain in a coupled simulation environment. In
recent years, some of these codes have been expanded
to include the additional dynamics pertinent to off-
shore installations, including the incident waves, sea
current, hydrodynamics and foundation dynamics of
the support structure.
The design of wind turbines usually consists of a two
step approach, starting with a fully coupled time do-
main simulation as - described above - which gener-
ates the loads for the following detailed design of all
components. The certification rules for offshore wind
turbines, like the “Design requirements for offshore
wind turbines” issued by the International Electrotech-
nical Commission [7], define a large set of load cases
that have to be considered in the design phase.

3 Components of the library

Due to the object-oriented structure of Modelica, the
different components needed for the simulation of
the turbine can be implemented independently. In
this chapter the different components are described in
brief.
The structure of the OnWind library is shown in Fig-
ure 2.

3.1 Wind

In the OnWind library, wind models for simple cases
including exponential wind shear are available. For

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

603

Figure 1: Major components of an offshore wind tur-
bine

certification purposes even more complex wind mod-
els are needed which are currently under development.
As these stochastic models for turbulent wind defini-
tion (Kaimal [11] and Von Karman spectra [12]) are
available as open source free-to-use FORTRAN soft-
ware from the National Renewable Energy Laboratory
of the US (TurbSim, [8]), this software is currently
used for the calculations. The interface between Turb-
Sim and the wind turbine model is part of the OnWind
library. For the integration of these external wind files
an optimal tradeoff between memory consumption and
calculation performance is achieved.

3.2 Aerodynamics

A basic standard for wind turbine simulation tools is
the “Blade element momentum theory (BEM)”, as de-
scribed by [17], [4] and extended by [3], [6], which
is used to calculate induced wind velocities and aero-
dynamic loads. This method is incorporated in the li-
brary including the blade tip losses, the hub losses [6]
and corrections for the turbulence wake state [5]. Ad-
ditionally the tower interference is accounted for in the
aerodynamic model.

3.3 Rotor blade structure

For the modeling of the structure of the rotor blades
there are currently two models available, a rigid model
and a flexible one. The rigid model can be used for
rough calculations and has significant advantages in

Figure 2: Structure of the OnWind library

terms of performance. For the flexible blades a finite-
element formulation based on Euler-Bernoulli beam
theory is implemented. The structural analysis and the
aerodynamic calculations are coupled in this model to
simulate the flexible rotor.

3.4 Hub and nacelle

As in most software systems for fully-coupled wind
turbine simulation the hub and the nacelle are modeled
as rigid links contributing masses and inertias.

3.5 Drive train and generator

The drive train is incorporated in the library as a two
mass torsional oscillator, contributing inertia, gearbox
ratio, stiffness and damping. For more accurate and
computational costly simulations of the drive train the
DLR drive train library can be used, as it is compatible
to the OnWind library.
As in most of the wind turbine simulation codes the
generator is included with its mechanical character-
istics, but more advanced models from the Modelica
Standard Library or other libraries may be used.

3.6 Control

The control module of the OnWind library consist on
the one hand of control sequences to handle different
operating conditions and on the other hand of conven-
tional methods to control different parts of the wind
turbine.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

604

In the operation control package relevant inputs and
outputs are processed to adjust corresponding operat-
ing states of the wind turbine. This is done by a simple
decision algorithm but can also be realized using state
charts with e.g. the MODELICA StateChart2 library
[15]. To retrieve measured process signals and trans-
ferring controller output signals, the communication
with sensors and actuators is accomplished by the sig-
nal bus concept of MODELICA as described by Mar-
tin Otter [14]. This eases the integration of already
implemented or new signals into and out of the control
modules. Before processing input signals in the con-
trol algorithms preprocessing functions like e.g. low
pass filtering of generator speed is performed.
Control methods are implemented for blade pitching
and controlling the generator torque. For aerody-
namic power control a collective pitch control with
PI-algorithm is used. To account for the non-linear be-
haviour of aerodynamic profiles a gain-scheduling al-
gorithm is used like discussed in [9]. Limit conditions
are also considered and other linear control structures
like PID and Anti-Wind-Up may be used.
To accomplish generator variable-speed operation and
energy capture maximization it is possible to set a
characteristic generator torque vs. speed curve. The
curve is the basis for setting the generator torque on
different speeds by an suitable algorithm. For per-
formance optimization also a Maximum-Power-Point-
Tracking algorithm is implemented, which calculates
the optimal speed for changing operating conditions.

3.7 Tower and substructure

For the tower and the substructure a finite element ap-
proach is used (Euler-Bernoulli beam elements). This
allows for modeling of arbitrary support structures,
like the jacket shown in Figure 3. Simple monopiles
can be modeled with this approach as well.
For the calculation of the forces resulting from water
waves and currents, Morison’s formula [13] is incor-
porated in the substructure models.

3.8 Soil and water

Several currently available tools for wind turbine sim-
ulation model the soil rather simple with one 6x6 stiff-
ness matrix or just as a clamped beam. In OnWind this
is possible too, but the more advanced p-y-approach
is incorporated as well. With this approach, also de-
scribed by the American Petroleum Institute ([2]), the
soil is modeled with nonlinear springs. Additionally

Figure 3: Turbine on jacket substructure extended by
tubular tower (prototype erected onshore)

damping elements are available to describe the soil as
realistic as possible.
Using the OnWind library single linear waves
(Airy [1]) from different angles may be defined. Non-
linear waves based on a Stream Function theory are
available as well as spectrum based linear irregular
waves defined by means of JONSWAP spectra. Devel-
opment and first verification of hydrodynamic features
are described in [16].

3.9 Connectors

Most of the wind turbine components described ear-
lier in this document use predefined connectors like the
frame connector from the multibody library to connect
adjacent components of the wind turbine. Therefore
it is easily possible to integrate enhanced models for
subcomponents using parts of the Modelica Standard
Library. However some of the wind turbine compo-
nents need special connectors to be able to model the
interaction between each other.
Especially the connections between the components
modeled with the finite-element approach (rotorblade
structure, tower and substructure models) and the
models describing the loads on these components
(wind and wave models) needed to be developed.
For example the connection between the wind and the
rotorblade is realized by two connectors connecting
the wind model via the aerodynamics model to the ro-
torblade model like shown in Figure 4. For the con-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

605

nection between the wind model and the aerodynam-
ics model a connector has been developed containing
the actual position of the structure and the velocities
of the wind. The forces calculated in the aerodynam-
ics model are connected to the structure model via an-
other connector containing the position of the structure
and the forces applied on the structure. The same ap-
proach is used to describe the interaction between the
water model and the models for the tower and the sub-
structure.

Blade
Element 1

Blade
Element 2

Blade
Element n

Structure
Element 2

connector StructureWind

PositionOutputConnector
positions; // r[3]

VelocityInputConnector
velocities; // v[3]

end StructureWind;
Aero

Element 2

Figure 4: Connector schema for rotorblade and wind

4 Verification of the OnWind library

In this chapter, the offshore wind turbine that is used in
this benchmarking task and the OC3 project - in which
e.g load cases and support structures are defined - is
briefly described. Furthermore, results calculated with
OnWind are presented and interpreted in comparison
to results from other tools.

4.1 The NREL 5-MW baseline wind turbine

The NREL 5-MW baseline wind turbine developed for
code comparison purposes is a lifelike three-bladed
variable speed 5-MW upwind turbine with collective
pitch control. The model is based on available design
information from turbine manufacturers with an em-
phasis on the REpower 5M machine. Detailed data
is provided by research projects - with a focus on the
Dutch Offshore Wind Energy Converter (DOWEC)
project - where design data is not available due to
confidentiality reasons. Special emphasis was set on
combining the best available and the most representa-
tive data. The turbine definition includes aerodynamic
and structural data as well as the definition of a basic
control-system. For more details on the turbine cf. [9].

4.2 The OC3 project

The sophistication of the aero-hydro-servo-elastic
codes (as described in section 2), and the limited data
available with which to validate them, provided the in-
centive to set up an international code-to-code com-
parison project in order to validate these tools. This
task was accomplished in the Offshore Code Com-
parison Collaboration (OC3) project, which operated
under Subtask 2 of the International Energy Agency
(IEA) Wind Task 23 [10].

Figure 5: The support structures investigated in the
OC3 project [10]

The general approach of the project is to (1) discuss
modeling strategies, (2) develop a suite of benchmark
models and simulations, (3) run the simulations and
process the simulation results and (4) compare and dis-
cuss the results.
A large set of time series simulation results such as
turbine operational characteristics, external conditions
as well as load and displacement outputs were com-
pared and interpreted. Load cases were defined and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

606

run with increasing complexity to be able to trace back
differences in simulation results to the underlying er-
ror sources.
Within the project, the NREL 5-MW baseline wind
turbine is modeled in combination with four differ-
ent substructure types in four phases: The monopile
implemented in Phase I is designed for a water depth
of 20m with its transition to the tower 10m above the
mean sea level (MSL). This structure is used for the
validation in the following chapter.

4.3 Results comparison

The loadcases in Phase I of the OC3 project are de-
signed in different stages, from rigid structure over a
flexible onshore model to a flexible offshore turbine
with additional hydrodynamic loads. In the following,
exemplary time series results from the last stage of a
fully coupled flexible offshore model with determinis-
tic wind and wave conditions are presented. For the
following comparison the results of three well known
participants (GL Garrad Hassan, NREL, Risø DTU) of
the OC3 project are taken into account 2.
In Figure 6 and 7 the gear-box translated generator
speed and the generated power of the turbine at a con-
stant wind speed of 8 m/s is shown.

880

885

890

895

900

905

910

915

0 10 20 30 40 50 60

G
en
er
at
or
S
pe
ed
[rp
m
]

Simulation time [sec]

Fraunhofer IWES - OnWind
GL Garrad Hassan - Bladed

NREL - FAST
Risoe DTU - HAWC2

Figure 6: Time series of generator speed in [rpm]

The results of the OnWind library are located in a
range of 2% difference for the absolute values which is
due to different implementations of the aerodynamics
model. The main reason for the oscillating behaviour
is the influence of the tower shadow.

2http://www.ieawind.org/Annex_XXIII.html

1700

1750

1800

1850

1900

1950

0 10 20 30 40 50 60

G
en

er
at
or

P
ow

er
[k
W
]

Simulation time [sec]

Fraunhofer IWES - OnWind
GL Garrad Hassan - Bladed

NREL - FAST
Risoe DTU - HAWC2

Figure 7: Time series of electrical generator power
output in [kW]

As we deal with a flexible structure, deflections of the
blade tip are illustrated in the next diagrams. Both
results, the out-of-plane (Figure 8) and the inplane
(Figure 9) deflections are in good agreement. The
smoother form of the deflection curves from OnWind
is the result of not yet included extensions to the aero-
dynamical model like dynamic stall and correction for
skewed inflow, which are currently in development.

2.9

3

3.1

3.2

3.3

3.4

3.5

0 10 20 30 40 50 60

B
la
de

Ti
p
O
ut
-o
f-P

la
ne

D
ef
le
ct
io
n
[m

]

Simulation time [sec]

Fraunhofer IWES - OnWind
GL Garrad Hassan - Bladed

NREL - FAST
Risoe DTU - HAWC2

Figure 8: Time series of out-of-plane blade tip deflec-
tion in [m]

As mentioned above, the investigated loadcase en-
closes hydrodynamic loads from deterministic wave
conditions with a regular wave of 6m elevation and
a period time of 10 seconds. Figure 10 shows the
base shear force on the monopile mudline location to
demonstrate the effects of wave loads.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

607

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60

B
la
de

Ti
p
In
-P
la
ne

D
ef
le
ct
io
n
[m

]

Simulation time [sec]

Fraunhofer IWES - OnWind
GL Garrad Hassan - Bladed

NREL - FAST
Risoe DTU - HAWC2

Figure 9: Time series of in-plane blade tip deflection
in [m]

In summary it can be said, that the results of the On-
Wind library compare well to the results of Phase I of
the OC3 project. As the development of the OnWind
library is still in progress, the small deviations that oc-
cured with respect to other simulation tools are subject
to ongoing research.

-1000

-500

0

500

1000

1500

2000

0 10 20 30 40 50 60

M
on

op
ile

B
as

e
S

he
ar

Fo
rc

e
[k

N
]

Simulation time [sec]

Fraunhofer IWES - OnWind
GL Garrad Hassan - Bladed

NREL - FAST
Risoe DTU - HAWC2

Figure 10: Time series of monopile base shear force
[kN] in wind direction

5 Conclusion

It is shown that the Modelica Language is a good
choice to develop a library for offshore windturbines.
Especially the hydro-aero-servo-elastic coupling of
the different components of a wind turbine is easy
to implement. With respect to the short development
time very good results compared to other established
tools on the market are achieved.
The ongoing development of the OnWind library at
Fraunhofer IWES concentrates on implementation of
further substructure designs like tripod, jacket and

floating structures in order to complete the compari-
son with the OC3 project. For these advanced struc-
tures the Timoshenko beam theory needs to be im-
plemented. Additionally the integration of structural
components as mode shapes is planned.
Furthermore investigations on further enhancements
of the aerodynamic model like the dynamic stall and
the wake model are in progress.

References

[1] G.B. Airy. On tides and waves. In Encyclopaedia
Metropolitana, 1845.

[2] American Petroleum Institute (API), Washington
DC, USA. RP 2A-LRFD: Recommended Prac-
tice for Planning, Designing and Constructing
Fixed Offshore Plattforms - Load and Resistance
Factor Design, 1993.

[3] A. Betz. Das Maximum der theoretisch
möglichen Ausnötzung des Windes durch Wind-
motoren. Zeitschrift für das gesamte Turbinewe-
sen, 26:307–309, 1920.

[4] R.E. Froude. On the part played in propulsion
by differences of fluid pressure. Transactions of
the Institution of Naval Architects, 30:390–405,
1889.

[5] H. Glauert. A general theory of the autogyro.
ARCR R&M, 1111, 1926.

[6] H. Glauert and L. Division. Airplane Propellers,
Aerodynamic Theory, volume 4. Durand WF,
Berlin, 1935.

[7] IEC. Wind turbines - Part 3: Design require-
ments for offshore wind turbines. IEC 61400-3,
1.0 edition, 2009.

[8] J. Jonkman. TurbSim User’s Guide Version 1.5.
National Renewable Energy Laboratory (NREL),
Golden, Colorado, USA, 2009.

[9] J. Jonkman, S. Butterfield, W. Musial, and
G. Scott. Definition of a 5-MW reference wind
turbine for offshore system development. Tech-
nical report, National Renewable Energy Labo-
ratory (NREL), Golden, Colorado, USA, 2009.

[10] J. Jonkman and W. Musial. IEA wind task 23
subtask 2: The offshore code comparison col-
laboration (OC3). Technical report, National

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

608

Renewable Energy Laboratory (NREL), Golden,
Colorado, USA, 2010.

[11] J.C. Kaimal, J.C. Wyngaard, Y. Izumi, and O.R.
Coté. Spectral characteristics of surface-layer
turbulence. Quarterly Journal of the Royal Me-
teorological Society, 98(417):563–598, 1972.

[12] T. von Kármán. Progress in the statistical the-
ory of turbulence. In Proceedings of the Na-
tional Academy of Sciences of the United States
of America, volume 34, pages 530–539, August
1948.

[13] J.R. Morison, M.P. O’Brien, J.W. Johnson, and
S.A. Schaaf. The force exerted by surface
waves on piles. Petroleum Transactions,AIME,
189:149–154, 1950.

[14] M. Otter. Modeling, Simulation and Control with
Modelica 3.0 and Dymola 7. Technical report,
Deutsches Zentrum fuer Luft- und Raumfahrt
e.V. DLR - Institut fuer Robotik und Mecha-
tronik, Wessling, Germany, 2009.

[15] M. Otter, M. Malmheden, H. Elmquist, S.E.
Mattsson, and C. Johnsson. New formalism for
modeling of reactive and hybrid systems. In Pro-
ceedings of the 7th Modelica’2009 Conference,
Como, Italy, 2009. The Modelica Association.

[16] L. Quesnel, F. Vorpahl, and M. Strobel. Hy-
drodynamics meet wind turbines: specification
and development of a simulation tool for float-
ing wind turbines with modelica. In Proceed-
ings of the 20th International Offshore and Polar
Engineering Conference. Fraunhofer Institute for
Wind Energy and Energy Systems Technology
(IWES), 2010.

[17] W.J. Rankine. On the mechanical principles of
the action of propellers. Transactions of the In-
stitution of Naval Architects, 6:13–30, 1865.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

609

Modeling of Gas-Particle-Flow and Heat Radiation
in Steam Power Plants

Leo Gall Kilian Link Haiko Steuer
Siemens AG, Energy Sector, Erlangen, Germany

leo.gall@mytum.de, kilian.link@siemens.com, haiko.steuer@siemens.com

Abstract

Fired steam generators are the dominating technol-
ogy of coal combustion in power plants. This paper
presents a model for pulverized coal fired steam gen-
erators in Modelica. The model components are de-
signed as an extension of SiemensPower, a Modelica
library for transient simulation of power plants.

The focus is on coal combustion, gas-particle-flow and
radiation heat transfer in the furnace. The dispersed
flow of flue gas has to be modeled because radiation
heat transfer gets considerably intensified by the con-
tained coal and ash particles. Customized connectors
for the dispersed flow of flue gas had to be developed
on the base of Modelica.Fluid.

The component oriented approach supports the adap-
tion of the model to different simulation tasks, such
as stability analysis of the evaporator or influence of
the coal mill on plant dynamics. Component structure,
parametrization and spatial discretization were impor-
tant aspects for the development of maintainable and
re-usable components of the model library.

Keywords: steam power plant; coal; dispersed flow,
radiation heat transfer; connectors

1 Introduction

Coal fired steam generators are widely used in com-
mercial power plants around the world. Even in
20 years, more than one third of the world’s grow-
ing electric energy demand will be produced out of
coal [6]. Today’s coal power plant units generate up
to 1100MW of electric power and steam generators
reach heights of 170m.

Before combustion, the coal gets pulverized in coal
mills to particle sizes of about 50 µm. Some of the
combustion air is used to transport the coal dust into

the furnace. In the furnace, the coal is burned while
moving within the flow of combustion air and flue gas.
The combustion takes about one second in most cases,
but the burn-out of larger particles can take longer.

Furnaces for hard coal with dry ash removal were
modeled first, as they are the dominating technology
today. The model could be adapted to lignite plants by
adding equations for flue gas recirculation. If neces-
sary, slag-tap furnaces can be modeled, too.

Flexibility is the main challenge in development of
coal power plants. For fired steam generators this im-
plies more dynamic operation and usage of different
coal types and biomass.

A detailed model of the steam generator is needed, in
order to analyze the dynamic behavior. The heat re-
lease of the combustion is non-uniform over the height
of the furnace. This non-uniform heat flow into the
water wall tubes influences the flow stability and the
energy storage of metal and fluid. The coal mills de-
fine the speed of fuel ramps and the distribution of coal
particle sizes. The furnace model allows to study the
impact of coal mill dynamics on power output.

Combustion

Dispersed flow Heat transfer

Figure 1: Dependencies of modeling domains

The focus of the presented work is on modeling of the
furnace and radiation heat transfer inside of the fur-
nace [4]. Extensive simplification has to be applied in
order to achieve a model for dynamic simulation tasks
on system-level. Power plant furnaces are large sys-
tems with turbulent reactive flow in three dimensions.
Spatial discretization was applied in order to reduce
the partial differential equations into a set of ODEs
which can be solved by a Modelica tool. The guide-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

610

line for model assumptions were proven steady-state
inhouse tools. A trade-off between model accuracy
and numerical speed and robustness has to be made,
if the furnace model gets coupled to the water/steam-
cycle.

For practical simulation tasks, the available parameter
set and measurement data for calibration is very lim-
ited.

Figure 1 shows the needed models of coupled physi-
cal phenomena for the furnace model. The combus-
tion model calculates the heat release (heat flow and
burn out) and flue gas composition. This depends di-
rectly on the model of dispersed flow which fullfills the
mass, energy and momentum balances. The resulting
radiation heat transfer depends on the temperatures of
flame and wall. Especially in transparent flame zones,
flue gas composition and particle properties influence
emission and absorption coefficients.

2 Modeling Framework

SiemensPower is a growing specialized model library
for transient simulation of power plants in Modelica.
The models are used to enhance the performance
in operation and control of existing and new power
plants. The components of the library are designed for
many different power plant applications. One example
are combined cycle gas turbine (CCGT) plants with
heat recovery steam generators. The library is used as
a basis for studies of multiple engineering design ques-
tions. SiemensPower is based on Modelica.Fluid con-
nectors and Modelica.Media. Dymola [5] is used as
the main tool for modeling and simulation. The model
components of fired steam generators add a new field
of application to the SiemensPower library.

Besides Modelica/Dymola there are several inhouse
simulation tools in use at Siemens Energy which have
to be maintained. If the Modelica model of the fired
steam generator delivers reliable results, older inhouse
tools could be potentially replaced. Other specialized
inhouse tools could be coupled to the Modelica model
in order to extend their application range.

The existing steady state tools were used as a guideline
for component structure design, parametrization and
validation of the new Modelica model.

3 Model Description

3.1 Model Structure

Figure 2 shows the layout of a steam generator model
in two-pass configuration. Coal and air enter from the
left into the furnace. The combustion heat gets trans-
fered to the furnace walls. As flame temperature is
about 1800K, heat transfer is dominated by radiation,
while convection is negligible in the first approach.

After combustion, the hot flue gas leaves the furnace
and passes several convective heating surfaces. Ra-
diation from the flame to the first convective heating
surfaces has to be modeled, as indicated by the arrows
in figure 2.

Figure 2: Model layout

Inside the furnace, the non-uniform distribution of
mass and heat flows was modeled by spatial discretiza-
tion in one dimension as shown in figure 3. The size
of flue gas elements depends on the geometry of the
specific furnace. If more spatial resolution is needed,
the zones in figure 3 could be further divided into sub-
segments.

Figure 3: Furnace structure

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

611

Each furnace element consists of two components.
The equations for gas-particle-flow and combustion
are contained in DispersedFlowZone. The radia-
tion heat exchange between all surrounding surfaces
gets calculated in RadiationHeatTransfer.

Figure 4 shows the model diagram of the compo-
nent Furnace. The furnace is seperated into sev-
eral furnace elements according to the levels in fig-
ure 3. The left column of components consists of one
DispersedFlowZone per furnace element, each con-
nected to one RadiationHeatTransfer in the right
column.

Figure 4: Furnace component diagram

Currently, the heat transfer model is a separate compo-
nent, leading to a clean model structure. But, because
of the strong dependancy of the equations, it will be
moved into DispersedFlowZone as a submodel.

In the presented example, there are three burner levels.
Coal enters through the burner levels and gets trans-
ported upwards with the flue gas. Small ash particles
leave the furnace together with the flue gas, whereas
larger ash particles fall into the hopper bottom. The
flame at burner levels and in the first section above
the furnace is assumed to be non-transparent. Radia-
tion heat can only be exchanged with the furnace walls
and the neighboring flue gas zones. After the luminous
flame, flue gas zones are partially transparent for heat
radiation. Heat can be transferred from the flame to
the following gas zones and heating surfaces.

The following sections describe the furnace model in
more detail.

3.2 Connectors for Dispersed Flow

In steam power plants there are two major fluid sys-
tems, the two phase flow of water/steam and the flue
gas. The flue gas in coal fired furnaces contains coal
and ash particles which intensify the heat radiation of
the flame. Coal particles can travel trough multiple
flue gas elements and therefore have significant im-
pact on the spatial distribution of heat release. Larger
ash particles can move against the direction of flue gas
flow because of gravitation. Therefore, new connec-
tors were needed to describe the interaction between
flue gas elements.

The DispersedFluidPort has been developed in
order to have one connector for the flow of gas and
solid phase. This minimizes wiring work and corre-
sponds to the physical connections in reality.

The new connector is specialized for the application
in the fired steam generator. Hence, the universal ap-
proach of Modelica.Fluid is not necessary [1, 2]. Well
defined flow directions can be assumed and connec-
tions between more than two connectors do not have
to be handled automatically. Components for splitting
and mixing can be provided for the limited number of
flue gas branches.

Nevertheless, the FluidPort of Modelica.Fluid should
be used for the gas phase in order to be compatible
with existing flue gas zones in SiemensPower. The
standard components of Modelica.Fluid can be used
where appropriate (e.g. boundary conditions) and con-
nected to the FluidPort.

It was decided to add additional connectors for par-
ticles to the FluidPort and aggregate all this into the
DispersedFluidPort. Figure 5 illustrates this approach.

Figure 5: Structure of DispersedFluidPort

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

612

The Modelica code of DispersedFluidPort:

connector DispersedFluidPort_in
"DispersedFluid input connector"

// Fluid data
replaceable package Medium =
SiemensPower.Media.FlueGas
"Gas medium model";

// Ports
Modelica.Fluid.Interfaces.FluidPort
gas(redeclare package Medium =
Medium, m_flow(min=0));

SiemensPower.Interfaces.ParticleInput coal;
SiemensPower.Interfaces.ParticleInput flyAsh;
SiemensPower.Interfaces.ParticleOutput slag;

end DispersedFluidPort_in;

ParticleInput and ParticleOutput are causal
connectors containing mass flow and temperature as
inputs and outputs. A standard Modelica connec-
tor with a-causal potential and flow variables was not
promising because the coal and ash moves with the
flue gas by convection. Therefore it is hard to define
a meaningful potential variable which is the driving
force of particle flow. More stream variables could
have been added to FluidPort for coal and ash but it
would not be possible to describe the movement of
larger particles against the fluid flow direction.

The use of the aggregated connectors is quite con-
venient when writing equations with expressions like
port.gas.m_flow or port.coal.m_flow.

3.3 Furnace Element

The furnace element is one element of plug flow of flue
gas. The flue gas is modeled as a mixture of ideal gases
from Modelica.Media. The following figure shows the
mass and energy flows:

m_flow_burnerAir

m_flow_burnerCoal

m_flow_burnerAddOnFuel

Q_flow_wall

m
_f
lo
w
_b
G
as

m
_f
lo
w
_a
G
as

Q_flow_combustion

dU/dt

Δ
he
ig
ht

Q
_f
lo
w
_b
R
ad
ia
tio
n

Q
_f
lo
w
_a
R
ad
ia
tio
n

m
_f
lo
w
_b
C
oa
l

m
_f
lo
w
_a
C
oa
l

m
_f
lo
w
_b
F
ly
A
sh

m
_f
lo
w
_a
F
ly
A
sh

m
_f
lo
w
_b
S
la
g

m
_f
lo
w
_a
S
la
g

Figure 6: Mass and energy balance of one furnace el-
ement

The energy balance of one furnace element:

dU
dt

=+ Ḣa,flueGas + Ḣa,coal + Ḣa,flyAsh + Ḣburner,air

+ Ḣburner,coal + Ḣburner,addOnFuel + Ḣb,slag

+ Ḣa,slag + Ḣb,flueGas + Ḣb,coal + Ḣb,flyAsh

+ Q̇combustion

+ Q̇a,radiation + Q̇wall + Q̇b,radiation (1)

U is the internal energy of the flue gas element. Ḣ are
enthalpy flows, Q̇ are energy flows. Q̇combustion is cal-
culated from the lower heating value and the burned
mass flow of coal. The balance of radiation heat trans-
fer and the energy balance result into the correct tem-
perature of the flue gas element.

Radiation heat transfer is calculated according to [3],
chapter K. For radiation heat exchange between flame
and wall the following equation is used:

Q̇flame,wall =Aσ · εwall

αflame + εwall −αflame εwall

· (αflame T 4
wall − εflame T 4

flame) (2)

Qflame,wall is the heat flow from the flame to the wall,
A is the wall area, σ is the Stefan-Boltzmann constant,
εi are emissivities and αi are absorbances.

Radiation properties and corresponding surface areas
play a key role for correct simulation results. The
emissivity of the wall is set to an empirical value for
each furnace element. The emissivity of the flame can
be calculated by the model, which uses functions de-
pending on flue gas temperature, gas composition and
zone geometry [3].

The standard Modelica heat port was extended by in-
formation on emissivity and surface area in order to
calculate the net radiation heat flow. The known func-
tions for view factor calculation are implemented in
Modelica.

The mass balance is written for every chemical con-
tained in the flue gas and for the three types of par-
ticles (coal, fly ash and slag). Momentum balance is
reduced to a hydraulic resistance of the gas phase until
more data is available.

3.4 Usability Aspects

When using and maintaining the described model,
three aspects could be improved. Handling of 3D ge-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

613

ometry parameters is not intuitive in 2D model di-
agrams. All geometry data is stored centralized in
a record FurnaceData, but the user has to make
sure the correct parametrization of the furnace ele-
ments. Some 3D-support for the parametrization of
1D-models would simplify this task.

It is not easy to implement the radiation heat balance
in component oriented model where data exchange be-
tween objects should be transparent for the user. Un-
fortunately, there is no simple solution for 3D radiation
exchange.

There is no language or tool support for 1D spatial
discretization of partial differential equations in Mod-
elica. For-loops of equations or connects are writ-
ten, without graphical representation. The model user
mostly has to look into the equations in order to fol-
low the details of discretization. Possibly annotations
could be generated to visualize the discretization.

4 Results

In order to test the furnace model, a test environment
with ideal components for heat controller, coal feeder,
coal pulverizer, coal distributor and precipitator has
been developed (figure 7). Temperature boundary con-
ditions are connected to the furnace instead of water
tubes. The components of this test environment can
be configured and improved according to the specific
simulation task.

Figure 7: Test environment of furnace model

The practicality of the model concept was tested by
calculations on an existing large scale power plant. A
model of this plant was available in an in-house steady
state tool. Parameters and boundary conditions of the
Modelica model were obtained from construction data
of the plant and the existing model. The results of the
existing model were compared to steady state results
of the new Modelica model. Figure 8 and figure 9
show these results. The rectangles on the height coor-
dinate indicate the three burner levels. The solid line
shows the Dymola result which agrees with the dashed
reference line in the lower segments. At the furnace
exit, the fit is not that good because of the imprecise
test environment without convective heating surfaces.

1200 1300 1400 1500 1600 1700

Furnace

T in °C

he
ig

ht
 in

 m

In−house−tool
SiemensPower (Dymola)

Figure 8: Temperature versus furnace height

0 50 100 150 200 250 300 350

Furnace

q
flow,wall

 in kW/m²

he
ig

ht
 in

 m

In−house−tool
SiemensPower (Dymola)

Figure 9: Heat flux versus furnace height

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

614

5 Conclusion and Outlook

A modeling framework for coal fired furnaces was de-
scribed which can be used for dynamic simulations of
steam power plants. The new Modelica components
serve as an extension to the existing SiemensPower li-
brary.

Further validation is needed for transient operation.
The next step would be to attach evaporator tubes and
super-heaters in order to compare the model to dy-
namic simulation results and measurements.

References

[1] Franke, Rüdiger ; Casella, Francesco ; Ot-
ter, Martin ; Sielemann, Michael ; Elmqvist,
Hilding ; Mattson, Sven Erik ; Olsson, Hans:
Stream Connectors – An Extension of Model-
ica for Device-Oriented Modeling of Convective
Transport Phenomena. In: Proceedings of the
7th International Modelica Conference, Septem-
ber 20th-22nd, 2009, Como, Italy, p. 108-121.

[2] Franke, Rüdiger ; Casella, Francesco ; Siele-
mann, Michael ; Proelss, Katrin ; Otter, Martin
; Wetter, Michael: Standardization of Thermo-
Fluid Modeling in Modelica.Fluid. In: Proceed-
ings of the 7th International Modelica Confer-
ence, September 20th-22nd, 2009, Como, Italy,
p. 122-131.

[3] VDI-Gesellschaft Verfahrenstechnik und Chem-
ieingenieurwesen (Ed.): VDI-Wärmeatlas. Ed.
10. Berlin : Springer, 2006.

[4] Gall, Leo: Dynamic Modeling of Fired Steam
Generators. Erlangen, Germany: Diploma the-
sis, Technische Universität München, 2010.

[5] Dassault Systèmes AB: Dymola Version 7.4.
http://www.dymola.com

[6] Spliethoff, Hartmut: Power Generation from
Solid Fuels. Berlin : Springer, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

615

Inclusion of Reliability and Safety Analysis Methods in Modelica

Christian Schallert
German Aerospace Centre (DLR), Institute of Robotics and Mechatronics

82234 Wessling, Germany
christian.schallert@dlr.de

Abstract

A method is developed to combine techniques of
reliability and safety analysis with the Modelica lan-
guage, which is now widely used for the modelling
and simulation of technical systems.

The method allows to perform a reliability or safety
analysis on the system model that is created and used
for simulation studies. The procedure automatically
determines the so called minimal path sets or mini-
mal cut sets of a system, its failure probability and
critical components.

The reliability and safety analysis methods are in-
corporated in a Modelica library that is established
for the modelling and simulation of aircraft on-board
electrical power systems. The recent trend towards a
broader use of electric system technologies on com-
mercial aircraft has motivated the creation of this
kind of model library, which supports the conceptual
design and optimisation of on-board electrical sys-
tems regarding power behaviour, weight, reliability
and safety.

Keywords: reliability; safety; fault modelling; re-
dundant system; minimal path sets; minimal cut sets

1 Introduction

Much of the information needed for reliability or
safety analysis is contained already in complex sys-
tem models that are usually built in Modelica. The
specific modelling additions needed, as well as the
concept of an automated reliability and safety analy-
sis procedure are described in this paper.

The analysis procedures evaluate the physical behav-
iour of a system model in multiple simulations. Rep-
resenting not only the normal but also the faulty be-
haviour of components is needed as an addition to
the modelling, as described in section 2.1. Section
2.5 illustrates the scope and method of the reliability
and safety analyses and their relevance regarding
aircraft on-board systems. A way of minimising the
involved computational effort is outlined in 2.5.4.

Then, section 3.1 presents an example model of an
electric power system of a recent large commercial
aircraft. Subsequently, a safety and reliability analy-
sis are conducted on the model for example scenar-
ios, the results of which are graphically presented
and discussed in sections 3.2 and 3.3.

2 Modelling Approach and Outline
of Reliability and Safety Analysis
Method

2.1 Component Fault Modelling

A variety of object-oriented model libraries has been
developed in the Modelica language, as generally
known. Typically, each component model contains a
description of the normal operational behaviour by
differential and/or algebraic equations.

For the purpose of reliability and safety analysis, the
component models have to be enhanced to describe
also the failure behaviour by physical equations. Ba-
sic examples are given hereafter by the model ap-
proach taken for some common electric components.

I

+

_

Figure 1: Modelica model of an electrical cable with
normal and failure behaviour

A two-core electric cable can be described as an oh-
mic resistor. For the normal function of the cable, its
resistance R is in the order of Rnom ≈ 10-1 Ω. An open
circuit (O/C) failure of the cable is characterised by a
very large resistance, e.g. 106 Ω, whereas a short cir-
cuit failure (S/C) can be desribed by small resistance

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

616

of 10-5 Ω connecting the two cores of the electric
cable. As can be seen in Figure 1, the resistor ele-
ment used to model the short circuit is always pre-
sent in the cable model, but it has a large value of
106 Ω in cases other than a short circuit failure.

Figure 2: Electric contactor model with normal and
failure behaviour and current limitation function

An electrical contactor is also modelled as a variable
ohmic resistor, as shown in Figure 2. The opening
and closing of the contactor is described by different
resistance values, Ropen = 106 Ω for the open and ap-
proximately Rclosed = 210-3 Ω for the closed contactor
state. The small resistance of the closed contactor
effects a voltage drop, which can be specified by a
model parameter. Optionally, this model may be
used as a current limiting device, similar to a circuit
breaker. Figure 3 shows the current limitation func-
tion: By increasing the resistance value Rlmt above
zero, the limitation function prevents that the actual
current, denoted by I, exceeds the nominal current
Inom . This kind of model has been selected, since it
does not require any resetting after the limitation
function has been activated in the simulation, other
than a real circuit breaker which must be reset after
having tripped. For a contactor or circuit breaker,
there are a couple of conceivable failure modes, and
the two most relevant of them are described in the
model: An open circuit failure, which is modelled in
the same manner as for the electrical cable, and a
fails to open malfunction. The latter failure mode
means a loss of the current limitation function, i.e.
failure to protect against overcurrent.

As the examples suggest, a DC modelling approach
has been selected for the electrical components. A
single or three phase AC component is described by
the equivalent DC component with root mean square
values for voltage and current. A three phase AC
component is respresented by a single phase, assum-
ing that the three phases are symmetrical. Thus, the
substitute single phase generates, conducts or uses a
third of the entire current and power. Furthermore,
the electrical behaviour is described by algebraic
physical equations for the normal and several failure
modes of each component; differential equations are

omitted for simplification. This is judged as adequate
regarding the objective of performing network archi-
tecture level conceptual design and optimisation,
including the analysis of steady-state electric power
behaviour, reliability, safety and weight.

I

+

Figure 3: Current limitation function

Each component model has a boolean input signal to
control its status, i.e. normal operation, failure mode
1, failure mode 2 etc., as applicable. The status can
be shifted during simulation. The failure probability

 is stored in each component model as

a changeable parameter. Constant failure rates λi and
exponentially distributed lifetimes are a common
assumption in reliability and safety analysis.

t
i

ie1p λ

The weight of a component is given dependent on
sizing parameters of the accordant component
model, such as the weight of a generator depends on
its nominal power and speed.

Thus, a Modelica library of electric component mod-
els, that are augmented with a basic failure behaviour
and parameterised weights, is developed. In doing
so, the concept of creating component models that
are usable regardless of the application or physical
context, is being followed. Compatibility with exist-
ing model libraries is maintained.

2.2 Concept of Model Library with Included
Analysis Procedures

The introduced Modelica library of electric compo-
nent models and accompanying procedures for
automated electric loads, reliability and safety analy-
sis forms a tool for the conceptual design of aircraft
on-board electric power systems. The tool is named
as the Electrical Network Architecture Design Opti-
misation Tool - ENADOT. Besides reliability and
safety, ENADOT is prepared to evaluate electric
network architecture concepts w.r.t. to power behav-
iour and weight, as illustrated by Figure 4.

Rlmt

I

Inom

I
Rlmt

_

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

617

Simulation Model of
Electric Power System

Power Behaviour

• loads of power system
components in

• normal and degraded
operating scenarios

Weight

• sizing loads of power
system components

• component weights and

• overall system weight

Safety and Reliability

• minimal path sets

• minimal cut sets

• system failure probability

• system availability w.r.t.
aircraft dispatch

Figure 4: Concept of a Modelica-based tool for electric
network architecture design analysis and optimisation
- ENADOT

Large and complex models of electrical networks
can be composed using the graphical editor of Dy-
mola in the known manner.

Aircraft on-board electrical power systems are of
particular interest w.r.t. reliability and safety, since
they supply various loads, many of which fulfill a
function that is essential for the safety of flight. Due
to the recent trend to replace hydraulic and pneu-
matic supply systems by electric power on-board of
commercial aircraft, the electric demands and thus
the overall size of the electric system tend to grow.
This increase of size and complexity also calls for a
comprehensive modelling and simulation tool, due to
the limitations of traditional design methods.

2.3 Modelling of Electric System Operating
Modes

Electric power systems on-board of aircraft are typi-
cally split into several independent channels for re-
dundancy, each comprising an engine driven genera-
tor, a distribution network and a number of loads. If
failures occur, the network is reconfigured automati-
cally to isolate the fault and to secure power supply
to most of the loads, with priority to the essential
ones. This reconfiguration capability has to be built
into the system model accordingly. It is achieved by
including the open / close logics of the various elec-
tric network contactors, which link (or cut off) the
generators, busbars and loads. Thus, an electric net-
work architecture model can be simulated for a nor-
mal and various abnormal operating scenarios.

2.4 Visualisation of System Operation and In-
teractive Checking

The diagram layer of an electric network architecture
model is used also for dynamic and graphic display
of the open / closed states of the various contactors,
as well as of the resulting flow of electric power by
different colours. For this purpose, ENADOT em-
ploys the visualisation and real-time simulation ca-
pabilities of Dymola and Visual C++.

If a component is energised, i.e. under voltage or
conducting current, then its shape is coloured, as
shown in Figures 5 and 6. The accordant colour
stems from the generator or battery which energises
the component. Passive components are shown in
grey colour. The user can interactively shift the op-
erating / fault modes of the electric network compo-
nents, i.e. inject failures by mouse-click, and observe
the resulting system behaviour by the visualisation in
the diagram layer. That way, the model implementa-
tion of an electric network architecture is readily
verified with regard to the intended behaviour.

2.5 Automated Analysis Procedures

To evaluate an electric network architecture model,
ENADOT provides functions for an electric loads
analysis, computation of component weights and
overall system weight, a safety analysis which exam-
ines the probability of failure of voltage supply to a
single or several busbars, a reliability analysis which
evaluates the operational availability (aircraft dis-
patch reliability) of an electric network architecture,
as well as compilation of a bill of material. The elec-
tric loads and safety analyses rely on the capability
of an electric network model to simulate various op-
erating modes and to bypass failed components.

These procedures are written as Modelica functions
in algorithm syntax. They are part of the ENADOT
library and simply rely on Dymola for execution.

2.5.1 Electrical Loads

The electric loads analysis determines the highest
electric power generated or carried by a component
in the most adverse operating case. To compute the
highest electric power (design point) of any compo-
nent of an electric network model, the function simu-
lates it automatically for normal and degraded oper-
ating scenarios. As a result, the design point is pro-
vided for each component combined with its tempo-
ral occurrence during a flight cycle. Then, the sizing
parameters of each component are selected which in
turn yields the component weights and the overall
weight of an electric network architecture.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

618

2.5.2 Safety

By means of a safety analysis function embedded in
ENADOT, the probability of loss of voltage supply
to a single or several busbars of the electric network
can be computed. Analysing the probability of loss
of voltage supply to busbar(s) is particularly relevant
if electric loads are connected to them that perform a
function which is critical regarding the safety of
flight. The scenarios to be investigated have to be
supplied by the operator, e.g. “system is functional if
at least one DC busbar is energised” or “system has
failed if voltage is lost on the AC essential busbar”.

Before starting the self-acting safety analysis, the
operator can choose between the block-diagram
(RBD) or the fault tree analysis (FTA) method.

The former is based on the identification of minimal
path sets: A minimal path set is a combination of
intact components that causes a system to be func-
tional in the sense of the specified scenario, e.g. “at
least one DC busbar energised”. Minimal means that
a path set contains only as many intact components
as are necessary for the system to be functional. Re-
dundant systems are characterised by the existence
of several minimal path sets for a specified scenario,
e.g. several ways of energising a busbar. By nature, a
minimal path sets analysis considers only two states
per component: intact or, respectively, failed [2].

The fault tree analysis method corresponds with the
determination of minimal cut sets: A minimal cut set
is a combination of defective components, which
causes the system to fail in the opposite sense of the
specified scenario, e.g. “no single DC busbar ener-
gised”. Here, minimal means that a cut set consists
of only as many defective components as causes the
system to fail. Minimal cut sets comprise one (1st),
two (2nd) or three (3rd order) defective components,
and the probability of occurrence of a minimal cut
set decreases rapidly with the number of components
that belong to it. A redundant electrical system, in
turn, is characterised by the fact that no 1st order
minimal cut sets exist, apart from own defects of the
busbar under consideration, but rather combinations
of two or three defective components lead to the loss
of voltage on busbar(s) and hence system failure.

Furthermore, the minimal cut sets analysis differs
from the minimal path sets analysis by the considera-
tion of all possible states of each component (intact,
failure mode 1, failure mode 2, etc.). It is thus more
complex and computationally more intensive than
the minimal path sets analysis. The result, though, is
equivalent to that of the established method of fault
tree analysis, which is generally accepted as a verifi-
cation of system safety. The computationally less
intensive minimal path sets analysis provides quicker

available results, which are normally used as a first
estimate of system safety in the design process.

It must be noted that a model-based safety analysis
only covers phenomena captured in the scope of
modelled physics (section 2.1). Though the analysis
is exhaustive to this extent, it is up to the designer to
regard other possible threats, e.g. common causes
such as humidity or electromagnetic interference.

The key definitions regarding safety analysis based
on minimal path and minimal cut sets are as follows.

The common assumption of exponentially distrib-
uted lifetimes of the components ci means compo-
nent failure rates λi that are constant over lifetime.
Thus, the probability of a component failure is

0t

0t

,

,

0

e1
tp

t

i

i

λ

The probability of a minimal path set to occur is

MPc

i

i

p1MPP , with the components ci and

the individual failure probabilities pi. Likewise, the
probability of occurrence of a minimal cut set is

MCc

i

i

pMCP

The probability of system operation can be computed
from m detected minimal path sets as

1m

1i

m

1ij
ji

m

1j
j

m21ioperationsystem

...MPMPPMP

MP...MPMPPpP

 m21
1m MP...MPMPP1

Likewise, the probability of system failure can be
calculated from n detected minimal cut sets as

1n

1i

n

1ij
ji

n

1j
j

n21ifailuresystem

...MCMCPMC

MC...MCMCPpP

 n21
1n MC...MCMCP1

Generally, the relation between the probability of
operation and failure, for a single component or a
complex system is tptp operationfailure 1

Since the computation of system operation or failure
probability from the above Poincaré formula can
lead to a very large number of products, algorithms
for sums of disjoint products [4] have been devel-
oped to reduce the size of the formula and to facili-
tate its numerical evaluation.

An analysis example can be viewed in section 3.2.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

619

2.5.3 Reliability

Whereas a safety analysis is focused on failure
events that can be critical with respect to the safety
of flight, reliability is concerned with the operational
availability of a system or entire aircraft. Operational
availability or dispatch reliability is a measure for the
likelihood of an aircraft fulfilling its mission, that is
for a commercial aircraft to make revenue flights on
time with passengers and/or cargo. More precisely,
the dispatch reliability is defined as the percentage of
scheduled flights which depart without having a de-
lay of more than 15 minutes due to technical reasons,
or a cancellation [1].

The commercial pressures have instigated the ability
to continue to dispatch an aircraft with given system
faults. Redundant design of aircraft on-board sys-
tems is adopted not only to fulfill the safety require-
ments, but also for reasons of dispatch reliability. In
turn, this requires to examine the ability of a de-
graded system, when one or more failures have al-
ready occurred, to meet the safety requirements.

ENADOT has an embedded function, developed in
the Modelica language, for computing system opera-
tional availability. It is in essence a minimal path sets
analysis, which uses information about allowed
component deficiencies, so called MEL-items
(Minimum Equipment List), entered by the operator.

Let Csystem be the set of all system components ci ,
CMEL be the given set of nMEL possibly defective com-
ponents and k the number of intact components re-
quired, and . Then,

 minimal path sets are generated with

the following properties:

MELnk

MEL

SystemMEL CC

k

n
m

Each minimal path set MP1, MP2, …, MPm contains
those system components ci that are not an MEL-
item, i.e. not part of the set CMEL.

Systemi Cc \ MELC MELiSystemii CcCcc

As well, k intact components from the set of MEL-
items CMEL are included in each minimal path set.

E.g. for k = 2 and nMEL = 3, the following

minimal path sets are composed:

3
2

3

System1 CMP \ 21MEL c,cC

System2 CMP \ 31MEL c,cC

System3 CMP \ 32MEL c,cC

An analysis example is provided in section 3.3 for
the electric power system introduced by section 3.1.

2.5.4 Minimising the Computational Effort In-
volved with Safety Analysis

Analysing the effect of combinations of intact and
failed components on the occurrence of system func-
tion or failure can lead to an exponential growth of
combinations to test. Regarding the detection of
minimal path sets, 2n possible states would have to
be evaluated for a system of n components, e.g. 220 >
1106 for n = 20.

To avoid the unfeasibility of automated analysis
caused by an excessive amount of system states to
test, strategies are developed to exclude inapplicable
combinations of intact / failed components from the
procedure.

The minimal path sets analysis procedure of
ENADOT draws on two kinds of information con-
tained in a system model. In a first step, the object
structure of the system model, i.e. the arrangement of
components and connections, is evaluated. Advan-
tage is taken of the fact that the structure of object-
oriented models is similar, although not exactly iden-
tical with minimal path sets. Regarding the object-
oriented model structure as a graph, an adapted
depth-first search algorithm is used to find a moder-
ate number of candidates of minimal path sets.

In a second step, the candidates are checked by simu-
lating the system model accordingly, to eventually
extract the minimal path sets from the amount of
candidates. This two-stage approach – depth-first
search and then simulation – considerably reduces
the overall computation effort, leading to a procedure
that is viable even for systems of a size as shown in
section 3.1.

After the minimal path sets of a system have been
determined for a given scenario, the probability
measures are computed as described in section 2.5.2.

For the minimal cut sets analysis, the theoretically
possible number of system states is even higher: As-
suming that three states (intact, failure mode 1, fail-
ure mode 2) have to be considered for each compo-
nent of a system, this would lead to 3n possible sys-
tem states, e.g. 320 > 3109 for n = 20.

Here, the strategy of minimising the amount of sys-
tem states to check includes at first to determine the
minimal path sets, as described above. Then, mini-
mal cut sets are searched for according to heuristic
rules that draw on the position of components in the
system and their modes of failure. For instance, only
combinations of failed components that belong to
different minimal path sets or which are located ad-
jacent to a minimal path set, are checked.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

620

3 Modelling and Analysis Case Study

This section illustrates the capabilities of ENADOT
with respect to safety and reliability analysis by the
example model of an aircraft on-board electric power
system. Figure 5 shows the model, the basic structure
and characteristics of which are oriented to the elec-
tric power system of the Airbus A380. The model
complies with the typical configuration and func-
tionality of electrical systems of this aircraft cate-
gory, and it is thus adequate for a demonstration of
the scope of ENADOT. The model has been devel-
oped based on a description, conceptual sketch and
listing of the key electrical loads, which have been
found in section 5.12.1 of reference [5]. It may differ
in some minor respect from the actually built and
flying electric system of the A380, yet, this does not
affect the description of the scope of ENADOT.

3.1 Electric Power System Modelling Example

The schematic shown in Figure 5 is a direct snapshot
of the electric power system model. It includes the
following, salient components and features:

 four engine driven 3-phase 115 VAC / 150 kVA
Variable Frequency (VF) generators, identified
as G1, G2, G3 and G4

 two 3-phase 115 VAC / 120 kVA Constant Fre-
quency (CF) generators, driven by the Auxiliary
Power Unit (APU), denoted as AG1 and AG2

 a 70 kVA Ram Air Turbine (RAT) driven emer-
gency generator, named RatG

 three 300 A Battery Charger Regulator Units
(BCRU) – these are regulated Transformer Rec-
tifier Units (TRU) – named EssBCRU, BCRU1
and BCRU2

 a 300 A TRU identified as APU_TRU

 four 28 VDC batteries, denoted as ESS_BAT,
BAT1, BAT2 and APU_BAT

 a static inverter, named INV, for emergency sup-
ply of the AC_EMER busbar

3.1.1 System Functionality

Figure 5 shows the normal in-flight operation of the
electric power system. As can be seen, each engine
driven generator G1 (blue), G2 (green), G3 (ma-
genta) and G4 (bronze) energises its associated bus-
bar AC_1, AC_2, AC_3 and AC_4. The two APU
driven generators AG1 (purple) and AG2 (yellow)
are available, but not engaged. If a generator fails,
the neighboured generator will take over by closing
the ACTC1 or ACTC5 contactor. If both generators

on one side fail, then cross-transfer through the
ACTC2, 3 and 4 contactors will sustain all AC bus-
bars energised, with yet decreased overall available
power. Split generator operation is maintained in all
cases since the engine driven AC generators are vari-
able frequency, each dependent on the speed of the
related engine.

The AC buses supply the non-essential cabin loads
Galley1, 2, 3 and 4 and In-Flight Entertainment
(IFE) 1 and 2. These form an intermittent load of up
to 320 kVA (80 kVA per galley including cool-
ing) and 60 kVA (IFE). Those AC loads that are
vital for the safe operation of the aircraft are con-
nected to the AC_ESS and AC_EMER busbars.
These are airspeed probes and windshield heating, as
well as motor driven hydraulic pumps and a set of
Electro-Hydrostatic flight control Actuators (EHAs)
needed to maintain a minimum acceptable level of
airplane controllability. The AC essential loads sum
up to 60 kVA. The AC_ESS and AC_EMER bus-
bars are supplied either by the AC_1 busbar (normal
case) or, if AC_1 fails, from the AC_4 busbar.
Should all engine generated power fail, then the
RAT driven generator RatG can accept the
AC_EssLoads and AC_EmerLoads. The latter can
also be powered by battery through the static inverter
INV, e.g. during RAT transit.

Other than the AC part of the electric power system,
the 28 VDC part offers a no-break power capability
even during changes of system status, which is cru-
cial to the functioning of vital control systems, such
as engine and flight control computers, avionics sys-
tems, flight deck instruments and radio communica-
tion. These loads are represented in the model by
DC_EssLoads, DC1_Loads and DC2_Loads and
account for 4 kW altogether. The cabin lights make
up 15 kW of power, supplied by the non-essential
part of the DC system.

3.1.2 Degraded System Operation

Figure 6 shows the electric power system in a con-
ceivable mode of degraded operation. The failed
components Engine1, G2, APU and BCRU2 are
marked in red colour. Since the power supply from
G1 and G2 is lost, the AC_1, AC_2, AC_3, DC_1
and DC_2 busbars are energised by G3 (magenta).
Failure of the BCRU2 has been recovered by closing
the DCTC2 contactor. The other remaining generator
G4 (bronze) energises the AC_4, as well as the es-
sential busbars AC_ESS, AC_EMER and DC_ESS.
As the scheme also shows, half of the cabin loads –
galleys, IFE and lights – have been suspended,
whereas the essential loads remain fully satisfied.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

621

Figure 5: Electric network model of a recent four-engine long range aircraft, scheme shows normal operation in flight

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

622

Figure 6: Electric network model of a recent four-engine long range aircraft, scheme shows degraded operation in
flight after Engine1, Generator2, APU and BCRU2 failure

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

623

3.2 Safety Analysis Example Result

This section shows the result of a safety analysis
conducted for the supply to the AC_1 busbar of the
introduced electric system. This non-essential busbar
has been selected to serve as an example, since the
result is relatively compact.

Figures 7 to 12 show the six determined minimal
path sets. They are depicted graphically and directly
in the model diagram, after completion of the analy-
sis procedure. Components belonging to a minimal
path set appear in the colour of the connected gen-
erator, failed components in grey. In normal opera-
tion, AC_1 is supplied by generator G1 (Figure 7),
which can be transferred to another engine or APU
driven generator in abnormal operating cases. Hence,

Figure 7: Minimal path set 1 - AC_1 busbar energised by G1

Figure 8: Minimal path set 2 - AC_1 supplied by G2 across AC_2

Figure 9: Minimal path set 3 - AC_1 fed by G3 through AC_3 and AC_2

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

624

AC_1 has multiple redundancy as to voltage sources.

The minimal path sets analysis accounts for the con-
nections of components, their potential faults and
network reconfiguration logics. The result, e.g. the
six minimal path sets found for the AC_1 busbar, is
thus also a check of the correct functioning of the
system and its implementation as a model.

As explained, two states are considered for each
component, intact or failed, in the minimal path sets
analysis. Many components yet have two or more
failure modes. Amongst others, the following are
realised in the modelling: “open circuit” and “short
circuit” for a cable or a busbar, “open circuit” and
“fails to open” for a contactor, “loss of output volt-
age” for a generator. The minimal cut sets analysis
accounts for every failure mode of all components
and the resulting effects on the electric network.

Figure 10: Minimal path set 4 - AC_1 energised by G4 across AC_4, AC_3 und AC_2

Figure 11: Minimal path set 5 - AC_1 fed by AG1 through AC_2

Figure 12: Minimal path set 6 - AC_1 supplied by AG2 across AC_2

A total of 5 first order and 21 second order minimal
cut sets were identified by the analysis procedure and
are listed in Table 1. Figures 13 to 19 show typical
cases for the scenario “loss of voltage on AC_1”.

Besides own possible faults of the AC_1 busbar –
open circuit (Figure 15) or short circuit – other single
component faults exist that lead to a loss of voltage
on AC_1: e.g. a short circuit of cable Feeder1 (Fig-
ure 14), which is directly connected to the busbar, or
in the same manner a short circuit of cable AEss-
Feed1 (Figure13). Typical examples of 2nd order
minimal cut sets are a failure of a component that
feeds AC_1 in normal system operation, in combina-
tion with another component failure that prevents
cross-transfer through AC_2 and ACTC1. Examples
can be viewed in Figures 16 and 18.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

625

Furthermore, a stuck closed contactor in combination
with a generator fault (Figure 17) or in combination
with a short circuit (Figure 19) can cause a loss of
voltage on the AC_1 busbar, the probability of which
has been computed for a duration of t = 1 Fh (flight
hour) as 4.010-4.

The failure of AC_1 is dominated by faults of the
connected cables. If necessary, this situation can be
improved by introducing contactors with current
limitation between the cables and the busbar, which

prevent the propagation of the effects of short cir-
cuits.

For most of the single component faults, this would
avoid the effect of losing voltage on the AC_1 bus-
bar. Since there is multiple redundancy in terms of
voltage sources, a decrease of the probability of loss
of voltage on AC_1 is then limited only by possible
own defects of the busbar.

Figure 13: Minimal cut set 1-2: short
circuit of cable leads to loss of voltage
on AC_1 busbar

Figure 14: Minimal cut set 1-3: cable
short circuit causes failure of AC_1

Figure 15: Minimal cut set 1-5: open
circuit leads to loss of AC_1

Figure 16: Minimal cut set 2-7: G1
fault and open contactor cause AC_1
failure

Figure 17: Minimal cut set 2-14: G1
fault and stuck closed contactor lead to
loss of AC_1

Figure 18: Minimal cut set 2-5:
open contactor and shorted cable
lead to AC_1 failure

Figure 19: Minimal cut set 2-21: short
circuit of AC_2 and stuck contactor
cause loss of AC_1

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

626

MP2 = CSystem \ CMEL {G1, G2, G3, (APU&AG1)} 1st order minimal cut sets:

… 1-1 Feeder1 O/C 0.0002
1-2 AEssFeed1 S/C 0.0001
1-3 Feeder1 S/C 0.0001
1-4 AC_1 S/C 210-7
1-5 AC_1 O/C 110-7

MP15 = CSystem \ CMEL {G3, G4, (APU&AG1), (APU&AG2)}

leading to a dispatch reliability of 0.929 for 200 Fh.

As obvious, allowing system deficiences for dispatch
improves the reliability. This is however limited by
the failure probabilities of components that are al-
ways required to be intact for dispatch. Also, the de-
graded system must have sufficient safety margin.

2nd order minimal cut sets:

2-1 G1 loss Feeder2 O/C 810-9

2-2 G1 loss Feeder2 S/C 410-9

2-3 GC1 O/C Feeder2 O/C 210-9

2-4 Engine1 loss Feeder2 O/C 210-9

2-5 GC1 O/C Feeder2 S/C 110-9

2-6 Engine1 loss Feeder2 S/C 110-9

2-7 G1 loss ACTC1 O/C 410-10

2-8 GC1 O/C ACTC1 O/C 110-10

2-9 Engine1 loss ACTC1 O/C 110-10

2-10 AEssC1 s.c. AEssFeed3 S/C 110-11

2-11 ACTC1 s.c. Feeder2 S/C 110-11

2-12 G1 loss AC_2 S/C 810-12

2-13 G1 loss AC_2 O/C 410-12

2-14 G1 loss GC1 s.c. 410-12

2-15 GC1 O/C AC_2 S/C 210-12

2-16 Engine1 loss AC_2 S/C 210-12

2-17 GC1 O/C AC_2 O/C 110-12

2-18 Engine1 loss AC_2 O/C 110-12

2-19 Engine1 loss GC1 s.c. 110-12

2-20 AC_ESS S/C AEssC1 s.c. 210-14

2-21 AC_2 S/C ACTC1 s.c. 210-14

4 Conclusion

This paper outlined the capabilities of the Modelica
based modelling and analysis tool ENADOT regard-
ing concept design and optimisation of aircraft on-
board electric power systems, which have recently
gained in relevance, installed power and criticality.

In addition to means for the dimensioning of electric
network components regarding power and weight,
the system safety and operational reliability can be
evaluated in terms of an automated minimal path sets
and minimal cut sets analysis.

Future work will be oriented to a transfer of the
analysis methods to other physical domains.

Table 1: List of minimal cut sets sorted by probability,
for loss of voltage on AC_1 busbar, t = 1 Fh

Acknowledgements

3.3 Reliability Analysis Example Result
The research leading to these results has received
funding from the European Union's Seventh Frame-
work Programme (FP7/2007-2013) for the Clean Sky
[3] Joint Technology Initiative under grant agree-
ment no. CSJU-GAM-SGO-2008-001. The author
wishes to thank the electric engineering department
of Airbus-France for the kind support and company.

This section shows the result of a dispatch reliability
analysis conducted for the introduced electric power
system, see Figure 5. The following set of nMEL = 6
allowed component deficiencies (MEL-items) is as-
sumed: CMEL = {G1, G2, G3, G4, (APU & AG1),
(APU & AG2)} i.e. six generators two of which in
combination with the auxiliary power unit. For k = 6
required intact components, i.e. no allowed defi-
ciences, the analysis determines one minimal path set
MP1 = CSystem which includes all system components.
With given component failure rates λi (not listed due
to extensiveness) and a duration of t = 200 Fh for 10
consecutive days of flying without maintenance, a
dispatch reliability of 0.869 is computed.

References

[1] Bineid M, Fielding J P: Development of an
aircraft systems dispatch reliability design
methodology. The Aeronautical Journal, pp.
345-352, June 2006.

[2] Birolini A: Reliability Engineering – Theory
and Practice. Fifth Edition, Springer Verlag
Berlin, 2007.

For k = 5, i.e. one allowed deficiency, 6 minimal
path sets are generated
MP1 = CSystem \ CMEL {G1, G2, G3, G4, (APU&AG1)} [3] CleanSky project, http://www.cleansky.eu
MP2 = CSystem \ CMEL {G1, G2, G3, G4, (APU&AG2)} [4] Heidtmann K D: Smaller Sums of Disjoint

Products by Subproduct Inversion. IEEE
Transactions on Reliability, Vol. 38, No. 3,
pp. 305-311, August 1989.

…
MP6 = CSystem \ CMEL {G2,G3,G4,(APU&AG1),(APU&AG2)}

The dispatch reliability is 0.911 for t = 200 Fh.
[5] Moir I, Seabridge A: Aircraft Systems - Me-

chanical, electrical and avionics subsystems
integration. John Wiley & Sons Ltd, 2008.

For k = 4, i.e. two allowed deficiencies, 15 minimal
path sets are compiled
MP1 = CSystem \ CMEL {G1, G2, G3, G4}

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

627

Error-free Control Programs
by means of Graphical Program Design, Simulation-based Verification

and Automatic Code Generation

Stephan Seidel Ulrich Donath
Fraunhofer Institute for Integrated Circuits

Design Automation Division
Zeunerstrasse 38

01069 Dresden, Germany

Stephan.Seidel@eas.iis.fraunhofer.de Ulrich.Donath@eas.iis.fraunhofer.de

Abstract

Currently the formalisation in the process of creating
automation control programs starts with the pro-
gramming of the real-time controller. But inconsist-
encies in the requirements definition and misinter-
pretations will lead to errors in the program which
have to be resolved through expensive software-in-
the-loop and field tests. This paper introduces a ho-
listic approach for the formalisation of the control
design already in the design phase. It also illustrates
the design flow for the model-based creation of er-
ror-free control programs. Created by means of
graphical editors the system definition, which in-
cludes the control algorithm, is transferred into Mod-
elica code and thus the executable system model is
used for the simulation-based verification. The simu-
lation results are compared to the requirements. Once
these are fulfilled and no further errors found, pro-
gram code for the real-time controller is generated
automatically. In this paper Structured Text for pro-
grammable logic controllers (PLCs) according to
IEC 61131 is generated. In final software-in-the-loop
tests the real-time capabilities of the control program
are validated.

Keywords: Graphical program design; Modelica;
IEC 61131; Structured Text; Software in the Loop

1 Introduction

During traditional control program development it is
often necessary to find erroneous sections in the
software and fix such code modules by means of ex-
tensive software-in-the-loop simulations. The errors
are often caused by wrong interactions between
components of the control program which are a re-

sult of inconsistencies in the initial project definition
[1]. Such inconsistencies could have been found by
an intensive and paper-dominated reviewing process
which is often shortened in order to save time. As an
alternative the formalisation should no longer be car-
ried out at the coding stage but already at the design
stage of the software project.

The formalisation of the design consists of the
creation of models which contain not only the struc-
ture of the system but also the definition of the func-
tionality. In case the models are executable in a sim-
ulation software the simulation-based testing of sin-
gle components as well as the overall system is fea-
sible. Simulation results will be compared to the pro-
ject’s requirements definition. As soon as differences
occur they have to be solved by an iterative adjust-
ment of the models or a more precise process defini-
tion. When the overall models functionality complies
with all requests from the definition an automatic
code generation is executed during which code for
the target controller is generated. For the final verifi-
cation of the generated code software-in-the-loop
tests are carried out. In these simulation-based tests
the real control program is coupled with machine and
operator model components which provide request
and response signals.

The control program development which is de-
scribed in the following sections is based on a case
filling machine. This machine’s model can be subdi-
vided into the machine model, the control model, and
the operator model [2].

The machine model is composed of models of all
the relevant subsystems such as electrical, mechani-
cal, and hydraulic systems. All of these models are
coded in Modelica [3] and are available as objects in
libraries. They are instantiated in the model view and
then connected with each other in order to reproduce

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

628

the structure and composition in the real world. The
machine model acts in its entirety as a model of the
physical environment with which the controls inter-
act.

Figure 1: Schematic of the case filling machine

The control model describes the required control
operations for the desired course of machine actions.
In simple cases the control operations may be linear
assignment sequences, but in complex cases they are
algorithms which represent state machines. For the
graphical description of state machines an UML-
profile [4][5] is utilized. These statecharts include
simple states, sequential composite states, and pseu-
dostates (initial state, junction, shallow history). The
transitions of states are triggered by signal triggers,
change triggers, and time triggers and can also be
labelled with guards and priority numbers. Priority
numbers of transitions are an addition to UML in
order to define an evaluation sequence. Activities,
which are coded in Modelica, can be assigned to en-
tries, exits, and transitions of states. They are also
edited with the graphical editor while creating the
statechart. The whole statechart will be automatically
translated into Modelica code.

The operator model contains the operating in-
structions of the system which are derived from the
production schedule. They form in general a com-
mand sequence and are also given as Modelica code
in order to enable an overall system simulation with
SimulationX [6].

Figure 2: Structure of the tongue’s model

Each step during the development of the control
program

• Graphical program design
• Test and verification at Modelica level
• IEC 61131 code generation [7]
• Software-in-the-loop tests

is illustrated by using the example of the feeding de-
vice of the case filling machine.

This machine conducts the final packaging of
bags containing products into shipping cartons. The
bags are transported on a conveyor from the produc-
tion process to the feeding device shown in Figure 1.

 Figure 3: Statechart of the tongue controller

They are placed by the conveyor in front of a pusher
on a tongue. The carton is positioned by a belt direct-
ly in front of the pusher. As soon as the carton has
arrived at this position the tongue is extended and

StartStop

entry/ TO_REQ := 0;
TO_right := 0;

ISleft

entry/ TO_REQ := 0;
TO_right := 0;

entry/ TO_REQ := 1;

GOleft

ISright

entry/ TO_REQ := 0;
TO_right := 1;

BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_ACK <> 0 /

HALT <> 0 and
PU_right == 0 /

RUN <> 0 and
BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_OK <> 0 and
PU_right <> 0 /

entry/ TO_REQ := 1;

GOright

TO_ACK <> 0 /

12

1

1

1

1

HALT

RUN

TO_ACK

TO_OK

PU_right

TO_REQ

TO_right

PU_OK

BE_OK

StartStop

entry/ TO_REQ := 0;
TO_right := 0;

ISleft

entry/ TO_REQ := 0;
TO_right := 0;

entry/ TO_REQ := 1;

GOleft

ISright

entry/ TO_REQ := 0;
TO_right := 1;

BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_ACK <> 0 /

HALT <> 0 and
PU_right == 0 /

RUN <> 0 and
BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_OK <> 0 and
PU_right <> 0 /

entry/ TO_REQ := 1;

GOright

TO_ACK <> 0 /

12

1

1

1

1

HALT

RUN

TO_ACK

TO_OK

PU_right

TO_REQ

TO_right

PU_OK

BE_OK

TO_REQ

TO_ACK

TO_right

TO_OK

driveTO

massTO

controllerTO

elasticFrictionTO

deviceTO

TO_REQ

TO_ACK

TO_OK

BE_OK PU_right

testEnvironment

commands
RUN

HALT

PU_OK

TO_REQ

TO_ACK

TO_right

TO_OK

driveTO

massTO

controllerTO

elasticFrictionTO

deviceTO

TO_REQ

TO_ACK

TO_OK

BE_OK PU_right

testEnvironment

commands
RUN

HALT

PU_OK

Tongue Conveyor

Pusher

Bags

Discharge Belt

Case/
Carton

Bag

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

629

the bag is pushed by the pusher over the tongue into
the carton. Thereafter the tongue and pusher are re-
tracted and the carton is repositioned to the next fill-
ing position.

This paper is organised as follows. Section X2X in-
troduces the graphical design approach. Thereafter
section X3 X demonstrates the simulation-based verifica-
tion of the system. The code generation for Modelica
and IEC 61131 is detailed in section X4 X whereas sec-
tion X5X illustrates the software-in-the-loop simulation
and its benefits. The paper closes with a conclusion
in section X6X.

2 Graphical program design

At first the models for tongue (TO), pusher (PU)
and discharge belt (BE) are designed. Each compo-
nent is separated into its control model and machine
model.

Figure 4: Structure of the discharge belt’s model

The machine models of tongue and pusher have
the same internal structure consisting of drive mech-
anism, mass, and friction and show an equal device
interface (Figure 2). The setting of the component’s
input signal REQ (request) will start the positioning
of pusher or tongue while the direction of the move-
ment is alternated. The component’s output signal
ACK (acknowledgement) affirms the movement re-
quest whereas OK indicates the request’s comple-
tion.

The interface of the control is modelled inversely
to the device interface. Additional inputs are RUN
and HALT to start and stop the operations (Figure 2).
Furthermore signals are defined which contain the
status of the cooperating devices or send the own
status to other devices.

The controls of tongue and pusher are imple-
mented as state machines (Figure 3). In the entry
activities of the states the signal REQ is set or reset.
The drive will move thereupon the tongue or pusher
back and forth. Transitions between states contain
Boolean conditions which act as change triggers.
Such triggers fire when the corresponding condition
is evaluated to true. In this example these triggers are
the feedback from the drive ACK and logical combi-
nations of OK, RUN, and HALT with status signals
from the cooperating devices.

The model of the component discharge belt de-
scribes the up and down movement of belt and car-
ton. Apart from drive, mass, and friction, the weight
is also registered which accumulates as the carton is
filled with bags. The interface (Figure 4) includes the
signals SPEED, EJECT, ZERO, and POS. Input sig-
nal SPEED is the nominal value for the carton’s ve-
locity. After the carton is filled, the setting of input
signal EJECT starts the ejection of the full carton
and thereafter the insertion of an empty one. Output
value ZERO indicates the arrival of the carton at the

zero position whereas POS indicates its current posi-
tion. The component’s interface is completed with
signals RUN and HALT and diverse status signals.

As shown before the control operation is de-
scribed by a statechart (Figure 5) which groups the
belt’s movement into a starting phase (states:
RunUp, SlowToMin, SlowToNull) and a cyclic posi-
tioning phase (RunMax, RunMin, SlowToNull) for
filling the carton. In the entry activities of the states
the belt’s velocity SPEED is set and the target posi-
tion is calculated. Transition triggers are the ZERO
signal as well as the current belt position POS in re-
lation to the target position. Right before the start of
the movement the pusher’s activity is checked to
avoid damage caused by a collision between pusher
and carton. The cyclic repositioning of the belt is
stopped as soon as the carton is full and the carton is
ejected.

driveBE frictionBE_Box massBox

weightBox

controllerBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

STOP GO BE_OK

RUN

HALT

commands

PU_right

PU_OK

deviceBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

testEnvironment

driveBE frictionBE_Box massBox

weightBox

controllerBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

STOP GO BE_OK

RUN

HALT

commands

PU_right

PU_OK

deviceBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

testEnvironment

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

630

After the design of each component (pusher,
tongue and discharge belt) they are instantiated in the
model view and connected with each other (Figure
6). The belt controller takes over the master function
by activating the GO and STOP signals as well as the
OK signal after successful positioning for the subor-
dinate controllers of pusher and tongue.

3 Test and verification at
Modelica level

Models of the devices are built from physical ele-
ments such as mass and friction and from signal
blocks which are also part of the library and possess
a representation in Modelica. The control compo-
nents are each translated automatically into a Model-
ica model with corresponding type, variable, parame-
ter, and signal declarations as well as an algorithm

section. The structure of this code is illustrated in
section X4.1 X. Figure 6 shows the overall Modelica
model which consists of all aforementioned compo-
nents and their connections.

At first for the verification of the controls, the
simulation results of pusher and tongue are com-
pared to the requirements. In Figure 2 the structure
of the tongue’s model is shown. The model of the
pusher has an equal structure. This connection of
control model and device model can be seen as test
bench. A path-time diagram for tongue and pusher in
relation to the RUN and HALT commands is shown
in Figure 7.

The simulation results are: The tongue is retracted
from the carton before the pusher is retracted and
thus the bag will remain in the carton. The RUN
command starts the operation whereas the HALT
command stops tongue and pusher after they have
reached their initial positions.

series >= Max_Series and
PU_OK <> 0 and
PU_right == 0 /

Start

entry / BE_SPEED := 0;
BE_OK := 0;
STOP := 0;
GO := 0;

RunUp

entry / series := 0;
mass := 1;
BE_SPEED := Max_Speed;
BE_OK := 0;
BE_EJECT := 0;

SlowToMin

entry / h := BE_POS + h0;
BE_SPEED := Min_Speed;

SlowToNull

entry / BE_Speed := 0;
BE_OK := 1;

RunMax

entry / h := BE_POS + 0.6*H_bag;
BE_SPEED := Max_Speed;

RunMin

entry / h := h + 0.4*H_bag + hx;
BE_SPEED := Max_Speed;

WaitForEnable

entry / series := series + 1;
mass := mass + 0.2;
BE_OK := 0;

Eject

entry / BE_EJECT := 1;
series := 0;
mass := 1;

Restart

entry / BE_EJECT := 1;
Series := 0;
mass := 1;

Stop

entry / BE_SPEED := 0;
BE_OK := 0;
STOP := 1;
GO := 0;

BE_ZERO <> 0 /

BE_POS >= h /

PU_right <> 0 /

PU_OK <> 0 and
PU_right == 0 /

BE_POS >= h /

BE_POS >= h /

Work

entry / STOP := 0;
GO := 1;

RunE /

HaltE /

RunE /
after(Run_Up_Delay) /

after(Run_Up_Delay) /

1

1

1

2

1

1

1

0

1

1

1

1

RUN

HALT

BE_ZERO

BE_POS

PU_right

PU_OK

BE_SPEED

BE_EJECT

BE_OK

GO

STOP

Figure 5: Statechart of the discharge belt controller

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

631

Secondly, the discharge belt’s control is tested in
its own test bench, shown in Figure 4. Thirdly, the
models of tongue, pusher, and discharge belt are
combined into an overall model of the case filling
machine as depicted in Figure 6. The simulation re-
sults, shown in Figure 8, illustrate the belt position in
relation to the movement of tongue and pusher as
well as the value of the belt speed. The requirement
that the belt moves only in the case that tongue and
pusher are in the initial positions has been fulfilled.
The HALT and RUN signals along with a filled car-
ton result in a coordinated stop and restart of the
course of events.

Position of Discharge Belt

Speed of Discharge Belt

Figure 8: Simulation results of the overall model

RUN HALT

Tongue

Pusher

Figure 7: Path-time diagram of pusher and tongue

Figure 6: Structure of the case filling machine’s overall system model

driveBE frictionBE_Box massBox

weightBox

controllerBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

TO_REQ

TO_ACK

TO_right

TO_OK

driveTO

massTO

massPU

drivePU

controllerTO

controllerPU

elasticFrictionTO

elasticFrictionPU
PU_REQ

PU_ACK
PU_OK

PU_right

STOP

GO
BE_OK

RUN

HALT

commands

PU_right

PU_OK

PU_OK

PU_right

driveBE frictionBE_Box massBox

weightBox

controllerBE

BE_SPEED

BE_EJECT

BE_ZERO
BE_POS

TO_REQ

TO_ACK

TO_right

TO_OK

driveTO

massTO

massPU

drivePU

controllerTO

controllerPU

elasticFrictionTO

elasticFrictionPU
PU_REQ

PU_ACK
PU_OK

PU_right

STOP

GO
BE_OK

RUN

HALT

commands

PU_right

PU_OK

PU_OK

PU_right

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

632

4 Modelica and IEC 61131 code
generation

4.1 Structure of the Modelica control program

The statecharts of the controllers of pusher, tongue,
and belt are translated separately into Modelica code
without any manual assistance. Figure 9 highlights
the general code structure of these controllers.

The algorithm section contains the following
blocks:

• Event generation:
when-statements with relations of signals or
times in order to toggle flags

• Entry activities:
when-elsewhen-statements to check discrete
state variables and enclosed
signal assignments

• Do activities:
if-elseif-statements to check discrete state
variables and enclosed
simple signal assignments

• Transitions:
if-elseif-statements to check discrete state
variables and to evaluate Boolean transition
conditions and enclosed state assignments to
the state variables and signal assignments.

The Entry Activity Blocks, Do Activity Blocks and
Transition Blocks are created according to the hier-
archy of the corresponding statechart. There is no
hierarchy existent in the tongue’s and pusher’s con-
trols (Figure 3). Hence they are translated into one
Entry Activity Block and one Transition Block re-
spectively. The belt’s controls show a two level hier-
archy which comprises the composite state Work and
additional simple states (Figure 5). After code gener-
ation the two-level hierarchy is represented by two
Entry Activity Blocks and two Transition Blocks.

4.2 Structure of the PLC program

The Modelica code’s semantics are the standard for
the code of the target controller. In this paper Struc-
tured Text (ST) according to IEC 61131 [7] is cho-
sen as target code language. ST is analogue to Pascal
and can be used to write programs for programmable
logic controllers (PLCs).

The code sections in ST are similar to the
statechart’s Modelica code and can be separated into
the Event Generation, Entry Activities, Do Activities,
and Transition sections. In addition, the internal pro-
gram structure requests a separation of declaration
and executable functions.

I/O signals and global variables as well as the
names of all implemented functions are noted in the
symbol table. This table is created automatically
when the target controller’s code is generated [8].
Local data is defined and stored in a data block
which is also part of the generated ST code.

The function FC Event Generation (EG) scans for
signal events and sets or resets the corresponding
flags. Because there is no when-statement in ST,
edge detection is achieved by using additional flag
variables and if-statements. An ST code example is
shown below:

// Event Generation Block
IF NOT("DBSC1".trigEventFlag) AND ("in1">0)
THEN
 "DBSC1".trigEvent := TRUE; //SignalEvent
ELSE
 "DBSC1".trigEvent := FALSE; //SignalEvent
END_IF;
IF ("in1">0) THEN
 "DBSC1".trigEventFlag := TRUE; //EventFlag
ELSE
 "DBSC1".trigEventFlag := FALSE; //EventFlag
END_IF;

when-initial-statement

when-statements

when-statements

if-statements

end XY

if-statements

model XY

Initialization

Event Generation

Entry Activities

Entry Activities

Transitions

Transitions

Declaration

Do Activities

Do Activities

Simulation
Cycle

Figure 9: Structure of the statechart’s Modelica code

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

633

All entry activities of the states are contained in
the function FC Entry Activities (EA). A case-
statement detects the active state according to the
state variable. Thereafter the one-time activation of
the entry activity is ensured by the implementation of
a entry activity flag within an if-statement:

// Entry Activity Block of Main_State
CASE "DBSC1".S_1 OF //StateVariable
3: IF ("DBSC1".A_1 <> 3) THEN

 out1:=false; //EntryActivity
 "DBSC1".A_1 := 3; //EntryActivityFlag
END_IF;

Do activities in are also implemented in the FC
EA and noted similarly but do not contain an if-
statement with an entry flag. Hence do activities are
executed in contrast to entry activities in every PLC
cycle.

The function FC Transition (TR) is comprised of
transition triggers, exit activities and transition activ-
ities. As illustrated before the active state is detected
in a case-statement. In each branch an if-statement
exists which evaluates the corresponding transition
trigger and holds the exit- and transition-activity. In
case the transition’s trigger condition is true, the ex-
it- and transition-activity are executed and the state
variable is set to the subsequent state:

// Transition Block of Main_State
CASE "DBSC1".S_1 OF
3: IF ("trigger" > 0) THEN
 out1:=TRUE; //ExitActivity
 out2:=FALSE; //Trans.Activity

 "DBSC1".S_1:=4; //State‐Variable
END_IF;

All aforementioned functions are called in the
function block FB Statechart in the following se-
quence: EG, EA and TR. Timers which are used in
the statecharts time triggers are also administrated in
this function block. FB Statechart is called in organi-
sation block OB1, which is the PLC’s cyclic main
program and is executed right after the update of the
input register. The program of OB1 contains the calls
of functions and function blocks which implement
the control program functionality. After the execu-
tion of each function, the PLC jumps back into OB1
and when OB1’s end is reached the current cycle
ends with the update of the outputs. Figure 10 illus-
trates the PLC cycle and the call sequence of the
control program’s functions.

At startup of the PLC the initialisation block
OB100 is executed which resets and initialises the
state machine’s internal variables. Organisation
blocks OB1 and OB100 as well as function block FB
Statechart are also part of the automatically generat-
ed ST program code. Hence a complete PLC pro-
gram is generated from the controller’s statechart.

After code generation two ASCII-files are availa-
ble: one file containing the symbol table and one file
containing the program code. Either file can be im-
ported into the PLC engineering software Step7 by
Siemens [9].

4.3 Compilation of the PLC program from a
Structured Text source

The aforementioned transformation of a statechart
into Structured Text indicates the similarities to
Modelica, but there are additional requirements that
need to be fulfilled. The main requirement which is
caused by the PLC program’s organisation into func-
tions, function blocks, data blocks etc. says that
within the ST source code called functions are stated
in front of the functions that call them [10].

Therefore the order of the functions in the ST
source code has to be as follows:

1. Data block DB with internal variables
2. Functions FC Event Generation, FC Entry

and Do Activities, FC Transitions
3. Function block FB Statechart
4. Organisation block OB1 Cyclic Block
5. Organisation block OB100 Initialising.

The SCL batch compiler [10] of Step7 transforms
the ST source code into MC7 code, which is execut-
ed by the PLC, and carries out a lexical, syntactical
and semantic analysis and thereafter generates auto-
matically all defined functions and blocks. They are
stored in the design environment and can be loaded
into as well as executed and tested on the PLC.

OB1
Cyclic
Block

FB
Statechart 1

FC Event Generation

FC Entry|Do Activities

FC Transitions

Write Outputs

Read Inputs

FB
Statechart 2

FC Event Generation

FC Entry|Do Activities

FC Transitions

OB100
Initialising

Figure 10: PLC program cycle

PLC
cycle

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

634

In case the automation systems controls are dis-
tributed over several statecharts, as is the case with
the case filling machine described in section 2, then
one set of source files (symbol table and ST code) is
generated for each statechart. An add-on tool was
implemented which merges all source files into one
file set. The tool scans all symbol tables, eliminates
double entries and copies all other entries into one
table. The ST sources are also combined into one
source. Functions and data block of the statecharts
remain unchanged only their numbering is adjusted.
The main task is to merge all organisation blocks
(OB1’s, OB100’s) into one block of each type as
there is only one instance of each type allowed in the
PLC. At this point it is very important to consider the
call sequence of the state machines on the PLC in
order to avoid unwanted effects such as racing condi-
tions caused by the serialisation of the
PLC code [12].

5 Software-in-the-Loop tests

The simulation of the automation system can now be
taken to a new level which will be illustrated in the
following by using the belt controller as an example.
After the PLC program has been generated, compiled
and loaded a co-simulation of machine model (Mod-
elica simulation) and PLC program (software PLC)
can be conducted. The simulation tool PLCSIM [11],
which is part of the Step7 PLC engineering system,
is applied as software PLC. PLCSIM runs as a sepa-
rate process on any Windows PC and enables the
execution of the PLC program analogue to a hard-
ware PLC. As a simulator PLCSIM offers no inter-
face to hardware I/Os communicating with the field
and thus can only be employed for simulation pur-
poses.

In order to perform a co-simulation the inputs and
outputs of the PLC have to be assigned to the corre-
sponding signals of the machine model and cyclical-
ly updated in both directions.

The Modelica statechart model in the simulator
has to be substituted with a coupling element that has
exactly the same input and output signals as the
statechart block. There are coupling elements availa-
ble in the system simulator but these do not provide a
suitable interface for a connection with the PLC. In
addition the PLC’s timing needs to be adapted to the
system simulators timing or in other words, the PLC
can no longer run in real-time but needs to run syn-
chronous to the simulators simulation time.

Hence a coupling tool was designed and imple-
mented which enables the coupling of PLC and sys-
tem simulator. The tool provides interfaces in either

direction. A TCP-socket connection is used for
communication with the system simulator whereas
communication with the PLC is achieved via a
COM-object. The coupling tool, also called Back-
plane, is configured and then started by the user.

Apart from configuration data such as IP-address and
port, also the assignment of PLC I/O signals to the
system simulator signals is defined.

In addition all PLC timers that are used some-
where in the PLC program have to be noted, as they
will be synchronised by the Backplane. The Modeli-
ca simulation for operator and machine model is
running in simulation time whereas the PLC is run-
ning in real-time. Therefore the synchronisation of
time is indispensable and so the PLC’s timers are
synchronised at the beginning of each PLC cycle.
Hence the progression of the timers is no longer re-
lated to the real-time, but depends only on the simu-
lation time.

After the start of the simulation the Backplane
takes over the control of the Modelica simulator and
the PLC simulator and performs the data exchange
between them. As show in Figure 11 in both simula-
tors the same fixed time interval is simulated and
thereafter the simulation is halted. The real-time du-
ration TCycSIM and TCycPLC of the simulation cycles
may differ. The Backplane scans the sensor signals
of the machine model and writes them to the PLC’s
input signals. Then the PLC’s output signals are read
and transferred to the machine model’s actuator sig-
nals before a new simulation cycle starts. This mode
of operation is shown in Figure 11.
After the simulation run the results from the co-
simulation are compared to the results of the Modeli-

Simulation X PLCSIM Backplane

Reset

Initialisation with PLC outputs

Writing PLC inputs

Reading PLC outputs & Start new cycle

Writing PLC inputs

TCycSIM TCycPLC

Sync. PLC-Timers

Figure 11: Simulator Synchronisation

Copy Simulation Time

Sync. PLC-Timers Copy Simulation Time

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

635

ca-only simulation. A path-time diagram (discharge
belt’s position) of these simulation runs is shown in
Figure 12. The waveforms are not identical as there
is a growing time offset between characteristic points
and also a spatial offset. Both effects can be traced
back to the PLC’s cycle time which is not present at
the Modelica model level. The state machine of the
controller model responds immediately to a change
of the input signals. As soon as an input signal from
the machine or operator model triggers a transition
the simulation is halted. The Modelica code of the
statechart block will then calculate the subsequent
state and execute all exit activities, transition activi-
ties, and entry activities. This procedure is repeated
until a stable state configuration is found, i.e. no fur-
ther transition can fire. Therefore state transitions
consume no simulation time and activities are in-
stantly visible. The simulation is then started again
and will run until the next event occurs. This behav-
iour is caused by the simulator’s model of computa-
tion.

The PLC processes its control program after a
different Execution Model [12]. As already dis-
cussed in section X4.2 X the controller is executing the
control program in a cyclic manner. Therefore the
calculation of a new output signal vector requires
one or more PLC cycles depending on the call se-
quence of the functions that where generated from
the UML statechart. Typical cycle times for industri-
al controllers are 5 to 50 ms. The call sequence of the
functions EG, EA, TR is also a cause for serialisation
effects such as racing conditions. In case more than
one state machine is used for controlling the system
the sequence of their execution is also important.
Such effects are not covered by the Modelica control
model and can hence not easily be simulated. It is
therefore necessary to extend the control model with

an execution model of the real-time controller. At
present the authors implement an execution model
for PLCs at model level. The execution model is also
designed as statechart and thereafter translated into
Modelica code. First results of this approach are dis-
cussed in [12].

The main cause for the different behaviour of
Modelica control model and real-time controller is
the cycle time. For time-critical functions such as
fast positioning operations a large cycle time can be
unfavourable and result in the example of the case
filling system in delays and spatial offsets when po-
sitioning the discharge belt as depicted in Figure 12.

The Backplane provides the option to force the
cycle time. Therefore simulation runs with different
cycle time can be simulated and the effects on the
results analysed. This data can then be employed to
find an upper limit of the cycle time which guaran-
tees the correct and exact function of the system. The
determined value is a criterion for the selection of a
PLC.

The generated PLC program is tested against pre-
defined test cases and the results are scanned for er-
rors or deviations from the control models results.
All test cases should encompass an extensive amount
of input signal combinations and not only valid but
also erroneous signal combinations. In case the con-
trol programs behaviour and function was correct the
PLC program can be transferred to the real system
without further adaptations.

6 Conclusion

In this paper the model-based design and simulation-
based verification of an automation system as illus-
trated in Figure 13 was presented. Following the ex-
ample of an industrial case filling machine the mod-
elling of its control with statecharts was demonstrat-
ed. These statecharts were transformed automatically
into Modelica code and then executed in test bench-
es. For verifying the control algorithms the Modelica
control blocks were stimulated with test signals and
their behaviour was improved until the function cor-
responded to the defined requirements. Thereafter
the Modelica blocks of control model, machine mod-
el and operator model were combined to an overall
system model and a system simulation was executed
by which the system’s function was verified and im-
portant performance indicators were established.
Once the behaviour and performance of the system
was correct the IEC 61131 Structured Text code for
the real-time controller, a PLC, was generated. The
PLC’s control program was then tested and validated

Distance

Time

Δt3 Δt2

Δs1 Δs2 Δs3

Δt1

Figure 12: Path-time diagram of belt movement
controlled by Modelica control model and PLC pro-
gram

Modelica control model
PLC program

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

636

as software-in-the-loop against the machine and op-
erator model. This procedure showed a satisfying
behavioural consistency between Modelica control
model and real-time control program and only minor
deviations were detected. These effects can be traced
back to the PLC’s cycle time. In order to overcome
such deviations the authors are working on the im-
plementation of an execution model for real-time
controllers in Modelica.

SensorsInput
Output

Control model
UML statechart

Machine
model
Modelica code

Control model
Modelica code
//Statechart Code
model SC1 „Statechart 1“
protected …
public …
algorithm
//Entry Activity Blocks
when (MainState == …) then
…

elsewhen (MainState == …)
…

Actua‐
tors

Modelica Simulator (SimulationX)

Software PLC
(PLCSIM)

Controller
Structured Text
(PLC program)

FB 1

FB 2

Code Generator for
Modelica and Structured Text

Figure 13: Design flow for modelling and verification
of machine controls

The approach discussed in this paper removes the
need for the error-prone manual coding of the PLC
program and saves a huge amount of time by mini-
mising the field and start-up tests through simula-
tion-based verification of the control algorithms. The
design-flow is faster and much more efficient than
the current state-of-the-practice procedures and pro-
vides an easy way to error-free control programs
through graphical and model-based design, simula-
tion-based verification, and automatic code genera-
tion. The transformation steps in this chain are car-
ried out automatically so that human efforts can be
focused on the design of the controls and its evalua-
tion.

References

[1] HSchwabe, S.: Modellbasierter Systems-Engi-
neering-Prozess. ECONOMIC ENGINEER-
ING 3/2009, S. 58-59
http://www.berner-mattner.com/.../BernerMa
ttner_Fachartikel_ModellbasSystemsEngPro
zess.pdf, visited on: 20.01.2011

[2] Haufe, J., Donath, U., Lantzsch, G.: Mod-
ellbasierter Entwurf von Steuerungen in der
Automatisierungstechnik. Dresdner Arbeit-
stagung Schaltungs- und Systementwurf
(DASS), Dresden, March 2009

[3] https://www.modelica.org/documents/Modeli
caSpec30.pdf, visited on: 20.01.2011

[4] OMG Unified Modeling Language Super-
structure V2.2

[5] Donath, U.; Haufe, J.; Blochwitz, T.; Neid-
hold, T.: A new approach for modeling and
verification of discrete control components
within a Modelica environment. Proceedings
of the 6th Modelica Conference, Bielefeld,
March 2008, p. 269-276

[6] Hhttp://www.simulationx.comH,
visited on: 20.01.2011

[7] Int. Electrotechnical Commission: IEC
Standard 61131-3: Programmable controllers
- Part 3, 1993

[8] Lindner L.: Rapid Control Prototyping by
Transformation of Hierarchical State Ma-
chine Control Models into IEC 61131 PLC
Code. Diploma thesis, TU Dresden, 2009.

[9] Siemens AG. Software for SIMATIC con-
trollers.
http://www.automation.siemens.com/mcms/
automation/en/automation-systems/
industrial-automation/Pages/Default.aspx,
visited on 20.01.2011

[10] Siemens AG. S7-SCL V5.3 for S7-300/400
Manual, 2005

[11] Siemens AG. SIMATIC S7-PLCSIM V5.4
Manual, 2007.

[12] Seidel S., et al.: Modelling the Real-time Be-
haviour of Machine Controls Using UML
Statecharts. Proceedings of the 15th Interna-
tional IEEE Conference on Emerging Tech-
nologies and Factory Automation, Bilbao,
September 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

637

Enforcing Reliability of Discrete-Time Models in Modelica

Sébastien FURIC
LMS Imagine

7, place des minimes 42300 Roanne
sebastien.furic@lmsintl.com

Abstract

Modelica models involving discrete-time aspects
may lead to surprising results due to the way events
are currently handled in the language. Indeed, simul-
taneity is interpreted as synchronism (see [2] for de-
tails) and, as a consequence, two unrelated sources of
events may interfere in unexpected ways.

In this paper, we present minimal examples of
models that exhibit unexpected or surprising results,
then we explain the general causes of such behaviors
and propose to introduce the notion of clock in the
language to solve the issues. In contrast to [1] and
[2], we focus here on models resulting from the com-
position of other models: we aim at showing that the
current discrete-time theoretical model of Modelica
is not robust with respect to model composition. For
the final user, it means that it is generally not possi-
ble to build reliable models involving discrete-time
aspects by simply connecting generic library models:
manual adjustments are often required to obtain the
expected behavior1.
Keywords: discrete-time modeling; clock calculus

1 Introduction

Modelica has been designed to primarily solve
continuous-time systems of differential and algebraic
equations. Unfortunately, discrete-time aspects have
not been considered with the same level of interest.
The result is that essential features of synchronous
languages (e.g., Signal, Lustre, Esterel) are not
present in Modelica today. Consider for instance the
following Modelica model:

model M
 Real x, x_dot;
 Integer count;
initial equation
 x = 0;

1 This also begs for a related question, which is: how
can we know that our models actually require adjust-
ments!

 x_dot = 1;
 count = 0;
equation
 x_dot = der(x);
 der(x_dot) = x;
 when
 { x > 0.5, sin(time) > 0.5 }
 then
 count = pre(count) + 1;
 end when;
end M;

According to the Modelica specification, that
model is correct, so we can try to simulate it. One
may wonder which is the value of count at the end of
a simulation performed between 0 and 100 seconds
for instance. Quite surprisingly, the Modelica speci-
fication does not give the answer: any value between
16 and 32 is possible even if — it is the case here —
every event can be numerically detected with accura-
cy so that none is lost due to the limits of time toler-
ance of the solver2. Indeed, the when clause that is
used to update count is activated by two unrelated
sources of events (put between curly braces in Mod-
elica syntax) that may accidentally be seen as syn-
chronous during simulation, as explained in [2]. Ac-
tually the final value of count depends on:

– the “quality” of the translator implemen-
tation

– the kind of solver eventually required to
solve the final system

– the parameters of the solver, in case a
solver is necessary.

In this paper, we aim at explaining the conse-
quences of such a design choice in terms of reliabili-
ty and reusability of models. The paper is organized
as follows: section 2 gives an analysis of the prob-

2 The purpose of this paper is not to discuss numerical
solver issues, in particular event detection in case of
non-trivial continuous-time systems: we will only fo-
cus on discrete-time aspects. The introductory example
is presented with the hope that it will help readers with
physical background to get a feeling of what discrete-
time issues are.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

638

lem; section 3 introduces the proposed solution; sec-
tion 4 shows how to transpose the solution in the
context of the Modelica language; section 5 presents
an example of application; section 6 gives a conclu-
sion.

2 Analysis of the problem

The problem with the model above comes from
the fact that discrete-time aspects are somewhat “ap-
proximated” in Modelica's semantics: it is not possi-
ble to know for sure, in that model, whether both
sources of events corresponding to x > 0.5 and
sin(time) > 0.5 are synchronous or not. It is
not even possible to know for sure, in case they are
seen as synchronous by the simulator at the begin-
ning of a simulation, whether they will remain syn-
chronous until the end or not. Indeed, according to
the Modelica specification, events instants are
“probed” during simulation (only time associated to
their occurrence is retained) so deciding whether two
events happening at the same measured time are real-
ly synchronous (i.e., have the same cause) or
whether it is pure coincidence is impossible. Unsur-
prisingly, this has unfortunate consequences over the
design of event-based models in Modelica. Consider
for instance the following purely discrete Modelica
models:

connector Out = output Boolean;

model EventSource "Simple event
source"
 parameter Real t0, T;
 Out out;
equation
 out = sample(t0, T);
end EventSource;

connector In = input Boolean;

model Counter "Simple event
counter"
 parameter Integer n;
 In ins[n];
 Integer count;
initial equation
 count = 0;
equation
 when ins then
 count = pre(count) + 1;
 end when;
end Counter;

Figure 1: A simple test model

Instances of EventSource emit events3 via
their unique output port and instances of Counter
count the number of events received via their input
ports. Consider the following model built upon
EventSource and Counter (Figure 1 gives its
graphical representation):

model TestCounters
 EventSource src[2](t0 = { 0, 3 },
T = { 1, 2 });
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins);
end TestCounters;

Figure 2: Simulation results of model in Figure 1
Simulation of an instance of TestCounters

between 0 and 10 seconds gives a rather surprising
result (see Figure 2). Indeed, between 0 and 10 sec-
onds the sources emit a total of 11 + 4 events but

3 Boolean values in reality, events are not explicitly
emitted.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

639

only 11 of them are “saw” by the instance of
Counter. That result is explained by Modelica's
way of handling discrete events. Indeed, some events
are “lost” because, as explained above, only the
measured time of events matters in Modelica, so two
events happening at the same time cannot be distin-
guished: the simulator does not know whether they
have been emitted by the same source connected to
both input ports of the instance of Counter (as in
Figure 3) or by two distinct sources (as in Figure 1).
One may wonder why is it not possible, by default,
to consider every local port of a model like
Counter as an independent local source of events:
indeed, in the case of TestCounters, it would
give the correct answer for count. But consider the
following model which graphical representation is
given in Figure 3:

model TestCounters2
 EventSource src(t0 = 0, T = 1);
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins[1]);
 connect(src.out, cnt.ins[2]);
end TestCounters2;

Figure 3: Another simple test model
In any instance of that model, if every port of

cnt would be considered as a local source of events
then twice the correct number of events would be
found since there is only one real source of events
(with duplicated outputs). One may notice that Mod-
elica's default behavior would lead to the correct re-
sult (by accident, however) in that very special situa-
tion.

Going back to the original model, one way to
avoid the event loss problem in Modelica would be
to associate one “subcounter” per input port and to
sum the results into the global counter count, as in:

connector In = input Boolean;

model ImprovedCounter
 parameter Integer n;
 In ins[n];
 Integer count;

protected Integer subcount[n];
initial equation
 subcount = zeros(n);
 count = 0;
equation
 for i in 1 : n loop
 when ins[i] then
 subcount[i] =
pre(subcount[i]) + 1;
 end when;
 end for;
 when ins then
 count = sum(subcount);
 end when;
end ImprovedCounter;

However, this solution is far more space- and
time-consuming than the original Counter model
(because a number of additional state variables pro-
portional to the number of listened sources has to be
declared and the whole sum of subcounters has to be
recomputed each time an event is detected on any in-
put port). Also, that new solution still fails to count
the correct number of events in case of a configura-
tion like the one in Figure 3. We may even want to
consider configurations like the one in Figure 4,
where neither Counter nor ImprovedCounter
would give the correct answer.

Figure 4: A slightly more complex version of previous test
models

A last remark can be made regarding correctness
of models. Going back to the first test model, we
managed to correct it by providing Improved
Counter (an adapted version of Counter) to cir-
cumvent the issue with simultaneous events. It is im-
portant to notice that the correction was possible be-
cause we knew that our original model had problems
with respect to event handling. But in real-world sit-
uations, where correctness of models in not known a
priori, Modelica compilers will not be able to detect
such errors since, as shown above, the Modelica lan-
guage itself does not retain the required information.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

640

As a result, users will have to determine by hand
whether their models are correct or not. Of course
the task is impossible to complete as far as models
get too big or contain encrypted parts for instance.

We conclude from those observations that Model-
ica needs some improvements to enable the defini-
tion of reliable models involving discrete events. The
following section explains how that can be achieved.
The proposal is based on a preliminary work by IN-
RIA and LMS Imagine in the course of the SimPA 2
project ([1], [2]).

3 Proposal to enable the definition of
reliable discrete models in Modeli-
ca

3.1 Introduction to clocks and signals

The most important feature of synchronous lan-
guages that is currently missing in Modelica is
clocks. In the Signal language ([3]) clocks give logi-
cal instants at which signals are said to be present,
i.e. instants at which values of signals are accessible.
Signals sharing the same clock are said to be syn-
chronous (their values are present at the same logical
instant). Clocks give the domain of signals, and types
(e.g., Boolean, Integer, Real, etc. in Modelica) give
their codomain. Consider the following Modelica
program:

model M
 Integer count;
initial equation
 count = 0;
equation
 when sample(0, 1) then
 count = pre(count) + 1;
 end when;
end M;

Interpreted in terms of clocks and signals, this
program would define the discrete-time signal
count. One way to see count would be as a map-
ping from events to values (Event is the set of all
events):

count: Event ⟶ Integer
e0 ⟼ 1
e1 ⟼ 2
e2 ⟼ 3
…

Of course, we would also need to associate a
“physical time” with each event, as required by the
definition of sample():

e0 ⟼ 0.0
e1 ⟼ 1.0
e2 ⟼ 2.0
…

It is fundamental to notice that the mapping from
events to physical time is not a bijection: two distinct
events may be associated with the same physical in-
stant, in which case those events are said to be si-
multaneous. We saw that in Modelica there is no
way to tell whether two simultaneous events have the
same origin since we only look at physical time. By
looking at logical instants, we have a more accurate
view of the flow of events: that is the basis of the
synchronous approach to event handling.

3.2 Why do clocks and signals solve the issues

Let's consider an expression like sample(t0,
T). Interpreted in terms of signals and clocks, it
would represent a sequence of fresh events, each of
them mapped to physical instants so that ek (k ≥ 0)
maps to t0 + kT. Consider the following program:

when sample(0, 1) then
 count = pre(count) + 1;
end when;

We say that the when clause above is activated at
each logical instant yield by the sample construct,
which defines a clock, and that count inherits that
clock: count causally depends on the sample con-
struct that is used to activate the equation.

We now introduce the notion of clock union, as
in:

when { c1, c2, ... } then
 count = pre(count) + 1;
end when;

{ c1, c2, ... } represents the union clock
of c1, c2, etc. The set of events emitted by that
clock is the union of the set of events emitted by
each clock used to compose it. And since in our in-
terpretation events can be distinguished one from
each other we can, contrary to Modelica with its cur-
rent interpretation, compute the union accurately:

– without accidentally forgetting any element
(as illustrated in TestCounters above)

– without accidentally counting the same ele-
ment twice (as illustrated in TestCoun
ters2 above).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

641

Of course, taking clocks into account requires a
less naive compilation process than those currently
implemented in Modelica compilers. In the next sec-
tions we describe the steps required to transform a
synchronous language program into efficient com-
piled code.

3.3 Considerations about the compilation of
synchronous programs

Take for instance the model class TestCoun
ters defined above. If we instantiate it, we get the
following flat Modelica program (where connection
equations have been replaced by their contribution to
the final system of equations):

model FlatTestCounters

 // variables introduced by the
first event source
 parameter Real src[1].t0,
src[1].T;
 Boolean src[1].out;

 // variables introduced by the
second event source
 parameter Real src[2].t0,
src[2].T;
 Boolean src[2].out;

 // variables introduced by the
counter
 Boolean cnt.ins[1], cnt.ins[2];
 Integer cnt.count;

initial equation

 // initial equations introduced
by the counter
 src.count = 0;

equation

 // equations introduced by the
first event source
 src[1].out = sample(src[1].t0,
src[1].T);

 // equations introduced by the
second event source
 src[2].out = sample(src[2].t0,
src[2].T);

 // equations introduced by the
counter

 when { cnt.ins[1], cnt.ins[2] }
then
 cnt.count = pre(cnt.count) + 1;
 end when;

 // expanded connection equations
 cnt.ins[1] = src[1].out;
 cnt.ins[2] = src[2].out;

end FlatTestCounters;

For the sake of conciseness, we will consider a
simplification of the previous program4 that still con-
tains the essential constructs:

model ShortFlatTestCounters
 parameter Real t0[1], T[1],
t0[2], T[2];
 Boolean c[1], c[2];
 Integer count;
initial equation
 count = 0;
equation
 c[1] = sample(t0[1], T[1]);
 c[2] = sample(t0[2], T[2]);
 when { c[1], c[2] } then
 count = pre(count) + 1;
 end when;
end ShortFlatTestCounters;

That program defines two asynchronous event
sources since we consider that each sample construct
introduces its own sequence of fresh events. It fol-
lows that c[1] and c[2] do not have any event in
common and then that the union clock { c[1],
c[2] } is irreducible. The clock calculus we will
propose below will have to reflect those considera-
tions, so that a compiler implementing it will auto-
matically derive canonical representation of clocks,
as we currently do by hand in this simple case. The
constraints in the above program are finally equiva-
lent to this pseudo-code:

c[1] = sample(t0[1], T[1]);
c[2] = sample(t0[2], T[2]);
when c[1] then
 count = pre(count) + 1;
end when;
when c[2] then

4 Obtained by removing alias variables and associated
equations, and renaming remaining variables

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

642

 count = pre(count) + 1;
end when;

Notice that we now have two concurrent equa-
tions defining count (which is explicitly forbidden
in Modelica) but since both when clauses are guaran-
teed to be activated asynchronously thanks to our in-
terpretation of sample's properties, there is actually
no possible conflict5.

At this point, an important remark has to be made
regarding determinism. Indeed, with the semantics
proposed in this report, we accept to consider that a
connection of two independent event sources is ac-
ceptable because we force interleaving of events so
that two simultaneous events cannot be synchronous
if they don't have the same origin. However, the or-
der into which simultaneous events will be treated at
runtime is purposely left unspecified. From a control
engineer perspective that choice seems rather sur-
prising, especially for a language that could eventu-
ally be used to design control systems, where deter-
minism is a fundamental aspect to consider. But
from a physical modeling point of view, non-deter-
minism is a natural consequence of the physical na-
ture of the world. Since our aim is to design a physi-
cal modeling language it seems reasonable to allow
some form of non-determinism to avoid rejecting too
many programs, especially those that most users hav-
ing a physical background will consider correct (and
which are, given the limits of physics). Notice how-
ever that non-determinism can be detected statically
by a compiler implementing our proposal: it just re-
quires a stricter criterion to select correct programs
(that may be a compiler option). Compared to Mod-
elica in its current state, we offer a way to control de-
terminism so that it fits control or physical needs.
Modelica, on the other hand, currently cannot prom-
ise anything regarding determinism for the reasons
exposed in previous sections.

3.4 Clock calculus

In this section we introduce the elements of our
clock algebra and give essential rules that govern
clock calculus. We propose the following grammar
to describe clock expressions (where e represents a
term denoting any signal, and b a term denoting any
boolean signal):

clock ::=
 never (empty clock)
| always (full clock)
| clock(e) (clock of e)

5 Modelica currently has to impose single assignment
restrictions precisely because two sources of cannot be
statically proven to be asynchronous, as explained be-
fore.

| false(b) (instants at which b is false)
| true(b) (instants at which b is true)
| initial (initialization clock)
| edges(b) (instants at which b becomes true)
| sample(t0, T) (sample starting at t0, with period T)
| clock ∨ clock (union of clocks)
| clock ∧ clock (intersection of clocks)
| clock ∖ clock (difference of clocks)
| c1, c2, … (clock variables)

Several comments have to be made:
– we introduce the notion of “full clock”,

which, in synchronous languages such as
Signal, makes no sense (since clocks are dis-
crete). But since here we have to consider
continuous-time signals (we want to describe
DAE systems among others), we have an im-
plicit maximal clock for any program: the
default continuous-time clock, which in-
cludes all the instants of the simulation

– the same kind of remark can be made for
clock difference: if the first argument is the
full clock, then we get the complementary of
the second argument as result, which also
makes no sense in synchronous languages
such as Signal

– sample() and edges() share the follow-
ing properties:

– they are generative: they always
yield a fresh, pure discrete-time
clock

– two clocks yielded by those con-
structs are guaranteed to have an
empty intersection (which implies
for instance that edges(e1) ∧
edges(e2) = empty for any e1,
e2

6)
– initial is a special clock that contains only

one instant which corresponds to the first
simulation instant (i.e., no other instant may
happen before this one).

Systems of equations will be described by the fol-
lowing grammar (where ei(si1, si2, …) denotes an
expression involving signals si1, si2, …,):

system ::=
 null (system having no constraint)
| system || system (parallel composition)
| system when clock (sampling)
| let c = clock in system (let binding)
| e1(s11, s12, ...) = e2(s21, s22, …) (equation)

To illustrate the use of the system description lan-
guage defined above, let's write the system corre-
sponding to an instance of the model class Test
Counters defined above. It gives:

6 This is the property we used in section Considerations
about the compilation of synchronous programs to cal-
culate the union clock.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

643

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨
c[2]

We saw in previous section that it was also possi-
ble to write it as follow:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ||
count = pre(count) + 1 when c[2]

Notice that clock expressions should be reduced
to a canonical form so that single assignment rule
can be checked statically to avoid current Modelica
issues with respect to discrete-time modeling. We
then require that a compiler will have to perform full
reduction of clock expressions at compile time by
eliminating local clock variables (i.e., rewriting let
v = … in … terms) and replacing clock(...)
terms by their actual value. This reduction will have
to be carried out in parallel with the resolution of the
assignment problem attached to equations. Indeed, in
contrast to synchronous languages such as Signal, we
have to deal with the acausal nature of the language:
given an equation, it is not possible to tell which sig-
nal(s) it defines without performing a global causali-
ty analysis under clock constraints (we require how-
ever schedulability of clock constraints). So the algo-
rithm we propose is:

1. The initial contextual clock is always
2. Perform partial resolution of the assign-

ment problem for any equation that is not
constrained by a when construct, in order
to find defined signals, which are added to
current context

3. Pick any when construct which activation
clock either depends on past (i.e., “pre sig-
nals”) or on signals that belong to current
context; make that activation clock the cur-
rent contextual clock and go to step 2

If some subsystems remain unselected at the end
of the algorithm, the whole system is:

– not schedulable, if any subsystem contains a
clock which depends on the signals it actual-
ly defines

– under-constrained, if the assignment prob-
lem failed for the remaining equations

– over-constrained, if any subsystem only con-
straints signals that have already been deter-
mined.

An additional check has to be performed in order
to validate the whole system: the clock of any “pre

signal” should be proven equal to the clock of the
signal itself. The clock of a given signal can be de-
termined by “summing” the clocks of when con-
straints that define that signal (union of clocks). The
clock of a “pre signal” is the union of the minimal
clocks at which that signal is required to be present
(i.e., immediate contextual clocks during clock cal-
culus). By “subtracting” (clock difference) both re-
sulting clocks we have to find empty. Notice that
the problem is decidable since we required full re-
duction of clock expressions to canonical form. That
algorithm not only validates the original system, it
also returns its constrained dataflow representation
which can be used to generate efficient code.

4 Application to Modelica

One can notice that Modelica's sample expres-
sions yield boolean values that are quite exclusively
used to activate discrete equations. The reason is that
in Modelica when clauses require a test to be per-
formed to activate/deactivate associated equations.
But most of the time, that test is useless: it only
makes sense to “activate equations from the outside”.
Indeed, a when clause which activation constraint
only depends on pure events (as ideally generated by
sample) would not need to check anything: the acti-
vation/deactivation logic would be “lifted” in the
control flow. It follows that when clauses can be
made more general and efficient by only depending
on clocks instead of boolean signals7: pure even-
t-based activations do no longer lead to any test in
the generated code. That is particularly interesting in
presence of external event sources, which in Modeli-
ca currently lead to the generation of “event loops”
that are extremely resource-consuming (and that
eventually require dynamic synchronization with the
source). Our proposal avoids the generation of those
expensive loops.

In consequence of the above remarks, we propose
to equip Modelica with a new type: Clock, the type
of clocks (i.e., sequences of logical time events). We
also propose to change the semantics of sample ex-
pressions, so that they now denote pure event gener-
ators8. Here is a modification using clocks of the

7 This is the reason why the name “when” has been
coined historically in synchronous languages such as
Signal.

8 It would be possible to make sample generate booleans
and events simultaneously to avoid too many compati-
bility issues, but, since uses of values yielded by sam-
ple as regular booleans seems highly suspicious in our
opinion, a more restrictive definition of sample would
help to find abusive use of event-generating expres-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

644

original model class TestCounters defined
above:

connector Out = output Clock;

model EventSource "Simple event
source"
 parameter Real t0, T;
 Out out;
equation
 out = sample(t0, T);
end EventSource;

connector In = input Clock;

model Counter "Simple event
counter"
 parameter Integer n;
 In ins[n];
 Integer count;
initial equation
 count = 0;
equation
 when ins then
 count = pre(count) + 1;
 end when;
end Counter;

model TestCounters
 EventSource src[2](t0 = { 0, 3 },
T = { 1, 2 });
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins);
end TestCounters;

As shown in previous section, an instance of the
above model can be represented in our intermediate
language as:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨
c[2]

Given a translation from the original Modelica
code to our system description language, we can pro-
ceed with static scheduling of equations by applying
the algorithm proposed above. If the system does not
contain any implicit variable, the result is simply
composed of several sequences of assignments, acti-
vated by primary clocks (i.e.,source clocks of the
system). It is the case in our simple example:

sions in existing programs.

when initial:
 count := 0

when sample(t0[1], T[1]) ∨ sample(t0[1], T[1]):
 count := pre(count) + 1

The above representation of the system reads as
follow:

– at initialization, assign 0 to the program
variable count

– on each activation scheduled by sam-
ple(t0[1], T[1]) ∨ sample(t0[1],
T[1]), assign the last value held by count
plus one to count.

We have derived sequences of assignments from
the functional specification expressed in our system
description language.

5 Example

We consider a well-known example in the Hybrid
Systems and Control Theory literature (we will use
the version presented in [BK09]). Here we consider
the system consisting of a water tank, where water
arrives at a variable rate wi(t) ≥ 0 through one pipe
and leaves through another one at the rate controlled
by a valve (cf. Figure 5). The output pipe has a maxi-
mal throughput capacity C, and the valve position is
given by 0 ≤ v(t) ≤ 1. Thus, the actual throughput of
the output pipe at the moment t is C·v(t). The valve is
controlled by a sensor measuring the level l of water
in the tank, which aims at keeping this level in a giv-
en interval [L1, L2]. For simplicity we assume that
there is always enough water in the tank to saturate
the output pipe and that the incoming flow does not
exceed the output pipe’s capacity, i.e. max wi(t) ≤ C.

Figure 5: Tank with regulated valve

The transfer function of the complete system has
the input space In = R+ (incoming flow rate) and the
output space Out = R+ × + (output flow rate and
current water level in the tank). This system can be
modeled as a composition of three sub-systems (see
Figure 6).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

645

Figure 6: Block-diagram representation of the
regulated tank

1. The Tank, taking on input current values of
the incoming flow wi and the position of
the valve v and computing the correspond-
ing output flow wo and water level l from
the equations

dl=wi−wo

wo=C⋅v
The corresponding transfer function has the

input and output spaces InT = R+ × [0, 1]
and OutT = R+ × R+.

2. The Sensor, taking on input the water level
l and computing the corresponding valve
position adjustment dv from some given
equation, e.g.:

dv=signl−
L1L2

2

The corresponding transfer function has the
input and output spaces InS= R+ and OutS =
[−1, 1].

3. The Valve, taking on input the adjustment
dv and providing on output the correspond-
ing value v.
The corresponding transfer function has the

input and output spaces InV = [−1, 1] and
OutV = [0, 1].

This kind of physical models is straightforward to
define as a continuous-time Modelica model:

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

// Submodel definitions

model Tank
 parameter Real C;
 RealInput wi;
 RealInput v;
 RealOutput wo;
 RealOutput l;

equation
 wo = C * v;
 der(l) = wi – wo;
end Tank;

model Sensor
 parameter Real L1, L2;
 RealInput l;
 RealOutput dv;
equation
 dv = sign(l (L1 + L2) / 2);
end Sensor;

model Valve
 RealInput dv;
 RealOutput v;
equation
 /* In order to preserve the range
of v, we
 have to constrain the values
of its derivative */
 der(v) =
 if pre(v) <= 0 then max(dv, 0)
 elseif pre(v) >= 1 then min
(dv, 0)
 else dv;
end Valve;

model Source "Sinusiodal source of
flow"
 constant Real PI = acos(1);
 parameter Real W0, f;
 RealOutput wo;
equation
 wo = W0 * (0.5 * sin(2 * PI * f *
time) + 0.5);
end Source;

model TankSensorValve "Agregation
of a tank, a sensor and a valve"
 RealInput wi;
 RealInput wo;
 Tank tank(C=10, l(start=1.5));
 Sensor sensor(L1=1, L2=2);
 Valve valve(v(start=0));
equation
 connect(wi, tank.wi);
 connect(tank.l, sensor.l);
 connect(sensor.dv, valve.dv);
 connect(valve.v, tank.v);
 connect(tank.wo, wo);
end TankSensorValve;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

646

// Example of use

model M "A simple use of above mod
els"
 TankSensorValve tankSensorValve(
 tank(C=10, l(start=1.5)),
 sensor(L1=1, L2=2),
 valve(v(start=0)));
 Source source(W0=5, f=0.25);
equation
 connect(source.wo, tankSensor
Valve.wi);
end M;

Simulating the above model gives the results in
Figure 7.

Figure 7: Result of the simulation of a continuous-time
model of regulated tank

A discrete-time specification of the regulated tank
model would offer several advantages over the con-
tinuous-time one: it does not require sophisticated
solvers to compute simulation results and it may run
far faster than the high-fidelity version (the price to
pay when using pure discrete-time models is, most of
the time, poor accuracy). Here is a new specification
in discrete-time Modelica of the submodels needed
to build the final model (changes with respect to
original version are in red):

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

//useful constants

constant Real MILLI2SEC = 0.001;
constant Real MILLI_PERIOD = 20;
constant Real STRETCH = 400;
constant Real STEP = MILLI_PERIOD *
MILLI2SEC / STRETCH;

// Submodel definitions

model Tank
 parameter Real C;
 RealInput wi;
 RealInput v;
 RealOutput wo;
 RealOutput l;
equation
 wo = C * v;
 l = pre(l) + (wi – wo) * STEP;
end Tank;

model Sensor
 parameter Real L1, L2;
 RealInput l;
 RealOutput dv;
equation
 dv = sign(l (L1 + L2) / 2);
end Sensor;

model Valve
 RealInput dv;
 RealOutput v;
equation
 /* In order to preserve the range
of v, we
 have to constrain the values
of its derivative */
 v =
 pre(v) +
 (if pre(v) <= 0 then max(dv, 0)
 elseif pre(v) >= 1 then min
(dv, 0)
 else dv) * STEP;
end Valve;

model Source "Sinusiodal source of
flow"
 constant Real PI = acos(1);
 parameter Real W0, f;
 RealOutput wo;
/* We explicitly define time as a
discrete signal */
protected Real time;
initial equation
 time = 0;
equation
 when sample(0, STEP) then
 time = pre(time) + STEP;
 end when;
 wo = W0 * (0.5 * sin(2 * PI * f *
time) + 0.5);
end Source;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

647

model Delay "Ideal delay"
 RealInput x;
 RealOutput zx;
equation
 zx = pre(x);
end Delay;

model TankSensorValve "Agregation
of a tank, a sensor and a valve"
 RealInput wi;
 RealInput wo;
 Tank tank(C=10, l(start=1.5));
 Sensor sensor(L1=1, L2=2);
 Valve valve(v(start=0));
 Delay delay(zx(start=0));
equation
 connect(wi, tank.wi);
 connect(tank.l, sensor.l);
 connect(sensor.dv, valve.dv);
 connect(valve.v, delay.x);
 connect(delay.zx, tank.v);
 connect(tank.wo, wo);
end TankSensorValve;

Notice the use of difference equations instead of
differential ones and also the use of a when clause
that provides the “main clock” exported by the
Source model class. A new model class is neces-
sary (Delay) to break the algebraic loop (controller
feedback) by inserting a delay into it, otherwise the
model is not schedulable. The Sensor model class
is kept unchanged: that is not surprising since it only
involves algebraic equations. Thanks to activation
inheritance, model instances connected to Source
will be activated by the source's clock. Here is the
system of equations resulting from instantiating
model class M defined above, expressed in our sys-
tem representation language:

m.tankSensorValve.tank.l = 1.5 when initial ||
m.tankSensorValve.tank.wo = 10 *
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.l =
pre(m.tankSensorValve.tank.l) +
(m.tankSensorValve.tank.wi –
m.tankSensorValve.tank.wo) * 5e-5 ||
m.tankSensorValve.sensor.dv =
sign(m.tankSensorValve.sensor.l – 1.5) ||
m.tankSensorValve.valve.v = 0 when initial ||
m.tankSensorValve.valve.v =
pre(m.tankSensorValve.valve.v) + (if
pre(m.tankSensorValve.valve.v) <= 0 then
max(m.tankSensorValve.valve.dv, 0) elseif
pre(m.tankSensorValve.valve.v) >= 1 then
min(m.tankSensorValve.valve.dv, 0) else
m.tankSensorValve.valve.dv) * 5e-5 ||
m.tankSensorValve.delay.zx = 0 when initial ||
m.tankSensorValve.delay.zx =
pre(m.tankSensorValve.delay.x) ||

m.tankSensorValve.wi = m.tankSensorValve.tank.wi ||
m.tankSensorValve.tank.l = m.tankSensorValve.sensor.l
||
m.tankSensorValve.sensor.dv =
m.tankSensorValve.valve.dv ||
m.tankSensorValve.valve.v =
m.tankSensorValve.delay.x ||
m.tankSensorValve.delay.zx =
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.wo = m.tankSensorValve.wo ||
m.source.time = 0 when initial ||
m.source.time = pre(m.source.time) + 5e-5 when
sample(0, 5e-5) ||
m.source.wo = 5.0 * (0.5 *. sin(1.5707963268 *
m.source.time) + 0.5) ||
m.source.wo = m.tankSensorValve.wi

Sorting that system gives the following assign-
ments:

when initial:
 m.tankSensorValve.tank.l := 1.5
 m.tankSensorValve.valve.v := 0
 m.tankSensorValve.delay.zx := 0
 m.source.time := 0

when sample(0, 5e-5):
 m.source.time := pre(m.source.time) + 5e-5
 m.source.wo :=
 5.0 * (0.5 *. sin(1.5707963268 * m.source.time) +
 0.5)
 m.tankSensorValve.wi := m.source.wo
 m.tankSensorValve.tank.wi := m.tankSensorValve.wi
 m.tankSensorValve.delay.zx :=
 pre(m.tankSensorValve.delay.x)
 m.tankSensorValve.tank.v :=
 m.tankSensorValve.delay.zx
 m.tankSensorValve.tank.wo :=
 10 * m.tankSensorValve.tank.v
 m.tankSensorValve.tank.l :=
 pre(m.tankSensorValve.tank.l) +
 (m.tankSensorValve.tank.wi –
 m.tankSensorValve.tank.wo) * 5e-5
 m.tankSensorValve.sensor.l :=
 m.tankSensorValve.tank.l
 m.tankSensorValve.sensor.dv :=
 sign(m.tankSensorValve.sensor.l – 1.5)
 m.tankSensorValve.valve.dv :=
 m.tankSensorValve.sensor.dv
 m.tankSensorValve.valve.v :=
 pre(m.tankSensorValve.valve.v) +
 (if pre(m.tankSensorValve.valve.v) <= 0 then
 max(m.tankSensorValve.valve.dv, 0)
 elseif pre(m.tankSensorValve.valve.v) >= 1 then
 min(m.tankSensorValve.valve.dv, 0)
 else m.tankSensorValve.valve.dv) * 5e-5
 m.tankSensorValve.delay.x :=
 m.tankSensorValve.valve.v
 m.tankSensorValve.wo := m.tankSensorValve.tank.wo

The sequences of assignments we have obtained
above can be used to feed a real-time embedded code
generator. It can be noticed that it can be statically
reduced to yiel a final code that is both minimal and
reliable. This example has shown how Modelica, if
equiped with clocks, would lead to reliable and com-
position-friendly models: we would get the expected
behavior by simply connecting generic models, with-
out further adjustments.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

648

6 Conclusions

In this paper, we have shown how the introduc-
tion of clocks solves the issues encountered in event-
based models written in Modelica. We have also
shown that clocks could be harmoniously integrated
into the language without compromising simplicity
nor expressiveness, on the contrary: models could be
made more generic thanks to the modular-friendly
aspects of clock calculus (which would help a lot in
the design of industrial-strength libraries) and, since
it would be possible to express more subtle relation-
ships between event sources, development, debug-
ging and maintainance of models involving discrete-
time aspects would be easier.

The Modelica community, in the course of the
Modelica 4 design process, is going to consider the
problem of synchrony. We hope that modular aspects
and expressiveness resulting from the introduction of
a full clock calculus will be retained as key features
of the new language.

7 Acknoledgements

Many thanks to Ramine Nikoukhah for having
pointed out issues related to synchrony and for hav-
ing been the first to suggest having a look at the con-
cept of clock in the context of Modelica. I would
also like to thank Simon Bliudze and Marc Pouzet
for interesting discussions about the theoretical as-
pects of hybrid systems.

References

[1] R. Nikoukhah, Activation Inheri-
tance in Modelica, EOOLT, 2008

[2] R. Nikoukhah, S. Furic, Synchro-
nous and Asynchronous Events in
Modelica: Proposal for an Improved
Hybrid Model, 6th international Mod-
elica conference, 2008

[3] A. Benveniste, P. Le Guernic, and C.
Jacquemot, Programming with
events and relations: the Signal lan-
guage and its semantics, 1991

[4] S. Bliudze., D. Krob, Modelling of
Complex Systems: Systems as
dataflow machines, 2009

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

649

Effective Version Control of Modelica Models

Peter Harman

deltatheta UK Ltd.

The Technocentre, Puma Way, Coventry, CV1 2TT, UK

peter.harman@deltatheta.com

Abstract

This contribution introduces Converge, a specialized

Version Control System client application designed

purely for Modelica. Conventional VCS clients and

diff tools cannot inform the user what the effect of a

single edit has on the model as a whole. Converge

compares selected revisions of a model, loading the

Modelica code directly from the VCS repository.

This paper presents examples of Modelica code

where an edit that appears significant in a conven-

tional diff tool can be shown as not so, and an edit

that appears insignificant in a conventional diff tool

actually has significant changes to the resulting

model.

Successfully comparing two revisions of a model

requires resolving the types of components, includ-

ing handling inheritance, imports and redeclarations.

It requires handling of equations and component val-

ues, and flattening of the model structure.

Converge includes a complete Modelica implemen-

tation, and presents the VCS repository to the user

with a number of views, including Packages, Inherit-

ance, Dependencies, Annotations, and Components

views; and Instance and Equations views that com-

pare the instantiated model. Changes, and whether

they affect the model results, are highlighted to the

user. This will allow users to understand the devel-

opment of models over time and to solve problems

caused by changes in dependent Modelica libraries.

Keywords: software configuration management; ver-

sion control; model lifecycle management

1 Introduction

As a textual modeling language Modelica [1] allows

typical Software Configuration Management (SCM)

practices to be used, in particular version control. An

important part of version control is the “diff” func-

tionality, allowing the user to see changes between

revisions.

The goal of this paper is to introduce a new tool,

called Converge, for comparing revisions of Modeli-

ca models in order to locate sources of errors, deter-

mine which changes have potential effects on model

results, and track changes of models over time. Con-

verge connects directly to a version control reposito-

ry to access models.

The paper is structured as follows. Section 2 is an

introduction to version control systems and their use

with Modelica including the current limitations. Sec-

tion 3 describes Converge and the range of views it

provides of a model. Section 4 gives some examples

where Converge gives a more realistic view of the

changes to the model than traditional diff tools. Sec-

tion 5 describes the implementation of the software,

and Section 6 concludes.

2 Version Control Systems

Version Control Systems (VCS) store program code

along with a database of revisions, and via client ap-

plications, allow the user to access a file or set of

files for any revision. Usually this revision can be

specified as a date or a revision number. Traditional

VCS such as Subversion (SVN) [2] or CVS [3] use a

central repository. There is also a new breed of Dis-

tributed Version Control Systems (DVCS) such as

Git [4] or Mercurial [5] where each working copy

also has its own complete copy of the repository. The

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

650

style of VCS used however does not affect the bene-

fits and limitations of using VCS with Modelica.

The user normally interacts with the VCS with a

client application. These can be standalone; inte-

grated into a file explorer such as the popular Tortoi-

seSVN [6] client; or integrated into an Integrated

Development Environment such as Visual Studio

[7], Eclipse [8] or Netbeans [9]. These generally

have either a built-in diff application, or can launch

an external diff application with a pair of revisions.

Web based respository browser applications allow

viewing of the code without a client application, for

example the Trac [10] system used by the Modelica

Association [11]. These usually do not contain diff

functionality, but do allow viewing of “changesets”,

which list all files changed and a summary of the

changes. These give the user a view of the current

state, or the state for a particular revision.

2.1 Diff Tools

The output of a diff tool can be used to interpret the

possible effects of changes locally. Within one code

file, lines of code inserted, changed or removed can

be seen, which for a programming language can be

interpreted to see the change in behavior. It doesn’t

however inform the user, for example, whether de-

pendencies have changed or what the effect of a

change of import statement or variable type has on

the overall program.

In equation based languages such as Modelica or

VHDL-AMS [12] it is rarely even possible to deter-

mine locally the change in behavior because the code

is not algorithmic.

2.2 Other Limitations of VCS and Modelica

Using version control with a Modelica library is bet-

ter than not using version control. However there are

limitations to the information available to the user

from the conventional VCS client.

Loading, editing and saving a Modelica model with a

Modelica tool may not preserve exactly the same

formatting and whitespace as in the original file.

Annotations have no effect on simulation results;

however a large proportion of edits within a Modeli-

ca diagram editor will be on the annotations. Each of

these edits will be shown in a diff tool and it is cur-

rently up to the user to determine which edits are of

significance.

Some operations may appear to be significant and

yet have no effect on the overall set of variables and

equations. Such an example is illustrated later.

3 Viewing Modelica Revisions in

Converge

Converge [13] is a standalone tool designed purely

for comparing revisions of Modelica models and

packages. In essence it is a specialized VCS client

designed purely for Modelica. Successfully compar-

ing two models requires resolving the types of com-

ponents, including handling inheritance, imports and

redeclarations. It requires handling of equations and

component values, and flattening of the model struc-

ture, and therefore has similar needs to a Modelica

modeling tool.

The aim of Converge is to successfully solve the

problem of version control of Modelica, overcoming

the limitations discussed and allowing “model life-

cycle management”. Ultimately the aim is to answer

typical questions that arise during development or

utilization of Modelica libraries:

 Does this change affect the results?

 Why does my model give different behavior

to two weeks ago?

 What are the dependencies of my model and

which have changed?

This is done by providing the user with a range of

views, both of the package structure, and of an indi-

vidual class.

3.1 Global Views

The user defines the path from which Modelica code

is loaded. Rather than just a directory or set of direc-

tories as in a modeling tool, the path can contain

multiple version control repositories. All views are a

comparison between 2 revisions, which can be se-

lected. One of these can be set as a local working

directory, so the comparison is between a working

version and a committed revision, or it can be be-

tween 2 revisions.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

651

There are two overall views, one for the path and one

for the Modelica packages.

3.1.1 Path View

The Path view shows all files available to be loaded

on the Modelica path. It is not discriminated between

the source of the files, whether they are stored in di-

rectories, in a version control repository or a Modeli-

ca archive file, the resulting tree is the same.

Figure 1: Path View showing revisions of Modelica Standard

Library

3.1.2 Packages View

The Packages view shows the hierarchy of Modelica

packages as a tree. Similar to the package browser in

a Modelica modeling tool, but the two trees side by

side show the two revisions being compared. If a

class exists in one revision but not the other this is

highlighted.

Figure 2: Packages View showing revisions of Modelica

Standard Library

3.2 Class Views

An individual Modelica class can be viewed in a

number of ways, each designed to visualize a differ-

ent aspect of the model. Like the global views, these

compare the revisions side by side.

3.2.1 Component Structure View

The Structure view shows the components declared

in the class. Any components existing in one and not

the other will be highlighted, as will differences be-

tween individual components. These differences

could be the type, dimensions, value or other modifi-

cations on the component.

3.2.2 Package Structure View

The Package view shows a tree view of classes de-

clared below the class. Any classes existing in one

and not the other will be highlighted. Differences in

attributes such as class restriction, dimensions or

replaceability will also be highlighted.

3.2.3 Inheritance View

The Inheritance view shows a tree view of classes

that the class extends from.

3.2.4 Dependencies View

The Dependencies view shows a tree view of all

classes that the class depends on. This could be via

inheritance or use as a component. By expanding the

tree the user can quickly tell if any dependencies

have changed, and changes to key attributes for each

class are also highlighted.

3.2.5 Annotations View

In most cases the user will wish to ignore annota-

tions, as these do not affect simulation results. How-

ever an Annotations view is included, which shows

the user a tree view of all the annotations attached to

the class and to components within it.

3.2.6 Instantiated Components View

The Instance view is a powerful way of comparing

revisions of a class. The class is shown as a tree of

components, both locally declared and inherited. Be-

low each component in the tree is the set of compo-

nents generated by the flattening of the component.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

652

This allows the user to visualize changes in the re-

sulting flattened model.

3.2.7 Equations View

The Equations view shows a tree with the equations

for the class, this can be expanded to see equations

from all components in the model, matching the In-

stance view for components. Equations are deter-

mined after modifications are applied but are not

simplified and connection equations are not elabo-

rated.

3.2.8 Code View

The Code view is a traditional code diff view, show-

ing the code for each revision with changed lines

highlighted.

3.3 Navigation

It is important to be able to quickly navigate through

the packages in order to locate a source of a change.

Within the global Packages view clicking on any

class opens a view of that class. Clicking on a refer-

ence to another class within any view, such as Inhe-

ritance or Dependencies views, opens a view of it.

Navigating to a different view on the same class is as

simple as selecting the tab for the required view.

4 Application Examples

The following examples are to illustrate simple cases

where a change that appears significant when com-

paring code directly causes an insignificant change

to the model results, or where a change that appears

insignificant comparing code causes a significant

change in the model results.

4.1 Editing Diagram

When building Modelica models in a Modelica envi-

ronment some of the most common operations are in

the diagram editor. Some of these have an effect on

the results of the model, such as adding or removing

components or connections, while some have no ef-

fect.

Moving a component in the diagram layer will result

in the Placement annotation for that component

changing, and the Line annotation for any rerouted

connections changing, therefore creating differences

on several lines within the model definition. This

will be viewed within a VCS client or browser as a

significant change, however within Converge it is

only shown in the Annotations and Code views.

4.2 Refactoring Inheritance

A common change to models that a library developer

may make is moving connectivity and common va-

riables from a model to a partial class, and changing

the model to extend from the partial class. This then

allows other models to inherit the same connectivity.

package Springs

model SimpleSpring

 Flange_a flange_a;

 Flange_a flange_b;

 Force f;

 Position s_rel;

 parameter Stiffness k=1000

"Spring rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 s_rel = flange_b.s - flange_a.s;

 flange_b.f = f;

 flange_a.f = -f;

 f = c*(s_rel - s_rel0);

end SimpleSpring;

end Springs;

Code 1: Package before Inheritance Refactoring

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

653

package Springs

partial model PartialSpring

 Flange_a flange_a;

 Flange_a flange_b;

 Force f;

 Position s_rel;

equation

 s_rel = flange_b.s - flange_a.s;

 flange_b.f = f;

 flange_a.f = -f;

end PartialSpring;

model SimpleSpring

 extends PartialSpring;

 parameter Stiffness k=1000

"Spring rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 f = c*(s_rel - s_rel0);

end SimpleSpring;

model SimpleSpringDamper

 extends PartialSpring;

 Velocity v_rel;

 parameter Stiffness k=1000

"Spring rate";

 parameter Damping d=10 "Damping

rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 v_rel = der(s_rel);

 f = c*(s_rel - s_rel0) +

d*v_rel;

end SimpleSpringDamper;

end Springs;

Code 2: Package after Inheritance Refactoring

A change such as this will be viewed within a VCS

browser, and within the Packages, Class Structure

and Inheritance views of Converge, as a significant

change. A new class has been added, and the original

class has had components removed and an extends-

clause added.

Figure 3: Code View showing Inheritance Example

However, by using the Instance view within Con-

verge, it can be seen that the resulting set of va-

riables has not actually changed. So the user can

identify using Converge that this change should not

have an impact on the simulation results.

Figure 4: Instance View showing Inheritance Example

4.3 Changing Imports

Changing import statements in a class can change the

types of components, cause an error or have no effect

at all. Viewed in a traditional diff tool only the line

containing the import statement would be hig-

hlighted as a change.

The following two models are the same except for a

change of import statement. However the compo-

nents and equations below the “spring” component

are different.

model MySpringAndMass

 import Spring =

Springs.SimpleSpring;

 Spring spring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 3: Model before Import Change

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

654

model MySpringAndMass

 import Spring =

Springs.SimpleSpringDamper;

 Spring spring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 4: Model after Import Change

Using the Instance view within Converge, it can

quickly be seen what the resulting difference is be-

tween the models. Because Converge can resolve the

types of components within the model it takes ac-

count of the import statements when determining the

component tree.

Figure 5: Code View showing Import Example

Figure 6: Instance View showing Import Example

4.4 Redeclarations

A redeclaration of a component is a small change to

the Modelica code that can have a significant change

to the flattened model. The spring and mass example

from above can be restated as a redeclaration as fol-

lows.

model MySpringAndMass

 replaceable Springs.SimpleSpring

spring constrainedby

Springs.PartialSpring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 5: Spring mass model with replaceable spring

model MySystem

 MySpringAndMass springMass;

end MySystem;

Code 6: Model before redeclaration

model MySystem

 MySpringAndMass spring-

Mass(redeclare

Springs.SimpleSpringDamper spring);

end MySystem;

Code 7: Model after redeclaration

Figure 7: Code View showing Redeclaration Example

Figure 8: Instance View showing Redeclaration Example

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

655

5 Implementation

The ability to load, analyze and navigate the struc-

ture of Modelica models, including their instantiated

form, is provided by the Modelica SDK [14].

The Modelica Specification [15] defines the mapping

between a Modelica package hierarchy and a filesys-

tem. For the general case this is only applicable to a

directory structure or a Modelica archive file. The

Modelica SDK has an interface that represents this

mapping. This defines the methods required to

access a hierarchy of Modelica files. Within Con-

verge, implementations of this interface are provided

that communicate directly with the VCS system, al-

lowing Modelica models to be loaded for a specified

revision without performing a “checkout” operation.

5.1 Status and Limitations

Currently Converge works with Subversion (SVN)

repositories. This is being expanded to include a

range of version control systems.

Converge is based on a Modelica implementation

designed for Modelica 3.x. Libraries containing ex-

perimental language features, especially those that

change the general syntax or class look-up process,

may not give the expected results.

Differences between connections and overcon-

strained Connections.branch/.root statements are

shown in the tool. Connection equations are not gen-

erated, including Stream equations and overcon-

strained branches.

5.2 Issues

It should be stressed here that the analysis of whether

a change to a model potentially affects the results has

to make the assumption that a change to an annota-

tion has no such effect. Since the introduction of the

Embedded Systems section to the specification this

is no longer the case, as the mapping to the target

system is defined as an annotation.

5.3 Future

Although Converge is not attempting to compile or

simulate models, it can still detect sources of errors.

Examples of these are changes of names or removal

of classes or components that result in failure to find

a class or component, or some cases of incompatible

types or dimensions. If such an error occurs in the

working version but not in the “head” revision within

the VCS then a warning could be issued to the user.

6 Conclusions

In this paper, we have introduced a tool, Converge,

for comparison of revisions of Modelica packages

within a version control system. This will allow us-

ers to understand the development of models over

time and to solve problems caused by changes in

dependent Modelica libraries.

References

[1] Modelica, http://www.modelica.org

[2] Collins-Sussman, B., The Subversion

Project: Building a Better CVS, Linux Jour-

nal, Volume 2002 Issue 94, February 2002

[3] Morse, T., CVS, Linux Journal, Volume

1996 Issue 21, Jan. 1996

[4] GIT - Fast Version Control System,

http://git-scm.com

[5] O’Sullivan, B., Distributed revision control

with Mercurial, Mercurial Project 2007

[6] TortoiseSVN, http://tortoisesvn.org

[7] Visual Studio,

http://www.microsoft.com/visualstudio/

[8] Eclipse, http://eclipse.org

[9] Netbeans, http://netbeans.org

[10] Trac, http://trac.edgewall.org

[11] Modelica Association Trac Instance,

http://trac.modelica.org

[12] Christen, E., Bakalar, K., VHDL-AMS, a

hardware description language for analog and

mixed-signal applications, Circuits and Sys-

tems II: Analog and Digital Signal

Processing, Volume 26 Issue 10, 1999

[13] Converge,

http://www.deltatheta.com/products/converg

e/

[14] Harman P., Tiller M. Building Modelica

Tools using the Modelica SDK, Modelica

2009

[15] Modelica Language Specification, Version

3.2, Modelica Association 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

656

http://www.modelica.org/
http://git-scm.com/
http://tortoisesvn.org/
http://www.microsoft.com/visualstudio/
http://eclipse.org/
http://netbeans.org/
http://trac.edgewall.org/
http://trac.modelica.org/
http://www.deltatheta.com/products/converge/
http://www.deltatheta.com/products/converge/

Automated Simulation of Modelica Models with QSS Methods
- The Discontinuous Case -

Xenofon Floros1 Federico Bergero2 François E. Cellier 1 Ernesto Kofman2

1Department of Computer Science, ETH Zurich, Switzerland
{xenofon.floros, francois.cellier}@inf.ethz.ch

2Laboratorio de Sistemas Dinámicos, FCEIA, Universidad Nacional de Rosario, Argentina
CIFASIS-CONICET

{fbergero, kofman}@fceia.unr.edu.ar

Abstract

This study describes the current implementation of an
interface that automatically translates a discontinuous
model described using the Modelica language into
the Discrete Event System Specification (DEVS) for-
malism. More specifically, the interface enables the
automatic simulation of a Modelica model with dis-
continuities in the PowerDEVS environment, where
the Quantized State Systems (QSS) integration meth-
ods are implemented. Providing DEVS-based sim-
ulation algorithms to Modelica users should extend
significantly the tools that are currently available in
order to efficiently simulate several classes of large-
scale real-world problems, e.g. systems with heavy
discontinuities. In this work both the theoretical de-
sign and the implementation of the interface are dis-
cussed. Furthermore, simulation results are provided
that demonstrate the correctness of the proposed im-
plementation as well as the superior performance of
QSS methods when simulating discontinuous sys-
tems.
Keywords: OpenModelica, DASSL, PowerDEVS,
QSS, discontinuous systems

1 Introduction

Modelica [8, 9] is an object-oriented, equation-based
language that allows the representation of continu-
ous as well as hybrid models using a set of non-
causal equations. The Modelica language enables
a standardized way to model complex physical sys-
tems containing, e.g., mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power, or
process-oriented subcomponents.

Commercial environments, such as Dymola and
Scicos, along with open-source implementations,
such as OpenModelica [7], enable modeling and sim-
ulation of models specified in the Modelica language.
All of these tools perform a series of preprocess-
ing steps (model flattening, index reduction, sorting
and optimizing the equations) and convert the model
to a set of explicit Ordinary Differential Equations
(ODEs) of the form ẋ = f(x, t). Efficient C++ code is
then generated to perform the simulation. Numerical
ODE solvers are provided that invoke the right-hand
side evaluation of the ODEs at discrete time steps tk,
in order to compute the next value of the state vector
xk+1. Thus, the commonly used simulation environ-
ments make use of time slicing, i.e., their underlying
simulation algorithms are based on time discretiza-
tion rather than state quantization.

In the end of the nineties, a new class of algorithms
for numerical integration based on state quantiza-
tion and the DEVS formalism was introduced by Zei-
gler [17]. Improving the original approach of Zei-
gler, Kofman developed a first-order non-stiff Quan-
tized State System (QSS) algorithm in 2001 [14], fol-
lowed later by second- and third-order accurate non-
stiff solvers, called QSS2 [10] and QSS3 [13], respec-
tively. Finally, the family of QSS methods has been
further expanded and includes now also stiff system
solvers (LIQSS [15]) as well as solvers for marginally
stable systems (CQSS [3]). QSS methods have been
theoretically analyzed to exhibit nice stability, con-
vergence, and error bound properties, [4, 13, 14], and
in general come with several advantages over classi-
cal approaches.

Most of the classical methods that use discretiza-
tion of time, need to have their variables updated in
a synchronous way. This means that the variables

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

657

that show fast changes are driving the selection of
the time steps. In a stiff system with widely-spread
eigenvalues, i.e., with mixed slow and fast subsys-
tems, the slowly changing state variables will have
to be updated much more frequently than necessary,
thus increasing substantially the computation time of
the simulation. On the other hand, the QSS meth-
ods allow for asynchronous variable updates, allow-
ing each state variable to be updated at its own pace,
and specifically when an event triggers its evaluation.
Furthermore, as most systems are sparse, when a state
variable xi changes its value, it suffices to evaluate
only those components of f that depend on xi, al-
lowing for an additional significant reduction of the
computational costs. In [5], comparisons have been
performed between the standard DASSL solver and
QSS3 on synthetically generated sparse linear mod-
els that demonstrate the superiority of QSS methods,
theoretically expected, when simulating sparse sys-
tems.

Another advantage of QSS methods concerns the
simulation of discontinuous systems with frequent
switching behavior, e.g. power electronic circuits.
Standard Dymola and OpenModelica software han-
dle discontinuities by means of zero-crossing func-
tions that need to be evaluated at each step. When
any of them changes its sign, the solver knows that
a discontinuity occurred. Then an iterative process is
initiated to detect the exact time of that event. In con-
trast, QSS algorithms offer dense output, i.e., they
do not need to iterate to detect the discontinuities.
They rather predict them. This feature, besides im-
proving on the overall computational performance of
these solvers, enables real-time simulation. Since in
a real-time simulation the computational load per unit
of real time must be controllable, Newton iterations
are usually not acceptable.

Finally, DEVS methods [12] provide a formal uni-
fied framework for the simulation of hybrid systems,
where continuous-time, discrete-time, and discrete-
event models can coexist as subcomponents of a sin-
gle model.

Therefore, QSS methods and the principle of state
quantization appear promising in the context of sim-
ulating certain classes of real-world problems. How-
ever, in order to simulate a system with QSS methods
in the PowerDEVS environment [2], the user needs
to have a thorough understanding of DEVS systems.
More specifically, the model needs to be manually
converted to an explicit ODE form, dependencies be-
tween subsystems need to be identified, and the corre-

sponding DEVS structure needs to be provided. Even
if a user possesses the required knowledge to do so,
this approach is feasible only for very small systems.

PowerDEVS does not support object-oriented
modeling, whereas Modelica does. For all these rea-
sons, it is much more convenient for a user to formu-
late models in the Modelica language than in Pow-
erDEVS.

This work aims to bridge the gap between the pow-
erful object-oriented modeling platform of Modelica
on the one hand, and the equally powerful simula-
tion platform of PowerDEVS on the other. In [5],
a first version of the interface between OpenModel-
ica and PowerDEVS, for systems without disconti-
nuities, has been presented and analyzed. This study
extends the previously discussed interface to include
discontinuous models and brings us one step closer
to the final goal, enabling a modeler to formulate ar-
bitrary models in the Modelica language, while auto-
matically simulating them in PowerDEVS.

1.1 Relevance of Work

In [5] a first version of an interface between Open-
Modelica and PowerDEVS for non-stiff and non-
discontinuous models has been presented. The cur-
rent article extends upon [5] to enable the simulation
of discontinuous models. To our knowledge there
exist no other approaches that automatically trans-
late Modelica models to the DEVS formalism. Re-
search efforts have been reported that implemented
Modelica libraries allowing DEVS models to be for-
mulated within a Modelica environment [1, 16], but
these approaches require from the users to understand
the DEVS framework, as they would have to model
their system in the DEVS formalism in order to make
use of these libraries.

Furthermore, this is the first work offering a com-
parison of the run-time efficiency and simulation ac-
curacy of various solvers (DASSL, Radau IIa, Do-
pri45) in Dymola and OpenModelica against QSS
methods. In earlier publications describing QSS
methods [10, 11, 12, 14], there can be found exam-
ples that demonstrate the superiority of the run-time
efficiency of QSS methods, but the comparisons were
performed after manual modeling in PowerDEVS di-
rectly, i.e. they did not make use of the same original
models formulated in Modelica.

In contrast, our approach enables a Modelica user
to simulate a Modelica model using QSS solvers
without any explicit manual transformation. Addi-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

658

tionally, it allows for the automatic transformations
of large-scale models to the DEVS formalism, which
is a difficult if not unfeasible task even for experts in
DEVS modeling.

The article is organized as follows: Section 2 pro-
vides a brief introduction of the QSS methods. Sec-
tion 3 describes theoretically what is needed in or-
der to simulate a Modelica model with discontinuities
employing the QSS algorithms. In Section 4, the ac-
tual implementation of the interface between Open-
Modelica and PowerDEVS is presented. Section 5
describes the simulation results comparing the vari-
ous solvers in Dymola and the OpenModelica run-
time environment with the QSS methods as imple-
mented in PowerDEVS. Finally, Section 6 concludes
this study, lists open problems, and offers directions
for future work.

2 QSS Simulation

Consider a time-invariant ODE system:

ẋ(t) = f(x(t)) (1)

where x(t) ∈Rn is the state vector. The QSS method,
[14], approximates the ODE of Eq. 1 as:

ẋ(t) = f(q(t)) (2)

where q(t) is a vector containing the quantized state
variables, which are quantized versions of the state
variables x(t). Each quantized state variable qi(t) fol-
lows a piecewise constant trajectory via the following
quantization function with hysteresis:

qi(t) =
{

xi(t) if |qi(t−)− xi(t)|= ∆Qi,
qi(t−) otherwise.

(3)

where the quantity ∆Qi is called quantum. The quan-
tized state qi(t) only changes when it differs from
xi(t) by more than ∆Qi. In QSS, the quantized states
q(t) follow piecewise constant trajectories, and since
the time derivatives, ẋ(t), are functions of the quan-
tized states, they are also piecewise constant, and
consequently, the states, x(t), are composed of piece-
wise linear trajectories.

Unfortunately, QSS is a first-order accurate
method only, and therefore, in order to keep the simu-
lation error small, the number of steps performed has
to be large.

To circumvent this problem, higher-order methods
have been proposed. In QSS2 [10], the quantized
state variables evolve in a piecewise linear way with

the state variables following piecewise parabolic tra-
jectories. In the third-order accurate extension, QSS3
[13], the quantized states follow piecewise parabolic
trajectories, while the states themselves exhibit piece-
wise cubic trajectories.

3 Simulation of Discontinuous Mod-
elica Models with QSS Methods

In this section we shall describe a potential way to
simulate a Modelica model using QSS methods. For
simplicity, we shall assume that the model is de-
scribed by an ODE system, but we note that the in-
terface successfully handles DAE systems as well.
Let us write Eq. 2 expanded to its individual com-
ponent equations, forgetting for a while the discon-
tinuous part:

ẋ1 = f1(q1, . . . ,qn, t)
...

ẋn = fn(q1, . . . ,qn, t)

(4)

If we consider a single component of Eq. 4, we can
split it into two equations:

qi = Q(xi) = Q(
∫

ẋi dt) (5)

ẋi = fi(q1, . . . ,qn, t) (6)

3.1 Accounting for Discontinuities

Discontinuities in dynamical systems are closely re-
lated to the notion of events. We can distinguish two
types of events, time events and state events.

3.1.1 Time Events

Time events correspond to changes of states as a
function of the built-in continuously evolving vari-
able time. Such events can be scheduled in advance,
since it is possible to predict the point in time when
they occur. Time events in Modelica are specified ba-
sically in two ways [6]:

• With a conditional discrete-time expression
that contains the variable time (e.g. in a when-
statement) of the form:
time >= discrete-time expression, e.g. t >= te

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

659

• With a periodic sample statement of the form:
sample(first, interval) that triggers events at pre-
defined time instants.

The first case can be taken care of by formulating
a zero-crossing function of the form:

g(t) = t− te

When g(t) crosses through zero, an event should be
produced. We shall see later, which DEVS blocks
need to be defined to generate the events. The sam-
ple() statement can be handled easily by adding a
dedicated DEVS atomic model that provokes events
at the predefined time points.

3.1.2 State Events

State events are related to discrete changes in the state
variables during the simulation as a function of other
state variables reaching some threshold value. There-
fore, they cannot be scheduled in advance. A state
event can be specified by means of when or if-then-
else statements involving one or more state variables.
When a model is compiled by either OpenModel-
ica or Dymola, state events are translated into zero-
crossing functions of the form gi(x, t). During the
execution of the simulation the zero-crossing func-
tions are being constantly monitored and when func-
tion gi(·) crosses through zero, a discontinuity is de-
tected and handled accordingly. Therefore, we can
directly exploit the zero-crossing functions generated
by OpenModelica to identify state events in an iden-
tical fashion as with time events. All we need is a
Static Function block evaluating the zero-crossing
function and a Zero-Cross Detection block that de-
tects when a zero-crossing takes place.

3.2 DEVS structure

The DEVS formalism [17] allows to describe both
the continuous and discontinuous parts of the model
via a coupling of simpler DEVS atomic models.
More specifically, we need to define:

• A Quantized Integrator block (Eq. 5) that
takes as input the derivative ẋi and outputs qi.

• A Static Function block that receives the se-
quence of events, q1, . . . ,qn, and calculates the
sequence of state derivative values, ẋi (Eq. 6).
The same block can be used for the evaluation
of the zero-crossing functions gi(·)

• A Cross-Detection block that receives as input
the evaluated zero-crossing function and gen-
erates an output event when its input crosses
throught zero.

x1
q1

x2

x1

q2

x2

f1

f2

g
1

g
2

Figure 1: Coupled DEVS model for QSS simulation
of a discontinuous model with 2 states and 2 zero-
crossing functions g1(·) and g2(·).

Therefore, we can simulate a Modelica discontin-
uous model using a coupled DEVS model consisting
of the blocks described above. A block diagram rep-
resenting the final DEVS model for an example sys-
tem with 2 state variables and 2 zero-crossing func-
tions is shown in Fig. 1.

4 OpenModelica to PowerDEVS
(OMPD) Interface

This section describes the work done to enable the
simulation of Modelica models in PowerDEVS using
QSS algorithms. The current version of the interface
does not yet support when clauses and sample state-
ments.

4.1 What is Needed by PowerDEVS

Let us first concentrate on what PowerDEVS requires
in order to perform the simulation of a Modelica
model. As depicted in Fig. 1, an essential component
of a PowerDEVS simulation is the graphical struc-
ture. In PowerDEVS, the structure is provided in the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

660

form of a dedicated .pds structure file that contains
information about the blocks (nodes) of the graph as
well as the connections (edges) between those blocks.
More specifically, we need to add in the structure:

• A Quantized Integrator block for each state
variable with ẋi as input and qi as output.

• A Static Function block for each state variable
that receives as input the sequence of events,
q1, . . . ,qn, and calculates ẋi = fi(q).

• A Static Function block for each one of
the zero-crossing functions gi(·) generated by
OpenModelica that receives as inputs the depen-
dencies of gi(·) and evaluates the function in the
output port.

• A Cross-Detection Block block after each one
of the zero-crossing static functions. The cross-
detection block outputs an event if a zero-
crossing has been identified.

• A connection (edge) is added between two
blocks if and only if there is a dependence be-
tween them.

Having correctly identified the DEVS structure, we
need to specify what needs to be calculated inside
each of the static function blocks. The different
blocks need to have access to different pieces of in-
formation.

In the current implementation, a .cpp code file is
generated that contains the code and parameters for
all blocks in the structure. The generated code file
contains the following information:

• For each Quantized Integrator block, the ini-
tial condition, error tolerance, and integration
method (QSS, QSS2, QSS3).

• For each Static Function, the equa-
tions/expressions needed in order to calculate
the derivative of each state variable in the sys-
tem. Furthermore, the desired error tolerance
is provided together with a listing of all input
and output variables of the specific block. If the
static function represents a zero-crossing then it
contains the respective function gi(·).

4.2 What is Provided by OpenModelica

In Section 4.1, we described what PowerDEVS ex-
pects in order to perform the simulation. Our work

focuses on an automatic way to simulate Model-
ica models using the QSS methods in PowerDEVS.
Therefore, the PowerDEVS simulation files should
be automatically generated exploiting the informa-
tion contained in the Modelica model supplied as in-
put. Luckily, existing software used to compile Mod-
elica models, such as Dymola or OpenModelica, pro-
duces simulation code that contains all information
needed by PowerDEVS. Thus, we were able to make
use of an existing Modelica environment by modify-
ing the existing code generation modules at the back
end of the compiler to produce the files needed by
PowerDEVS.

This work is based on modifying the OpenModel-
ica Compiler (OMC), since it is open-source and has
a constantly growing contributing community. OMC
takes as input a Modelica source file and translates it
first to a flat model. The flattening consists of parsing,
type-checking, performing all object-oriented oper-
ations such as inheritance, modifications, etc. The
flat model includes a set of equation declarations
and functions with all object-oriented structure re-
moved. Then index reduction is performed on the
set of model equations in order to remove algebraic
dependence structures between state variables. The
resulting equations are then analyzed, sorted in Block
Lower Triangular (BLT) form, and optimized. Fi-
nally, the code generator at the back end of OMC pro-
duces C++ code that is then compiled. The resulting
executable is used for the simulation of the model.

The information needed to be extracted from the
OMC compiler is contained mainly in the DLOW
structure, where the following pieces of information
are defined:

• Equations: E = {e1,e2, . . . ,eN}.

• Variables: V = {v1,v2, . . . ,vN}=VS
⋃

VR

where VS is the set of state variables with |VS|=
NS ≤ N and VR is the set of all other variables in
the model.

• BLT blocks: subsets of equations {ei} needed to
be solved together because they are part of an
algebraic loop.

• Zero-Crossings: G = {g1,g2, . . . ,gK}.

• Incidence matrix: An N ×N adjacency matrix
denoting, which variables are contained in each
equation.

The OMPD interface utilizes the above informa-
tion and implements the following steps:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

661

1. Equation splitting : The interface identifies the
equations needed in order to compute the deriva-
tive ẋi = fi(q) for each state variable. Then the
split equations can be assigned to static function
blocks according to the state derivative evalua-
tion they are involved in.

2. Mapping split equations to BLT blocks : The
equations are mapped back to BLT blocks of
equations in order to be able to generate simula-
tion code for solving linear/non-linear algebraic
loops.

3. Identifying zero-crossing functions : The
zero-crossing functions generated by OMC are
extracted and assigned to separate static func-
tion blocks.

4. Constructing generalized incidence matrix :
The N×N adjacency matrix has to be expanded
to include also the zero-crossing functions and
the variables involved in them. Thus, it has to
be expanded by adding K rows corresponding to
the K zero-crossing functions gi(·). The result is
a generalized K×N adjacency matrix.

5. Generating DEVS structure : In order to cor-
rectly generate the DEVS structure of the model,
the dependencies between the individual DEVS
blocks need to be resolved. This is accom-
plished by employing the generalized incidence
matrix to find the corresponding inputs and out-
puts for each block.

6. Generating the .pds structure file: Having cor-
rectly produced the DEVS structure for Pow-
erDEVS, outputting the respective .pds structure
file is straightforward.

7. Generating static blocks code : In this step, the
functionality of each static block is defined via
the simulation code provided in the .cpp code
file. Each static block needs to know its inputs
and outputs, identified by the DEVS structure,
as well as the BLT blocks needed to compute
the corresponding state derivatives. The static
blocks that are responsible for the discontinu-
ities contain the zero-crossing functions gi(·)
generated by OMC. Then, the existing code gen-
eration module of OMC is employed to provide
the actual simulation code for each static block,
since it has already been optimized to solve lin-
ear and non-linear algebraic loops.

8. Generating the .cpp code file: The code for the
static blocks is output in the .cpp code file along
with other needed information.

5 Simulation Results

5.1 Benchmark Framework

In this section, the simulation results obtained us-
ing the OMPD interface are presented and discussed.
The goal is to compare the run-time efficiency and
accuracy of the QSS methods against other simula-
tion software environments. More specifically, we
want to compare QSS3 and QSS2 methods in Pow-
erDEVS v2.0 against the DASSL, Radau IIa, and Do-
pri45 solvers implemented in Dymola v7.4 and the
DASSL solver of OpenModelica v1.5.1.

DASSL was chosen as it represents the state-of-
the-art multi-purpose stiff DAE solver used by most
commercial simulation environments today. Radau
IIa was included in the comparisons, because a
single-step (Runge-Kutta) algorithm is supposed to
be more efficient than a multi-step (BDF) algorithm
when dealing with heavily discontinuous models, be-
cause step-size control is more expensive for the lat-
ter methods [4]. Finally, Dopri45 was chosen, be-
cause it is an explicit Runge-Kutta method in contrast
to both DASSL and Radau IIa, which are implicit al-
gorithms that may be disadvantaged when simulating
non-stiff systems.

As benchmark problems we focused on two real-
world systems exhibiting heavily discontinuous be-
havior, namely a half-way rectifier circuit, modeled
graphically with standard Modelica components as
depicted in Fig. 2, and the switching power converter
circuit provided in Fig. 3.

6. Generating static blocks code : In this step,
the functionality of each static block is defined
via the simulation code provided in the code.cpp
file. Each static block needs to know its inputs
and outputs, identified by the DEVS structure,
as well as the BLT blocks needed to compute
the corresponding state derivatives, described by
the mapped split equations. Then, the existing
code generation module of OMC is employed
to provide the actual simulation code for each
static block, since it has already been optimized
to solve linear and non-linear algebraic loops.

7. Generating the .cpp code file: The code for the
static blocks is output in the .cpp code file along
with other needed information.

5 Simulation Results

5.1 Benchmark Framework

To calculate the reference trajectory we simulate in
Dymola using DASSL with a very low tolerance of
10−12. Then we request a dense output of 105 points.

5.2 Half-Way Rectifier

R=10

R1

R
=50 R2

C
=0.001

+
-

C1

Figure 2: Graphical representation of the HalfWay
Rectifier

5.3 Power Converter

6 Discussion

6.1 Conclusions

6.2 Future Work

7 Acknowledgements

References

[1] Tamara Beltrame and François E. Cellier.
Quantised state system simulation in dy-
mola/modelica using the devs formalism. In
Modelica, 2006.

[2] François E. Cellier and Ernesto Kofman. Con-
tinuous System Simulation. Springer-Verlag,
New York, 2006.

[3] Peter Fritzson, Peter Aronsson, Hakan Lund-
vall, Kaj Nystrom, Adrian Pop, Levon Saldamli,
and David Broman. The openmodelica model-
ing, simulation, and development environment.
Proceedings of the 46th Conference on Simu-
lation and Modeling (SIMS’05), pages 83–90,
2005.

[4] Peter Fritzson and Peter Bunus. Modelica-a
general object-oriented language for continuous
and discrete-event system modeling and simu-
lation. In Annual Simulation Symposium, pages
365–380, 2002.

[5] Peter Fritzson and Vadim Engelson. Modelica
- a unified object-oriented language for system
modelling and simulation. In ECOOP, pages
67–90, 1998.

[6] Ernesto Kofman. A second-order approxima-
tion for devs simulation of continuous systems.
Simulation, 78(2):76–89, 2002.

[7] Ernesto Kofman. Quantization-based simula-
tion of differential algebraic equation systems.
In Simulation, Transactions of the Society for
Modeling and Simulation International, vol-
ume 79, pages 363–376, 2003.

[8] Ernesto Kofman. Discrete event simulation of
hybrid systems. SIAM JOURNAL ON SCIEN-
TIFIC COMPUTING, 25:1771–1797, 2004.

Figure 2: Graphical representation of the half-way
rectifier

In order to measure the execution time for each
simulation algorithm, the reported simulation time

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

662

from each environment was used. Dymola re-
ports CPU-time for integration, OpenModelica re-
ports timeSimulation, and PowerDEVS the elapsed
simulation time. To record pure simulation time, the
generation of output files was suppressed in all cases.
Testing has been carried out on a Dell 32bit desktop
with a quad core processor @ 2.66 GHz and 4 GB
of RAM. The measured CPU time should not be con-
sidered as an absolute ground-truth since it will vary
from one computer system to another, but the relative
ordering of the algorithms is expected to remain the
same.

+
-

R
=1

C
=0.00022

L=0.00015

R1C1

L1
0

1

Figure 3: Graphical representation of the switching
power converter

Calculating the accuracy of the simulations can
only be performed approximately, since the state tra-
jectories in the two models cannot be computed ana-
lytically. To estimate the accuracy of the simulation
algorithms for a given setting, reference trajectories
(tref,yref) have to be obtained. To this end, Dymola
was employed using the default DASSL solver with a
very tight tolerance of 10−12 and requesting 105 out-
put points. Furthermore, in order to verify the ac-
curacy of the reference solution, a second reference
solution was computed using QSS3 in PowerDEVS
with the tolerance set to 10−12. However, we only re-
port the simulation error against the Dymola solution
since the difference between both reference solutions
is on the order of 10−6.

To calculate the simulation error, each one of the
simulated trajectories was compared against the two
reference solutions. To achieve this goal, we forced
all solvers to output 105 equally spaced points for
obtaining simulation trajectories (tref,ysim) without
changing the integration step. Then, the mean ab-
solute error is calculated as:

error =
1
|tre f |

|tre f |
∑
i=1
|ysim

i − yre f
i | (7)

In the case of more than one state variables, we report
the mean error over all state trajectories.

5.2 Half-Way Rectifier

The half-way rectifier circuit exhibits only one state
variable, namely the voltage across the capacitor C1,
and the model is simulated during 1 sec. In Fig. 4, the
state trajectory calculated with QSS3 and a tolerance
of 10−4 is depicted. Comparing the simulation results
listed in Table 1, the following conclusions can be
reached:

0.6

0.5

0.4

0.3

0.2

0.1
st

at
e

tr
aj

ec
to

rie
s

capacitor voltage

0.0
1 2 3 4 5 6 7 8 9

time (sec)
x10

-10

Figure 4: Simulated state trajectories with QSS3 for
the half-way rectifier circuit.

There is a substantial difference in execution ef-
ficiency between Dymola and OpenModelica us-
ing the DASSL solver, with Dymola being around 10
times faster than OpenModelica in spite of the fact
that both environments make use of the same solver
software and even the same root solver (event detec-
tion) algorithms. We postulate that this difference
is primarily caused by the fact that OMC does not
involve tearing. Thereby the solution of algebraic
loops becomes much less efficient, and also the inte-
gration itself suffers, because the number of iteration
variables in DASSL equals the number of state vari-
ables plus the number of tearing variables. Without
tearing, DASSL needs to include all variables appear-
ing inside algebraic loops among the set of its itera-
tion variables.

On the other hand, even though the QSS3 simu-
lations are based on code generated by OMC, we
observe that QSS3 is slightly more efficient than
DASSL in Dymola. To perform the simulation for an
achieved error of the order of 10−4, QSS3 required
0.014 sec while DASSL 0.022 sec. Therefore, the
use of the OMPD interface and the simulation in
PowerDEVS employing QSS3 speeds up the sim-
ulation by a factor of 20 compared to OpenMod-
elica. It needs to be remarked that it is not fair to
compare QSS3 with the DASSL simulation of Dy-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

663

Table 1: This table depicts the simulation results of various algorithms for the half-way rectifier circuit for a
requested simulation time of 1 sec. The comparison performed includes required CPU time (in sec) as well as
the simulation accuracy relative to the reference trajectory obtained in Dymola.

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.019 1.45E-03
DASSL 10−4 0.022 2.35E-04

Radau IIa 10−7 0.031 2.20E-06
Dopri45 10−4 0.024 4.65E-05

PowerDEVS

QSS3 10−3 0.014 2.59E-04
QSS3 10−4 0.026 2.23E-05
QSS3 10−5 0.041 2.30E-06
QSS2 10−2 0.242 3.02E-03
QSS2 10−3 0.891 3.04E-04
QSS2 10−4 3.063 3.00E-05

OpenModelica DASSL 10−3 0.265 3.80E-03
DASSL 10−4 0.281 5.40E-04

mola because of the fact analyzed earlier, namely the
lack of tearing in OMC. The solution of the algebraic
loops in QSS3 is based on code generated by OMC,
and therefore, the inefficiencies in the compilation of
the OMC are being propagated to the QSS3 simula-
tion as well. For this reason, we need to compare
the results in PowerDEVS with the ones obtained
by OpenModelica and not by Dymola. However, it
is encouraging to see that the improvement achieved
over the standard OMC simulation using QSS-based
solvers is such that we are able to obtain simulation
results that are even more efficient than those ob-
tained using the commercial Dymola environment.
If the QSS methods were implemented in Dymola,
the simulation results obtained by the QSS methods
would once again be considerably faster than the sim-
ulation results that Dymola achieves currently.

Performing an internal comparison between the
QSS methods, it is obvious that QSS3 is much more
efficient that QSS2. This is expected, since the QSS2
solver needs to take smaller steps compared to QSS3
in order to reach the desired accuracy. Thus, we
can conclude that the third-order QSS3 algorithm
should be preferred for practical applications.

For the sake of completeness we included in the
comparison two more solvers included in the Dymola
environment, Radau IIa and Dopri45. Radau IIa
is an implicit variable-step Runge-Kutta method of
order 5, while Dopri45 is an explicit step-size con-
trolled Runge-Kutta algorithm of order 5. For this
specific example, Radau IIa failed to provide cor-
rect results unless the tolerance was lowered to 10−7.

Radau IIa with a less tight tolerance tries to utilize
larger integration steps and, apparently, misses many
of the events, i.e. the event localization employed by
Dymola is not robust (conservative) enough. It needs
to be noted further that the problem got considerably
worse between Dymola 6 and Dymola 7, i.e., whereas
Radau IIa missed a few events in Dymola 6, it misses
many more events in Dymola 7. This is a quite se-
rious issue that the Dynasim company should look
into. The same problem was observed for Dopri45
as well, when the tolerance was set to 10−3. Due
to these problems, both Runge-Kutta algorithms re-
quire CPU times comparable to that needed by the
standard DASSL solver, i.e., the inherent advantages
of the single-step algorithms over a multi-step tech-
nique in dealing with heavily discontinuous models
could not be exploited due to the inability of their
current implementation to detect events reliably.

5.3 Switching Power Converter

The switching power converter exhibits two state
variables, namely the current through the inductor L1
and the voltage across the capacitor C1. From Fig. 3,
we see that there is a square wave source block that,
when implemented directly, would call for use of a
sample block. As the sample block has not yet been
implemented in the interface, we worked around this
problem by replacing the square wave source by a
second-order marginally stable time-invariant system
described by:

model SquareWaveGenerator
Real x1(start=0.0);

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

664

Table 2: This table depicts the simulation results of various algorithms for the switching power converter circuit
for a requested simulation time of 0.01 sec. The comparison performed includes required CPU time (in sec) as
well as the simulation accuracy relative to the reference trajectory obtained in Dymola.

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.051 1.82E-04
DASSL 10−4 0.063 7.18E-05

Radau IIa 10−3 0.064 1.11E-07
Radau IIa 10−4 0.062 1.11E-07
Dopri45 10−3 0.049 6.38E-06
Dopri45 10−4 0.047 9.76E-06

PowerDEVS
QSS3 10−3 0.049 1.41E-03
QSS3 10−4 0.062 1.68E-05
QSS3 10−5 0.250 8.96E-06

OpenModelica DASSL 10−3 50.496 -
DASSL 10−4 1.035 2.62E-02

Real x2(start=1.0);
Boolean pulse(start=true);
parameter Real freq=1e4;

equation
der(x1)=freq*4*x2;
der(x2)=if (x1<0) then freq*4 else -freq*4;
pulse=(x1>0);
idealClosingSwitch.control = pulse;

end SquareWaveGenerator;

This is worth noting since it adds two more states
to the model (x1,x2) and increases the computa-
tion time since the solver also has to simulate the
marginally stable system. The chosen solution is by
no means unique. The desired switching behavior
could have been coded in many different ways.

The model was simulated for 0.01 sec, and in Fig.
5, the state trajectories calculated using the QSS3
solver with a tolerance of 10−4 are plotted. The simu-
lation results for all algorithms under comparison are
presented in Table 2.

The conclusions reached in the analysis of the re-
sults of the half-way rectifier circuit also hold for the
switching power converter circuit as depicted in Ta-
ble 2. The QSS3 method performs well compared
to the DASSL solver in Dymola, while it outper-
forms DASSL in OpenModelica and the second-
order QSS2. Radau IIa and Dopri45 simulate cor-
rectly even for large tolerance values in this example,
but their run-time performance is not significantly
better than that of DASSL or QSS3.

For the switching power converter circuit, the sim-
ulation errors estimated for DASSL in OpenModelica
are quite large. This is suspicious, as it should not be

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2

st
at

e
tr

aj
ec

to
rie

s

3 4 5 6 7 8 9

time (sec)
x10

-3

inductor current

capacitor voltage

0
0.0

Figure 5: Simulated state trajectories with QSS3 for
the switching power converter circuit.

the case. We noticed further that in OpenModelica for
a relaxed tolerance of 10−3, the simulation requires
a substantial CPU time of 50 sec. The output files
generated are also huge, around 500 MB, making it
impossible to check if the simulated trajectories are
correct or not. There seems to be something wrong
with the compilation performed by the OMC in this
example, but we cannot make any definite statements
regarding this behavior yet.

6 Discussion

6.1 Conclusions

In this article, an extension of the interface between
the OpenModelica environment and PowerDEVS
presented in [5] is discussed and analyzed. The im-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

665

plemented OPMD interface successfully handles dis-
continuities and allows to simulate real-world Mod-
elica models with discontinuities using the Pow-
erDEVS simulation software.

Comparisons on two example models were per-
formed, demonstrating the increased efficiency of
QSS3 over the standard DASSL solver. The proposed
OMPD interface utilizes code generated by the Open-
Modelica compiler, therefore comparisons must be
performed between QSS3 and the DASSL solver of
OpenModelica, where we achieve a more than 20-
fold decrease in the required CPU time.

Furthermore, comparisons show that the efficiency
of QSS3 simulations using code generated by the
OMC is comparable to simulations run in Dymola
using the built-in DASSL solver, in spite of the fact
that Dymola offers much more sophisticated model
preprocessing, such as a well-tuned tearing algorithm
for the efficient simulation of models involving al-
gebraic loops. Hence we are very optimistic that
there would result a significant gain in simulation
efficiency if the OMPD interface were to be imple-
mented as part of the back end of the Dymola com-
piler even in a single-processor implementation, i.e.,
without exploiting the fact that QSS-based solvers are
naturally asynchronous and can therefore be much
more easily and elegantly distributed over a multi-
core architecture for efficient real-time simulation.

6.2 Future Work

We have shown that the implemented OMPD inter-
face successfully allows a user to simulate Modelica
models with discontinuities using PowerDEVS and
QSS solvers. However, there still remain open prob-
lems that need to be addressed in the future.

As a next step full support for hybrid models needs
to be incorporated. This requires the implementation
of sample statements and when-clauses. The OMPD
interface does not yet support a stiff-system solver.
There exist already stiff QSS solvers of orders 1 to
3 [15], which, however, are not yet supported by the
interface, because they have not yet been included in
the general release of the PowerDEVS software. For
this reason, we had to be careful to choose example
systems that do not lead to stiff models.

Next, many more models will need to be tested.
In particular, we shall need to run all example codes
of the Modelica Standard Library that the OMC is
able to handle through the interface to verify that
the OMPD is capable of handling all models that are

thrown its way.
Finally, we shall make use of the new platform for

investigating parallel simulation on a multi-processor
architecture. There are many unresolved issues here
to be tackled, such as the load balancing problem, i.e.,
how to optimally distribute the simulation code over
a multi-processor architecture. The fact that QSS-
based solvers can be easily parallelized does not tell
us yet how to optimally make use of that possibility.

7 Acknowledgments

We would like to acknowledge the help and support
of the PELAB group at Linköping University and in
particular Martin Sjölund, Per Östlund, Adrian Pop,
and Prof. Peter Fritzson. Also, we would like to
thank Willi Braun of Bielefeld University and Jens
Frenkel of TU Dresden for their helpful comments
and discussions about the OMC back end.

References

[1] Tamara Beltrame and François E. Cellier.
Quantised State System Simulation in Dy-
mola/Modelica using the DEVS Formalism. In
Modelica, 2006.

[2] Federico Bergero and Ernesto Kofman. Pow-
erdevs: a tool for hybrid system modeling and
real-time simulation. SIMULATION, 2010.

[3] François Cellier, Ernesto Kofman, Gustavo
Migoni, and Mario Bortolotto. Quantized State
System Simulation. In Proceedings of Summer-
Sim 08 (2008 Summer Simulation Multiconfer-
ence), Edinburgh, Scotland, 2008.

[4] François E. Cellier and Ernesto Kofman. Con-
tinuous System Simulation. Springer-Verlag,
New York, 2006.

[5] Xenofon Floros, François E. Cellier, and
Ernesto Kofman. Discretizing Time or
States? A Comparative Study between DASSL
and QSS. In 3rd International Workshop
on Equation-Based Object-Oriented Modeling
Languages and Tools, EOOLT, Oslo, Norway,
October 3, 2010, pages 107–115, 2010.

[6] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-Interscience, New York, 2004.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

666

[7] Peter Fritzson, Peter Aronsson, Hakan Lund-
vall, Kaj Nystrom, Adrian Pop, Levon Saldamli,
and David Broman. The OpenModelica Mod-
eling, Simulation, and Development Environ-
ment. Proceedings of the 46th Conference on
Simulation and Modeling (SIMS’05), pages 83–
90, 2005.

[8] Peter Fritzson and Peter Bunus. Modelica - A
General Object-Oriented Language for Contin-
uous and Discrete-Event System Modeling and
Simulation. In Annual Simulation Symposium,
pages 365–380, 2002.

[9] Peter Fritzson and Vadim Engelson. Modelica
- a unified object-oriented language for system
modeling and simulation. In Eric Jul, editor,
ECOOP ’98 - Object-Oriented Programming,
volume 1445 of Lecture Notes in Computer Sci-
ence, pages 67–90. Springer Berlin / Heidel-
berg, 1998. 10.1007/BFb0054087.

[10] Ernesto Kofman. A Second-Order Approxima-
tion for DEVS Simulation of Continuous Sys-
tems. Simulation, 78(2):76–89, 2002.

[11] Ernesto Kofman. Quantization-Based Simu-
lation of Differential Algebraic Equation Sys-
tems. Simulation, 79(7):363–376, 2003.

[12] Ernesto Kofman. Discrete Event Simulation of
Hybrid Systems. SIAM Journal on Scientific
Computing, 25:1771–1797, 2004.

[13] Ernesto Kofman. A Third Order Discrete
Event Simulation Method for Continuous Sys-
tem Simulation. Latin America Applied Re-
search, 36(2):101–108, 2006.

[14] Ernesto Kofman and Sergio Junco. Quantized-
state systems: a DEVS Approach for contin-
uous system simulation. Trans. Soc. Comput.
Simul. Int., 18(3):123–132, 2001.

[15] Gustavo Migoni and Ernesto Kofman. Lin-
early Implicit Discrete Event Methods for Stiff
ODEs. Latin American Applied Research, 2009.
In press.

[16] Victor Sanz, Alfonso Urquía, François E. Cel-
lier, and Sebastián Dormido. System Model-
ing Using the Parallel DEVS Formalism and
the Modelica Language. Simulation Modeling
Practice and Theory, 18(7):998–1018, 2010.

[17] Bernard P. Zeigler and J. S. Lee. The-
ory of Quantized Systems: Formal Basis for
DEVS/HLA Distributed Simulation Environ-
ment. Enabling Technology for Simulation Sci-
ence II, 3369(1):49–58, 1998.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

667

Auto-Extraction of Modelica Code from Finite Element Analysis or

Measurement Data

The-Quan Pham
1
, Alfred Kamusella

2
, Holger Neubert

2

1
 OptiY e.K., Aschaffenburg Germany, e-mail: pham@optiy.eu

2
 Technische Universität Dresden, Institute of Electromechanical and Electronic Design

Abstract

This paper presents a new approach to extract Mod-

elica codes from finite element analysis or measure-

ment data automatically. The finite element model or

the real system on the test bench is adaptively sam-

pled while applying the Gaussian process with a few

number of model calculations or measurement

points. Based on these support points, a meta- or

surrogate model of the system is built. Thus, Modeli-

ca codes can be generated automatically. These al-

gorithms are implemented in the multidisciplinary

design software OptiY
®
. Its application is demon-

strated on the example of an electromagnetic actua-

tor.

Keywords: Gaussian Process; Kriging; Surrogate

Modeling; Meta Modeling

1 Introduction

The manual modeling of technical systems with net-

work elements is a challenging and time-consuming

process. Considerable experience and knowledge on

the working principles is necessary. Commercial

software systems such as Dymola, Matlab/Simulink,

SimulationX, etc. provide ready-to-use model libra-

ries for this approach. However, they do not support

the elaboration of an adequate network structure. In

order to achieve a sufficient accuracy of the models,

an expensive parameter identification has to be per-

formed frequently. This can be achieved by compar-

ing the simulation results with those from experi-

mental investigations and then adjusting the network

parameters.

An increasing demand for automatic model genera-

tion emerges from this (Fig. 1). Two ways are possi-

ble. The first way uses measurement data from a real

product or process as a basis of the model. It is not

necessary that the working principles or mathemati-

cal relations which describe the system are known.

The system is assumed to be a black box.

The second way models the system rigorously, start-

ing from real system geometry, discretizing the sys-

tem in time and space and using partial differential

equations. Mostly, the finite element method is used.

Both approaches allow automatic model code gener-

ation for the usage in system simulation.

When the equation system is known and the finite

element method is applied than a model order reduc-

tion (MOR) is possible [7]. However, MOR is not

applicable on experimental data or black box models.

Alternatively, in such cases, the adaptive Gaussian

process [1-5] can be used to generate model codes

automatically as we demonstrate in this paper. Meta

or surrogate models are derived from these black box

systems. Therefore, this approach is more general

than MOR.

Fig 1: Different modeling approaches

2 Adaptive Gaussian Process

2.1 Gaussian Process

The Gaussian process, also known as Kriging, ex-

tends a multivariate normal distribution to infinite

dimensionality [1, 2, 3]. The Gaussian process model

Y(x) is composed of the global function f(x) and the

stochastic process Z(x) representing the deviation

from the global function:

 x1[1] := 3.59319074;

 x2[2] := 3.04127299;

 p := x*y + 1.003564;

 F := 2*Integral(x1,x2);

 Model Code

 System-Simulator

Manually 6 months ...

Automatically 6 days ...

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

668

)()()(
1

xxx ZfY
p

i

ii

 .

f(x) is the polynomial regression function of any or-

der, β are the unknown regression coefficients, and

Z(x) is a stationary stochastic process having mean

zero, variance σ
2
 and correlation function R(•). x is a

m-dimensional vector of input parameters.

It is assumed, that the training data or support points

consist of the simulation or measurement data at the

input set x1, x2, ..., xn and that y(x0) is the predicted

vector. The Gaussian process model implies the

points Y0 = Y(x0) and Yn = [Y(x1), ... Y(xn)]
T
 having

the multivariate normal distribution:

R

r

r
β

F

f

Y

T

z

T

nn
N

Y
0

0

20

1

0 1
, .

f0 = f(x0) is the (p, 1)-vector of regression function

for Y(x0). F = [fi(xi)] is the (n, p)-matrix of regres-

sion functions for the training data or support points.

r0 = [R(x0, x1), ..., R(x0, xn)]
T
 is the (n, 1)-vector of

correlation functions of Yn with Y(x0), and R = R(xi,

xj) is the (n, n)-matrix of correlation functions among

Yn.

Therefore, the best linear unbiased predictor for

Y(x0) is the mean value of the multivariate normal

distribution. It represents the response surface, also

known as meta- or surrogate model, of the real sys-

tem:

)()(1

000 FβYRrβfx nTTY

.

The uncertainty of the predicted value is characte-

rized by the variance of the multivariate normal dis-

tribution:

)()()(1 0

1

0

11

0

1

00

1

0

22
rRFfFRFrRFfrRr

 TTTTT

z .

2.2 Correlation Function

The correlation function is the crucial ingredient in

the Gaussian process predictor because it contains

assumptions about the function to be predicted. It

interpolates between support points in which its val-

ue smoothly changes between 0 and 1.

Several stationary correlation functions have been

investigated to approximate a lot of real functions or

systems [1]:

 Gamma exponential

m

i

iwR
1

2121 exp),(xxxx

 Matérn class

2121

121

22

2)(

1
),(

xxxx
xx KR

 Rational quadratic

2

21

2

21 1),(
xx

xx
w

R .

w, λ and α are hyper-parameters, which have to be

identified using optimization methods in order to

maximize the likelihood function of the multivariate

normal distribution. In some cases, the Gamma-

exponential correlation function is either exponential

(γ=1) or square exponential (γ=2). For the Matérn

class, the correlation functions with ν=3/2 and ν=5/2

are frequently used.

2.3 Adaptive Gaussian Process

With the variance σ
2
 of the multivariate normal dis-

tribution, the confidence interval (3σ) of the response

surface is available at any point. Thus, it is possible

to measure the accuracy of the meta model. Besides

the variance, the expected improvement (EI) has

been introduced as a second factor for meta model

evaluation purposes [4]. EI is defined as a potential

improvement which is achieved by investigating the

input parameter x:

YYYYYY
EI

minminmin .

Φ(•) and (•) are commulative distribution functions

and probability density function of the normalized

normal distribution. A third evaluation factor is the

statistical low bounding (SLB) [5]:

 kYSLB

 with k =1,3,5...

Based on these three factors, the accuracy of the me-

ta model can be improved by using additional sup-

port points, which are suggested by the optimization

procedures to:

 maximize EI,

 maximize 3σ and

 minimize SLB.

Meta modeling is an adaptive process, which in-

volves several loops of the Gaussian process. Start-

ing from the initial sampling points, the response

surface of the modeled system is built. Based on this

response surface, additional support points are sug-

gested and make possible that the new response sur-

face is rebuilt more accurately. The process comes to

an end either if a predetermined number of support

points is computed or if a specified value of maxi-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

669

mum EI is achieved. The necessary number of sup-

port points for a specific accuracy of the surrogate

model depends on:

 the number of input parameters x,

 the correlation between input parameters and

 the degree of nonlinearity of the surrogate

model.

The adaptive Gaussian process is very efficient for

meta modeling. It requires less support points when

compared with other design of experiment (DoE)

methods in order to achieve a comparable accuracy.

3 Code-Extraction with OptiY
®

For system modeling purposes, commercial software

systems for CAD/CAE, FEA, CFD, electronic circuit

simulation, electro-magnetics, etc. are available. It is

better to use tailored programs for the different com-

ponents of a complex model. The advantages are:

 easy usage and quick handling of the soft-

ware,

 availability of expert knowledge,

 detailed and accurate component behavior

modeling,

 small number of model parameters, which

have to be identified.

For the system simulation, different component

models created by different software programs have

to be coupled. In general, this is difficult to arrange.

System models contain component models having a

large number of degrees of freedom. This results a

high computing effort for system simulation. Using

surrogate models in form of Modelica codes instead

of the underlaying component models reduces com-

putation time and cost drastically. Such fast system

models allow robust design optimization (RDO),

e. g. design for six sigma, and reliability based de-

sign optimization (RBDO) which both require a

large number of runs of system models.

The multitude of software tools normally used for

component modeling makes automatic computation

of the meta models desirable. The multidisciplinary

design software OptiY® supports the automatic gen-

eration of meta models in form of Modelica code

used in system models (Fig. 2) [7]. This software

provides generic and direct interfaces to many com-

mercial software systems for CAD, FEA, electronic

circuit simulation, CFD, multi body simulation, in-

house codes etc. Furthermore, user can easy self-

integrate external CAD/CAE-software for ease of

use later with a predefined user element and script

template using Visual Basic or C# based on the NET.

Framework® technology.

Fig 2: Auto-extraction of Modelica code with OptiY

The numerical algorithms of the adaptive Gaussian

process presented in last section are also imple-

mented in OptiY. For this reason an easy and quick-

to-use connection to external component models is

supported. Combined with the adaptive Gaussian

process, this allows the automatic extraction of Mod-

elica codes from external models or data.

With other implemented numerical algorithms in

OptiY, following valuable possibilities are also

available for the design process:

 Sensitivity Study

 Probabilistic Analysis

 Reliability Analysis

 Robustness Evaluation

 Six Sigma Design

 Robust Design

 Design Optimization

 Data Mining

 Parameter Identification

4 Electromagnetic Actuator

We use a Braille printer with an electromagnetic ac-

tuator in order to demonstrate the system simulation

with surrogate models [8] (Fig. 3).

In the first step, the system model of the printer con-

sists only of network elements which are taken from

the model library of SimulationX [9]. The resulting

network schematic is shown in Fig. 4, left side. The

OptiY®

Modelica Code

CAD

FEM

CFD

Measurement Data

Electronics

Optics

Electro-Magnetics

Multi-Body-Dynamic

Multi-Physics

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

670

model computes the dynamic behavior of the actua-

tor.

Fig. 3: Braille printer with electromagnetic actua-

tor; 1 back iron, 2 coil, 3 return spring, 4 armature,

5 guiding air gap, 6 needle, 7 paper sheet, 8 die, 9

yoke, 10 working air gap

In the second step, we replace the magnetic network

elements by a finite element model applying the

software FEMM [10] (Fig 4).

Fig 4: System model of the Braille printer; network

model (left) and finite-element model (right) of the

magnetic parts of the actuator

OptiY controls the FEMM tool, provides the input

vector of the sampling points and collects the simula-

tion results. After the simulation is finished, the sur-

rogate model of the magnetic part of the actuator is

computed by the adaptive Gaussian process and ex-

ported as Modelica code. All magnetic network ele-

ments (yellow block in Fig. 4) are replaced by surro-

gate Modelica codes of the magnetic force Fm(x, i)

and the flux density linkage (x, i) (Fig. 5). x is the

working air gap, i is the coil current. These codes are

used to build a new system model in SimulationX.

These modeling steps have to be performed manual-

ly and only once. Each update of the surrogate Mod-

elica code can be performed automatically inside of

OptiY using the graphical workflow editor.

(a)

(b)

Fig. 5: Surrogate models of the magnetic force

Fm(x, i) (a) and the flux linkage (x, i) (b)

Fig. 6 compares the dynamic behavior of the Braille

printer computed with the network model and the

surrogate model. The diagram reveals slight differ-

ences between the models due to the idealized repre-

sentation of the coil in the magnetic network ele-

ment. These differences are particularly notable

when the back iron comes into saturation. Therefore,

the system model using surrogate Modelica code

yields better results of the printer behavior because

the underlying finite element model considers spatial

inhomogeneity of the magnetic field. However, eddy

currents and magnetic hysteresis are neither covered

by the network model nor the finite element model.

A more detailed description of the example of the

Braille printer can be found in [8].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

671

Fig. 6: Dynamic behavior of the Braille printer si-

mulated by a network model (dashed) and a surro-

gate model (solid); x - printer needle displacement, i

- coil current, F - magnetic force

5 Conclusions

Modeling technical systems with network elements

is an adequate approach, however, challenging and

time-consuming if performed manually. The adap-

tive Gaussian process is an approach that allows an

efficient and automatic generation of precise compo-

nent models for system modeling. It requires only

few support points of the black box system. With

additional support points, the accuracy of the com-

puted meta model can be improved step by step if

necessary. The mathematical meta model can be

written as Modelica code. The algorithms which are

needed for this procedure are implemented in the

multidisciplinary design software OptiY
®
. It pro-

vides generic and direct interfaces to many specia-

lized commercial CAD/CAE-software tools and also

in-house codes. Within, user can easily create fast

surrogate models and export them as Modelica code

automatically.

The study case shows that the meta modeling process

is very fast and useful. The amount of identified pa-

rameters is smaller in comparison to the network

model. The system behavior is more accurate. The

application of a Braille printer with an electromag-

netic actuator has been demonstrated. Simulation

results of a network model and a surrogate model

have been compared. The use of fast meta models

allows computationally intensive optimization and

test procedures, e. g. robust design optimization.

References

[1] Rasmussen C. E., Williams C. K. I.: Gaus-

sian Process for Machine Learning. MIT

Press 2006.

[2] Santner, T. J., Williams, B. J., Notz, W. I.:

The Design and Analysis of Computer Expe-

riment. Springer New York 2003

[3] Sacks J., Welch W. J., Mitchell T. J., Wynn

H. P.: Design and Analysis of Computer Ex-

periments. Statistical Science 4, pp. 409-435,

1989

[4] Jones, R. D.: A Taxonomy of Global Optimi-

zation Methods Based on Response Surfaces.

Journal of Global Optimization 21: 345-383,

2001

[5] Xiong, Y., Chen, W, and Tsui, K.: A New

Variable Fidelity Optimization Framework

Based on Model Fusion and Objective-

Oriented Sequential Sampling. ASME Jour-

nal of Mechanical Design , 130 (11), 2008

[6] Antuolas, A. C.: Approximation of Large-

Scale Dynamical Systems. SIAM 2005

[7] OptiY Software and Documentation.

www.optiy.eu

[8] http://www.optiyummy.de/index.php/Softwa

re:_FEM_-_Tutorial_-_Magnetfeld,

see Kennfeld-Export als Modelica-Code

[9] SimulationX Software and Documentation.

www.iti.de

[10] FEMM Software and Documentation.

www.femm.info

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

672

Modelling of Uncertainties with Modelica
Daniel Bouskela Audrey Jardin

EDF R&D
6 quai Watier, 78401 Chatou Cedex, France

daniel.bouskela@edf.fr audrey.jardin@edf.fr

Zakia Benjelloun-Touimi
IFP Energies nouvelles

1 & 4, avenue de Bois-Préau, F-92852 Rueil-Malmaison Cedex, France
zakia.benjelloun-touimi@ifpenergiesnouvelles.fr

Peter Aronsson
MathCore Engineering

Teknikringen 1F, SE-58330 Linköping, Sweden
peter.aronsson@mathcore.com

Peter Fritzson
Linköping University, Department of Computer and Information Science

SE-58183 Linköping, Sweden
peter.fritzson@liu.com

Abstract

Many industrial applications, e.g. in power systems,
need to use uncertain information (e.g. coming from
sensors). The influence of uncertain measurements
on the behavior of the system must be assessed, for
safety reasons for instance. Also, by combining in-
formation given by physical models and sensor
measurements, the accuracy of the knowledge of the
state of the system can be improved, leading to better
plant monitoring and maintenance.
Three well established techniques for handling un-
certainties using physical models are presented: data
reconciliation, propagation of uncertainties and in-
terpolation techniques. Then, the requirements for
handling these techniques in Modelica environments
are given. They apply to the Modelica language it-
self: how to specify the uncertainty problem to be
solved directly in the Modelica model. They also
apply to model processing: what are the pieces of
information that must be automatically extracted
from the model and provided to the standard algo-
rithms that compute the uncertainties.
Modelica language extensions in terms of two new
pre-defined attributes, uncertain and distribu-
tion, are introduced for Real and Integer variables.
This is needed to differentiate between certain (the
usual kind) variables and uncertain variables which
have associated probability distributions. An algo-

rithm for extracting from the Modelica model the
auxiliary conditions needed by the data reconcilia-
tion algorithm is given. These new features have
been partially implemented in the MathModelica tool
(and soon OpenModelica).
Keywords: data reconciliation; propagation of un-
certainties; distribution probability laws; Jacobian
matrix; Modelica language extensions; model proc-
essing

1 Introduction

The major power plant projects at EDF mainly con-
cern improvements of existing plants (e.g., lifetime
extension up to 60 years, power upgrading, reliabil-
ity improvements, etc.) as well as the construction of
new plants (e.g., nuclear, renewable energy, etc.). In
that context, EDF has acquired a strong background
in the modeling and simulation of electrical and
power plant applications for improved investigation
and operation.
The physical state of a plant is given by sensor
measurements which are subject to uncertainties.
Hence, good uncertainty assessment is necessary for
the proper monitoring of the plant operation set
point, and to comply with the safety margins. By
combining information given by physical models and
sensor measurements the accuracy of the knowledge

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

673

of the state of the system can be improved, leading to
better plant monitoring and maintenance [6].
Today, engine simulation is important at IFP to solve
the problems of air pollution and energy depletion.
Many aspects of engine operation are poorly under-
stood because of the problems encountered when
attempting to measure the variables that describe the
engine’s operation. This issue complicates both the
engine’s control and design. Uncertainty manage-
ment with parameter sensitivity studies are promis-
ing techniques to improve the measurement quality,
and subsequently the control and design of internal
combustion engines in the years to come.
In order understand the strongly non-linear behav-
iour of the physical systems under study, IFP has
developed a new methodology based on an evolu-
tionary experimental design, kriging and statistical
modeling concepts, that are more adequate and accu-
rate than the traditional linear regression tech-
niques [4].
EDF and IFP are currently developing advanced li-
braries for modeling power plants and engines in
Modelica, and are therefore interested in reusing the-
se models for uncertainty computations. The main
benefit will lie in the delivery of integrated environ-
ments for system modeling and uncertainty studies.
The objective of this article is to make a proposal to
extend the Modelica language for the handling of
uncertainties. First, several important use cases are
presented: data reconciliation, propagation of uncer-
tainties, kriging and response surface methodology.
Then the basic requirements for the handling of such
techniques with Modelica are established. Finally, a
technical proposal for an extension of the Modelica
language is given.

2 Techniques for handling uncertain-
ties

2.1 Data reconciliation

The objective of the data reconciliation technique is
to improve the knowledge of the physical state of a
system using redundant physical measurements of
the system and the physical laws that govern the be-
havior of the system. The increase of knowledge is
obtained by reducing the uncertainty intervals of the
variables of interest (i.e., that define the state of the
system), or in other words by finding the reconciled
values of the physical state which are closest to the
true values of the physical state, which by definition
cannot be exactly known.

By definition, the vector of improvements ν is de-
fined such as:

ν+= xx̂
where x and x̂ denote resp. the vector of measured
values and the vector of improved values, also called
reconciled values.
The data reconciliation technique can be formally
expressed as an optimization problem, where the
goal is to find the vector of improvements such as
the objective function 0ξ attains its minimum value.

()0
1

0 min ξννξ
ν

⇒⋅⋅= −
x

T S

xS is the covariance matrix, which is symmetric by
definition. Its diagonal elements are:

2

%95

2

=

λ
i

i

x
x

w
s

with
ixw being the half-width confidence interval of

the measured value ix , and 96.1%95 ≈λ corre-
sponding to a level of confidence of 95%.
Its off-diagonal elements are:

kiki xxikxx ssrs ⋅⋅= ,,

where ikxr , is an empirical (estimated) correlation
coefficient. Because of the difficulty of estimating
these coefficients, they are often set to zero by mak-
ing the assumption that the measured variables are
uncorrelated. Then:

22

0
ˆ

∑ ∑

=

 −
=

i i x

i

x

ii

ii
ss

xx ν
ξ

The reconciled values are constrained by the physi-
cal laws such as mass, energy and momentum bal-
ances, state functions, correlations, etc, which are
expressed in the mathematical model of the system.
The subset of the model equations that constrain the
reconciled values are called the auxiliary conditions,
and denoted)(⋅f . Hence 0)ˆ(=xf , whereas

0)(≠xf in general. This is why)(xf is called the
vector of contradictions.
The algorithm for computing the reconciled values is
given in the VDI 2048 standard [5]. This standard
considers that the probability function of each meas-
ured value follows a Gaussian distribution law that
the measurements are performed while the system is
in steady-state, and that the measured values are reli-
able enough so that the vector of improvements is
small.
As a consequence of the two last hypotheses,)(⋅f
needs only to be static, and may be linearized around
the measured values:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

674

() () vF
x
xfxf ⋅−=⋅

∂
∂

−= ν

where F is the Jacobian matrix of the auxiliary
conditions.
It can then be shown that the reconciled values are
given by:

() ()xfFSFFSxx T
x

T
x ⋅⋅⋅⋅⋅−=

−1ˆ

The covariance matrix of the reconciled values is
given by:

() x
T

x
T

xxx SFFSFFSSS ⋅⋅⋅⋅⋅⋅−=
−1

ˆ

The uncertainties associated with the reconciled val-
ues can then be computed from the knowledge of
this matrix:

2

%95

ˆ2
ˆ

=

λ
i

i

x
x

w
s

The Gaussian distribution hypothesis is verified a
posteriori by applying a 2χ test on the reconciled
values. This check is done globally by checking the
following condition:

2
%95,0 rχξ ≤

where 2
%95,rχ is given by a 2χ -table and r is the

number of auxiliary conditions. Local checks on in-
dividual variables may be performed as well.
In practice, the actual implementation of the method
differs slightly from its theoretical formulation in
order to avoid the cumbersome matrix inversions. To
that end, they are replaced by the resolution of linear
equations. For instance, the reconciled values are
computed using the following procedure:

*ˆ fFSxx T
x ⋅⋅−=

with *f such as:

() ()xffFSF T
x =⋅⋅⋅ *

*f may be solved numerically using the Newton
algorithm.

2.2 Propagation of uncertainties

From the knowledge of estimated sources of uncer-
tainties, it is possible to derive the uncertainties of
variables of interest by propagating the sources of
uncertainties through a model of the system.
To that end, EDF R&D has developed a complete
methodology. This methodology is divided into four
steps, as illustrated in Figure 1.

Step A: problem specification

?end

: min/max

Figure 1: Steps of the uncertainty propagation methodol-
ogy developed at EDF R&D [8].

Step A aims at identifying the sources of uncertain-
ties x , the variables of interest y , and the model of
the system ()⋅h . The uncertainty study is then for-
mally expressed as:

()dxhy ,=

where d denotes the variables treated as certain (i.e.
whose uncertainties can be neglected).
A decision criterion must also be defined to indicate
how the uncertainties of the variables of interest have
to be quantified and to determine the final objective
of the uncertainty study. The criterion can be deter-
ministic, by assessing a minimum and a maximum
value for each variable of interest, or probabilistic
like the probability of exceeding a given threshold, a
quantile, or a central dispersion.
Step B aims at quantifying the sources of uncertain-
ties. When the deterministic criterion is chosen, a
min and a max value must be associated with each
variable. When the probabilistic criterion is chosen,
the sources of uncertainties are treated as the compo-
nents of a random vector X . For each individual
component iX , the probability distribution must be
assessed. Also, the statistical dependency between
two components iX and jX should be evaluated in
the form of correlation coefficients.
Step C is the uncertainty propagation through the
model. When a deterministic criterion is chosen,
finding the minimum and the maximum values of y
is quite easy if the model is monotonous wrt. x .
Otherwise this search may become a potentially
complex optimization problem. To alleviate this dif-
ficulty, some optimization algorithms or simplified
approaches based on design of experiments to esti-
mate extreme values of y may be used. When a
probabilistic criterion is chosen, the difficulty is to
characterize the probability distributions of the ran-
dom vector ()dXhY ,= . For the assessment of ex-
pectation/variance or the probability of exceeding a
threshold, both approximation methods (e.g. quad-
ratic combination, FORM-SORM methods) and sam-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

675

pling methods (e.g. Monte Carlo simulations, Latin
Hypercube simulations) can be used. For the assess-
ment of a quantile, only sampling methods can be
applied (e.g. Wilk’s formula). Contrary to approxi-
mation methods, sampling methods make no as-
sumption on the model ()⋅h , but may be very CPU-
time consuming.
Step C’ is the ranking of the sources of uncertainties
and the sensitivity analysis. Chosen indicators are
used to rank the uncertainty sources with respect to
their impact on the uncertainties of the system’s
characteristics of interest. Depending on the result of
this ranking, the modeling of the sources of uncer-
tainty can be adjusted (or some sources of uncertain-
ties can be neglected) to perform another propaga-
tion.
An uncertainty study rarely finishes after a first
round of steps A, B, C and C’. Step C’ actually plays
a crucial role since ranking the results highlights the
variables that truly determine the relevance of the
final results. If the uncertainty laws of some input
variables have been chosen too roughly during step
B, it is necessary to collect additional information on
the influential sources of uncertainty and re-apply
the whole methodology to refine the analysis, and
so-on until satisfaction.
Probability distributions may be expressed in the
form of parametric distribution laws with the help of
a limited number of parameters θ .
Two examples of such parametric distribution laws
are given below [8].

Normal (or Gaussian) dis-
tribution

()σµθ ,=

µ is the mean value

σ is the standard deviation

()

 −
⋅−⋅

⋅⋅
=

2

2
1exp

2
1,

σ
µ

πσ
θ xxf X

Gamma distribution

()γλθ ,,k=

0>λ , 0>k

() () ()() ()() ()xxx
k

xf k
X γγλγλλθ 1exp, 1 ⋅−⋅−⋅−⋅⋅

Γ
= −

where ()⋅Γ is the gamma function

() () dtttk k ⋅−⋅=Γ ∫
+∞ −

0

1 exp

The choice of the correct distribution law depends on
the application. For instance, the normal distribution
is relevant in metrology.
The dependency between variables may be expressed
using the copula theory or the Pearson correlation
coefficient [15, 16]. The latter is defined as:

()
ji

jXiX
XX

ji
P XXCov

σσ
ρ

⋅
=

,
,

where ()ji XXCov , is the covariance between iX
and jX , and iX

σ and jX
σ are respectively the

standard deviations of iX and jX .
Several techniques may be used for propagating the
uncertainties.
The quadratic combination method is a probabilistic
approach based on the Taylor decomposition of Y
wrt. X around the mean point

X
µ .

The Monte-Carlo method is a numerical integration
method using sampling, which can be used, for ex-
ample, to determine the expectation iY

µ and the
standard deviation iY

σ of each variable of interest
iY .

Several ranking techniques may be used, such as
those based on the quadratic combination’s impor-
tance factor or the Pearson correlation. They aim at
finding the influence of the inputs

iX on the outputs
jY .

2.3 Interpolation techniques

Mathematical models of physical systems are impor-
tant tools in many fields of scientific research. But
better knowledge of systems behavior and increas-
ingly desired accuracy lead to higher complexity of
models, which, in this context, sometimes are not
sufficient to meet the expectations of the experi-
menters.
Uncertainty studies must in particular be adapted to
handle such complex models. The following section
describes some examples of advanced methods that
are especially used at IFP: the kriging method, the
experimental design theory and the Response Sur-
face Methodology (RSM).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

676

2.3.1 Kriging with non-linear trend
One of the studies at IFP using the kriging method is
the analysis of a catalytic system for pollution con-
trol, which consists in post-treating smoke produced
by diesel engines through NOx trap (i.e. Nitrogen-
Oxides trap [3]).
As a surrogate of the real system, a kinetic model
was developed to represent the physico-chemical
phenomenon, depending on parameters (e.g. pre-
exponential factors, activation energies, adsorption
constants) that cannot be obtained from theoretical
considerations. Therefore, experiments are required
to calibrate the model. A criterion is suggested for
experimental designs adapted to kinetic parameters
identification, when the model is highly non-linear
and the kinetic model does not fit well experimental
data. These differences observed between kinetic
model and experimental data, can be represented by
a Gaussian process realization. Gaussian process of-
ten accounts for correlated errors due to lack of fit.
More explicitly, the model is represented by:

()β,xfy =

where y is the response vector (e.g. the NOx con-
centration), x the experimental conditions and β
the kinetic parameters of the model represented by
the non-linear function f .
Then, the first model is corrected and replaced by:

() ()xZxfy
θσ

β ,2, +=

where ()xZ
θσ ,2 is a centered Gaussian process with

Gaussian covariance kernel specified by a variance
2σ and a vector θ of scale parameters.

As an example, the covariance kernel can be given
by a kriging approach which is commonly used in
the field of computer experiments. However, in tra-
ditional use, the trend is linear. Its estimation is ob-
tained through an analytical formula as well as its
uncertainty.
The first difficulty is to estimate the trend parameters
considering its non-linear behavior. Similarly to non-
linear regression, the traditional analytical formula
for β is then replaced by a minimization procedure.
In this case, the theory of kriging with non-linear
trend can be applied as summarized below.
The covariance kernel of the centered Gaussian pro-
cess is defined by:

() ()() ()hRhxZxZCov θθσθσ
σ ⋅=+ 2

,, 22 ,

where the Gaussian spatial correlation is used and
expressed by:

()

−=ℜ∈∀ ∑

=

k

i
ii

k hhRh
1

2exp, θθ

Let m be the number of design points and
()Tmyyy K1= the outputs observed at loca-

tion ()Tmsss K1= , ℜ∈is . Using maximum
likelihood estimation, expression of kriging predictor
ŷ and variance prediction ϕ at a new location 0x

are given by:
() () () yRFFRFfrRFyRrxy TTTT ⋅⋅⋅⋅⋅⋅−⋅⋅−⋅⋅= −−−−− 11111

0ˆ

() ()
RFRF

T rfrRFx T +−⋅⋅+⋅=
⋅⋅

−
−1

12
0 1σϕ

where:

uAuu T
A

⋅⋅= −1

() ()()TmsxRsxRr −−= 0ˆ10ˆ ϑθ
K

[]mi ;1∈∀ , []mj ;1∈∀ , ()jiij ssRR −=
θ̂

()β̂,sfF =

()β̂,0xff =

and the parameters are obtained by solving recur-
sively and simultaneously the following simultane-
ous equations:

() ()()FyRFy T −⋅⋅−= −1minˆ
β

β

() ()FyRFym T −⋅⋅−⋅= −− 11σ̂

 ⋅= − m

R
/112ˆminargˆ σθ

The minimization algorithm determines θ̂ through
the modified Hooke and Jeeves method, described in
Kowalik and Osborne [11]. For more details, see
Lophaven et al. [12]
Notice that the predictor ŷ and the variance predic-
tion ϕ depend on the estimator β̂ through F and
f . As a consequence, in universal kriging, kriging

predictor and prediction variance expressions cannot
be interpreted as conditional expectation and vari-
ance (see Helbert et al. [13]). This is due to the fact
that only uncertainties induced by the estimation of
trend parameters are taken into account, and not
those created by approximating variance and correla-
tion parameters. Hence, it can underestimate the un-
certainty on the response and lead to very important
difficulties for non-linear models.

2.3.2 Experimental Design theory and Re-
sponse Surface Methodology

The Response Surface Methodology (RSM) has been
described in detail by Dejean et al. [14]. The purpose

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

677

is to approximate a complex process with respect to
uncertain parameters belonging to a region of inter-
est. Engineers define a performance measure of the
process called response y (e.g. cumulative oil pro-
duction, field net present value, …) and some input
variables 1x , 2x , 3x , … called factors, that are as-
sumed to influence the response (e.g. petrophysics,
field structural map, well locations, economic fac-
tors, …). The input variables correspond to the prior
uncertainties on the process. RSM provides tools for
identifying the factors that are influential factors,
such as illustrated below:

K

K

+⋅⋅⋅+
+⋅+⋅+⋅+=

2121

3322110

xxaa
xaxaxaay

where 0a , 1a , … are constant coefficients obtained
by fitting a set of numerical simulations.
The main interest of this RSM model is its negligible
cost to get new values of the response compared to
CPU-time consuming simulations. This regression
model can then be used to make predictions of the
process over the uncertain domain and to generate
probabilistic distribution of the response using Mon-
te Carlo sampling technique.
A sufficient number of response values correspond-
ing to different factor values is necessary in order to
fit this model. These values should be representative
enough of the behavior of the response in the domain
of variation of the factors. Thus the experimental
design theory is applied, since, for a given objective
and a given uncertain domain, it delivers the right set
of model simulations to be performed in order to
properly model the response behavior in the uncer-
tain domain. Many experimental designs are avail-
able depending on both the objective (sensitivity
study or risk analysis study) and the acceptable CPU-
time. The selected model simulations must:

 (a) be numerous enough so that all the coeffi-
cients ia of the model can be estimated and

(b) ensure good quality of the model, both in
terms of accuracy and prediction.

For sensitivity studies, the objective is to identify the
uncertain parameters that influence the response. In
that case, the RSM model does not need to be very
accurate and classical sensitivity designs are the two-
level fractionals.
For risk analysis purposes, the RSM model should be
of good quality in order to deliver accurate predic-
tions. The composite designs are in that case the
most appropriate. All those designs are well known
and tabulated. They have the best properties with
respect to the objective of the study, but they can still
be too expensive or on the contrary too coarse in a

specific context. In that case, some other designs
such as small composite designs or optimal designs
can be used.
Once the RSM model has been fitted, it can be used
to compute probabilistic distributions of the produc-
tion forecasts as a function of the main model uncer-
tainties. This is commonly called a technical risk
analysis.

3 Requirements on the Modelica lan-
guage and tools

In this section, the requirements are given independ-
ently from the existing Modelica specifications and
tools. There are two kinds of requirements: those
who apply to the language itself, and those who ap-
ply to the model processor. The model processor is
defined as the tool that has the analysis and symbolic
manipulation capabilities to produce the desired re-
sult from the Modelica model.

3.1 Identifying the uncertain variables

In the following paragraphs, only continuous vari-
ables will be considered.
There are two broad kinds of variables: certain or
uncertain. Certain variables are single valued vari-
ables, whose values are known (explicitly given as
inputs of the model), or unknown (implicitly given
as outputs of the model). Uncertain variables are
random variables which represent probability distri-
butions.
Formally, a certain variable could be seen as an un-
certain variable with a normal distribution of zero
standard deviation (i.e. a Dirac function). It is how-
ever preferable to continue handling these two types
of variable separately, because of the infinities asso-
ciated with Dirac functions.
In the case of uncertainty propagation, the sources of
uncertainty are the inputs and the variables of inter-
est are the outputs of the computation. Input means
that the distribution law of the variable is given, and
output means that the distribution law is computed.
Output uncertain variables may also be called obser-
vation variables.
In the case of data reconciliation, uncertain variables
are considered as both inputs and outputs, the differ-
ence between the outputs and the inputs being the
vector of improvements.
Note that the words “input” and “output” should not
be confused here with the semantics of the Modelica
keywords “input” and “output”. As they indeed have

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

678

different meanings, other keywords will be used
when implementing these notions in Modelica, as
described in Section 4.
 [R1] The Modelica language should give the possi-
bility to declare uncertain variables as inputs only or
as outputs only (for the propagation of uncertainties),
or as inputs/outputs (for data reconciliation).

3.2 Assigning parametric distribution laws to
uncertain variables

An uncertain variable ix may be characterized by
the parameters of its distribution law

,...),(
iii xxx βαθ = .

In the frequent case of a normal distribution, these
parameters are the mean value

ixµ and the standard
deviation

ixσ . Then, ix may be written as:

ii xxi wx ±= µ

where the half-interval
ixw is a multiple of

ixσ :

ii xxw σλ ⋅=

λ being a function of the level of confidence. For
instance, for a level of confidence of 95%,

96.1%95 =λ . This expression means that there are
95% chances that the value of ix is in the interval
[]

iiii xxxx σλµσλµ ⋅+⋅− %95%95 ; .
 [R2] The Modelica language should give the possi-
bility to assign one parametric distribution law to
each uncertain variable by specifying its name (e.g.
normal distribution) and the values of its parameters
(e.g. mean value and standard deviation, or alterna-
tively mean value, confidence level and half-interval
in the case of a normal distribution).

3.3 Specifying dependencies between uncertain
variables

 [R3] The Modelica language should give the possi-
bility to specify the dependencies between uncertain
variables in the form of correlation matrices (covari-
ance matrices, matrices of Pearson correlation coef-
ficients, etc.).

3.4 Handling redundant information for data
reconciliation

When performing data reconciliation, redundant in-
formation is fed into the model as shown in the fol-
lowing example (see Figure 2).

1Q

2Q

4Q

3Q

Figure 2: Example of data reconciliation for flow meas-
urements

In Figure 2, the hydraulic circuit is instrumented
with four flow meters, which give respectively the
following values and uncertainties (all quantities are
given in kg/s):

±=
±=
±=
±=

5.05.5
1.06.2
5.05.2
0.10.5

4

3

2

1

Q
Q
Q
Q

Writing the mass balance equations for the system
yields:

+=
+=

324

321

QQQ
QQQ

Considering the values at the center of the uncer-
tainty intervals, it is obvious that the equations sys-
tem is not satisfied. However, the equations may be
satisfied by carefully choosing the proper values
within the uncertainty ranges. This is what is actually
done when applying the data reconciliation tech-
nique, which yields:

±=

±=

±=

±=

3.03.5ˆ
1.06.2ˆ
3.07.2ˆ
3.03.5ˆ

4

3

2

1

Q

Q

Q

Q

Note that the uncertainty intervals have been re-
duced.
At the present time, the Modelica language only
handles square systems of physical equations (having
as many unknowns as equations). The question is
how to consider the four variables for the model: are
they inputs or outputs? If they are all considered as
inputs, then the system is over-constrained. If they
are all considered as outputs, then the system is un-
der-constrained. Two of them could be considered as
inputs, and the other two as outputs (6 possibilities)
to obtain a square system. Note that the last alterna-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

679

tive is applicable to the reconciled values, all possi-
bilities being equivalent as the reconciled values sat-
isfy the auxiliary conditions.
The most natural way is to consider the four vari-
ables as both inputs and outputs of the data recon-
ciliation algorithm, and use requirement [R1] to that
end, so no additional requirement on the Modelica
language is necessary. However, as the term “in-
put/output” for data reconciliation is somewhat am-
biguous, because it may be confused with the terms
“input” and “output” for DAE simulation, the vector
of inputs/outputs for data reconciliation will be
called the vector of control variables (or control vec-
tor) in the rest of the paper, because it controls (de-
fines) the state of the system.
Once the data reconciliation algorithm is completed
and the variables are assigned their reconciled val-
ues, they can be considered as standard inputs or
outputs to have a square system, as required for DAE
simulation. Doing so, the same model could be used
for data reconciliation and simulation. Data recon-
ciliation would be used to compute an improved state
from redundant measurements, and the result would
be readily used as the initial state of subsequent sim-
ulations.
In the above example, all mass flow rates would be
declared as inputs/outputs for data reconciliation, but
only two of them (no matter which) would be de-
clared as standard input variables for simulation.

3.5 Extracting the auxiliary conditions for data
reconciliation

The auxiliary conditions)(⋅f constitute the subset
of the model equations that constrain the control var-
iables.)(⋅f must be extracted from the model be-
cause, as shown in Section 2.1, 0)(≠xf before
data reconciliation and)(xf must be evaluated by
the data reconciliation algorithm, where x is the
control vector.
The extraction of)(⋅f should be fully automatic, as
the auxiliary conditions may be scattered throughout
the whole model, which is usually a graph of con-
nected model components.
 [R5] The model processor should be able to extract
the auxiliary conditions from the model.

3.6 Computing the Jacobian matrix of the aux-
iliary conditions for data reconciliation

The Jacobian matrix of the auxiliary conditions is
defined as:

x
xfF

∂
∂

=
)(

where)(⋅f are the auxiliary conditions, extracted
from the model equations, and x is the control vec-
tor. Note that F is not square as the number of con-
trol variables is greater than the number of auxiliary
conditions due to the fact that data reconciliation is
based on the use of redundant information.
 [R6] The model processor should be able to com-
pute the Jacobian matrix of the auxiliary conditions
wrt. the control vector.

3.7 Performing the data reconciliation algo-
rithm

Once the quantities x , xS ,)(⋅f and F are known,
it is possible to run the data reconciliation algorithm.
Two alternatives are possible. The first is to write a
Modelica script of the algorithm that could be com-
piled with the model. The second is to write a pro-
gram in another environment such as Python [7], that
would have access to a Modelica functional interface
that would provide the values of the above quantities
upon request from the main program.
In the above example:

()TQQQQx 4321=

=

2

%95

2

%95

2

%95

2

%95

4321 ,,,
λλλλ

QQQQ
x

wwww
diagS

()

−+
−−

=
432

321

QQQ
QQQ

xf

−

−−
=

1110
0111

F

[R7] The model processor should be able to provide
x , xS ,)(⋅f and F to the data reconciliation algo-
rithm.

3.8 Performing uncertainty propagation algo-
rithms

The uncertainty propagation methodology is imple-
mented in OpenTURNS, which is an open source
tool developed by EDF/R&D, Phimeca and
EADS [8].
The knowledge of the sources x , the model)(⋅f
and the variables of interest y is sufficient to run the
OpenTURNS algorithms.)(xfy = must be evalu-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

680

ated upon request from OpenTURNS, and its value
y returned to OpenTURNS.

Note that it is much easier to use OpenTURNS than
the data reconciliation in a Modelica environment, as
in the case of OpenTURNS no processing is required
on the model other than identifying which variables
constitute the vectors x and y .)(⋅f is the whole
original model, as compared to the extracted auxil-
iary conditions for data reconciliation.
The uncertainty propagation algorithms may thus be
performed by coupling the Modelica environment
with OpenTURNS, as shown in Figure 3. The cou-
pling principle is to automatically generate the inter-
face between OpenTURNS and the simulation code
compiled from the Modelica model. This can espe-
cially be done by extending the Modelica compiler.

Coupling
(code generation

via FMI ?)

Environment dedicated to
uncertainty computations

(Open TURNS)

Modelica model (.mo)

Modelica
extension

model SteamGenerator
 parameter Real d;
 uncertain x(distribution =
”gaussian”, mean=12, …);
equation
…
end SteamGenerator

x

y

Modelica compiler
(OpenModelica or ???)

Compiled model
(.exe, .dll, .fmu ???)

Wrapper

Probabilistic laws
(script)

Figure 3: Principle for coupling OpenTURNS with a
Modelica platform

[R8] The model processor should be able to interface
the model with OpenTURNS.

4 Proposal for a Modelica language
extension

This section gives a preliminary design proposal of
Modelica language extensions for supporting uncer-
tainties. This proposal will be considered for test im-
plementation in MathModelica [10] and OpenMode-
lica [9].
The proposal to support requirement [R1], described
in Section 3.1, is to introduce a new attribute for the
built-in classes Real and Integer. This attribute
should have an enumeration type that allows specify-
ing it as given (i.e., kind of “input”), sought (kind
of “output”) or refine (kind of “input/output”
whose uncertainty is refined). In order to distinguish
it from the already established semantics for input
and output variables in Modelica we propose the fol-
lowing naming:

type Uncertainty = enumeration(
 given "a known uncertainty",
 sought "an unknown uncertainty",
 refine "a known uncertainty to be refined"
);
The attribute is named uncertain, here showed for
the Real type (as described in the Modelica language
specification):
type Real // Note: defined with Modelica syntax although
predefined
 …
 parameter Uncertainty uncertain;
equation
 …
end Real;
Let us illustrate how this is used by an example:
model Process
 parameter Real p1=0.1;
 Real v1;
 Real v2(uncertain=Uncertainty.given);
equation

…
end Process;
To support [R2], described in Section 3.2, we pro-
pose another new attribute called distribution
for the built-in classes Real and Integer.
type Real // Note: defined with Modelica syntax although
predefined
 …
 parameter Distribution distribution;
equation

 …

end Real;
The following distributions are proposed (tool ven-
dors could be allowed to extend this list themselves):
partial record Distribution
 parameter String name;
end Distribution;

record NormalDistribution
 extends Distribution(
 final name="Normal");
 parameter Real mu,sigma;
end NormalDistribution;

record ExponentialDistribution
 extends Distribution(
 final name="Exponential");
 parameter Real lambda,gamma;
end ExponentialDistribution;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

681

record GammaDistribution
 extends Distribution(final name="Gamma");
 parameter Real lambda,k,gamma;
end GammaDistribution;

record LogNormalDistribution
 extends Distribution(
 final name="LogNormal");
 parameter Real mu, sigma,gamma;
end LogNormalDistribution;

record TriangularDistribution
 extends Distribution(
 final name="Triangular");
 parameter Real a,b,m;
end TriangularDistribution;

record UniformDistribution
 extends Distribution(
 final name="Uniform");
 parameter Real a,b;
end UniformDistribution;

record BetaDistribution
 extends Distribution(
 final name="Beta");
 parameter Real r,t,a,b;
end BetaDistribution;

record PoissonDistribution
 extends Distribution(
 final name="Poisson");
 parameter Real mu;

end PoissonDistribution;
The rationale for introducing the distributions and
the uncertainty properties as attributes for the built-in
classes Real and Integer is the flexibility that they
bring. With this approach it becomes possible, for
instance, to change several uncertainties at once by
using parameterization:
model Process
 replaceable
 parameter Distribution d =
 Distribution("");
 parameter Uncertainty u =
 Uncertainty.given;
 Real x(distribution=d, uncertain=u);
 Real y(distribution=d, uncertain=u);
…
end Process;
The requirement [R3] to support the addition of de-
pendencies between variables is performed at the top

level of a model. It is only there that the modeler
knows what the dependencies are, since they might
appear due to e.g. connections of components. What
is required is to be able to express a dependency be-
tween two uncertain variables and give a correlation
coefficient. This coefficient can be of different kinds,
as briefly mentioned in Section 3.3. The user has to
select one kind of coefficients, e.g. covariance or
Pearson. It is not possible to mix different kinds in a
model. We propose to support R3, not by extending
the Modelica language, but instead by allowing the
user to introduce a set of equations at the top level
that the tool can recognize, as follows:
model System
 Process p1,p3;
 Process2 p2;
 CovCorrelation[:] covCorrelation =
 {CovCorrelation(p1.q,p2.q,0.1),
 CovCorrelation(p2.q,p3.q,0.2)};
end System;
The rationale for this design to support R3 is that
there is no need for a language extension (which
avoids to make the language more complex). A simi-
lar record definition is required for Pearson correla-
tion coefficients.
With the above language extensions, it becomes pos-
sible for a Modelica tool to automatically fulfill re-
quirements [R4, R5 and R6]. How this is performed
is explained in the next section.

5 New features for model processing

Apart from the necessary language extensions pro-
posed in previous section, the analysis of models
with uncertainties requires some new features from a
Modelica tool perspective.
For data reconciliation it is required that the set of
equations f that constrain the control variables can be
extracted. Remember that these equations together
with the uncertain variables typically result in an
underdetermined system, i.e., there are more vari-
ables than equations. The method of extracting the
equations is as follows. Given a model M with vari-
ables vector X:
1. Perform a causality analysis by running BLT

sorting on the complete system. This yields a se-
ries of blocks Bi (i=1 to n).

2. Remove from M all blocks Bi that are square
wrt. the subset of X solved in earlier blocks
(B1…Bi-1) referenced by Bi.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

682

3. Remove from M all blocks Bi that do not influ-
ence X (i.e., downstream the causality analysis
from X).

4. If there are one or more components from X that
do not belong to any of the remaining blocks Bi,
raise an error.

5. Otherwise, f is the set of the equations corre-
sponding to the remaining blocks Bi.

The result from step 5 is the set of equations that
constrain the control variables. This approach has
one problem that needs some attention. The blocks
identified can both contain uncertain control vari-
ables and normal variables. In such a case, it can be
necessary to eliminate the normal variables to reduce
the equations to only contain control variables. Such
eliminations can only be performed if for instance all
inverses of used functions are available.
The tool will also construct the Jacobian matrix of
this function as required by the data reconciliation
algorithm.
The connection with OpenTURNS to be able to per-
form uncertainty propagation is straightforward.
OpenTURNS simply requires a computational block
that can compute the outputs given a certain input.

6 Results

The proposed language extensions have been imple-
mented in the OpenModelica compiler frontend, and
the extraction algorithm for data reconciliation pre-
sented in the previous section has been implemented
in MathModelica.
The example in Figure 4 is used as a test case. It is
the model of a fluid pipe system with a pump feeding
the system and a volume collecting the output flow
from the system.

Figure 4 Example of pipe system with uncertainties

The pipe model is defined as:
model Pipe
 import SI = Modelica.SIunits;
 Port port_a;
 Port port_b;
 SI.VolumeFlowRate q

"flow from port_a to port_b";
 SI.Pressure dp "pressure drop over pipe";

 parameter Real k=0.0001
"Friction factor";

 parameter Real rho=1000.0
"density (water by default)";

equation

 q=port_a.q;
 dp=port_a.p - port_b.p;
 port_a.q + port_b.q=0;
 dp=k/rho*q*abs(q);
end Pipe;
The uncertain variables are declared at the system
level as follows (all pipes have q as uncertain vari-
able to be refined):
model PipeSystem
 Pipe pipe1(q.uncertain = Uncer-
tainty.refine);
 Pipe pipe2(q.uncertain = Uncer-
tainty.refine);
…
end PipeSystem;
Figure 5 shows a simulation of the pipe system when
a ramp signal is applied to the pump. Due to the
same friction coefficients of the pipe segments the
flows are symmetrically distributed through the sys-
tem.

Figure 5 Simulation of the pipe system with Math-
Modelica

Running the extraction algorithm and thereafter
eliminating undesired variables result in the
following equations, which constitute f(X) (note that
X here is {q1,q2,q3,q4}):

q1−q2−q3 = 0; (1)
0.0001*q2*abs(q2)−0.0001*q3*abs(q3) = 0; (2)
q2+q3−q4 = 0; (3)

In this example all undesired variables have been
eliminated resulting in a system only containing the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

683

uncertain variables that are candidates for refine-
ment. Equations 1 and 3 originate from the connect
statements (flows are summed up to zero), and equa-
tion 2 comes from the pressure drop over the pipes.
This example is by intent very similar to the example
in Figure 2, so we can reuse the same measured val-
ues and uncertainty intervals. The only difference is
that we have here three constraint equations instead
of two.
The data reconciliation algorithm has been run with
Mathematica, that used the auxiliary equations f ex-
tracted by MathModelica from the original model.
Below are the calculations for new measurements
and confidence matrix:
xr=x-Sx.Transpose[F].Inverse[F.Sx.Transpose[F]].fx
{{5.22801},{2.61526},{2.61275},{5.22801}}

Sxr=Sx-Sx.Transpose[F].Inverse[F.Sx.Transpose[F]].F.Sx
{{0.00865708,0.00441341,0.00424367,0.00865708},
{0.00441341,0.00224998,0.00216344,0.00441341},
{0.00424367,0.00216344,0.00208023,0.00424367},
{0.00865708,0.00441341,0.00424367,0.00865708}}

This results in new estimates as:
Q1 = 5.2 ± 0.2
Q2 = 2.6 ± 0.1
Q3 = 2.6 ± 0.1
Q4 = 5.2 ± 0.2

This result differs somewhat from the original exam-
ple in Figure 2. The reason for this is the extra equa-
tion for the pressure drop, which adds another con-
straint to the system. A reasonable conclusion is that
this reconciliation run performs a better job com-
pared to the original example, simply because it has
more knowledge of the system in the form of one
additional constraint.

7 Conclusions

Two techniques for the handling of uncertainties
with Modelica have been presented, and the re-
quirements from a modeling language and tool per-
spective have been identified. Furthermore their sup-
port in the OpenModelica and MathModelica tools
has been implemented in order to be able to specify
the uncertainties directly in the Modelica models and
to extract automatically the necessary pieces of in-
formation for the data reconciliation algorithms. The
extraction algorithm has been tested and verified on
a simple Modelica model. The results seem promis-
ing for future developments and real industrial vali-
dation, which will be done in the near future in the

scope of the OPENPROD project. The connection
with OpenTURNS has not been implemented yet,
but the authors foresee no major issues in this work,
which is also planned to be done soon.

Acknowledgements

This work was partially supported by the pan-
European ITEA2 program and the French and Swed-
ish governments through the OPENPROD project.

References

[1] Fang K.T., Li R., Sudjianto A., Design and Mod-
eling for computer experiments, Chapmann &
Hall/CRC, 2006

[2] Santner T., Williams B., Notz W., The Design
and Analysis of Computer Experiments, Springer,
Berlin, 2003.

[3] Canaud M., Wahl F., Helbert C., Carraro L., De-
sign of experiments for smoke depollution from
the output of diesel engine, submitted.

[4] Ferraille M., Busby D., Uncertainty management
on a reservoir workflow, in International Petro-
leum Technology Conference, IPTC13768, 2009.

[5] Verein Deutscher Ingenieure, Uncertainties of
measurement during acceptance tests on energy-
conversion and power plants – Fundamentals,
Standard VDI 2048, 2000.

[6] Zornoza J., Favennec J.-M., Szaleniec S., Pied-
fer O., Feedwater Flow-rate And Thermal Power
Monitoring And Adjustment By Data Reconcilia-
tion In NPPs, in Proceedings of the 51st ISA
POWID Symposium, June 8-13, Scottsdale,
USA, 2008.

[7] Torabzadeh-Tari M., Fritzson P., Sjölund M.,
Pop A., OpenModelica-Python Interoperability
Applied to Monte Carlo Simulation, in Proceed-
ings of the 50th Scandinavian Conference on
Simulation and Modeling (SIMS’2009), available
at www.scan-sims.org. Fredericia, Denmark. Oc-
tober 7-8, 2009.

[8] EDF-EADS-PhiMeca, OpenTURNS (version
0.13.1) – Reference Guide, 2007, available at:
http://trac.openturns.org/wiki/Documentation.

[9] Open Source Modelica Consortium. OpenMode-
lica, www.openmodelica.org

[10] MathCore Engineering AB. MathModelica.
www.mathcore.com

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

684

[11] Kowalik J., Osborne M.R., Methods for uncon-
strained optimization problems, Elsevier, New
York, USA, 1968.

[12] Lophaven et al., Aspects of the Matlab toolbox
DACE, in Informatics and mathematical model-
ing, DTU, 44p., 2002.

[13] Helbert et al., Assessment of uncertainty in com-
puter experiments: from universal kriging to
Bayesian kriging, in Applied Stochastic Models
in Business and Industry, vol. 25, pp. 99-113,
2009.

[14] Dupraz P., Modélisation et commande avancées
d’un moteur diesel à injection directe, 1998.

[15] Dixon W.J., Massey F.J., Introduction to statisti-
cal analysis (4th edition), McGraw-Hill, 1983.

[16] Embrechts P., Lindskog F., McNeil A., Model-
ling Dependence with Copulas and Applications
to Risk Management, in Handbook of Heavy Tai-
led Distributions in Finance, ed. S. Rachev, Else-
vier, Chapter 8, pp. 329-384, 2003.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

685

Recording of Model Frequency Responses
and Describing Functions in Modelica

Tilman Bünte
German Aerospace Center (DLR)

Institute of Robotics and Mechatronics, Germany
Tilman.Buente@dlr.de

Abstract

An assistant Modelica package is introduced which
supports the determination of model frequency re-
sponses or describing functions of Modelica models,
as the case may be. The result is frequency response
data which can be used for further analysis such as
stability properties of the system in closed loop con-
trol or the derivation of linear time invariant (LTI)
model approximations. The paper addresses inter alia
proper scheduling of excitation frequency and ampli-
tude, a brief theory of describing functions (har-
monic linearization), the Modelica classes imple-
mented in the package, and some application exam-
ples.

Keywords: Frequency response; describing function;
system identification.

Figure 1: Total Modelica model for frequency re-
sponse data acquisition of a plant model.

1 Introduction

Frequency responses are applied both for analysis
and design of control systems. Multiple useful
graphical representations of the frequency response
exist like the Bode plot, the frequency response locus
(also denoted Nyquist plot for open loop considera-

tions), or the Nichols chart. A number of established
criteria for evaluating the dynamic properties of lin-
ear systems refer to their frequency response. Also
open loop shaping and closed loop shaping control
design methods are based on frequency responses.
Moreover, some methods for system identification
are available which are based on frequency response
data.

1.1 Approaches for frequency response deter-
mination

Two methods for frequency response determination
exist which are fundamentally different. The first
method is to develop a white box model based on
physical insight. After operations such as lineariza-
tion and further model transformation there is a
Laplace transfer function which may be evaluated
for any value of the frequency along the imaginary
axis s = j. With Modelica models, the first ap-
proach is already half way done; the Bode plot of the
linearized model can be used for comparison and
assessment of the second one.
The second approach is a black box approach apply-
ing correlation methods to experimentally acquired
in- and output data. The focus of this paper is on the
second method whereupon “experiment” is consid-
ered the simulation of a Modelica model. The tool
provided with the presented package yields fre-
quency response data sampled over frequency being
well comparable with FRD models in Matlab.

1.2 Frequency response vs. model linearization

Linearization of Modelica models may not be suit-
able to obtain the aimed result in all cases. Modelica
modeling and simulation tools like Dymola or Ma-
pleSim provide methods for model linearization. If a
linearized model exists then computing and plotting
the frequency response is straightforward, for exam-
ple by using methods from the LinearSystems library

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

686

mailto:Tilman.Buente@dlr.de

[1]. Nevertheless, standard linearization may yield
unsatisfactory results. Imagine the case of a narrow
dead zone characteristic at the system’s input. Then
the gain of the linearized system is zero. However, it
is evident that zero gain transfer behavior is a defi-
cient system description. Other examples of nonlin-
earities which yield problematic linearization results
include hysteresis, breakaway force, slackness, and
so on. In other cases system specifications directly
refer to frequency responses which were determined
using sinusoidal inputs with certain amplitude. An
example from the domain of vehicle dynamics will
be given in section 5. Again, standard linearization is
not appropriate.
On the other hand recording the frequency response
data in a real world or simulation experiment re-
quires that the regarded system is stable.

1.3 Frequency response of nonlinear systems

Generalizing the frequency response from linear to
nonlinear systems there is the notion of a describing
function which will be explained in section 4. For
ease of presentation, in this paper we will understand
the term frequency response in the expanded sense of
the describing function: It is the quotient of two
phasors. The denominator of this quotient is the
phasor of the sinusoidal input function with preas-
signed amplitude. The numerator is the phasor of the
first harmonic of the steady state system response
after all transient portions have decayed. Generally
spoken, the frequency response hence is not only a
function of the frequency. It may depend also on the
input amplitude, cf. section 4.

1.4 Contribution of the Modelica package and
this paper

Frequency response related topics having been ad-
dressed in the Modelica context so far include the
investigation of powertrain oscillations in the Simu-
lationX environment [2] and the modal approach for
flexible bodies [3]. Due to the lack of a generic
Modelica frequency response data acquisition tool, it
occurs so far that alternative environments such as
Matlab are used for post processing simulation re-
sults of Modelica models [4]. The new package pre-
sented in this article is a contribution to close the
gap.
The paper is organized as follows. The issue of ade-
quate system stimulation is addressed by section 2.
The procedure used for frequency response and de-
scribing function determination is explained in 3. For
convenience, in section 4 the theory of describing
functions is briefly described. Section 5 is dedicated

to the Modelica specific implementation and the dis-
play of application examples.

2 Plant stimulation

For simplicity, in this paper the term plant stands for
a Modelica model whose frequency response is
searched for. Contrary to real world experiments, in
this case we do not need to consider the effect of dis-
turbances or noise. Of course, the approach is explic-
itly not restricted to controlled systems.
Basically, the experimental frequency response de-
termination of a plant presumes that it is stimulated
in an adequate manner. Excitation signals can be dis-
tinguished discrete valued vs. continuous, determi-
nistic vs. random, periodic vs. step or impulse, etc.
The appropriateness depends on the class of systems
to be identified and the method applied for identifi-
cation. In any case all system modes of interest
should be stimulated to be apparent significantly
enough in the output signal. For details, interested
readers are referred to the technical literature, e.g.
[12].

2.1 Quasi-harmonic plant excitation

Here, we confine our considerations to quasi-
harmonic excitation signals, i.e. the stimulus is based
on a sinusoidal function. Moreover, both the ampli-
tude and the frequency may depend on time. Here,
we follow up the concept of sinus sweep or chirp
signals. The function

)(2sin))(,()(tFtftAtu (1)

is used as plant input where

t

ftF
0

d)()((2)

is the integral of the instantaneous frequency f. Inci-
dentally, F(t) indicates the number of elapsed periods
of the sine function and is therefore called period
function in the sequel. The amplitude A may depend
on time and/or frequency.
In the simplest case, the frequency is constant:

Startconst)(ftf

tftF Startconst)(
(3)

However, in this case the stimulus consists of only
one single frequency. A frequency response determi-
nation covering a frequency range thus needs several
separate experiments each with its own frequency
value along a sufficiently fine grid. Each of the ex-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

687

periments should take long enough such that the
plant gets steady state before any serviceable re-
sponse data can be collected.
More generally, with (1), (2) it is possible to stimu-
late the plant continuously over a range [fStart , fEnd] of
frequencies f(t), i.e.

fStart f(t) fEnd (4)

each with adjusted amplitude in one single experi-
ment. However, the amplitude and frequency should
be varying so slowly, that the plant can be consid-
ered in a steady state oscillation at any time. In real-
ity this assumption cannot be assured perfectly, oth-
erwise the total experiment would take an infinite
duration. Rather, a scheduling for amplitude and fre-
quency is searched for such that accuracy of the re-
sult is traded off against efficiency of the experi-
ment. We start from the conception that it is most
efficient to change the frequency and/or amplitude
just as much as is necessary such that the transient
effects remain negligible. At the same time it should
be kept in mind that after plant excitation the plant
response will be recorded and processed (cf. section
4) for frequency response data acquisition. Ideally
for efficiency, each period contributes serviceable
i.e. non-redundant data.
For illustrating the frequency scheduling problem
lets assume that the sinusoidal excitation signal
sweeps the interval from fStart = 0.1 Hz to fEnd = 10 Hz
with a total number of n = 10 periods. Commonly,
for frequency sweeps either linear

)(Startlinear tkftf l

2
Startlinear 2

)(t
k

tftF l
(5)

or exponential
t

ekftf Startlexponentia)(

t
e

e

k
k

f
tF

)ln(
)(Start

lexponentia
(6)

frequency functions are used. Note that the parame-
ters kl , ke can be chosen each such that fEnd is
reached after n periods by solving f(tEnd) = fEnd and
F(tEnd) = n.
However, the plot of the period function over the
logarithm of the frequency as shown in Figure 2 re-
veals, that in both cases, i.e. blue line for the linear
case and red line for exponential the number of peri-
ods at upper frequencies is disproportionately high.
In fact, too few periods are spent at low frequencies.
As a result the excitation signal is warped during the

first couple of periods and cannot be considered si-
nusoidal (cf. Figure 3).

Figure 2: Plot of completed periods over logarithmic
frequency.

Figure 3: Comparison of sine sweep signals (lower)
using different frequency functions of time (upper
plot).

On the other hand, the Bode diagram as the most
commonly adopted representation of the frequency
response uses logarithmic frequency scaling. This
suggests using a different frequency progression
such that the periods are equidistantly distributed
over the logarithmic frequency, corresponding to the
green line in Figure 2. A frequency progression func-
tion can be derived which exhibits the just formu-
lated property:

tkf

f
tf

c

)ln(1
)(

Start

Start
ratio periodconstant

)ln(

))ln(1ln(
)(Start

ratio periodconstant
c

c

k

tkf
tF

(7)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

688

For proof let tk be an arbitrary instant of time and tk+1
denote the time one period later then the correlation

)(1)(1 kk tFtF (8)

holds by definition (1). Solving (8) for tk+1 yields

 1
)ln(

11

Start
1

c

c

c
k kf

k

k
t . (9)

Evaluation reveals that

 c

k

k k
tf

tf
1 (10)

i.e. the frequency ratio over any period of u(t) is con-
stant independent of time, q.e.d. The frequency in
fact increases exponentially with the period function
rather than with time and each period does contribute
a sample of the frequency response along an equidis-
tant grid of the logarithmic frequency.
Figure 3 compares the corresponding time signals of
the three variants of frequency progression during an
experiment. In all simulations the total number of
periods is nPeriods=10 and the frequency sweeps
from 0.1Hz to 10Hz, cf. Figure 2. The result reveals
that with the frequency progression defined by (7)
the comparatively high expense at low frequencies
implicates far better sinusoidal shape but longer total
simulation time.

2.2 Scheduling of excitation amplitudes

Using (1) as plant excitation signal, not only the fre-
quency can change with time. Also the amplitude
can be made varying according to one’s needs as for
example to reduce high output amplitudes at poorly
damped system modes and thus to prevent damage to
real world systems if applicable. Moreover, ampli-
tude scheduling will be used later in the context of
describing functions.

3 Frequency response calculation al-
gorithm

As indicated in the introduction, the frequency re-
sponse is understood as a complex-valued gain
which is defined as the ratio of the complex-valued
phasor of the output signal’s first harmonic

 gyt

gg yty

j

eˆ,~ (11)

over the complex-valued phasor of the sinusoidal
input

 tAtu je~ (12)

that is

 gy

A

y

u

y
AN gg

j

e
ˆ

~

~
),(. (13)

The complex-valued gain),(AN i.e. the frequency
response data is tabled over sampled values of fre-
quency and/or excitation amplitude. It contains the
information about gain and phase of the plant’s
transfer behavior and may be displayed in a Bode
diagram. Discrete Fourier transformation of input
and output signals is used for its calculation. In de-
tail, the algorithm used in the Modelica package at
hand executes the following steps:

1. The plant’s input is stimulated with a sinus

sweep according to (1). Along the way the fre-
quency and/or amplitude should be changing so
slowly that the plant can approximately be as-
sumed steady state all the time. Frequency pro-
gression according to one of the options (3), (5),
(6), or (7) is assumed.

2. By definition periods begin when F(t) takes on
integer values.

3. An integer parameter nSamples defines how
many samples of the plant response are taken per
period. Triggered by corresponding events when
(F(t)nSamplesbecomes integer then plant
response data is sampled and collected over the
current period. (The Real parameter can be set
arbitrarily in the interval 0.

Figure 4: Exemplary signals of the elapsed period:
Input signal (blue), plant response (red), harmonic
approximation (green).

4. After the completion of a period the data is proc-

essed in order to identify the complex-valued
gain assigned to the current frequency, cf. to
Figure 4 for illustration. Therefore, the complex–
valued Fourier coefficient of the first harmonic
of the plant response is computed. It results from
simple discrete Fourier transform of the time se-
ries formed by the collected data of the elapsed

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

689

period. Also the complex–valued Fourier coeffi-
cient of the first harmonic of the input signal
time series is computed. (The latter depends only
on A, nSamples, and and can therefore be
computed beforehand without the need for sam-
pling.) The complex-valued gain is the quotient
of these two Fourier coefficients.

5. Procedure steps 1-4 need to be repeated for each
of the grid frequencies and/or amplitudes. The
complex-valued gains representing the frequency
response data are successively stored in a table.

6. Finally, the total frequency response may be dis-
played in a Bode diagram and used for any of the
purposes discussed in the introduction.

4 Describing functions und dual lo-
cus method

The matter of this section is adopted from [5], [6]
and presented here for convenience only and to sup-
port the understanding of the application example in
section 5.6.

4.1 Assumptions

Limit cycles are periodic oscillations performed by
non-linear systems. Without external input signals,
the oscillations sustain with a certain frequency and
amplitude. Since in many cases they are not desired,
criteria that enable non-linear stability analysis are
useful. An approximation method that can be applied
for analyzing the existence and properties of limit
cycles for a class of non-linear systems is the dual
locus method [9], [10]. This method requires several
assumptions. The first assumption is that it is feasi-
ble to represent the open-loop system as a series
connection of a single nonlinearity n and the remain-
ing linear part G(s). Therefore, the total system con-
sists of a single loop as depicted in Figure 5.

Figure 5: Closed loop formed by a nonlinear part n
and a linear filter G.

The analysis of limit cycles starts with the assump-
tion that the system is in the state of a sustained os-
cillation. Another assumption is necessary for the
application of the dual locus method: the linear part

G needs to have distinct low-pass properties in the
frequency range of the considered oscillation and at
higher frequencies. As a rule of thumb, a drop of -40
dB per decade is required.

4.2 Harmonic linearization

With these assumptions it is reasonable to assume
that the signal u being present at the input of the non-
linearity is approximately sinusoidal. This holds be-
cause u is equal (except for the sign) to the output
signal c of the linear part. Since the higher harmonics
are attenuated by the low-pass effect of G, the output
of the non-linearity can be approximated by its first
harmonic. Thus, the consideration of the non-
linearity can be restricted to its transmission of sinu-
soidal input signals, and a linear approximation of
the non-linear system can be obtained. This approach
is called harmonic linearization.
Furthermore, a describing function N of the nonlin-
ear system n is defined according to (13) as the fre-
quency response from a sinusoidal input signal to the
first harmonic of the output signal. For static charac-
teristics, the describing function depends only on the
input amplitude A. Input and first harmonic of the
output are in phase and thus N(A) is real-valued. The
describing function may also be applied to non-linear
dynamic elements that produce a frequency- and
amplitude-dependent phase shift. Then the describ-
ing function N(A) is complex-valued. For some
elementary non-linearities, the describing functions
can be derived analytically [10] by Fourier series
expansion of the periodic signal y.

4.3 Dual locus method

If the system shown in Figure 5 is in a sustained os-
cillation and the abovementioned assumptions hold
then the transmission properties of the non-linearity
can be approximated by its describing function. This
leads to the condition

1) j(), (GAN

or
),(

1
) j(

AN
G

(14)

which is denoted harmonic balance. If this equation
holds for a pair (A) then the system is capable of
performing an oscillation with this frequency and
amplitude. The lower representation of (14) provides
the foundation for the graphical dual locus method:
limit cycles are possible if there exist intersection
points between the locus G(j) of the linear part and
the locus of the negative-inverse describing function
-1/N(A). From the parameterization of both loci at

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

690

the intersection, the values of and A can be deter-
mined as properties of the corresponding limit cycle.
For a criterion reflecting the stability of limit cycles
the reader is referred to [6].

4.4 Example: Describing function of a rate lim-
iter

Figure 6: Ideal rate limiter.

As an example Figure 6 shows an ideal realization of
a rate limiter. (Note that this realization is not suit-
able for numeric simulation since the infinite gain of
the switch induces chattering. A remedy is replace-
ment of the switch by a limiter with high gain.)
In Figure 7 some time responses of the rate limiter
are shown. Various sinusoidal input signals are ap-
plied with different frequency and amplitude A.

Figure 7: Input and output of a rate limiter at vari-
ous values of A/R.

Figure 8: Locus (solid line) and negative inverse
locus (dashed line) of the rate limiter describing
function.

Due to the memory of the integrator this dynamic
non-linearity is not representable by a static charac-
teristic. Nevertheless, a describing function can be
derived. The shape of the output signal in relation to
the input signal only depends on the ratio A/R.
Therefore, the describing function only depends on
this composed parameter.
Figure 8 shows both the locus and negative-inverse
locus of N(A). More details of the rate limiter de-
scribing function derivation can be found in [11], [6].

5 Application of the Modelica pack-
age and examples

In this section, the Modelica package application is
shown in the context of Dymola 7.4 used as model-
ing and simulation environment.

5.1 Stimulus signal generator implementation
in Modelica

A model class Chirp which can be used to create the
plant stimuli described in section 2.1 is included in
the Modelica package. By parameter settings it al-
lows for choosing adequate frequency progression as
well as signal amplitude scheduling according to
one’s needs.

5.2 Implementation of the algorithms for fre-
quency response data recording

In Figure 1 the standard application is shown. The
model class FR_Recording covers the total function-
ality necessary for recording the frequency response
data of the block plant. To avoid confusion note that
the interconnection shown here is not a closed loop
in the classical meaning, since the output of
FR_Recording does not depend on its input. Rather,
stimulation and analysis functionalities are combined
in one model class for easier use. The output of
FR_Recording is internally connected to the output
of a Chirp instance thus providing the stimulus for
the plant. To complete the interconnection the plant
response is input to the FR_Recording instance in
order to make it accessible there for analysis. That is
then performed according to the steps demonstrated
in section 3.
Before starting the simulation, the Dymola Experi-
ment Setup needs to be well defined. Only variable
step solvers should be used since the events triggered
by the procedure e.g. for data sampling are not equi-
distant in time. This is due to the continuously
changing frequency but equidistant sampling along
the period function.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

691

Attention should be paid to the OutputStore set-
tings. Depending on the model complexity storing all
variables may easily exceed the available memory or
disc space. Therefore, it is recommended to only
store Output variables only at events (no Equidistant
time grid storage). An instance of the FR_Bus model
class should be used and connected as shown in
Figure 1. On the bus all signals are available which
are relevant for the frequency response evaluation.
They all have the output prefix and will therefore be
exclusively saved during simulation and be available
in the Dymola variable browser, cf. Figure 9. In ad-
dition, for large models consider to set the protected
attribute to both the plant and the FR_Recording in-
stance to prevent excessive data storage.

Figure 9: Dymola variable browser showing signals
on fR_Bus

Figure 10: Dymola dialog for setting parameters of
the FR_Recording class.

Figure 10 shows the dialog window for setting the
parameters of the frequency response data recording
tool. With parameter m the signal dimension of the
plant output is set, e.g. m = 1 for single output plants.
For the chirp stimulus fStart and fEnd define the fre-
quency interval, nPeriods is the total number of si-
nusoid periods. One of four frequency progression
types corresponding to (3), (5), (6), or (7) can be se-
lected. The dependency of the stimulus amplitude on
time and/or frequency is provided by a replaceable
model, which allows the user to define it according
to his needs. nSamples is used to specify the number
of data points per period to collect time series data
for discrete Fourier transform. Finally, some parame-
ters can be specified to control the saving of fre-
quency response data to disc. After the simulation
signals for plotting one of multiple representations of
the frequency response are available in the Dymola
variable browser as shown in Figure 9.

5.3 Example: Frequency response of a mass-
spring-damper system

The mass-spring-damper plant depicted in Figure 11
is used as an example to demonstrate how frequency
response data can be recorded by means of a simula-
tion while using classes from the Modelica package.

Figure 11: Mass-spring-damper system.

Therefore, the block plant in Figure 1 is made an
instance of the mass-spring-damper model. It can
just as well be modeled as a second order transfer
function

2
00

2

2
0

2)(

)(
)(

sDssu

sy
sGmsd (15)

Thus, the frequency response can be calculated ana-
lytically by replacing s = j and the experimental
result can be compared to this precise analytic refer-
ence (denoted theory in the plots below). The pa-
rameters of the mass-spring-damper plant are chosen
such that the resonance frequency is /2=10Hz
and the damping coefficient is D=0.2.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

692

Figure 12: Influence of frequency progression on the
resulting Bode plot

In Figure 12 first attempts are shown to determine
the frequency response of the mass-spring-damper
system using only twenty excitation periods. The
simulation is repeated with each of the three fre-
quency progression variants (5), (6), (7). With the
constant period ratio frequency progression accord-
ing to (7) the Bode plot frequency grid points are
equally distributed along the logarithmic frequency
axis which appears to be the better choice when
compared to linear (5) or exponential (6) progres-
sion. Figure 13 continues the simulations shown in
Figure 12. However, now the total number of periods
n is increased from one simulation to the next
whereas the frequency progression with constant
period ratio is kept. The comparison shows that the
accuracy of the resulting frequency response data
clearly improves with increasing nPeriods and con-
verges towards the analytic reference. The reason is
that the transient portion of the plant response looses
significance when the frequency is changing at a
lower rate. In practice the precise reference normally
is not known. Then, a reasonable number of periods
can be found by gradual increase until the change of
the result appears tolerable. In addition, at least for
linear systems the plant response offset and/or the
deviation between the plant response and its first
harmonic can be observed to find out whether the
system is sufficiently steady state. Both quantities
are also calculated by the tool after each completed
period.

Figure 13: Influence of the number of periods nPe-
riods on the resulting Bode plot.

5.4 Example: Frequency response of a complex
multi-body vehicle model

The recording of frequency response data using the
Modelica package does not only work for simple
academic models.

Figure 14: Bode plot of a complex multi-body vehi-
cle model at 80 km/h; The input is the steering angle,
outputs are lateral acceleration (blue curve) and yaw
rate (red curve).

In Figure 14 the analysis of a multi-body vehicle
model with 54 states from our VehicleControls li-
brary [7] is shown. The comparison of the vehicle

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

693

steering response w.r.t. gain and phase of yaw rate
vs. lateral acceleration allows for assessment of re-
spective criteria [13]. The gains are normalized with
the respective steady state gains here.
The frequency response data is represented by nice
smooth curves even in face of the complexity and
nonlinearity of the plant. Dassl was used as integra-
tion method. The total simulation of 434 seconds
took 169 seconds on a 3.0 GHz MS Windows PC.

5.5 Frequence response of multi-input multi-
output (MIMO) models

Multiple plant outputs can be handled without any
modification but setting the number m of plant out-
puts correctly, cf. Figure 10. The frequency response
data for each frequency sample will then be vector
valued, correspondingly.

Figure 15: Total Modelica model for frequency re-
sponse recording of a MIMO plant model.

Handling of multiple inputs is no difficulty either.
Apparently a stimulation of multiple inputs at the
same time is not expedient. Hence the analysis
should be performed by stimulating one input only in
one simulation. Figure 15 shows the frequency re-
sponse data recording setup for an exemplary MIMO
plant model exhibiting five outputs and three inputs.
The active input can be selected by appropriate
choice of the matrixGain.K parameter vector.

5.6 Application example for describing func-
tions

The tool at hand can be applied to determine describ-
ing functions in exactly the same manner as for fre-
quency response data recording. The example shown
here examines the rate limiter from section 4.4.
Therefore, the plant instance in Figure 1 is rede-
clared by the corresponding rate limiter Modelica
class (using R=1 here). The combined parameter
A/R is the only relevant independent quantity, see
section 4.4. Therefore we can choose the variation of
either or A. In this example we choose constant
by setting fStart = fEnd = 1Hz and specify a varia-
tion of A with time, instead. (This proceeding is suit-
able especially for all static non-linearities.) The re-

sults are shown in Figure 16 in terms of the Bode
diagram. The describing function may as well be
represented as a locus or negative inverse locus,
which was already shown in Figure 8.

Figure 16: Bode plot of rate limiter describing
function.

Now, the dual locus method is applied to investigate
whether the closed loop shown in Figure 17 can per-
form limit cycles. Here, the linear system model is
the second order lag system already considered in
section 5.3, however, with a damping coefficient of
D=0.1 here.

Figure 17: Closed loop with second order linear
system and rate limiter in series connection.

Figure 18 shows both the negative inverse describing
function locus of the rate limiter (green line) and the
locus of the linear part. Again the analytical result
(blue line) and the recorded frequency response data
(red line) are compared. The discrepancy between
them is noticeable. This is due to the specific graphi-
cal representation. With the locus, the highest gain
(which occurs at the resonance peak, compare Figure
13) appears most prominent. Obviously, during fre-
quency response data recording the system would
need some more time here to become steady state
and to produce a preciser locus.
Two intersection points between the Nyquist locus of
the linear part and the locus of the negative inverse
rate limiter describing function exist. Further analy-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

694

sis yields that only the lower intersection point repre-
sents a stable limit cycle [6].

Figure 18: Dual locus plot for the detection of limit
cycles of the system shown in Figure 17.

A time simulation of the total system from Figure 17
with dedicated initial condition in fact exhibits the
limit cycle shown in Figure 19. The frequency and
amplitude of the limit cycle correspond to the
parameterization of the loci at the lower intersection
point.

Figure 19: Limit cycle performed by the system
shown in Figure 17.

5.7 System identification from frequency re-
sponse data

To complete the application examples, briefly the
option of identifying LTI models (linear time invari-
ant models) from frequency response data is dis-
cussed. Imagine the task to derive a handy LTI rep-
resentation of a rather complex nonlinear Modelica
model when application of the linearization method
(cf. section 1.1) is not reasonable. This may be the
case e.g. due to one of the problems illustrated in
section 1.2. The LTI representation can be used e.g.
for model based control. Moreover, models repre-
sented in terms of frequency response data cannot be
simulated and therefore, back-translation into a
model which can be numerically time-integrated may
be useful. For example, it may serve as an alternative

complexity reduced model in a simulation frame-
work where scalable models are beneficial.
As stated in the introduction, the frequency response
data generated with our package well complies with
FRD models in Matlab. Hence, the methods avail-
able with the Matlab System Identification Toolbox
(e.g. the pem function) can be used to derive LTI
models of user-preassigned order. Another way
which completely avoids Modelica foreign tools is
the following: Choose an LTI model representation
from the LinearSystems library [1] and an adequate
system order. In the next step optimize (i.e. identifiy)
the parameters of the LTI model. This can be done
e.g. by using the model calibration feature from the
Dymola Design Library such that the Bode diagram
fits the frequency response data sufficiently well.

6 Conclusions

An easy-to-use tiny Modelica package for automatic
recording of frequency response data and describing
functions was presented. The frequency response
representations which are resulting from quasi-single
frequency harmonic stimulation are significantly
smoother than what can be obtained from spectral
analysis after stimulation with a multi-frequency
(e.g. noise) input signal.
The question into which greater library this package
will be usefully integrated and what needs to be done
for seamless assembly still needs to be resolved.

7 Acknowledgement

The presented results were compiled in the context
of the project FAIR (Fahrwerk-Antrieb-Integration
ins Rad) [8]. Frequency responses of multiple vehi-
cle concept models were to be generated for com-
parative assessment in one of the work packages. On
behalf of the FAIR project team the author wishes to
express our gratitude to Bayerische Forschungs-
stiftung for funding.

References

[1] Baur, M., Otter, M., Thiele, B.: Modelica Li-
braries for Linear Control Systems. Proc. 7th
Modelica Conference, Como, Italy, 2009.

[2] Abel, A., Nähring, T.: Frequency-Domain
Analysis Methods for Modelica Models.
Proc. 6th Int. Modelica Conference, Bielefeld,
Germany, 2008

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

695

[3] Heckmann, A. et. al: The DLR FlexibleBod-
ies library to model large motions of beams
and of flexible bodies exported from finite
element programs. Proc. 5th Int. Modelica
Conference, Vienna, Austria, 2006.

[4] Edrén, J. et. al.: Modelica and Dymola for
education in vehicle dynamics at KTH. Proc.
7th Int. Modelica Conference, Como, Italy,
2009.

[5] Ackermann, J., Bünte, T.: Robust prevention
of limit cycles for robustly decoupled car
steering dynamics. Kybernetika, 35(1):105-
116, 1999.

[6] Ackermann, J. et. al.: Robust Control: The
Parameter Space Approach. Springer, Lon-
don, 2002.

[7] EUROSYSLIB Project Profile,
http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf, 2007.

[8] FAIR Project profile http://www.forschungs-
stiftung.de/index.php/Projekte/Details/FAIR-
Fahrwerk-Antrieb-Integration-ins-Rad.html,
2009.

[9] Gelb, A., Vander Velde W.: Multiple-Input
Describing Functions and Nonlinear System
Design. New York: MacGraw-Hill, 1968.

[10] Siljak, D.: Nonlinear systems: the parameter
analysis and design. New York: Wiley, 1969

[11] Duda, H.: Fliegbarkeitskriterien bei begrenz-
ter Stellgeschwindigkeit. Ph.D. thesis, Tech-
nische Universität Braunschweig, April
1997. Forschungsbericht 97-15, Deutsche
Forschungsanstalt für Luft- und Raumfahrt
e.V., Köln.

[12] Pintelon, R., Schoukens, J.: System identifi-
cation: a frequency domain approach. IEEE
Press, New York, 2001.

[13] Mitschke, M., Wallentowitz, H.: Dynamik
der Kraftfahrzeuge. 4. Auflage, Springer-
Verlag, 2004.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

696

http://www.itea2.org/public/project_leaflets/EUROSYSLIB_profile_oct-07.pdf
http://www.itea2.org/public/project_leaflets/EUROSYSLIB_profile_oct-07.pdf

On using model approximation techniques for better
understanding of models implemented in Modelica

Anton Sodja Borut Zupančič

Faculty of Electrical Engineering, University of Ljubljana
Tržaška 25, 1000 Ljubljana, Slovenia

{anton.sodja,borut.zupancic}@fe.uni-lj.si

Abstract

Modelica enables rapid development of detailed mod-
els of heterogeneous and complex systems. However,
resulting models are as complicated as reality itself
and therefore it may be hard to identify causes for
model behavior or verify that model behaves correctly.
A traditional engineering approach is to use intuition
and experience to identify important parts of the model
with the highest impact on model behavior for spe-
cific scenario. Numerous model order reduction and
simplification techniques (i.e., metrics used by these
methods) have been developed to automatically esti-
mate important parts of the models for a certain sce-
nario and thus alleviate reliance on subjective factors,
i.e., intuition and past experience.

In this paper are discussed model order reduction
and simplification techniques (e.g., metrics used by
these techniques for rankings of elements) which are
applicable to wide range of Modelica models built
from already available libraries. Modelica models are
translated to set of differential-algebraic equations and
for the latter there are numerous tools for model order
reduction already available. However, these tools are
not designed for helping users understand the model’s
behavior and the reduced model may be hard to un-
derstand by the user because the structure of the origi-
nal model is lost. Hierarchical decomposition of the
model must be presereved and if the model is de-
veloped with a graphical schematics then elements
(nodes) of the schematics must be ranked. Therefore
we adapted energy-based metrics used in ranking of
bond-graphs’ elements to much more losely defined
Modelica’s schematics, so they can be used comple-
mentary with ranking methods that work with equa-
tions.

Keywords: model order reduction; model simplifi-
cation; verification

1 Introduction

An important aspect of the Modelica language design
is user interaction for efficient modeling of large, com-
plex and heterogeneous physical systems.

Models are usually decomposed in several hierar-
chical levels. On the bottom of hierarchy are submod-
els of basic physical phenomena which are most com-
monly stated as a set of (acausal) differential-algebraic
equations and it is thus most conveniently that these
equations can be entered directly (e.g., without a need
for any kind of manipulation or even transformation
to some other description formalism). On higher hi-
erarchical levels, model is described graphically by
schematics (i.e., object diagrams) and the obtained
scheme usually reflects the topology of the system.
Model representation in Modelica is thus understand-
able also to domain specialists unfamiliar with com-
puter simulation of dynamic system.

Modelica is object-oriented modeling language and
thus includes features such as inheritance and replace-
able models. This language features are necessary for
efficient implementation of model libraries [13], but
they increase implementation complexity and make
browsing sources of the components from libraries
more difficult. For example, component DynamicPipe
– a model of a straight pipe with distributed mass,
energy and momentum balances – from the Standard
Modelica Library consists of four base models and
three replaceable elements which are also models with
complex inheritance hierarchy. The description of
the pipe’s dynamics, equations of balances and ther-
modynamic state of the medium in the pipe, is split
among more than ten (partial) models to achieve effi-
cient component reuse and prevent code duplication.
This kind of model decomposition might not have a
physical meaning – it only addresses implementation
issues.

In practice, domain specialists usually already have

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

697

some calculations (e.g. in Excel) which they want to
use for verification of the model implemented in Mod-
elica and also for clarifying unexpected behavior of
(usually) much more detailed and complex model in
Modelica. So, a matching between calculations they
have and model in Modelica is desired. However,
modeling environments supporting Modelica currently
do not provide many tools that would facilitate inves-
tigating and exploring the model. Most of the com-
plex models are build up with use of different model
libraries and when the documentation of those libraries
do not suffice, especially when the submodels are
highly customized components (with replaceable sub-
components and modifications), it is necessary to look
under the hood of the used components. But due to
complicated implementation of library components, it
is undoable for most domain specialists.

Engineers use experience and intuition to determine
important parts of the model which have the high-
est impact on system’s dominant dynamics or model’s
simulation response in specific scenario. In an attempt
to diminish reliance on subjective factors such as ex-
perience, numerous modeling metrics and methodolo-
gies have been developed. They usually require strict
modeling formalisms and thus not much effort was put
into integrating them into Modelica environments.

2 Model order reduction and simpli-
fication techniques

Detailed models of complex systems are also as com-
plex and hard to understand as reality they model. The
interpretation of underlying equations or extraction of
an in-depth system understanding can get impossi-
ble even for relatively small systems [11]. Therefore,
symbolic analysis methods, most notably of electrical
circuits, incorporate various symbolic approximation
techniques which are used to simplify symbolic ex-
pression or schematic diagrams and also reduce order
(state-space dimension) of the model [10].

An important class of the model order reduction
and simplification methods when used in system anal-
ysis or for structural design is when they generate a
proper model, i.e., reduced model with the minimum
complexity required to meet the performance specifi-
cations and possessing physically meaningful parame-
ters and states [5].

A numerous mixed numerical-symbolic model or-
der reduction and simplification techniques have been
developed and successfully applied so far [10, 12, 4,

5]. They usually consist of running a series of simu-
lations, ranking the individual coordinates or elements
by the appropriate (quantitative) metrics and removing
those that fall below a certain threshold [2].

2.1 Equation-based simplification

All analytic models can be described by a system of
equations and even if some other modeling formalism
is used (e.g., block schemes, bond graphs, etc.), it is
possible to export the model as a system of equations.
However, model representation in a form consisting of
symbolic (algebraic) expressions is meaningful to user
only in certain situations, for example, use of transfer
functions in control design.

For equation-based simplification, variables of in-
terest must be selected and metrics used for ranking of
expressions’ terms is then selected as a numerical er-
ror with respect to an objective function given by the
variables of interest.

Simplification strategies include various algebraic
manipulations (e.g., substitution of a variable), where
no error is introduced into the simplified equations,
and modification of the equations that results in the ap-
proximate system (e.g., term deletion, linearization of
equations, etc.) which requires a numeric simulation
to determine the error caused by modification [14].

Simplification can have a global effect, i.e., affects
whole system of equations, when some variables of
the system are manipulated or local effect when only
single term of one equation is manipulated.

2.2 Structure-based simplification

Most of modern modeling tools provide a graphical
interface where models are represented by schematics.
Graphical descriptions of the models are based on var-
ious modeling formalisms, schematics can be a merely
graphical representation of algebraic expressions (e.g.,
block graphs) and symbolics comprising the schemat-
ics represent single or a group of algebraic operations
or they can provide additional information about the
system (e.g., information about topology of the sys-
tem). In the latter case, it is sensible to chose cus-
tomized simplification techniques, although it is possi-
ble to map models simplified by equation-based order
reduction and simplification techniques to a graphical
representation of the original model [12].

Because all physical systems have in common con-
servation of mass and energy, a widely used class
of metrics for order reduction of proper models in
physical-systems modeling are related to energy or

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

698

power [2]. Energy-based metrics require a model-
ing formalism where energy of the model’s compo-
nents is easily extracted, for example, bond graphs
[9, 5]. Bond-graph modeling is a form of object-
oriented physical systems modeling: elements can be
seen as object interacting with each others – interac-
tions are described by acausal bonds [1].

Among successfully applied energy-based tech-
niques for bond-graph simplification are ranking of el-
ements based on RMS power of bonds [9], ranking on
activity – amount of energy that flow in and out of the
element over the given time [5] and comparing the en-
ergy associated with each bond to those in neighboring
bonds and eliminating those with smallest relative en-
ergy [15]. Result of a model simplification by these
techniques is also a model described by bond graph.
Furthermore, all the energy-based metrics have some
physical meaning and can thus help with understand-
ing and addressing modeling issues.

3 Simplification of models in Model-
ica

According to authors knowledge, there is no model-
ing environment that provides tools for simplification
and order reduction of model implemented in Model-
ica directly. A Modelica model must be flatten and the
resulting DAE system is then exported to a designated
tools where model order reduction and simplification
is performed.

This approach is suitable for some applications, for
example, when reduced model is needed for control
design. In such cases, loss of information caused
by flattening is not problematic, because only close
matching of reduced and original model’s behavior is
required. However, in applications like model verifi-
cation and debugging or when model is used to gain
insight for system performance improvement, it is de-
sired that simplified model is also a valid Modelica
model with the same structure as the original (with
the same hierarchical decomposition and topology of
schematics).

4 Ranking elements of object dia-
gram

4.1 Choice of metrics

Object diagrams consist of connected symbols repre-
senting components (submodels). What kind of in-

teraction a connection defines is determined by type
of connectors (i.e., ports) the connected components
have. In Modelica is a type of connector very loosely
defined. In general, it is a list of variables with some
qualifications (e.g., causality, type of variable: inten-
sive – extensive, etc.), but it can also have a hierarchi-
cal structure [6].

Although a large number of different kind of
schematics can be modeled with appropriately defined
connectors, are the most important acausal connec-
tions for modeling physical interactions. Each (dy-
namic) interaction between physical systems results in
a energy exchange between the system, so it is very
intuitive to chose energy-based metrics for simplifica-
tion of physical systems models.

Modelica’s object diagrams, when modeling physi-
cal systems, share some similarities with bond graphs,
which are also a form of object-oriented acausal mod-
eling. Therefore it is easy to adapt most of bond-
graph simplification techniques to Modelica’s object
diagrams.

Connectors usually contains a pair of effort and flow
variable (however, their product is not necessarily an
energy flow like in bond graph formalisms), as can
be seen by inspecting Modelica Standard Library [7]
where elementary connector definitions for almost all
physical domains are gathered:

• Interaction between components in analog cir-
cuits (Modelica.electric) is determined by volt-
age v and current i, the latter is a flow variable,
and the power of the interaction is product of both
variables: p = v · i.

• Similar is connector in Modelica.Magnetic com-
posed of variables for magnetic potential differ-
ence Vm and magnetic flux Φ, an effort and flow
variable respectively. Power of the connection is
product of variables: p = Vm ·Φ.

• Connectors used for modeling of 1-D mechanics,
translational and rotational, consist of position s
and angle φ respectively, and force f and torque τ

respectively. However, product of connector’s ef-
fort and flow variable is no longer power. For de-
termination of the power of connection, displace-
ment variable has to be differentiated: p = d

dt s · f
and p = d

dt φ · τ for translational and rotational
mechanics respectively.

• In Modelica Multibody library, which deals with
3-D mechanics, are effort and flow variables no
longer scalars, they are 6-dimensional vectors,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

699

so a state of a free-body (having 6 degree-of-
freedom) can be determined. Furthermore, due
to computational restrictions, implementation of
connector takes also into account a suitable selec-
tion of a frame of reference (forces, torques and
orientation are expressed in local, while position
is in global frame of reference). A definition of
the connector is the following:
c o n n e c t o r Frame

SI . P o s i t i o n r_0 [3] ;
Frames . O r i e n t a t i o n R ;
f low SI . Force f [3] ;
f low SI . Torque t [3] ;

end Frame ;

Position is determined with variable r_0, while
orientation R is a structure containing transfor-
mation matrix T from global to local frame of
reference and vector of angular velocities ω in
local frame of reference. Forces and torques are
given by vectors f and t respectively. Power of
the connection can be calculated by expression:
p = d

dt (T · ro) · f + ω · t, where again, there is a
need to differentiate position after transformation
to local frame.

• Connector for modeling heat transfer in 1-D con-
sists of effort variable temperature T and flow
variable for heat-flow rate Q f low. The energy
transfer is in this case equal to flow variable,
p = Q f low.

• Library Modelica.Fluid deals with modeling of
heat and mass transfer. The connector used
in library’s components which covers also mass
transfer is implemented as following:
c o n n e c t o r F l u i d P o r t

r e p l a c e a b l e package Medium =
Model ica . Media . I n t e r f a c e s . P a r t i a l M e d i u m ;

f low Medium . MassFlowRate m_flow ;
Medium . A b s o l u t e P r e s s u r e p ;
s t r e a m Medium . S p e c i f i c E n t h a l p y

h _ o u t f l o w ;
s t r e a m Medium . M a s s F r a c t i o n

X i _ o u t f l o w [Medium . nXi] ;
end F l u i d P o r t ;

Besides effort and flow variable, pressure p and
mass-flow rate m f low respectively, the connector
includes also additional information about prop-
erties of the substance which is being exchanged
in the interaction modeled by a connection of type
FluidPort: specific enthalpy h and composition
of substance (vector of mass fractions Xi if sub-
stance is a mixture). The thermodynamic state

mu

ms

Kt

Ks s

t

vs

vr

g

Figure 1: Scheme of car a suspension.

of the substance is uniquely determined by the
variables of connector and all the other (thermo-
dynamic) properties can be calculated by using
functions provided by package Medium which is
a parameter of the connector. However, thermal
diffusion is not covered by this connector (it is
neglected).

Energy flow associated with the connector is
composed of thermal, hydraulic and chemical
term and could be calculated as following [3]:
p = ṁ · s ·T + ṁ · p/ρ +∑ µi · Ṅi. Quantities spe-
cific entropy s, temperature T , density ρ , chem-
ical potential µi and molar flow Ṅi can be calcu-
lated from thermodynamical state equations pro-
vided by package Medium.

Although it is possible to calculate energy flow of
the connector from the variables of the connector, this
is not always possible to do as a post-processing the
simulation results. For example, derivative of the po-
sition or angle in connector of the library for 1-D me-
chanics may not be available if this variable is not cho-
sen for state variable. This implies instrumentation of
the model.

Most bond-graphs energy-based metrics, like [5],
require energy flow of the element. Fg. 1 illustrates
a scheme of a car suspension for one wheel. Corre-
sponding representation of a model with a bond graph
is depicted in Fg. 2. In Fg. 2 can be seen that each
element (e.g., tire stiffness) is represented with a bond
which have an element symbol on one end and with
another it is connected to the 1-junction. A model
of the car suspension from Fg. 1 build from Modelica
Standard Library’s components is shown in Fg. 3. Be-
cause bond-graph and Modelica’s object diagram pre-
serve system topology, there are some analogies be-
tween them. A connection node in Modelica, when
two or more connectors are connected together), is
equivalent to 0-junction in bond-graph representation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

700

Figure 2: Bond graph of a car suspension

Figure 3: Car-suspension model represented by a
Modelica object diagram.

– the effort variables of connected connectors are the
same and the flow variables sum to zero. According
to the analogy, each Modelica’s component in object
diagram should be analogous to 1-junction – effort
variables of the component’s connectors should sum
to zero. However, this is not the case in Fg. 3 where
effort variable defined in connectors is absolute posi-
tion. Nevertheless, energy conservation law implies
that energy flow of all component’s connectors and
change of energy stored, added or removed by com-
ponent must sum to zero. Therefore, the energy flow
which corresponds to energy flow of bond represent-

ing the element can be in Modelica object diagrams
calculated as sum of energy flows of the component’s
connectors. For example, activity A of a component,
weighting factor used in metrics proposed by [5], is
thus calculated for Modelica components as follow-
ing:

A =
∫ t2

t1
|

N−1

∑
i=0
−pi(t)| ·dt (1)

In Eq. 1, pi(t) designates power flow into i-th connec-
tor, N is the number of connectors in component and
[t1,t2] is the time window of observation.

4.2 Model instrumentation

In order to assure that all the necessary data for se-
lected (energy-based) metrics evaluation are provided
in the simulation results, model must be instrumented,
i.e., additional equations must be inserted into the
model.

It is possible to insert equations for weighting fac-
tors (e.g., Eq. 1) directly. However, this introduces
many new equations and states into the simulation
model and can have a very negative impact on sim-
ulation’s duration and also on numerical stability.
This can be problematic especially with large models,
where the use of model approximation methods is the
most sensible.

Therefore we decided to use the least instrumenta-
tion possible and do most of calculations of weight-
ing factors as a post-processing of simulation results.
Model instrumentation was implemented in Open-
Modelica’s shell [8]. Before model can be simulated, it
must be loaded into the environment together with all
the libraries it requires. Upon loading, abstract syntax
tree (AST) of the model is generated and saved into the
environment. So, instrumentation was implemented as
a separate function which traverses the AST in the en-
vironment and for each connection encountered inserts
an equation for energy-flow calculation. What kind of
equation needs to be inserted is determined by inspect-
ing the type of connector used in the connection equa-
tion. For this purpose, a special library of components
is provided to the instrumentation function. Each com-
ponent of the library have as an annotation provided
a fully-qualified path to the connector-type definition
of which equation for an energy-flow calculation pro-
vides. If there is no corresponding component found
in the library for the connection’s connector-type, that
connection is skipped.

Besides instrumentation of the model, connection
graphs for each hierarchical level of the models are

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

701

added to the environment.

After a model is instrumented, it can be simulated
in the usual way (with command simulate()).

4.3 Ranking and presentation of results

Ranking of components is performed as post-
processing of simulation results. This enables possi-
bility of switching ranking metrics without repeating
(possibly time-consuming) instrumentation and simu-
lation. Furthermore, ranking of components which are
not of current interest can be avoided.

In our current implementation, activity-metrics
(Eq. 1) is used for ranking. Each hierarchical level
is considered separately. To determine activity of the
component, a connection graph of the object-diagram
on given hierarchical level is taken from environment
(where it was put by instrumentation function) and en-
ergy flows of component’s connections are extracted
from it. The absolute sum of connection’s energy
flows (as determined by Eq. 1) are numerically inte-
grated by a quadrature form. However, because inte-
gration is done as post-processing, there is a significant
loss of accuracy. Quadrature formulas have a much
higher truncation-error then solvers used for simula-
tion of the model. Furthermore, such integration is af-
fected by the chosen communication interval. Never-
theless, because accuracy of weighting factors is not of
critical importance, use of quadrature formulas suffice
in most cases.

The results of ranking are currently provided only
in printed form (in a tableau), because there was no
graphical interface suitable for adaptation available.
Simplification of the model based on obtained ranking
is not implemented yet.

Element activity [J] relative [%] accumulated [%]
gravityForce_s 2,270.06 37.06 37.06
spring_s 1,763.33 28.79 65.85
ground 795.02 12.98 78.82
mass_s 787.65 12.86 91.68
damper_s 198.82 3.25 94.93
spring_t 192.57 3.14 98.07
gravityForce_t 92.98 1.52 99.59
mass_t 24.53 0.40 99.99
damper_t 0.53 0.01 100.00
displacement_s 0.00 0.00 100.00
displacement_t 0.00 0.00 100.00

Table 1: Ranking of components when model from
Fg. 3 is given input shown in Fg. 4.

0 1 2 3 4 5
time [s]

0

5

10

15

20

25

30

d
is

p
la

ce
m

e
n
t

[c
m

]

input signal
mass_t displacement

mass_s displacement

Figure 4: A car hits a smooth curb: low-frequency
excitation signal is given as an input to model on Fg.3.
Also a response – displacement of a unsprung (mass_t)
and sprung mass (mass_s) is depicted.

Figure 5: A car hits a sharp curb: step signal is given
as an input to model on Fg.3. Also a response – dis-
placement of a unsprung (mass_t) and sprung mass
(mass_s) is depicted.

Element activity [J] relative [%] accumulated [%]
mass_t 528,914.61 43.25 43.25
spring_t 481,340.66 39.36 82.61
damper_s 115,233.47 9.42 92.03
spring_s 49,128.08 4.02 96.05
damper_t 32,039.56 2.62 98.67
mass_s 9,124.75 0.75 99.42
gravityForce_s 5,916.76 0.48 99.90
gravityForce_t 1,196.47 0.10 100.00
ground 0.00 0.00 100.00
displacement_s 0.00 0.00 100.00
displacement_t 0.00 0.00 100.00

Table 2: Response of components when model from
Fg. 3 is given a step signal as input.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

702

4.4 Example

A model from Fg. 3 is excited by two different sig-
nals, depicted in Fg. 4 and Fg. 5 respectively. For each
experiment, components of the model are ranked with
activity metrics (Fg. 1) and results are shown in Ta-
ble 1 and 2 respectively.

As it can be seen, both rankings are very different,
but so are the excitation signals. In the first example,
the highest ranked components belong to the part of
the model with slow dynamics, while in the second ex-
ample is the part with faster dynamics much more ex-
cited and therefore also highly ranked. However, in the
second example, simulation’s communication interval
is too large and thus there is a large error in weighting
factors estimation.

5 Conclusion

Presentation of a model to user is an important aspect
of modeling environments that helps with model un-
derstanding and maintenance. However, many Mod-
elica’s language features (e.g., inheritance) are im-
portant for effective implementation and to prevent
code duplication, but may worsen the clarity of the
model implementation. Furthermore, detailed mod-
els of complex systems are as hard to understand as
reality. Therefore, we believe that there should be in-
tegrated a tool into the modeling environment which
would help users, non-modeling specialist, to better
understanding the model and provide effective means
for explaining the model behavior and model verifi-
cation (and debugging). As it proposed in the pa-
per, model order reduction and simplification tech-
niques (e.g., ranking metrics used by these techniques)
can be used for this purpose. It is important that the
results are presented in the same form as the origi-
nal model. Modelica’s models are represented graph-
ically, by object diagrams, or as a set of acausal
differential-algebraic equations. Therefore, model or-
der reduction and simplification techniques for both
representation must be used. There are already many
methods for simplifying (ranking) models represented
with DAE system. We also showed that method for
simplifying bond graphs (graphical modeling formal-
ism) can be adapted to work with Modelica’s object
diagrams.

References
[1] J. F. Broenik. Introduction to physical systems model-

ing with bond graphs. In SiE whitebook on Simulation

Methodologies, pages 1–31, 1999.

[2] Samuel Y. Chang, Christopher R. Carlson Carlson,
and J. Christian Gerdes. A lyapunov function ap-
proach to energy based model reduction. In Proceed-
ings of the ASME Dynamic Systems and Control Divi-
sion – 2001 IMECE, pages 363–370, New York, USA,
2001.

[3] Modeling Chemical Reactions in Modelica By Use of
Chemo-bonds. Cellier, f. e. and greifeneder, j. In Pro-
ceedings of the 7th Modelica Conference, pages 142–
150, Como, Italy, 2009.

[4] Sanjay Lall, Petr Krysl, et al. Structure-preserving
model reduction for mechanical systems. Physica D,
284:304–318, 2003.

[5] Loucas Sotiri Louca. An Energy-based Model Reduc-
tion Methodology for Automated Modeling. PhD the-
sis, University of Michigan, 1998.

[6] Modelica Association. Modelica Specification, ver-
sion 3.2, 2010. http://www.modelica.org/
documents/ModelicaSpec32.pdf.

[7] Modelica Association. Modelica Standard Library
3.1, User’s Guide, 2010. https://www.modelica.
org/libraries/Modelica.

[8] Open Source Modelica Consortium. Openmodelica.
http://www.openmodelica.org.

[9] R. Rosenberg and T. Zhou. Power-based model in-
sight. In Proceedings of the ASME WAM Sympo-
sium on Automated Modeling for Design, pages 61–
67, New York, USA, 1988.

[10] P. Schwarz et al. A tool-box approach to computer-
aided generation of reduced-order models. In Pro-
ceedings EUROSIM 2007, Ljubljana, Slovenia, 2007.

[11] R. Sommer, T. Halfmann, and J. Broz. Automated
behavioral modeling and analytical model-order re-
duction by application of symbolic circuit analysis for
multi-physical systems. In Proceedings EUROSIM
2007, Ljubljana, Slovenia, 2007.

[12] Ralf Sommer, Thomas Halfmann, and Jochen
Broz. Automated behavioral modeling and analytical
model-order reduction by application of symbolic cir-
cuit analysis for multi-physical systems. Simulation
Modelling Practice and Theory, 16:1024–1039, 2008.

[13] Hubertus Tummescheit. Design and Implementation
of Object-Oriented Model Libraries using Modelica.
PhD thesis, Lund Institute of Technology, 2002.

[14] T. Wichmann et al. On the simplification of nonlin-
ear dae systems in analog circuit design. In Proceed-
ings of CASC’99, pages 485–498, Munich, Germany,
1999.

[15] Y. Ye and K. Youcef-Youmi. Model reduction in the
physical domain. In Proceedings of the American
Control Conference, pages 4486–4490, San Diego,
CA, USA, 1999.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

703

Simulation-Based Design of Aircraft Electrical Power Systems

Tolga Kurtoglu Peter Bunus Johan De Kleer
Palo Alto Research Center

3333 Coyote Hill Dr. Palo Alto, CA 94304
 kurtoglu@parc.com peter.bunus@parc.com dekleer@parc.com

Rahul Rai
California State University

Department of Mechanical Engineering, Fresno, CA 93740
rarai@csufresno.edu

Abstract

Early stage design provides the greatest opportunities
to explore design alternatives and perform trade
studies before costly design decisions are made. The
goal of this research is to develop a simulation-based
framework that enables architectural analysis of
complex systems during the conceptual design
phase. Using this framework, design teams can sys-
tematically explore architectural design decisions
during the early stage of system development prior to
the selection of specific components. The analysis
performed at this earliest stage of design facilitates
the development of more robust and reliable system
architectures. Application of the presented method to
the design of a representative aerospace electrical
power system (EPS) demonstrates these capabilities.

Keywords: simulation-based design; electrical
power system; architectural design; concept genera-
tion

1 Introduction

The complexity of modern world engineered systems
is growing constantly. New technologies are creating
the potential for higher levels of integration and re-
sulting systems contain a larger number of dynami-
cally interacting components, relations among which
are increasingly non-linear. This complexity, in turn,
leads to unexpected behaviors and consequences,
some of which have proven to be catastrophic. A key
technical challenge in developing such complex sys-

tems is to ensure that the individual components and
technologies are reliable, effective, and low cost,
resulting in turn in safe, reliable, and affordable sys-
tems.
To address these challenges, DARPA’s META Pro-
gram is investing in novel methods for design and
verification of complex systems. The META pro-
gram is specifically aimed at compressing the prod-
uct development and deployment timeline by ena-
bling model-based design and manufacturing across
the complex, heterogeneous, and physically-coupled
electromechanical systems. Using this design para-
digm, different “component model libraries” or
“physics libraries” can be interchangeably used to
instantiate a given system design such that a design
can be analyzed and verified entirely independently
of its physical manifestation [1].
On the other hand, ensuring safety, reliability, af-
fordability, and performance requires the incorpora-
tion of subsystem and component functionality, deci-
sions and knowledge into the product lifecycle as
early as possible. Furthermore, formal tools and
methodologies need to be in place to allow design
teams to formulate a clear understanding of the im-
pact of the decisions in the early design phases.
Developed as part of the META program, this paper
presents a simulation-based design framework that
enables architectural analysis of complex systems
during the conceptual design phase. Using this
framework, design teams can systematically explore
architectural design decisions during the early stage
of system development prior to the selection of spe-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

704

cific components. The analysis performed at this ear-
liest stage of design facilitates the development of
more robust and reliable system architectures. In this
paper, we describe the proposed framework and pre-
sent the application of its use to the design of a rep-
resentative aerospace electrical power system (EPS).

2 Integrated System Design and
Analysis Framework

The framework is the basis for specifying system
requirements, supporting design space exploration,
and analyzing the performance associated with
promising architectural design alternatives. To sup-
port a model-based design paradigm, the framework
allows the designers to combine models from differ-
ent domains into integrated system level models, and
allow models of components and sub-systems to
evolve throughout the design process. At the end,
component models are composed into a system that
achieves the intended functionality given specified
requirements such as reliability, risk, and perform-
ance.
In what follows, we describe the constituent ele-
ments of the framework but first a brief overview of
electrical power system design is provided.

2.1 Electrical Power System Design

An electrical power system is designed to deliver
power to select loads, which in an aerospace vehicle
would include subsystems such as the avionics, pro-
pulsion, life support, and thermal management sys-
tems. The EPS is required to provide basic function-
ality common to many aerospace applications: power
storage, power distribution, and operation of loads
[2].
An EPS system was originally designed by one of
the co-authors using a failure-based design method-
ology at the early concept design phase [3]. Using
this function-based design approach, several critical
elements were identified and incorporated into the
final design and realization of the system.
In the current realization of the system, which is il-
lustrated in Fig. 1, the power storage consists of one
or multiple battery modules, which are used to store
energy for the operation of the loads. Any of the bat-
tery modules can be used to power any number of
loads in the system. This requires the EPS to have
basic redundancy and reconfiguration capability.
Electromechanical relays or other electrical actuators
can be used to route the power from the batteries to
the loads. In addition, circuit breakers are added to
the design at various points in the distribution net-

work to prevent overcurrents from causing unin-
tended damage to the system components. Moreover,
a sensor suite is designed in to allow monitoring of
voltages, currents, temperatures, switch positions,
etc. and to provide an integrated health management
functionality. (More information on the existing
electrical power system can be found in [2].

Fig. 1. The schematic of the existing electrical power
system design architecture

2.2 A Modelica Library for an Aircraft EPS

In this paper, we extend our previous, function-based
analysis of the EPS system and explore how well
different EPS architectures meet specified reliability,
risk, and performance requirements.
The building blocks within the presented model-
based design environment are component objects
consisting of a set of configurational, and behavioral
models, component interfaces, and relationships be-
tween them. Accordingly, we build a Modelica-
based [4] component model library, which will pre-
sent the designers a set of available reconfigurable
models, and include physical artifacts such as batter-
ies, actuators, electrical switches, etc. The models
are stored in an EPS Design Repository. For each
component of the EPS Modelica library the nominal
behavior was modeled and augmented with the rele-
vant failure modes. A list of operating and possible
failure modes of the EPS Modelica library compo-
nents is depicted in Table 1.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

705

Table 1. A list of components of the EPS Modelica libraries and
the associated nominal operating and failure modes.

Model Element Element
Type

Operating and
fault modes

Battery Source Nominal,
AbruptParasiti-
cLoad

CircuitBreaker Electrical
Circuit
Breaker

Nominal, Tripped,
FailedOpen, Stuck-
Closed

Relay Electome-
chanical Re-
lay

NominalClosed,
NominalOpen,
StuckOpen

Inverter Electrical
Inverter

NominalOn, Nomi-
nalOff, FailedOff

Temperature-
Sensor

Temperature
Sensor

Nominal, Drift,
Offset, Intermitten-
tOffset, Stuck

DCCurrent-
Tranmitter

DC Current
Transmitter
(50A Max)

Nominal, Drift,
Offset, Intermitten-
tOffset, Stuck

DCVoltageSen-
sor

DC Voltage
Sensor 10HZ

Nominal, Drift,
Offset, Intermitten-
tOffset, Stuck

PositionSensor Actuator Posi-
tion Sensor
10HZ

Nominal, Stuck

ACResistor
DCResistor

AC and DC
Resistors

Nominal, FailedOff,
IntermittentResis-
tanceOffset, Resis-
tanceDrift, Resis-
tanceOffset

LargeFan LargeFan Nominal, Over-
Speed, UnderSpeed,
FailedOff

LightBulb 25W Light
Bulb

Nominal, FailedOff

WaterPump Water Pump Nominal,
FlowRestricted,
FailedOff

For several components, models with different levels
of detail have been created. For example, the
Inverter component created Modelica models are
ranging from very simple models that describe only
the AC/DC power balance equation to models con-
taining complicated electrical schematics including
semiconductor components from the Electrical Stan-
dard Modelica Library. The reason for creating mod-
els of the same component with different levels of
details was to compare how our proposed architec-
ture analysis methods performs in very early stages
of the conceptual analysis, when not so much details
are be available, to later stages when more details are
added to the component models.

The nominal and the fault modes behavior of the
Modelica EPS Library components have been vali-
dated by comparing the simulation behavior of two
test models with measurements and sensor data from
the Advanced Diagnostics and Prognostics testbed
called ADAPT located at the NASA Ames Research
Center [5,6]. (The ADAPT system consists of a con-
trolled and monitored environment where faults can
be injected into the system in a controlled manner
and the performance of the test article is carefully
monitored.)
The first test Modelica model, called the ADAPT
Tier 1 (ADAPT Lite) model, depicted in Fig 2, con-
tains a battery connected through a series of circuit
breakers and relays to an inverter, and several loads
consisting of a large fan, a DC resistor and AC resis-
tor. The rotation speed of the fan is measured by a
speed transmitter component. A series of four AC or
DC voltage sensors and three current transmitters
measure the voltage and current in different probing
points of the circuit. The circuit breakers can be
commanded externally to be closed or open and their
position is monitored with the help of a position sen-
sor connected to them.
The second EPS model (ADAPT Tier2) that has
been tested and built in Modelica is depicted in Fig 3
and it is equivalent to the schematic represented in
Fig 1. In this model the ADAPT Tier 2 EPS supplies
power to five critical load functions and four non-
critical loads distributed in two load banks. The bat-
tery cabinet unit contains three battery packs and
several relays that control the connections between
the load bank and the batteries. Similarly to the
ADAPT Lite model, the testbed is controlled by a
number of relays and monitored by a large set of
sensors.
The ADAPT Tier 1 model has been validated against
39 experiments while the ADAPT Tie2 model has
been validated against 33 experiments simulating
nominal and faulty behavior of the EPS.
Since each component contains a description of the
failure behavior besides the description of the nomi-
nal behavior, by systematically selecting a certain
state of the system and inducing faults in the compo-
nents, we were able to observe the effects of those
faults on the system and automatically build a Fail-
ure Model and Effect Analysis (FMEA) table from
the model.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

706

Fig. 2. The Modelica model of simple EPS system (ADAPT Tier 1).

Fig. 3. The schematic of the existing electrical power system design architecture.

2.3 Design Space Exploration

This section examines the means of exploring the
design space defined by combinations of generic
EPS components. Feasible EPS candidate architec-
tures are generated by a generative grammar based
design space exploration technique. This generative

technique takes user specified EPS loads as input and
satisfies system-level configuration requirements to
generate feasible EPS candidate architectures. The
component model library serves as the backbone of
the proposed design space exploration approach. Us-
ing the models in the model library as building
blocks, this generative graph grammar based tech-
nique configures “correct by construction” EPS ar-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

707

chitectures that can be further studied by means of a
simulation-based analysis.
Graph grammar based configuration approach uses
graph as representation scheme. These approaches
capture the transitions or the production rules for
creating a solution, as opposed to storing the solu-
tions themselves. Accordingly, a configuration’s de-
velopment from its inception to its final configura-
tion is considered as a series of graph modifications.
The initial specification can be represented as a sim-
ple graph in which the desired inputs and outputs are
cast as arcs and nodes of the to-be-designed artifact.
From this initial specification, the design process can
be viewed as a progression of graph transformations
that lead to the final configuration [7]. Recently, en-
gineering design researchers have discovered that
graph grammars provide a flexible yet ideally struc-
tured approach to the creation of complex engineer-
ing systems [8-10]. This interpretation of the design
process makes graph grammars very suitable for
computationally modeling the open-ended nature of
conceptual design, where designers explore various
ideas, decisions, and modifications to previous de-
signs to arrive at feasible solutions.
Generating feasible EPS architecture using graph
grammar based configuration approach is a two-step
process: In the first step, we have developed an EPS
system design grammar to encode design rules for
constructing electrical power system architectures.
For EPS, we have developed a 14-rule graph gram-
mar that defines ways to generate feasible EPS archi-
tectures from multiple EPS requirement documents
[11-15]. The rules are established prior to the design
process and capture architectural design considera-
tions that are inherent to the EPS design problem.
One such EPS design requirement is shown in Figure

4. Similar design rules govern the mapping of func-
tional requirements to components, or the physical
compatibility between EPS components. Moreover,
the graph grammar rules can be formulated in such a
way that the final solution meets the constraints of
the problem. The knowledge captured in the rules
offer the option of exploring the design alternatives
as well as automating the design generation process.
Specifically, the developed design grammar encodes
how specific system requirements can be embodied
by selecting components from a full spectrum of
electromechanical components represented in the
component library.
In the second step, the graph transformation systems,
or graph grammars, is invoked algebraically. Alge-
braic graph transformation methods rigorously de-
fine mathematical operations such as addition and
intersection of graphs. A typical graph grammar rule
is compromised of a left-hand side (LHS) and a
right-hand side (RHS) (Figure 5). The LHS contains
the conditions, upon which the applicability of a rule
is determined. Accordingly, the LHS describes the
state of the graph for a particular rule to be applica-
ble. The RHS, on the other hand, contains the result-
ing graph transformation. It describes the new state
of the graph after the application of the rule. By sim-
ply executing different combinations of grammar
rules, a variety of feasible EPS architectures can eas-
ily be generated including the architecture of the
ADAPT test bed shown in Figure 1.
A partial sequence of application of different EPS
grammar rules to create a feasible EPS architecture is
shown in Figure 6. In order to generate a feasible
EPS architecture the approach starts with a seed
graph. The seed graph for EPS design space explora-
tion is graph based representation of three main

Fig. 4. An architectural design requirement that is used in derivation of a design grammar

Figure 5. A graph grammar rule for EPS architecture generation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

708

subsystems of EPS namely Power Generation, Power
Distribution, and Loads (Figure 6a). The loads to be
supported by the EPS have to be specified and are an
input to the overall process. At this stage it is recog-
nized that 11 rules are applicable. Out of the applica-
ble rules, rule 11 is chosen and applied by a designer
(or an automated computational process). This result
in a new graph in the right hand side (RHS) of step
one (Figure 6b). This RHS in step one becomes LHS
in step two. After this stage the process of recognize,
choose and apply is invoked in an iterative manner
resulting in a new LHS and RHS at each step. A fea-

sible EPS architecture generated at the end of this
process is depicted in Figure 7.
As shown with this example, generative graph
grammar gives an EPS architect the ability to sys-
tematically explore a large number of alternative
EPS architectures that meet a given set of design
constraints and objectives. In the next section, we
describe how these design alternatives are evaluated.

(c)

(b)

(a)

Figure 6. Application of graph grammar rules to create an EPS architecture (a) seed graph (b) modified
seed graph after step 1 (c) modified seed graph after step 2

Figure 7. A feasible EPS architecture generated by generative graph grammar

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

709

2.4 Simulation-Based Performance Analysis

Let us consider the following set of safety, functional
and performance requirements imposed on the EPS
system.

Safety Requirements imposed in the architecture:
• “AFGS-87219A: A battery relay shall be in-

stalled in each battery circuit to enable the flight
crew to isolate the battery from the rest of the
electric subsystem.”

• “MIL-STD 7080: A switch or relay shall be con-
nected in series with the circuit breaker when a
switching capability is required for a circuit pro-
tected by a circuit breaker.”

Functional Requirements:
• “MIL-STD 704F: “Loads should not introduce

excessive current distortion such that other EPS
functionality is effected.”

Performance Requirements:
• “MIL-STD-1275D: The [28 VDC electrical

power system] circuit steady-state voltage shall
be between 25 VDC and 30 VDC.”

• “MIL-STD-1275D: The rotational speed of cool-
ing fan system should be between 765 and 900
rpm.

As it was described in Section 2.3 feasible EPS can-
didate architectures are generated by a generative
grammar based design space exploration technique.
The graph grammar configuration approach is able to
impose the safety requirements detailed above by
encoding the safety requirements in graph grammar
rules that are applied by the transformation system
resulting in an architecture that is correct by defini-
tion. The Modelica model of a simple EPS system,
(ADAPT Tier2) depicted in Fig 2 satisfy both safety
requirements: the relay EY244 will isolate the bat-
tery from the rest of the electrical circuit (the first
safety requirement AFGS-87219A) while the circuit
breaker-relay pairs (CB236-EY244, CB266-E272,
CB266-EY275, CB280-EY284) will satisfy the sec-
ond requirement from MIL-STD 7080.
The functional and performance requirements, on the
other hand, are verified by simulation. Simulation-
based design methods require the capability of speci-
fying detailed input design parameters and using
them to obtain a model response. Accordingly, we
use a simulation process which allows system de-
signers use to account for the effects of variability in
the input and design parameters on the model re-
sponse, thereby incorporating uncertainty into the
design process. In this research, we use a sampling

based technique to perform a simulation-based
analysis of system performance. This analysis pro-
vides a means to estimate the probability of system
response and assess how well a candidate system
design meets its requirements.
For example, in the ADAPT Tier 1 EPS the designer
has the choice of using a Xantrex Prosine 1000 In-
vertor or a Xantrex Freedom HW 1000 Invertor.
Both variants will satisfy the safety requirements
imposed on the architecture. The Xatrex Prosine
1000 Watt Inverter has a peak efficiency of 90%
while the output voltage (over full load and battery
voltage range) is around 120 Vac - 10 %/+4 %. The
range of the output voltage for this type of invertor
can be defined as a triangular probability distribution
function. The output voltage histogram for 200 sam-
ples is depicted in Figure 8.

Figure 8. The Xantrex Prosine 1000 Invertor output volt-

age histogram.
We perform a simulation based performance analysis
and we compute the rotational speed of the cooling
fan for different output voltages of the inverter. The
histogram of the rotational speed of the cooling fan
shows that using a Xantrex Prosine 1000 Invertor is
a valid architecture, which satisfies the performance
requirement that the speed of the cooling fan should
be between 765 and 900 rpm.

Figure 9. The histogram of the rotational speed of the
cooling fan when a Xantrex Prosine 1000 invertor is used.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

710

The Xantrex Freedom HW 1000 Invertor has slightly
different characteristics: a peak efficiency of 83%
and an output voltage (over full load and battery
voltage range) around 115 Vac +/-10 Vac that can be
also approximated as a triangular distribution func-
tion. The histogram of the output voltage is shown in
Figure 10.

Figure 10. The Xantrex Freedom HW 1000 Invertor

output voltage histogram.

A performance based simulation shows that the rota-
tional speed of the cooling fan can sometimes drop
below 765 rpm for certain AC output voltages of the
Xantrex Freedom HW 1000 Invertor (see Figure 11).

Figure 11. The histogram of the rotational speed of the
cooling fan when a Xantrex Freedom HW 1000 invertor is

used.
Since the performance requirements of an EPS archi-
tecture using a Xantrex Freedom 100 Invertor are not
met, this architecture can be discarded from the list
of alternative EPS designs.

3 Conclusions

We have outlined a framework for simulation-based
design that integrates architectural synthesis and
analysis of complex systems during the conceptual
design phase. The incorporation of automated design
space exploration methods with Modelica broadens
the scope of the capabilities of the language, and en-
ables it to support architectural trade studies before

costly design decisions are made. In this paper, we
presented preliminary results of our study. In the fu-
ture, we plan to fully integrate and automate the ar-
chitectural synthesis and analysis approaches de-
scribed in this paper.

References

[1] Defense Advanced Research Projects
Agency (DARPA), Tactical Technology Of-
fice (TTO) META-II, BAA-10-59, 2010.

[2] S. Poll, A. Patterson-Hine, J. Camisa, D.
Garcia, and D. Hall, "Advanced Diagnostics
and Prognostics Testbed," in 18th
International Workshop on Principles of
Diagnosis (DX-07) Nashville, TN, 2007.

[3] T. Kurtoglu, Jensen, D., Tumer I.Y., “A
Functional Failure Reasoning Methodology
for Evaluation of Conceptual System Archi-
tectures”, Journal of Research in Engineering
Design, published online, January 31, 2010.

[4] Modelica Language, www.modelica.org
[5] Poll Scott, Ann Patterson-Hine, Joe Camisa,

David Garcia, David Hall, Charles Lee, Ole
J. Mengshoel, Christian Neukom, David
Nishikawa, John Ossenfort, Adam Sweet,
Serge Yentus, Indranil Roychoudhury, Mat-
thew Daigle, Gautam Biswas, and Xenofon
Koutsoukos. (2007). "Advanced Diagnostics
and Prognostics Testbed." In Proceedings of
the International Workshop on Principles of
Diagnosis (DX-07). (Nashville, TN, May
2007, 2007).

[6] NASA Ames Research Center (2006) "Ad-
vanced Diagnostics and Prognostics Testbed
(ADAPT) System Description, Operations,
and Safety Manual," February, 2006.

[7] Cagan, J., 2001, “Engineering Shape
Grammars,” Formal Engineering Design
Synthesis, Antonsson, E. K., and J. Cagan,
eds., Cambridge University Press.

[8] Rai, R., Kurtoglu, T., and Campbell, M.,
2009,"Stochastic interactive graph grammar
search for conceptual design" ASME Journal
of Computing and Information Sciences in
Engineering (Accepted for Publication with
review).

[9] Kurtoglu, T., Campbell, M., “Automated
Synthesis of Electromechanical Design
Configurations from Empirical Analysis of
Function to Form Mapping”. Journal of
Engineering Design, Vol. 20 (1), Feb 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

711

[10] Shea, K., J. Cagan, and S.J. Fenves, 1997, “A
Shape Annealing Approach to Optimal Truss
Design with Dynamic Grouping of
Members", ASME Journal of Mechanical
Design, Vol 119, No. 3, pp. 388-394.

[11] DEPARTMENT OF DEFENSE, “Aircraft
electric power characteristics”, MIL-STD-
704F, 12 March 2004.

[12] DEPARTMENT OF DEFENSE, “Air Force
Specification Guide: Electrical Power
Systems”, Aerospace Vehicles, AFGS-
87219A, 30 March 1993.

[13] DEPARTMENT OF DEFENSE,
“Characteristics of 28 Volt DC Electrical
Systems in Military Vehicles”, MIL-STD-
1275D, 29 August 2006.

[14] DEPARTMENT OF DEFENSE, “Selection
and Instillation of Aircraft Electronic
Equipment”, MIL-STD-7080, 31 May 1994

[15] DEPARTMENT OF DEFENSE, “Joint
services specification guide (JSSG-2009) air
vehicle subsystems”, Appendix H, 30
October 1998.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

712

HumMod - Large Scale Physiological Models in Modelica
Jiri Kofranek Marek Matejak Pavol Privitzer

Institute of Pathophysiology, First Faculty of Medicine, Charles University
U nemocnice 5, 128 53 Praha 2, Czech Republic

kofranek@gmail.com matejak.marek@gmail.com pavol.privitzer@lf1.cuni.cz

Abstract

Modelica is being used more and more in industrial
applications, but Modelica is still not used as much
in biomedical applications. For a long time we have
mostly been using Matlab/Simulink models, made by
Mathworks, for the development of models of physio-
logical systems. Recently, we have been using a simu-
lation environment based on the Modelica language.
In this language, we implemented a large scale model
of interconnected physiological subsystems contai-
ning thousands of variables. Model is a richly hierar-
chically structured, easily modifiable, and “self-docu-
menting”. Modelica allows a much clearer than other
simulation environments, to express the physiological
nature of the modeled reality.
 Keywords: simulation; physiology; large-scale model

1 Introduction

It is simply amazing how fast the Modelica simulation
language adopted various commercial development
environments. Modelica is being used more and more
in industrial applications. However, Modelica is still
not used as much in biomedical applications.
The vast majority of biomedical simulation applica-
tions are still done in casual, block-oriented environ-
ments. These include referencing database develop-
ment environments for biomedical models (such as
the JSIM language - http://physiome.org/model/doku.
php or CellML language - http://www.cellml.org/).
A frequently used environment in biology and medi-
cine is Matlab/Simulink – monographs dedicated to
biomedicine models are usually equipped with additi-
onal software used in this environment, but so far wi-
thout the use of new acasual or non-casual Simulink
libraries, such as [24, 28, 32].
However, already in 2006, Cellier and Nebot [5] poin-
ted out the benefits of Modelica, when used for clear
implementation of physiological systems descriptions
and interpretations. The classic McLeod‘s circulation
system model was implemented by PHYSBE (PHYS-

iological Simulation Benchmark Experiment) [25,
26, 27]. The difference is clearly seen, if we compare
the Cellier model implementation [5] with the freely
downloadable version of the PHYSBE model imple-
mentation in Simulink http://www.mathworks.com/
products/demos/simulink/physbe/.
Haas and Burnhan, in their recently published mono-
graph, pointed out the benefits and large potential of
the Modelica language used for modeling medically
adaptive regulatory systems [9]. The most recent,
Brugård [4] talks about work on the implementation
of the SBML language (http://sbml.org/) in the Mode-
lica language. This would enable us in the future, to
simply run models, whose structure is described in the
SBML language, on development platforms, based on
the Modelica language.

2 Web of physiological regulations

Thirty-nine years ago, in 1972 Guyton, Coleman and
Granger published an article in the Annual Review of
Physiology [9] which at a glance was entirely diffe-
rent from the usual physiological articles of that time.
It was introduced by a large diagram on an insertion.
Full of lines and interconnected elements, the drawing
vaguely resembled an electrical wiring diagram at first
sight (Fig. 1). However, instead of vacuum tubes or
other electrical components, it showed interconnec-
ted computation blocks (multipliers, dividers, adders,
integrators and functional blocks) that symbolized
mathematical operations performed on physiological
variables. In this entirely new manner, using graphi-
cally represented mathematical symbols; the authors
described the physiological regulations of the circu-
latory system and its broader physiological relations
and links with the other subsystems in the body – the
kidneys, volumetric and electrolyte balance control,
etc. Instead of an extensive set of mathematical equa-
tions, the article used a graphical representation of
mathematical relations. This syntax allowed depicting
relations between individual physiological variables
graphically in the form of interconnected blocks re-
presenting mathematical operations. The whole dia-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

713

gram thus featured a formalized description of phys-
iological relations in the circulatory system using a
graphically represented mathematical model.
Guyton’s model was the first extensive mathematical
description of the physiological functions of interco-
nnected body subsystems and launched the field of
physiological research that is sometimes described
as “integrative physiology” today. Just as theoretical
physics tries to describe physical reality and explain
the results of experimental research using formal me-
ans, “integrative physiology” strives to create a for-
malized description of the interconnection of phys-
iological controls based on experimental results and
explain their function in the development of various
diseases.
From this point of view, Guyton’s model was a mi-
lestone, trying to adopt a systematic view of physio-
logical controls to capture the dynamics of relations
between the regulation of the circulation, kidneys, the
respiration and the volume and ionic composition of
body fluids by means of a graphically represented ne-
twork.
Guyton’s graphical notation was soon adopted by

other authors – such as Ikeda et al. (1979) in Japan
[13]
and Amosov et al. (1977) in the former USSR [2].
However, the graphical notation of the mathematical
model using a network of interconnected blocks was
only a graphical representation – Guyton’s model and
later modifications (as well as the models of other
authors that adopted Guyton’s representative notati-
on) were originally implemented in Fortran and later
in C++.
Today the situation is different.
Now, there are specialized software simulation envi-
ronments available for the development, debugging
and verification of simulation models, which allow
creating a model in graphical form and then testing
its behavior. One of these is the Matlab/Simulink de-
velopment environment by Mathworks, which allows
building a simulation model gradually from individual
components – types of software simulation elements
that are interconnected using a computer mouse to
form simulation networks.
Simulink blocks are very similar to the elements
used by Guyton for the formalized representation of

Figure 1: Guyton’s blood circulation regulation diagram from 1972.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

714

physiological relations. The only difference is in their
graphical form. This similarity inspired us to use Si-
mulink to revive Guyton’s good, classic diagram and
transform it into a working simulation model. When
implementing the model in Simulink, we used swit-
ches that allow us to connect and disconnect indivi-
dual subsystems and control loops while the model
is running. We strove to keep the appearance of the
Simulink model identical to the original graphic dia-
gram – the arrangement, wire location, variable na-
mes and block numbers are the same.
The simulation visualization of the old diagram was
not without difficulties – there are errors in the origi-
nal graphic diagram of the model! It does not matter
in the hand-drawn illustration but if we try to bring
it to life in Simulink, the model as a whole collapses
immediately. A detailed description of the errors and
their corrections is in [23].
Our Simulink implementation of Guyton’s (correc-
ted) model (Figs. 2 and 3) is available for download at
www.physiome.cz/guyton. Also available at that ad-
dress is our Simulink implementation of a much more
complex, later model from Guyton et al. There is also

a very detailed description of all applied mathemati-
cal relations with an explanation.

3 Block-oriented simulation networks
for physiology

Block-oriented simulation languages, of which Simu-
link is a typical example, allow assembling computer
models from individual blocks with defined inputs
and outputs. The blocks are grouped in libraries; when
building a model, a computer mouse is used to crea-
te individual block instances, with inputs and outputs
connected through wires that “conduct” information.
A Simulink network can be arranged hierarchically.
Blocks can be grouped into subsystems that commu-
nicate with their ambient environment through defined
input and output “pins”, making “simulation chips” of
a sort. A simulation chip hides the simulation network
structure from the user, much like an electronic chip
hiding the interconnection of transistors and other
electronic elements. Then the user can be concerned

Figure 2: The implementation of Guyton’s model in Simulink preserves the original arrangement of elements
in Guyton’s graphic diagram.

NON-MUSCLE OXYGEN DELIVERY

269

268

261

260

270

262

263

264

271

272

265

266

267

259

258

257

256

255

POV

OSV

POT

RDO

MO2

DOB

QO2POTP1O

P4O

02M

AOM

271

NON-MUSCLE LOCAL BLOOD FLOW CONTROL

if (POD<0) {POJ=PODx3.3}

278 277 276 275 274 273

285 282 281 280 279

290

284

283
284b286287

288

289

AR1

AK1

POB

POK

POD

POV

ARM

AR1
AR3

PON

POA

A2K

AR2

POJ

POZ

POC

A3K

AR3

POR

VASCULAR
STRESS

RELAXATION

65

64

63

62
61

VV7

VV7

VV1

VV2

VVE

SRK

VV6

195

196

197

198

199

200

201

202

203

205
206

207

208

209

210

211

212

213 214

215

216

217

218

219

220

221

222

KIDNEY DYNAMICS AND EXCRETION
THIRST AND DRINKING

192 193 194

190 191

Z10 Z11

STH

TVD

POT

ANTIDIURECTIC HORMONE CONTROL

181

180179
178177

175 176 182
183

184

185

158A

186

187

188
189

AHM AH4

AH2 AH1

AHC

AH

CNZ

CN8

CNR

CNA

PRA
AHZ

AH7

AHY

AH8AU

CIRCULATORY DYNAMICS

VIM

AUM

AUM

VIM

AUM

BFN1
2

3

4

36

35

31

32
33

PGS

RSM

38

34

37

RVS

43

42 41A

41

40

39

VBD

VVE

5 6

7 8 9

DAS

QAO30

QLO

LVM

HPL
HMD

QLN

29
59

58

28

50

16

PA2

60

PLA

24

25

26

27

VVS

QLO

AUH

HMD

QRO

QRO

AUH

VPE
PPA

PL1

PPA

RPV

RPT

RPT

PP1

54
53

55
56

57

52

51

23
22 21

20
19 18

48
49

46
45

47

44

10

11

12

13

14
15

LVM

CAPILLARY MEMBRANE DYNAMICS
66

67

68

69

70 71

74
73

62
61

80

79

7877

75

74

72

RVS

BFN
PVG

PVS

VB

VP

VRC

PTC

PPC
PIF

CFC

VPDVUD

DFP

TVD

VP

CPK
CPI

CP1

CPP

CPP PRP

VP

CPR
LPK

DLP

PPD

DP0

DPL

DPP

DPC

ANGIOTENSIN CONTROL

154 155 156 157 158

159

160161

162163

153b
153a

CNA CNE
ANM

AN1

ANT

ANC

AN2
AN3

AN5
ANM

REK

RFN

TISSUE FLUIDS, PRESSURES AND GEL

105
PTC

108

107

106

109

104

110

103102

112

113

98

97

96

99

929190
89

93
94 95

100

101

86

85

84

83
87

88

111

DPL

VTL

CPI

PIF

PLD

PTT

GP1

GPD

GPR

VG

VIF PTS

PIF

GPD

DPL

VTC

VTL

VID

VTS

VTD

PTT

DPI
VIF

IFP

GP2

VGD

VG

V2D

PG2
PGC

PTC

PIF

PIFPTS

PRM
CHY

HYL

VG

PGR

PGP

PGH

ALDOSTERONE CONTROL

165 166

167

164

168

169

170

171

172173174
AM AM5

AM3
AM2

AMC

AMT

AM1AMP

KN1CKE

CNA

ANM

AMR

ELECTROLYTES AND CELL WATER

114 115

116

117 118
119

120

121

126

125

122
123 124

127

128129130

131

135134133

132
CKI CCD

CNA
VIC

VID
VIC

KI

KCD KIE KIR

KE1

AM

CKEKE
KED

KCD

KID

KOD

REK

NED
NAE

CNA

VTW

VIC

VEC

STH
NID

VP

VPF

VTS

HEART HYPERTROPHY OR DETERIORATION

340

341

342

343

344 349

348

347

346

345

350

351

352

PA

PPA4

HPL
HPR

PP3

PPA
HSL HSR

POT

DHM

HMD

RED CELLS AND VISCOSITY

329

330

331

332

333
334

335

336

337

338

339
POT

PO1

POY

PO2

RC1

RCD

VRC

RKC

RC2
VRC

VB

HM

HM2

VIE

VIM

336c

336b

PULMONARY DYNAMICS AND FLUIDS

PLA

136

137

138

139

140

141

142

143

144

145
152

146

147

148

149

150

151

PPA

PCP

PPC

POS

PPI

CPF

PFI

PLF

DFP VPF

PPI

PLF

PLF

PPO

POS

CPN

VPF
PPR

PPD

PPN

PPC

CPP

AUTONOMIC CONTROL

292
291

294
293

296
297298

295

307
303302

301

305

304
308

309

310
311

312

313

315

314

316317

318
319

320

POQ
POT

PA

EXE

POQ
P2O

Z12
EXC

AUCPA1

A1B

AUB

AUN

AU8

AUK AU2

AU6

DAU

Z8

AUJ

AUL
VV9

VVR

AUH

AUM

AVE

AUY

AUD

AUV
AU9

AU

HEART RATE AND STROKE VOLUME

328
327 323

322

321324
325326

SVO

QLO

HR

PRA

AU
HMD

MUSCLE BLOOD FLOW CONTROL AND PO2

227

226

225

224

223

228

229

230

231

232

233

234

235

238
236

237239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

OSA

OVA

BFM

RMO

BFM

PK1

PK2

DVS

PVO

PMO

PM5

RMO

QOM

PMO

PM3

PK3

PM4

P2O

P3O

EXC

AOM

02A

AU
AMM

POE

POM

PDO

PVO

POV

POT

ARM

OVA

P2O

AOM

AMM

AMM

VVE

VV7

VUD

RBF

RFN

NOD

AU

VVR

AUH

AUM

AVE

SVO

HM

BFN

VPF
HM

OVA

PPC
REK

CNEAUM AHM

AM

AHM

PA

NOD

DPC

AUZ

ARM

VIM

AUM

ANM
AVE

RBF

PC

VVR

VV7

AUH

HMD

HSR

HPR

STH

TVD

VTL

AHM

ANM

CNE

AM

VID

CKE

CNA

VTW

PC
VB

VP

DPC

CPP

VTC

VTL

DPL

PTC

CPI

VTS

PIF

HPR

HPL

HMD

VIM

HM

VRC

DFP

VPF

PPD

BFN

BFM

RVS

PVS

PRA

QLO
PLA

PPA

PA

HSL

PPC
VTC

PC

GP3
APD

algebraic
loop

breaking

algebraic
loop

breaking

upper limit 8

upper limit 8
lower limit 4

upper limit 8

upper limit 15.0
lower limit 0.4

upper limit 1

lower_limit_0

lower limit 6

lower limit 50

lower limit 5

lower limit 4

lower limit 3

lower limit 0.95

lower limit 0.7
lower limit 0.5

lower limit 0.3

lower limit 0.2375

lower limit 0.2

lower limit 0.0003

lower limit 0.0001

lower limit 0

lower limit 0

lower limit .005

lower limit .001

12

12

171

3

210

1

0

2

2400

1600

1

1

1

75

25

2130

3550

1

11.4

0.7

0

1

0.7

1

1

2400
Xo

0
0

1.4

50
RVM = f(PP2)

30.5

RAR

96.3

RAM

0
-4

15

20

QRN = f(PRA)

0.6

QRF

0
-4

15

20

QLN = f(PLA)

(u/12)^2PTT = (VTS/12)^2

0
0

20

10
PTS = f(VIF)

2-(0.15/u) PPI = 2 - (0.15/VPF)

u^0.625 PP3^0.1

u^3 POT^3

0.33

u^2PM1^2

u^3

PC^3

u^0.625 PA4^0.625

u^3 P40^3

u^3P3O^3

10u

10u

sqrt

10u

0
0

1.4

260
LVM = f(PA2)

1
sxo

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s

xo

1
sxo

1
s

xo

1
s xo

1
s

xo

1
s

xo

1
s

xo
1
s

xo

1
s xo

1
sxo

1
s xo

1
s xo

1
s xo

1
s xo

1
s

xo

1
s xo

1
s

1
s

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s xo

1
s

5

GF4

0.01095

0.3229

0.9898

2.86

99.95

1

15.22

0.02255
5.085

0.09914

3.781

2.782

1.014

2.86

6.822e-008

0.01252

40

-3.994e-010

2

40

0.9897

1

1

1.001

-6.328

11.99

20.17

7.987

5.043

0.03825
0.001896

0.001897

16.81
69.78

0.03838

3.004

5.004
16.81

198.7

40

142

5

1.115e-006

1.003

10

1.004

0.9999

0.001001

1.002

0.9456

0.0704

1

1.001

1

2.949

1.001

0.1003

1.211

1.211

0.001007

7.999

0.0005

4.0

3.3

0.042

150.1152

1.6379

0.00047

85

512

0.007

1.6283e-007

0.007 0.4

0.1

1.79

0.4

0.4

0.003550.495

5

2.738

1

0.026

1

0.035720

0.85

0.0048
0.30625

3.25

5

1717

1

0.38

0.005
0.1

0.1

100

1

0.0007

0.00333

2

1

139

0.3333

0.0785

6

0.14

6

8.25 4

57.14

0.009

0.01

1

1

1

0.125

0.00781

18
51.66

31.67

8.0001

0.0250.001

1000

0.8

1

33

0.5

11

15

0

5

100

1

2.8

0

0.301

0.3

2.9

3.7

28

5
17

0.002

0.04

70

3

0.3

1

1

2.95

1

1

1

0

0

0.0125

40

0.1

2688

1

2

1 1

1

20

-6.3

0.04

0.002

5

1

12

142

5

0

1

10

1

1

0

1

20

1.2

1.2

0.1

0.001

0

1

0.04

20

0

0.002

1

0.001

0

5

-6.3

2

3.72.8

2.9

0.001

1

0.06

1

51

1

1

1

0

2.95

17

1.2

40

1

1

1

1

1

1.6

40

1

1

8

1

8

100

5

0

1

1

70

28

0

15

1

5

8

8

8

200

15100

0.04

0

0.002

1

12

3

0.0125

1

0.1

8

1

142

5

100

11520

1

1.2

142

40
1

8

142

0

1

1

1

168

1

1

10

1

1
28

100

0.3

1

1

1

1

40
0.0125

200

2.8

40

1

800

2500

122

1

57.14

5

0.5

1

8
40

0.08

5
1

0.25

0.15

1

32

0.5 1

40

2

0.21

6

0.0005

1

1

1.24

1

8

3

1

0.5

1

0.85

0.15

0.7

60

0.3

3.159

8

0.4

0.375

0.000225

0.0003

11

0.0003

0.4667

1

0.0125

0.55

40

0.333
1.5

0.00092

8.25

100

0.0000058

464e-7

512

0.0025

6

57600

15

57600

100

2850

0.01

140

0.013

8.0001

0.0028

0.00014

0.00042

0.1

0.00352

20.039

19.8

-0.017

60

9

-1

0.25

24.2

-5.9

57

0.4

0.1

0.004
7.8

0.25

0.013332

51

0.0825

CV

6

CNY

2.5

CNX

0.2

CN7

0.0212

CN2

u^2 CHY^2

PA1 AUN

AUN CALCULATION

 when PA1<50: AUN=6
 when 20>PA1<50: AUN=0.2*(50-PA1)

 when PA1>=50: AUC=0

AUN calculation

uv

AUJ^AUZ

PA1 AUC

AUC CALCULATION

 when PA1<40: AUC=1.2
 when 40>PA1<80: AUC=0.03*(80-PA1)

 when PA1>=80: AUC=0

AUC calculation

u^3 AUB^3

PA1 AUB

AUB CALCULATION

 when PA1<40: AUB=1.85718
 when 40>PA1<170: AUB=0.014286*(170-PA1)

 when PA1>=170: AUB=0

AUB calculation

1.5

ARF

0 0

4

200
AMP = f(PA)

1

(1.2/u)^3

(1.2/RFN)^3

1
s

xo

 VVS

1
s

xo

 VRA

1
s

xo

 VPA

1
s

xo

 VLA

1
sxo

1
s

xo

1
s

xo

 VAS31
sxo

1
s xo

1
s xo

lower limit 0.35

lower limit 0

VIM

VIM

AAR

AAR

AAR

RR

RFN

GLP

PPC

PFL

GFN

GFR

TRR

VUD

AHM

AM

AM

NOD

EVR

RBF

ANU

ANU

RAR

VAS

VAS VAE

PA

PA

PAMPAM

RAM

PGS
RSN

BFM

QAO

RV1

RV1

VVS VV8

PVS

PVS

PVS

PVS

QVO

QVO

QVO

DVS

QLO

QLN

QLN

DLA

VLA

VLA

VLE

PLA

PLA

PLA

VB

RVM

RVM

QRN

RVG

DRA

VRA

VRA

PRA

PRA

PR1

PR1

PP2

VPA

VPA
PGL

QPO

QPO

RPA

CPA

RFN

GF3

GF3

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

715

just with the behavior of the chip and does not have
to bother about the internal structure and calculation
algorithm.
The behavior of a simulation chip can be tested by
monitoring its outputs using virtual displays or vir-
tual oscilloscopes connected to it. This is very useful
especially for testing the behaviour of a model and
expressing the mutual relations of variables.
Simulation chips can be stored in libraries and users
can create their instances for use in their models. For
example, we created a Physiolibrary for modelling
physiological regulations.
Hierarchical, block-oriented simulation tools are thus
used advantageously in the description of the com-
plex regulation systems that we have in physiology.
A formalized description of physiological systems is
the subject matter of PHYSIOME, an international
project that is a successor to the GENOME project.
The output of the GENOME project was a detailed
description of the human genome; the goal of the
PHYSIOME project is a formalized description of
physiological functions. It uses computer models as
its methodological tool [3, 12].
Several block-oriented simulation tools developed
under the PHYSIOME project have been used as a
reference database for a formalized description of the
structure of complex physiological models. These
include JSIM (http://www.physiome.org/model/doku.
php) and CellML (http://www.cellml.org).

4 From Simulink to Modelica in mo-
deling of large-scale physiological
systems

We have been using Matlab and Simulink for years to
create and develop models of physiological systems
[16, 17, 23] and have also been developing the rele-
vant application Simulink library – the Physiolibrary
(http://www.physiome.cz/simchips).
We have also developed the relevant software tools
that simplify the transfer of models implemented in
Simulink over to development environments (Contro-
lWeb and Microsoft .NET), where we create tutorial
and education simulators [18, 22]. Our development
team gained invaluable experience in previous years
working with the Matlab/Simulink development en-
vironment made by the renown company MathWorks.
On the other hand, we were also attracted by the acau-
sal development environments using the Modelica
language.
In the Modelica language environment the essence
of physiological regulation is much clearer than in
Simulink causal network (see Figures 3 and 4). We
were facing a decision whether to continue with the
development process of physiological system models
in Simulink (using new acasual libraries), or to make
a radical decision and switch to the new Modelica lan-
guage platform.
Our decision was affected by our efforts to imple-

Figure 3: Circulatory dymamics - more detailed cent-
ral structures of the Simulink implementation of Gu-
yton’s model, representing flows through aggregated
parts of the circulatory system and the activity of the
heart as a pump.

Figure 4: The same model structure as is shown in
figure 3 implemented in Modelica. The structure of
the model in Simulink corresponds to the structure of
computational steps, while the Structure of Modelica
model reflects the structure of the modeled physiolo-
gical reality.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

716

ment a large model made by Guyton’s disciples and
followers. Their Quantitative Human Physiology
model is an extension of a tutorial simulator called
the Quantitative Circulatory Physiology (QCP) [1].
Quantitative Human Physiology (QHP) simulator
[10], which is now distributed as “HumMod” [11],
represents today’s most comprehensive and largest
model of physiological functions.

The HumMod model contains more than 4000 vari-
ables and at the present time, it probably represents
the largest and most extensive model of physiologi-
cal regulations. It enables the user to simulate a wide
range of pathological stages and statuses, including
the effects of the relevant applied therapy. The authors
developed a special block-oriented simulation system
to represent the complex model structure. Compared

Figure 5: All necessary files of the Quantitative Human Physiology tutorial simulator (called the HumMod
by the authors in the last version). This simulator has been designed for the Windows operating system and
does not require special installation. Only zip files must be unzipped into a selected folder. After you click the
Hummod.exe icon, the translator translates the source text embedded within hundreds of directories and more
than two thousand files and initiate its own simulator. Even though the source text of the simulator and the
entire mathematical model on the background is offered as an open source (and in theory, the user may modify
the model), the navigation through thousands of mathematical relations and viewing thousands of XML and
interconnected files is rather difficult.

simulátor Hummod

fragment of XML
source code

Compiler and launcher
of Hummod simulator

 Source code files of
HumMod simulator

Running
HumMod simulator

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

717

with the previous QCP simulator, whose mathemati-
cal background is hidden from the user in its source
code written in C++, the HumMod simulator uses a
different approach. The HumMod authors decided to
separate the simulator implementation and descrip-
tion of the model quotations, in order to make the
structure of the model more clear and apparent for the
larger scientific community.
In 1985 the architect of this model, Thomas Coleman,
had already created a special language used to write
the model structure, as well as the element definiti-
ons into the simulator user interface. The language is
based on modified XML notation. The model is then
written by using XML files. A special converter/de-
coder (DESolver) converts XML files into executable
simulator code.
A detailed description of this language and DESolver
converter, as well as the relevant educational tutorial,
is freely accessible on the web page of the University
of Mississippi (http://physiology.umc.edu/themode-
lingworkshop). The new HumMod model is written

in the XML language as well. Its structure with all de-
tails may be found at (http://HumMod.org), published
as an open source.
Therefore, the user can modify this model as he
wishes. However, the model description has been
divided into more than three thousand XML files in
more than thousand directories, from which the spe-
cial solver creates and executes the simulator (Figure
5).
The entire structure of the model and following links
and references are not easily identifiable. That is why
the international research and development team in its
SAPHIR project (System Approach for Physiological
Integration of Renal, cardiac and respiratory control)
decided to use the old Guyton models from 1972 [9]
and the Ikeda model from 1979 [13] for the creation
of its new and extensive model of physiological func-
tions instead of the freely available QHP model. The
source codes of the QHP model appeared unclear or
hard-to-understand to those involved in this project
[31].

VascularCompartments QHPView
Spla

nc
hn

icV
ein

s

Equations

Figure 6: Visualization tool QHPView, created by us, simplifies viewing of the QHP/HumMod simulator
structure, containing more than two thousand XML files, scattered in thousands of directories, where quotati-
ons and links between them may not be apparent.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

718

We have been able to create a special software tool
called QHPView (Figure 6), which is able to create a
clear and legible overview of mathematical relations
and connections from thousands of source codes. We
are offering this tool as an open source on the web
page at (http://physiome.cz/HumMod). First, we tried
to implement the QHP/HumMod model in the Simu-
link environment.
The model contains a wide range of relations that of-
fer solutions for implicit equations. That is why the
implementation of this block-oriented model (outputs
from one block are used as inputs for the next blocks)
is very difficult and as the implementation got more
and more complex, the transparency of this model
went down quickly. The use of new acasual Simulink
libraries in this complex model proved to be proble-
matic and the transparency of the model improved
only a little bit.
Therefore, we decided to stop using the Simulink
implementation and began to implement in Modeli-
ca language (using the Dymola environment). Very
quickly we discovered that the implementation of a
large and extensive model in Modelica is much more
effective than using acasual libraries in Simulink.
When we compared the Simulink and Modelica im-
plementations we also discovered a significant diffe-
rence. Mainly due to the fact that the new acasual lib-
raries are only acasual superstructure of Simulink and
not an objectively oriented modeling language based
on equatations, as the Modelica language is.
Therefore, if we compare the development environ-
ments based on the simulation language Modelica
with the Matlab/Simulink development environments
made by Mathworks, we may say the following:
• contrary to Simulink, the model implemented in

Modelica much better reflects the essentials and
base of the modeled reality and the simulation
models are more clear, readable and less error
prone;

• the object architecture in Modelica enables the
user to build and tweak models with an hierar-
chical structure gradually, while using reusable
element libraries;

• contrary to Simulink (which is the industrial stan-
dard from Mathworks), Modelica is a non pro-
prietary programming language and therefore,
it may contain various commercial and non-co-
mmercial developing environments competing
between each other. This language is used for
specific problem solutions originating in various
application fields (for commercial and non-co-

mmercial specialized libraries);
• in Modelica it is possible to combine causal

(mostly signals) and acasual links; and unlike in
Simulink, it is also possible, (within interconne-
cted blocks) to create algebraic loops - Modelica
compiler uses symbolic manipulations to resolve
the loops automatically (when possible) and the-
refore the disconnection of algebraic loops is the
task for the development environment and not
for the programmer.

The above specified reasons led us to use, as the main
implementation tool for the model creation, the Mo-
delica language and we also gradually stopped using
the Matlab/Simulink environment [20].

5 HumMod in Modelica

The implementation of the HumMod model clearly
shows the benefits of the model creation process when
done in the Modelica language. If we compare the
complex structure of the HumMod model by using
the visualization option in QHPView (Figure 5) with
examples of implementations done in the simulation
language Modelica, shown in Figures 7-13, we can
see that the acasual implementation done in Modelica
creates a transparent and legible model structure and

Figure 7: Structure of Hummod model. Model con-
sist of cardiovascular component (CVS), nutritient
and metabolism component, water and osmolarity
component, proteins component, O2, CO2 and acid-
-base regulation component, electrolyte component,
nervous regulation component, hormone regulation
component, status of virtual pateint component and
setup component. All components ar connected wtih
bus connectors.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

719

therefore offers easier model modifications.
The HumMod model implemented in Modelica is be-
ing currently modified and extended.
Modifications and extensions of HumMod were par-
tially taken from our original model Golem [16, 17]
and further modified according to newest findings and
experiences. Our modifications are mainly extensions,
which improve the usability of the model during the
modeling of difficult disorders in acid-base, ionic, vo-
lume and osmotic homeostasis of inner environments,
which is very important for urgent medicinal statuses.
Our modification of the HumMod model is based
mainly on the process of re-modeling the subsystem
of acid-base balance, which is based in the original
QHP on the so-called Stewart acid-base balance theo-

ry. Simply put, the so-called “modern approach“ of
Stewart [30] and his followers (e.g. Fencl et al. [8],
Sirker et al. [29]) explaining disorders in the acid-
-base balance, uses mathematical relations calculating
the concentration of hydrogen ions [H+] from partial
pressure CO2 in plasma (pCO2), total concentration
([Buftot]), weak (partially dissociated) acids ([HBuf])
and their base ([Buf-]), where:

[Buftot]=[Buf-]+[HBuf]
and from the difference between the concentration of
fully dissociated cations and fully dissociated anions
in SID (strong ion difference):

[H+]=Function (pCO2, SID, Buftot)
The problem of this approach is that the precision of
acid-base calculations in the model depends on the

Figure 11: Structure of splanchnic circulation compo-
nent (SplanchnicCirculation class).

Figure 9: Structure of systemic circulation component
(SystemicCirculation class).

Figure 10: Structure of systemic peripheral circulati-
on component (Peripheral class).

Figure 8: Structure of cardiovascular component
(CVS class).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

720

precision of the SID calculation, that is the difference
between the concentration of fully dissociated cations
(that is mainly sodium and potassium) and fully di-
ssociated anions (mostly chlorides). Imprecision that
is created during the modeling of sodium, potassium
and chlorides intake and excretion are transferred and
reflected by the imprecision in the modeling process
of the acid-base status.
Even though Hester et al. [11], significantly improved
the modeling of reception and excretion of sodium,
potassium and chlorides in kidneys in his HumMod
model, if we model a long-term status (when nothing
is happening with the virtual patient), the virtual pa-
tient (in the current model version) has a tendency to
fall into slight and steady metabolic acidosis after one

month of the simulated time.
Our evaluative approach towards the modeling and
evaluation of disorders in acid-basic balance [14,
15, 21] is based on the modeling and evaluation of
two flows – the creation and excretion of CO2 and
the creation and excretion of strong acids, connec-
ted through the purification systems of each part of
the bodily fluids. This approach, according to our
opinion, better explains the physiological causality
of acid-base regulations, rather than direct mode-
ling of acid-base disorders through the balancing of
accompanying electrolytes. Besides, the fidelity and
truthfulness of the modeling process is getting better;
mainly in mixed (acid-base and electrolyte) disorders
in inner environments.
Another important modification of the HumMod, is
the fact that the model was extended by adding the
dependency of the potassium flow on the intake of
glucose as a result of insulin, which enables us to
model (besides other things), the influence of pota-
ssium solution infusions with insulin and glucoses,
which are distributed in acute medicine for treating
potassium depletions.
We have been using this “balancing and evaluation”
approach [18] towards the modeling of acid-base ba-
lance in our old “Golem” simulator [17]. The exten-
ded HumMod model serves as the base for the educa-
tional simulator „eGolem“, used in medical tutoring
in clinical physiology of urgent statuses which is be-
ing currently developed.
On the webpage http://physiome.cz/HumMod you
may find the updated and current structure of our
implementation of the HumMod model („HumMod-
-Golem edition“). In collaboration with M. Tiller we
are preparing a detailed description of this model with
extensive descriptions of the various physiological
regulatory circuits.

6 From a model to the simulator

A simulation model, implemented in a sophistica-
ted development environment, cannot be used for
education as is alone. It is the implementation of the
formalized description of the modeled reality that
enables testing of the behavior of the mathematic
model during various input values and the search for
model quotations and parameters, which within the
established precision range, can ensure the sufficient
compatibility of the behavior of the model with the
modeled system (model identification).
Even after this goal is reached, there is still a long

Figure 12: Structure of gastrointestinal vascular resi-
stance component (GITract class).

Figure 13: Structure of component calculating influ-
ence of alpha receptors stimulation on gatrointestinal
vascular resistance (AlphaReceptors class).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

721

road ahead from the identified model to the educatio-
nal or tutorial simulator. It is a very demanding deve-
lopment work, which requires the combination of ide-
as and experiences of teachers who create the script of
the tutorial application, the creativity of art designers
who create the multimedia components interconnec-
ted with the simulation model in the background, as

well as the efforts of programmers who finally “sew
up” the final masterpiece into its final shape. We have
used a special web simulator creation technology for
creation of educational simulators [20].
To automate the model debugging transfer from the
simulation development environment (previously
using Simulink and nowadays using Modelica) into

Figure 15: Our new solution of creative interconne-
ction of tools and applications, used for the creation
of simulators and tutorial programmes using simu-
lation games. The base of an e-learning program is
still a high-quality script, created by an experienced
pedagogue. The creation of animated figures is done
by artists who create interactive animations in Expre-
ssion Blend. To create and test animations that will be
controlled by the simulation model, art designers use
the Animtester software tool, developed by us. The
core of simulators is the simulation model, created in
the Modelica simulation language environment. Wi-
thin the project Open Modelica Source Consortium,
we are in the process of creating a tool which is able
to generate the source code from Modelica to C# lan-
guage. This enables us to generate a component from
.NET used in the final application on the Silverlight
platform, which enables to distribute the simulator
as a web application, running in the internet browser
(even on computers with various operating systems).

Figure 14: The original solution of creative interco-
nnection of tools and applications, used for the crea-
tion of simulators and tutorial programmes using si-
mulation games. The base of an e-learning program
is a high-quality script, created by an experienced
pedagogue. The creation of animated pictures is
done by artists who create interactive animations in
Adobe Flash. The core of simulators is the simula-
tion model, created with special development tools,
designed for the creation of simulation models. For a
long time, we have been using Matlab/Simulink made
by Mathworks for the development of models. The
simulator development process is a demanding pro-
gramming work. To make this task easier, we have
developed special programmes that simplify the au-
tomatic transfer process of simulation models created
in Matlab/Simulink over to ControlWeb or over to the
Microsoft .NET environment.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

722

the development environment where the development
application is programmed, specialized software tools
(developed by us) are used. We have been creating tu-
torial simulators in Microsoft .NET and Adobe Flash
environments (Figure 14). Recently, we began using
the Microsoft Silverlight platform (Figure 15), which
enables distribution of simulators over the internet
and may be executed directly into the internet brow-
ser environment (even on computers running various
operating systems).

7 Conclusions

Nowadays, the old Comenius motto – “schola ludus,“
or “playful school” [6], has found a modern use in
interactive educational programs that use simulation
games. Connection of the multimedia environment,
serving as an audio-visual user interface, with simula-
tion models, gives the studied problem a much more
tangible feeling. A simulation game offers the possi-
bility to test, without any risk, the simulated object’s
behavior. The behavior of individual physiological
subsystems can be appreciated in a simulation game,
both under normal conditions and in the presence of
a disorder.
Complex integrative simulators of human physiolo-
gy can be of large importance when teaching patho-
physiology or studying pathogenesis of varied medi-
cal conditions and syndromes using virtual patients.
Such simulators include models of not only individual
physiological subsystems but also of their mutual co-
nnection into more complex units. Modelica is a very
convenient developing tool for design of those com-
plex hierarchical models.

References

[1] Abram, S.R., Hodnett, B.L., Summers, R.L.,
Coleman, T.G., Hester R.L., Quantitative Circu-
latory Physiology: An Integrative Mathematical
Model of Human Physiology for medical educa-
tion. Advannced Physiology Education, 31 (2),
pp.202 - 210, 2007.

[2] Amosov, N.M, Palec, B.L., Agapov, G.T., Er-
makova, I.I., Ljabach, E.G., Packina, S.A., So-
loviev, V.P.. Theoretical research of physiologi-
cal systems (in Russian). Naukova Dumaka,
Kiev, 1977.

[3] Bassingthwaighte J. B., Strategies for the Physi-
ome Project“, Annals of Biomedical Engeneer-

ing 28, pp. 1043-1058, 2000.
[4] Brugård, J., Hedberg, D., Cascante, M., Geder-

sund, G., Gómez-Garrido, A., Maier, D., Nyman,
E., Selivanov, V., Stralfors, P., Creating a Bridge
between Modelica and the Systems Biology
Community, Proceedings 7th Modelica Confer-
ence, Como, Italy, Sep. 20-22, 2009., pp. 473-
479, The Modelica Association., Como, 2009.
Available http://www.ep.liu.se/ecp/043/052/
ecp09430016.pdf.

[5] Cellier, F. E., Nebot, A., Object-oreiented mod-
eling in the service of medicine, Proceedings of
the 6tha Asia Conference, Bejing, China 2006.
1, pp 33-40. International Academic Publishers,
Bejing, 2006.

[6] Comenius, J. A., Schola ludus seu Encyclo-
paedea Viva., Sarospartak, 1656.

[7] Fencl, J., Jabor, A., Kazda, A., Figge, J., Diagno-
sis of metabolic acid-base disturbances in criti-
cally ill patients, Am. J. Respir. Crit. Care., 162,
pp. 2246-2251, 2000.

[8] Guyton A. C., Coleman T. A., Granger H. J.,
Circulation: Overall Regulation, Ann. Rev.
Physiol., 41, 13-41, 1972.

[9] Haas, O. C., Burnham, K. J., Systems Modeling
and Control Applied to Medicine, in O. C. Haas,
K. J. Burnham, Intelligent and Adaptive Systems
in Medicine, pp. 17-52, CRC Press, Boca Raton
Fl , 2008.

[10] Hester R. L., Coleman T., Summers, R.,
A multilevel open source model of human
physiology.“The FASEB Journal, 22, p. 756,
2008

[11] Hester, R.L, Ilescu, R., Summers R. L , Cole-
man T. G., Systems biology and integrative
physiological modeling, Journal of Physiology,
Published online before print December 6, 2010,
doi: 10.1113/jphysiol.2010.201558, Availabe:
http://jp.physoc.org/content/early/2010/12/01/
jphysiol.2010.201558.full.pdf+html.

[12] Hunter P.J., Robins, P., Noble D., The IUPS
Physiome Project, Pflugers Archive-European
Journal of Physiology, 445, pp. 1–9, 2002.

[13] Ikeda N., Marumo F., Shirsataka M. A., Model
of overall regulation of body fluids, Ann. Bi-
omed. Eng. 7, pp. 135-166, 1979.

[14] Kofránek, J., Modelling of blood acid base bal-
ance, Ph,D, Thesis, Charles University, Faculty
od General Medicine, Prague, 1980.

[15] Kofránek, J., Complex model of acid-base bal-
ance (in Czech)., in M. Zeithamlová (Editor),
MEDSOFT 2009, Praha: Agentura Action M.,
pp. 23-60. English translation of the paper is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

723

available at http://www.physiome.cz/references/
medsoft2009acidbase.pdf, model is available at
http://www.physiome.cz/acidbase.

[16] Kofránek, J., Andrlík, M., Kripner, T., Mašek,
J., Simulation chips for GOLEM – multimedia
simulator of physiological functions, in J. G.
Anderson, M. Kapzer (Editor), Simulation in the
Health and Medical Sciences 2002. pp. 159-163,
Society for Computer Simulation International,
Simulation Councils, San Diego, 2002.
Available: http://www.physiome.cz/references/
simchips2002.pdf.

[17] Kofránek J. Anh Vu L. D., Snášelová H.,
Kerekeš R. and Velan T., GOLEM – Multimedia
simulator for medical education, in MEDINFO
2001, Proceedings of the 10th World Congress
on Medical Informatics. (London, UK, 2001),
Patel, L., Rogers, R., Haux R. Eds., pp. 1042-
1046, IOS Press, London, Available: http://
www.physiome.cz/references/medinfo2001.pdf.

[18] Kofránek, J., Mateják, M., Matoušek, S.,
Privitzer, P., Tribula, M., & Vacek, O.,
School as a (multimedia simulation) play:
use of multimedia applications in teaching of
pathological physiology. MEFANET 2008. CD
ROM Proceedings, (ISBN 978-80-7392-065-4),
kofranek.pdf: pp. 1-26, Masarykova Univerzita,
Brno, 2008. Available: http://www.physiome.
cz/references/mefanet2008.pdf.

[19] Kofránek, J., Mateják, M. Privitzer, P., Tribula,
M., Causal or acausal modeling: labour for hu-
mans or labour for machines, in V C. Moler, A.
Procházka, R. Bartko, M. Folin, J. Houška, P.
Byron (Editor), Technical Computing Prague
2008, 16th Annual Conference Proceedings, CD
ROM, 058_kofranek.pdf: pp. 1-16. Humusoft
s.r.o., Praha, 2008, Available: http://www.physi-
ome.cz/references/tcp2008.pdf.

[20] Kofránek, J. Mateják, M., Privitzer, P.:Web sim-
ulator creation technology. MEFANET report, 3,
pp. 32-97. Available: http://www.physiome.cz/
references/mefanetreport3.pdf.

[21] Kofránek, J., Matoušek, S., Andrlík, M., Border
flux ballance approach towards modelling
acid-base chemistry and blood gases transport,
in V B. Zupanic, S. Karba, S. Blažič (Editor),
Proceedings of the 6th EUROSIM Congress on
Modeling and Simulation, Full Papers (CD)
(TU-1-P7-4, pp. 1-9), University of Ljubljana,
Ljubljana 2007. Available: http://www.
physiome.cz/references/ljubljana2007.pdf.

[22] Kofránek, J., Matoušek, S., Rusz, J., Privitzer, P.,
Mateják, M, Tribula, M., The Atlas of physiol-

ogy and pathophysiology: web-based multime-
dia enabled interactive simulations, Computer
Methods and Programs in Biomedicine, Article
in Press, doi:10.1016/j.cmpb.2010.12.007, 11
pp., 2011, Available: http://www.physiome.cz/
references/CMPB2011.pdf.

[23] Kofránek, J, Rusz, J., Restoration of Guyton dia-
gram for regulation of the circulation as a basis
for quantitative physiological model develop-
ment Physiological Research, 59, pp 897-908,
2010, Available: http://www.biomed.cas.cz/
physiolres/pdf/59/59_897.pdf.

[24] Logan, J. D., Wolesensky, J. D., Mathematical
methods in biology. John Wiley & Sons,,Inc.,
Hoboken, NJ, 2009.

[25] McLeod, J., PHYSBE: A ophysiological simula-
tion benchmark experiment, Simulation, 15: pp.
324-329, 1966.

[26] McLeod, J., PHYSBE...a year later, Simulation,
10, pp. 37-45, 1967.

[27] McLeod, J., Toward uniform documentation-
PHYSBE and CSMP, Simulation, 14, pp. 215-
220, 1970.

[28] Oomnes, C., Breklemans, M., Baaijens, F., Bio-
mechanics: concepts and computation. Cam-
bridge University Press, Cambridge, 2009.

[29] Sirker, A. A., Rhodes, A., Grounds, R. M.,Acid-
base physiology: the ‚traditional‘ and ‚modern‘
approaches, Anesthesia, 57, pp. 348-356, 2001.

[30] Stewart, P. A., Modern quantitative acid-base
chemistry. Can. J. Physiol. Pharmacol., 61,
1444-1461, 1983.

[31] Thomas, R. S., Baconnier, P., Fontecave, J.,
Francoise, J., Guillaud, F., Hannaert, P., Her-
mandéz, A., Le Rolle, V., Maziére, P, Tahi, F.,
White R. J., SAPHIR: a physiome core model of
body fluid homeostasis and blood pressure regu-
lation, Philosophical Transactions of the Royal
Society, 366, pp. 3175-3197, 2008.

[32] Wallish, P., Lusignan, M., Benayoun, M., Baker,
T. I., Dickey, A. S., Hatsopoulos, N. G., MAT-
LAB for Neuroscientists: An Introduction to Sci-
entific Computing in MATLAB. Academic Press,
Burlington, MA, 2008.

Acknowledgement
Work on the development of medical simulators has
been supported by the grants MPO FR-TI3/869, MSM
0021620806 and by Creative Connections s.r.o.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

724

Modeling and Simulation of Heavy Truck with MWorks

Ying Sun, Wei Chen, Yunqing Zhang, Liping Chen
 CAD Center, Huazhong University of Science and Technology, China

zhangyq@hust.edu.cn

Abstract

This paper shows the modeling and simulation of
fuel economy and vehicle dynamics of a heavy truck
with Modelica. The work was carried out on
MWorks, which is developed by Huazhong Univer-
sity of Science & Technology. Comparisons be-
tween measured data and simulation results va-
lidate the correctness of the model, and demon-
strate that Modelica can be used in the modeling
and simulation of vehicle performance, and also
shows the effectiveness MWorks software.
Keywords: Fuel Economy; Vehicle Dynamics; Mod-
eling; Simulation; Modelica; MWorks

1 Introduction

The modeling and simulation of vehicle performance
such as fuel economy, acceleration capability, han-
dling, etc., are always carried out by some different
software. For example, the fuel
my, acceleration capability and gradeablity are al-
ways analysis by AVL-Cruise, ADVISOR or some
other software [1].Vehicle dynamics is the science
that studies the kinetics and dynamics of wheeled
land vehicles. The modeling and simulation of ve-
hicle dynamics are always carried out by some mul-
tibody system software such as MSC.ADAMS, Sim-
pack, Carsim, etc [2]. However, these simulation
software are only strong in one domain and are not
capable to model components from other domains in
a reasonable way. This is a major disadvantage since
technical systems are becoming more and more hete-
rogeneous with components from many engineering
domains [3].
Modelica has been used widely in various domains,
and shows the ability in the modeling of complex
physical systems. Modelica is a modern language
used to model physical systems. The language is ob-
ject-oriented, non-causal1 and the models are ma-
thematically described by differential algebraic equa-
tions. The characteristic of modelica language make
it very suited to define model libraries with reusable

components, model complex applications involving
parts from several application domains, and many
more useful facilities [4].
This paper shows the modeling and simulation a
heavy truck with MWorks based on unified model-
ing language Modelica. Comparisons between
measured data and simulation results validate
the correctness of the model, and demonstrate
that Modelica can be used in the modeling and
simulation of vehicle performance, and also
shows the effectiveness MWorks software.
MWorks is under developed by Huazhong Universi-
ty of Science and Technology. It is a general model-
ing and simulation platform for complex engineering
systems which supports visual modeling, automati-
cally translating and solving, as well as convenient
postprocessing. The current version is based on
Modelica 2.2 and implements almost all the syntax
and semantics of Modelica. More details about
MWorks can be referred to [5].

2 Power Transmission Library

The power transmission library is designed to simu-
lation of the automotive driving performance, such
as fuel economy, acceleration capability, gradeablity,
etc. The library includes the main power transmis-
sion components of a heavy truck, such as engine,
clutch, gears, final drive, wheel, vehicle, brake, driv-
er, etc., and can be seen in Fig. 1.
The components of the power transmission library
are shortly described below:
 Engine

The component engine contains a model for a
combustion engine. As the characteristic curves for
the full load, the fuel consumption and others can
be freely defined by the user. It is possible to de-
fine a gasoline engine as well as a diesel engine.
The engine will be modeled by a structure of cha-
racteristic curves and maps.
 Clutch

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

725

The clutch contains the model of a friction clutch
as used in cars with manual gear boxes. It is con-
trolled by the driver via the clutch pedal position.

Fig.1 Components of Power Transmission Library

 Gears
The gear package includes gears in the vehicle,
such as gearbox, differential gear, final drive, etc.
The gears are modeled as gear ratios, and the iner-
tial of the gear and moment loss are considered.
 Wheel

The wheels and tires link the vehicle to the road.
This component allows to consider many influen-
cing variables and their effect on the rolling state.
 Vehicle

The vehicle is one of the main objects in a model.
This component contains general data of the ve-
hicle, such as nominal dimensions and weights.
The library presents only dynamic models for the
longitudinal motion of the vehicle. So a sliding
mass may represent as vehicle body.
 Driver

The driver includes gearbox control，clutch con-
trol brake control，throttle control and so on.
 DriveCycle

The drive cycle model includes some drive cycles,
such as EDC, UDDC, NYCC driving cycles, etc..
Some other cycles can be added if desired.
 Brake

This is described by braking data and dimensions.
By the implementation of a specific braking factor

it is possible to model disc brakes as well as differ-
ent forms of drum brakes.

Fig.2 Model of the Heavy Truck
The user can build a heavy truck model very easily,
seen in Fig. 2. The user drags the components to-
gether and connects lines in the graphic user inter-
face. The vehicle was modeled by a forward-facing
approach include the driver model, which controls
the throttle, brake, clutch, gearbox to make the ve-
hicle speed follow a given driving cycle.

3 Vehicle Dynamic Library

The vehicle dynamic library is designed to simula-
tion of the dynamic performance such as handling,
K&C of the heavy truck. The library was built based
on standard library. The wheel model and bushing
model used in this paper are from VehicleDynamics
Libraray 0.8 which is designed by Modelon [6] and
made some modification. As can be seen in Fig.3,
the subsystem is build by basic components, and the
heavy truck was assembled by the subsystems.

Fig.3 Vehicle Dynamic Library

The standard library MultiBody is a free Modelica
package providing 3-dimensional mechanical com-
ponents such as joints, functions, forces, parts, sen-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

726

sors, etc., to model mechanical systems. However,
it’s not enough to carry out vehicle dynamic model-
ing and simulation. Many important components
such as nonlinear spring, nonlinear damper, bushing,
beam, airspring, tires, etc., don’t exist in the standard
modelica library. So we must extend the mutibody
library to carry out vehicle dynamic modeling and
simulation.
The heavy truck with ten-wheel three-axle was de-
signed and manufactured by China National Heavy
Duty Truck Group Corp., Ltd. The truck has conven-
tional steering system, leafspring front suspension
and airspring rearsuspension, and will be described
in the following.

3.1 Leaf Spring Modeling

Leaf springs are commonly used in the suspension
systems of heavy truck. Accurate modeling of the
leaf springs is necessary in evaluating ride comfort,
braking performance, vibration characteristics, and
stability [7]. There several ways to model the leaf
spring. In this paper, simple beam theories are used
to model the dynamics of the leaf spring. The beam
elements have the constant cross section. A total of
17 elements were used to create the single leaf spring
model, seen in Fig.4.The shackle and the leaf seat are
modeled as rigid parts. The pin joints are
represented by revolute joints with one degree of
freedom along the global y-axis. The forces and
moments are applied at the axle seat. To decrease the
amount of the equations and increase the calculation
efficiency, the frictions between the leaves and the
contact force are neglected.

Fig.4 Leaf Spring Model

3.2 Front Suspension Modeling

The front suspension includes leaf spring, antiroll bar,
axle and the shock absorber. According to the topol-
ogy, the front suspension was build very easily, seen
in Fig.5. The port F is connected to frame, the port
LS is connected to the left part of the steering system,
and the port RS is connected to the right part of the
steering system.

Fig. 5 Front Suspension Fig. 6 Steering System

3.3 Steering Modeling

The steering system includes a steering column and
steering trap. In this paper, the steering column is
modeled as a inertial for simplification, and the
steering trap is modeled according to the topology.
The steering column and the steering trap is con-
nected by ball screw, which is modeled
by IdealGearR2T in the Modelica library. The hy-
draulic power steering is essential to the heavy truck
to assist the driver, and also modeled by hydraulic
components. As can be seen in Fig.6, the port D is
connected to the driver model, the port LX and RX is
connected to the left and right axle, and the port LW
and RW is connected to the left and right wheel.

3.4 Rear Suspension Modeling

The rear suspension includes v-rods, push-rods, air
springs, antiroll and shock absorber. According to
the topology, the rear suspension was build, seen in
Fig.7. The port F is connected to frame, the port LW
is connected to the left wheel, and the port RW is
connected to the right wheel.

Fig. 7 Rear Suspension System

3.5 Vehicle Assembly

Based on the subsystem model, the user can build
subsystem assembly and vehicle assembly very easi-
ly, seen in Fig.8 and Fig.9. The user drags the com-
ponents together and connects lines in the graphic
user interface. The Model includes the front suspen-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

727

javascript:void(0)

sion, steering system, the middle and rear bride, the
frame, the cab, powertrain, the driver, wheels and the
semitrailer. Based on the model, the K&C and the
handling can be carried out to analysis the perfor-
mance of the heavy truck.

Fig. 8 Heavy Truck Assembly

Fig. 9 3D View of Heavy Truck model

4 Simulation and Results

To analysis the performance the heavy truck, the si-
mulation about the fuel economy, the K&C of the
subsystem and the handling performance were car-
ried out in the following.

4.1 Fuel Economy Simulation

Fuel consumption is the amount of fuel used per unit
distance. Lower values mean better fuel consumption.
The key parameters of the vehicle can be seen in Ta-
ble 1. The simulation was carried out to caculated the
fuel consumption with constant speed in 15th and 16th
gear. The simulation results can be seen in Fig.10
and Fig.11.
Table 1 Key parameters of the vehicle
Components Key Parameters
Engine Maximum power: 1802kW@1500rpm

Maximum torque: 309Nm@2000r/min
Final Drive 3.93
Transmission 15.59/13.12/10.89/9.17/7.48/6.30/5.20/

4.38/3.56/3.00/2.49/2.10/1.71/1.44/1.19
/1.00

Vehicle Mass 49000Kg
Wheel Radius 0.548
Rolling Resis-
tance

0.0091

Frontal Area 8.5m2

Coefficient of
Aerynamic
Drag

0.585

Fig 10 Fuel Consumption with Constant Speed in 16th Gear

Fig.11 Fuel Consumption with Constant Speed in 15th gear

The dashed line is the experiment data, and the solid
line is the simulation data. The figures showed that
the simulation results were very close to the experi-
ment data.

4.2 Vehicle Dynamic Simulation

With the vehicle dynamic library, the vehicle be built
very easily, and some open loop test can be simu-
lated, such as step steer, impulse steer, brake, etc.

Fig.12 Steering Wheel Angle

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

728

Fig.13 lateral acceleration

Fig.14 Yaw speed

Fig.15 Roll Angle

The step steering simulation was carried out. The
steering angle and vehicle speed were considered as
input, seen in Fig.12. Fig.13-Fig. 15 showed the dy-
namic performance of the vehicle.

5 Conclusions

This paper shows the modeling and simulation of
fuel economy and vehicle dynamics of a heavy truck
with Modelica. The work was carried out on
MWorks. Comparisons between measured data
and simulation results validate the correctness of
the model, and demonstrate that Modelica can
be used in the modeling and simulation of ve-

hicle performance, and also shows the effective-
ness MWorks software.

Acknowledgement

This work was supported by the National High-Tech
R&D Program, China (No. 2009AA044501).

References

[1] Wang J., etc. Forward simulation model precision
study for hybrid electric vehicle. Mechatronics and
Automation, 2009 , pp. 2457 – 2461.

[2] Blundell M., Harty D. The Multibody Systems
Approach to Vehicle Dynamics. SAE, Warrendale,
2004.

[3] Hilding Elmqvist. An Introduction to the Physical
Modeling Language Modelica. Proceedings of the 9th
European Simulation Symposium, ESS'97, Oct 19-23,
1997, Passau, Germany.

[4]Modelica Association. http://www.modelica.org.
[5] FAN-LI Zhou, LI-PING Chen, etc. MWorks: a Mod-

ern IDE for Modeling and Simulation of Multidomain
Physical Systems Based on Modelica. Proceedings of
the 5th International Modelica Conference, 2006.

[6] J. Andreasson and M. Gafvert. The VehicleDynamics
Library-Overview and Applications. Proceedings of
the 5th International Modelica Conference, 2006.

[7] Hiroyuki Sugiyama, etc. Development of nonlinear
elastic leaf spring model for multibody vehicle
systems. Computer Methods in Applied Mechanics
and Engineering, 2006, pp. 6925-6941.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

729

http://www.modelica.org/

Object-Oriented Electrical Grid and
Photovoltaic system modelling in Modelica

Bart Verbruggen1 Juan Van Roy1 Roel De Coninck2,4 Ruben Baetens3

Lieve Helsen2 Johan Driesen1

1 Department of Electrical Engineering, K.U.Leuven, B-3000 Leuven, Belgium
2 Department of Mechanical Engineering, K.U.Leuven, B-3000 Leuven, Belgium

3 Department of Civil Engineering, K.U.Leuven, B-3000 Leuven, Belgium
4 3E, B-1000 Brussels, Belgium

Abstract

In this paper an object-oriented model for an electrical
grid based on the IEEE 34 node test feeder and the
integration of this grid with photovoltaic systems on
residential level, i.e. 230 V, is presented. The goal
is to demonstrate the flexibility of using Modelica to
simulate a grid model and to show how this model can
be used to simulate the influence of a household power
demand and photovoltaic generation on this electrical
grid. The idea is to clarify the voltage problem that
might occur when implementing a large amount of
photovoltaic (PV) systems into a residential grid.

Keywords: Electrical grid; Photovoltaic system;
Residential building

1 Introduction

The models that are presented in this paper are a direct
result of work that has been accomplished within the
K.U.Leuven Energy Institute (EI) project Optimized
Energy Networks for Buildings. This project focuses
on the energy flows within a building and a group
of buildings. These energy flows include thermal
and electrical energy transfers combined with internal
energy conversions. The developed models focus on
the electrical aspect, the aspects of the building itself
and the thermal installations in the building. These
different aspects are modeled by different departments
of the Faculty of Engineering at the K.U.Leuven. An
object-oriented approach to modelling the building(s)
with its interactions is advisable. This way, each
model can be developed and tested in their respective
domains, before interconnecting them. This paper
only treats the electrical part.

The example, that is presented in this paper, is

developed to illustrate how the integration of the
grid and photovoltaic system (PV) models can be
accomplished. The choice for an object-oriented
approach together with the multi-disciplinary nature of
the project has led to the use of Modelica.

First, a photovoltaic (PV) system has been
implemented based on the five parameter model, as
a part of the electrical models being developed [1].
The parameters needed for this model can generally be
obtained from data gathered from the manufacturer’s
specifications of the solar panels.

A second electrical model has been developed for
an electrical distribution grid at low voltage (i.e.
230 V). This electrical distribution grid is based on
the topology of the IEEE 34-bus model developed
for a medium-voltage industrial 24.9 kV distribution
grid [2]. The parameters of this distribution grid
have been downscaled to represent a residential radial
low-voltage electrical distribution network. The
object-oriented model has been developed in such
a way that the distribution grid topology and its
impedances are characterized by a Modelica Record,
ensuring maximum flexibility and scalability in the use
of the model. As such, this model can be used to
describe intra-building grids, which are radial as well.
DC-networks follow the same methodology.

2 Photovoltaic system model

2.1 Introduction to the five parameter model

The five parameter model, which is temperature
dependent, is based on the single diode equivalent
circuit of a PV panel [3]. The five parameters used
are:

• the light current Iph

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

730

• the diode reverse saturation current Io

• a shunt resistance Rsh

• a series resistance Rs

• the thermal voltage Vt

These parameters are indicated in the equivalent
circuit presented in Figure 1.

Figure 1: Five parameter model of a PV panel [3]

2.2 Calculation of the five parameters

The five parameters in the model (Iph, Io, Rsh, Rs

and Vt) can be calculated based on characteristics
that are provided by the solar panel manufacturer.
The necessary specifications to calculate the five
parameters are the current Impp and voltage Vmpp at
maximum power point (mpp) under standard testing
conditions (STC), the short circuit current Isc and open
circuit voltage Voc under the same standard testing
conditions and the temperature coefficients ki and kv of
respectively the short circuit current and open circuit
voltage. Based on these specifications, Sera et al. [4]
gives the calculation method for the five parameters.

The general current-voltage (i− v) equation for the
single diode equivalent circuit is given in Eq. (1). In
this equation Vt is the junction thermal voltage and ns

the number of cells in the panel connected in series.
The voltage Vmpp and current Impp at maximum power
point should satisfy this equation and according to
Eq. (2), the derivative of the power with respect to the
voltage should be zero at this point. Eq. (3) states that
the derivative of the current with respect to the voltage
at short circuit current should be the negative of the
shunt conductance (1/Rsh). These equations lead to
the calculation of the parameters Rs, Rsh and Vt .

i = Iph − I0 ·
(

e
v+i·Rs
ns ·Vt −1

)
− v+ i ·Rs

Rsh
(1)

dP
dV

∣∣∣V=Vmpp
I=Impp

= 0 (2)

dI
dV

∣∣∣
I=Isc

=− 1
Rsh

(3)

The reverse saturation current Io and light current
Iph at STC can be found based on Eq. (1) for the short
circuit (Eq. (4)) and open circuit condition (Eq. (5)).

Isc = Iph − I0 · e
Isc ·Rs
ns ·Vt − Isc ·Rs

Rsh
(4)

Ioc = 0 = Iph − I0 · e
Voc

ns·Vt − Voc

Rsh
(5)

2.3 Five parameter PV model in Modelica

The five parameter model is implemented in a
Modelica model to calculate the power output of
the photovoltaic panels under operational conditions.
The current and voltage at maximum power point
can be found by solving Eqns. (1) and (2) for the
non-reference conditions. The parameters for these
conditions are calculated in the next paragraphs.

The PV parameters are adjusted to take into account
the position of the sun, the direct and indirect radiation
and the ambient temperature. The cell temperature has
been adjusted to be the ambient temperature plus the
losses of the panel.

The tilt angle and orientation of the PV panels
are parameters of the PV model. Together with the
sun’s position, the incidence angle of the direct beam
radiation can be calculated which allows to obtain
the amount of radiation that gets reflected by and
passes through the PV panel cover. This is done using
incidence angle modifiers that are derived from De
Soto et al. [3]. The incidence angle modifier Kτα(θ)
can be found from the transmittance τ of the cover
system with Eq. (8), which is approximated in Eq. (7).
The angle of refraction, θr, is determined in Eq. (6)
by Snell’s law, with θ the incidence angle and n the
effective index of refraction of the cell cover. In
Eq. (7), K is the glazing extinction coefficient and L
is the glazing thickness. In the model K and L can be
adjusted. By default, K is assumed to be 4 m−1 and L
is assumed to be 2 mm.

θr = arcsin(n · sinθ) (6)

τ(θ) = e−
K·L

cosθr ·
[

1− 1
2
·
(

sin2(θr −θ)

sin2(θr +θ)

+
tan2(θr −θ)

tan2(θr +θ)

)]
(7)

Kτα(θ) =
τ(θ)

τ(0)
(8)

The incidence angle modifiers and the direct and
diffuse radiation, which are inputs to the model, allow

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

731

together with the reflected radiation to calculate the
absorbed solar radiation S in Eq. (9). In this equation
Gb is the direct, Gd the diffuse and G the total
radiation. The slope of the PV panel is characterized
by β .

S
Sre f

=
Gb

Gre f
·Kτα,b +

Gd

Gre f
·Kτα,d ·

1+ cosβ

2

+
G

Gre f
·ρ ·Kτα,g ·

1− cosβ

2
(9)

The light current Iph, reverse saturation current I0
and thermal voltage Vt at non-reference conditions
can be calculated when the temperature, open circuit
voltage and short circuit current are known [4]. The
open circuit voltage Voc can be calculated using
Eqns. (10) and (11). The short circuit current Isc can
be found using Eq. (12).

e
Voc(S)
ns·Vt =

Iph(S) ·Rsh −Voc(S)
I0 ·Rsh

(10)

Voc(T) =Voc + kv · (T −Tstc) (11)

Isc(S,T) = Isc ·
(

S
Sre f

)
·
(

1+
ki

100
·(T −Tre f)

)
(12)

The reverse saturation current I0 can be calculated
with Eq. (13). The light current Iph is found using
Eq. (14).

I0 =

(
Isc −

Voc − Isc ·Rs

Rsh

)
· e−

Voc
ns·Vt (13)

Iph = I0 · e
Voc

ns ·Vt +
Voc

Rsh
(14)

The ambient temperature and the direct and diffuse
radiation are read from a meteorological data file
and can be given as parameters to the model of the
photovoltaic panel. This meteorological data are taken
from Meteonorm 6.1 and give minute values for solar
radiation and ambient temperature [5]. The direction
of the beam radiation to the PV panel and the position
of the sun are calculated in another model based on the
simulation time.

2.4 Conclusion

Since the model of the PV panel takes Iph, Io, Rsh, Rs

and Vt as parameters, it can be used to model a large
variety of PV panels for which these parameters are
known. For most panels they can be calculated from
manufacturer catalogue data, for which the method
is described in section 2.2. The PV panel model
calculates the power, current and voltage of the panel

and can be used to put several panels in series or in
parallel. This leads to an optimal flexibility for the use
of this model.

3 Electrical grid model

The goal of this paper is to demonstrate a working grid
model to show the effects of the power demand of a
household and the power generation of a PV system
on a distribution grid.

First, the grid topology is described in section 3.1.
This section discusses the simulated grid, the
representation of the grid in matrix form and how this
matrix form allows to model any radial grid topology.

Traditionally, electrical grids are examined using a
power flow analysis to determine the nodal currents,
line currents and nodal voltages. The background on
power flow analysis is given in section 3.2. Next,
section 3.3 gives an overview of the object-oriented
implementation of this problem in Modelica. The
grid is implemented in Modelica making full
use of the object-oriented modelling language for
component-oriented modelling of complex systems. A
simple grid with two households and two PV systems
is considered to illustrate schematically the use of the
model in Modelica.

In section 4 the full IEEE 34 node grid is used
to analyze the grid for any voltage problems that
may occur when there is a certain penetration rate of
photovoltaic systems in the grid.

3.1 Grid topology

In this paper a grid model is used on a district
level for residential connections. Figure 2 shows the
topology of the modelled IEEE 34 node test feeder [2].
This type of distribution grid is typically a radial
network with a rated voltage of 230 V (400 V wye,
or star, connection). In a radial network, there is
only a single-feeder transformer, thus the reduced
reliability is the major disadvantage, due to the lack
of a redundant supply. An interruption at one node
means all nodes downstream are interrupted. The
IEEE 34 node test feeder, used in this paper, is based
on a distribution grid of Arizona (USA) with a rated
voltage of 24.9 kV. The voltage is downscaled to 230
V (Europe). Therefore, also the line impedances are
adapted [6].

Each node in this grid represents a residential
connection with a certain power demand. Besides it

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

732

Figure 2: Grid topology IEEE 34 node test feeder [2]

is possible to have a random number of houses with a
PV system.

The connections of the nodes of this grid can be
represented by an incidence matrix (or connection
matrix) T. Each row in T stands for a line between two
nodes. Since there are 34 nodes in the grid, there are
33 lines. The number of columns equals the number
of nodes. A line can then be represented by 1 and -1
at respectively the start and end node of the line. The
other row elements are zero. To obtain a square matrix,
an extra (first) row is introduced to represent the ’line’
between the transformer and the first node, in which
there is only an end node. Thus, in this example for
the IEEE 34 node test feeder, the incidence matrix T is
a 34-by-34 matrix. This description with an incidence
matrix T basically allows any radial grid topology to
be modelled.

Eq. (15) gives an example of the representation
of an incidence matrix T in which the nodes are all
next to each other, which means branches are between
consecutive nodes. In the example used in this paper
(a radial grid as presented in Figure 2), the matrix is
not as structured as in Eq. (15).

T =

−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1

(15)

The impedance matrix Z represents the impedances
of each line in the grid. The impedance of a line is
defined as a combination of a real (resistance R) and
imaginary (reactance X) part (Eq. (16)).

Z = R+ j ·X (16)

3.2 Background of electrical grid modelling

The proposed grid can be used to perform a load
flow analysis in order to characterize the impact of
the load profile of each residential connection and

PV electricity generation on the grid. Traditionally,
a power flow analysis is used to determine e.g. the
voltage deviations at each node. This section gives the
background of this method.

Several methods are available to determine the grid
parameters in a power flow analysis. Generally, the
backward-forward sweep is used. With this method
it is possible to calculate the vector of nodal currents
Inode, line currents Iline (between two nodes) and the
nodal voltages Unode for each time step. As such, the
full flow of active power P and reactive power Q is
known for each node. P and Q can be calculated from
the apparent power S, using Eqns. (17)-(19), with I∗

the complex conjugate of I.

S = P+ j ·Q =U · I∗ (17)

P = ℜ(S) (18)

Q = ℑ(S) (19)

The parameters (Inode, Iline, Unode) are determined
via iteration. In a first iteration a fixed voltage profile
of 230 V for each node is assumed. For the next
time steps this flat voltage profile for the first iteration
step can be replaced by the voltage profile of the last
simulated time step. When the time step is small
enough, this will lead to a faster convergence of the
iteration because this voltage profile will be closer to
the actual one.

After this first iteration step, the backward-forward
sweep will be used till convergence is reached. In
the backward step, the nodal and line currents are
calculated by Eqns. (20) and (21). Both currents
are calculated based on parameters of the previous
iteration step. In Eqns. (20) and (21), the nodal and
line currents and the nodal voltages are complex. Snode
stands for the apparent power which consists of the
active power (P) and reactive power (Q) (Eq. (17)).
The incidence matrix T is used to calculate the line
currents. Note that the transpose of T is taken in
Eq. (21).

Inode = f (Snode,Unode) =

(
Snode

Unode

)∗
(20)

Iline = (TT)−1 · Inode (21)

In the forward step, the nodal voltage is calculated
with the line currents calculated in Eq. (21). The nodal
voltage given in Eq. (22) is then compared, just like all
parameters, with the values from the previous iteration
step. The iteration in Eqns. (20)-(22) starts again until
convergence is reached (error: ε ≤ εcriterium = 0.0001).

Unode = Ugrid −Z · Iline (22)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

733

3.3 Electrical grid model in Modelica

The grid is implemented in Modelica making full
use of the object-oriented modelling language for
component-oriented modelling of complex systems.
The implementation of the grid has been made very
flexible by making use of the incidence matrix T and
the impedance matrix Z. Only these two matrices have
to be adapted when using another grid. This flexibility
is thanks to the incidence matrix which contains the
nodes that need to be connected for each line. Thus,
the connection of the different nodes can be automated
using this incidence matrix T. Another advantage is
the fact that the iteration for the calculation of the
nodal and line currents and the nodal voltages is
automatically carried out by Modelica, since Modelica
is equation based.

The grid is set up as can be seen in the Modelica
code presented in Code 1. This code builds the grid
from different components and arrays of components.
An array of nodes is used to facilitate the connection
of different branches. These nodes are also useful
to facilitate the connection of loads, electricity
generation and households when the grid is used. An
array of branches with impedances specified by the
impedance matrix Z is connected to the nodes in the
for loop. This loop uses the incidence matrix T to
build up the network. Different grid layouts are being
implemented as records containing the corresponding
Z and T matrices. Components with a ground and a
fixed complex voltage are used to complete the grid
model.

To show how the usage of the node pins can greatly
facilitate further use of the grid, the Modelica code
in Code 2 is presented. As can be understood, the
use of these nodes is not necessary, but it simplifies
the implementation of larger grids. Nodes, household
loads and PV systems are connected using a "pQtoVI"
component (see further in this section), in which
the grid side is connected to the "VI" pin, whereas
households and PV systems are represented by a
power flow. Households and PV systems are thus
connected to the "PQ" pin.

The different components that are considered in
the simulations in section 4 of this paper are further
explained using a visual example of a simple grid with
only two branches and households with PV systems,
shown in Figure 3. This visual example uses the same
components as the larger grid, with exception of the
nodes, but is manually constructed. For larger grids,
the Modelica code in Code 1 is used, supplemented
with extra Modelica code, like the one in Code 2.

model Grid
parameter ELECTA.Grids.MatVec grid;
parameter Integer n=grid.n;
parameter Integer T[n,n] = grid.T;
parameter

Modelica.SIunits.ComplexImpedance[n]
Z = grid.Z;

parameter SI.ComplexVoltage
Vsource=230+0*j "Voltage";

ELECTA.DisGrid.GridCom.CGround ground;
ELECTA.DisGrid.GridCom.CVoltageSource

source(Vsource=Vsource);
ELECTA.DisGrid.GridCom.Branch branch[n]

(R=Modelica.ComplexMath.real(Z),
X=Modelica.ComplexMath.imag(Z));

ELECTA.DisGrid.GridCom.CPosPin[n] node;

equation
connect(ground.p ,source.n);
connect(branch[1].p ,source.p);
connect(branch[1].p ,node[1]);
for x in 1:n loop

for y in 1:n loop
if T[x,y]==1 then

connect(branch[x].p ,node[y]);
elseif T[x,y]==-1 then

connect(branch[x].n ,node[y]);
end if;

end for;
end for;

end Grid;

Code 1: Grid model

for y in 1:grid.n loop
connect(pq[y].vi ,grid.node[y]);
connect(pq[y].pq ,pv[y].pq);
connect(pq[y].pq ,h1[y].load_p);

end for

Code 2: Use of the grid model

A fixed source with a fixed complex voltage is
used. The reference scenario is a voltage of 230
V. This means a DC power flow analysis will be
performed. A DC power flow analysis is a static
analysis which is a simplification of the transient AC
power flow analysis. In an AC power flow analysis,
a non-linear system describes the power flow through
the lines (branches). In a DC power flow analysis
a linear system is applicable. A DC power flow
analysis is less accurate, but simulating all transients
in an AC power flow analysis requires a much smaller
simulation time step and thus a higher computation
time. Furthermore, in a distribution grid (as given in

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

734

Figure 3: Visual example of a grid with two
households with each a PV system

this paper) the resistance R of the lines is much higher
than the reactance X, which justifies the use of a DC
power flow analysis as a good approximation for an
AC power flow analysis.

Each line between two nodes is represented by
a branch which represents a line with a certain
impedance Z (Eq. (16)).

The load profile of a household is represented in
the component "houseLoad". The output of this
component is an active power demand (see section 4.1)
which will be fulfilled by the PV system and grid.

The PV system delivers an active power output
which will be used to cover a part of the power demand
of the household or will be put partly on the grid.

The difference between the power output of the
PV system and the power demand of the household
defines how much power is needed from the grid or
will be injected in the grid. The component "pQtoVI"
calculates with the fixed active power (to or from
the household and PV system) the nodal voltage and
nodal current (current to or from the household and
PV system) at the node on the grid. Modelica takes
care of the iteration to define the voltage and current.

3.4 Conclusion

The grid model is based on the incidence matrix T
to connect the nodes in a radial grid. This flexibility

allows to model each radial grid topology by adjusting
this incidence matrix. In this paper, the example of the
IEEE 34 node test feeder is used. From the household
power demand and the PV power production, it can be
calculated how much extra power is needed from the
grid or has to be put on the grid. With this, the nodal
and line currents and nodal voltages can be calculated
with Modelica. As such, it is possible to examine the
influence on the voltage profile of the grid.

4 A residential electricity grid with
variable density of PV integration

4.1 Load profiles of households

In this paper a distribution grid for a residential
district is simulated. Each household has a specific
load profile. Synthetic residential load profiles for
households are provided by the Flemish Regulator for
the Electricity and Gas market (VREG). A set of 16
different load profiles which cover each one day are
available. These load profiles present the average load
profiles of the Flemish population. These are corrected
to obtain an average yearly electricity consumption
in the order of 5,000 kWh. The dependency of the
consumption upon outdoor temperature changes are
given, but is however for simplicity not taken into
account since the purpose of this paper is only to give
an example of a grid application with a household and
PV connection. Each profile gives the power demand
on a 30-minute basis as shown in Figure 4.

Figure 4: One of the 16 load profiles of an average
Flemish household

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

735

Figure 5: Maximum voltage in the grid at different PV
system densities and fixed voltage at the transformer

4.2 Simulation parameters

It is supposed that at each node in the grid there is a
household with a load profile. The 16 available load
profiles are randomly assigned to each household.

A PV system can be installed for each household.
The PV system consists of 30 panels resulting in
a power of 6 kWp. One goal of this paper is to
evaluate the effect of the integration of PV systems
on a distribution grid. The integration of PV systems1

is evaluated for different penetration rates, namely a
penetration of 0%, 17%, 23%, 32%, 50%, 67%, 76%,
82% and 100% of the nodes [7].

The reference scenario is a distribution grid with 0%
PV systems. The source of the grid will be adapted to
230± 5% V and 230± 10% V. A distribution system
operator needs to keep the voltages at each node within
certain voltage limits (230 ± 10% V for 95% of the
time). To this end, the transformer tap will be changed
to change the source voltage of the grid. E.g. when
no PV systems are available, the voltage at the source
has to be higher to compensate for lower voltages
due to voltage drops in the feeders, caused by the
power flow towards the household. When on the other
hand PV systems produce power which is put back
on the grid, these PV systems will lift the voltages
by sending power back into the grid, thus the voltage
at the transformer needs to be lower in this case (the
transformer tap setting2 has to be changed). This
voltage lift will depend on the amount of power sent
back to the grid.

1All PV systems are oriented towards the south and have a 34◦

inclination angle of the panels.
2A transformer only has a discrete number of taps.

Figure 6: Minimum voltage in the grid at different PV
system densities and fixed voltage at the transformer

4.3 Results

In this paragraph some simulation results are shown.
The idea is to clarify the problem that might occur
when implementing a large amount of PV systems into
a residential grid, since the voltages in the grid need to
be kept between certain voltage limits (230±10% V).

Figure 5 shows the influence from leaving the
transformer tap at a higher setting when PV systems
are installed. It can be seen that overvoltages would
occur at a PV system integration of 23% for a tap
setting of 230+ 10% V and at an integration of 50%
for a tap setting of 230+5% V.

In contrast with this, Figure 6 shows undervoltage
problems in the grid when the tap has been set on a
low setting. It can be seen that the amount of PV
integration has no effect on the minimum voltage in
the grid. This can be explained by the consumption
peaks that occur when there is no production from the
PV panels, i.e. during a very clouded period or during
the evening. This shows that setting the transformer
tap at a lower setting than 230 V is not a solution to
the problem, since undervoltages will occur.

Generally tap settings will be made to anticipate
only on load. This means that the voltage at the
transformer will be kept higher than nominal to ensure
it does not drop below 207 V anywhere. When
there are only loads in the grid, the voltage at
the transformer station will be the highest of the
grid. The line at the bottom of Figure 7 shows this
grid voltage profile without local generation (no PV
systems). Figure 7 shows the voltage profile at the
nodes indicated by the red line in Figure 8 at a time
with high local electricity generation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

736

Figure 7: Voltage profile on a sunny day (at a time
with high local electricity generation) in a 34 bus grid
with different PV system penetration rates

The voltage profile in Figure 7 is visualized for
different penetration rates for PV systems in the
distribution grid. It is clear from the figure that
when there is some PV penetration the voltage at the
transformer is no longer the lowest in the grid. A
closer look at the voltage profile for a PV density
of 23% shows that the voltage profile is fluctuating
around 230 V. This kind of profile is more difficult
to control by adjusting the tap settings, because the
voltage at different nodes needs to be known. For
higher penetrations of PV systems, the grid voltage at
the nodes at the end of the grid are much higher than
the voltage at the transformer. At some nodes the slope
of the voltage profile changes since some parts of the
grid are not included in this figure, but still these nodes
have their influence on the voltage profile for the rest
of the grid.

5 Conclusions

This paper shows that object-oriented modelling in
Modelica can be an attractive alternative for modelling
electrical grids with power simulations.

A model for photovoltaic systems is described and
implemented in Modelica, with an emphasis on the
preservation of flexibility. Moreover, an electrical
grid model is presented in Modelica. The grid model
is structured around the incidence matrix T and the
impedance matrix Z. This approach ensures optimal
compatibility and flexibility with existing test feeder
topologies.

Finally, an example case shows how these two

Figure 8: Grid topology IEEE 34 node test feeder
indicating the nodes shown in the voltage profile of
Figure 7 (red line)

models can be combined. A simulation of the IEEE
34 bus node test feeder with standard household load
profiles and different degrees of PV density is shown
and discussed regarding possible voltage problems in
the grid. A high penetration of local generation by
means of PV systems has a high influence on the grid
voltage during sunny days. This is demonstrated for
PV systems of 6 kWp for different penetration rates.
To prevent overvoltages, the transformer tap has to be
adjusted to have a lower source voltage during these
time periods.

Multidisciplinary research will be facilitated
by further developing models that can be easily
manipulated and interconnected.

6 Future work

In future work, Modelica records will be made for
different network layouts. IEEE test grids will be
implemented, but also an extension could be made to
implement in home electricity grids. Modelica records
for the parameters of different PV panels will also be
implemented and the PV inverter will be modeled in
more detail.

The grid model itself will be extended to include the
possibility to simulate a 3 phase distribution grid and
to include the distribution grid transformer.

In the future other types of distributed generation
(e.g. small wind turbines) or storage (e.g. batteries
to store a surplus of electricity from the PV
panels to avoid too high grid voltages) may also
be implemented, together with advanced control
strategies for demand side management.

7 Acknowledgments

The authors gratefully acknowledge the K.U.Leuven
Energy Institute (EI) for funding this research
through granting the project entitled Optimized Energy
Networks for Buildings.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

737

References

[1] R. De Coninck, R. Baetens, B. Verbruggen, J.
Driesen, D. Saelens, and L. Helsen, "Modelling
and simulation of a grid connected photovoltaic
heat pump system with thermal energy storage
using Modelica," in 8th International Conference
on System Simulation in Buildings, 2010, pp.
1-21.

[2] W. Kersting, "Radial Distribution Test Feeders,"
in IEEE Power Engineering Society Winter
Meeting, vol. 2, Columbus, Ohio, USA, 2001,
pp. 908-912.

[3] W. De Soto, S. Klein, and W. Beckman,
"Improvement and Validation of a Model for
Photovoltaic Array Performance," in Solar
Energy, vol. 80, 2006, pp. 78-88.

[4] D. Sera, R. Teodorescu, and P. Rodriguez,
"PV panel model based on datasheet values,"
in IEEE International Symposium on Industrial
Electronics, 2007, pp. 2392-2396.

[5] Meteotest, 2008. METEONORM Version 6.1 -
Edition 2009.

[6] K. Clement-Nyns, E. Haesen, and J. Driesen,
"The Impact of Charging Plug-In Hybrid Electric
Vehicles on a Residential Distribution Grid," in
IEEE Transactions on Power Systems, vol. 25,
2010, pp. 371-380.

[7] E. Haesen, J. Driesen, and R. Belmans,
"A Long-Term Multi-objective Planning Tool
for Distributed Energy Resources", in IEEE
PES Power Systems Conference & Exposition,
Atlanta, Georgia, USA, Oct.29-Nov.1, 2006, pp.
741-747.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

738

An Open Source Modelica Graphic Editor Integrated with Electronic
Notebooks and Interactive Simulation

Syed Adeel Asghar1, Sonia Tariq1, Mohsen Torabzadeh-Tari1, Peter Fritzson1, Adrian Pop1, Martin
Sjölund1, Parham Vasaiely2, Wladimir Schamai2

1PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
2EADS Innovation Works, Engineering & Architecture, 21129 Hamburg, Germany

adeel.asghar@liu.se, x10sonta@ida.liu.se, {mohsen.torabzadeh-
tari,peter.fritzson,adrian.pop,martin.sjolund}@liu.se,

Parham.Vasaiely@gmx.de, Wladimir.schamai@eads.net

Abstract
This paper describes the first open source Modelica
graphic editor which is integrated with interactive elec-
tronic notebooks and online interactive simulation.

The work is motivated by the need for easy-to-use
graphic editing of Modelica models using OpenMode-
lica, as well as needs in teaching where the student
should be able to interactively modify and simulate
models in an electronic book. Models can be both tex-
tual and graphical. The interactive online simulation
makes the simulation respond in real-time to model
changes, which is useful in a number of contexts in-
cluding immediate feedback to students.

Keywords: Graphic editing, notebook, teaching, inter-
active, Modelica, modeling, simulation, online

1 Introduction
OMEdit, the OpenModelica Connection Editor, is the
new Graphical User Interface for graphic model editing
in OpenModelica. It is implemented in C++ using the
Qt 4.7 graphical user interface library, and supports the
Modelica Standard Library version 3.1 that comes with
the OpenModelica installation.

OMEdit provides a user friendly environment for:

• Modeling – Easy Modelica model creation.
• Pre-defined Models – Browsing the Modelica Stan-

dard library to access the provided models.
• User defined models – Users can create their own

models for immediate usage and later refinement
and reuse.

• Component Interfaces – Smart connection editing
for drawing and editing connections between model
interfaces.

• Simulation subsystem – Subsystem for running si-
mulations (not online) and specifying simulation pa-
rameters start and stop time, etc.

• Online Simulation – Online interactive simulation
where the simulation responds in real-time to user
input and changes to parameters.

• Plotting – Interface to plot variables from simulated
models.

• OMNotebook integration – being able to open a
graphical connection diagram in an electronic note-
book, edit it, and paste it back.

OMEdit uses the OmniORB CORBA implementation
to communicate with the OpenModelica Compiler.

Modelica 3.2 Graphical Annotations are interpreted
for drawing Modelica Standard Library component
models and user defined models. As a result, the inte-
roperability with other Modelica tool vendors becomes
easier as the Modelica icon and diagrams defined in
other tools supporting the Modelica 3.1 or Modelica 3.2
standards are easily handled in OMEdit. The annota-
tions are also used for displaying Modelica documenta-
tion in OMEdit.

1.1 Structure of the Paper

Section 3 describes the usage of OMEdit and also de-
monstrates how a DCmotor model is created using
OMEdit. Section 4 explains the OMEdit communica-
tion process with OMC through the CORBA interface.
How user defined and Modelica component model
shapes are created through annotations is discussed in
section 5.

Section 6 elaborates the interactive simulation me-
chanism that is still under development in OMEdit.
Section 7 briefly describes how OMEdit can interact
with OMNotebook and how users can launch electronic

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

739

notebooks in OMEdit. Moreover, Section 8 presents
related work and in the end, Section 9 suggests some
future work.

Figure 1. OMEdit High-level View.

2 Requirements and Motivation
This work is motivated by the need for easy-to-use
graphic editing of Modelica models using OpenMode-
lica, as well as needs in teaching where the student
should be able to interactively modify and simulate
textual and graphical models in an electronic notebook.

The interactive online simulation makes the simula-
tion respond in real-time to model changes, which is
useful in a number of contexts, especially teaching
where immediate feedback to students enhances the
effectiveness of learning.

A recently developed interactive learning material
called DrControl is depicted in Figure 2.

Figure 2. DrControl for teaching control theory with
Modelica.

DrControl is a new active electronic notebook course
material based on OMNotebook for teaching control
theory and modeling with Modelica, including graphic
connection diagrams supported by OMEdit. It contains
explanations about basic concepts of control theory

along with Modelica exercises. Observer models, Kal-
man filters, and linearization of non-linear problems are
some of the topics in the course used in control of a
pendulum, a DC motor, and a tank system model
among others.

3 Using OMEdit
This section gives a brief introduction about how to use
OMEdit and also demonstrates how to create a DCmo-
tor model.

3.1 Introductory Model in OMEdit

Since Modelica is an equation-based language and
OMEdit is a connection editor, we will for a small in-
troductory model demonstration in OMEdit show how
a DCmotor model is created in OMEdit.

3.1.1 Creating a new file

Creating a new file/model in OMEdit is rather
straightforward. In OMEdit the new file can be of type
model, class, connector, record, block, function
or package. The user can create any of the model types
mentioned above by selecting File > New from the
menu. Alternatively, you can also click on the drop
down button beside new icon shown in the toolbar
right below the File menu. See Figure 3.

In this introductory example we will create a new
model named DCmotor. By default the newly created
model will open up in the tabbed view of OMEdit, also
called Designer Window, and become visible.

Figure 3. Creating a new file/model.

All the models are created in the OMC global scope
unless the user specifies the parent package for it.

3.1.2 Adding Component Models

The Modelica Standard Library is loaded automatically
and is available in the left dock window. The library is
retrieved through the loadModel(Modelica) API
function and is loaded into the OMC symbol table and
workspace after the command is completed.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

740

Instances of the component models available in the
Modelica Standard Library can be added to the current-
ly edited model by doing a drag and drop from the Li-
brary Window. Navigate to the component model in
the library tree, click on it, drag it to the model you are
building while pressing the mouse left button, and drop
the component where you want to place it in the model.

For this example we will add four components as
instances of the models Ground, Resistor, Inductor
and EMF from the Modelica.Electrical

.Analog.Basic package, an instance of the model
SignalVoltage from the Modelica.Electrical.

Analog.Sources package, one instance of the model
Inertia from the Modelica.Mechanics.Rot-

ational.Components package and one last instance
of the model Step from the Modeli-

ca.Blocks.Sources package.

3.1.3 Making Connections

In order to connect one component model to another
the user simply clicks on any of the ports. Then it will
start displaying a connection line. Then move the
mouse to the component where you want to finish the
connection and click on the component port where the
connection should end. You do not need to hold the
mouse left button down for drawing connections.

In order to have a functioning DCmotor model, con-
nect the Resistor to the Inductor and the Signal-
Voltage, EMF to Inductor and Inertia, Ground to
SignalVoltage and EMF, and finally Step to Sig-
nalVoltage. Check Figure 4 to see how the DCmotor
model looks like after connections.

Figure 4. DCmotor model after connections.

3.1.4 Simulating the model

OpenModelica models are simulated using the simu-
late command of OMC. The simulate command has
following parameters;

• Simulation Interval
• Start Time
• Stop Time

• Output Interval
• Number of Intervals
• Output Interval

• Integration
• Method
• Tolerance
• Fixed Step Size

The OpenModelica Connection Editor provides an easy
interface for simulation of models and allows the user
to fill in the parameters before starting the simulation
process.

The OMEdit Simulation dialog can be launched
either from Simulation > Simulate or by clicking
the simulate icon from the toolbar. Once the user
clicks on simulate! button, OMEdit starts the simula-
tion process, at the end of the simulation process the
Plot Variables window, useful for plotting, will ap-
pear at the right side. Figure 5 shows the simulation
dialog.

Figure 5. Simulation Dialog.

3.1.5 Plotting Variables from Simulated Models

The instance variables that are candidates for plotting
are shown in the right dock window. This window is
automatically launched once the user simulates the
model; the user can also launch this window manually
either from Simulation > Plot Variables or by
clicking on the plot icon from toolbar. It contains the
list of variables that are possible to use in an OpenMo-
delica plot. The plot variables window contains a tree
structure of variables; there is a checkbox beside each
variable. The user can launch the plotted graph window
by clicking the checkbox.

Figure 6 shows the complete DCmotor model along
with the list of plot variables and an example plot win-
dow.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

741

Figure 6. Plotted variables.

4 Communication with OMC
For graphical modeling OMEdit needs to draw
shapes/component models that are defined by Modelica
annotations. In order to obtain the Modelica annota-
tions OMEdit must be able to communicate with the
OpenModelica Compiler through the CORBA inter-
face.

4.1 OMC CORBA Interface

OMC is a short name for the OpenModelica Compiler.
There are two methods to invoke it:

• As a whole program, called at the operating-system
level, e.g. as a command.

• As a server, called via a CORBA client-server inter-
face from client applications.

OMEdit uses the second method to invoke the Open-
Modelica Compiler/Interpreter OMC, since this allows
interactive access and querying of the models, needed
for interactive graphic editing.

4.2 The CORBA Client Server Architecture

The Figure 7 below describes the design of the
OpenModelica client server architecture. OMEdit plays
the role of client in this architecture. It sends and
receives commands through the CORBA interface. The
messages and expressions from the CORBA interface
to OMC are divided into two groups. The first group
contains the commands which are evaluated by the
Ceval module and the second group consists of
expressions which are handled by the Interactive
module.

Figure 7. Client-Server interconnection structure of the
compiler/interpreter main program and some interactive
tool interfaces.

Messages via the CORBA interface are of two kinds.
The first group consists of expressions or user com-
mands which are evaluated by the Ceval module. The
second group consists of declarations of classes, va-
riables, etc., assignments, and client-server API calls
that are handled via the Interactive module, which
also stores information about interactively de-
clared/assigned items at the top-level in an environment
[1].

4.3 Invoking OMC through CORBA

In order to communicate with OMC through CORBA
you need to start omc.exe as a process with special
parameters passed to it. The OMC binary executable
file is located in $OPENMODELICAHOME/bin. OMEdit
invokes OMC with a special CORBA flag
+d=interactiveCorba telling OMC to start with the
interactive CORBA communication environment. The
complete command will look like this:
 omc.exe +d=interactiveCorba.

OMEdit starts a new OMC process for its each in-
stance. Only one OMC is linked to each instance of
OMEdit. However, for some special tasks a new OMC
is used and is removed as soon as the task is completed.

OMEdit also passes one special argument flag +c to
OMC which is used to specify the Interoperable Object
Reference (IOR) file name. By default the IOR file is
created in the temp directory. OMEdit uses the applica-
tion session identity number along with the current
timestamp to ensure that each instance of OMEdit gets
a new OMC.

When OMC is started with the +d= interactive-
Corba flag, it will create a file named openmodeli-
ca.objid (name depends on the +c argument flag val-
ue of OMC) in the temp directory of operating system.
This file contains the CORBA IOR.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

742

4.4 What to do with the CORBA IOR File?

The IOR File contains the CORBA object reference as
a string. The CORBA object is created by reading the
string written in the IOR File. Here is an example with
Qt C++ source code for starting OMC from OMedit
and creating a CORBA object:
// create a unique file name
QString fileIdentifier;fileIdentifier =
qApp-
>sessionId().append(QTime::currentTime().t
oString().remove(":"));

QStringList parameters;
parameters << QString("+c=").append(this-
>mName).append(fileIdentifier) <<
QString("+d=interactiveCorba");

// start the OMC process
QProcess *omcProcess = new QProcess();
omcProcess->start(omcPath, parameters);

// read the file created by omc.exe
QFile objectRefFile (path_to_IOR_File);
int argc = 2;
static const char *argv[] = { "-
ORBgiopMaxMsgSize", "10485760" };
CORBA::ORB_var orb = CORBA::ORB_init(argc,
(char **)argv);
objectRefFile.open(QIODevice::ReadOnly);
char buf[1024];

// read the IOR string
objectRefFile.readLine(buf, sizeof(buf)
);
QString uri((const char*)buf);

// create CORBA object
CORBA::Object_var obj = orb-
>string_to_object(uri.trimmed().toLatin1()
);

4.5 OMC API Enhancements

During the development of OMEdit several issues with
the OMC Application Programming Interface (API)
were discovered:

• Annotations for some models could not be retrieved
via getIconAnnotation, getDiagramAnnotation
or getDocumentationAnnotation.

• addConnection and updateComponent did not
work correctly.

• renameComponent was very slow.
• The package Modelica.UsersGuide does not have

any icon/diagram annotation but it has a non-
standard Dymola annotation.

For example getIconAnnotation(Modelica.Elec-
trical.Analog.Resistor) did not work because the
Resistor model had component references inside the
annotations. This problem was solved by symbolically
elaborating (instantiating) the Resistor model, con-

stant evaluating the useHeatPort parameter, and then
elaborating the annotation record with this constant
value.

Using constant evaluated parameters from elabo-
rated model does not work for annotations that contain
DynamicSelect and additional support for such anno-
tations is needed. Unfortunately the DynamicSelect
annotation creates problems for Modelica software that
uses a client-server paradigm since it connects an anno-
tation with a simulation, not with the actual model.
However, DynamicSelect can still be handled by re-
turning the entire expression to the client (here OME-
dit) which could link a simulation variable to the anno-
tation.

Retrieving the documentation annotation for MSL
3.1 did not work at first because these annotations hade
been moved (MSL 2.x had no such requirements) to the
end of the class definitions (typically in an equation
section) and OMC only searched the public sections.
This was solved easily in OMC by searching the entire
model for the documentation annotation.

To make it easier to find which annotations cannot
be retrieved correctly OMC was changed to return the
exact annotation that was present in the model. Using
this feature the problematic parts of the communication
between OMEdit and OMC was debugged.

Updating components and adding connections to
classes had small issues that were fixed to support
OMEdit.

The package Modelica.UsersGuide and several
others do not have any icon/diagram annotation. Dis-
playing these packages in the MSL 3.1 browsing tree
did not look nice. However, we observed that these
packages has a non-standard Dymola specific annota-
tion which is: __Dymola_DocumentationClass =

true. In order to retrieve this annotation in OMEdit the
OMC API had to be extended with a new function:
getNamedAnnotation(Modelica.UsersGuide) =>

true. Now these packages can display a predefined
icon in the tree browser.

To automatically test which component models
have problems a script was written in OMEdit that
walks the entire MSL 3.1 and calls OMC API functions
on these models to see if the retrieved information was
correct or not. A list with problematic models was
built. Subsequently these issues were solved one-by-
one.

The function to rename a component, renameCom-
ponent API function, was extremely slow when MSL
3.1 was loaded. This occurred because OMC had to go
through all models and components and do a renaming
refactoring. To resolve this and provide a faster func-
tionality, we added a new API renameComponentIn-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

743

Class that only renames the component locally in the
model that is built using OMEdit and not in any other.

5 Annotations
Modelica annotations are used for storing auxiliary in-
formation about a model such as graphics, documenta-
tion or versioning etc. [2]. Once OMEdit is connected
with OMC it can request the annotations. OMEdit uses
three types of annotations;

• Annotations for Graphical Objects.
• Annotations for Connections.
• Annotations for Documentation.

5.1 Shapes/Component Models Annotations

All the shapes drawn in OMEdit are based on Modelica
Annotations version 3.2. Graphical Annotations consist
of two abstraction layers: the icon layer and the dia-
gram layer. The icon layer contains the icon representa-
tion of a component and the diagram layer shows the
inheritance hierarchy, connections, and inherited com-
ponent models.

For example, a graphical icon representation of a
Ground component model will look like this:
{-100.0,-
100.0,100.0,100.0,true,0.1,2.0,2.0,{Line(t
rue,{0.0,0.0},0,{{-
60,50},{60,50}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{-
40,30},{40,30}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{-
20,10},{20,10}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{0,90},{0,50}},
{0,0,255},LinePattern.Solid,0.25,{Arrow.No
ne,Arrow.None},3,Smooth.None),Text(true,{0
.0,0.0},0,{0,0,255},{0,0,0},LinePattern.So
lid,FillPattern.None,0.25,{{-144,-
19},{156,-
59}},"%name",0,TextAlignment.Center)}}

This graphical representation of the Ground model is
parsed by OMEdit for drawing this component model.
The icon annotation is retrieved from OMC through the
getIconAnnotation API command. Each graphical
object is built up using the primitive graphical types;
Line, Polygon, Rectangle, Ellipse, Text and Bit-
map [2].

The primitive graphical types in OMEdit are han-
dled through the QGraphicsItem class of Qt. A Sha-
peAnnotation class was created which is derived from
QGraphicsItem and QObject. This class is an abstract
class which contains classes of all primitive graphical
elements.

Figure 8. Classes hierarchy for predefined graphical
elements.

5.2 Connection Annotation

The connection annotation defines the graphical repre-
sentation of a connection between two component
models. An example of connection annotation string is:
connect (a.x, b.x)
annotation(Line(points={{-25,30}, {10,30},
{10, -20}, {40,-20}}));

The connection annotation is composed of the primitive
graphical type Line. The points of the line define the
connection line co-ordinates between two connecting
component models.

OMEdit creates an object of Connector class for
each connection. Each Connector contains instances
of ConnectorLine depending on the number of points
in a connection. The Connector class is derived from
QGraphicsWidget class which is container class for
graphical objects. The ConnectorLine class is derived
from QGraphicsLineItem which represents a single
line. If we have n points in a connection annotation
then we have n-1 instances of ConnectorLine. In
short n number of points creates n-1 lines. The follow-
ing shows the implementation of connection annotation
in OMEdit.

Figure 9. Implementation of connection annotation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

744

5.3 Documentation Annotation

The documentation annotation is used for textual de-
scriptions of models. It is written as follows:
documentation_annotation:

annotation"(" Documentation "(" "info" "="
STRING

["," "revisions" "=" STRING] ")" ")"

OMEdit requests OMC for the documentation of a spe-
cific component/library through the getDocumenta-
tion command and OMC returns the info annotation
contained inside the documentation annotation which is
a string. The tags <HTML> and </HTML> define the start
and end of the string.

The QWebView class of Qt is used for displaying the
HTML string of documentation annotation. The HTML
string contains four types of links:

• Hyperlinks – Used to navigate to external websites.
• Image Links – Used to reference the local image

files.
• Modelica Links – Used for linking to other compo-

nent models.
• Mailto Links – Used to display email addresses that

can be used for future contacts.

QWebView has built-in support for images so we didn’t
have to handle that. We just set the proper base path
where all the images were located. However, for hyper-
links and mailto links we used the QDesktopServices
class. This class uses the default system browser in case
of hyperlink and default email client in case of mailto
link. The Modelica links are special links which starts
with Modelica:// and reference to some component
model or a package. Figure 10 shows the implementa-
tion of documentation annotation in OMEdit.

Figure 10. Implementation of documentation annotation.

6 Interactive Simulation
In order to offer a user-interactive and time synchron-
ous simulation, OpenModelica has an additional sub-
system to fulfill general requirements on such simula-
tions, OpenModelica Interactive (OMI), shown in Fig-

ure 11. With OMI the user will be able to stimulate the
system and interacting with it at runtime.

After creating and elaborating a Modelica model it
is possible to simulate the model with OpenModelica.
The outcome of calling the simulate or buildModel
operation from the interactive session handler, is an
executable, standalone C/C++ program generated from
the internal simulation runtime code and the generated
C/C++ model code by OMC (in this case model.cpp).

Executable Model

OMC Simulation
Runtime Library
(sim_runtime.cpp…)

OMC Generated
Code

(model.cpp…)

This executable contains the full Modelica model trans-
lated to C/C++ code based on all required equations,
conditions and including different solvers. It offers both
a non-interactive as well as an interactive simulation
facility.

Since version 1.5.0 OpenModelica has an additional
subsystem in order to offer a user-interactive and time
synchronous simulation. This module is part of the si-
mulation runtime core and is called “OpenModelica
Interactive” (OMI). As mentioned above OMI will re-
sult in an executable simulation application, such as the
non-interactive simulation. The following are some
general functionalities of an interactive simulation run-
time:

• The user will be able to stimulate the system during
a running system simulation and to observe its reac-
tion immediately.

• The simulation runtime behavior will be controlla-
ble and adaptable to offer an interaction with a user.

• A user will receive simulation results online during
a simulation synchronous to real time, neglecting
network process time and some other factors like
scheduling of processes from the operation system.

• In order to offer a stable simulation, a runtime func-
tion will inform the user interface of errors and con-
sequential simulation aborts.

• Simulation results will not under-run or exceed a to-
lerance compared to a thoroughly reliable value, for
a correct simulation.

• Communication between a simulation runtime and a
user interface will use a well defined interface and
be based on common technology, in this case net-
work communication.

In this case the simulate operation cannot be used.
Instead the buildModel operation is needed.

To start an interactive simulation there is a need for
more information, such as network configurations.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

745

An important modification/addition to the semantics
of the Modelica language during interactive simulation
is the fact that parameters are changeable while simu-
lating interactively using OMI. All properties using the
prefix parameter can be changed during an interactive
simulation. The fully qualified name is used as a unique
identifier, so a parameter value can be found and
changed regardless of its hierarchical position in the
model. For more information see the OpenModelica
System Documentation [1].

Figure 11. OpenModelica interactive system architecture
overview.

7 Interaction with OMNotebook
OMEdit provides an environment where connection
diagrams can be integrated with electronic interactive
notebook. The idea is that the user performs the model-
ing in the connection editor and can subsequently ex-
port his/her models to an electronic notebook.

Alternately, the model in an electronic notebook is
just an image. The model including its equations, algo-
rithms, annotations etc. are hidden behind the picture.
Thus, OMEdit is integrated with the OMNotebook tool
[7], allowing users to click on the image and launch the
model in connection editor where user can manage the
connections, add/remove component models etc.

Figure 12 shows an electronic notebook with a
DCmotor model as an image. When the user double
clicks on the image, an OMEdit editing view is popped
up, allowing both textual and graphical editing.

Figure 12. OMEdit integrated with OMNotebook used in
a teaching material with exercises.

8 Related Work
There is previously one open source graphical editor
available for OpenModelica:

• SimForge – Graphical and Textual Open Source
Model Editor by Politecnico di Milano [3].

We have tried this editor for teaching, but found that
the current implementation is too slow, not stable
enough, and does not integrate with OMNotebook and
interactive simulation.

There are also several commercial tools available
for graphical modeling, e.g.:

• Dymola – Developed by Dynasim. Dymola, Dy-
namic Modeling Laboratory, is a complete tool for
modeling and simulation of integrated and complex
systems for use within automotive, aerospace, ro-
botics, process and other applications [4].

• MathModelica – Developed by MathCore Engineer-
ing AB. MathModelica is a powerful, flexible and
extensible system for multi-engineering modeling
and simulation [5].

• MapleSim – High Performance Physical Modeling
and Simulation from Maplesoft [6].

These are professional products that work well, but are
not freely available, and are not open source. Also, they
are typically not integrated with electronic books. An
earlier version of MathModelica was integrated with
the Mathematica electronic book, but did not provide
interactive online simulation. The electronic notebook
from Maplesoft is Maple-based and is pure textual. Al-
so the Modelica language support is lacking in this tool.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

746

9 Future Work
The first version of OMEdit is part of the OpenModeli-
ca 1.6 release. The version integrating OMEdit and
Interactive simulation with OMNotebook will be avail-
able very soon, probably in the 1.6.1 release.

Moreover, somewhat improved 2D plotting is cur-
rently on the way. Future enhancements on the wish list
include improved 3D graphic animation and support for
displaying inheritance dependencies and sources of
inherited equations and declarations.

10 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Adeel Asghar and Sonia Tariq. Design and Im-

plementation of a User Friendly OpenModelica
Connection Editor, master thesis LIU-IDA/LITH-
EX-A-10/047-SE, Linköping University, Sweden,
2010.

[2] Open Source Modelica Consortium. OpenMode-
lica System Documentation Version 1.6, Novem-
ber 2010. http://www.openmodelica.org

[3] Modelica Association. The Modelica Language
Specification Version 3.2, March 24th 2010.
http://www.modelica.org. Modelica Association.
Modelica Standard Library 3.1. Aug. 2009.
http://www.modelica.org.

[4] SimForge. http://trac.ws.dei.polimi.it/simforge/.

[5] Dymola. Dynamic modeling tool,
http://www.dynasim.se.

[6] MathModelica.
http://www.mathcore.com/products/mathmodelic
a/.

[7] Peter Fritzson, Johan Gunnarsson, Mats Jirstrand.
MathModelica - An Extensible Modeling and Si-
mulation Environment with Integrated Graphics
and Literate Programming. In Proceedings of the
2nd International Modelica Conference, March
18-19, 2002, Munich, Germany.

[8] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done? Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

747

http://ww.ida.liu.se/projects/OpenModelica�
http://www.modelica.org/�
http://www.modelica.org/�
http://trac.ws.dei.polimi.it/simforge/�
http://www.dynasim.se/�
http://www.mathcore.com/products/mathmodelica/�
http://www.mathcore.com/products/mathmodelica/�

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
Functional Digital Mock-up and the Functional Mock-up Interface –
Two Complementary Approaches for a Comprehensive Investigation of

Heterogeneous Systems

Olaf Enge-Rosenblatt, Christoph Clauß, André Schneider, Peter Schneider
Fraunhofer Institute for Integrated Circuits, Division Design Automation

Zeunerstraße 38, 01069 Dresden, Germany
Olaf.Enge-Rosenblatt@eas.iis.fraunhofer.de

Abstract

Functional Digital Mock-up (FDMU) and Func-
tional Mock-up Interface (FMI) are two keywords
arising in the last years in simulation technology. In
this paper, we would like to show that both principles,
aiming at a comprehensive investigation of heteroge-
neous systems, e.g. from mechatronics, are not neces-
sarily competing with each other but may be com-
bined to benefit from the ideas behind. The
approaches are based on different ideas and cover dif-
ferent aspects of the interaction of modern simulation
tools. For that reason different constraints have to be
considered, which do not make things easier. Both
principles have advantages and disadvantages. How-
ever, by combining both ways, a powerful framework
for handling a broad variety of simulation tasks can
be formed. In the paper, a possible approach for inte-
grating both technologies will be shown.

Keywords: FDMU; functional digital mock-up;
FMI; functional mock-up interface; co-simulation;
heterogeneous system; simulation algorithm

1 Introduction

In today’s industry, the product development
process is more and more characterized by intensive
usage of simulation. But in all branches, a large vari-
ety of languages, simulators, and environments are
used which are incompatible to each other in the most
cases. Hence, the task of coupling different simula-
tion tools, e.g. by co-simulation concepts, has been
moving increasingly into the focus in the last years.

In this context, many activities within the simula-
tion community have been able to be recorded con-
cerning the integration of the principle of Functional
Mock-up into the world of simulation and simulators.
The main target of these attempts is to combine the
ideas of the digital mock-up processes with function-
al aspects. Even though both approaches are open for

different modeling languages and simulators, the
general purpose modeling language Modelica plays
an important role on both sides.

Two “main streams” can be distinguished: the
FDMU approach [2][7][9] and the FMI approach
[3][5][6]. The FDMU ideas are driven by four Ger-
man Fraunhofer institutes funded by the Fraunhofer-
Gesellschaft. In contrast, the FMI ideas are favored
by a network of companies and research institutions
spread widely across Europe and working together
within the MODELISAR project funded within the
ITEA2 framework. Both approaches have advantages
and disadvantages and both deal with general ideas of
co-simulation. While the FDMU approach focuses on
the combination of different simulators with a shared
and interactive visualization, the FMI consortium
thinks about model exchange and co-simulation ide-
as. More information about both approaches and a
comparison of architectures and data flows is given in
the following sections.

The Fraunhofer Institute for Integrated Circuits,
Division Design Automation in Dresden has been
taken part in both projects. That’s why the idea to
investigate some opportunities of a combination of
both principles is not very far. Taking the differences
of both principles into account possible ways to com-
bine both approaches are shown in this paper.

2 FDMU

The main goals of the Fraunhofer-internal project
Functional DMU were, first, to develop a principle of
a general, tool-independent, and web service-based
framework for coupling different simulation tools
with each other as well as, second, to provide an inte-
grative (and simultaneously interactive) visualization
tool to unify the user’s view. The output of the project
is a fully implemented ready-to-use framework, the
so-called FDMU framework, which can be used in
connection with a large variety of simulation tools.
748

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
2.1 Basic idea

Functional Digital Mock-up (FDMU) is a sub-
stantial extension of the widely introduced DMU
approach which is used for investigating geometrical
and mechanical properties of mechanical systems.
The FDMU approach combines traditional digital
mock-up (i.e. geometrical information) and aspects
of behavioral system description (i.e. functional
information). An additional, new and very important
point is the possible interaction between visualization
and numerical simulation in both directions which is
governed by a master simulator. This FDMU Master
Simulator is also capable to accomplish the commu-
nication between different simulation tools. Hence, if
dealing with a complex simulation task, more than
one simulation tool can be incorporated to solve it.

Finally, the FDMU approach is predestined for
multi-physical (or multi-domain) systems like often
considered with appropriate modeling languages like
Modelica.

2.2 Conceptual properties

In this paper, only the main concepts shall be pre-
sented. For more information please see the FDMU
references, especially [2] and [7].

FBB and FSM

Within the FDMU approach, the concept of a so-
called Functional Building Block (FBB) is proposed.
An FBB is an envelope summarizing geometric infor-
mation (CAD models), behavioral models (e.g.
described by differential-algebraic equations), and
communication interfaces into one basic data mod-
ule. Geometric information and behavioral informa-
tion have to be created within their particular mode-
ling tools. These models remain in their associated

data files. Pointers to these files as well as all interface
information and the mapping between geometrical
data and the interface quantities of the behavioral
model are collected within the FBB using the mode-
ling language SysML for a unique description. With-
in every FBB, a simulator tool is defined, too, which
is capable to simulate the FBB’s behavioral part.

A complete FDMU Simulation Model (FSM)
consists of one or more FBB. Every input of an FBB
must have an appropriate output belonging to another
FBB. Furthermore, outputs can be propagated to the
visualization to show simulation results using e.g. a
geometric 3D model or some kind of plot versus time.

Master Simulator

When simulating an FSM, different simulation
tools have generally to interact with each other. This
is realized by the concept of a flexible co-simulation.
The governing instance, the FDMU Master Simula-
tor, is used to ensure the correct communication
between all involved simulators as well as the correct
delivering of simulation results to the visualization
tool. The Master Simulator is the centralized control-
ling software and, therefore, the main module of the
FDMU approach. It does not contain a model itself. It
controls the signal flows between all participating
software modules.

Web services

One of the basic concepts of the FDMU approach
is the usage of Web services for communication
between FDMU Master Simulator, different simula-
tor tools, and the visualization. This provides the
opportunity to distribute the tools needed for a partic-
ular simulation task among different computers
which have only to be connected via Internet. This

Figure 1: FDMU principle with Master Simulator

FDMU Master
FD

M
U

 C
o

n
so

le

Wrapper for Wrapper for Wrapper for Wrapper for
3D Viewer Simulator 1 Simulator 2 Application X

FBB 1 FBB 2 FBB 3 FBB 4

3D Visualization Simulator 1 Simulator 2
Application X
(e.g. Measurement Data)

Slot

Transfer Handler

Interface Signals,
Stimuli, Parameters

Control Signals
749

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
advantage must be paid with a little loss of coupling
performance. But it is planned to enable a replace-
ment of some of the Web services by direct TCP/IP
socket connections to improve efficiency.

Wrappers

FDMU Wrappers are used to establish a connec-
tion between the different simulation tools and the
FDMU Master Simulator. Every wrapper is a soft-
ware module especially designed for a certain simu-
lation tool to realize the interaction with the tool’s
environment. To this end, the simulator must provide
the capability to include external functions into the
simulation code. The wrapper is docked to the simu-
lator like an external function and encapsulates the
original simulator. This way a unique interface of
every simulator is guaranteed.

Data Transfer

During a simulation run, all simulation tools
needed to calculate the behavior of a complete FSM
have to run in batch mode. The tools receive simula-
tion control commands via pipe from the wrapper and
perform the simulation. The time schemes for com-
munication between the simulation tools and the
Master Simulator may completely differ from each
other. Hence, the FDMU Master Simulator supports a
complex concept of data transfer. There are re-sam-
pling procedures (transfer handlers, Figure 1), buffer-
ing schemes (slots, Figure 1), and an implicit syn-
chronization concept performed by the data flow. The
underlying concept is that all data transfers are initi-
ated by the simulator tools.

Visualization

The FDMU framework provides an interactive
visualization tool (Figure 1) for presenting subse-
quently a moving 3D scene according to the currently
calculated simulation results. It is also possible to
interact via the 3D scene with the complete simula-
tion process. This is a manifestation of the close com-
bination of geometrical and functional descriptions.
This feature enables the user to control the simulation
process like starting, pausing and finishing the simu-
lation as well as to change FBB parameters.

2.3 Realization

The Functional Digital Mock-up approach is
implemented within the so-called FDMU framework
which is available with different combinations of

components. The complete framework consists of a
Master Simulator, some simulation tools encapsulat-
ed by wrappers, a visualization front end, and some
data services. Wrappers for Dymola, Saber, Rhapso-
dy, Simpack, and the multi-purpose tools Matlab and
Simulink are currently available. Other wrappers
could be realized and provided on request.

3 FMI

The goal of the ITEA2 project MODELISAR was
the creation of a model-/ software-/ hardware-in-the-
loop standard interface which is both tool and vendor
neutral. This interface is called Functional Mock-up
Interface (FMI). Via this interface, different tools will
be able to communicate and act together to finally
reduce both time and costs of development.

3.1 Basic idea

Starting with a technical system the components
of which are treated by different simulation environ-
ments (simulators), the simulation of the whole sys-
tem requires interaction of simulators. Taking into
account that simulation is the solution of equations
(DAE, PDE), the interaction can basically be man-
aged in two ways:

Model exchange: The simulation environment of
one component establishes the equations e.g. basing
on a description language. The equations are passed
over to another simulator which collects all compo-
nent models and simulates all equations together. The
results are then distributed.

Co-Simulation: Each component’s simulator
solves its own equations but values are exchanged
which belong to more than one component. The sim-
ulators have to be synchronized.

Of course, hybrid forms of these two ways are
possible.

The FMI standard is designed to support a wide
variety of coupling possibilities. For each system it is
open to decide which simulator should be used, and
which way, model exchange or co-simulation, is to
prefer. Once the FMI is established, the tool vendors
are in charge to support it. Fitted with FMI, the tools
should be able to interact.

3.2 Concept

For model exchange, the Functional Mock-up
Interface for Model Exchange is defined. The inten-
tion is that the model exporting environment gener-
ates C code of a dynamic system model that can be
750

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
utilized by other (importing) simulation environ-
ments. Since models can describe differential, alge-
braic and discrete equations with time, state and step
events, the interface is designed to be able to
exchange all necessary values of variables (time, real,
discrete values).

The Functional Mock-up Interface for Model
Exchange consists of the Model Interface and the
Model Description Schema. The Model Interface
describes data types as well as functions compatible
to a common basic mathematical description. All data
and functions use the language C. The Model
Description Schema contains all data which complete
the model, but are not essential during model evalua-
tion, e.g. numbers of variables, icons, documentation.
A model specific zip-file contains all this informa-
tion.

The C functions can either be provided in source
form or in binary form, both of which can be added to
the zip-file. The models are available by linking to the
“importing” simulation environment. The interface is
open to establish mechanisms for data transfer e.g.
via the web.

The above mentioned ways (model exchange and
co-simulation) are straightforward since the co-simu-
lation approach needs the same data exchange like
the model exchange approach, but needs additionally
data which control the involved simulators. There-
fore, the Functional Mock-up Interface for Model
Exchange is a base for the Functional Mock-up Inter-
face for Co-Simulation. Additional aspects come
from solver coupling issues which are discussed in
more detail in the following.

3.3 FMI for Co-Simulation

The Functional Mock-up Interface for Co-Simu-
lation is a perspectively standardized interface for
coupling two or more simulation tools in a co-simu-
lation environment. Co-simulation is a technique for

coupled time-continuous and time-discrete systems
that exploits the modular structure of the coupled
parts in all stages of simulation.

In co-simulation, different simulation tools have
to interact while each of them has different properties
concerning coupling algorithms. Important tool prop-
erties are:

• the ability to handle variable communication
step sizes,

• the capability to discard and repeat communica-
tion steps,

• the capability to interpolate continuous inputs,
• the capability to provide information on a com-

munication step (e.g. successfulness or error
messages).

Otherwise, depending on the system to be simu-
lated, there are different requirements to the simula-
tion tool.

Therefore, the simulators of the components
(slaves) are not directly coupled to each other but to a
so-called master. The master’s tasks are:

• analyzing the connection graph,
• analyzing the properties of the involved slave

simulators,
• choosing a dedicated master algorithm,
• forcing the slaves to initialize,
• forcing the slaves to simulate communication

intervals,
• realizing the data transfer according to the con-

nection graph as well as according to the cho-
sen algorithm,

• termination of the slave processes.
The master algorithms will not be standardized.

Master algorithms can be developed both as a sepa-
rate tool as well as an included feature of an existing
simulation tool which plays the role of the master.

The FMI for Co-Simulation is designed to sup-
port a large variety of master algorithms. Similar
defined as for model exchange, the FMI for Co-Sim-
ulation consist of the Co-Simulation Interface and the

Figure 2: Principle of FMI for Co-Simulation

Solver

S
im

ul
at

io
n

C
on

tr
ol

Solver

S
im

ul
at

io
n

C
on

tr
ol

Solver

S
im

ul
at

io
n

C
on

tr
ol

FMI Master

Solver

S
im

ul
at

io
n

C
on

tr
ol

User
Interface

Internal
Model

Internal
Model

Internal
Model

Internal
Model

User
Interface

User
Interface

User
Interface
751

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
Co-Simulation Description Schema. The Co-Simula-
tion Interface is a set of C functions for the exchange
of input/output values as well as status information.
One of the most important functions is the function

fmiDoStep(
fmiComponent component,
fmiReal currentCommunicationPoint,
fmiReal communicationStepSize,
fmiBoolean newStep);

which starts a slave identified by component to
simulate one communication interval of the length
communicationStepSize starting from the
currentCommunicationPoint. Further func-
tions are defined e.g. for retrieving the status informa-
tion from the slave. The Co-Simulation Description
Schema contains e.g. capability flags, which charac-
terize the above mentioned properties of the involved
slave simulator.

Besides pure technical aspects, issues of protec-
tion against unintentional know-how transfer and
authorization of models are generally solved.

4 Comparing FDMU and FMI

For comparing the two approaches of FDMU and
FMI, the following aspects have to be considered:

• Type of coupling
• Coupling technology
• Programming language bindings
• Co-simulation algorithms
• Implementation

Further aspects may be interesting for certain
user communities and will be investigated in the near
future. The main focus of this paper is to figure out
advantages of both technologies and to make a first
proposal for a good combination of them.

There is no doubt that each of the co-simulation
frameworks will find their friends in many fields of
applications such as Automotive and MEMS* design.
But there will be situations, too, where a combination
of the power of FMI and the flexibility of FDMU will
be the most appropriate solution.

4.1 Type of coupling

FMI for Co-Simulation defines a tight coupling
between the FMI master and a co-simulation compo-
nent denoted as FMU acting as slave (Figure 2). The
interface specification contains a set of C function
prototypes. This means all couplings are based on

local function calls. The FMI master is the caller, all
FMU slaves act as callee. Unfortunately, this clean
architecture is slightly broken by a few callback func-
tions e.g. for memory management and notifications.

FDMU is based on a loose coupling between the
FDMU Console, the FDMU Master and all FDMU
Wrappers (Figure 1). The FDMU framework is
implemented as a service-oriented architecture
(SOA). Each component excepting the FDMU Con-
sole (the user’s front-end) works as service within a
client-server infrastructure. The FDMU API is based
on the Web Service standards (WS-I, WS-Attach-
ments, WS-Security, WS-Notification, ...) [11].

4.2 Coupling technology

The main focus of the FMI specification is on
efficiency. Using function calls within one process
and one memory domain means minimal communi-
cation overhead. Currently no FMI benchmarks can
be found in the literature. But the authors of this paper
guess that the highest performance can be achieved
by using the FMI approach for co-simulation in con-
trast to SOA-based approaches.

The FDMU framework uses HTTP-based SOAP
messages for signal data exchange between the co-
simulation components as required by the Web Serv-
ices standards. This approach allows very flexible
couplings between different hosts, hardware plat-
forms, operating systems, and IP domains. The main
focus of the FDMU approach is on flexibility. FDMU
users can couple simulators between different depart-
ments or companies via Internet. The Web Services
provide secure, encrypted, and standardized commu-
nication through firewalls. The drawback of this flex-
ibility is the communication overhead.

Furthermore, the software architecture of the
FDMU framework is based on the paradigm of dis-
tributed systems. Concurrency and multi-threaded
implementations are supported and all communica-
tion methods include thread-safe queues for distribut-
ed and deadlock-free transmission of data. This archi-
tecture ensures scalability for large-scale co-
simulation scenarios with more than four or five FBB.

Currently the FMI specification for co-simulation
does not contain any details on multi-threaded imple-
mentations. Otherwise the specification explicitely
supports asynchronous execution of API functions
(e.g. fmiDoStep()) which means parallel simula-
tion is allowed for FMI slaves and FMI is prepared
for concurrency. The reference implementation
which will be prepared within the MODELISAR
project by the Fraunhofer IIS/EAS is based on a sin-
gle-threaded approach. The FMI Master controls all* microelectromechanical systems
752

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
FMI Slaves using a pure sequential algorithm. More
details concerning the asynchronous features and
multi-thread aspects will be investigated in further
project research.

4.3 Programming language bindings

The FMI specification defines a set of C API
functions. For the coupling between the software
components (FMI master, FMI slaves), dynamic link
libraries (DLL on Windows) or shared objects/librar-
ies (SO on Linux/UNIX) are used. If all the needed
DLLs (or SOs) are available, this approach is very
simple and user-friendly. But the tight coupling
between the different components works properly if
binary and/or platform compatibility (32/64 bit, x86,
x64, sparc, powerpc) are fulfilled and function calls
are used for communication. If two FMUs run in dif-
ferent processes, operating systems or machines, a
communication layer is needed. Currently this layer
is not prescribed by the FMI specification.

For the FDMU framework, no language binding
is required. The coupling interface is completely
defined by the WSDL (Web Service Definition Lan-
guage) specification of the FDMU Master. Each pro-
vider of an FDMU Wrapper for a certain simulation
tool can use this WSDL specification to generate the
code fragments for their own implementation for the
needed programming or scripting language like Java,
C, C++, C#, Python or Perl. All Web Service frame-
works like JAX-WS, .Net WCF, AXIS, CXF, or sim-
ilar can be used if they are compatible to the W3C
standards. Unfortunately, there are some pitfalls and
interoperability problems when using the different
Web Service frameworks. So the current implementa-
tion of the FDMU framework is mostly based on Java

and JAX-WS with a small adapter layer for tool-spe-
cific components for C, C++, and C#.

4.4 Co-simulation algorithms

The FMI specification for co-simulation defines a
sequential computation flow for the master algorithm.
The master analyzes the connection graph between
all co-simulation components (slaves) and calculates
an appropriate invocation order for the signal update
and simulating the next time step of all components/
simulators. Furthermore, the FMI Master can control
in a very fine-grained way the simulation progress of
each coupled simulator if the simulator provides the
corresponding capabilities. Using these facilities it is
possible to provide co-simulation algorithms with
step size control or iterations at certain time instants.

The primary focus of the FDMU Master is to pro-
vide the concurrent signal flow between all FBB. The
simplest FDMU Master algorithm handles all con-
nections independent from each other. This FDMU
communication schema prevents dead-locks and
allows maximizing the throughput at least for signal
connections which are independent from each other.
Furthermore, the FDMU approach allows other algo-
rithms e.g. with adapting the simulation step size dur-
ing a running simulation. But the functionality is
more limited here with respect to step size control of
FMI.

4.5 Implementation

For FMI the provider of the simulation software
has to implement the FMI interface as described in
the specification. In this case the main advantage for
the user is that he can use FMI-enabled tools without
any further investments. For simulation tools without

FDMU Master

FD
M

U
 C

o
n

so
le

Wrapper

Solver

C
on

tr
ol

Wrapper

3D Viewer

C
on

tr
ol

Wrapper

Solver

S
im

ul
at

io
n

C
on

tr
ol

FDMU-FMI-
Adapter

Figure 3: Idea of integrating FMI under FDMU
753

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
any FMI support, an FMI-based co-simulation is not
possible.

FDMU has another strategy here. A FDMU
Wrapper encapsulates a simulation tool using a small
software layer around the tool. The advantage is that
the simulator remains untouched and open interfaces
(external function interface, tool-specific API, file IO
…) are used only. The disadvantage is there is needed
extra wrapper software. But for simulators without
any FMI support this approach could be the only
solution for using it within a co-simulation frame-
work.

4.6 Summary

Both approaches, FMI and FDMU, have their
benefits and problems. At a first glance FMI and
FDMU represent two different perspectives to co-
simulation-based system design:

• FMI is focused on efficient co-simulation inter-
faces between electronical, mechanical, and
software models. The primary goal is to simu-
late and analyze the models.

• FDMU addresses the combination of both the
behavioral models and the 3D geometry (CAD)
data into one simulation approach. The primary
goal is to provide an interactive 3D visualiza-
tion with functional simulation in background.

Despite this there are similarities too:
• All mathematical aspects of co-simulation, like

numerical error introduction by tearing, inter-
polation at the interface, the need of suitable,
intelligent Master algorithms are similar in both
appraoches.

• The slave simulators have to be prepared for
participating in the coupled simulation.

5 Proposals for combining FDMU and
FMI approaches

In this chapter we propose three options for a
combination of FDMU and FMI components. A com-
plete integration of the two frameworks into one solu-
tion may be useful in the future. Considering the dif-
ferences in the underlying software architecture, a
simpler solution using adapters between FMI and
FDMU seems more appropriate in the near future.

In general, there are two options for the imple-
mentation of adapters. For FDMU users, FMI slave
components can be integrated in the FDMU frame-
work via an FDMU wrapper (Figure 3). This wrapper
completely encapsulates an FMI component. The
wrapper has to emulate all the needed FMI Master
function calls and call-back functions.

For FMI users, an adapter between FMI Master
and FDMU Wrapper is needed. The adapter can be
implemented by an FMI Slave component, which
provides the Web service interface to an FDMU
Wrapper (Figure 4).

The advantage of both solutions is that a user con-
tinues to work with his or her favourite framework
and has access to additional components of the other
framework. The disadvantage of the adapter-based
solution is that only a subset of framework functions
can be supported. For instance, it is not possible to
emulate FMI call-back functions within a Web Serv-
ice-based framework like FDMU in an efficient way.
Further investigation of the details of the adapter-
based solutions is needed.

Last but not least a third approach seems reason-
able: Both frameworks can be coupled via a bridge
(Figure 5). In this case a bidirectional communica-
tion between FMI Master and FDMU Master is need-
ed. In contrast to the adapter-based solutions this
approach is not based on open interfaces. It means a

Solver

S
im

ul
at

io
n

C
on

tr
ol

Solver

S
im

ul
at

io
n

C
on

tr
ol

FMI Master

Fr
o

n
t-

en
d

3D Viewer

C
on

tr
ol

Wrapper

FMI-FDMU-Adapter

Figure 4: Idea of integrating FDMU under FMI
754

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011
bridge implementation needs access to the internal
interfaces of the two masters. As the authors of this
paper are involved in the development of both FMI
and FDMU this restriction is less important. Finally,
the bridge solution could be a first step forward in
unifying FMI approach as well as FDMU approach in
the future.

6 Summary

The paper compares the two simulation
approaches for heterogeneous systems called Func-
tional Digital Mock-up (FDMU) and Functional
Mock-up Interface (FMI). Both principles are well
suited for a comprehensive investigation of multi
physical systems. The main ideas of both approaches
are shortly presented.

The FDMU approach focuses on a web service-
based architecture for a flexible combination of dif-
ferent simulators and the involvement of an interac-
tive visualization. Within this approach, the simula-
tion tools can be used without additional
implementations. However, the models must use one-
directional connectors which may cause slight modi-
fications.

The main ideas of the FMI specification are char-
acterized by model exchange as well as co-simula-
tion. The first idea realizes a passing over of sub-
models between different simulation tools. The sec-
ond way defines a tight coupling between a so-called
master simulation tool – acting mainly as caller – and
all other simulation tools which are acting as slaves.
For establishing the FMI ideas, the vendors have to
implement additional code into their tools.

Both approaches have advantages and disadvan-
tages. However, a combination of both principles
seems to be possible and promising. Three opportuni-
ties for such a combination are shortly presented in

the paper. All three ideas ought to be proved more
particularly in the future.

References

[1] Bastian, J.; Clauß, C.; Wolf, S.; Schneider, P.: Master for
Co-Simulation Using FMI. 8th International Modelica
Conference, Dresden, Germany, March 20-22, 2011.

[2] Enge-Rosenblatt, O.; Schneider, P.; Clauß, C.; Schneider,
A.: Functional Digital Mock-up – Coupling of Advanced
Visualization and Functional Simulation for Mechatronic
System Design. Proc. ASIM Workshop, Ulm, March 4-5,
2010.

[3] Modelisar: http://www.modelisar.org
[4] Noll, C.; Blochwitz, T.; Neidhold, T.; Kehrer, C.: Imple-

mentation of Modelisar Functional Mock-up Interfaces in
SimulationX. 8th International Modelica Conference,
Dresden, Germany, March 20-22, 2011.

[5] Otter, M.; Blochwitz, T.; Elmqvist, H.; Junghans, A.,
Mauss, J., Olsson, H.: Das Functional-Mockup-Interface
zum Austausch Dynamischer Modelle. Keynote at ASIM
Workshop, Ulm, March 4-5, 2010.

[6] Relovsky, B.: Overview of ITEA2 Project MODELISAR
(I). Keynote at the 7th International Modelica Conference,
Como, Italy, September 20-22, 2009.

[7] Schneider, P.; Clauß, C.; Enge-Rosenblatt, O.; Schneider,
A.; Bruder, T.; Schäfer, C.; Voigt, L.; Stork, A; Farkas, T.:
Functional Digital Mock-up – More Insight to Complex
Multi-physical Systems. Multiphysics Simulation –
Advanced Methods for Industrial Engineering, 1st Interna-
tional Conference, Bonn, Germany, June 22-23, 2010, Pro-
ceedings.

[8] Schubert, C.; Thomas Neidhold, Guenter Kunze: Experi-
ences with the new FMI Standard - Selected Applications
at Dresden University. 8th International Modelica Confer-
ence, Dresden, Germany, March 20-22, 2011.

[9] Stork, A.: FunctionalDMU – Eine Initiative der Fraunhofer
Gesellschaft, 2006.
http://www.functionaldmu.org

[10] Stork, A.; Thole, C.-A.; Klimenko, S.; Nikitin, I.; Nikitina,
L.; Astakhov, Y.: Simulated Reality in Automotive Design.
International Conference on Cyberworlds, Hannover,
2007.

[11] W3C: Web Service Standards WS-*, 2010.
http://www.w3.org/standards/webofservices/

Solver

S
im

ul
at

io
n

C
on

tr
ol

Solver

S
im

ul
at

io
n

C
on

tr
ol

FMI Master

Fr
o

n
t-

en
d FDMU Master

Solver

C
on

tr
ol

Wrapper

3D Viewer

C
on

tr
ol

Wrapper

FMI/FDMU
Bridge

Figure 5: Idea of bridging FMI and FDMU
755

Towards Design Optimization with OpenModelica Emphasizing Parameter
Optimization with Genetic Algorithms

Hubert Thieriota, Maroun Nemera, Mohsen Torabzadeh-Tarib, Peter Fritzsonb, Rajiv Singhc, John John
Kocherryc

aCenter For Energy and Processes, MINES ParisTech, Palaiseau, France
bPELAB Programming Environment Lab, Dept. Computer Science, Linköping University, SE-581 83, Sweden

cEvonik Energy Services, Pvt. Ltd., Corporate Office, Noida 201 301, India

Abstract

One of the main goals when modeling a physical system is to optimize its design or configuration. Currently
existing platforms are often dependent on commercial software or are based on in-house and special-purpose
development tools. These two alternatives present disadvantages that limit sharing and reusability. The same
assessment has partly motivated the origin of the Modelica language itself. In this paper, a new optimization
platform called OMOptim is presented. Intrinsically linked with OpenModelica, this platform is mainly
aimed at facilitating optimization algorithm development, as well as application use together with models. A
first version is already available and three test cases of which one using respectively Dymola and two using
OpenModelica are presented. Future developments and design considerations of OMOptim but also of related
OpenModelica computation functions are also discussed.

Keywords: Optimization, model-based, parameter, genetic algorithm, Modelica, modeling, simulation

1. Introduction

Model-based product development is an approach
where a computer-based model of the product is built
and refined before the actual production, to reduce
costs, increase quality, and shorten time-to-market.
Optimization is often used to improve product qual-
ity or design. Several types of optimizations can be
used with these goals in mind. This can either con-
cerns parameter or configuration optimization (e.g.
which selection of the best components or connec-
tion paths to use in a defined process). Some de-
sign tasks also need a dynamic optimization to bench-
mark different configurations. For the user but also
for the developer of such algorithms, two main issues
can be noticed. The first issue concerns the devel-
opment platform itself. The developers can either
use a commercial plat-form (e.g. MatLab connected

Email addresses: hubert.thieriot@mines-paristech.fr

(Hubert Thieriot), maroun.nemer@mines-paristech.fr
(Maroun Nemer), mohsen.torabzadeh-tari@liu.se (Mohsen
Torabzadeh-Tari), peter.fritzson@liu.se (Peter Fritzson),
r.singh@evonik-es.in (Rajiv Singh),
jj.kocherry@evonik-es.in (John John Kocherry)

with a external simulator) or develop their own en-
vironment. The disadvantages of the first option are
mainly the proprietary aspects of such tools which
makes it harder to modify and extend, and also the
involved license fees. The latter solution needs more
development time and reduce exchange opportunity
with other teams. Another important issue of model-
based optimization lies in the computation time. Op-
timization applications often requires a large number
of iterations and thus, a long time to give interest-
ing results. This paper presents an initiative to limit
these two main issues by developing an open-source
optimization platform for OpenModelica (OMOptim)
involving generation of efficient source code for multi-
core computer architectures for increasing simulation
performance.

1.1. Structure of the Paper

This paper first presents the context and moti-
vation of the OMOptim development. A general re-
view of optimization methods is then presented. The
next sections successively describe the first version
of OMOptim, an example of an application already

8th International Modelica Conference, 2011

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

756

implemented and some concluding words about the
intended future of this platform.

2. Requirements

The Center for Energy and Processes of Mines Pa-
risTech school is involved in the CERES project [1]
concerning industrial processes optimization. In this
project, the best process technologies and heat recov-
ery topology should be chosen simultaneously with
mini-mum costs and environmental impacts. PELAB
on the other hand is involved in the SSF Proviking
EDOp project [2], concerning dynamic optimization
for large industrial optimization problems, targeting
both para-metric as well as dynamic optimization.
This paper aims at building a bridge between these
two projects with a common open source optimiza-
tion platform. Thus, it should be ergonomic and ef-
ficient enough to use but also allow development of
algorithms in the environment. A first version of this
tool called OMOp-tim has been developed and is de-
scribed below. Besides this goal, one critical issue
will be the simulation (and thus) optimization time.
Therefore, optimization algorithms but also the simu-
lation tool efficiency should be very high. This paper
briefly presents current and intended developments
which go in this direction.

3. Optimization

This project aims at solving several different opti-
mization problems, and in order to do this efficiently,
a number of different solution techniques are required.
Optimization problems can be classified according to
several criteria e.g. existence of constraints, the na-
ture of variables,and the nature of equations involved.
A large number of optimization algorithms have been
developed over the last decades to solve these differ-
ent problems. One can roughly divide them in two
families: gradient based methods and meta-heuristics
algorithms.

3.1. Gradient based methods

The gradient based family contains numerical lin-
ear and non linear programming methods. These
algorithms require substantial gradient information
and are often used to improve a solution near a start-
ing point. Applied on simple models, they offer an
efficient way to find global optimum. However, many

engineering optimization problems are highly non-
linear and present several optima. Such problems
create numerical difficulties (like discontinuities) for
this family algorithms and result can depend on ini-
tial point defined by the user.

3.2. Meta-heuristic algorithms

Meta-heuristic algorithms present a common char-
acteristic: they combine rules and randomness to imi-
tate natural phenomena. Within such methods, deriva-
tive computation is unnecessary. Most developed meth-
ods are evolutionary algorithms and genetic algorithms
which are based on biological evolution formulation
[3] but also tabu search, which reproduces animal
behavior [4]. Simulated annealing is another meta-
heuristic method based on physical annealing process
[5].

3.2.1. Genetic algorithms and evolution strategies

A genetic algorithm (GA) is based on natural evo-
lution and reproduces its main operations: reproduc-
tion, crossover and mutation. The initial theory has
been proposed by Holland [6] and Goldberg [3] among
others. An individual is represented by a genome
which contains values of decisive parameters. For
each individual, fitness values are calculated; these
fitness values correspond to the objectives we want
to minimize or maximize. A population is initially
created by assigning random values to decisive pa-
rameters for each individual. New generations are
created by combination of parents and innovation is
introduced by mutation step. At each generation, a
selection operation is followed which keep only the
best individuals according to the fixed objectives but
also following diversity parameters. Evolution strate-
gies mainly differ from Genetic algorithms (GAs)in
parameters coding: while GAs use binary coding and
operations, evolution strategies use real coded param-
eters [7]. By extension, evolution strategies are of-
ten called genetic algorithms. These methods have
largely been applied to estimate parameter values
which minimize one or several objectives. It is in-
deed independent of problem type and can be ap-
plied to constrained or unconstrained problems, can
have discrete or continuous variables, can follow one
or several objectives and can be applied to linear or
non-linear problems. Evolution strategies and more
generally meta-heuristic algorithms present several
advantages. First, they can be applied to complex
engineering problems. They also do not need any

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

757

particular initialization point and are therefore in-
dependent of it. Finally, they tend to escape local
optimum problems (e.g. with highly discontinuous
problems). However, for linear and simple non-linear
problems, linear or non-linear programming methods
are much more suited and efficient (especially because
of specific formulation and gradient information).

4. OMOptim 0.9

4.1. Goals

OMOptim intends to be a platform where differ-
ent families of optimization algorithms can be imple-
mented and linked with the OpenModelica simulator
but also with other tools e.g. using FMI (Functional
Mock-up Interface) [8]. Figure 1 illustrates its high-
level design concept.

Figure 1: Top-level conceptual view of the OMOptim model-
based optimization tool in OpenModelica.

4.2. Implementation

A first version of OMOptim including a graph-
ical user interface has been developed in C++ and
already tested on several use-cases (cf. Section 5).
This version uses the OpenModelica API to read and
eventually modify the model through the Corba com-
munication protocol [9].

This version can only run meta-heuristic optimiza-
tion methods since at this time, it does not have ac-
cess to information about derivatives, even though
OpenModelica can produce such information. As pre-
viously stated, only input variables specification and
output variables reading are needed for such meth-
ods. Specifying input variables and reading results

is done using input and output text files. To im-
plement meta-heuristic algorithms, an efficient and
adapted framework has been used (ParadisEO library
[10]). OMOptim already includes several genetic al-
gorithms, e.g. NSGA2, SPEA2 [11] or self-adaptative
versions [12].

4.3. User interface

At the same time, a GUI has been developed al-
lowing graphical selection of optimization variables,
parameters and objectives (Figure 2) but also reading
results.

Model structure Model Variables
Optimized parameters

Optimized Objectives

Figure 2: Parameters and objectives selection in the OMOptim
optimization problem definition.

5. Test cases

Three test cases are presented here. The first uses
Dymola as a simulation tool on an industrial applica-
tion, but still uses OpenModelica to access the model
structure. The second shows a small example applica-
tion with OpenModelica. The third uses OpenMod-
elica on an industrial application and an optimiza-
tion module which is currently executed separately,
but will be integrated with OpenModelica. As previ-
ously stated, meta-heuristic algorithms can interact
with simulation tool using only input and output files.
Thus, it is possible to interact with most simulation
tools. However, in the future, all OMOptim algo-
rithms may not be compatible with other simulators
than OpenModelica (cf. section 6)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

758

5.1. Heat-pump application using Dymola for simu-
lation

A first application has been done which concerns
a multi heat-pump system in a food industrial process
[13]. This system consists of three heat-pumps used
to heat-up solutions of the process. These three heat-
pumps are connected to a heat-recovery stream. The
model integrates dynamic items e.g. hot water tank
emptying and filling during simulation (cf. Figure 3).

Figure 3: Modelica model of an industrial process being opti-
mized.

The optimization consists in finding optimal flow
repartitioning of the heat-recovery stream but also
optimal powers of these heat-pumps, including the
possibility to disable one or several heat-pumps. Two
objectives are considered in this optimization: de-
creasing operational cost and investment cost. An
auto-adaptive genetic algorithm has been developed
for this study in OMOptim [13][12]. This genetic al-
gorithm includes standard deviation of each genome
parameter in the genome itself of the genetic algo-
rithm. Therefore, the variation amplitude between
each generation is itself submitted to modification
and selection.

OMOptim allows the user to obtain several op-
timal configurations according to the two objectives
fol-lowed i.e. investment and operating cost. More-
over, a sensitivity analysis has been performed to an-
alyze the impact of CO2 carbon tax on optimum con-
figurations (Figure 4).

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

In
ve

st
m

en
t c

os
t (

k€
)

Operating cost (k€/yr)

HSW
A,B

A
B

A,B,HSW
A,HSW
B,HSW
Boiler

Figure 4: Investment and operation costs for optimal config-
urations (horizontal bars correspond to carbon tax variation
sensitivity).

5.2. A Linear actuator application using OpenMod-
elica

The model here consists of a linear actuator with
a spring damped stopping [14, p. 583]. The model
configuration is presented on Figure 5.

Figure 5: Linear actuator model

A reference response is generated considering a
first order system. This response is defined by a first
order ODE : 0.2 ∗ ẏref (t) + yref (t) = 0.05. The opti-
mization consists in making the resulting linear actu-
ator behavior be as close as possible to this reference
response. To achieve this, the damping parameters
d1 and d2 of both spring dampers are considered as
free variables to be determined by the optimization
algorithm. The objective function corresponds to the
integral of square deviation along simulation time T :
f(d) =

∫ T
0 (y(t) − yref (t))2 dt.

With obtained parameters (d1 = 4.90 and d2 =

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

759

19.88), the behavior suits the reference response well
(cf. Figure 6). These results were obtained in less
than five minutes on a standard Intel Core2 Duo @
2.53 GHz.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.5 1 1.5 2 2.5 3 3.5 4

reference response
model response

Figure 6: Model and reference responses after optimization of
damper parameters

5.3. A dynamic optimization using an external SQP
module

This third test case concerns a power plant regula-
tion. It is only described very briefly here - a more de-
tailed presentation is planned in a future paper. This
application has been run using an external Sequential
Quadratic Programming (SQP) optimization module.

In power plants, the main steam temperature con-
trol regulates the spray (attemperator) flow rate. Pre-
cise modeling of super heater dynamics and improv-
ing the quality of control of the superheated steam
temperature is essential to improve the efficiency of
the Boiler. In addition to this, the physical con-
straints of the turbine blades are also met using this
control strategy. This control methodology is based
on an adaptive prediction of the steam temperature
trends. The architecture of the newly developed con-
trol system is similar to that of conventional boiler
but the temperature feedback is given from the model
instead of a sensor as shown in Figure 7.

A simple heat exchanger model is adapted to model
the first stage of super heater regarding steam tem-
perature, steam flow and flue gas temperature as mea-
surements. This resulted into a set of algebraic differ-
ential equations which captured the behavior of the
super heater along with the attemperator.

A SQP optimizer is used to calculate the spray
flow, driven by an objective function to find the least

Figure 7: Advanced steam temperature control strategy for
power plant

square error between the predicted and set point of
steam temperature for a defined control horizon. Dy-
namic constraints are considered for spray and metal
temperatures to consider the metal strains.

The first results are promising. However, this
function is a separate module that is not yet inte-
grated with the available version of OMOptim. This
integration is planned in the near future.

6. Future work

6.1. OMOptim Structure Evolution

OMOptim intends to become an attractive frame-
work to develop and execute optimization algorithms
for Modelica users. To achieve this, its structure
should be flexible enough to address the needs of
many different kinds of optimization. The structure
should also provide an efficient and ergonomic way to
develop special-purpose algorithms including sharing
and usage. Like a Modelica library, it would be per-
tinent and useful to list available optimization algo-
rithms in libraries sharable within the Modelica com-
munity. Moreover, the structure should be able to
support the combination of several algorithms work-
ing together. It should for example be used to apply a
meta-heuristic optimization function with an objec-
tive function computed from another function (e.g.
the objective could itself be the result of a sensitivity
analysis). In some cases, it should also be possible to
create new algorithms by graphically connecting ex-
isting optimization modules like in component-based
modeling.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

760

6.2. Hybrid Optimization

Meta-heuristic optimization algorithms can be cou-
pled with local search functions [15]. This combina-
tion intends to combine advantages of both families.
Meta-heuristics allow spreading populations over a
large domain and thus limit the risk of obtaining a
local optimum solution. Local search functions can
lead to a faster convergence and to more precise re-
sults (e.g. [16] or [17]).

To achieve hybrid optimization implementation,
a stronger link with OpenModelica should be built.
In particular, gradient information should be commu-
nicated to optimization methods. The first develop-
ments in this direction are currently under way.

6.3. Dynamic optimization

Dynamic optimization requires modifying model
parameters while performing the simulation. This
functionality assumes the development an interface
between OpenModelica and OMOptim while the for-
mer is computing. First trials have been done in
this direction, using the new online interactive sim-
ulation facility of OpenModelica. More specifically,
integration of a Sequential Quadratic Programming
optimizer within OMOptim is planned in the near
future (cf. section 5.3).

6.4. Parallelization for Efficient Computation

Applying parallelism and parallel compilation tech-
niques at many levels of the problem, from prob-
lem formulation to inlining the solver and software
pipelining, is being addressed in this project [18]. The
constraints of the optimization problem can often be
handled in parallel. In this case large system mod-
els can be restructured to smaller sub-system mod-
els. The PELAB research group at Linkping Uni-
versity has a long tradition of handling the compila-
tion process in parallel, optimizing it, and adapting it
for multi-core architectures. Some recent encourag-
ing results[19] about using GPU architectures instead
of CPU caused PELAB to invest in a two-teraflop
(peak) Nvidia Fermi GPU that will be used in this
project. Another step is to extend the support of ef-
ficient event-handling in parallelized code in order to
also handle hybrid models.

6.5. Optimization Performance Profiling and Debug-
ging

One current disadvantage of using high-level equa-
tion based languages [14] as well as other high-level

simulation tools is the poor support for performance
profiling and debugging. This will be even more pro-
nounced when an engineer wants to trace the rea-
son to why an optimization is too slow or has failed.
There exists a substantial expertise at PELAB re-
garding debugging and traceability technology in in-
tegrated environments. We are planning to use this
as a basis for a profiling feature in the optimization
platform that is needed for tracing the causes of prob-
lems bottle-necks in the model.

7. RelatedWork

7.1. jModelica

The current Modelica language does not include
formulating optimizations problems. However, a lan-
guage extension called Optimica [20] has been devel-
oped by JModelica (www.jmodelica.org). JModelica
offers an efficient platform for dynamic optimization
and works in close collaboration with the model since
it has an integrated Modelica compiler.

7.2. Dymola optimization library

The Dymola commercial tool from Dassault Sys-
tems [21], Dymola has its own optimization library,
containing genetic algorithms. Another product from
Dassault Systems is Isight [22] that supports process
flow optimization with genetic algorithms. The main
disadvantage of these two products is their closeness.

7.3. Meta-heuristic algorithms

Several tools may link meta-heuristic optimiza-
tion methods to different simulators. One can cite
OptiY [23], modeFrontier [24], Isight [22], or GenOpt
[25]. They propose a rich list of implemented algo-
rithms and can be used with nearly all simulators
(all these tools interact with simulation software us-
ing input file modification and output file reading).
Excepting GenOpt, all these softwares are commer-
cial.

7.4. What should OMOptim offer

OMOptim aims to offer OpenModelica users an
extension opening new opportunities. Especially, it
intends to be a shared and open platform where scien-
tists could develop optimization algorithms and apply
them to Modelica models.

OpenModelica has been chosen for its opening
and its substantial development rhythm. Also, Open-
Modelica supports symbolic differentiation which al-
lows robust and advanced numerical methods, very

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

761

useful in optimization problems. This could be espe-
cially useful for the development of hybrid algorithms
(cf. section 6.2).

Parallelism is also an intended development direc-
tion. Applying parallelism and parallel compilation
techniques at many levels of the problem, from heuris-
tic simulation repartition to inlining the solver and
software pipelining, is being addressed in this project.
For example, population based meta-heuristic opti-
mization methods present high parallel scalability.

Concerning dynamic optimization or components/
connections that change during simulations, the Mod-
elica language doesn’t yet support structural dynamism,
i.e. changes in the causality during simulations. How-
ever, with a little relaxation of this requirement the
environments would be much flexible and better suited
for optimization tasks [26].

References

[1] Ceres project : www.ecleer.com/ecleer i 15/.
[2] Edop project :

http://openmodelica.org/index.php/research/omoptim/edop.
[3] D. Goldberg, Genetic algorithms in search, optimization,

and machine learning, Addison-wesley, 1989.
[4] F. Glover, Future paths for integer programming and links

to artificial intelligence, Comp. Oper. Res. 13 (1986) 533–
549.

[5] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by
simulated annealing, Science 220 (1983).

[6] J. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor, MI, 1975.

[7] T. Bck, H. Schwefel, An overview of evolutionary algo-
rithms for parameter optimization, Evolutionary compu-
tation 1 (1993) 1–23.

[8] Itea2, modelisar : www.itea2.org.
[9] Openmodelica system documentation, available on

http://www.openmodelica.org.
[10] A. Liefooghe, M. Basseur, L. Jourdan, E.-G. Talbi,

Paradiseo-moeo: A framework for evolutionary multi-
objective optimization, 2007.

[11] E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the
strength pareto evolutionary algorithm, in: EUROGEN,
Citeseer, 2001, pp. 95–100.

[12] K. Deb, H. Beyer, Self-adaptation in real-parameter ge-
netic algorithms with simulated binary crossover, in: Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, Citeseer, 1999, pp. 172–9.

[13] R. Murr, H. Thieriot, A. Zoughaib, D. Clodic, Multi-
objective optimization of a multi water-to-water heat
pump system using evolutionary algorithm, Submitted
to Applied Energy. ().

[14] P. Fritzson, Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1, Wiley-IEEE Press, 2004.

[15] A. Hopgood, L. Nolle, A. Battersby, Hybrid genetic algo-
rithms: A review (2006) –.

[16] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, Y. Al-
izadeh, Hybridizing harmony search algorithm with se-
quential quadratic programming for engineering optimiza-
tion problems, Computer methods in applied mechanics
and engineering 197 (2008) 3080–3091.

[17] S. Katare, A. Bhan, J. Caruthers, W. Delgass, V. Venkata-
subramanian, A hybrid genetic algorithm for efficient pa-
rameter estimation of large kinetic models, Computers &
chemical engineering 28 (2004) 2569–2581.

[18] H. Lundvall, P. Fritzson, Automatic parallelization using
pipelining for equation-based simulation languages, in:
In proceedings of the 14th Workshop on Compilers for
Parallel Computing (CPC’2009), Zurich, Switzerland.

[19] P. stlund, K. Stavker, P. Fritzson, Parallel simulation of
equation-based models on cuda-enabled gpus, Submitted
to EuroPar (2010).

[20] J. Akesson, K.-E. Arzen, M. Gafvert, T. Bergdahl,
H. Tummescheit, Modeling and optimization with opti-
mica and jmodelica.org–languages and tools for solving
large-scale dynamic optimization problems, Computers &
Chemical Engineering 34 (2010) 1737–1749.

[21] Dassault systemes, www.3ds.com.
[22] Isight product page :

http://www.simulia.com/products/isight.html.
[23] Optiy, multidisciplinary analysis and optimization,

http://www.optiy.eu.
[24] Modefrontier, http://www.modefrontier.com.
[25] Genopt, http://simulationresearch.lbl.gov/go/.
[26] H. Nilsson, G. Giorgidze, Exploiting structural dynamism

in functional hybrid modeling for simulation of ideal
diodes, in: Eurosim 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

762

From Physical Modeling to Real-Time Simulation : Feed back on the
use of Modelica in the engine control development toolchain

Zakia Benjelloun-Touimi�; Mongi Ben Gaid�; Julien Bohbot�; Alain Dutoya�;

Hassan Hadj-Amor�; Philippe Moulin�; Houssem Saafi�; Nicolas Pernet�

�IFP Energies nouvelles

1 & 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France

�INCKA SA
85 avenue Pierre Grenier, 92100 BOULOGNE-BILLANCOURT

� Ecole Nationale d'Ingénieurs de Sousse
 Technopôle de Sousse, 4054 Sousse, Tunisie

Abstract

This article provides feedback from using Modelica
in the "System Modelling" area, involving modelling
(behavioural and dynamic modelling), direct simula-
tions, control and real-time applications.
The described work was undertaken within three
Europeans projects: Eurosyslib, Modelisar and Open
Prod.
Our aims are to attest Modelica language in an over-
all model of a vehicle consisting of vehicle dynam-
ics, combustion engine, transmission, drive line,
brakes and control systems.
ModEngine is a complete IFPEN1 library, resulting
from our participation in those European projects. It
allows the modelling of a complete engine with die-
sel and gasoline combustion models. It may be inter-
faced with control algorithms written in Simulink
thanks to the new Functional Mock-up Interface
specification from Modelisar project.
Both versions under commercial software Dymola
and free one OpenModelica are available.
Feedback will concerns also problems encountered
and advantages in use Dymola and OpenModelica
platforms.

Keywords: Control, Eurosyslib, FMI, Library,
Modelica; Modelisar; ModEngine, Modelisation,
Openprod, Simulation, Real-time.

1 IFPEN : IFP Energies nouvelles, new name of IFP

1 Introduction

The use of the Modelica � �language �[19] for hierar-
chical physical systems modelling is booming thanks
to an international effort, but mainly because it meets
what engineers and researcher expect for their devel-
opment today.
In this paper we propose to provide a feedback about
our experience in using Modelica for an industrial
application in European projects (Eurosyslib [23],
Modelisar [24], and OpenProd [25]): the develop-
ment of control strategies for automotive engines. In
this field, IFPEN [22] has promoted an approach
where simulation tools play a crucial role at the dif-
ferent stages of the development process. This ap-
proach has been described in various publications. It
utilizes the modelling library IFP-Engine developed
in C language, commercially available under the
LMS Imagine.Lab AMESim [26] environment.
The different stages of the development process and
the associated needs for simulation are the following:
1. System understanding: a detailed model of the

system is needed, including the representation of
all the physical phenomena. The physical accu-
racy is important.

2. Control strategy development: the focus is on the
control part, the system model is not modified.
However, it is coupled with the control strate-
gies, executed in Simulink. The execution plat-
form is important.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

763

3. Control validation: the model must be compiled
and executed in an environment that is represen-
tative of real-time. The ability to compile and
export the model is important.

4. System integration: the interactions between the
engine and the other parts of the vehicle (trans-
mission, after treatment,) are considered, the en-
gine model and its control must be coupled to
other component models, developed in various
modelling environments. The model integration
capabilities are important.

The plan of this paper will follow the structure given
by these different stages. Each of them will be de-
scribed in detail in a different section that details the
design choices, the advantages and drawbacks of
Modelica in this context.

2 System understanding: develop-
ment of ModEngine library

Requirements for the ModEngine library were de-
rived from the existing IFPEN AMESim library (En-
gine). The users can quickly assemble blocks that
result in vehicle simulators. ModEngine is now func-
tional in Dymola [20] and OpenModelica [21]; it
contains more than 250 sub models. We continue to
contribute and to optimize it in order to obtain accu-
rate and fast calculations for control and real-time
applications, respecting the procedure described by
figure 1below.

Figure1: Modelling /Simulation/Control/Real-time

validation Cycle

The ModEngine library has been developed to allow
the simulation of a complete virtual engine using a
characteristic time-scale of the order of the crank-

shaft angle. A variety of elements are available to
build representative models for engine components,
such as turbocharger, wastegate, gasoline or Diesel
injectors, valve, air path, EGR loop etc... Figure 3
shows these ModEngine components. Moreover, the
library uses an advanced modelling approach to take
accurately into account the relevant physical phe-
nomena taking place in the engine �[5]. The computed
gas consists of 3 species: fresh air vaporized fuel and
burnt gas. Thanks to the object oriented language
Modelica, it can be automatically extended to n-
gases for future development of the library. Gener-
ally, 3 gases is a thermodynamic assumption that has
been identified as sufficient for engine simulation
results. More than 3 gases, generally 12 gases have
to be used for pollutant emissions modelling. Main
relevant orifice and pipe elements are available such
as air throttle, valve, straight and kneed ducts. Fric-
tion and inertial effects can be also taken into ac-
count. Heat exchanges are modelled for each element
and specific heat exchanger models are also avail-
able with air and water cooling systems. An ideal
camshaft system is proposed. Inlet and exhaust
valves are piloted by valve lift trajectories and cross
section characteristics. The elements to build most of
the turbocharger technologies are proposed. The
modelling approach is based on turbocharger manu-
facturer's maps.

Concerning the combustion process, a first level of
modelling is available with an empirical model based
on the Wiebe's law �[2]. Generally, this model is used
through a mapping of the combustion phenomena
based on experimental cylinder pressure; the coeffi-
cients of Wiebe's law are calculated defining a map
covering the engine operating conditions. This com-
bustion model is a mathematical based model that
gives an evolution law for the heat release. 4 coeffi-
cients are needed to fit the model on experiment
pressure signal for each phase of the combustion.
Generally, due to their simplicity, these models are
used for real-time applications. The parameters of
this function are optimized and mapped according to
experimental results. Bohbot et al. [8] have used a
simple Wiebe law, coupled with an automatic tool to
create the parameter maps using both experimental
and 3D CFD results. This model can be use either
gasoline or Diesel engine simulation. For Diesel
simulation, a double Wiebe equation is generally
used.

The second level of modelling is given by efficient
phenomenological models. For the spark ignition
engines, the CFM-1D model is used �[3]. This com-

�������

�������

�������

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

764

bustion model is based on the CFM combustion
model �[6] developed at IFPEN in the 3D code IFP-
C3D �[7]. The coherent flame model (CFM) is a
combustion model adapted to the flamelet regime for
premixed mixtures. This approach is representative
of the premixed flame combustion, which represents
the main oxidation mechanism in spark ignition (SI)
engines. To calibrate this model, 6 different physical
coefficients must be defined to calculate the initiali-
zation of the turbulence, the dissipation of the turbu-
lence, the turbulence mixing scale, the flame wrin-
kling, the flame initial volume and the tumble value.
The first 5 are constant coefficients, while the last
one defining the tumble coefficient value can be de-
fined as a function of the volumetric efficiency of the
engine.

For Diesel engine, an advanced Barba [1] model de-
veloped at IFP is implemented in ModEngine [9].
The Barba’s model can reproduce the conventional
Diesel combustion process, using only 2 zones (a
first zone for the description of the pre-mixed com-
bustion and a second one for the diffusion mode).
With a reduced number of parameters, it can be used
for a wide range of operating points. In this model,
the combustion process is divided in 2 steps. In a
first step, the fuel is burnt using a premixed model
with the hypothesis of flame propagation in the pre-
mixed zone. In a second step, when the pre-mixed
zone is burnt, the remaining fuel is oxidized using a
mixing controlled combustion model. The different
hypothesis and equations of the Barba’s combustion
model are presented in �[10].

Cylinder wall thermal exchanges can be taken into
account following Woschni models �[4]. Injection
models allow governing the injected fuel mass rate
using maps or algebraic functions. The fuel can be
injected in gaseous phase or in liquid phase. The va-
porization process is governed by a characteristic
timescale for Direct or Port Fuel Injection.
As shown in Figure 3, the ModEngine library con-
tains 22 different packages and at least 250 different
models.Figure 4 shows a direct injection single-
cylinder modelling and a Mean Value Engine Mod-
eling with the ModEngine library. All models have
been validated with dedicated test cases to ensure the
non regression of each component (Figure 5) and
with functional tests to validate the whole library.
The validation of elementary sub models has been
done using as reference results the IFP-Engine li-
brary developed by IFPEN in the LMS Imagine lab
Platform AMESim, functional validation of com-

plete engines, comparison with experimental data,
steady state and transient data from test campaigns
made at IFPEN.
Figure 2 shows a numerical comparison obtained
with ModEngine and IFP-Engine using the Diesel
combustion model (Barba) on a one-cylinder Diesel
Direct injection engine that validates the good im-
plementation of the Barba model in the Modelica
language.

Figure 2: In-cylinder pressure comparisons obtained
with Barba Model between ModEngine / Reference

(IFP-Engine).

To connect different components, 9 connectors have
been implemented in ModEngine. These connectors
allow the connection of mechanical part, liquid flow,
gaseous flow and thermal flow.

For instance, the connector which links the air path
to the cylinder chamber is the PFlowPort connector.
Enthalpy and mass flow rate with the mass fraction
are defined as input and the output are containing the
thermodynamic state and the partial densities.

connector PflowPort "Input Pflow Port"
 parameter Integer ngas = 3 "Gaz number";
 input SI.EnthalpyFlowRate dh "input enthalpy flow rate";
 input Real dm "input mass flow rate [kg/s]";
 input Real x[ngas] "input mass fraction vector [null]";
output SI.Temperature temperature "output temperature";
ouput SI.Pressure pressure "output pressure";
ouput Real rhoOut[ngas] "output density vector [kg/m**3]";
end PflowPort;

�������

�������

�������

�������

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

765

Figure3: ModEngine library

Figure 4: Single cylinder engine and MVEM engine

models.

Figure5:
Non regression test case for each component

3 Control development

For the development of engine control strategies,
models representing the complete engine are needed.
The ModEngine library described above can be used
to design such models in Dymola. This first subsec-
tion below shows validation results for a complete
engine model.
Furthermore, the multiplatform capabilities of Mode-
lica language can be very interesting from a cost
point of view, because it allows using a different en-
vironment for the execution of the model at this

stage, than that used for the model design. In the fol-
lowing subsection the library results obtained with
different platforms are compared.

3.1 Complete engine model validation in Dy-
mola

The engine considered here is a four cylinder gaso-
line engine with fixed geometry turbocharger. Its
model is shown in figure 6. The following approach
has also been undertaken for Diesel engines, though
it is not exposed here for lack of space.
Two types of tests have been performed: steady state
and transient. In steady state the model results are
compared with experimental measurements for oper-
ating points covering the whole engine range. For
transient tests the comparison is made on a driving
cycle measured on the test bench.

Figure 6 : complete engine model in ModEngine

Steady State tests

The model results are compared for various operat-
ing points with experimental measurements. These
operating points are defined by :

- engine speed
- intake manifold pressure

The following variables are controlled to setpoints :
- intake manifold pressure is controlled by either
the throttle or the wastegate to the setpoint de-
fined by the operating conditions
- the air fuel ratio is controlled at stoichiometry
by the injected fuel mass

The thermodynamic conditions along the air system
and cylinder are model outputs. The following figure
shows a good match between the torque obtained
experimentally and with the model. A comparison of

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

766

the thermodynamic conditions along the air system
would show similar results.

Figure 7: The torque match

Transient tests
The model is now compared with transient results. It
is plugged to engine control software, running in co
simulation in Simulink. The inputs of the model are:

- engine speed
- torque setpoint

The engine control software determines in closed
loop the commands of the engine (actuators posi-
tions: throttle and waste gate, injection timing, spark
advance) based on the sensor values received from
the model. The results are shown in the figure 8, en-
hancing again the good behavior of the simulator
with respect to experiments.

Figure 8

3.2 Comparisons: Dymola/Openmodelica

All the elementary models developed in Dymola
were translated in Openmodelica. The translation
was not immediately done and needed some reshuf-
fle. Comparisons used a fixed and variables step in-
tegrators (Runge-Kutta / Euler; Dassl, /Dassl2).
The main variables which were selected to verify the
accuracy of the results using Dymola and OpenMod-
elica are the temperature, the pressure in the cylinder
(figures 9, 10, 13), and the Dissipative kinetic energy
(figures 11, 12, 14).
We show following some comparisons between Dy-
mola and OpenModelica for 3 combustions models.

Wiebe model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

14 x 105

Time [s]

P
re

ss
ur

e
[P

a]

Dymola
OpenModelica

Figure9: Cylinder Pressure

0 10 20 30 40 50
-50

0

50

100

150

200

250

300

Point number

T
or

qu
e

[N
m

]

exp.
model

0 50 100 150 200
0

500

1000

1500

2000

2500

T im e [s]

E
ng

in
e

sp
ee

d
[rp

m
]

5 0 1 0 0 1 5 0 2 0 0
0

5 0

1 0 0

1 5 0

T im e [s]

T
or

qu
e

[N
m

]

M o d e l
E x p .

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

767

0 0.01 0.02 0.03 0.04 0.05 0.06
250

300

350

400

450

500

550

Time [s]

Te
m

pe
ra

tu
re

 [K
]

Dymola
OpenModelica

Figure10: Cylinder temperature

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure11 : Energy model

CFM model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

1000

1200

1400

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure12: Energy model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

x 106

Time [s]

P
re

ss
ur

e
[P

a]

Dymola
OpenModelica

 Figure13: Pressure model

Barba model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure14: Energy model

3.3 Conclusions

ModEngine simulation results are performed respect-
ing the same integration conditions using the two
platforms Dymola and OpenModelica.
Models contain 683 variables and equations; with
235 zeros crossing and without numerical jacobians.
For the same final time simulation and integrators
having the same tolerances it seems that Dassl and
RungeKutta in Dymola take acceptable equivalent
time, while integration with OpenModelica with both
fixed or variable step takes more longer time.
The two platforms give similar results; the errors are
less than 1%.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

768

4 System Integration and control
validation

The multidisciplinary aspect of complex systems
leads to use different tools for the design step. That's
why the simulation step requires co-simulation tech-
niques in order to exchange data between simulators.
The concept of functional mockup provides ad-
vancement to model exchange during the product
design and validation cycles. Using models through
their interfaces allows hiding their implementation
details and making their usage easier.

4.1 xMOD

xMOD [12] is a platform which combines an integra-
tion environment for various heterogeneous models,
together with a virtual test laboratory. xMOD offers
a range of different functionalities, such as the inte-
gration of heterogeneous models (Simulink, AME-
Sim...), confidentiality management for models when
they are imported, virtual instrumentation, test auto-
mation, etc. The purpose of xMOD is to make it pos-
sible for models to be used by people other than
those who created them, and for them to be shared.
xMOD provides simulation functions in various
simulation schemes: real-time, extended time or as
soon as possible. Its execution kernel can be used to
process various integrated models in multiprocessor
and multicore. xMOD is built around the following
key ideas:

• Using a unified representation of all hetero-
geneous models that is simple and complete
enough for them to be integrated and co-
simulated, and for the expertise that they
contain to be protected.

• Abstracting the modelling language through
a virtual instrumentation, such that the mod-
els can be easily understood by people other
than those who created them, or by people
who do not have knowledge of the languages
in which they were written.

• Focusing on using the models (they are al-
ways built in the usual modelling environ-
ments), and providing ergonomically-
designed features for interacting with the
simulations, running the tests and using the
results.

4.2 FMI

The ITEA2 project MODELISAR is providing solu-
tions enabling the integrated design, test and man-
agement of automotive systems. One result of this

project is a new open Functional Mockup Interface
(FMI) to support co-simulation between simulation
tools, in particular Modelica, for system modelling
and AUTOSAR for embedded control software gen-
eration [24]. The FMI specifies C and XML inter-
faces for dynamic systems to be used as an inter-
change format between different tools. This interface
is to be implemented by an executable called FMU
(Functional Model Unit). The FMI functions are
called by a simulator to create one or more instances
of the FMU, called models, and to run these models,
typically together with other models. An FMU may
either be self-integrating (co-simulation) or require
the simulator to perform numerical integration. The
FMI goal is to describe models of dynamic systems
which are, in general, described by differential, alge-
braic and discrete equations with time, state and step
events. The interface is designed so that large models
can be described and consists of the following two
parts: A model interface: All needed equations are
evaluated by calling standardized C functions. A
model description schema: All variables in the model
are defined in a standardized way in a XML file. The
C-code could then be executed in an embedded sys-
tem without the overhead of the variable definition.

4.3 Integrating FMI in xMOD

In order to extend the capabilities of our co-
simulation tool we chose to integrate the FMI func-
tionalities to support more heterogeneous models
coming from Modelica based tools. This extends the
capabilities of xMOD allowing it to integrate models
(in the form of FMUs) coming from various Mode-
lica compatible authoring tools like AMESim Dy-
mola, SimulationX, Simpack...

To integrate FMI-for-cosimulation functionalities in
xMOD, we opted for the wrapper approach. This
solution is applicable for tools offering library inter-
faces with the ability to call functions or methods. In
xMOD, each instantiated model has its library inter-
face providing common generic functions to evaluate
the model dynamic equations. To integrate FMI
functionalities, we chose to develop a wrapper li-
brary whose main purpose is to load FMU models
and call their FMI functions. All the FMU model
functions are wrapped in the common generic func-
tions. The class diagram below shows the part of the
design of the FMU wrapper. The common generic
functions are listed in the xMODFMU wrapper class.
Based on this approach, we succeed to make xMOD
FMI compatible.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

769

4.4 Control validation

Before their implementation in the actual electronics
unit, it is necessary to validate the control strategies
in a "real-time representative" simulation environ-
ment. Thanks to xMOD and to the implementation of
the FMI concept, it is possible to build global co-
simulations involving the physical models (from
ModEngine), imported in xMOD as FMUs, as well
as the control strategies, which are usually developed
in Simulink, and which are imported in xMOD using
the xMOD Target for Real-Time Workshop [14].
This global co-simulation may be used for control
laws parameters tuning and pre-calibration as well as
closed loop system performance assessment. (Figure
15).

Figure 15: Screen shot from xMOD execution win-
dow illustrating the validation of a co-simulation

platform integration an FMU of a flex-fuel combus-
tion engine, which was generated from Dymola, run-

ning together with Simulink models (controls) and
AMESim models (vehicle Dynamics)

5 Perspectives: real-time simulation

Real-time simulation of a single model is a non-
sense. Real-time simulation is needed when models
are supposed to interact with physical part of the
whole system, for example when coupling simulated
and real components in a Hardware-in-the-Loop
(HiL) process. Indeed, this process is representative
and successful only if components are unable to dis-
tinguish if others components are real or simulated.
It implies that a simulated component must have the
same timing behaviour than its corresponding real
component. Real-time constraints are consequently
inherited from the needed data exchange between
components. For example, let consider we want to

connect our engine models to a real hardware con-
troller which acquire sensor data and send its actua-
tors command every 500µs. To make possible this
HiL process we must ensure that our model simula-
tion accuracy is sufficient to always be able to simu-
late 500µs of engine behaviour in less than 500µs of
real-time. Notice that verifying that you can simulate
30 seconds of the engine behaviour in less than 30
seconds of real-time is not sufficient to guarantee the
previous requirements. Indeed, in the HiL process,
even if 500µs of engine behaviour are simulated in
less than 500µs, the engine simulation cannot go on
before the end of the 500µs period in order to receive
controller data.
Consequently, improving performance for Madelia
models is a necessary condition for simulations to
reach real-time. Engineers often think about improv-
ing their models efficiency at the end of the design
phase. This leads often to non efficient simulations.
In [13] we showed that the needs for efficiency
should be considered as soon as the modelling step
starts. A set of general methods based on a closer
view on the Modelica's modelling and simulation
processes are presented to give hints to the designers
in order to reach real-time requirements.
The Functional Mock-up Interface could also help to
gain in efficiency for Modelica models. Indeed, the
FMI and especially, the FMI for Model Exchange,
gives freedom to the user to handle model's execu-
tion in different ways. For example, the FMI does
not enforce any predefined event handling mecha-
nism like the one provided by Dymola or other Mod-
elica tools.

6 Modelica contribution and future
works

We end this article on the observations and
reflections on the use of language and focused on a
return of the technical problems [15] that in fact
open to other possibilities to extend the language.
Today we are participating intensively in various
activities on Modelica. Among the areas for future
work , we will give the possible directions we intend
to take .

6.1 Dymola and OpenModelica implementation
feedback

The goal with the OpenModelica effort is to create a
comprehensive Open Source Modelica modeling,
compilation and simulation environment based on
free software distributed in binary and source code

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

770

for research, teaching and industrial usage. However,
we think that for this latter case, Dymola is ahead of
OpenModelica tool. Until today, we notice that
OpenModelica doesn't support yet all Modelica
specifications. Thereby, the original models have
been to be depreciated to run correctly. We noticed
also that the OpenModelica fixed step solver is much
accurate then Dymola fixed step solver. For exam-
ple, the figure 15 compares the RungeKutta 4 solver
of the two platforms against the Dassl solver which
is taken as the reference:

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

200

400

600

800

1000

1200

1400

Time

CFM Energy

Dassl
Dymola RK4 10-5
Dymola RK4 10-6
OpenModelica RK4 10-5

Figure 15

Finally, we can notice also that Dymola provides
unique support for real-time and hardware-in-the-
loop simulation (HILS) instead of the actual version
OpenModelica.

6.2 Future directions

LMS [31] and INRIA [27] have developed a
compiler based on Modelica, named Modelicac[18],
during the SIMPA2-C6E2 project [16, 17], which is
still in progress. Our aims in the near future is to
both continue to test Modelica langage on different
platform AMESim/ScicosLab, OpenModelica and
Dymola, in order to have heterogenous, interoperable
and multiplatform librairy. We will continue our
involvement in European projects, more particularly
on the control, FMI , xMOD and real-time
applications involving Modelica language.
Key elements of the long-term orientation of our
work is the success of European projects. Indeed, if
it turns out that Modelica provides benifit and is the
"standard" recognized by the industry, several fields
of engineering systems will adopt Modelica
language.

References

[1] Barba C., Burkhardt C., Boulouchos K.,
Bargende M. (2000) A phenomenological
combustion model for heat release rate pre-
diction in high speed DI Diesel engines with
common rail injection, SAE Technical Pa-
per 2000-01-2933.

[2] Wiebe, I.I., "Semi-empirical expression for
combustion rate in engines", Proceedings of
Conference on piston engines, USSR Acad-
emy of sciences, Moscow, pp. 186-191,
1956.

[3] F-A. Lafossas, O. Colin, F. Le Berr, P. Me-
negazzi, “Application of a new 1D combus-
tion model to gasoline transient engine op-
eration”, SAE 2005 Fuels and Lubricants
Meeting Exhibition and Congress, May 11-
13 2005, Rio de Janeiro, Brazil - SAE 2005-
01-2107.

[4] Woschni G., "Universally Applicable Equa-
tion for the Instantaneous Heat Transfer Co-
efficient in the Internal Combustion En-
gine", SAE paper 670931, SAE Trans., vol.
76, 1967.

[5] Menegazzi, P., Aubret, P., Vernhes, P.-L.,
"Conventional and Hybrid Vehicle Emis-
sion, Fuel Economy and Performance
Analysis System Simulation", FISITA 2004,
23-27 May, Barcelona, Spain

[6] Colin, O., Benkenida, A., Angelberger, C.,
"A 3D Modelling of Mixing, Ignition and
Combustion Phenomena in Highly Stratified
Gasoline Engines", Oil & Gas Science and
Technology, vol. 58, pp. 47-62, 2003

[7] "IFP-C3D: an Unstructured Parallel Solver
for Reactive Compressible Gas Flow" J.
Bohbot, N. Gillet, A. Benkenida, Oil Gas
Sci. Tech., 64 (2009), 309-336

[8] Bohbot J., Lafossas F.-A., Miche M.,
Chraibi M., Menegazzi P. (2004) A new
coupling approach using a1D system simu-
lation software and a 3D combustion code
applied to transient engine operation, SAE
Technical Paper 2004-01-3002.

[9] F.-A. Lafossas, M. Marbaix and P. Me-
negazzi "Development of a Coupling Ap-
proach between 0D D.I. Diesel Combustion
and Pollutant Models: Application to a
Transient Engine Evolution" Oil & Gas Sci-
ence and Technology - Rev. IFP, Vol. 63
(2008), No. 4, pp. 479-494

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

771

[10] Barba C., Burkhardt C., Boulouchos K.,
Bargende M. (2000) A phenomenological
combustion model for heat release rate pre-
diction in high speed DI Diesel engines with
common rail injection, SAE Technical Pa-
per 2000-01-2933.

[11] Modelisar Functional mock_up interface for
model exchange version 1.0. Technical Re-
port 07006, MODELISAR consortium,
January 2010.

[12] M. Ben Gaïd, G. Corde, A. Chasse, B. Léty,
R. De La Rubia, M. Ould Abdellahi. Het-
erogeneous Model Integration and Virtual
Experimentation using xMOD: Application
to Hybrid Powertrain Design and Validation
In Proc. 7th EUROSIM Congress on Model-
ing and Simulation, Prague, Czech Repub-
lic, September 2010.

[13] H. Hadj-Amor, C Faure, M. Ben Gaïd, N.
Pernet, “Towards a Modelica Real-time co-
simulation with FMI”, Multiphysics Simula-
tion - Advanced Methods for Industrial En-
gineering Conference, Fraunhofer, 22-23
June 2010.

[14] Coppin Thomas, Grondin Olivier, Le Sol-
liec Guenael, Maamri Nezha, Rambault
Laurent. "Control-oriented mean – value
model of a fuel-flexible turbocharged spark-
ingnition engine". SAE World congress, De-
troit USA, 13-15 april 2010.

[15] Benjelloun Zakia; Moulin Philippe, Najafi
Masoud, Shen Xduong. "Simulation of the
mean-value internal combustion engine in
modelica" MathMod International Confer-
ence on Mathematical Modelling, Vienna,
Austria, 11-13 February 2009.

[16] Benjelloun Zakia, Najafi Masoud. "Using
modelica for modelling and simulation of
spark ignited engine and drilling station in
IFP". International modelica conference,
Bielefeld, Germany, 3-4 march 2008.

[17] Benjelloun Zakia, Najafi Masoud. "Model-
ling complex system with modelica in sci-
cos: application to mean value spark en-
gine". ESM European Simulation and Mod-
elling conference, St.Julian's, Malta, 22-24
October 2007.

[18] Masoud Najafi, Ramine Nikoukhah, Serge
Steer, Sebastie Furic. "New features and
new challenges in modelling and simulation
in Scicos" Proceedings of the 2005 IEEE
Conference on Control Applications. To-
ronto, Canada, August 28-31, 2005.

[19] http://www.modelica.org/
[20] http://www.3ds.com/products/catia/p

ortfolio/dymola
[21] http://www.openmodelica.org/
[22] http://www.ifpenergiesnouvelles.fr/
[23] http://www.eurosyslib.com/
[24] http://modelisar.org/
[25] www.openprod.org
[26] http://www.amesim.com/
[27] http://www-rocq.inria.fr/scicos/
[28] http://www.pme.gouv.fr
[29] http://www.itea2.org/
[30] http://www.ida.liu.se/labs/pelab/mod

elica/OpenSourceModelicaConsortiu
m.html

[31] http://www.LMSINTL.com

Thanks

This work was realized thanks to the labeling of the
projects Eurosyslib, Modelisar, and OpenProd by
the European Organisme ITEA 2 (Information
Technology for European Advancement)[29] and,
thanks to financial support from DGCIS (Direction
Générale de la Compétitivité, de l'Industrie et des
Services)[28].
IFPEN is an OSMC [30] member and thus we bene-
fits from fruitful discussions during the adaption of
the library ModEngine in OpenModelica

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

772

UN-VirtualLab : A web simulation environment of
OpenModelica models for educational purposes

Oscar Duarte
Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering

ogduartev@unal.edu.co
Carrera 30, Calle 45, Ed. 453, Of. 202. Bogotá, Colombia

Abstract

In this paper a free web simulation environment is pre-
sented: UN-VirtualLab . It is a virtual laboratory in
which users can perform experiments on precompiled
software models. UN-VirtualLab uses OpenModelica
in order to compile software models written in Model-
ica language. The main features and internal architec-
ture of the system is presented. Some potential appli-
cations are discussed.

Keywords: simulation environments, web applica-
tions, OpenModelica, education

1 Introduction

UN-VirtualLab is a web simulation environment dis-
tributed under GPL license. It is a virtual laboratory
in which users can perform experiments. Using a web
browser, any regular user can pick up an experiment,
modify its parameters and simulate its response. The
plant in which the experiment is done does not physi-
cally exists, it is a pre-compiled software model. UN-
VirtualLab uses OpenModelica in order to compile
software models written in Modelica language.

The term ‘virtual laboratory’ refers, in a broad
sense, to an electronic and software workspace for ex-
perimentation. Many different approaches satisfy this
definition. In order to clarify what kind of them UN-
VirtualLab is, we may use some classification criteria:

• Web aviability:Some virtual labs are installed in
a PC as a local software package where as others
are installed in a web server. Usually, in the sec-
ond approach the user connects with the server
through a conventional internet navigator. In this
paper we use the term ‘virtual’ for web based
tools, such as UN-VirtualLab .

• Physical vs. software models:In some virtual
labs the plants in which the experiments are con-

ducted physically exist ([1], [2]) where as in oth-
ers they are software models([3],[4]). In the first
approach there are sensors and actuators con-
nected with the virtual lab, and the user can ma-
nipulate them. In UN-VirtualLab the plants are
software models.

• Interactivity: In [5] a distinction is made between
two types of software model based Virtual labs:
those which allow the user to perform actions
during the simulation and those which not. The
first approach is refered asruntime interactivity
and the second one asbatch interactivity. UN-
VirtualLab has batch interactivity.

• Subject orientation: Some virtual labs are de-
signed to satisfy an specific need ([4], [6]) where
as others are of general purpose ([7]). In the first
approach, the solution is not easy to use in a dif-
ferent context; for example, a virtual lab for bi-
ological plants can not be converted to a virtual
lab for mechanical plants. UN-VirtualLab is of
general purpose.

• Course orientation:Some virtual labs are course
oriented ([3]) where as others are not. In the first
approach, there are tools as student and grade
management, individual and group progress re-
ports, etc. UN-VirtualLab is not course oriented.

Some efforts have been made to combine Model-
ica and virtual labs: In [8] a web version of the well
known DrModelica software is presented. In [9] and
[5] virtual labs are developed by using a combination
of Dymola and Sysquake. In [10] a Modelica-based
algorithm is developed to implement the interactive
mechanism. In [11] a web service is developed to com-
pile and simulate remotely Modelica based models.

In this paper we show a simple and different ap-
proach, based on OpenModelica. OpenModelica is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

773

an open source modeling and simulation environment
([12], [13]). Using OpenModelica it is possible to
compile Modelica models. Once the compilation is
done, anexecutable fileis available. When running,
the executable reads aninput file and writes aresults
file, as shown in figure 1.

Modelica
model

Open

Modelica

input

file
executable

file
results

file

Figure 1: Files in an OpenModelica simulation.

UN-VirtualLab interacts in a web environment with
these files in the following way:

• Brings a graphical interface to modify selected
parameters of theinput files.

• Runs theexecutablefile.

• Displays the data of theresultsfile using plots,
tables as well as 2D and 3D animations.

In this paper we summarize the main features of
UN-VirtualLab (section 2) and describe its internal ar-
chitecture (section 3). We also discuss possible appli-
cations in section 4. Conclusions and future work are
presented in section 5.

2 Features

In UN-VirtualLab experiments are organized by
nested subjects. It is possible to define a tree of sub-
jects and include any number of experiments in every
subject.

The same Modelica model can be used in several
experiments. As an example, using the same model of
an electrical vehicle it is possible to design an experi-
ment to analize de controller performance, another to
perform sensitivity analysis of the vehicle mass, and
another one to study power comsumption.

Once a user selects an specific experiment, he/she
can:

• Modify the parameters of the experiment. The
parameters are those defined in theinput file. For
convinience, they are classified in three types:

Simulation parameters: such asstart time, stop
time, step value, toleranceandmethod of in-
tegration.

Initial conditions: start value of simulated vari-
ables.

Model parameters: any other parameter in the
input file. These parameters can be arranged
in groups.

• Simulate the model and visualize the results.
There are up to four options of visualization:

– Plots.

– 2D animations.

– 3D animations.

– Data tables.

• Read or download the experiment documenta-
tion, including:

– Model description.

– Modelica source code.

– Author information.

Other features are:

• Multilanguage support, selected by the adminis-
trator.

• Easy appearence customisation, using css
themes.

3 Architecture

UN-VirtualLab is written in php language. Modelica
models,input, executableandresultsfiles of every ex-
periment are stored in individual directories. Every
single experiment is defined by anxml file. System ad-
ministrator can modify these xml files using a graphi-
cal interface (see figure 2).

When a user picks up an experiment, the system
reads the correspondingxml file and creates a graphi-
cal interface that shows the outputs of the simulation
with the default values of the parameters. It also shows
a form so the user can change these values and launch
a new simulation (see figure 3).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

774

Figure 2: Administrator interface

Figure 3: Experiment interface

Figure 4 shows how UN-VirtualLab processes a
simulation order. When the simulation is launched,
the actual values defined by the user are read and a
temporary input fileis created, the system runs theex-
ecutable fileand creates atemporary results filewhich
is used to generate on line plots, animations and tables.
Then, temporary files are removed.

Notice that the same structure shown in figure 4 can
be used with any executable file that uses input and
results files, not just by OpenModelica compiled files.
In that sense, UN-VirtualLab has a very general struc-
ture and can be used with a broad spectrum of sim-
ulation packages. However, UN-VirtualLab actually
recognizes just the input and results file formats used
by OpenModelica.

3.1 Plots and tables

Curves to be plotted are defined by selecting a pair of
simulated variables. Usually, the first one istimebut
not necessarly, so it is possible to plot two-dimensional
phase portraits. As an example, consider the bouncing
ball plant, in whichh represents the height of the ball,
v its velocity andt the time. We can plot (h vs. t), (v
vs. t) and (h vs. v).

3D anim.
2D anim.

tables
plots

parameter
setting

read
values

launch
executable

visuali-
sation

temporary

input file
executable

file

temporary

results file

user

Figure 4: Files in a UN-VirtualLab simulation.

Plots are made on line taking the values written in
the resultsfile. A php class has been written to pro-
duce the images that are displayed using the png for-
mat. Using the same plot more than one curve can be
drawn, as figure 5 shows.

The data plotted is also available in data tables. User
can download the data of his own simulation as plain
text. Columns are separated by <TAB> character, so it
is possible to import directly the downloaded data into
an spreadsheet as OpenOffice Calc.

Figure 5: Plot example. Height and velocity of a
bouncing ball.

3.2 2D animations

2D animations are based on some primitives whose
propierties are changed by the values stored in there-
sults file. The primitives available are: axis, rectan-
gles, ellipses, rings and polylines. The properties that
can be driven by the simulation results are: size (x and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

775

y), position (x and y) and rotation (aroundz axis, or-
thogonal to the animation plane).

Following with the bouncing ball example, a 2D an-
imation can be made with two primitives: a rectangle
for the floor, and a circle for the ball (see figure 6). The
y coordinate of the circle position can be driven by the
h variable in theresults file.

2D animations of UN-VirtualLab are animated
png/gif files. In order to build every frame, several
php classes have been written. The combination of the
individual frames in a single png or gif animated file is
done with theapng-creatoranddgifanimatorlibraries
respectively [14]. The number of frames and the time
between frames of every animation can be adjusted. It
is also possible to configure the(x−y) position of the
camera and an scale factor.

Figure 6: 2D animation snapshoot. Height of a bounc-
ing ball.

3.3 3D animations

3D animations are made in a similar way to 2D anima-
tions. Primitives available are: axis, cubes, spheres,
pipes and cilinders. The propierties that can be driven
by the simulation results are: size (x, y andz), position
(x, y andz) and rotation (aroundx, y andz axis).

Figure 7 shows an snapshoot of a 3D animation of
the bouncing ball. It has been made with two primi-
tives: a cube for the floor, and an sphere for the ball
(see figure 6). Thez coordinate of the sphere position
is driven by theh variable in theresults file.

As in 2D animations, the number of frames and the
time between frames of every animation can be spec-
ified by the system administrator. It is also possible
to configure the(x,y,z) position of the camera,(x,y,z)
focus point and an scale factor.

Figure 7: 3D animation snapshoot. Height of a bounc-
ing ball.

3.4 Documentation

UN-VirtualLab displays information about the experi-
ment. The experiment author must prepare this infor-
mation as pdf files. UN-VirtualLab usespdftohtmlto
produce the html files from the pdf.

Authors can use LATEX and a suggested LATEX style
to produce the pdf files. The suggested style has a cus-
tomisation of thelistings package ([15]) for publish-
ing Modelica source code. It recognizes a subset of
the Modelica language specification, often enough to
produce fancy documentation files (see figure 8).

File 1: Asinh.mo
� �

w i t h i n Ca tena ry ;

f u n c t i o n a s i n h
i n p u t Real x ;
o u t p u t Real y ;
e x t e r n a l "C" y= a s i n h (x) ;

end a s i n h ;
� �

Figure 8: Example of LATEX output of Modelica source
code using the suggested style.

3.5 Layout and appearence

The user interface has five blocks, as shown in figures
3 and 9. They are:

1. Experiment selection block: a tree menu to pick
up the subject and experiment.

2. Parameter settings block: a dialog form to change
de default values of the choosen experiment pa-
rameters.

3. Documentation block: a frame display the
pdf/html experiment documentation, and the
links to downlable files (Modelica source code
and documentation files).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

776

4. Plots and tables block: two frames to display the
simulation results as plots and data tables, respec-
tively.

5. Animations block: some frames to display the
simulation results as 2D and 3D animations.

The appearence of the interface can be changed us-
ing different css themes. Not only colors and fonts
can be changed, but also the size and position of the
blocks.

1 2

3 4 5

Figure 9: Layout

3.6 Multilingual support

UN-VirtualLab has multilingual support. Actually
there are two languages available: English and Span-
ish. Two different aspects has been addressed to im-
plement multilingual support:

• Common interface:all the strings that are com-
mon to all experiments. They are defined in a
single file.

• Experiment data:every single experiment has
specific strings as experiment name, parameters
names, plots titles, etc. These strings are defined
in the xml file. It is possible to define different
xml filesfor the same experiment, each one for a
different language.

4 Possible applications

UN-VirtualLab is not intended to replace simulation
tools as Dymola, SimulationX or OpenModelica. The
main purpose of UN-VirtualLab is to publish simula-
tion experiments on the web. Some potential applica-
tions are the following:

1. Publishing research results:suppose you have
finished a research project and as a result you
have a novel dynamic model of something. You
have published good papers in recognized jour-
nals, but you also want to explain the results to
a wider public. You may use UN-VirtualLab to
let the visitors of your web site to explore your
model.

2. Novice students laboratories:suppose you are in
charge of a first year course in an engineering pro-
gram. You want your students to know something
about more advanced topics, perhaps just to help
them to understand some basic concepts. You
want they to experiment with some plant, but they
do not have yet enough skills and knowledege
neither to do it in real life nor to write a simu-
lation software. You may use UN-VirtualLab to
bring them a convenient simulation environment.

3. Complement traditional teaching:the benefits of
simulation environments in traditional teaching
have been widely reported (see, for example
[16]). Using UN-VirtualLab it is possible to de-
sign some experiments that help students to ex-
plore more aspects of a concept than those ex-
plored in the classroom.

5 Conclusions and future work

UN-VirtualLab provides a light web simulation en-
vironment for pre-compiled software models. Using
web simulation environments, many people can access
the same simulation engine and the licenses costs is re-
duced. Using UN-VirtualLab and OpenModelica, it is
possible to implement a totally free software solution.

There are some aspects that must be reinforced in
the short term:

• As stated in section 3, even that UN-VirtualLab
internal structure is very general, actually it rec-
ognizes just the input and results files produced
by OpenModelica. More formats should be rec-
ognized.

• The animations can be more complex, by driving
more primitive propierties such as colors and line
widths. The use OpenGl and other graphical li-
braries must be explored.

• It is important to research how to implement in-
teractive simulations. The use of the interactivity
option of OpenModelica through the web is not
trivial, but must be explored.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

777

The first public application of UN-VirtualLab is
available at the Virtual Academic Services of the Na-
tional Universty of Colombia1. According with the
actual schedulle, in june of 2011 it will include at least
a hundred of experiments, most of them from engi-
neering subjects.

References

[1] R. Pastor, C. Martín, J. Sánchez and S. Dormido
Development of an XML-based lab for remote
control experiments on a servo motor Interna-
tional Journal of Electrical Engineering Educa-
tion. Vol 42 No.2 2005 pg 173- 184

[2] Paul I-Hai Lin and Melissa Lin Design and Im-
plementation of an Internet-Based Virtual Lab
System for eLearning Support Proceedings of
the Fifth IEEE International Conference on Ad-
vanced Learning Technologies (ICALT’05) 05-
08 July 2005, Kaohsiung, Taiwan.

[3] Dongil Shin , En Sup Yoon, Kyung Yong Lee,
Euy Soo Lee A web-based, interactive virtual
laboratory system for unit operations and pro-
cess systems engineering education: issues, de-
sign and implementation Computers and Chemi-
cal Engineering 26 (2002) 319– 330

[4] Diwakar, Achuthan and Nedungadi Biotechnol-
ogy virtual labs- Integrating wet-lab techniques
and theoretical learning for enhanced learning
at universities. IEEE. 2010 International Confer-
ence on Data Storage and Data Engineering Ban-
galore, (International), (February 2010)

[5] Carla Martín Villalba Object-Oriented Model-
ing of Virtual Laboratories for Control Educa-
tion Doctoral Dissertation Universidad Nacional
de Educació a Distancia Escuela Técnica Supe-
rior de Ingeniería Informátca Madrid, 2007

[6] Hu Shaobin, Yin Daiyin, Cao Guangsheng, Guo
Lingling Construction and Application of Au-
tonomous Learning Based Remote Downhole
Tool Virtual Lab 201O 2nd International Con-
forence on Education Technology and Computer
(ICETC) Shangai, June 2010

[7] Alfonso Urquía, Carla Martín-Villalba
Laboratorios Virtuales Interactivos

1http://www.lab.virtual.unal.edu.co

http://www.euclides.dia.uned.es/simulab-
pfp/index.htm

[8] Eva-lena Lengquist S , Susanna Monemar , Pe-
ter Fritzson , Peter Bunus DrModelica – A Web-
Based Teaching Environment for Modelica In
Proceedings of the 44th Scandinavian Confer-
ence on Simulation and Modeling (SIMS’2003)

[9] Carla Martin-Villalba, Alfonso Urquia, Se-
bastian Dormido Object-oriented modelling of
virtual-labs for education in chemical process
control Computers and Chemical Engineering 32
(2008) 3176–3186

[10] Wenbin Jiang, Zhen Tang, Hai Jin, Chao
Liu MISM: Modelica-based Interactive Schedul-
ing Mechanism for Virtual Educational Experi-
ments The Fifth Annual ChinaGrid Conference
Guangzhou, China, July 16-18, 2010

[11] Sven Meyer zu Eissen, Benno Stein Realization
of Web-based simulation services Computers in
Industry 57 (2006) 261–271

[12] OpenModelica project web site.
http://www.openmodelica.org

[13] Peter Fritzson, Peter Aronsson, Adrian Pop,
Håkan Lundvall, Kaj Nyström, Levon Saldamli,
David Broman, Anders Sandholm: OpenModel-
ica - A Free Open-Source Environment for Sys-
tem Modeling, Simulation, and Teaching, IEEE
International Symposium on Computer-Aided
Control Systems Design, October 4-6, 2006, Mu-
nich, Germany

[14] PHP Classes Repository.
http://www.phpclasses.org

[15] CTAN, the comprehensive TEXarchive net-
work. Listings package. http://www.ctan.org/tex-
archive/macros/latex/contrib/listings/

[16] Zacharias C. Zacharia, Georgios Olympiou
Physical versus virtual manipulative experimen-
tation in physics learning Learning and Instruc-
tion (2010) article in press

[17] Dirección Nacional de Servicios Académicos
Virtuales. http://www.virtual.unal.edu.co

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

778

Extending the IPG CarMaker
by FMI Compliant Units

Stephan Ziegler and Robert Höpler
Modelon GmbH München

Agnes-Pockels-Bogen 1, 80992 München, Germany
{stephan.ziegler,robert.hoepler}@modelon.com

Abstract

This paper presents a generic interface which en-
ables exploiting the multi-physics modeling capabil-
ities of Modelica within the virtual test drive simula-
tor CarMaker [1] using the Functional Mock-up Inter-
face (FMI) [2].

Applications ranging from detailed studies of vehi-
cle properties to hardware in the loop test-rigs require
models of different complexity. CarMaker is provided
an interface which allows for vehicle models being ex-
tended by almost arbitrary external component models
implementing the FMI. The FMI offers two flavors of
units which permit the balancing of computational per-
formance and numerical robustness within CarMaker.
Additional model information provided by the FMI is
used for automatic integration of the external models
as well as for configuring the computations. Involved
aspects are shown by an example truck model.

Keywords: FMI, FMU, CarMaker, HIL, Solver,
Model export, Interface, Stability, Co-Simulation

1 Introduction

The CarMaker platform [3] is a full-fledged virtual
driving environment which offers a wide range of ap-
plications from offline operation to hardware in the
loop (HIL) tests. CarMaker was designed to sup-
port the development process from an early conceptual
stage to hardware prototype testing.

Therefore the CarMaker suite is composed of
two main components, the CarMaker Interface
Toolbox (CIT) and the Virtual Vehicle Environ-
ment (VVE), see Fig. 1. The CIT contains a collec-
tion of tools for simulation control, parameterization,
analysis, visualisation, and file management.

The VVE represents the computer modeled com-
position of the vehicle with all its components such
as powertrain, tires, brakes and chassis as well as

road and driver. Vehicle components may be imple-
mented by default generic models, custom code such
as MATLAB/Simulink controller models or even real
hardware on a test rig. Depending on the desired task

Figure 1: Typical VVE scenery including road and
traffic rendered by the CarMaker IPG-Movie anima-
tion tool.

the VVE can be operated on a regular office computer
or on a real-time system. Real-time operation allows
investigation of deterministic behavior, office opera-
tion might lack real-time capabilities but is therefore
applicable on almost any host computer and allows the
simulation to run slower or faster than real-time de-
pending on system performance and model complex-
ity and does not require special hardware.

Simulation techniques are a key enabler in the de-
velopment of nowadays propulsion systems of elec-
tric and hybrid vehicles. These systems challenge the
power of vehicle dynamics tools in two ways: On the
one hand the number and complexity of topologies of
drive-trains is almost combinatorial due to the large
number of involved drives, clutches, or gears. On
the other hand particularly hybrid vehicles represent
an almost classical multi-domain system (electronics,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

779

hydraulics, combustion, chemistry, mechanics) with a
dramatically rich dynamics in the interaction between
the various technical components.

Modelica forms a perfect basis for the modeling
of multi-domain systems especially automotive sys-
tems [4]. The benefits of its general equation-based
formalism has been shown by numerous publications
in the fields of vehicle dynamics, climate control, driv-
etrain modeling, combustion engines, and hybrid pow-
ertrains, see e. g. [5–8].

The increasing complexity in automotive system de-
velopment especially for hybrid vehicles demands for
versatile modeling tools, realistic and reproducible vir-
tual testing as well as seamless test rig integration.
An ideal software for modeling and simulation of
all vehicle-related scenarios off-line and in real-time
would combine these aspects. Augmenting the com-
prehensive CarMaker VVE suite by the multi-physics
capabilities of Modelica is a first step towards this di-
rection.

2 Augmenting CarMaker by
Functional Mock-Up Units

Extending CarMaker

The generality of the CarMaker VVE allows for the
modifications of the vehicle models in an almost arbi-
trary number of ways. Generic vehicle components
such as powertrain, steering, tires, brake system as
well as the complete propulsion system might be con-
figured, as shown in Fig. 2. For several reasons cus-

Figure 2: CarMaker interface for vehicle model con-
figuration.

tom models serve as a replacement of the predefined
modules in the generic vehicle model or might even
replace the vehicle model as a whole: (i) All topolo-
gies of hybrid vehicles might not be covered even
by an advanced tool specialized in vehicle dynamics.
(ii) These multi-physics systems demand for general
modeling formalisms and simulation techniques such
as Modelica-based approaches. (iii) Many engineering
companies and car manufacturers are particularly re-
lying on Modelica during development of components
and control units, e.g. [6].

Replacing single vehicle components by so-called
custom code is easily done by dynamically linking ex-
ecutable code and registering variables, parameters,
and their dimensions and types within the VVE. The
requirements when incorporating external code are
manifold:

1. Real-time compliance: The code may not rely
on specific processing hardware since CarMaker
vehicle models should run on arbitrary real-time
platforms.

2. Small run-time overhead and memory footprint.

3. Since CarMaker runs its own numerical inte-
gration schemes the code of external dynamical
models must expose input and output variables.
These signals can be physically meaningful, e.g.
tire forces, wheel speeds, etc..

4. Implementation details might not be exposed for
intellecual property reasons.

5. Standardized, automatic and intuitive inclusion of
the external code.

In general, almost all of these requirements can be met
by the usage of black-box models, except for the last
item. On the other hand these shift problems to differ-
ent classes: Lack of numerical robustness and/or com-
putational performance.

Functional Mock-Up Interface

The FMI adresses almost all requirements discussed in
the previous section. It defines an open standard inter-
face to be implemented by an executable model called
Functional Mock-up Unit (FMU). The FMI functions
are used (called) by a simulator to create one or more
instances of the FMU, and to run these models, typi-
cally together with other models. An FMU may either
be self-integrating (FMU for co-simulation, FMU-CS)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

780

or require the simulator to perform numerical integra-
tion (FMU for model exchange, FMU-ME) [2]. The
artifacts which csan be packaged in an FMU-file are
C-source code, executable code compiled for one or
more platforms, and XML descriptions of variables,
parameters, and general solver and model properties.

Interfacing Modelica Models to CarMaker

Choosing the FMI as a basis of the interface is benefi-
cial for several reasons since the exposed C-interface is
standardized and XML model description [9] included
in any FMU contains excellent structural information
about the model. The prerequisite is a modeling tool,
e.g. Dymola or SimulationX, which generates this de-
scription while exporting the Modelica model as C-
code. Alternatively this FMU can be hand-coded or
generated from any other modeling tool that supports
FMI, e.g. a multibody-package.

When interfacing Modelica models to CarMaker
one must consider two key aspects: (i) The executable
model or code must represent the modeled dynamical
behavior without any restrictions in order to maintain
generality and to avoid context dependent model se-
mantics. (ii) The resulting model must fulfill require-
ments essential for real-time applications, most promi-
nently a fixed integration stepsize.

The Interface consists mainly of two parts. The
first part governs static type-checking of the input and
output variables and parameters of FMU to assure a
smooth setup of the solver, generation of user inter-
faces for parameter input, and automatic extension of
the so-called data dictionary for tracing relevant vari-
ables during simulation. Finally the executable model
is instantiated and connected to the CarMaker solver.
Depending on the specific application each type of
FMU can be chosen.

Even if the mean computational performance of two
coupled simulators is sufficient it can be difficult to
assure definite turn-around times, an aspect critical
in e.g. HIL systems. CarMaker provides a simula-
tion engine for robust fixed stepsize time integration
so including an FMU-ME is a safe solution for sim-
ulating the combined vehicle model in the following
cases: When either the model complexity is reason-
ably low, the eigenvalues of the system are located
in the stable region of the integration scheme and no
strong non-linearities are in the imported model. For
FMU generated from very complex or black-box mod-
els the option FMU-CS is advantageous, because the
FMU contains the appropriate numerical integration
scheme. The interface in combination with CarMaker

serves as the master algorithm in the co-simulation of
CarMaker and the imported block. This leads to an
adaptive oversampling of CarMaker’s time grid which
might rule out usage on embedded systems or HIL,
but leads to superior numerical stability. Compared to
the features offered by the full FMU-CS this interface
takes advantage only of some features. The setup is
the simple one depicted in Fig. 3 with only one single
execution engine where the interface is the simulation
master which runs sub-system 2 synchronized to the
grid the solver of tool 1, i.e. CarMaker.

Figure 3: Schematic of run-time architecture.

3 Example Application

The integration of an FMU was investigated for a hy-
brid truck model based on the Vehicle Dynamics Li-
brary [4, 5]. A schematic of the model is depicted in
Figure 4. Either the CarMaker standard drive-train or
the complete vehicle were replaced within the VVE by
an FMU exported from Dymola. In case of the drive-
train the driver and environment input signals from the
CarMaker model were accelerator pedal, clutch, brake
torques, gear number, starter and ignition amongst
others. The most prominent model outputs were the
wheel speeds.

When using FMU-ME as a replacement the com-
plete vehicle model showed unstable numerical behav-
ior since the fixed solver stepsize did not comply with
the dynamics of the new drive-train model. The used
stepsize of one millisecond is traditionally used in ve-
hicle dynamics HIL applications. Not even the over-
sampling feature of CarMaker lead to stable behavior
as the constant inputs during the oversampling steps
deteriorated the dynamical behaviour. Applying an
FMI-CS using an appropriate variable stepsize solver

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

781

Figure 4: Truck example model in Modelica.

for the drive-train lead to stable numerical simulation
within CarMaker. This method allowed the simulation
to run in real-time at least in office-mode (soft real-
time). Standard techniques to reduce model complex-
ity might help to gain hard real-time capability for HIL
applications.

4 Conclusion

This paper presented an interface to augment the
CarMaker by functional mock-up interfaces generated
from Modelica models. The interface supports both
representations of FMI, the one for co-simulation as
well as the one for model exchange, exploiting the
specific advantages of each approach. The first leads
to numerically robust total simulation models where
the CarMaker simulation engine is the master algo-
rithm controlling the FMU model containing its own
numerical integration scheme and time grid just syn-
chronized on the grid imposed by CarMaker. The lat-
ter leads to computaionally efficient executable mod-
els ideally suited for real-time applications. In the case
where the modelled dynamics does not fit to the fixed
stepsize prescribed by CarMaker integration scheme
this might lead to poor numerical robustness as has
been shown by a simple example application.

The interface is not restricted to executable mod-
els stemming from Modelica-based tools. FMUs can
be generated from dynamic systems by any modeling
and simulation tool which supports the FMI standard
or can even be hand-coded. The presented work sup-
ports a fraction of the features of the current FMI spec-
ification V. 1.0. Possible directions are manifold, e. g.
network communication between multiple FMUs in a
true co-simulation environment e. g. enabled by Sil-

ver [10], parallelization within CarMaker, or the treat-
ment of CarMaker itself as an FMU.

Acknowledgements

The authors would like to thank Christian Schyr,
IPG GmbH, and Johan Andreasson, Modelon AB, for
valuable comments.

References

[1] Christian Schyr, B. Bernius, U. Haag, and
M. Kircher. Engine-in-the-Loop – Efficient Use
of Simulation on the Engine Test Rig. In IPG
Technology Conference apply & innovate 2010,
Karlsruhe, Germany, 2010.

[2] MODELISAR consortium. Functional Mock-
up Interface for Model Exchange, V. 1.0.
http://www.modelisar.org, 2010.

[3] CarMaker User’s Guide Version 3.0. IPG Auto-
motive GmbH, Karlsruhe, Germany, 2009.

[4] Johan Andreasson. The Vehicle Dynamics Li-
brary: New Concepts and New Fields of Appli-
cation. In Proceedings of the 8th International
Modelica Conference, Dresden, Germany, 20–22
March 2011.

[5] Johan Andreasson and Mats Jonasson. Vehicle
Model for Limit Handling: Implementation and
Validation. In Proceedings of the 6th Interna-
tional Modelica Conference, Bielefeld, Germany,
3–4 March 2008, pages 327–332.

[6] Henrik Wigermo, Johannes von Grundherr, and
Thomas Christ. Implementation of a Modelica
Online Optimization for an Operating Strategy
of a Hybrid Powertrain. In Proceedings of the
6th International Modelica Conference, Biele-
feld, Germany, 3–4 March 2008, pages 487–492.

[7] Sanaz Karim and Hubertus Tummescheit. Con-
troller Development for an Automotive Ac-
system using R744 as Refrigerant. In Pro-
ceedings of the 6th International Modelica Con-
ference, Bielefeld, Germany, 3–4 March 2008,
pages 477–485.

[8] Christian Schyr and Kurt Gschweitl. Model-
based Development and Calibration of Hybrid
Powertrains. SAE Technical Paper, 2007.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

782

[9] Francesco Casella, Filippo Donida, and Johan
Åkesson. An XML Representation of DAE Sys-
tems obtained from Modelica Models. In Pro-
ceedings of the 7th International Modelica Con-
ference, Como, Italy, 20–22 September 2009,
pages 243–250.

[10] Silver. Qtronic GmbH, Berlin, Germany.
www.qtronic.de.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

783

Minimal Equation Sets for Output Computation
in Object-Oriented Models

Vincenzo Manzoni Francesco Casella
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{manzoni, casella}@elet.polimi.it

Abstract

Object-oriented models of complex physical systems
can have a very large number of equations and vari-
ables. For some applications, only a few output vari-
ables of the model are of actual interest. This paper
presents an application of the well-known Tarjan’s al-
gorithm, that allows to automatically select the mini-
mal set of equations and variables required to compute
the time histories of selected outputs of a given model.
The application of the algorithm to a simple test case
is illustrated in the paper.

Keywords: Structural analysis, BLT, reduced-order
models

1 Introduction and motivation

Object-oriented models of complex physical systems,
that can be handled by state-of-the-art tools, can easily
count tens or even hundreds of thousands of equations
and variables. It is often the case that many of these
variables are computed in order to provide the end user
with additional information about the behaviour of the
system (e.g., 3D visualization of multibody systems)
but are not always needed for some applications of the
model. In fact, in some cases, only a very few vari-
ables are of actual interest for the user.

For example, consider the full dynamic model of a
vehicle, built with the MultiBody library of the Mod-
elica Standard Library. During the development of
the model, it is of course interesting to visualize all
the details in the motion of the suspension system,
also for the sake of verifying the correctness of the
model. Consider now two applications of this model: a
real-time simulator of the car for pilot training, where
the simulator cockpit is moved by actuators in order
to somehow reproduce the accelerations that the pilot
would feel on the real vehicle, and the design of an
active suspension system for the same vehicle.

In the first case, the only data which are actually
needed at each time step are the orientation and accel-
eration of the chassis, in order to compute the simu-
lator cockpit motion, and the position and orientation
of the windshield, in order to reconstruct a proper 3D
view of the outer environment. In the second case,
one may run a large number of simulations with differ-
ent values of some controller parameters, and evaluate
some comfort index based on the vertical acceleration
of the pilot seat, which is then the only interesting out-
put of the simulation code. In both cases it is important
to avoid computing any variable which is not neces-
sary to compute the required outputs, in order to make
the time required for the simulation of each time step
as short as possible. This might be essential to stay
within the sampling time of the real-time simulator, or
to avoid an excessively lengthy simulation session in
the second case.

A partial solution to this problem is provided by the
Modelica language, that allows to define conditional
components. One can then include all auxiliary com-
putations (e.g., for visualization) in such components
and turn them off by boolean parameters when not
needed. This approach has been used extensively in
the MultiBody library. A major drawback of this ap-
proach is that it requires a significant additional de-
sign effort by the library developer; furthermore, it
doesn’t guarantee that the minimum number of equa-
tions which are necessary for the computation of the
required outputs is actually selected for the simulation
code generation.

The goal of this paper is then to describe an algo-
rithm, based on the well-known strongly connected al-
gorithm by Tarjan, that automatically selects the min-
imum number of equations and variables in a model
which are required for the computation of the time
histories of selected output variables. The paper is
structured as follows: Tarjan’s algorithm is reviewed
in Section 2 and applied to the equation selection prob-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

784

lem in Section 3. Section 4 discusses equation selec-
tion in the context of dynamic models, while in Section
5 the algorithm is illustrated with reference to a simple
case study. Section 6 gives some concluding remarks.

2 Structural analysis by Tarjan’s al-
gorithm

Tarjan’s algorithm [6] is a well-known graph-
theoretical algorithm; its main purpose is to find the
strongly connected components of a graph.

A graph is an ordered couple G = (V,E), where V is
the vertex set (or node set) and E is the edge set (or arc
set), such that elements in E are couples of elements in
V . If the order of the elements in the couple is impor-
tant, the graph is called directed graph (or digraph),
undirected graph otherwise. In particular, a bipartite
graph (or bigraph) is a graph whose vertices can be di-
vided into two disjoint sets V1 and V2, such that every
edge connects a vertex in V1 to one in V2.

A directed graph is said to be strongly connected if
there is a path from v to w for each couple (v,w) ∈ V .
In particular, this means that for each (v,w)∈V , a path
from v to w exists, as well as a path from w to v. The
strongly connected components of a directed graph are
its maximal strongly connected subgraphs. For further
details, see [2].

Even though different algorithms have been pro-
posed in the literature to compute the strongly con-
nected components – such as Kosaraju’s algorithm [5]
or the Cheriyan-Mehlhorn algorithm [1] – Tarjan’s al-
gorithm is the most known and the one which performs
better most of the time.

The algorithm is described in detail in [6]. The ba-
sic idea is to perform a depth-first search starting from
a start node. The strongly connected components form
the subtrees of the search tree; their roots are the roots
of the strongly connected components. The complex-
ity of the algorithm is O(|V |+ |E|).

For the sake of the presentation, the algorithm is
now described by means of examples, shown in Fig-
ure 1 and Figure 2. The left hand side of the figures is
devoted to show the graph, the right hand side instead
shows the stack at each step of the algorithm.

In the first example, the algorithm starts from node
1. In the first three steps, the stack simply records the
growing path 1→ 2→ 3. At step 3 we find an edge
connecting the node at the top of the stack (node 3) to
one lower down (node 2). Since we know that there
is a path between 2 and 3, this tell us that (2,3) lies
on a closed path. This is recorded by putting a frame

2 3

41

2 3

41

5

Step Stack

1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3
6 1

Figure 1: An example of Tarjan’s algorithm.

around the nodes which belong to the closed path. We
now look for unsearched edges at node 3 and we find
that 4 is connected to it. There are no more edges
from node 4, which also does not have any link to
lower nodes. Therefore, node 4 is labeled as a triv-
ial strongly connected component and removed from
the stack. Similarly, there are no more edges from
the node 3 and from the node 2; the strong component
is removed from the stack. The trivial strong compo-
nent 1 follows. Summing up, the strong components
found in this digraph are 4 , 2 3 and 1 .

2 3

41

2 3

41

5

Step Stack

1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 5
6 1

Figure 2: Another example of Tarjan’s algorithm.

The second examples shows a more general case.
The algorithm starts again from node 1. The first four
steps are the same as the previous example. At step 5,
node 5 is added to the stack because of the edge (3,5).
The edge 5 has a link to a lower node (node 2) which
belongs to the strong component. Therefore, node 5
is added to the strong component. Finally, the strong
components 1 follows. Summing up, the identified
strong components are 4 , 2 3 5 , and 1 .

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

785

Step Stack

1 5
2 5 2
3 5 2 3
4 5 2 3 4
5 5 2 3

Table 1: The stack of the Tarjan’s algorithm applied to
the second example, starting from node 5.

Suppose now to apply Tarjan’s algorithm on the
same graph as in Figure 2, but starting from node 5
instead. Table 1 shows the stack at each step.

Even if the strong components of the graph are ob-
viously the same, Tarjan’s algorithm finds only two of
them (i.e. 5 2 3 and 4). In fact, there are no edges
that go from a node to node 1, which has only an out-
going edge.

The algorithm can be easily extended to handle this
condition, e.g., by restarting from any node not yet
considered. However, this situation can be also ex-
ploited for other purposes.

For instance, let’s suppose that the graph in Figure 2
represents dependencies of objects among each other,
where nodes model the objects and each arc (v,w) the
relation “v needs w to be evaluated first”. It is then
worth noting that only the strong components depen-
dent on node 5 are computed.

3 Minimal equation set selection

One application of Tarjan’s strongly connected com-
ponents algorithm is the computation of the Block
Lower Triangular (BLT) form of an incidence matrix.
A Block Lower Triangular matrix is a square matrix
such that non-zero square blocks are present on the
main diagonal, while all blocks above the diagonal are
all zeros. An example of BLT matrix is shown in (1),
where all matrices A j, j are square.

A1,1 0 · · · 0
A2,1 A2,2 · · · 0

...
...

. . .
...

An,1 An,2 · · · An,n

 (1)

This forms allows the corresponding set of equa-
tions to be solved as a sequence of subproblems; this is
particularly convenient for sparse matrices, which are
very common in Object-Oriented models.

The incidence matrix of a system of equations can
also be represented by a graph. The application of an

algorithm to compute the strongly connected compo-
nents of the graph – like Tarjan’s algorithm – allows to
determine the BLT transformation. In this section, we
show how to apply Tarjan’s algorithm for computing
both the BLT transformation and the minimal set of
equations and variables according to the selected out-
put variables.

In general, an incidence matrix is a matrix which
shows the relation between classes X and Y of objects.
The size of the incidence matrix is n×m, where the
number of rows n is the cardinality of the class X and
the number of columns m is the cardinality of the class
Y . The matrix element (i, j) is 1 if the object i belong-
ing to the class X and the object j belonging to the
class Y are in relationship (or incident), 0 otherwise.

When the incidence matrix is applied to systems of
equations, the X class represent the equations and the
Y class the variables from which they depend. Only
square systems are considered in this paper, i.e., n=m.

Consider a generic system of equations S, repre-
sented in residual implicit form:

S :

f1(z1,z2, . . . ,zn) = 0 e1
f2(z1,z2, . . . ,zn) = 0 e2

...
fn(z1,z2, . . . ,zn) = 0 en

, (2)

where ei (i = 1,2, . . . ,n) represent the equations and z j

(j = 1,2, . . . ,n) represent the variables of the system.
For each equation ei, the function fi(·) determines the
dependency between the equation and its variables.

The incidence matrix (3) is the structural represen-
tation of system (2)

z1 z2 · · · zm

e1 a1,1 a1,2 · · · a1,m
e2 a2,1 a2,2 · · · a2,m
...

...
...

. . .
...

en an,1 an,2 · · · an,m

. (3)

The element ai, j is 1 if the residual of equation ei de-
pends on the value of z j, 0 otherwise.

An incidence matrix associated to a system of equa-
tions can be represented by a bipartite graph G =
(V1∪V2,E), where V1 is the vertex set which contains
the equations (i.e. the rows), V2 is the vertex set which
contains the variables (i.e. the columns) and there ex-
ists an arc (vi,v j)∈E if the entry (i, j) of the incidence
matrix is 1. Such graph is called equations-variables
bipartite graph, or E-V graph in short.

First, a row permutation of the incidence matrix is
computed, such that the value of each entry on the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

786

main diagonal is 1. This has been proven to be equiva-
lent to finding a transversal of the equations-variables
graph. A graph transversal is a subset of the edges
such that each node belongs only to one arc. This can
be computed by using one of the many algorithm in
the literature which solve the matching problem, e.g.,
the Push-relabel algorithm [4] or the Edmonds-Karp
algorithm [3].

At the end of the procedure, the incidence matrix
will look like:

1 a1,2 · · · a1,n
a2,1 1 · · · a2,n
...

...
. . . an−1,n

an,1 an,2 · · · 1

 (4)

Finally, Tarjan’s algorithm is applied on the graph as-
sociated to the diagonal incidence matrix. As we have
seen on Section 2, a single run of the algorithm returns
different strong components according to the starting
node. In particular, if the graph is a dependency graph,
only the strong components which depend on the start-
ing node are computed. Therefore, if an output vari-
able is chosen as a starting node, the BLT transforma-
tion will only contain the equations and the variables
which depend on it.

In order to specify to that one is interested in more
than one output variable, a new node s (source node)
is added to the graph. The node s is then connected by
means of outgoing edges to the nodes which represent
the output variables. Tarjan’s algorithm will then use
node s as the starting node. At the equation level, this
corresponds to adding to the problem a dummy out-
put variable s and a dummy equation relating s to the
required outputs: s = fs(y1, ...,yh).

4 Application to dynamic models

In the context of object-oriented modelling,
continuous-time systems are represented by means
of differential-algebraic equations. After flattening
and index reduction, the system is described by n+m
differential equations:

f1(x1, . . . ,xn, ẋ1, . . . , ẋn,y1, . . . ,ym) = 0
f2(x1, . . . ,xn, ẋ1, . . . , ẋn,y1, . . . ,ym) = 0

...
fn+m(x1, . . . ,xn, ẋ1, . . . , ẋn,y1, . . . ,ym) = 0

,

(5)
where xi (i = 1, . . . ,n) are the state variables and y j

(j = 1, . . . ,m) are the algebraic variables. If the states
xi are known at a certain time instant, these equations

can be solved to compute the derivatives and the alge-
braic variables at the same time. However, for the sake
of the equation selection, what really matters is which
equations are strictly necessary to compute the trajec-
tories during time of the selected output variables, not
only at a given initial time t0, but for an entire inter-
val t0 ≤ t ≤ t f . Therefore, it is necessary to consider
the implicit relationship between each variable xi and
its derivative ẋi, since the latter is uniquely determined
once the time history of the former is known.

The incidence matrix for the equation selection al-
gorithm can therefore be set up as follows: the set of
variables zi is given by the state variables xi, by their
derivatives ẋi, and by the algebraic variables y j; the set
of equations ei is given by the set (5), augmented by n
dummy equations, each relating a state variable xi with
its derivative ẋi. The algorithm described in Section 3
is then applied to the resulting E-V graph.

If the object-oriented model is hybrid, i.e., it also
contains discrete variables and discrete equations that
are active only at events (inside when-clauses in Mod-
elica), the above-described procedure can be suit-
ably extended. In this case, the set of variables zi

should also include the discrete state variables qh (h =
1, . . . ,u), their previous values pre(qh), and all other
discrete variables rk (k = 1, . . .v), while the set of
equations should also contain all the u + v discrete
equations contained inside the when clauses, as well
as u dummy equations relating each discrete state vari-
able qh with its corresponding previous value pre(qh).

5 Case study

A simple problem is now used to explain how the algo-
rithm works. Consider the continuous-time dynamical
model (6). It has 3 state variables (x1, x2, and x3) and
two algebraic variables (y1 and y2).

ẋ1(t) =−x1(t)
ẋ2(t) = x1(t)− x2(t)
ẋ3(t) = x1(t)
y1(t) = 3x2(t)+ x1(t)
y2(t) = 2x3(t)

. (6)

For sake of conciseness, hereafter the time dependency
is omitted.

The system is written in explicit form. It is appar-
ent that the value of the algebraic variable y1 does not
depend on the value of the state variable x3, neither
directly nor indirectly. Similarly, the value of the alge-
braic variable y2 does not depend on the value of the
state variable x2.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

787

The system is now rewritten in implicit form (7); e5,
e6 and e7 are the three dummy equations added to rep-
resent the implicit relationship between each variable
and its derivative.

ẋ1 + x1 = 0 e0
ẋ2− x1 + x2 = 0 e1
ẋ3− x1 = 0 e2
y1−3x2− x1 = 0 e3
y2−2x3 = 0 e4
x1− f (ẋ1) = 0 e5
x2−g(ẋ2) = 0 e6
x3−h(ẋ3) = 0 e7

(7)

The incidence matrix associated to the system (7) is
shown in (8).

x1 x2 x3 ẋ1 ẋ2 ẋ3 y1 y2

e0 1 0 0 1 0 0 0 0
e1 1 1 0 0 1 0 0 0
e2 1 0 0 0 0 1 0 0
e3 1 1 0 0 0 0 1 0
e4 0 0 1 0 0 0 0 1
e5 1 0 0 1 0 0 0 0
e6 0 1 0 0 1 0 0 0
e7 0 0 1 0 0 1 0 0

(8)

The first step of the algorithm is to find a permutation
of the rows of the matrix (8) such that the resulting
matrix is diagonal. As outlined in Section 3, this can
be done finding a transversal of the E-V graph. The
diagonal matrix is shown in (9).

x1 x2 x3 ẋ1 ẋ2 ẋ3 y1 y2

e0 1 0 0 1 0 0 0 0
e1 1 1 0 0 1 0 0 0
e7 0 0 1 0 0 1 0 0
e5 1 0 0 1 0 0 0 0
e6 0 1 0 0 1 0 0 0
e2 1 0 0 0 0 1 0 0
e3 1 1 0 0 0 0 1 0
e4 0 0 1 0 0 0 0 1

(9)

The rows and the columns of the diagonal matrix (9)
are now relabeled to ease the definition of the digraph.
The symbol jei indicates that the equation ei lies in the
j-th row of the diagonal matrix. Similarly, jxi indicates
that the variable xi lies in the j-th column. Matrix (10)

shows the result of the relabeling.

0x1
1x2

2x3
3ẋ1

4ẋ2
5ẋ3

6y1
7y2

0e0 1 0 0 1 0 0 0 0
1e1 1 1 0 0 1 0 0 0
2e7 0 0 1 0 0 1 0 0
3e5 1 0 0 1 0 0 0 0
4e6 0 1 0 0 1 0 0 0
5e2 1 0 0 0 0 1 0 0
6e3 1 1 0 0 0 0 1 0
7e4 0 0 1 0 0 0 0 1

(10)

Assume now that only the value of y1 is of interest
as a system output. Figure 3 shows the graph associ-
ated to the matrix (10). The output y1 is represented
by the node with a bold border. Bold arrows connect
the output variable to the state variables which have a
direct impact on it.

0 3

1 4

6

7

25

0 3

1 4

6

7

25

S

0 3

1 4

6

7

25

s

Step Stack

1 6
2 6 0
3 6 0 3
4 6 1
5 6 1 4
6 6

Figure 3: Graph associated to matrix (10).

Tarjan’s algorithm is now applied to this graph,
starting from node number 6. The algorithm’s stack
is shown on the right hand side of the same figure.
The strong components identified by the algorithm are
0 3 , 1 4 and 6 , which correspond to equations

e5e0, e6e1, and e3, respectively.

The incidence matrix output of the algorithm is
given in (11). The order of the system has been re-
duced, since the state variable x3 and its derivative,
as well as the algebraic variable y2, do not contribute
either directly or indirectly to the value of the output
variable y1. Moreover, the procedure also returns the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

788

incidence matrix in BLT form.

ẋ1 x1 ẋ2 x2 y1

e5 1 1 0 0 0
e0 1 1 0 0 0
e6 0 0 1 1 0
e1 0 1 1 1 0
e3 0 1 0 1 1

 (11)

As noted in Section 3, more than one output variable
can be specified. For instance, assume that we are
now interested in the time histories of both y1 and y2.
The graph is modified by adding the source node s.
This node is connected to the interested output vari-
ables, in our case to the node 6 (the output variable
y1) and node 7 (the output variable y2). The source
node can also be seen as dummy output variable ys(t)
appended to the system, whose value is a function of
the output variables of interest y1(t) and y2(t), so that
ys(t) = fs(y1(t),y2(t)).

The graph augmented with the source node and the
appropriate edges is represented in Figure 4.

0 3

1 4

6

7

25

0 3

1 4

6

7

25

S

0 3

1 4

6

7

25

s

Step Stack

1 s
1 s 6
2 s 6 0
3 s 6 0 3
4 s 6 1
5 s 6 1 4
6 s 6
7 s 7
8 s 7 2
9 s 7 2 5
10 s 7 2
11 s 7
12 s

Figure 4: Graph with the source node s.

It is apparent from (7) that in order to compute the
value of both the output variables, all the state vari-
ables are required. In fact, Tarjan’s algorithm returns
the matrix (12) which has the same dimension of the

original one.

ẋ1 x1 ẋ2 x2 y1 ẋ3 x3 y2

e5 1 1 0 0 0 0 0 0
e0 1 1 0 0 0 0 0 0
e6 0 0 1 1 0 0 0 0
e1 0 1 1 1 0 0 0 0
e3 0 1 0 1 1 0 0 0
e2 0 1 0 0 0 1 0 0
e7 0 0 0 0 0 1 1 0
e4 0 0 0 0 0 0 1 1

(12)

6 Conclusions

This paper presents application of Tarjan’s algorithm
to determine the minimal set of variables and equa-
tions in an object-oriented model, which are strictly
necessary to compute the time histories of selected
output variables. The algorithm has been thoroughly
illustrated in a simple test case.

This feature can be easily implemented in all Mod-
elica tools and can be very valuable for end-users,
when their application does not require to inspect all
the model variables and puts a premium on fast simu-
lation performance. In particular, it is planned to im-
plement this feature in the OpenModelica compiler.

Significant applications include real-time code gen-
eration, sensitivity or parameter-sweep analysis, and
in general all control-oriented applications where the
input-output behaviour of the system is of interest.

A particularly nice application could be the case
of planar multibody systems, built with the standard
Modelica MultiBody library. If only outputs corre-
sponding to the in-plane movement of some points of
the system are selected, the procedure illustrated in
this paper could allow to remove all the out-of-plane
equations of motion, which would then be irrelevant,
thus allowing a substantial reduction in the number of
equations and state variables of the system.

References

[1] J. Cheriyan and K. Mehlhorn. Algorithms for
dense graphs and networks on the random access
computer. Algorithmica, 15(6):521–549, 1996.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to Algorithms, chapter 22,
pages 527–529. MIT Press and McGraw-Hill, sec-
ond edition, 2001.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

789

[3] J. Edmonds and R. M. Karp. Theoretical im-
provements in algorithmic efficiency for network
flow problems. Journal of the ACM (JACM),
19(2):248–264, 1972.

[4] A. V. Goldberg and R. E. Tarjan. A new approach
to the maximum-flow problem. Journal of the
ACM (JACM), 35(4):921–940, 1988.

[5] R.S. Kosaraju. Unpublished, 1978.

[6] R. Tarjan. Depth-first search and linear graph al-
gorithms. SIAM Journal on Computing, 1:146,
1972.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

790

Optimization example of industrial sewing machines mechanisms

Vlastimil Votrubec Pavel Šidlof
VÚTS, a.s.

U Jezu 4, 461 19 Liberec 4, Czech Republic
vlastimil.votrubec@vuts.cz, pavel.sidlof@vuts.cz

Abstract

This paper deals with the modeling and optimization
of mechanical system, focusing on industrial sewing
machines in order to reduce the vibrations by balanc-
ing. It presents creation of model of mechanisms and
their optimization using Modelica language through
software MathModelica and Mathematica. Both ad-
vantages and drawbacks of this approach are de-
scribed and an example of optimization solution is
shown.

Keywords: optimization; mechanisms; sewing ma-
chine

1 Introduction

Our research institution partakes in development of
industrial sewing machines focused on reduction of
vibrations and noise. These properties significantly
influence customer`s opinions and lead in this busi-
ness helps with competition. It is necessary to solve
similar problems for other types of machines also.

Vibrations and noise are mainly caused by dy-
namic forces generated during the movement of me-
chanisms. To reduce these forces, which grow during
the permanent rising of machines performance, dif-
ferent balancing methods are used. The simplest me-
thod is balancing by rotatory balancers. More signif-
icant reduction of inertial forces is possible to
achieve using balancing mechanisms. In our institute
industrial used patent was developed in this field.

It is necessary to use appropriate computational
software for balance suggestion and optimization.
One of the best and universal software is software
Mathematica. Industrial sewing machines usually
contain complicated system of mechanisms. Their
dynamic calculation leads to a large number of equa-
tions and parameters. We found that programming of
the calculation is difficult and we could easily make
mistakes, which were tedious to search. Hence the
idea of using software MathModelica to create com-
putational system occurred. Then we can execute

optimization and some other calculations in software
Mathematica.

2 Balancing of sewing machines

Sewing machines contain number of mechanisms
that cause generation of inertial forces and vibra-
tions. Main of them is mechanism for needle bar mo-
tion and thread feed mechanism. Both are placed in
the head of the machine. There are crank mechanism
that ensures reversible rectilinear movement of
needle bar and four bar mechanism for thread feeder
motion. Both mechanisms are driven by upper shaft
that is connected to lower shaft by transmission belt.
Balancing of these two mechanisms could be done
by several methods.

2.1 Balancing methods

Common balancing methods of inertial forces ba-
lancing use rotatory balancers mounted on crank
shaft. This method usually balances only centrifugal
forces or transfers first harmonic component of iner-
tial force of needle bar from the direction of needle
bar axes to the orthogonal direction. Also this me-
thod can´t balance higher orders harmonic compo-
nent of inertial forces, especially in crank mechanism
for needle bar motion.

Further, the vibrations are often reduced by in-
creasing of mass and thus increasing of stiffness of
sewing machine`s head. Mounting in silent-blocks
also helps.

Using of balance mechanisms hasn´t spread yet,
because most of these patented methods are compli-
cated, expensive, require big space inside the ma-
chine or they don’t balance inertial forces sufficient-
ly. The VÚTS patent, which doesn´t have many of
these drawbacks, was recently used to balance crank
mechanism and partially thread feed mechanism.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

791

2.2 Calculation of mechanisms balancing and
its limits

For optimization calculation it is necessary to use
convenient software. In these cases software Mathe-
matica was used. During the optimization it is neces-
sary to solve system of equations which includes
plenty of parameters. Program written in this way is
large and it is easy to make mistakes that are difficult
to be found.

Therefore we decided to work with software
MathModelica that uses Modelica language and that
is compatible with Mathematica. The idea was to
create model of mechanisms in model editor using
Modelica libraries, especially MultiBody library and
then analyze it in Mathematica.

3 Optimization using Modelica lan-
guage and Mathematica

Modeling of mechanisms has specific requests and
many of them aren´t implemented in current libra-
ries. Big advantage of this software is the ability to
edit elements or even create new element and library.

3.1 Elements editing and creation

Most of the problems that we encounter when work-
ing with mechanical systems first require detection
of kinematic quantities courses at specific points in
bodies and inertial forces (torques). However, ele-
ments of the MultiBody library have these quantities
defined differently and in smaller number than we
need. Some kinematic quantities (velocity and acce-
leration) are calculated resolved to individual body
coordinate system, the total inertial force (torque) of
the body isn´t defined at all and all variables are pri-
marily calculated only for points of the body where
the connection to other elements is modeled. It was
necessary to remove these drawbacks so a new ele-
ment of a rigid body (RigidBody) featuring a link of
a mechanism was formed.

In the editor of the new element, new quantities
and parameters were defined and relevant equations
were set up. Kinematic quantities in points of con-
nection to other elements, which we need to know
resolved to global coordinate system, were simply
multiplied with appropriate transformation matrix. It
is also necessary to work with the courses of quanti-
ties of an arbitrary point of the body (such as center
of mass) which standard element doesn´t provide.

Therefore a radius vector of a general point re-
solved to coordinate system of the body was set up
as a new parameter. Other quantities are then calcu-

lated from this parameter. The position of this point
resolved to global coordinate system is calculated as

LAGLGA rSrr ⋅+=
 ,

(1)

where rGL is position vector of the body coordinate
system origin, S is transformation matrix, rLA is posi-
tion vector of a point A resolved to the coordinate
system of the body and rGA is searched position of a
point A resolved to the global coordinate system.

The velocity and acceleration could be calculated
as time derivatives of this formula, but function de-
rivative can´t be used, because inserting of deriva-
tives isn´t compatible with inner logic of the soft-
ware and calculation is interrupted. For this reason
velocity and acceleration of given point is calculated
as

)(LAGAGLGA rrwvSv −×+⋅= , (2)

))((

)(

LAGA

LAGAGLGA

rrww

rrzaSa

−××+

+−×+⋅=

, (3)

where w and z are angular velocity and acceleration
of the body, indexes GL correspond to the origin of
the coordinate system of the body and indexes GA
correspond to the searched global velocity and acce-
leration of the given point.

Inertial force F is defined by multiple of body
mass m and its acceleration in the center of mass aGT.
The acceleration is calculated according to relations
(1, 2, 3), only instead of position vector rLA, the posi-
tion vector of center of mass rLT is inserted

GTamF ⋅= . (4)

In the similar way inertial torque is calculated,
only instead of body mass, moment of inertia re-
solved to the center of mass and angular acceleration
of the body are inserted. This method allows us to

Figure 1: Model of upper mechanism of a sewing
machine.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

792

enlarge elements with new parameters and quantities
according as necessary.

There can be relatively a lot of mechanisms in-
side the sewing machine (according to the type of
machine). These mechanisms can form a long chain.
Already the model of simple mechanism such as
crank mechanism or four bar mechanism from fig. 1
includes about ten elements. For easier work and
better orientation it is convenient to assemble these
simple mechanisms into blocks and form indepen-
dent elements from them, which are then connected.

The upper mechanism model of a sewing ma-
chine from fig. 1 is then simplified to model that has
only five elements (fig. 2). Used elements represent
global coordinate system, planar crank mechanism
and binary revolute pair replacing four bar mechan-
ism of thread feeder, all for suggested constant value
of crank shaft angular velocity which is connected to
the CrankMech2D element.

3.2 Optimization

Optimization of chosen parameters of the model is
then solved in Mathematica. There is created func-
tion for finding local minimum that searches the mi-
nimal value for every parameters setting. During
every step of finding minimum is solved whole sys-
tem of equations in MathModelica Simulation Cen-
ter. There is also possible to use any of other opera-
tors that the software offers, such as finding local
maximum, difference between two courses, finding
of roots of derivatives etc.

Generally the optimization is difficult calculation.
During the balancing of mechanisms and machines
(reduction of total dynamic forces and torques) it is
possible to use specific properties of this problem.
Usually mechanisms with periodic movement are

solved and balanced so that optimal dimensions and
moments of inertia of several balancing masses are
found. Each body is possible to replace by proper
chosen point masses if the flexibility is omitted
(3 points are enough for plane case). Total inertial
force is then sum of inertial forces in these points.

For example it is searching minimum of absolute
value of F in vector function

nn amamamF ⋅++⋅+⋅= ...2211 . (5)

If points are chosen conveniently, then only the mass
mi of points is necessary to find, not their optimum
position. Courses of acceleration ai, which are gener-
ally given by very complicated relations, are there-
fore in particular points stable, they can be calculated
before the optimization and don´t have to be ex-
ecuted in each optimization step. In order to effective
calculation using MathModelica, it is necessary to do
some modifications and completion in this software.

3.3 Drawbacks of this approach

There are several difficulties which make optimiza-
tion complicated. Firstly it is absence of some me-
chanical elements and joints in MultiBody library.
For instance a lot of mechanisms in sewing and other
machines consist of cams and other shape bodies
which can´t be modeled by means of standard ele-
ments. Hence, joint between cam and lift and other
elements would help much in mechanisms modeling.

Next problem is time of optimization. Elements
of mechanism model form system of equations
which includes thousands equations. Already simple
mechanism such as four bar mechanism has about
3000 equations, 2500 of them are trivial equations.
Although the simulation takes a few seconds, it is
executed in every step during the optimization. Find-
ing local minimum is a long process with dozens up
to hundreds of steps. This finally causes long time of
a calculation depends on model difficulty and num-
ber of parameters. Each other used parameter for
optimization significantly lengthens the time of cal-
culation.

3.4 Possible approaches of next process

One possible solution of the problem with time of
optimization was found in solving of whole system
of equations independently on Simulation Center
which could be much more efficient. MathModelica
allows transferring the system of equations to soft-
ware Mathematica. Mathematica offers many opera-
tors for solving equations, the most appropriate oper-
ator for this case is function NDSolve that can nu-
merically solve system of differential equations.

Figure 2: Model of upper mechanisms of sewing
machine. Both mechanisms are replaced with
single element.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

793

This approach also has some problems which
don´t enable to sufficiently solve equations for this
time.

3.5 Optimization example

It will be presented optimization example of balanc-
ing on upper mechanisms of sewing machine in this
item. As was said before, there are two mechanisms
driven by upper shaft, crank mechanism and four bar
mechanism. Total inertial force is a sum of particular
forces of the bodies. The biggest influences on total
inertial force have inertial forces generated by
movement of crank shaft and needle bar. The courses
of unbalanced total inertial force and its components
are on the fig. 3, whereas the crank shaft is rotating
3000 RPM counter clockwise.

The polar diagram shows resulting force vector.
The arrows present vectors for particular drive shaft
angle rotation in degrees.

Generally the reduction of total inertial force can
be achieved by using two rotatory balancers on the
crank shaft. But in this case the crank shaft is pre-
balanced. Position of center of mass is near the axis
of rotation so balancing using rotatory balancers
can´t help much. Significant reduction of the total
force is possible to achieve using a balancing me-
chanism and one rotatory balancer. In our case it
consists from connecting rod that is mounted on the
crank shaft on the opposite side of the needle bar
crank and balancer (fig. 4). The balancer has small
stroke but large mass. Also there is one rotatory ba-
lancer placed on the crank shaft.

The dimensions of balancer and balancing me-
chanism are fixed, so there are two values to optim-
ize, mass of the rotatory balancer and mass of ba-
lancer of balancing mechanism. Then in Mathemati-
ca is constructed function for calculation of total in-
ertial force, finding the maximum value of that force
and the parameters are set. Optimization then implies
that the operator for finding local minimum is chang-
ing parameters (mass of balancers) until it finds the
minimum value.

Calculation lasts about 60 minutes (3 GHz pro-
cessor, 1.99 GB RAM), for one parameter it lasts 30
minutes. It is clear that for more complicated model

Figure 3: Polar plot of total inertial force of unba-
lanced upper mechanism. The maximum force is
100,9N.

Figure 5: Polar plot of total inertial force of upper
mechanisms after the optimization. The maximum
force is 38,7N.

Figure 4: Schema of upper mechanisms of sewing
machine. Needle bar mechanism and thread feed-
er mechanism with additional balancing mechan-
ism.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

794

and more parameters the optimization would take
hours. The results are shown on figure 5. The reduc-
tion of total inertial force is relatively significant,
maximum of total force descended about 60%.

4 Conclusion

Mentioned approach allows modeling of system of
mechanisms, executing kinematic and dynamic anal-
ysis and optimizing parameters to reduce inertial
forces and vibrations. This approach is clear and it
reduced mistakes in comparison with other software
and methods. On the optimization example of ba-
lancers is shown how it is possible to achieve fast
and precise results.

On the other hand there is still large area for im-
proving current methods and means in optimizations.
For example mechanical elements that corresponds
to real links of mechanisms and design problems,
possibility to enter more mass parameters etc.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

795

Automatic Generation of Graphical User Interfaces
for Simulation of Modelica Models

Clemens Schlegel
Schlegel Simulation GmbH

Meichelbeckstr. 8b
D-85356 Freising

cs@schlegel-simulation.de

Reinhard Finsterwalder
Universität der Bundeswehr

München
D-85577 Neubiberg

reinhard.finsterwalder@unibw.de

Abstract

For a certain class of applications simulation models
are developed and then rolled out for standalone
usage without the tool with which they have been
developed. The user is intended to perform simula-
tion runs, to inspect results, to change selected para-
meters within given bounds, but not to inspect or
even change the model itself.
The reasons for such a usage scenario are manifold:
The simulation is intended to be used as a black-box
tool by non simulation specialists, a component ven-
dor (electric drives, pneumatic or hydraulic compo-
nents, etc.) likes to demonstrate the performance of
his components in the context of a simulation or the
model developer may hide model details.
If a model development tool includes code genera-
tion the model specific simulator can be setup fully
automatic. However, a GUI (graphical user interface)
for such a simulator must be developed manually.
We developed a tool which automatically generates a
simulator GUI from a Modelica model and data defi-
nition.

1 Introduction

Keywords: graphical user interface generation;
Modelica parser; standalone simulator

The core functionality of a model-specific simulator
is to run a simulation experiment, to inspect trajecto-
ries and / or scalar results and to change, store and
retrieve parameters. The computational part of such a
simulator may be set up easily using a code generat-
ing model development tool. However, to our know-
ledge, there are no tools publically available for au-
tomatic generation of the graphical user interface

(GUI) part. On the other hand nearly all information
needed to set up a simulator specific GUI is available
in the model code. This GUI, which may be used
independent of a general simulation environment,
can be set up automatically by parsing a Modelica
model. We used Dymola [1] for model development
and model specific C-code generation and developed
an own tool for GUI generation.

1.1 Limitations

Since the generated model specific C-code can’t be
changed anymore the GUI’s usage is restricted to
operations which do not require to change variable
dimensions or to replace parts of the model. Arrays
must have a fixed dimension or be handled via an
external C-function with dynamic storage allocation.

1.2 Core requirements

Focusing on the black-box simulation case we define
the following desirable functional requirements for
the simulator and the GUI. Some of this require-
ments map directly to Modelica parameter and
record declarations.

• The simulation executable is driven by a parame-

ter and simulation control input file and saves
computed trajectories in a result file.

• The GUI is generated at run time by parsing
Modelica files, the GUI structure is not stored.

• Only model components and output variables
declared on the top hierarchy level of the model
are available in the GUI. Protected, inherited,
modified and replaced declarations are taken into
account, no restrictions on the Modelica lan-
guage apply.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

796

mailto:cs@schlegel-simulation.de�
mailto:reinhard.finsterwalder@unibw.de�

• Only parameter record classes and top hierarchy
model classes (including all inherited and redec-
lared classes) must be available as Modelica
code for GUI generation. Thus the model may
contain references to confidential libraries with-
out disclosure of the corresponding Modelica
code, external function calls and encrypted
classes (if allowed by the modeling tool).

• Names and attributes of Modelica parameters
and output variables and restrictions on parame-
ters (protected, read only, min/max values) are
retained in the GUI.

• Based on parameter record class parameteriza-
tion drop-down lists for parameter record selec-
tion are set up. This means a model provider (or
even a GUI user) may later add parameter
records which automatically show up in the cor-
responding selection list without rebuilding the
simulator executable. These records may contain
any data type including arrays, optionally a
whole record can’t be modified and / or its con-
tent is not visible. This feature facilitates the
usage of datasheet libraries without disclosure of
data details.

• It must be possible to read data from external
files at runtime without fixed file names.

• All model parameters including records, record
names and modified records may be stored on
and read from file. The tool must check the con-
sistency of the model, the read in parameter file
and the parameter record definitions.

1.3 Additional functionality

Apart from the model parameterization and simula-
tion experiment settings some more information is
needed for automatic generation of a handy GUI:

• The top model file name and class name
• The name of the simulator executable
• The user may specify predefined trajectory plots
• The user may specify predefined reports contain-

ing descriptive text and trajectory final values

All this information is stored in a configuration file.

2 Parsing the Modelica model

For parsing Modelica [2] files the parser generator
tool PCCTS [3] has been used. Based on a grammat-
ical description of a formal language, PCCTS gene-
rates C++ code of a corresponding parser which we
integrated in our application.

2.1 Parsing the model and the parameter input

All Modelica files in a directory structure are parsed
starting from the directory where the configuration is
stored. The parser builds an abstract syntax tree for
the Modelica code of the complete model hierarchy.
The parser fully supports inheritance, modifications
and redeclarations within the model hierarchy. Only
the data needed for setup of the GUI are retained:
model components, model outputs, component pa-
rameters, and parameter records. All other tokens are
skipped, e.g. algorithm clauses, connect statements,
equation clauses, arithmetic expressions.

Since only classes in the model hierarchy are parsed,
no information is available from model libraries out-
side of that hierarchy. In order to generate a com-
plete parameter input file, the remaining parameters
are found by parsing the default parameter input file
of the simulator (for Dymola it may be generated by
the simulator itself).

2.2 Consistency check

It must be checked whether the simulation executa-
ble has been generated from the parsed model.
Therefore it is verified that all parameters of the
model are consistent with the parameters of the pa-
rameter input file which may be read in to retrieve
previous parameter settings.

2.3 GUI setup

By walking through the abstract syntax tree the
graphical user interface is built: tabs for components
and controls for model parameters are created and
drop-down lists are set up for selecting replaceable
parameter records. Thus the user can switch records
without having to rebuild the simulation executable.
This feature is beyond the functionality of most
Modelica tools. Since record names are also stored
on the parameter file record selection settings (and
not only parameter settings) of previous simulation
runs can be retrieved. Modified parameter values are
marked red in the GUI.

3 The generated simulator GUI

3.1 General description

At runtime the GUI generator needs the following
files:

• Configuration file

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

797

• Modelica code of parameter record classes and
top hierarchy model classes including all inhe-
rited and redeclared classes

• Model specific simulator executable

To start the GUI generation the configuration file is
read in. After parsing the tool displays a menu and
icon bar and three areas: a model and output naviga-
tion tree, a multi document view area for model
component parameters, trajectory and report display,
and a message area (figure 2, underlying Modelica
model see figure 1). Concerning model parameters
the GUI has the same functionality as a general si-
mulation tool. For each top level model component a
tab is displayed which contains all parameter and
record selection controls. Parameter name, default
value, unit and descriptive text are shown. Clicking
the symbol right of a record selection control the
contents of the chosen record is shown. If not pro-
tected or read-only parameters may be edited within
the defined limits. If a parameter contains a file name
the contents of that file is displayed by clicking the
respective control (figure 3).

3.2 Performing simulation experiments

The complete parameter setup may be stored on or
read from file. To retain the user’s parameter
changes a new parameter input file is generated be-
fore starting a simulation run. That parameter file is
enriched by the names of the selected data records.
The default simulation experiment setup is contained
in the parameter file, but may be overridden using
the GUIs simulation menu. After a simulation run
the simulation log file is shown in the GUI message
area.

3.3 Reading data from file

Since arrays must have a fixed dimension (see sec-
tion 1.1) a model developer will make use of external
tables stored on file handled via an external C-
function with dynamic storage allocation. If a model
development tool does not support change of string
parameters without C-code rebuild a workaround has
to be implemented to allow reading from different
files. To do so the simulation model has to define
fixed file names while the corresponding data
records contain a parameter with the specific file
name. When starting a simulation run, the specific
parameter files are copied to the current directory
and renamed to the predefined fixed file names.

3.4 Trajectory and report display

The GUI supports the display of multiple diagrams
and reports in multiple windows. While multiple y-
axes are supported, trajectories with same unit and
similar range are automatically displayed with a
common y-axis. Numeric values of a selected trajec-
tory are displayed in addition in a list box (figure 4).
Predefined reports show up in a separate window of
the multi document view area (figure 4). Trajectories
from a previous simulation run may be read in from
file and displayed for comparison or used for addi-
tional reports.

4 Conclusion

In order to facilitate the development of black-box
simulators with a fixed model the automatic genera-
tion of simulator specific graphical user interfaces is
desirable. A practical approach for building the GUI
of such a simulator for Modelica models has been
presented. Parsing the model and the data definitions
a GUI is set up at run time. The main issues are to
check the consistency of the model, the parameter
file and the parameter record definitions and to map
a smart limitation of the parameter space to the GUI
in order to ensure that the simulator can be used as a
black-box.
Future development will focus on additional consis-
tency checks and user comfort. Pre-parsed model and
data definitions may be integrated directly in a bi-
nary code format of the GUI, thus avoiding to read in
the model at runtime. The documentation embedded
in a Modelica model may be made available in the
GUI. Simulation log files may be evaluated automat-
ically to detect convergence problems and event
chattering.

References

[1] Dymola Version 7.4. Dassault Systèmes,
Lund, Sweden. www.dymola.com.

[2] Modelica Specification, Version 3.1, May
2009. www.modelica.org/documents.

[3] Parr, T.J., Language Translation using
PCCTS and C++. Automata Publishing
Company, San Jose, 1993.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

798

atmosphere road

A

chassis

km/h

controlBus controlBus

controlBus

Figure 1: A Modelica simulation model

Figure 2: GUI generator main view (model parsed)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

799

Figure 3: Display of record, file and array contents

Figure 4: Trajectory and report display

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

800

DrControl — An Interactive Course Material for
Teaching Control Engineering

Mohsen Torabzadeh-Tari, Martin Sjölund, Adrian Pop, Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

{mohsen.torabzadeh-tari, martin.sjolund}@liu.se
{adrian.pop, peter.fritzson}@liu.se

Abstract
In this paper we present an interactive course material
called DrControl for teaching control theory concepts
mixed together with exercises and example models in
Modelica.

The active electronic notebook, OMNotebook, is the
basis for the course material. This can be an alternative
or complement compared to the traditional teaching
method with lecturing and reading textbooks. Expe-
rience shows that using such an electronic book will
lead to more engagement from the students. OMNote-
book can contain interactive technical computations
and text, as well as graphics. Hence it is a suitable tool
for teaching, experimentation, simulation, scripting,
model documentation, storage, etc.

Keywords: DrControl, DrModelica, modeling, simula-
tion, OMNotebook, teaching, interactive, Control

1 Introduction
In this paper we introduce an electronic interactive
course material called DrControl and its use for teach-
ing control theory together with control applications in
Modelica [1] [2]. It is developed in and uses the OM-
Notebook [5] active electronic book software together
with OpenModelica for modeling and simulation.

This kind of interactive courses based on electronic
books allows experimentation and dynamic simulation
as well as execution of computer programs.

Traditional teaching methods with lecturing and
reading a textbook are often too passive and does not
engage the student. Active notebooks, however, facili-
tates the learning process, e.g. by running programs and
exercises within the book, and mixing lecturing with
exercises and with reading in the interactive book.

Electronic notebooks created using OMNotebook
can contain program code, text, links, pictures, video,

virtual and scientific visualizations, and makes it is
possible to integrate teaching material in sciences such
as physics, human biology [3], mathematics, computer
science, etc.

1.1 Structure of the Paper

Section 2 presents the OMNotebook tool, whereas Sec-
tion 3 describes the teaching goals and contents of the
DrControl electronic book. Section 4 briefly mentions
applications in teaching modeling and programming
languages, whereas Section 5 presents future work and
Section 6 gives the conclusions..

2 OMNotebook – An Active Elec-
tronic Notebook

The OpenModelica Notebook editor, OMNotebook,
provides an active electronic notebook including an
editor. The notebook it is not just a passive textbook or
html page, it is active in the sense that models inside
the book can be changed and executed.

This functionality allows the usage of interactive
hierarchical text documents where the underlying chap-
ters and sections can be represented and edited. OMNo-
tebook supports functionality for Modelica model si-
mulation [1] [2], text, images and interactive linking
between those. Furthermore, via the external interface,
program is other languages can be evaluated. One ex-
ample is OMScheme (Section 4.2) for teaching the
Scheme programming language.

The hierarchical structure of traditional documents,
e.g. books and reports, can also be applied to the note-
book which means basically that the book is divided
into sections, subsections, paragraphs, etc. This makes
the navigation in the book sections easier.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

801

2.1 DrControl

Application of OMNotebook in control theory with the
DrControl course material aims at reinforcing the un-
derstanding through practical applications with hands-
on experience. The students gain insight into the dy-
namic phenomena of a system. Also, the problem-
solving process can be built into the material thus let-
ting the students explore the content at his or hers own
convenience.

Figure 1. DrControl for teaching control theory concepts.

3 Content and Learning Goals of
DrControl

One important factor in modeling and simulation is the
availability of the source code, documentation of the
source code as well as the result of the simulation in the
same document. This is important because the problem
solving process is an iterative process that requires
modification of the original mathematical model and/or
the software implementation and verification of the
simulation result against the model.

The front-page of DrControl shown in Figure 2 re-
sembles a linked table of content that can be used as a
navigation center. The content list contains topics like:

• Getting started

• The control problem in ordinary life

• Feedback loop, see Section 3.1

• Mathematical modeling, see Section 3.2

• Transfer function, see Section 3.3

• Stability

• Example of controlling a DC-motor

• Feedforward compensation

• State-space form, see Section 3.4

• State observation, see Section 3.5

• Closed loop control system.

• Reconstructed systems, see Section 3.5

• Linear quadratic optimization, see Section 3.6

• Linearization, see Section 3.7

Figure 2. The starting page of the DrControl tutoring
system using OMNotebook.

Each entry in this list leads to a new notebook page
where either the theory is explained with Modelica ex-
amples or an exercise with a solution is provided to
certify the background theory, see [7] for more infor-
mation and down-load of DrControl.

3.1 Feedback Loop

One of the basic concepts of control theory is using
feedback loops either for neutralizing the disturbances
from the surroundings or a desire for a smoother out-
put.

In Figure 5 a simple car model is illustrated where
the car velocity on a road is controlled, first with an
open loop control then compared to a closed loop sys-
tem with a feedback loop. The car has a mass m, ve-
locity y, and aerodynamic coefficient α. The θ is the
road slope, which in this case can be regarded as noise.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

802

Figure 3. Feedback loop.

Lets look at the Modelica model for the open loop con-
trolled car:

𝑚�̇� = 𝑢 − 𝛼𝑦 −𝑚𝑔𝑠𝑖𝑛(𝜃)

model NoFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "No noise";
 SI.Velocity yNoise "With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 200;
 parameter SI. ngle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Velocity r = 20 "Reference signal";
equation
 m*der(y)=u - alpha*y;
 m*der(yNoise)= u - alpha*yNoise –
 m*g*sin(theta);
 u = 250A*r;
end NoFeedback;

By applying a road slope angle different that zero then
the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 3 is
stable but an overshoot can be observed compared to
the reference signal. Naturally the overshoot is not de-
sired and the student will in the next exercise learn how
to get rid of this undesired behavior of the system.

Figure 4. Open loop control example.

The closed car model with a proportional regulator is
shown below:

𝑢 = 𝐾 ∗ (𝑟 − 𝑦)

model WithFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "Output, No noise";
 SI.Velocity yNoise "Output With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 250;
 parameter SI.Angle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Force uNoise;
 SI.Velocity r = 20 "Reference signal";
equation
 m*der(y) = u - alpha*y;
 m*der(yNoise) = uNoise - alpha*yNois –
 m*g*sin(theta);
 u = 5000*(r - y);
 uNoise = 5000*(r - yNoise);
end WithFeedback;

By using the information about the current level of the
output signal and re-tune the regulator the output quan-
tity can be controlled towards the reference signal
smoothly and without an overshoot, as shown in Figure
5.

In the above simple example the flat modeling ap-
proach was adopted since it was the fastest one to
quickly obtain a working model. However, one could
use the object oriented approach and encapsulate the
car and regulator models in separate classes with the
Modelica connector mechanism in between.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

803

Figure 5. Closed loop control example.

3.2 Mathematical Modeling

In most systems the relation between the inputs and
outputs can be described by a linear differential equa-
tion. Tearing apart the solution of the differential equa-
tion into homogenous and particular parts is an impor-
tant technique taught to the students in engineering
courses, also illustrated in Figure 6.

𝑑𝑛𝑦
𝑑𝑡𝑛

+ 𝑎1
𝑑𝑛−1𝑦
𝑑𝑡𝑛−1

+ … + 𝑎𝑛𝑦

= 𝑏0
𝑑𝑚𝑢
𝑑𝑡𝑚

+ ⋯+ 𝑏𝑚−1
𝑑𝑢
𝑑𝑡

+ 𝑏𝑚𝑢

Now let us examine a second order system:

ÿ + a1ẏ + a2y = 1

model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = 3;
 parameter Real a2 = 2;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a1 and a2 leads to differ-
ent behavior as shown in Figure 7 and Figure 8.

Figure 6. Mathematical modeling.

In the first example the values of a1 and a2 are chosen
in such way that the characteristic equation has nega-
tive real roots and thereby a stable output response, see
Figure 7.

Figure 7. Characteristic eq. with real negative roots.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

804

The importance of the sign of the roots in the characte-
ristic equation is illustrated in Figure 7and Figure 8,
e.g. a stable system with negative real roots and an un-
stable system with positive imaginary roots resulting in
oscillations.
model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = -2;
 parameter Real a2 = 10;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Figure 8. Characteristic eq. with positive imaginary roots.

3.3 Transfer Function

Students also get familiar with how a transfer function,
polynomial fraction of the Laplace transform of output
over the input, is derived and how it can be used to
study the system behavior, see Figure 9 and Figure 10.

The poles of the transfer function are the roots of
the denominator which is the same as the roots to the
characteristic equation. The zeros are the roots to the
numerator of the transfer function. The inverse Laplace
transform of G(s) is called the weight function and is
the impulse response of the system.

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠)

Lets now look at a simplified first order model of a
tank system:

𝐺(𝑠) =
1
𝐴

𝑠 + 1
𝑇

model Tank
 import Modelica.Blocks.Continuous.*;
 TransferFunction G(b = {1/A}, a =
 {1,1/T});
 TransferFunction GStep(b = {1/A},a =
 {1,1/T});
 parameter Real T = 15 "Time constant";
 parameter Real A = 5;
 Real uStep = if (time > 0 or time<0)
 then 1 else 0 "step function";
initial equation
 G.y = 1/A;
equation
 G.u= if time > 0 then 0 else 1e6;
 GStep.u = uStep;
end Tank;

Figure 9. Transfer function derivation.

For analysis of a simple tank model the step and pulse
responses of this system are illustrated in Figure 10. In
Modelica the transfer function is reformulated in a state
space (differential) form. Therefore the initial condi-
tions are important for getting the right result.

The inverse Laplace transform of G(s) is called the
weight function and is the impulse response of the sys-
tem. In Modelica the transfer function is reformulated
in a state space (differential) form. Therefore the initial
conditions are important for getting the right result.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

805

Figure 10. Step and pulse (weight function) response.

3.4 State-space Formulation

The state of a system is the amount of information
needed for determining the future output of the system
if the future inputs are known.

The state space form for continuous-time dependent
systems can be expressed as a system of first order dif-
ferential equations. We can reformulate the below
second order differential equation

ÿ + a1ẏ + a2y = bu

by introducing new auxiliary variables

�
𝑥1 = 𝑦
𝑥2 = �̇�

�

the differential equation can be re-written in a state-
space form:

��̇�1�̇�2
� = �

0 1
−𝑎2 −𝑎1

� �
𝑥1
𝑥2�+ �0

𝑏�u

Depending of the modeled system and the type of anal-
ysis one would like to perform there could be a desire
to shift from the state space formulation to transfer
function representation or vice versa.

Figure 11. Linear state-space form.

In Figure 12 a second order system is modeled, both
with the aid of pure differential equation and also with
the transformation to the transfer function representa-
tion.

What is important to highlight here is that the two
models show different results making the student aware
of setting the initial data correctly.
model StateSpaceHD
 Modelica.Blocks.Continuous.StateSpace
 stateSpace(A=[-2,1; -3,0],B=[-3;5]
 ,C=[1,0],D=[2]);
 Modelica.Blocks.Sources.Step
 step(height=1.0);
equation
 connect(step.y, stateSpace.u[1]);
end StateSpaceHD;

model DiffEqHD
 Real u = 1;
 Real y;
 Real uprim = der(u);
 Real z = der(y);
equation
 der(z)+2*z+3*y = 2*der(uprim)+uprim+u;
end DiffEqHD;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

806

Figure 12. State-apace form vs. differential equation
modeling.

3.5 Observers and Reconstructed systems

Often we do not have access to the internal states of a
system and can only measure the outputs of the system
and have to reconstruct the state of the system based on
these measurements. This is normally done with an
observer, e.g. Kalman filter, see Figure 13 and Figure
14.

Figure 13. Observer.

Consider the second order model from section 3.4

��̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

�

Introduce now an estimation of the state variable x:

𝑥�̇ = 𝐴𝑥� + 𝐵𝑢

The difference
𝑦 − 𝐶𝑥�

can be used as a measure of the error in this estimation.
With the feedback loop

𝑢 = −𝐿𝑥� + 𝐵𝑟

the observed system can be re-written as:

��̇�𝑥�̇� = �
𝐴 − 𝐵𝐿 𝐵𝐿
0 𝐴 − 𝐾𝐶

��𝑥𝑥�� + �𝐵0� r

𝑦 = (𝐶 0) �𝑥𝑥��

The vector K is called the observer for the system.

Figure 14. Kalman observer.

In real life systems the observed signals often contain
noise. By introducing noise in the observed output sig-
nal the modeled system can be made more realistic.
The random function is listed below:
type Seed = Real[3];

function random
 input Seed si;
 input Real tim;
 output Real x;
 output Seed so;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

807

algorithm
 so[1] := abs(rem((171*si[1]*exp(
 mod(tim-11,tim+13))),30269));
 so[2] := abs(rem((172*si[2]*exp(
 mod(tim-5,tim+7))),30307));
 so[3] := abs(rem((170*si[3]*exp(
 mod(tim-23,tim+76))),30323));
 if so[1] < 1e-4 then

so[1] := 1;
 end if;

 if so[2] < 1e-4 then
so[2] := 1;

 end if;
 if so[3] < 1e-4 then

so[3] := 1;
 end if;
 x := rem((so[1]/30269.0 +so[2]/30307.0 +
 so[3]/30323.0),1.0);
end random;

The time input is needed to ensure that the Modelica
compilers shouldn’t consider the above function as
constant.

Now the state-space model from the Modelica stan-
dard library can be re-written containing noise:
block StateSpaceWithNoise "Linear state
 space system with noise"
 parameter Real A[:,size(A, 1)] =
 {{0,1},{1,0}} ;
 parameter Real B[size(A, 1),:] =
 {{0},{1}};
 parameter Real C[:,size(A, 1)] =
 {{1,0}};
 parameter Real F[size(A, 1),:] =
 {{1},{0}};
 parameter Real D[size(C, 1),size(B, 2)]
 = zeros(size(C, 1), size(B, 2));
 extends Modelica.Blocks.Interfaces.MIMO(

final nin = size(B, 2), final nout =
 size(C, 1));
 output Real x[size(A,1)] "State vector";
 Real si(start ={1,2,3});
 Real si2(start={11,27,127});
 Real randomE "input noise";
 Real randomV "measurement noise";
algorithm
 (randomE,si) := random(si,time/10);
 (randomV,si2) := random(si2,time/10);
equation
 der(x) = A * x + B * u + F*{randomE};
 y = C * x + D * u + {randomV};
end StateSpaceWithNoise;

model StateSpaceNoise
 StateSpaceWithNoise stateSpace;
 Modelica.Blocks.Sources.Exponentials
 ref(outMax=4,riseTime=1,
 riseTimeConst=1,fallTimeConst=0.2,
 offset=0,startTime=-1);
initial equation
 stateSpace.x[1]=1;
equation
 connect(ref.y, stateSpace.u[1]);
end StateSpaceNoise;

Lets now look at a simple noisy pendulum model
where the output angle is observed with a Kalman ob-
server:

��̇�1�̇�2
� = �

0 1
1 0

� �
𝑥1
𝑥2� + �1

0�u
𝑦 = 𝑥1

model KalmanFeedback
 parameter Real A[:,size(A, 1)] =
 {{0,1},{1,0}} ;
 parameter Real B[size(A, 1),:] =
 {{0},{1}};
 parameter Real C[:,size(A, 1)] =
 {{1,0}};
 parameter Real[2,1] K = [2.4;3.4];
 parameter Real[1,2] L = [2.4,3.4];
 parameter Real[:,:] ABL = A-B*L;
 parameter Real[:,:] BL = B*L;
 parameter Real[:,:] Z =
 zeros(size(ABL,2),size(AKC,1));
 parameter Real[:,:] AKC = A-K*C;
 parameter Real[:,:] Anew = [0,1,0,0 ; -
 1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0,
 2.4,0];
 parameter Real[:,:] Bnew = [0;1;0;0];
 parameter Real[:,:] Fnew = [1;0;0;0];
 StateSpaceNoise Kalman(
 StateSpace.A=Anew,
 StateSpace.B=Bnew,
 StateSpace.C=[1,0,0,0],
 StateSpace.F = Fnew);
 StateSpaceNoise noKalman;
end KalmanFeedback;

Figure 15. Pendulum angle control with Kalman observer.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

808

3.6 Linear Quadratic Optimization
A good measure of suitable feedbacks, e.g. extra poles,
is minimum of the input and output energy levels. Solv-
ing the minimum energy level functional leads to the
algebraic Riccati equation, shown in Figure 16and Fig-
ure 17.

Figure 16. Quadratic optimization.

The algebraic Riccati equation is:

𝐴𝑃 + 𝑃𝐴𝑇 + 𝑅𝑒 − 𝑃𝐶𝑇𝑅𝑣−1𝐶𝑃 = 0
model RiccatiEq
 parameter Real A[2,2]=[0,1; 1,0];
 parameter Real B[2,1]=[0; 1];
 parameter Real C[1,2]=[1,0];
 Real P[2,2](start = Pinit);
 parameter Real Pinit[2,2] =
 [1,1.5;1.5,1];
 parameter Real Q[2,2] = [1, 0; 0, 0];
 Real L[1,2];
 Real L1 = L[1,1];
 Real L2 = L[1,2];
equation
 Q + P*A + transpose(A)*P -
 P*B*transpose(B)*P = [0,0;0,0];
 L = transpose(B)*P;
end RiccatiEq;

Figure 17. Solving Riccati equation with OpenModelica.

3.7 Linearization

Many nonlinear problems can be handled more easily
by linearization around an equilibrium point. Lapapu-
nov showed that if the linear approximation is stable
then the nonlinear problem is also stable, at least
around the equilibrium region. Thus we can investigate
the behavior of the nonlinear system by analyzing the
linearized approximation.

In the OpenModelica Compiler (OMC) a flag is in-
troduced for linearization:
setCommandLineOptions({"+d=linearization"})

Assume that we have a non-linear two tank model
shown below:

model TwoFlatTankModel
 Real h1(start = 2);
 Real h2(start = 1);
 Real F1;
 parameter Real A1 = 2,A2 = 0.5;
 parameter Real R1 = 2,R2 = 1;
 input Real F;
 output Real F2;
equation
 der(h1) = (F/A1) - (F1/A1);
 der(h2) = (F1/A2) - (F2/A2);
 F1 = R1 * sqrt(h1-h2);
 F2 = R2 * sqrt(h2);
end TwoFlatTankModel;

The output C-files are now generated with the lineari-
zation flag. By running the executable with the time
argument the linearized model is generated which can
be simulated:
buildModel(TwoFlatTankModel) //OMC
system("TwoFlatTankModel.exe -l 0.0 -v
 >log.out")
readFile("log.out")

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

809

The file log.out contains now the linearized model:

model Linear_TwoFlatTankModel
 parameter Integer n = 2; // states
 parameter Integer k = 1;
 parameter Integer l = 1;
 parameter Real x0[2] = {2,1};
 parameter Real u0[1] = {0};
 parameter Real A[2,2] = [-0.5,0.5;2,-3];
 parameter Real B[2,1] = [0.5;0];
 parameter Real C[1,2] = [0,0.5];
 parameter Real D[1,1] = [0];
 Real x[2](start = x0);
 input Real u[1](start = u0);
 output Real y[1];
 Real x_Ph1 = x[1];
 Real x_Ph2 = x[2];
 Real u_PF = u[1];
 Real y_PF2 = y[1];
equation
 der(x) = A * x + B * u;
 y = C * x + D * u;
end Linear_TwoFlatTankModel;

Figure 18. Linearization.

4 Other OMNotebook Applications
OMNotebook is also used for teaching modeling with
Modelica (DrModelica), and programming in Scheme
(DrScheme).

4.1 DrModelica

The existence of numerical algorithms and solvers are
important aspects of equation-based environments such
as Modelica tools.

OMNotebook is currently being used for course ma-
terial (DrModelica) in teaching the Modelica language
and equation-based object-oriented modeling and simu-
lation, (see Figure 19).

It can easily be adapted to electronic books teaching
other programming languages, such as Scheme (Sec-

tion 4.2). OMNotebook can also easily be used in other
areas such as physics, biology chemistry, biomechanics
etc., where phenomena can be illustrated by dynamic
simulation within the book.

Figure 19. Bouncing ball example with movement
animation in OMNotebook.

4.2 OMScheme

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than
Modelica, e.g. the Scheme programming language, [6].
An implementation of the factorial function using OM-
Scheme is shown in Figure 20.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

810

Figure 20. Factorial function in OMScheme.

5 Future Work
The inherent features of the Modelica language makes
the next mile-stone choice quite natural, namely the
adaption of the presented concept into other engineer-
ing courses as well, e.g. a future course material called
DrMechanics for teaching the basics of mechanical
systems.

A future generation of OMNotebook is planned to
be extended to become available through a web applet
which would make the material available without need-
ing installation of any software.

One thing that is intentionally left out in this paper
is frequency domain analysis, e.g. bode diagram. This
is partly due to the inherent properties of the Modelica
language, which is quite time domain dominant in its
modeling style. A work-around was shown in this pa-
per when studying the weight function and step re-
sponse in time domain.

6 Conclusions
The OMNotebook is one of the first open source efforts
offering interactive electronic books for teaching and
learning modeling and programming.

In this paper we present its use in an active electron-
ic book called DrControl for teaching control theory
and applications.

The idea of active electronic books in OpenModeli-
ca has so far been employed in the two E-courses
DrModelica and DrControl used successfully in gradu-
ate and workshop courses.

7 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Peter Fritzson. Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[2] Modelica Association. The Modelica Language
Specification Version 3.2, May 2010.
http://www.modelica.org.

[3] Anders Sandholm, Peter Fritzson, Varun Arora,
Scott Delp, Göran Petersson, and Jessica Rose.
The Gait E-Book - Development of Effective Par-
ticipatory Learning using Simulation and Active
Electronic Books. In Proceedings of the 11th Me-
diterranean Conference on Medical and Biologi-
cal Engineering and Computing (Medicon'2007),
Ljubljana, Slovenia, June 26 - 30, 2007.

[4] Eva-Lena Lengquist Sandelin, Susanna Monemar,
Peter Fritzson, Peter Bunus. DrModelica – A
Web-based Teaching Environment for Modelica,
In Proc. of the 44th Scandinavian Conference on
Simulation and Modeling (SIMS2003), Västerås,
Sweden, 2003

[5] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006

[6] Mohsen Torabzadeh-Tari, Peter Fritzson, Adrian
Pop, Martin Sjölund, Generalization of an Active
Electronic Notebook for Teaching Multiple Pro-
gramming Languages IEEE EDUCON Education
Engineering 2010 – The Future of Global Learn-
ing Engineering Education, Madrid, Spain, 2010

[7] http://www.openmodelica.org [accessed 2011-02-
03]

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

811

http://www.modelica.org/�
http://www.openmodelica.org/�

Modelica Simulator Compatibility - Today and in Future

Jörg Frochte

Hochschule Bochum

Department of Electrical Engineering and Computer Science

Höseler Platz 2, 42579 Heiligenhaus, Germany

email: joerg.frochte@hs-bochum.de

Abstract

In this paper we would like to give a small snap-

shot in time on Modelica tool compatibility today,

and discuss strategies for its improvement in order to

keep it on a high level. Especially we would like to

consider approaches for semi-automatic test and ve-

rification frameworks as well as to develop different

levels and definitions on Modelica tool compatibili-

ty.

Keywords: Modelica language; simulation and de-

sign tools; quality and compatibility management

1 Introduction

The Modelica language grows as well in com-

plexity as in scope and becomes a mighty tool to de-

scribe models from very different domains. Beyond

this the number of tools using the Modelica language

has increased to the benefit of the users. A various

set of compatible simulators decreases the dependen-

cy on a single tool provider, allows exchange be-

tween different modelers using different tools, and –

because every development of a model and its main-

tenance is not for free – it offers a high degree of

investment security.

But there are dangers to be avoided as well. A di-

verging interpretation of a standard and a heteroge-

neous set of vendors may lead to unpleasant scena-

rios for users and library providers.
Compatibility is not an easy task for a complex

declarative language which is the base of model-

based software generation. Beyond the language and

its interpretation the results given by the generated

code may differ based on various parameters like the

chosen integrator and its boundaries for relative and

absolute errors. So some variations in the results are

allowed and expected, some are not.

Drawing a comparison with C++-Compilers it is

expected that the quality of the generated executable

differs, e.g. concerning performance. It might be ac-

cepted that not every compiler can handle any part of

the new C++ standard, but it falls beyond the pale, if

source code is successfully compiled and executed,

and finally provides totally different results based on

the used compiler.

In order to receive an impression how compati-

ble Modelica tools are among themselves and as well

among the standard we took a snapshot of four tools,

mostly demo and testing versions, and gave them

quite tiny models that can be translated with limited

versions.

For us the fact which tool can handle what kinds

of models is of minor interest, because this will

properly change with every new version. More im-

portant for us is the answer to the question if there is

already a diverging interpretation of the standard or

if this issue has been of no interest so far. In this case

we could assume that there will probably be a grow-

ing need for measures guaranteeing quality as well as

compatibility, which have to be presented later on.

2 Snapshot on Modelica tool compa-

tibility

Let us start with a scenario in which two develop-

ers are using different tools to model and simulate.

Now developer A and B exchange models, given in

Modelica source code, and naturally they both expect

no problems, because they meet the Modelica stan-

dard. Because of the grown complexity and increas-

ing number of interpretations of the standard this

may run ill and so it may turn out that an easy ex-

change is not possible. We distinguish between three

different kinds of causes presented in the following

sections.

2.1 Lacking support of language elements

The lacking support of language elements is ea-

siest to handle for the users. In this case the transla-

tion of the Modelica model will fail and provide a

hint which language element is not supported. In a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

812

lot of Modelica tools a common non-provided lan-

guage element is the else-when-element in the equa-

tion section of a model. This type of compatibility

problem is annoying but it causes no danger.

A good example is the following model:

model A

 Real x;

 Real a(start=2);

equation

 when {time > 0.5,x > 0.7} then

 if time > 0.55 then

 a = 3;

 else

 a = 4;

 end if;

 elsewhen time > 0.6 then

 a = 5;

 end when;

 der(x) = 1;

end A;

Model 1: else-when in equation section

It turned out that in our snapshot of four Modelica

tools only one could translate and simulate the model

above. Two of them were not able to translate it and

one generated code but directly aborted using the

compiled program.

2.2 The generated code

The next cause has its roots in the different skills of

the tools to optimize code and handle tricky situa-

tions concerning e.g. index reduction. Most tools use

a more or less straightforward implementation of the

Pantelides Algorithm [4], extended with dummy de-

rivatives (s. e.g. [5] or [1], chapter 7). In some situa-

tions this is not always enough and may lead to non-

executable results. For example, this combination of

inductors and resistors cannot be simulated in every

Modelica tool:

Model 2: advanced index reduction

These kinds of compatibility problems are in a way

in between, if they are real compatibility issues at all.

The quality of code generation and GUI is the reason

for a user choosing one tool or another. So on one

side diverging results in quality should be expected

and respected, but in any case it would be interesting

to measure it. On the one hand the tool provider is

presumably keen on increasing the quality of his

product. And on the other hand, if the results were

published, it may even help the customer to choose a

Modelica tool. So we think these are the kinds of

variations in the results that are allowed, expected,

and do not touch the goal of standardized and com-

patible language.

However, if the code is executable and runs with-

out a warning, which was not the case for any tested

tool, this scenario comprises some risks. So like it

seems to be now, a termination of the simulation as

soon as possible should always be the default han-

dling of such cases. Thus we assume that in most

cases the simulation will be directly aborted if such a

problem arises.

2.3 Different interpretation of language ele-

ment

In contradistinction to lacking support of language

elements or variations in the code quality a different

interpretation of language elements of the various

Modelica tools may lead to more serious problems.

Let us have a look at the following example:

class A

 class C

 Real t(start=-2);

 Real x;

 equation

 der(x) = t;

 algorithm

 when time > -0.1 then

 t := time + 0.1;

 end when;

 end C;

 C c;

end A;

Model 3: when and HDAE initialization (I)

All of the provided examples are very small and

can be evaluated in most test or demo versions of

Modelica tools. From a theoretical point of view and

our interpretation of the Modelica standard [5] the

initial value of t should be -2. In our test it turned out

that just one of the tested Modelica tools computed

the result -2 and most of them started with t = 0.1.

Independent of the correct value, the interesting ef-

fect for us is that the whole simulation may run diffe-

rently now. In the next model, the problems might

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

813

have their cause in interpretation or implementation

of initial conditions and equation reduction.

model A

 Real x(start=7);

 Real y,z;

 flow Real a[2,3];

equation

 z = -a[2,3];

 z=x;

 y=z;

 a[1,1] = 0;

 a[1,2] = 0;

 a[1,3] = 0;

 a[2,1] = 0;

 a[2,2] = 0;

 der(a[2,3]) = 1;

end A;

Model 4: Transfer of start values

In our interpretation the resulting equation x=y

should propagate the initial value, so that the simula-

tion starts with x=y=z=7 and a[2,3]=-7.

Our point of view is that a consistent initial value

should always be tried to be propagated directly, in-

dependent of an additional attribute like fixed=true.

But in some tools start values are not propagated

and so the simulation starts with different initial val-

ues. The effect is of course a simulation with totally

different results. A possible explanation might be

that some tools call the initial function with x=y=z=7

and a[2,3]=-7 and try to find a consistent set of va-

riables based on these initial values. Whereas the

other tools start with this procedure with x=7 and

assume that this information will be propagated dur-

ing the DAE initial problem.

Finally let us look at the following very small

model 5:

model A

 Real x(start=2);

 Real y(start=3);

equation

 der(x) = 1;

 when x > 1 then

 y = pre(y) + 1;

 end when;

end A;

Model 5: when and HDAE initialization (II)

In the Modelica Standard 3.2 ([5]), section 8.3.5

the language element is defined as follows: “The

statements within a when-equation are activated

when the scalar expression or any of the elements of

the vector expression becomes true.“ So it could be

translated in an if-condition like this:

if (boolean) and not pre(boolean)

In combination with the techniques for an initiali-

zation after an event indicated on page 226 of [5] -

the init situation is slightly the same - we come to the

conclusion that the condition should only be acti-

vated, if x>1 has been logical false before and is now

logical true. This situation is quite tricky for a lot of

Modelica tools. We think that x is equal to 2 imme-

diately, and the state x has a positive derivative dur-

ing the whole time. Therefore, the when-cause

should never be activated and so y is equal to 3 all

the time. Just one Modelica simulator handled the

situation like this, all the others computed y=4.

So we have got two situations: model 3, in which

the time value has to be interpreted, and model 5,

which includes an initial value for x. In both situa-

tions the when-language element is misinterpreted

during the initial phase. In case of model 5 one might

argue about the start value of x, but obviously the

time value as in model 3 is never negative.

We tested some more models, and as well as in

the presented ones we found a few similar results. So

we can conclude that there are diverging interpreta-

tions of the standard and that it makes sense to think

about strategies in order to avoid this.

3 Suggestion of semi-automatic test

and verification frameworks

The first step in our strategy is briefly presented

in the following figure:

Figure 1: Test Database and models with proved

results

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

814

The most important aspect could be to create a

database with tiny Modelica models which contain a

single element of the Modelica standard one would

like to have tested. The models themselves should be

tricky for the translation process, but so small that

the results can be exactly verified by a human based

on the common interpretation of the Modelica stan-

dard. This is very important because certainly it is

not proved that Modelica tool A in the figure is free

from errors.

These tiny models are in a way academic and

their benefit is that the correctness of the results can

be proved. When a correct pair of model and result

has been created, both are added to the database.

This is the most important aspect for a check for

compatibility. But it is hard to collect a lot of these

models and it might not be possible to get all com-

plex side effects. So beyond this, one should add

“applied models” to the database:

Figure 2: Test Database and applied models with

reasonable results

In general, no human can prove the correctness of

a complex model like this. So in this case it is just a

check if the results are reasonable or not. If they are

reasonable the reference results as well as the model

are added to the database. In the next step it makes

sense to distinguish between these different kinds of

models:

Figure 3: Semi-automatic test scenario

With this database it would now be possible to

test the Modelica tools on Standard compatibility at

least semi-automatically. A checker program can

pick up the Modelica model with its associated refer-

ence results, simulate the model with the Modelica

tool under test and compare the results. The compar-

ison of the results needs a little bit a fuzzy approach,

because it is unlikely that the generated code will

produce totally the same results as in the reference

solution. There are a lot of interesting approaches,

see e.g. [8], to compare models and their results in a

(semi)-automatic way. For simplicity let us assume

that all variables of the model are stores in a vector x

and the corresponding reference solutions in a vector

r, then one might check for |xi(t) - ri(t) | < tol.

Another important benchmark value should be the

time of the event as well as the initial values after the

event.

If every compiled Modelica code uses a different

integrator for the HDAE, this might lead to serious

problems for the compression, so just for this

benchmark purpose one should fix a freely available

Open Source integrator like IDA (s. e.g. [3]). With a

fixed integrator such a test should be possible.

But why do we call this a semi-automatic test for

it looks like a full-automatic test until now? Respon-

sible for this are the failures which may occur when

simulating or translating the “applied models”. In

this case it is not possible to exclude the possibility

that the reference results are wrong. So in some cases

it might be necessary to reevaluate the reference re-

sults for such a model.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

815

4 Levels of compatibility and quality

control

With such an infrastructure a validation service

could be set up. Nevertheless, this would just pro-

duce a list of successfully and not successfully han-

dled models, but no solution to the fundamental

problem. So at that point one would be able to meas-

ure the language respectably the tool compatibility

and achieve information about what to improve. But

this is just one aspect of two. The two challenges for

the compatibility issue on the long run are firstly the

growing complexity and secondly measurement and

control. But up to now we majorly dealt with the

measurement aspect. How could growth of complex-

ity be reduced without acting as a brake upon new

innovations in the Modelica language?

A possible approach might be introducing differ-

ent levels of complexity in the Modelica language.

The highest level could be today’s Modelica lan-

guage with all its language elements as well as up-

coming innovative and progressive features. The

lower levels should be becoming more and more

conservative concerning changes and less complex:

1. (Full) Modelica

2. Simple Modelica

3. Flatmodelica

One might think that Flatmodelica already exists

for very often the term “flat model” is mentioned,

and therefore one has an association, because e.g.

some tools allow exporting “Flatmodelica” or a “flat

model”. But this is not true, for there is no official

standard defining Flatmodelica or at least a “flat

model”. What comes close to a definition is written

in [2], chapter 18, but anyway it is not a formal lan-

guage description. The name suggests that there are

no more dependencies concerning libraries. Beyond

this, it implies that no more inheritance has to be car-

ried out, but this is hard to be done, because nearly

everything in Modelica is a class. So e.g. the ques-

tion occurs whether records are part of Flatmodelica

or not.

Maybe we should motivate why it could make

sense to introduce different levels of complexity and

development speed in the Modelica standard.

The major reason could be that no tool has been

able to implement the full Modelica language up to

now. If the language keeps on growing, as during the

course of recent years, it is hardly probable that this

status will change.

To illustrate this, let us have a look at the follow-

ing model:

class A

 Real x[2, 3];

 Integer i=7;

 Integer j=8;

 Real y;

equation

 for i in {1,2}, j loop

 x[i, j] = i*A.j;

 end for;

 for i in {3,4}, j loop

 x[i, j] = A.i*j;

 end for;

 y=time*x[2,2];

end A;

Model 6: Automatic detection of array bounds

This model exclusively uses valid Modelica lan-

guage, but in our tests none of the tools has been able

to generate code and simulate it successfully. The

used language elements are not new in Modelica 3.2,

so we can exclude the effect that the tools were una-

ble to implement them in time. An explanation might

be the high demands of such dynamic language ele-

ments for the data structures of a Modelica tool. This

model is not an isolated incident; let us for example

regard this model:

model A

 record R

 Real x[1,1];

 Boolean b;

 end R;

 Real w;

 R r1(x={{1}}, b=false);

 R r2(x={{2}}, b=true);

 R r3[2];

 equation

 r3[1] = r1;

 r3[2] = if time > 0.5 then

 (if time > 0.6 then r1 else r2)

 else r2;

 der(w) = r3[2].x[1,1];

end A;

Model 7: Usage of records

Records as well as the automatic detection of ar-

ray bounds and especially their dynamical handling

cause just one problem in many tools. The effects

probably differ because of the different data struc-

tures used to translate the Modelica models.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

816

So we can conclude that full Modelica, as fast

developing language standard, is not predestinated as

cross-tool exchange language. Beyond these features

and aspects, there are a lot of chapters in the Modeli-

ca standard that could likely be excluded for a Sim-

ple Modelica approach. Examples might be [5], sec-

tion 10.5.1 “Indexing with Boolean or Enumeration

Values”, chapter 14 “Overloaded Operators”, some

of the redeclaration features described in chapter 7.3

or the expandable connectors from chapter 9.3.1.

Such features proposed to be excluded from Sim-

ple Modelica in comparison to full Modelica are

mostly the very dynamic ones and therefore hard to

be validated using the proposed semi-automatic test

and verification framework, especially but not only

concerning more complex models. In fact the sug-

gested test and validation infrastructure will be more

efficient on the lower levels and always less efficient

on the higher ones. One reason would be the con-

servative progressing approach and another one li-

mited amount of language elements and features.

Because the mentioned features are apparently

difficult to be implemented for Modelica tool ven-

dors, it would probably be possible to achieve a bet-

ter tool compatibility on the lower levels compared

to the higher ones. Beyond this, the introduction of

less featured levels of Modelica might even lead to a

provision of a base for the exchange of Simple or

Flatmodelica models to and from the proprietary

Simscape language, s. e.g. [8], invented by The-

MathWorks. To support such a scenario for Simple

Modelica the redeclaration techniques described in

[5], section 7.3, might need further restrictions or

simplifications. Anyway it is of course unlikely that

this will work without a conversion procedure, but a

conversion from Simple Modelica to Simscape might

be possible, while the more complex and mighty Full

Modelica is a formidable challenge for an automatic

conversion from and majorly to Simscape.

So Simple Modelica and Flatmodelica as subsets

of full Modelica could provide grand strides con-

cerning cross-tool exchange, tool compatibility and

finally make formal tests discussed in section 3 much

more efficient.

If we had these two subsets of Modelica we could

judge tools by their capacity to import, export and

translate models on three different levels. To achieve

a simple measurement for users one may introduce a

bronze, silver, gold and platinum tag on the different

levels. The platinum tag will just be given, if a tool

can handle the full test without failures, the gold tag

with a given percentage and so on. The suggested

infrastructure could be set up by a central organiza-

tion like the Modelica Association.

As discussed above it is very unlikely that a tool

would reach the platinum level for the latest few full

Modelica language versions. Most tools could

achieve gold and silver, but obviously this would not

be the perfect exchange level because every tool

might miss different language aspects. On the more

conservative lower language levels like Simple

Modelica or Flatmodelica a lot of tools could reach

platinum level and therefore provide a good base for

a cross-tool exchange with a consistent language in-

terpretation.

For a kind of “flat model”, like e.g. in Dymola,

can be generated from full Modelica without any loss

of functionality it should be possible to do the same

with a formal defined Flatmodelica and a Simple

Modelica. So there won’t be any loss of functionali-

ty, just a loss of structure and convenience. This is

the reason why Simple Modelica as intermediate

stage between full Modelica and Flatmodelica makes

sense. Flatmodelica as kind of textual description of

an HDAE is always possible, but it is hard to main-

tain a model described in Flatmodelica while it is

hard to achieve a high compatibility level for full

Modelica. So Simple Modelica together with a semi-

automatic test and verification framework could lead

to a high degree of investment security and indepen-

dence for users and library providers.

5 Conclusions

So finally we conclude that the desirable growth of

Modelica tool vendors and language capacity leads

to a lot of benefits but also to the issue of compatibil-

ity which today and in future will become more and

more important.

We have shown that recently there is a need to in-

troduce quality control mechanisms. Beyond this, we

tried to give brief suggestions how it might be possi-

ble to deal with the task of compatibility of Modelica

tools among themselves and as well among the Mod-

elica standard.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

817

References

[1] F. E.Cellier und E. Kofman. Continuous

System Simulation, Springer (2006)

[2] P. Fritzon. Principles of Object-Oriented

Modeling and Simulation with Modelica

2.1, John Wiley & Sons (2004)

[3] A. C. Hindmarsh, P. N. Brown, K. E. Grant,

S. L. Lee, R. Serban, D. E. Shumaker and C.

S. Woodward: SUNDIALS: Suite of

Nonlinear and Differential/Algebraic

Equation Solvers. In ACM Transactions on

Mathematical Software, 31(3), pp. 363-396,

2005.

[4] Mattsson and Söderlind. Index Reduction in

Differential-Algebraic Equations using

Dummy Derivatives, SIAM J. SCI.

COMPUT. Vol.14. No.3, pp. 677-692 (1993)

[5] Modelica Association: Modelica Language

Specification Version 3.2; (March 2010)

[6] C. C. Pantelides. The Consistent

Initialization of Differential-Algebraic

Systems. In SIAM J.Sci.Stat.Comput. Vol.9,

No. 2, (1988)

[7] B. Stein. Model Compilation and

Diagnosability of Technical Systems. In

3rd Int. Conference on Artificial Intelligence

and Applications, pp. 191-197 (2003)

[8] TheMathWorks: Simscape 3 Language

Guide (March 2010)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

818

A Modelia model of thermal and mehanial phenomenain bare overhead ondutorsOsar DuarteUniversidad Naional de Colombia, Department of Eletrial and Eletronis Engineeringogduartev�unal.edu.oCarrera 30, Calle 45, Ed. 453, Of. 202. Bogotá, ColombiaAbstratA Modelia model of the thermal and mehani-al phenomena of bare overhead ondutors is pre-sented. The geometry of the atenary is also mod-eled as an important part of the mehanial phe-nomena. The model has been ompiled and testedusing OpenModelia. Some appliation examplesare also presented to illustrate some analysis thatan be done with the model.Keywords: overhead ondutors, IEEE 738,atenary, sag1 IntrodutionBare overhead ondutors are essential in trans-mission and distribution of large amounts of ele-trial energy. They are supported by transmissiontowers and exposed to varying weather onditions.The mehanial behaivor of these suspended ablesis a�eted by thermal proesses. Heat transfershange ondutor temperature, ausing lenght andtension modi�ations. As a result, the geometry ofthe atenary desribed by the able also hanges.It is very important to study this geometri modi-�ations, mainly to avoid eletrial failures ausedby the violation of seurity distanes.In this paper we show a Modelia model of thethermal and mehanial phenomena of bare over-head ondutors; the geometry of the atenary isalso modeled as an important part of the mehani-al phenomena. The model has been ompiled andtested using OpenModelia ([2℄, [3℄). Some appli-ation examples, and the soure ode are availableat the Virtual Aademi Servies of the NationalUniversty of Colombia 1.1http://www.lab.virtual.unal.edu.o

By using Modelia two main advantages havearised:
• The solution of the state hange equation isvery simple. This is an equation that must besolved by numerial methods. The Modeliamodel of the equation is done in a natural way,and the algorithms available in OpenModeliaare apable to solve it.
• The argability analysis is immediate. Themost ommon models from overhead ondu-tors use the eletrial urrent in the ondutorto ompute the ondutor temperature for ex-treme operation onditions and then the me-hanial and geometri variables. Cargabil-ity analysis is the inverse proess: from themehanial, geometri or thermal limit ondi-tions we must �nd an eletrial urrent thatwill ause them. Due to the objet-orientedmodeling of Modelia, the same model an beused in both diretions.This paper is organized as follows: in setion 2the physal model is presented in two steps, thethermal model �rst (setion 2.1) and then the me-hanial model (setion 2.2); in setion 3 the Mod-elia implementation is explained also in two steps(setions 3.1 and 3.2); in setion 4 we show someappliation examples to illustrate the analysis a-pabilities of the implementation. Conlusions andfuture work are summarized in setion 5.2 Physial model2.1 Thermal modelThe thermal model alulates the ondutor tem-perature for a ertain eletrial urrent andweather onditions. The IEEE Standar 738 ([1℄)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

819

de�nes two di�erent models: one for steady statealulations and another one for transient alula-tions.The non-steady heat balane is summarized byequation 1
dTc

dt
=

1

mCp

[

RI2 + qs − qc − qr
] (1)Where:

• T is the ondutor temperature.
• mCp is the heat apaity of ondutor.
• R is the eletrial linear resistene of the on-dutor, whih is a funtion of its temperature.
• I is the urrent passing through the ondu-tor. The term RI2 is the heat gain by Joulee�et.
• qs is the heat gain by solar radiation.
• qc is the heat loss by onvetion.
• qr is the heat loss by radiation.The standard also stablishes detailed models forevery term in equation 1. The main features ofthese models are:

R model: eletrial linear resistene of ondutoris alulated as a funtion of temperature bya linear interpolation (or extrapolation) of thevalues at two di�erent temperatures (usually25oC and 75oC). These values are available inmanufaturers data sheets.
mCp model: total heat apaity is alulatedtaking into aount the perentage of mate-rials in the ondutor (ussualy steel and allu-minium).
qs model: the atual heat gain by solar radiationdepends on the geographial latitude and alti-tude in whih the ondutor is plaed, the dayof the year, the time of the day, the abosorvityand size of ondutor; two atmosphere ondi-tions are onsidered: lear and industrial.
qc model: natural and fored onvetion must bealulated. The greatest of the two is used inequation 1. The wind veloity and diretion isonsidered; air density and visosity dependson air temperature. Temperature, size andazimuth of ondutor are also involved in themodel.

A

B

O

D

SA SB

S

∆
y

y
A

y
B

h
A

ref xfFigure 1: Geometry of the atenary
qr model: radiated heat is alulated using tem-perature, emmisivity and size of ondutor aswell as air temperature.Notie that T , whih seems to be expliity al-ulated in 1 is really involved in all the terms. Amore aurate equation shoud be:
dT

dt
=

1

mCp

[

R(T)I2 + qs(T)− qc(T)− qr(T)
](2)2.2 Mehanial modelMehanial phenomena in overhead ondutors arewell known (see for example hapter 14 of [4℄). Fig-ure 1 shows an overhead ondutor that desribesa atenary. It is supported in A y B, whih are atheight yA and yB from the level of the lowest point(O), and with a di�erene of level ∆y. hA is theheight of A from a referene level. The span (hor-izontal separation between supports) is S. Thelongitudinal tension is Ten, where as the horizon-tal tension is H. Condutor lenght is L, its linearweight is W and is temperature is T . The lowestpoint O is at a horizontal distane SA and SB fromsupports A and B. The length of ondutor fromthe supports A and B to the lowest point O are

LA and LB.SagD is the maximum vertial distane betweenthe imaginary line that onnets A and B and theatenary. Sag ours at the point in whih theatenary tangent is the same as the slope of thatimaginary line. The horizontal distane betweenthis point and the lowest point O is xf .

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

820

2.2.1 Geometri onsiderationsThe height of the atenary y(x) from the level ofthe lowest point O is:
y(x) =

H

W
cosh

(

Wx

H

)

−

H

W
; (3)Where x is the horizontal distane to O. Let x bethe horizontal distane to A. Then we have:

x = SA − x

y(x) = H
W

cosh
(

W (SA−x)
H

)

−
H
W

(4)The height of the ondutor in x from the refer-ene level is
h(x) = hA − YA + y(x) (5)

h(x) = hA −
H
W

cosh
(

WSA

H

)

+

H
W

cosh
(

W (SA−x)
H

) (6)The horizontal distane from the lowest point Oto the lowest support is SPB

SPB =
SA

2
−

H

W
sinh−1

{

∆y/2
H
W

sinh
(

W
H
SA/2

)

} (7)Notie that SPB is equal to SA or SB :
SA =

{

SPB if ∆y ≥ 0
A− SPB if ∆y < 0

(8)2.2.2 Computing the sagIn order to �nd the sag, �rst we �nd the slope mof the imaginary line that onnets A and B:
m =

∆y

S
(9)The �rst derivative of equation 3 give us theatenary tangent:

dy

dx
= sinh

(

Wx

H

) (10)
xf s the point where the slops equals m, so wehave:

xf =
H

W
asinh

(

∆y

S

) (11)The sagD is the vertial distane from the imag-inary line that onnets A and B, yr, and the ate-nary yc, both in xf

D = yr(xf)− yf (xf)

yr(xf) = H
W

cosh
(

WSB

H

)

−
H
W

−m(Sb − xf)

yc(xf) = H
W

cosh
(

Wxf

H

)

−
H
W (12)

2.2.3 Computing the horizontal tensionThe total lenght L of the able an be omputedfrom L = LA + LB

LA =
H

W
sinh

(

WSA

H

)

LB =
H

W
sinh

(

WSB

H

)(13)The able longitudinal tensión at a distane S/2from O is
Ten = H cosh

WS

2H
(14)Suppose two di�erent able states 0 y 1. Thereare now two longitudinal tensions Ten0 and Ten1,two horizontal tensions H0 and H1, two tempera-tures T0 and T1 and the two lenghts L0 and L1.Then we have the state hange equation:

L1 = L0

[

1 + a(T1 − T0) +
Ten1− Ten0

EA

] (15)Where a is the oe�ient of dilatation, E theelastiity module and A the setion area. Notiethat the new length must also satisfy equation 13.Usually numerial methods must be used to satisfysimultaniously equations 13 and 15.Assuming that W does not hange from state
0 to state 1, the value of H1 is obtained by thesolution of
H1

W
sinh

(

WSA

H1

)

+ H1

W
sinh

(

W (S−SA)
H1

)

=
{

H0

W
sinh

(

WSA

H0

)

+ H1

W
sinh

(

W (S−SA)
H0

)}

[

1 + a(T1 − T0)
1

EA

[

H1 cosh
WS
2H1

−H0 cosh
WS
2H0

]](16)3 Modelia implementationCondutor and span parameters are stored in sep-arated reords named CondutorData and Span-Data. Day of the year and time of the day arestored in a third reord whose name is TimeData.Tables 1 to 3 summarize the parameters in eahreord.3.1 Thermal model14 funtions have been de�ned for the implemen-tation of the thermal model (see table 4). 3 lasseshave been also designed:ConvetionHeatFlow: a model similar to theHeatTransfer.Convetion model, but whoseparameters are driven by the ondutor, spanand time parameters.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

821

delaration meaningReal D External diameterReal a Coe�ient of dilatationReal E Module of elastiityReal W Linear weightReal A Cross setion areaReal C Linear heat apaityReal R_ref Linear eletrial re-sisteneReal T_ref Temperature of refer-eneReal alpha Slope of resistanehangeReal abs =0.5 AbsorvityReal emi =1.0 EmissivityTable 1: Parameters in the CondutorData reord
delaration meaningReal He Altitude above sea levelin mReal L Latitude in degReal Zl Azimuth of the line indegReal S Span length en mReal Dy Support di�erene oflevel in mReal T_0 Temperature of ondu-tor in state of referenein KReal Ten_0 Tension of ondutor instate of referene in KgFReal L_0 Lenght of ondutor instate of referene in mTable 2: Parameters in the SpanData reord
delaration meaningInteger Day Day of the year (1-365)Real Hour Time of the day (0-24,13.5 means 1:30 pm)Table 3: Parameters in the TimeData reord

SolarHeatFlow: a model similar to the Heat-Transfer.PresribedHeatFlow model, butwhose value is driven by sun and spanposition.StandAloneHeatingResistor: amodel similar to the Eletri-al.Analog.Basi.HeatingResistor model,that also omputes the heat gain by Joulee�et for a ertain eletrial urrent.Condutor: it is a Heat Capaitor with a tem-perature signal port.3.2 Mehanial and geometrial modelMehanial and geometrial model is implementedby 4 funtions (table 5) and 4 main lasses:CatenaryStateChange: this lass is the imple-mentation of the state hange equations 15and 16. (See File 1). This lass is per-haps, the most important of the mehanialmodel. Here we stablish that the state equa-tion must also satisfy the new length ondi-tion of 13. In order to help a fast solution ofthe state hange equations, a starting pointfor α = H/W an be set. We suggest to use
300 2.Catenary: it is a partial lass that joins the ther-mal, mehanial and geometrial models (see2). In one hand it implements equation 1 as aCondutor (i.e. a heat apaitor) whose heatport has attahed models for the heat �ows(joule e�et qJ , solar radiation qs, onvetion
qc and radiation qr); air temperature Ta is in-luded as a presribed temperature. In theother hand it has also a omponent of theCatenaryStateChange lass; the temperatureof the Condutor is used as an input for theState Change analysys, whose main output isthe sag D alulation. In order to use thislass, a derived lass must be designed, so theeletrial urrent I is de�ned. See File 3.EletrialCatenary: it is a derived lass fromCatenary lass, in whih a eletrial urrentsignal is attahed to the ondutor2As an example, in the simulation shown in setion 4.1the numerial methods have found α = 394.7 for t = 0

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

822

funtion ompute:AirCondutivity thermal air ondu-tivity as a funtion of�lm air temperatureAirDensity air density as a fun-tion of altitude and�lm air temperatureAirVisosity air visosity as afuntion of �lm airtemperatureAngleFator orretion fatorfor onvetion heatlosses as a funtionof the angle be-tween the wind andondutorAsinh asinh(x)ConvetionFlow onvetion heatlossesForedConvetionHigh fored onvetionheat losses for highwind speedsForedConvetionLow fored onvetionheat losses for lowwind speedsForedConvetion fored onvetionheat losses for anywind speedNaturalConvetion natural onvetionheat lossesFilmTemperature �lm air temperatureas a funtion of airand ondutor tem-peraturesSolarAltitude sun Altitude as afuntion of latidude,day of the year andtime of the daySolarAzimuth sun azimuth as afuntion of latidude,day of the year andtime of the daySolarFlux solar heat gain as afuntin of altitude,solar altitude, sunand ondutor az-imuths and type ofatmosphereTable 4: Funtions for the thermal model

funtion ompute:CatenaryLenght equation 13CatenarySag equation 12CatenarySa equation 8CatenaryXbar equation 3Table 5: Funtions for the mehanial and geomet-rial model Joule
I

Air

Sun
Conv. Rad.Condutor StateChangeqJ qs

qc qr

Tc

Ta

D

Figure 2: Catenary modelStandAloneCatenary: it is a derived lass fromCatenary lass, the eletrial urrent value isa Real, without attahing any signal to theondutor. In File 2 we show how to use thislass for some spei� simulation onditions.4 System analysis and examplesIn this setion we illustrate the analysis apabili-ties of the model. To do it, we have applied themodel to a real span of a 230KV distribution sys-tem in Bogotá, Colombia. The model was imple-mented using OpenModelia. As a part of a pre-vious argability study the span was modeled indetail ([5℄). Most of the parameters were available(see table 6), however some experiments were on-duted in order to identify the atual values of thefollowing parameters:
• Emissivity.
• Absorvity.
• Condutor length in the state of referene.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

823

Span parametersCondutor PeaokAltitude 2600 msnmLatitude 4.779423o NorteAzimuth 76.14oHorizontal distane be-tween supports 82.31 mDi�erene of levels be-tween supports 0.4;mNominal longitudinaltension 2970 KgfCondutor parametersExternal diameter 24.2 mmLinear resistene at25oC 9.7 ∗ 10−5 ohm/mLinear resistene at75oC 0.000116 ohm/mAluminium mass 0.79716 Kg/mSteel mass 0.31227 Kg/mLinear weigth 1.16 Kg/mNominal elastiity mod-ule 0.7530 ∗

106 KG/cm2Nominal oe�ient ofdilatation 19.73 ∗ 10−6 1/oCCross setion area 3, 4638 cm2Table 6: Parameters for the examples4.1 Heating analysisFirst we study the hange of ondutor temper-ature for spei� operation onditions. In thisexample we vary just two operation onditionsthrough a 24 hour period: eletrial urrent I (Fig-ure 3) and air temperature Ta (Figure 4). Theseoperation onditions may be onsidered as inputsfor the present analysis where as the ondutortemperature T shown in �gure 5 is omputed asan output.4.2 Cargability analysisCargability analysis is the study of the maximumamount of eletrial urrent that an pass throughthe ondutor without getting a limit ondition.In this example we state the limit ondition as aondutor temperature of 75oC and suppose theair temperature pro�le shown in �gure 6. Carga-bility has been drawn in �gure 7. Notie that theeletrial urrent now is onsidered as an outputof the model. The simulated model is shown in

File 4.4.3 Sag analysisWe now analize the relation between Sag and threevariables: eletrial urrent I, air temperature Taand ondutor temperature T . We use the urrentpro�le of �gure 3 and the air temperature pro�leof �gure 6, and plot the sag D against the threevariables (�gures 8 to 10).Notie that neither I nor Ta an explain alonethe sag D. As the 24 hour yles of I and Ta havedi�erent shapes (�gures 3 and 6), and beause ofthe nonlinear dynami nature of the phenomena,during the 24 hour the same eletrial urrent anour two or more times with di�erent sags.Also notie that inspite the non linearitiespresent in the equations of setion 2.2, the rela-tion between ondutor temperature T and sag Dis almost linear. This is why some failities are nowmeasuring the ondutor temperature online, andnot just the eletrial urrent, in order to studythe real online argability.4.4 Catenary analysisWe an also draw the atenary. To do that we usethe dummy variable x = St using ẋ = S , and useequation 3 in a simulation with stop time of 1s.An example is shown in �gure 11
H

I

Figure 3: Example 1. Eletrial urrent I (A) vsTime of the day H (h)5 ConlusionsA model for bare overhead ondutors has beenpresented. It ombines thermal, mehanial andgeometrial phenomena. The ore of the thermalmodel is a heat apaitor whose parameters and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

824

H

Ta

Figure 4: Example 1. Air temperature Ta (oC) vsTime of the day H (h)
H

T

Figure 5: Example 1. Condutor temperature T(oC) vs Time of the day H (h)inputs are driven by operation onditions as statedby the IEEE 738 standard. The mehanial modelsolves the state hange equation for the ondutortemperature of the thermal model and alulatesthe atenary geometry.By using Modelia, two advantages have beenfound, that are lear examples of the objet-oriented modeling advantages:
• The solution of the state equation is very sim-ple. We just need to write two onditions forthe ondutor lenght. OpenModelia has gen-erated the soure ode that we need in orderto solve the equation.
• Cargability analysis is also simple. IEEE 738standard give us a way to ompute ondu-tor temperature from an eletrial urrentfor spei� operation onditions. However,the inverse problem (ompute the urrent fora ondutor temperature) is just solved forsteady state in the standard. Using Modeliaand OpenModelia the argability problem issolved without any new equation.

H

Ta

Figure 6: Example 2. Air temperature Ta (oC) vsTime of the day H (h)
H

I

Figure 7: Example 2. Maximimum eletrial ur-rent I (A) vs Time of the day H (h)We plan to reate a Modelia library for bareoverhead ondutors in the short term. The li-brary will inlude the parameters for the mostommon omerial ondutors, and more analysisfuntionalities.Referenes[1℄ IEEE Power Engineering Soiety, IEEEStandard for Calulating the Current-Temperature of Bare Overhead CondutorsIEEE Std 738-2006. January 2007.[2℄ OpenModelia, http://www.openmodelia.org/last visit: november 22, 2010.[3℄ Peter Fritzson, Peter Aronsson, Adrian Pop,Håkan Lundvall, Kaj Nyström, Levon Sal-damli, David Broman, Anders Sandholm:OpenModelia - A Free Open-Soure Envi-ronment for System Modeling, Simulation,and Teahing, IEEE International Sympo-sium on Computer-Aided Control SystemsDesign, Otober 4-6, 2006, Munih, Germany

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

825

I

D

Figure 8: Example 3. Sag D (m) vs Eletrialurrent I (A)
Ta

D

Figure 9: Example 3. Sag D (m) vs Air tempera-ture T (oC)[4℄ Donald G. Fink, H. Wayne Beaty. StandardHandbook for Eletrial Engineers. MGraw-Hill Professional[5℄ Osar Duarte, Jaime Alemán, René Soto, Es-trella Parra, Franiso Amórtegui, Wilson Al-dana. Identi�aión de parámetros y estudiode argabilidad en algunas Líneas de Trans-misión de Codensa. Tehnial report. 2009.

T

D

Figure 10: Example 3. Sag D (m) vs Condutortemperature T (oC)
x

y

Figure 11: Example 4. Shape of the atenary.Height y (m) vs Horizontal distane x (m)File 1: CatenaryStateChange.mo
� �with in Catenary ;model CatenaryStateChangeparameter Real W;parameter Real S ;parameter Real Dy;parameter Real T_0 ;parameter Real Ten_0 ;parameter Real L_0 ;parameter Real a ;parameter Real E;parameter Real A;Real T, Ten , L ,H, alpha (s t a r t =300) , Sag ;TemperatureSignalPort port_T ;equat ionT=port_T .T;alpha=H/W;Ten=H∗ osh (S/2/ alpha) ;L=L_0∗(1 + a ∗(T−T_0) + (Ten−Ten_0) /(E∗A)) ;L=CatenaryLenght (S , alpha ,Dy) ;Sag=CatenarySag (S , alpha ,Dy) ;end CatenaryStateChange ;
� �

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

826

File 2: MyStandAloneLine.mo
� �with in Catenary ;model MyStandAloneLineparameter Real Imax=500;parameter Real Imin=200;parameter Real Imin2=400;parameter Real Imax2=600;parameter Real urrentTable [: , 2 ℄={{0 , Imin} ,{60∗60∗6 , Imin } ,{60∗60∗11 , Imax} ,{60∗60∗13 , Imax} ,{60∗60∗14 , Imin2 } ,{60∗60∗16 , Imin2 } ,{60∗60∗18 , Imax2} ,{60∗60∗21 , Imax2} ,{60∗60∗23 , Imin } ,{60∗60∗24 , Imin }} ;parameter Real Tmax=25;parameter Real Tmin=5;parameter Real airtempTable [: , 2 ℄={{0 ,273.15+Tmin} ,{60∗60∗5 ,273.15+Tmin} ,{60∗60∗11 ,273.15+Tmax} ,{60∗60∗13 ,273.15+Tmax} ,{60∗60∗18 ,273.15+Tmin} ,{60∗60∗24 ,273.15+Tmin}} ;extends StandAloneCatenary (I (s t a r t=Imin)) ;Model ia . Bloks . Soures . TimeTableurrent_soure (t ab l e=urrentTable) ;Model ia . Bloks . Soures . ConstantwindVel (k=0.61) ;Model ia . Bloks . Soures . ConstantwindDir (k=0) ;// Modelia . Bloks . Soures . ConstantairTemp (k=273.15+20) ;Model ia . Bloks . Soures . TimeTableairTemp(t ab l e=airtempTable) ;Model ia . Bloks . Soures . BooleanConstantatmos (k=true) ;equat ionI=urrent_soure . y ;windVelo i ty=windVel . y ;windDiret ion=windDir . y ;atm=atmos . y ;ta=airTemp . y ;end MyStandAloneLine ;
� �

File 3: Catenary.mo
� �with in Catenary ;p a r t i a l l a s s Catenaryparameter CondutorData on (D=24.2 , a=19.7e−6,E=0.753 e6 ,A=3.4638 ,W=1.16 ,C=909.9 ,R_ref=0.000097 ,T_ref=273.15+25 , alpha=3.8 e−7,abs=0.5 , emi=1.0) ;parameter SpanData span (He=2600 ,L=4.779420 , Zl =76.14 ,S=82.31 ,Dy=0.4 ,T_0=273.15+20 ,Ten_0=2970 ,L_0=82.54) ;parameter TimeData to (Hour=0,Day=57) ;parameter Real In i t ia lTemp=20;//WeatherReal ta , taCe l iu s , windVeloity ,windDiret ion ;Boolean atm ;// ThermalCondutor Wire (C=on .C) ;Model ia . Thermal . HeatTransfer . Soures .Presr ibedTemperature Env ;Model ia . Thermal . HeatTransfer . Components. BodyRadiation Rad(Gr=on . emi∗on .D

∗0 .0178/5 .6704) ;SolarHeatFlow Sun(He=span .He , L=span . L ,abso rv i ty=on . abs , Zl=span . Zl , area=on.D/1000 ,Hour=to . Hour ,Day=to .Day) ;ConvetionHeatFlow Conv (ax i s=true ,D=on .D,He=span .He) ;//Mehanial & geometr iCatenaryStateChange Sag (a=on . a ,E=on .E,A=on .A,W=on .W, S=span . S ,Dy=span .Dy,T_0=span .T_0,Ten_0=span . Ten_0 ,L_0=span .L_0) ;Real T(s t a r t=Init ia lTemp , f i x ed=f a l s e) ,Qj, Qs ,Qr ,Q , hour , sag ;equat ionhour=time /(60∗60) ;T=Wire .T−273.15;Qj=−HR. heatPort . Q_flow ;Q=Conv . Q_flow ;Qs=Sun . Q_flow ;Qr=Rad . Q_flow ;sag=Sag . Sag ;// weather s i g n a l s to omponentsConv .Vw=windVelo i ty ;Conv . phi=windDiret ion ;Sun .Atm=atm ;Env .T=ta ;t aCe l i u s=ta −273.15;//Thermalonnet (HR. heatPort , Wire . port) ;onnet (Wire . port , Sun . port) ;onnet (Wire . port , Rad . port_a) ;onnet (Rad . port_b , Env . port) ;onnet (Wire . port , Conv . s o l i d) ;onnet (Conv . f l u i d , Env . port) ;//Mehanial and geometr ionnet (Wire . port_T , Sag . port_T) ;end Catenary ;
� �

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

827

File 4: Cargability.mo
� �with in Catenary ;model Ca r gab i l i t yparameter Real TAmin=10;parameter Real TAmax=25;parameter Real TCmax=75;parameter Real Vvto=0.61;parameter I n t e g e r TAFlag=3;extends StandAloneCatenary ; /∗ (t aCe l i u s (s t a r t=TAmin) ,ta (s t a r t =273.15+TAmin) ,Wire .T(s t a r t =273.15+TCmax)) ; ∗/Model ia . Bloks . Soures . Constanttemperature_soure (k=273.15+TCmax) ;// Ex . o fTemparature o f ondutor knownModel ia . Bloks . Soures . ConstantwindVel (k=Vvto) ;Model ia . Bloks . Soures . ConstantwindDir (k=0) ;Model ia . Bloks . Soures . TrapezoidairTemp1 (o f f s e t =273.15+TAmin ,amplitude=TAmax−TAmin , startTime=60∗60∗6 , r i s i n g =60∗60∗5 , width=60∗60∗2 , f a l l i n g =60∗60∗5 , pe r i od=60∗60∗24) ;Model ia . Bloks . Soures . S ineairTemp2 (o f f s e t =273.15+(TAmax+TAmin) /2 , amplitude=(TAmax−TAmin) /2 , freqHz=1/(60∗60∗24) , phase=−Model ia . Constants . p i /2) ;Model ia . Bloks . Soures . Exponent ia l sairTemp3 (o f f s e t =273.15+TAmin ,outMax=TAmax−TAmin , startTime=60∗60∗6 ,r i seTime=60∗60∗7 , r iseTimeConst=60∗60∗2 , fa l lTimeConst =60∗60∗3) ;Model ia . Bloks . Soures . BooleanConstantatmos (k=true) ;equat ionWire .T=temperature_soure . y ;windVelo i ty=windVel . y ;windDiret ion=windDir . y ;atm=atmos . y ;i f TAFlag==1 thenta = airTemp1 . y ;e l s e i f TAFlag==2 thenta = airTemp2 . y ;e l s e i f TAFlag==3 thenta = airTemp3 . y ;end i f ;end Ca rgab i l i t y ;
� �

File 5: SagAnalysis.mo
� �with in Catenary ;model SagAnalys i sparameter Real TAmin=10;parameter Real TAmax=25;parameter Real Imax=500;parameter Real Imin=200;parameter Real Imin2=400;parameter Real Imax2=600;parameter Real mitable [: , 2 ℄={{0 , Imin } ,{60∗60∗6 , Imin } ,{60∗60∗11 , Imax} ,{60∗60∗13 , Imax} ,{60∗60∗14 , Imin2 } ,{60∗60∗16 , Imin2 } ,{60∗60∗18 , Imax2} ,{60∗60∗21 , Imax2} ,{60∗60∗23 , Imin} ,{60∗60∗24 , Imin }} ;extends StandAloneCatenary (T(s t a r t =60)) ;Model ia . Bloks . Soures . TimeTableurrent_soure (t ab l e=mitable) ;Model ia . Bloks . Soures . ConstantwindVel (k=0.61) ;Model ia . Bloks . Soures . ConstantwindDir (k=0) ;// Modelia . Bloks . Soures . ConstantairTemp (k=273.15+20) ;Model ia . Bloks . Soures . Exponent ia l sairTemp(o f f s e t =273.15+TAmin ,outMax=TAmax−TAmin , startTime =60∗60∗6 ,r i seTime=60∗60∗7 , r iseTimeConst=60∗60∗2 , fa l lTimeConst =60∗60∗3) ;Model ia . Bloks . Soures . BooleanConstantatmos (k=true) ;equat ionI=urrent_soure . y ;windVelo i ty=windVel . y ;windDiret ion=windDir . y ;atm=atmos . y ;ta=airTemp . y ;end SagAnalys i s ;
� �

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

828

Modeling and Simulation of AMT with MWorks

Ming Jiang, Jiangang Zhou, Wei Chen, Yunqing Zhang, Liping Chen
 CAD Center, Huazhong University of Science and Technology, China

zhangyq@hust.edu.cn

Abstract

This paper presents a detailed AMT model com-
posed of various components from multi-domains
like mechanical systems (clutch, gear pair, synchro-
nizer, etc.), pneumatic actuator systems (clutch actu-
ation system, gear select actuation system, gear shift
actuation system, etc.). The model is implemented
using the Modelica modeling language in an object-
oriented environment. The Modeling and simulation
of the AMT model was carried out on MWorks,
which is developed by Huazhong University of
Science and Technology.
Keywords: modeling; simulation; automatic mechan-
ical transmission (AMT); multi-domain;

1 Introduction

The automatic mechanical transmission (AMT) is
generally constituted by a dry clutch and a multi-
speed gearbox, both equipped with hydraulic, pneu-
matic or electric actuators, which are driven by an
Electronic Control Unit (ECU). Compared to manual
transmission, the AMT allows to improve driving
comfort and shift quality, and can get better fuel
economy. Compared to automatic transmission (AT),
The AMT has the advantage of lower weight and
higher efficiency [1]. And moreover, the product line
of manual transmission can be reused for AMT. So
the AMT has attracted increasing interesting from
automotive researches, and the vehicles equipped
AMT are spreading in recent years, especially in Eu-
rope, Japan and China.
The AMT always uses electronic sensors, processors
and hydraulic, pneumatic or electric actuators to ex-
ecute clutch actions and gear shifts on the command
of the driver [2, 3]. The clutch and gearbox are con-
trolled by electronic computers and hydraulic,
pneumatic or electric actuators. The AMT operates
the clutch and throttle to match velocity according to
the control logic. Such systems coupled with various
physical domains have great influence on the dynam-
ic behavior of the vehicle, such as shift quality, dri-

veability, fuel economy, acceleration, etc.[4]. Many
researches have been carried out to study the dynam-
ic performance and control logic of the AMT sys-
tems. However, many previous works considered the
AMT actuation system as an ideal system and neg-
lected the transient behavior of the clutch actuation
gear box actuation due to time delays, non-linear
dynamic characteristic, external disturbance and pa-
rameter uncertainty of the pneumatic, hydraulic, me-
chanic and electric components [5, 6]. The simplifi-
cation of the clutch and gear box system can’t
represent a real AMT. The actuator dynamics cannot
be neglected at all, since they can affect the clutch
action and shifting performances. So some research-
ers built more detailed model to study the AMT sys-
tem. Lucente [7] described detailed models of clutch
electro-hydraulic and electro-mechanical actuators
for AMT. Zhao [8] presented the modeling and si-
mulation of clutch actuator, and addressed the analy-
sis on the DC permanent magnet motor (power
source). This paper presents a detailed an AMT
model composed of various components from multi-
domains like mechanical systems (clutch, gear pair,
synchronizer, etc.), pneumatic actuation systems
(clutch actuation system, gear select actuation sys-
tem, gear shift actuation system, etc.).
The model is implemented using the Modelica mod-
eling language, which is a non-proprietary, object-
oriented, equation based language to conveniently
model complex physical systems containing, e.g.,
mechanical, electrical, electronic, hydraulic, thermal,
control, electric power or process-oriented subcom-
ponents [9]. The simulation was carried out by
MWorks [10], which is developed by Huazhong
University of Science and Technology.
The paper is organized as the follows. Section 2 in-
troduces the modeling for clutch, including clutch
plate, diaphragm spring, clutch lever and clutch
damper, etc. Section 3 introduces the modeling for
gear box, such as gear pairs, synchronizer, etc. The
clutch actuator and gear actuator including pneumat-
ic cylinder and valves, etc. are discussed in section 4.
The simulation results and discussions are illustrated
in section 5. Section 6 offers our conclusions and
further study.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

829

2 Clutch Model

The function of an engaging friction clutch is to
transmit torque gradually, to avoid high accelerations
or jerks, when the engine is connected to the rest of
the driveline. As can been seen in Fig.1, the clutch
system is consists of clutch plate, diaphragm, throw-
out bearing, pressure plate, etc. The flywheel is con-
nected to the engine, the clutch plate is connected to
the transmission, and the clutch lever is connected to
pneumatic clutch actuation system, which will be
described in the following. When clutch actuator
acted on the clutch lever, the throw-out bearing
pushed the diaphragm spring in sequence, then the
diaphragm spring pull the pressure plate apart away
the clutch disc, which in turn release presses against
the flywheel. So there is no torque transmit from the
flywheel to the transmissions. And when the clutch
actuation released, the diaphragm spring push
the pressure plate against the clutch disc, which in
turn presses against the clutch plate. This locks the
engine to the transmission input shaft, making them
spin at the same speed.

Fig. 1 The clutch system

2.1 Clutch Plate

According the function of the clutch, there are three
distinct modes of operation of clutch plate: free,
where the two plates transmit no torque; slipping,
where the two plates have differing angular veloci-
ties; and lockup, where the two plates rotate together.
The clutch system was analyzed using a lumped-
parameter model.
The clutch plate model was developed based on
clutch model included in Modelica standard library.
The input signal u was designed as a normalized
form in the standard library. In this paper, the normal
force was designed as input signal.

The torque capacity of the clutch is a function of its
size, friction characteristics, and the normal force
that is applied [8].

3 3
0

max 2 2
0

2()()
3

i
f n

i

R R
T F n

R R
µ

−
=

−
 (1)

Where µ is coefficient of friction that can be formu-
lated as a function of clutch slip, nF is normal force
on clutch face that depends on the apply pressure, oR
is outside radius of friction disc, iR is inside radius
of friction disc, n is the number of friction discs.

2.2 Diaphragm Spring

The clutch plates are pushed together by diaphragm
spring. However, it is difficult to give the equation of
the diaphragm. In this paper, a lookup table based on
experiment data is used to simulate the mechanical
character diaphragm. A linear interpolation to the
characteristic curve is used to model the diaphragm
spring. The normal actuation force on the clutch
plate through the model of diaphragm is acquired by
the diaphragm model.

2.3 Clutch Lever

The clutch lever is modeled by lever principle, and
described as follows:

*A BF i F= (2)

/A BS S i= (3)

Where, AF and AF are the force acted on the two
sides, and AS and AS are the displacement of the two
sides, and i is the lever ratio.

2.4 Clutch damper

The clutch damper reduces the torque and vibration
caused by engaging the clutch pedal's effect on the
rest of the engine system. It is modeled
as parallel torsional spring and damper. It is de-
scribed as following equation:

* *dT k d wθ= + (4)

Where, dT is the torque transmitted by the clutch
damper, k and d is the stiffness and damper of the
clutch damper, respectively, θ and w is the relative
angle and relative rotational speed of the two plates,
respectively.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

830

2.5 Clutch Model Assembly

The clutch library includes clutch components, such
as lever, release bearing, clutch damper, diaphragm,
clutch plate, etc., which is can be seen in Fig. 2.

Fig. 2 The clutch library

According to the subsystem model of clutch system
mentioned above, a clutch model assembly was built
by graphic user interface, as can be seen in Fig.3.
The model includes clutch lever, throw-out bearing,
diaphragm spring, clutch plate, clutch damper, etc.
Where, the port A is connected to the engine, the
port B is connected to the input shaft of the gearbox,
and the port C is connected to the clutch actuation
system.

Fig.3 The clutch model

3 GearBox Model

The gearbox provides speed and torque conversions
from a rotating power source to another device us-
ing gear ratios. The gearbox presented in this paper
was equipped on heavy truck with 14 speeds. The
gearbox included front sub-gearbox assembly, main
gearbox assembly, and rear sub-gearbox assembly,
which is planetary gearbox. The gear model, planeta-
ry gearbox model and synchronizer model will be
introduced in the following.

3.1 Gear Model

A gear is a rotating machine part having cut teeth,
or cogs, which mesh with another toothed part in
order to transmit torque. The gear model is described
as:

1 2*()in outT T r F F= + + (5)

in outω ω= (6)

1 2 * inv v r w= = (7)

Where, inT is the torque acted on the input shaft, outT
is the output torque, inω and outω are the rotary speed
of the gear, 1F and 2F are the force acted on the gear
teeth, 1v and 2v are the velocity of the gear teeth, and
r is the gear radius.
The gear library can be seen in Fig.4.

Fig. 4 The gear library

3.2 Planetary Gearbox

The planetary gear box is an ideal gear without iner-
tia, elasticity, damping or backlash consisting of an
inner sun wheel, an outer ring wheel and a planet
wheel located between sun and ring wheel. The bear-
ing of the planet wheel shaft is fixed in the planet
carrier. The component can be connected to other
elements at the sun, ring and/or carrier flanges. The
planetary gearbox is described as follows:
The resulting torque on the ring gear is:

2
1 3

2 1

*
rT T

r r
=

−
 (8)

The rotary velocity of the planet carrier is:

2 1
3 1 2

2 1 2 1

*
r r

r r r r
ω ω ω= +

− −
 (9)

The resulting torque on the planet gear is:

1
2 3

2 1

*
rT T

r r
=

−
 (10)

Where, 1T , 2T and 3T is torque on the ring gear, the
planet carrier and the planet gear, respectively, 1ω ,

2ω and 3ω is rotary velocity of the ring gear, the planet
carrier and the planet gear, respectively, 1r is the ra-
dius of the planet gear , 2r is the radius of the ring
gear. The planetary gear can be seen in Fig.5.

Fig. 5 The planetary gear

3.3 Synchronizer Model

The synchronizer is the most important shifting
component in a gearbox. The functions of a synchro-
nizer are: making disappear the angular velocity dif-
ference between the synchro hub and the gear to be
engaged, impeaching the engagement of the gear

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

831

http://en.wikipedia.org/wiki/Gear_ratio

while the angular velocity difference exists, and con-
necting hub and gear, by gear splines, via sleeve, in
order to allow power transmission when the gear
changing is realized [11].
However, the dynamical behaviour of these three
mechanical subsystems is rather complicated to si-
mulate because of the large number of elements. It is
not easy to study the entire gear-changing process in
detail [12]. So some simplifications were taken on
the synchronizer model. In this paper, the synchro-
nizer model was considered as a clutch plate model
mentioned above. And the transmission torque is:

r
M

sin
mµF
α

= (11)

Where µ friction coefficient between conical surfac-
es of the ring and the gear,α is the taper angle of the
cone ring, rm is mean radius of the cone, F is the
gearshift force calculated by the gear actuator model.
More details about the synchronizer can be referred
to paper [12, 13].
The synchronizer library includes thrust piece, gear
mesh, bumper stop, friction cone, etc., which is can
be seen in Fig.6. The synchronizer model was shown
in Fig.7.

Fig. 6 The synchronizer library

Fig. 7 The synchronizer model

3.4 Gearbox Assembly Model

The gearbox presented in this paper was a 14-speed
gearbox. According to the subsystem model men-
tioned above, a gear box model assembly was built
by the structure of the gearbox, as can be seen in
Fig.8. The model includes gears, synchronizers, pla-

netary gearbox, gear lever, gear efficiency, etc.
Where, the port A is connected to the clutch, the port
B is connected to the output shaft of the gearbox, and
the port C is connected to the gear actuator system,
such as gear shift actuator, gear select actuator.

Fig.8 The gearbox assembly model

4 Actuator Model

The pneumatic actuator of AMT is consists of pneu-
matic source, pneumatic actuator of clutch, gear se-
lect actuator, gear shift actuator, and other compo-
nents. The clutch actuator was controlled by the
clutch control logic to exert a displacement on the
clutch lever, and make the clutch engaged or disen-
gaged by the control logic. The gear select actuator
and shift actuator were connected to the gear box,
and exert a force on the gear box to select or shift the
gears according by the gearbox control logic. The
pipe is neglected because it is very short.
The flow chart of the pneumatic actuator can be seen
in Fig.9. Where, the reservoir is the air source of the
pneumatic actuation system, the clutch cylinder is
connected to the clutch lever, the gear shift cylinder,
the gear select cylinder, the front and rear sub-
gearbox cylinder were connected to the gearbox. The
cylinder was controlled by the directional control
valves to move to certain position with certain veloc-
ity. The valves were get signals by the control logic.

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15
Power Takeoff Cylinder

Directional Control
Valves

Front Sub-gearbox
Cylinder

Rear Sub-gearbox
Cylinder

 Fig.9 The Flow chart of the pneumatic actuator

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

832

5 Simulation and Results

To analysis the performance the AMT systems, the
simulation about the clutch actuation system, the
synchronizer and overall vehicle equipped AMT as-
sembly were carried out in the following.

5.1 Synchronizer Simulation

In this model, the synchronizer body and sleeve have
an initial rotational speed of 1500 rpm and the idle
gear has an initial speed of 1000 rpm. The sleeve
moves to the teeth of the synchronizer ring, the syn-
chronizer body and sleeve synchronize with idle gear,
the sleeve moves further until it meets the teeth to
the idler gear and finally the idler gear is positively
locked.
Fig. 10-12 shows the work phase of the synchronizer.
When the synchronize ring was shifted, the normal
force on the cone ring will increase, then down to
zero, and the synchronizer ring will hold at the gear-
mesh position for some time before the two side
achieved the same speed.

Fig.10 Rotational speed of two sides

Fig.11 Normal force acted on the cone ring

Fig.12 displacement of the synchronizer ring

5.2 Clutch System Actuation Simulation

This model tested the clutch response when the
clutch actuator pushed the clutch lever, and disen-
gage the clutch plate. The model can be seen in
Fig.13. Fig.14 shows the control signal of clutch ac-
tuator. Fig.15-17 shows the performance of the
clutch. The red line was the simulation results, and
the blue line is the experiment results. The simula-
tion results fit the experiment results very well.

Fig.13 Clutch System Actuation Simulation

Fig.14 Input signal of clutch actuator

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

833

Fig.15 The displacement on the clutch lever

Fig.16 The Force on the clutch lever

Fig.17 The pressure in the cylinder

5.3 Co-simulation with Vehicle Model

According to the topology of the AMT, the pneumat-
ic actuator, clutch, gear box model were assembled
together to get the AMT model, as can be seen in
Fig.18.
The vehicle model was developed with Mat-
lab/Simulink. To connect the AMT model with the
overall vehicle model, the modelica model must be
translated to simulink model. MWorks can complile
the modelica model to s-function model, seen in
Fig.19.

Fig.18 The pressure in the cylinder

Fig.19 The s-function model

Fig.20 The overall vehicle model

The input signal to AMT model include the clutch
command, select gear command, shift gear command,
front sub-gearbox shift command, rear sub-gearbox
shift command, engine speed and torque, etc. The
output signal to the vehicle model and control logic
include the clutch cylinder position, the gear select
actuator position, the gear shift actuator position, the
front sub-gearbox shift actuator position, the rear
sub-gearbox shift actuator position, output speed of
the gearbox, etc. The overall vehicle model can be
seen in Fig.20. The simulation was carried out to
follow a given speed.

Fig.21 The vehicle speed

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

834

Fig.22 Gear number

Fig.23 Throttle position

Fig.24 The performance of AMT

Fig. 21 shows the required vehicle speed and the ac-
tual vehicle speed. The red line is the required ve-
hicle speed and the blue line is the simulation vehicle
speed. Fig.22 shows the gear number, and Fig.23
shows the throttle position. Fig.24 shows the perfor-
mance of the AMT model. Fig. a is the front sub-
gearbox shift actuator position, Fig. b is the rear sub-
gearbox shift actuator position, Fig. c is the gear se-
lect actuator position, Fig. d is the gear shift actuator
position, Fig. e is the input speed of the gearbox, Fig. f
is the output speed of the gearbox, Fig. g is the clutch
cylinder position, and Fig. h is the engine speed.

6 Conclusions and Further Study

The paper addressed the problem of modeling AMT
system. A detailed model of the driveline of a heavy
truck with automated mechanical transmission was
been developed. It considers both the dynamics of
the transmission shafts, and the servo-actuated clutch
and gearbox. Detailed models of the pneumatic actu-
ators and its effects on driveline behavior and on per-
formance during gear shift can be evaluated. The
simulation results show that the detailed model can
be used to estimate the influence of the clutch and
gearbox actuation systems on the vehicle perfor-
mance. The influence affected by the actuator on the
dynamic behavior of the vehicle, such as shift quality,
driveability, fuel economy, acceleration, etc. will be
researched in the future.

Acknowledgement

This work was supported by the National High-Tech
R&D Program, China (No. 2009AA044501).

References

1. Hiroshi K., Naoyuki O. Takashi O. and Masaru Y.
Next-generation Fuel-efficient Automated Manual
Transmission. Hitachi Review, 2004, Vol. 53, No. 4.

2. Florêncio D. and Assis E. The Manual Transmission
Automated – Gearshift Quality Comparison to a
Similar Manual System. SAE paper 2004-01-3363.

3. Turner A. J. and Ramsay K. Review and Develop-
ment of Electromechanical Actuators for Improved
Transmission Control and Efficiency. SAE paper
2004-01-1322.

4. Franceso V., Luigi I., Adolfo S. and Maurizio T.
Modeling Torque Transmissibility for Automotive
Dry Clutch Engagement. 2008 American Control
Conference, Washington, USA, June 11-13, 2008

5. Zhao Y., Chen L., Zhang Y. and Yang J. Enhanced
Fuzzy Sliding Mode Controller for Automated Clutch
of AMT Vehicle. SAE paper 2006-01-1488.

6. Liu F., Li Y., Zhang, J., Huang H. and Zhao H. Ro-
bust Control for Automated Clutch of AMT Vehicle.
SAE paper 2002-01-0933.

7. Lucente G., Montanari M., Rossi C. Modelling of an
automated manual transmission system. Mechatronics,
2007, No. 17, pp.73–91.

8. Zhao L., Zhou Y. and Zheng L. Modeling and Simu-
lation of AMT Clutch Actuator Based on Simula-
tionX. Computational Intelligence and Software En-
gineering, 2009, pp.1-5.

9. Fritzson P., Vadim V. Modelica -- A Unified Object-
Oriented Language for System Modeling and Simula-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

835

tion. Proceedings of the 12th European Conference on
Object-Oriented Programming, 1998, pp.67 – 90.

10. Zhou F, Chen L. and Wu Yi., etc. MWorks: a Modern
IDE for Modeling and Simulation of Multidomain
Physical Systems Based on Modelica. Modelica 2006,
September 4th – 5th, pp. 725-732.

11. Manish K., Taehyun S., Zhang Y. Shift dynamics and
control of dual-clutch transmissions. Mechanism and
Machine Theory, 2007, Vol.42, pp.168–182

12. Lovas L. and Play D. etc. Modelling of gear changing
behavior. Periodica Polytechnica Ser. Transp. Eng.
2006, Vol. 34, No. 1–2, pp. 35–58.

13. Lovas L., Play D., Marialigeti J. and Rigal J. F. Me-
chanical behaviour simulation for synchromesh me-
chanism improvements. Proceedings of the Institution
of Mechanical Engineers, Journal of Automobile En-
gineering, 2006, Vol. 220, No. D7, pp. 919-945.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

836

Variability and Type Calculation for Equation of Modelica

model

Junjie Tang Jianwan Ding Liping Chen Xiong Gong

National CAD Center

1037 Luoyu Road, Wuhan, China

tjj.hust@gmail.com dingjw@hustcad.com Chenlp@hustcad.com Gongx@hustcad.com

Abstract:

Differential algebraic equations (DAEs),

translated from Modelica model, is usually

represented by bipartite graph. One of basic

premises of creating bipartite graph is to

determine types of variables and equations.

Type calculation of Modelica equation has

been researched and a serial of rules for

variability and type calculation has been

concluded in this paper.

Equation type is the type of variable that

equation can solve. Equation type is

calculated in symbolic by both variability

and basic type of its sub-expressions.

Generally, type calculation is a bottom-up

way as expression is represented in form of

tree. But, there are kinds of particular

expressions, such as integer(), noEvent(),

multi-output function call expression, etc,

which may cause type and variability

incompatible problem. The issue is

discussed in the paper, and several rules for

variability and type calculation are present.

These rules will helps to debug out obscure

errors, and several typical examples are

present to show how the rules work.

Keyword: equation type; equation

variability; compatibility of variability and

type; model debug

1. Introduction

Differential algebraic equations (DAEs),

generated by compiling and translating

Modelica model, should be debugged by

method of structural analysis [1], and be

reduced and decomposed to subsystem

serials [2], to reduce the scale of equation

system and improve efficiency of numerical

calculation. Most of these symbolic

operations are usually processed based on

representation of bipartite graph of DAEs,

and one of basic premises of creating

bipartite graph is determining type of

variables and equations. The type of

variable, obviously, is as defined in model,

while the type of equation has to be deduced

from its sub-expressions [3].

Equation type is the type of variable that

equation can solve. Equation type is

symbolic calculated by both variability and

basic type of its sub-expressions. Generally,

type calculation is a bottom-up way as

expression is represented in form of tree.

But, there are some particular expressions,

such as integer(), noEvent(), multi-output

function call expression, etc, which may

cause type and variability incompatible

problem, that is variability of equation is not

compatible with type of it. In the paper,

reason for this problem is discussed, and the

way for debugging is introduced.

Section 2 shows basic rules of equation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

837

mailto:tjj.hust@gmail.com
mailto:dingjw@hustcad.com
mailto:Chenlp@hustcad.com

type calculation. Section 3 analyzes type

and variability incompatible problem and

concludes corresponding rules for

variability and type calculation. Section 4

complements an additional rule for

variability calculation for symbolic

transformation. Section 5 is the conclusion

of this paper.

2. Basic Rules for Equation

Type Calculation

There are four basic types of variable of

Modelica model, as Real, Integer, Boolean,

and String, predefined by Modelica.

Correspondingly, there are four basic types

for equation. Record equations should be

split into basic types. The following rules of

equation type calculation can be

summarized from Modelica Language

Specification (Modelica 3.2, 28, 61, 64) [4]:

Rule 1. The resulting type of equation is

the same as of the type compatible

expression of two sides.

Rule 2. The resulting variability of

equation is the higher variability of two

sides.

3. Compatibility of Type and

Variability

As we known, Real type variable can hold

all kinds of variability, while variability of

Integer, Boolean or String Type variable is

no higher than discrete. So does expressions

and equations. That is the rule:

Rule 3. The resulting type and variability

of equation variability must be compatible.

In following part, cases for Rule 3 are

introduced, to show how it works.

3.1 integer() and noEvent()

There are kinds of pre-defined built-in

function in Modelica (Modelica 3.2, 19, 109).

Generally, type and variability calculation of

call of these functions follows Rule 1 and 2.

However, there are two particular functions,

integer() and noEvent(), are quite different.

According definition of them, there is a rule

for their variability and type calculation.

Rule 4. Variability of integer() is no higher

than discrete, and type of it is integer;

variability of noEvent() is continuous, and

type of it is the same as that of input

argument.

integer() is more like a implicit type

conversion function [5], like int() in C++, that

means variability of integer(x) is no higher

than discrete, even x is continuous, and type

of it is integer, obviously. So, integer(x)

indicates that x must be an independent

variable. Here is an example:

function fn1

 input Real x;

 input Integer y;

 output Real z;

 annotation (derivative = derfn1);

algorithm

 z:=x^2+y^2;

end fn1;

function derfn1

 input Real x;

 input Integer y;

 input Real xder;

 output Real zder;

algorithm

 zder:=2*x*xder+y^2;

end derfn1;

Real x;

Real y;

Real u;

Real v;

equation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

838

 u=sin(2*time); // eq1

 x =cos(time); // eq2

 u= fn1(x, integer(y)); // eq3

 v = der(y)+x; // eq4

x y u v

eq1 eq2 eq3 eq4

Figure 1 Bipartite graph of equations, with
matching edges marked by thick lines

In the example, each equation is legal, all

their types are continuous, and here is the

bipartite graph for equations of model (Fig.

1). When finding matching in bipartite

graph, it should be careful that argument of

integer() cannot be the matching vertex with

the same equation integer() present in. So,

in this case, result of structural analysis is

that, y is under-determined, while x and u

are over-determined with equation eq1, eq2

and eq3.

noEvent() doesn’t trig event as defined

(Modelica 3.2, 26), even input argument is an

event expression. When we combined

noEvent() and integer() together, there was

an interesting result. Here is the simple

example.

Real x;

Integer i = 1;

Integer i2;

equation

 i = x; // eq1, legal

 i2 = noEvent(integer(x)); // eq2,

illegal

In this case, eq1 is legal, as variability of

eq1 is continuous (higher one of i and x), and

type of it is Real (as the same type of type

compatible variable of i and x). However,

eq2 is illegal, variability of eq2 is continuous

(right hand is continuous), while type of eq2 is

Integer (type of two hands of eq2 are Integer),

that is breach of Rule 3.

3.2 Call Expression of User-define

Function

Type and variability calculation of function

call follows Rule 5:

Rule 5. Assume that function is defined

as single output, variability of function call

expression is the same as the higher

variability of input real arguments; type of

function call is the same as the one of output

formal parameter.

Variability of function call expression is

the same as the higher variability of all input

real arguments, is because that “all

assignment statements within function are

implicitly treated with the noEvent

function” (Modelica 3.2, 87), which means

if input arguments are continuous, it is

impossible to generate a discrete output. For

example:

parameter Real a = 10;

parameter Real b = a+2;

parameter Real b = f(a+b, a)*2;

Since both a+b and a are parameter,

f(a+b, a) is parameter. But if model is:

Real a = 10;

parameter Real b = 2;

parameter Real b= f(a,2)*2; //illegal

Variability of f(a,2) is the higher

variability of a and 2, that is continuous.

A more complex example is like follows:

 function fn1

 input Real x;

 input Integer y;

 output Real z;

 annotation (derivative = derfn1);

algorithm

 z:=x^2+y^2;

end fn1;

function derfn1

 input Real x;

 input Integer y;

 input Real xder;

 output Real zder;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

839

algorithm

 zder:=2*x*xder+y^2;

end derfn1;

function fn2

 input Real a;

 output Integer b;

algorithm

 b:= integer(a);

end fn2;

Real x;

Real y;

Real u;

Real v;

equation

 u=sin(2*time);

 x =cos(time);

 u= fn1(x, fn2(y)); // eq1, illegal

 v = der(y)+x;

In eq1, the variability of fn1(x, fn2(y)) is

continuous, as x is continuous, and the type

of it is Real, then the right hand and left

hand have the compatible variability and

type. However, the variability of fn2(y) is

continuous, and the type of it is Integer, that

is breach of Rule 3. We could make a

transformation to show this obscure error

more clearly. Let introduce Integer variable,

like:

Integer i = fn2(y); // eq2

Then eq1 is conceptually equivalent with:

u= fn1(x,i); // eq1’, legal

After transformation, eq1’ is legal, but

eq2 is a wrong equation, obviously, as type

of variable i is discrete, and variability of

fn2(y) is continuous. It is impossible to

assign a continuous value to a discrete

variable.

3.3 Symbol “.”

“.” is a symbol for member access. Let

extend its meanings to present split pattern

of multi-output function call.

For call expression of multi-output

function, variability and type calculation

follows Rule 5, with a split transformation

of function call. That is, equation that

contains multi-output function call

expression should be split into basic types

before type calculation. Take following case

as an example:

function fn

 input Real x;

 input Real y;

 output Real u;

 output Integer v;

algorithm

 u := x+y;

 v := integer(x-y);

end fn;

Real a,b,c,d;

Integer k;

equation

c=3*sin(time);

d=cos(time);

(a,k)=fn(c,d); // eq1

b=fn(2,if c>0 then 3 else -0.5); //eq2

In this case, eq1 should be split into

following equations:

a=fn(c,d).u; // eq1-1

k=fn(c,d).v; // eq1-2

And eq2, though it is a basic type

equation, should be equivalently

transformed into:

 b=fn(2,if c>0 then 3 else -0.5).u

Key of split transformation is to put the

corresponding output formal parameter at

the right position, with a symbol “.”, as a

member attached to its parent expression.

With these transformations, type of

multi-output function call expression could

be calculated by Rule 5. For example, the

type of right hand of equation k=fn(c,d).v is

the type of v, that is Integer, and the type of

equation is Integer. Variability of right hand

is continuous (higher variability of c and d),

and variability of equation is continuous. It

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

840

indicates that there is an error in equation

(a,k)=fn(c,d), with a breach of Rule 3.

3.4 If-Expression

If-expression is defined as “if expression1

then expression2 else expression3”

(Modelica 3.2, 19). Rule for variability and

type calculation of if expression is:

Rule 6. Variability of if-expression is the

highest variability of expression1,

expression2 and exression3, type of it is the

type of expression2.

Type of if-expression is type of

expression2, as expression2 and expression3

should be defined as type compatible, while

expression1 affects variability of

if-expression. For example:

Integer x=if noEvent(time>0) then 1 else

2;

 Variability of equation in the example is

continuous, as that of right hand is

continuous, following Rule 6, while type of

equation is Integer, as both hands are

Integer. Thus, resulting variability and type

breach Rule 3, means that equation is

illegal.

3.5 Event Expressions

For event expressions, like event

triggering mathematical functions

(Modelica 3.2, 21), relational expressions,

etc, calculation rule is:

Rule 7. Variability of event expression is

no higher than discrete, unless it is present

in when-clause.

For example:

Integer x;

equation

 when time > 0 then

 x = if noEvent(time > 0) then 1 else 2;

 end when;

For equation x = if noEvent(time > 0)

then 1 else 2 is present in when-clause,

variability of equation is discrete, different

with example in section 3.4, and type of it is

Integer. So, in this case, Rule 3 is followed,

and the equation is legal.

4. Rule for Symbolic

Transformation

In the case where function call is inlined,

part of assignment statements will become

the part of equations, and the inlined result

should be treated with noEvent function.

Here is an example:

function f

input Real in1;

input Real in2;

output Integer out1;

annotation(Inline=true);

 algorithm

 out1 := if in1>0 then in1 else in2;

 end f;

 Real x;

 Integer i = 2;

equation

 i = f(x, time);// eq3

When f(x, time) of eq3 is inlined, the

inlined result should be:

i =if noEvent (x>0) then x else time;

rather than:

i =if x>0 then x else time;

It is concluded as:

Rule 8. Symbolic transformation must not

change basic type and variability of

equation.

5. Conclusion

Type calculation of Modelica equation has

been researched and a serial of rules for

variability and type calculation has been

concluded in the paper. Kinds of expression

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

841

are analyzed to explain possible variability

and type incompatible problem, and more

rules are introduced, with several examples

to show how rules work. The rules for

variability and type calculation for equation

will helps to find out obscure errors in the

model(such as examples in section 3), and

to build more accurate bipartite graph for

DAEs from Modelica model.

REFERENCES

[1]. Peter Bunus, Peter Fritzson. Methods

for Structural Analysis and Debugging

of Modelica Models. Proceedings of

the 2nd International Modelica

Conference, 2002, 10: 157~165

[2]. Ding Jianwan. Research on Methods

for Consistency Analysis and

Reduction of Declarative Simulation

Models: [PhD thesis]. China:

Huazhong University of Science &

Technology, 2006

[3]. David Broman. Types in the Modelica

Language. Proceedings of the 5th

International Modelica Conference,

2006, 9:303~315

[4]. Modelica Language Specification V3.2.

https://www.modelica.org/.

[5]. Peter Fritzson. Principles of

Object-Oriented Modeling and

Simulation with Modelica 2.1.

Wiley-IEEE Press, New York, USA,

2004

[6]. Futong Lv. Numerical Computing

Methods, chapter 5. Tsinghua

University Press, 2008.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

842

https://www.modelica.org/

Shock Absorber Modeling and Simulation Based on Modelica

Yuming Hou, Lingyang Li, Ping He, Yunqing Zhang, Liping Chen
CAD Center, Huazhong University of Science and Technology, China

zhangyq@hust.edu.cn

Abstract

The purpose of shock absorbers are to dissipate im-
pact energy, and control tire force variation, the
shock absorber has great influence on both ride and
handling performance of vehicles, and a great many
previous researches have been done on modeling and
simulation of the shock absorber. In this paper, a de-
tailed model of shock absorber is established, which
contains rebound chamber, compression chamber,
piston valve assembly, base valve assembly and so
on. Those models are built using modelica language,
modelica is a language for modeling of physical sys-
tems, designed to support effective library develop-
ment and model exchange. It is a modern language
built on a causal modeling with mathematical equa-
tions and object-oriented constructs to facilitate reuse
of modeling knowledge.
Keywords: shock absorber; ride; handling; Modeli-
ca

1 Introduction

Shock absorber is widely used on vehicle. The pur-
poses of the shock absorber are to dissipate the ener-
gy accumulated by the suspension spring displace-
ment. The damping of the shock absorber for com-
pression motion is usually less than that of rebound
motion, in such a case, less force is transmitted to the
vehicle when crossing a bump. By comparison, the
shock absorber provides more damping force for re-
bound motion in order to dissipate energy stored in
the suspension system quickly [1]. When the shock
absorber is operated, hydraulic oil is passed between
chambers via a system of hydraulic valves, and the
damping effect is accomplished by the resistance of
the oil when flowing through the valves. For the im-
portance of the shock absorber on vehicle ride and
handling performance, it is necessary to establish an
accurate mathematical model of shock absorber, and
there is a great wealth of literatures devoted to the
modeling and simulation of the shock absorber. Herr
[2] presented a computational fluid dynamics method

combined with a dynamic modeling technique.
Which used to study the flow and performance of
automotive hydraulic dampers / shock absorbers.
Simms [3] established a non-linear hysteretic physi-
cal shock absorber model, and the processes utilized
to identify the constituent parameters, and the model
is validated by comparing simulated results to expe-
rimental data for a test damper, for three discrete
frequencies of sinusoidal excitation of 1, 3 and 12 Hz.
Talbott [4] presented a mathmatical model of a gas-
charged mono-tube racing damper. The model in-
cludes bleed orifice, piston leakage, and shim stack
flows, and also includes models of the floating piston
and the stiffness characteristics of the shim stacks.
Chavan [5] study the damper lag and hysteresis
which are the important parameters affecting the dy-
namic response of the hydraulic shock absorbers, and
the response of the suspension unit to road excitation
strongly influences motorcycle ride comfort.
Modelica is a freely available, object-oriented lan-
guage for modeling of large, complex, and heteroge-
neous physical systems. It is suited for multi-domain
modeling, for example, mechatronic models in robot-
ics, automotive and aerospace applications involving
mechanical, electrical, hydraulic and control subsys-
tems, process oriented applications and generation
and distribution of electric power. Models in Mod-
elica are mathematically described by differential,
algebraic and discrete equations. No particular varia-
ble needs to be solved for manually. A Modelica tool
will have enough information to decide that automat-
ically. Modelica is designed such that available, spe-
cialized algorithms can be utilized to enable efficient
handling of large models having more than one hun-
dred thousand equations. Modelica is suited and used
for hardware-in-the-loop simulations and for embed-
ded control systems.

2 Shock Absorber Modeling

The shock absorber is one of the most important
elements in a vehicle suspension system. For analyz-
ing the influence of the uncertain parameters on the
response of the shock absorber, a detailed analytical

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

843

model of the shock absorber is necessary. The first
step of establishing the analytical model is to under-
stand the physics of the shock absorber. Fig. 1 shows
the schematic of the shock absorber. The shock ab-
sorber mainly consists of rebound chamber, com-
pression chamber, reserve chamber, piston valve as-
sembly and base valve assembly. When the piston
valve assembly moves up and down, pressure diffe-
rential is generated between the rebound chamber
and the compression chamber, also there is pressure
differential between the compression chamber and
the reserve chamber. The pressure differential forces
the fluid to flow through the valves and orifices. The
damping force during the compression and rebound
stoke are produced on account of the resistance of-
fered by the fluid in flowing through the valves and
orifices [6].

Piston Rod

Rebound
Chamber

Piston Valve
Assembly

Base Valve
Assembly

Reserve
Chamber

Compression
Chamber

Fig. 1 The Schematic of the shock absorber

During the compression, the piston rod moves down
and pushes the fluid in the compression chamber
flowing to the rebound chamber and reserve chamber.
The detailed structures of the piston valve assembly
and the base valve assembly are given in Fig. 2, the
fluid paths during the compression are also shown in
the figure.
As shown in Fig. 2(a), the by-pass valve and rebound
valve are essential non-return valves, during the
compression, the rebound valve disc is closed, but
there are four orifices on the rebound valve disc al-
low the fluid flow through, cross the holes of piston
body and by-pass valve disc to the rebound chamber.
The by-pass valve disc opens only if the pressure
differential between the compression chamber and
the rebound chamber reaches the preload of the by-
pass valve spring. In Fig. 2(b), the check valve is
closed, and before the pressure differential between
the compression chamber and reserve chamber
reaches the preload of the compression valve disc,
the compression valve will be closed. But the fluid
can still pass through the four orifices on the com-
pression valve disc. When the pressure differential
exceeds the preload, the compression valve will be
opened.

By-pass Valve
Spring

By-pass Valve
 Disc

Rebound Valve
 Disc

Rebound Valve
 Spring

Check Valve
 Spring

Check Valve
 Disc

Compression
Valve Disc

 (a) (b)
Fig. 2 Fluid paths through the piston valve and

base valve during the compression stoke
By-pass Valve

Spring

By-pass Valve
 Disc

Rebound Valve
 Disc

Rebound Valve
 Spring

Check Valve
 Spring

Check Valve
 Disc

Compression
Valve Disc

 (a) (b)
Fig. 3 Fluid path through the piston valve and base

valve during the rebound stoke
During the rebound, fluid in the rebound chamber
was forced flowing to the compression chamber, the
missing oil equivalent to the rod volume extracted
from the rebound chamber is complemented from the
reserve chamber to the compression chamber, and
the flow paths are shown in Fig. 3.
In Fig. 3(a), the by-pass valve is closed, when the
pressure differential between the rebound chamber
and the compression chamber is lower than the prel-
oad of the rebound valve spring, the rebound valve is
also closed, but the fluid will pass through the orific-
es on the disc. And when the pressure differential
reaches the preload, the rebound valve disc will be
opened. As depicted in Fig. 3(b), the compression
valve is closed, and the fluid will flow through the
orifices on the disc from reserve chamber to com-
pression chamber. And the check valve will be
opened when the pressure differential between the
reserve chamber and the compression chamber
reaches the preload of the check valve spring.
From discussed above, an equivalent scheme of the
shock absorber is built in Fig. 4.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

844

Rebound chamber

Orifices on the by-pass
valve disc

Circular holes on the
piston body

Rebound valve

Orifices on the
rebound valve discCompression chamber

By-pass valve

Rectangular holes on
the piston body

Check valve

Rectangular holes on
the base body

Orifices on the check
valve disc

Circular holes on the
base body

Compression valve

Orifices on the
compression valve disc

Reserve chamber
Fig. 4 The equivalent scheme of the shock absor-

ber
For a generic orifice or a hole, the flow rate Q can
be expressed as a function of the pressure drop p∆ :

2 pQ CA
ρ
∆

= (1)

Where, C is the flow coefficient, A denotes the
flow area of the orifice, ρ is the density of the oil.
The modelica code of the orifice is given in Fig. 5.

Fig. 5 The modelica code of the orifice

For a check valve with spring preload, the formula
given below describes the relation between the flow
rate vQ and pressure drop vp∆ :

0

0
0

0

() 2

v

v v disc v
b v

s

if p p
Q p p A pCl if p p

k ρ

∆ ≤ ∆
= ∆ −∆ ∆

∆ > ∆

 (2)

Where, 0p∆ is the preload of the spring, sk denotes
the stiffness of the spring, bl represents hydraulic
perimeter of the valve disc. discA is the area which
oil pressure acts on the valve disc. The modelica
code of the check valve is shown in Fig. 6.

Fig. 6 The modelica code of the check valve

The mathematical model of the compression valve is
presented as below:

0

0

0

2

c c

c c
bc c c

if p p
Q pCl if p pδ

ρ

∆ ≤ ∆
= ∆

∆ > ∆

 (3)

4 3 2 2 4 3
1 1 2 1 2 2 1 2 1 23 [(9 8 18) / 6 4 ln(/)]c

c

p r r r r r r r r r r
E h

δ
∆

= + − + − (4)

Where, cQ is the flow rate through the compression
valve, cp∆ is the pressure drop, bcl denotes the hy-
draulic perimeter of the compression valve disc, δ
represents the deflection of the disc, cE is the elastic
modulus of the disc, h is the thickness of the disc.

1r and 2r are the outer and inner contact radius be-
tween the disc and the compression valve body. Fig.
7 shows the modelica code of the compression valve.

Fig. 7 The modelica code of the compression valve

3 Simulation

A shock absorber simulation model is established
using MWorks/Modelica software, as shown in Fig.
8, the model contains the rebound valve, by-pass

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

845

valve, check valve, compression valve, rebound
chamber, compression chamber, reserve chamber,
the mass of the piston and so on. The input of the
simulation model is a sine displacement to the piston
rod. And Fig. 9 shows the response of the damping
force vs the velocity of the piston. Fig. 10 shows that the
response of the damping force vs the displacement of the
piston

Fig. 8 The simulation model of the shock absorber

Fig. 9 Response of the damping force vs the veloc-

ity of the piston

Fig. 10 Response of the damping force vs the dis-

placement of the piston

4 Conclusions

In this paper, the mathematical model of the shock
absorber which contains rebound chamber, compres-
sion chamber, piston valve assembly, base valve as-
sembly is given in the paper, then a simulation model
is established using MWorks/modelica software, the
simulations are performed to evaluate the damping
force of the shock absorber. The results shows that

the Modelica language is available for modeling
multi-domain physical system.

Acknowledgement

This work was supported by the National High-Tech
R&D Program, China (No. 2009AA044501).

References

[1] S. Subramanian, R. Surampudi and K. R.
Thomson. “Development of a Nonlinear
Shock Absorber Model for Low-Frequency
NVH Applications,” SAE paper 2003-01-
0860.

[2] F. Herr, T. Mallin, J. Lane and S. Roth. “A
Shock Absorber Model Using CFD Analysis
and Easy5,” SAE paper 1999-01-1322.

[3] A. Simms and D. Crolla. “The Influence of
Damper Properties on Vehicle Dynamic Be-
haviour,” SAE paper 2002-01-0319.

[4] M. S. Talbott and J. Starkey. “An Experi-
mentally Validated Physical Model of a
High-Performance Mono-Tube Damper,”
SAE paper 2002-01-3337.

[5] C. B. Chavan, M. K. Venkata, R. Babu and R.
Bharat. “Experimental Study on Effect of
Damper Lag on Motorcycle Ride Comfort,”
SAE paper 2006-32-0096.

[6] L. C. Andreotti and S. N. Vannucci. “Shock
Absorber Mathematical Modeling,” SAE pa-
per 982959.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

846

Integrating occupant behaviour in the simulation of coupled
electric and thermal systems in buildings

Ruben Baetens ∗ Dirk Saelens
Building Physics Section, Department of Civil Engineering, K.U.Leuven, Belgium

∗ ruben.baetens@bwk.kuleuven.be

Abstract

The presented work depicting the integrated modelling
of probabilistic occupant behaviour in buildings con-
sists of non-physical modelling with a physical multi-
domain impact. The human behaviour considering
occupancy, the use of lighting and the use of elec-
tric appliances in dwellings has been implemented, but
the same method can be used for other stochastic be-
haviour. The stochastic behaviour is used for simula-
tion of coupled thermal and electrical systems in the
building stock and is of high importance for the as-
sessment of smart grids and distributed energy genera-
tion. Implementing stochastic occupant behaviour in-
fluences the internal heat gains which in turn influence
the heat load of the building and the switch-on and -off
moment of e.g. an electric heat pump. This, together
with the power demand of the used electric appliances
and possible on-site generation determine the load on
the electric grid and possible instabilities. Here, the
use of deterministic profiles for use at both the build-
ing and the building district scale no longer fits.
Comparison between a determinsitic approach as

proposed in ISO 13790 and the use stochastic profiles
shows that the direct first order effect is on average
rather small: the difference in total internal gains and
its influence on the indoor temperature averages nearly
zero and the standard deviations σ are small, however
high peaks may occur. Also the difference in effect on
the electric distribution grid voltage averages nearly
zero, however here strong peaks occur which are of
most importance for the grid stability. When taking in
account the second order effect of heating by means
of electricity, much larger differences are noticed: due
to longer and more differentiated occupancy times, the
average indoor temperature rises. Furthermore, the
moment of heating differentiates compared to a deter-
minsitic approach resulting in more but smaller peak
demands towards the electricity grid.
Keywords: Stochastic modelling; Occupant be-

haviour; Grid load; Thermal building response.

1 Introduction

Since the development of dynamic building simulation
programs such as TRNSYS and ESP-r in the mid-70’s
[14, 26], the assessment of comfort and energy demand
of buildings has been subject of intensive research.
As a recast of the European legislation 2002/91/EG
obliges all members to build nearly zero-energy build-
ings by 2020, the need of detailed dynamic simulations
still increases. The recast should result in the imple-
mentation of renewable energy in the building stock,
most often resulting in an all-electrical solution with
a combination of building-integrated photovoltaic sys-
tems (BIPVs) and an electrical heat pumpwhere the to-
tal electricity consumption is. However, a problem of
simultaneity between electricity production and con-
sumption arises with the distribution grid as virtual
storage [3, 4]. This paper focuses on the modelling
of user behaviour, influencing both the fluctuations in
the electricity demand as well as the thermal demand.

2 Stochastic behaviour

The behaviour of building occupants is most often sim-
plified in current practice as deterministic schedules
of user behavior as inputs to the building simulation
model (e.g. as in ISO 13790 [12]), whereas the prob-
abilistic user behaviour plays an important role. The
combination of both stochastic and controllable local
service demand, and both stochastic and controllable
local energy conversion in different energy vectors (i.e.
heat, cold, fuel or electricity in buildings) allows to op-
erate [7] and optimize the energy distribution and con-
trol in many different ways at both the scale of a single
building and the building district .
The modelling of human behaviour is implemented

in Modelica as it is part of a bigger approach including

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

847

thermal building simulation, simulation of thermal en-
ergy systems, electrical energy systems and distributed
generation (see Fig.1).
The presented work consists of the non-physical

modelling of probabilistic occupant behaviour in
buildings with a physical multi-domain impact on both
thermal and electrical aspects. The behaviour consid-
ering occupancy [20], the use of lighting [22] and the
use of use of appliances [17] in dwellings has been im-
plemented, but the same method can be used for other
stochastic behaviour (e.g. opening of windows by oc-
cupants). The implemented stocastic model is largely
consistent with the model of Richardson et al. [21].
The output of the model are presence and activity pro-
files of the building occupants, coupled to the usage of
electric appliances and lighting which result in (i) con-
vectiveQc and radiativeQr internal heat gains and (ii)
the real or active electric power demand P . The model
is integrated in the dynamic simulation of the thermal
response of buildings and its grid impact towards the
assessment of distributed generation at district scale.
Many researchers [10, 18, 19, 20, 21, 22, 23, 25, 30]

use Markov properties for modelling occupancy and
the use of appliances in buildings. A Markov process
is a stochastic process {Xt, t ≥ 0} with values in a
state space E where for any s < t and any measurable
set A ⊂ E holds that P (Xt ∈ A|Xr, 0 ≤ r ≤ s) =
P (Xt ∈ A|Xs) = P (s,Xs, t, A) where the function
P (s,Xs, t, A) describes the probability that the pro-
cess is inA at t conditioned by the information that the
process is in x at time s [15]. The Markov property
depicts that the future state does not depend on how
the current state is obtained but only depends on the
present state itself. The process is characterized by the
transition probabilities A → P (s,Xs, t, A) parame-
terized by s, x and t.
Within this work, both embedded discrete time

Markov chains and semi-Markov processes are imple-
mented.

2.1 Occupancy: Embedded discrete time
Markov chains

Occupancy in buildings is typically dealed with as em-
bedded discrete time Markov chains [18, 20, 23, 30]
however also semi-Markov processes may be found
suitable [19], i.e. especially for single-person of-
fices where only two states are possible. Allthough
used only for evaluation of uccpancy, the implemented
model for embedded discrete time Markov chains is
generic and can be used and extended for all similar
Markov chains.

Figure 1: Occupant behaviour as part of the simulation
of energy networks at district scale by the K.U.Leuven
Energy Institute.

In an embedded discrete time Markov Chain, the
possible change in occupancy (i.e. a person entering
or leaving the building) is evaluated repeatingly after a
discrete time step (i.e. mostly 10 minutes) based on the
previously descried Markov property P (s,Xs, t, A).
The Markov-properties are stored in records as

record Occupance(Integer n(min=1),SI.Time period,
SI.Time s, Real[s,n+1,n+1] Twd, Twe);

where n depicts the number of different states,
period the total time span across which the Markov
process transition probabilities repeat themselves (i.e.
mostly 24 hours) and s the number of equal time steps
within the period wherefor the transition probabilities
are given.
The matrices Twd and Twe depict the transition

probabilities of the Markov process for a work day
and weekend respectively so that P (s,Xs, t, A) =
T [s,Xs + 1, A + 1]. Twd and Twe are retrieved from
Richardson et al. [20] where they are given for
dwellings with 1 to 5 inhabitants and where the pos-
sibility of correlatioin between differen inhabitants for
arrival or departure is included. At each discrete time
step, the the actual current (cumulated) transition prob-
abilities based on the knowledge of the present state
and the time of day are extracted from the R3-matrix
containing all transition probabilities and evaluated for
possible state changes.

model OccStoch(Occupance (...))
MSL.IntegerOutput occ;
MSL.HeatPort Qconv, Qrad;

end OccStoch;

The presence of inhabitants determines internal
gains from people and the possibility of opening win-
dows, whereas it is a necessary condition for the use
of many electric appliances and the use of lighting in
buildings.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

848

2.2 Appliances: Semi-Markov processes

Differently from the evaluation of occupancy in build-
ings, the use of appliances is generally implemented as
semi-Markov processes [19, 21, 22, 25, 30].
For the use of many domestic electric appliances,

presence of at least one of the occupants is a first neces-
sary condition, derived from the previously mentioned
embedded discrete time Markov chains.
Secondly, the activity profile of humans depends on

the moment of the day. Activity profiles are gener-
ally described as a sequence of probabilities denoting
the chance that a certain activity occurs at the time of a
day. The probabilities are depicted independently from
the current state (i.e. doing the activity or not) but de-
pending on the number of active occpants, differently
from the description of human occupancy in buildings
by transition probabilities which depend on the current
state.

record Activity(Integer n(min=1), SI.Time period,
SI.Time s, Real[s,n+1] Pwd, Pwe);

model ActProb(Activity[:] (...))
MSL.IntegerInput occ;
output Boolean[:] act;

end ActProb;

where n depicts the number of occupants active at
moment t derived from the stochastic occupancy pro-
file for which the stated probabilities count, period
the total time span across which the Markov process
probabilities repeat themselves (i.e. mostly 24 hours)
and s the number of equal time steps within the period
wherefor the transition probabilities are given. The
matrices Pwd and Pwe depict the probabilities of the
Markov process for a work day and weekend respec-
tively. The different probabilities are derived from
Richardson et al. [21] for the activities watching tele-
vision, cooking, doing laundry, ironing, cleaning the
house and spending time on washing and clothing. The
library of activites can be extendedwith additional data
from time-consumption surveys [28]. Currently, the
implementation only takes into account the different
profiles for working days and weekend days, but can
be easily expanded e.g. for taking into account long
days of absence or vacation.
At each discrete time step, the activity probability

is evaluated for possible use of appliances related to
the activity based on the relative use of appliances.
When the decission is taken that a certain appliance
is switched on, the length during witch the appliance

will remain on is determined once, differently from the
occupancy pattern where the possible switch is evalu-
ated for every discrete time step. This simplification of
an embedded discrete time Markov chain into a semi-
Markov process is only possible if only two states oc-
cur, i.e. off and on in this case, resulting in less sim-
ulation events and thus shorter simulation times. The
drawback of this approach is that interactions from one
occurance to another are excluded, i.e. it excludes
adaptation and intermediate states.
The data implementation happens as

record Appliance(Activity act, Real ncycle, Real cal,
Real frad, Real fconv, SI.Time lcycle, SI.Power Pcycle,
SI.Power Pstandby);

record Light(Integer n,SI.Power[n] Pcycle);

where act is the required activity of the appliance,
ncycle is the average number of cycles during a year,
cal a calibration scalar defining the relation between
the activity and the effective use of the appliance, and
lcycle is the average length of usage, where Pcycle and
Pstandby are the total power demand of the appliance
when switched on and at standby modus respectively
and where fconv and frad are the convective and radia-
tive fraction respectively of the local heat production
by the appliances.
For determination of the duratioin for which an ap-

pliance remains on, the distribution of the duration
P (t) for the use of lighting is fitted as 0.1664 ln(t) +
0.1084 with a r2 value of 0.9961 [21] and where t is
the duration in minutes. The duration probability for
the use of other appliances is set equal to the average
usage with a standard deviation of 10 percent except
for the television where a P (t) of 1+ 1.021 exp(t0.91)
is given [21].

2.3 Physical impact

As mentioned earlier, human behaviour in buildings
has a multi-physical impact. Occupants presence and
the use of electric appliances determine the internal
heat gains in a building, whereas the electric appliances
(together with possible local electric generation, e.g.
by means of a photovolaic system) determine the load
of a building on the electric distribution grid affecting
the grid voltage.
Both the occupancy of humans in the building and

the use of electric appliance result in internal gains in
a building, influencing both thermal comfort and the
related energy consumption for heating (and cooling).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

849

For both human presence and each different imple-
mented appliance, the internal heat production is de-
picted as a (long-wave) radiative frad (−) and con-
vective fconv (−) fraction. So far, dynamic effects
such as wasted heat (e.g. for cooking or washing) or
temperature-dependent fractions depending on the cy-
cle are not included.
The fractions of frad and fconv for different appli-

ances and humans are derived from ASHRAE Funda-
mentals [2]. When no value is available, a division of
frad = fconv = 0.5 is set.
On the electric side, all loads of the the used ap-

pliances are seen as active loads P (W). Differently
from e.g. heat pumps or motors, where also the reac-
tive power S is of importance.

2.4 Random number generation

For the purpose of probabilistic simulation, the 4-cycle
generation algorithm for pseudo-random numbers of
Wichmann and Hill [29] is implemented combining
a long period of 2121 with a small size of state of 16
bytes. Taking into account a discrete time step of 1
minute and the number of stochastic processes in a
classic dwelling (i.e. in the order of size between 30
and 100 depending on the number of occupants and ap-
pliances) regarding building occupant behaviour, the
period of the random generator remains in the order of
size of 290 making it suitable for the mentioned mod-
elling purpose as no repitition will occur during a sim-
ulation.

3 Physical relevance

The stochastic behaviour of building occupants influ-
ences both the electric consumption of the used do-
mestic appliances and the heat production of the same
domestic appliances and the occupants. The results
show both similiarities (i.e. similar averages) as large
differences (i.e. large deviations) from the determin-
istic approach as in ISO 13790 [12] where a deter-
ministic scheme for simulation purposes is depicted on
the internal gains from occupants and appliances (see
Fig.2,3,4). The standard differentiates three different
time zones between 7 pm, 17 am and 23 for the inter-
nal gains.
In order to quantify the difference between a

stochastic and deterministic approach, a single-zone
reference building is modelled (see appendix A) and 5
identical models (with each the same deterministic or
different stochastic profile respectively) are coupled to

0 1 2 3 4 5 6 7
Time, day

0

1000

2000

3000

4000

5000

P
o
w

e
r,

 W

ISO 13790

Stoch

Stoch Min

Stoch Max

0 1 2 3 4 5 6 7
Time, day

8

10

12

14

16

18

20

O
p
e
ra

ti
v
e
 t

e
m

p
e
ra

tu
re

,
°C

ISO 13790

Stoch

Stoch Min

Stoch Max

0 1 2 3 4 5 6 7
Time, day

228.6

228.8

229.0

229.2

229.4

229.6

229.8

230.0

V
o
lt

a
g
e
,

V

ISO 13790

Stoch

Stoch Min

Stoch Max

Figure 2: Week profile of (a) the total power, (b) the in-
door operative temperatures of a building in free run
and (c) the resulting voltage in an example grid as de-
terministically described in (ISO 13790) and (Stoch)
with a stochastic profile of occupancy, lighting and
electric appliances. The minima (Stoch min) and max-
ima (Stochmax) of the results for 1 tot 5 inhabitants are
given for the same situation with the same appliances.

an electric grid (see appendix B). For quantification of
the second-order effects of heating, also an ideal heat-
ing system has been introduced (see appendix A).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

850

1 2 3 4 5
Occupants, #

4000

2000

0

2000

4000

P
o
w

e
r,

 W

1 2 3 4 5
Occupants, #

8

6

4

2

0

2

4

6

8

O
p
e
ra

ti
v
e
 t

e
m

p
e
ra

tu
re

,
°C

1 2 3 4 5
Occupants, #

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

V
o
lt

a
g
e
,

V

Figure 3: Standard deviations (σ,−σ) representend
by the boxes, (3σ,−3σ) representend by the bars, and
tails of difference between the stochastic and determin-
stic approach for (a) the total electric power demand,
(b) the indoor operative temperatures of a building in
free run and (c) the resulting voltage in an example
grid of the difference between a stochastic profile of
occupancy, lighting and electric appliances and as de-
scribed in ISO 13790 for 1 tot 5 inhabitants.

3.1 Thermal load

The profile of total stochastic and deterministic ther-
mal power (see Fig.2a) results in convective and radia-

1 2 3 4 5
Occupants, #

4000

2000

0

2000

4000

P
o
w

e
r,

 W

1 2 3 4 5
Occupants, #

8

6

4

2

0

2

4

6

8

O
p
e
ra

ti
v
e
 t

e
m

p
e
ra

tu
re

,
°C

1 2 3 4 5
Occupants, #

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

V
o
lt

a
g
e
,

V

Figure 4: Standard deviations (σ,−σ) representend
by the boxes, (3σ,−3σ) representend by the bars, and
tails of difference between the stochastic and determin-
stic approach for (a) the total electric power demand,
(b) the indoor operative temperatures and (c) the re-
sulting voltage in an example grid of the difference be-
tween a stochastic profile of occupancy, lighting and
electric appliances and as described in ISO 13790 for
1 tot 5 inhabitants and a building including ideal heat-
ing.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

851

tive internal gains for the building and determines the
internal temperature (see Fig.2.b), the required thermal
energy for thermal comfort and the possibility of over-
heating.
Comparison between the stochastic and determinis-

tic profile of total power (see Fig.2a,3a) shows both
similarities as differences: The difference between
the determinsitic and stochastic load profiles averages
nearly zero determining that the total load is similar,
whereas also the standard deviation σ is very small in
the order of size of 0.3 kW (see Fig.3a) denoting that
also the overall or average day profile, i.e. the mo-
ment of the day internal loads occur, is similar in both
the deterministic and stochastic profile. In contrast,
high peaks e.g. resulting from cooking occur in the
stochastic profile which disappear in the deterministic
approach (resulting in the long tail in Fig.3a).
As the average internal loads are alike between the

deterministic and stochastic approach, also the ther-
mal response of an example dwelling (see appendix A)
shows small deviations (see Fig.2b,3b) with a standard
deviation σ in the order of size of 0.5 Kelvin. As the
thermal building response of a dwelling is slow due to
a relatively high thermal mass, the effect of the high
peaks in the stochastic internal gains remains small
compared to a deterministic approach.

3.2 Electric load

The profile of total stochastic and deterministic electric
power results in electric currents in the distribution grid
and determines the voltage drops (see Fig.2c).
Similar to the thermal load, as the average electric

loads are alike between the deterministic and stochas-
tic approach (see Fig.2a), also the average electric re-
sponse of an example grid (see appendix B): the volt-
age drop shows small deviations (see Fig.3c) with a
standard deviation σ in the order of size of 0.2 Volt.
In contrast to the conclusion on peak loads on the

thermal side, electric peak loads have a direct influence
on the voltage of an electric grid which disappears in
the deterministic approach (see Fig.2c,3c). Evenmore,
the effect of peak loads accumulates at grid-level: as (i)
in real life and in the stochastic approach of occupant
behaviour not all peaks occur at the same time and (ii)
a peak load not only influences the observed voltage at
the respective dwelling but also the the observed volt-
age at the adjacent dwellings between the respective
dwelling and the grid source, more and higher voltage
drops are noticed in the stochastic approach shown by
the long tail of 0.5 to 1.0 Volt in Fig.3c.
As the voltage in a low-voltage distribution grid is

not allowed to drop below 207V and the strongest volt-
age drops are caused by peak loads, the use of deter-
ministic profiles may strongly underestimates the pos-
sible problem of grid-instability.

3.3 Coupled thermal-electric load

Both the influence on indoor temperature and voltage-
drops by the stochastic modelled internal gains are
first-order effects as they are directly influenced by the
bottom-upmodelled power profile. As yet described in
the introduction, new and future a (zero-energy) build-
ings results more often in an all-electrical solution with
a combination of building-integrated photovoltaic sys-
tems (BIPVs) and an electrical heat pump, a trend yet
noticeable in existing low-energy dwellings. As the
stochastic profile of both occupancy and internal heat
gains determine both the switch-on and -off conditions
for the electric heating - and thus also the electric peak
loads of the heat pump towards the grid - also a second-
order effect can be noticed. In order to visualize this
effect, an ideal heating system is implemented in the
example dwelling (see appendix A).

3.3.1 Thermal origin

Comparison between the stochastic and deterministic
profile of total power demand (see Fig.4a) shows both
similarities as differences: The difference between
the determinsitic and stochastic load profiles averages
nearly zero determining that the total load for both the
appliances ánd heating is similar. Differently from the
original total load in Fig.3a, the standard deviation σ+

and 3σ overall become high (see Fig.4a) in the order
of 1 and 2 kW respectively. The high deviations σ+

and 3σ denote that - allthough the total energy demand
remains similar- the time shift and the number of peaks
in heat load between a deterministic and stochastic pro-
file is signficant
Due to shorter intervals without heating in the

stochastic profile compared to the deterministic, a 1 to
2 K higher average operative indoor temperature is no-
ticed in the stochastic approach (see Fig.4b). The high
σ and 3σ are due to comparison between non-heated
and heated moments as the moments of heating are not
the same in the different situations.

3.3.2 Electric effect

Similar to results concerning the thermal load, as the
average electric loads are alike between the determinis-
tic and stochastic approach (see Fig.4a), also the aver-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

852

age electric response of an example grid (see appendix
B) by means of a voltage drop shows small deviations
(see Fig.4c).
Allthough the average response remains the same,

deviations σ and 3σ of up to 0.5 and 1.5 V repspec-
tively are found, (see Fig.4c) with a long tail in the op-
posite direction as may be noticed in Fig.3c. As men-
tioned earlier, the effect of peak loads accumulates at
grid-level. In real life and in the stochastic approach
of occupant behaviour not all peaks occur at the same
time and a peak load not only influences the observed
voltage at the respective dwelling but also the the ob-
served voltage at the adjacent dwellings between the
respective dwelling and the grid source, resulting in
high σ and 3σ. The long tail in the opposite direction as
Fig.3c is caused by the deterministic profile where - in
condtradiction to the stochastic profile - all dwellings
require heat at exactly the same moment resulting in
strong grid loads.

4 Conclusions

An integrated approach of probabilistic occupant be-
haviour in buildings with a physical multi-domain im-
pact has been modelled and presented. The human be-
haviour considering occupancy, the use of lighting and
the use of electric appliances in dwellings has been im-
plemented and is used for simulation of coupled ther-
mal and electrical systems in the building stock. Im-
plementing stochastic occupant behaviour influences
the internal heat gains which in turn influences the heat
load of the building and the switch-on and -off moment
of e.g. an electric heat pump. This, together with the
power demand of the used electric appliances and pos-
sible on-site generation determine the load on the elec-
tric grid and possible instabilities.
By means comparison for a reference building zone

and example grid, the importance of stochastic mod-
elling of occupant behaviour in dwellings at both the
building and district scale. Comparison between a de-
terminsitic approach as proposed in ISO 13790 and the
use stochastic profiles shows that the direct first order
effect is on average rather small: the difference in total
internal gains and its influence on the indoor tempera-
ture averages nearly zero and the standard deviations σ
are small, however high peaks may occur. Also the dif-
ference in effect on the electric distribution grid volt-
age averages nearly zero, however here strong peaks
occur which are of most importance for the grid sta-
bility. When taking in account the second order effect
of heating by means of electricity, much larger differ-

ences are noticed: due to longer and more differenti-
ated occupancy times, the average indoor temperature
rises. Furthermore, the moment of heating differenti-
ates compared to a determinsitic approach resulting in
more but smaller peak demands towards the electricity
grid.

5 Acknowledgements

The authors gratefully acknowledge the K.U.Leuven
Energy Institute (EI) for funding this research through
granting the project entitled Optimized energy net-
works for buildings.

A Building model

A high-order lumped capacitance model for predict-
ing the unsteady building response is developed within
Modelica [5, 27]. Solar radiation absorbed by the exte-
rior surface is implemented based on the incident solar
irradiation as found by the calculations in the External
package depending on time, inclination and orienta-
tion s and the short-wave absorption coefficient of the
surface. Long wave radiation between the surface and
environment is determined based on the retrieved sky
temperature. The convective gains and the resulting
change in air temperature of a thermal zone are mod-
elled as a thermal circuit based on convective heat ex-
change with the walls and ventilation. Similar to the
model for a wall, a thermal circuit formulation for the
direct radiant exchange between surfaces can be de-
rived. The heat exchange by long-wave radiation is
simplified bymeans of a delta-star transformation [13]
and definition of a radiant star node. The diffuse solar
gains are divided based on the surface and emissivity
of all surfaces. For direct solar gains, a factor for each
surface can be given as parameter of the zone, to which
direct solar gains will be divided. The star node formu-
lation of both convective and radiative heat exchange
in a thermal zone allows a straight-forward formula-
tion for the influence of internal gains by adding them
in the heat balance of radiant star node and air node of
the zone of interest. Comparative literature [16] shows
that the made simplifications remain a high accuracy.
The thermal model of a window is similar to the

model of an exterior wall but includes the absorption
of solar irradiation by the different glass panes and the
transmission to the adjacent indoor zone. The prop-
erties for absorption by and transmission through the
glazing are taken into account depending on the angle
of incidence of solar irradiation and are based on the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

853

output of the WINDOW 4.0 software [8] as validated
by Arasteh [1] and Furler [9]. The transmitted dif-
fuse short-wave solar radiation is treated to strike all
room surfaces weighted to their surface and emissivity,
whereas the direct short-wave solar gains are modeled
to fall mainly on the floor. However, only small differ-
ences would arise when making different assumptions
on the distribution of the transmitted energy [16].
A meteo model is implemented in the simulation

environment and data are derived from Meteonorm
6.1 for Uccle, Belgium. The zenith angle of an in-
clined surface is calculated internally [11] whereby the
anisotropic sky domemodel presented by Skartveit and
Olseth [24, 6] is implemented.
The ideal heating system consists of an unlimited

convective power controlled by a set point of 21 de-
grees Celcius for the operative temperature when oc-
cupancy occurs.
The reference building zone measures 36 m2 by 3

m representing the dayzone of an average house. The
construction consists of a highly-insulated cavity wall
with 20 cm of mineral wool and a large south-facing
double-pane window. For the stochastic determina-
tion of user behaviour, 1 to 5 occupans have been im-
plemented respectively, an array of 16 bulbs has been
taken into account and 10 electric appliances (i.e. a
hob, a micro wave, two TV’s, a vacuum cleaner, a hifi,
an iron, a pc, a dishwasher and a washingmachine) are
modelled.

B Grid model

The example grid for modelling grid voltage drops
used within this work consists of a simplified grid
based on the Modelica Standard Library 3.1, consist-
ing of a constant voltage source of 230 V and lossy
RC-lines. The RC-lines have each a capacitance of 0.1
mF/m, a resistance of 0.05mΩ/m and have a length
of 100 m. Here, 5 dwellings are coupled in parallel
to the grid. The power demand of the dwelling deter-
mines the electric current influencing the grid voltage
at both the dwelling and the neighbouring dwellings.
Note that the implemented model only serves to in-

terpret the importance and impact of stochastich mod-
elling of occupancy behaviour in coupled thermal and
electric systems in buildings. Within the same project
of the K.U.Leuven Energy Institute mentioned in the
acknowledgements, a detailed grid model is devel-
oped.

References
[1] DKArasteh, J Hartmann, andMRubin. Experimental verifi-

cation of amodel of heat transfer throughwindows. ASHRAE
Transactions, 93(1):1425–1431, 1986.

[2] ASHRAE. 2009 ASHRAE Handbook: fundamentals.
ASHRAE American Society of Heating Refrigerating and
Air-Conditioning Engineers, Atlanta, 2009.

[3] R Baetens, R De Coninck, L Helsen, and D Saelens. The
impact of domestic load profiles on the potential of build-
ing integrated photovoltaic systems in extremely low-energy
dwellings. In Renewable Energy Research Conference,
pages 3–14, Trondheim, June 7-8, 2010.

[4] R Baetens, R De Coninck, L Helsen, and D Saelens. The
impact of the heat emission system on the grid-interaction of
building integrated photovoltaics in low-energy dwellings.
In 8th International Conference on System Simulation in
Buildings, page P137, 2010.

[5] J Clarke. Energy simulation in building design. Butterworth-
Heinemann, Oxford, 2nd ed. edition, 2001.

[6] S Darula, R Kittler, and C Gueymard. Reference luminous
solar constant and solar luminance for illuminance calcula-
tions. Solar Energy, 79(5):559–565, November 2005.

[7] Roel De Coninck, Ruben Baetens, Bart Verbruggen, Dirk
Saelens, Johan Driesen, and Lieve Helsen. Modelling and
simulation of a grid connected photovoltaic heat pump sys-
tem with thermal energy storage using Modelica. In Philippe
Andre, Stephane Bertagnolio, and Vincent Lemort, editors,
proceedings of the 8th International Conference on System
Simulation in Buildings, Liege, 2010.

[8] E U Finlayson, D K Arasteh, C Huizenga, M D Rubin, and
M S Reilly. WINDOW 4.0: Documentation of calculation
procedures, 1993.

[9] R A Furler, P Williams, and F K Kneubühl. Experimental
and theoretical studies on the energy balance of windows -
NEFF Project report 177.1, 1988.

[10] P Hoes, J Hensen, M Loomans, B Devries, and D Bourgeois.
User behavior in whole building simulation. Energy and
Buildings, 41(3):295–302, March 2009.

[11] M Iqbal. An introduction to solar radiation. Academic Press
Inc, New York - London, 1983.

[12] ISO/FDIS 13790. Energy performance of buildings - Calcu-
lation of energy use for space heating and cooling, volume
2007. 2008.

[13] A EKenelly. Equivalence of triangles and stars in conducting
networks. ElectricalWorld and Engineer, 34:413–414, 1899.

[14] S AKlein. TRNSYS - A transient simulation program, 1973.
[15] A N Kolmogorov. Uber die analytischen Methoden in

der Wahrscheinlichkeitsrechnung. Mathematische Annalen,
104:415–458, 1931.

[16] R J Liesen and CO Pedersen. An evaluation of inside surface
heat balance models for cooling load calculations. ASHRAE
Transactions, 103 Part 2:485–502, 1997.

[17] J V Paatero and P D Lund. Amodel for generating household
electricity load profiles. International Journal of Energy Re-
search, 30(5):273–290, April 2006.

[18] J Page, D Robinson, N Morel, and J Scartezzini. A gener-
alised stochastic model for the simulation of occupant pres-
ence. Energy and Buildings, 40(2):83–98, 2008.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

854

[19] WParys, D Saelens, andHHens. Coupling of dynamic build-
ing simulation with stochastic modelling of occupant behav-
ior in offices – a review-based integrated methodology. Jour-
nal of Building Performance Simulation, Accepted, 2010.

[20] I Richardson, M Thomson, and D Infield. A high-resolution
domestic building occupancy model for energy demand sim-
ulations. Energy and Buildings, 40(8):1560–1566, 2008.

[21] I Richardson,MThomson, D Infield, andCClifford. Domes-
tic electricity use: A high-resolution energy demand model.
Energy and Buildings, 42(10):1878–1887, October 2010.

[22] I Richardson, M Thomson, D Infield, and A Delahunty. Do-
mestic lighting: A high-resolution energy demand model.
Energy and Buildings, 41(7):781–789, 2009.

[23] D Robinson, N Campbell, W Gaiser, K Kabel, A Lemouel,
N Morel, J Page, S Stankovic, and A Stone. SUNtool – A
new modelling paradigm for simulating and optimising ur-
ban sustainability. Solar Energy, 81(9):1196–1211, Septem-
ber 2007.

[24] A Skartveit and J A Olseth. Modelling slope irradiance at
high latitudes. Solar Energy, 36:526–541, 1986.

[25] M Stokes, M Rylatt, and K Lomas. A simple model
of domestic lighting demand. Energy and Buildings,
36(2):103–116, 2004.

[26] P Strachan, G Kokogiannakis, and I Macdonald. History
and development of validation with the ESP-r simulation
program. Building and Environment, 43(4):601–609, April
2008.

[27] C P Underwood and F W H Yik. Modelling methods for
energy in buildings. Blackwell Publishing, 2004.

[28] D Vanneste, P De Decker, and I Laureyssen. Woning en
woonomgeving in België, 2001.

[29] B A Wichmann and I D Hilll. Generating good pseudo-
random numbers. Computational Statistics & Data Analysis,
51(3):1614–1622, 2006.

[30] J Widén and E Wäckelgå rd. A high-resolution stochastic
model of domestic activity patterns and electricity demand.
Applied Energy, 2009.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

855

Model Based Systems Engineering for Aircraft Systems – How does
Modelica Based Tools Fit?

Ingela Lind Henric Andersson
SAAB Aeronautics

SE-581 88 Linköping, Sweden
ingela.lind@saabgroup.com henric.andersson@saabgroup.com

Abstract

Saab Aeronautics has chosen Modelica and Dymola
as part of the means for model based system engi-
neering (MBSE). This paper will point out why a
considerable effort has been made to migrate models
from other simulation tools to Dymola. The paper
also shows how the models and tools are used, ex-
periences gained from usage in an industrial context
as well as some remaining trouble spots.

Keywords: MBSE; Dymola; Aircraft simulation;
Model integration; Modelica

1 Introduction

Engineering aircraft systems is a complex task partly
due to the factors; expensive equipment, expensive
tests, long lead times, safety constraints, varying en-
vironmental conditions, e. g., temperature, pressure,
and g-loads but also weight and space constraints,
which may lead to high interaction level between
systems, interaction between engineering domains,
and finally, sensitivity to shortage of technically
broad and experienced staff.

By using Model Based Systems Engineering
(MBSE), much of the information regarding a sys-
tem can be collected into an executable description, a
model. This helps information sharing between peo-
ple, encouraging cooperation over technical disci-
plines such as, fluid mechanics, electrical engineer-
ing and software engineering thereby helping the
definitions of interfaces between systems and algo-
rithm development of embedded systems. Integrating
models from different disciplines into the executable
model forces focus on the system boundaries. Mod-
els are also good tools to increase the in-depth un-
derstanding of a complex system and for training
new staff. The most likely pay off is that by using

MBSE, problems can be detected earlier than by us-
ing document based systems engineering, where
many problems may be detected when the first test
aircraft has been built.

At Saab Aeronautics, several projects for increasing
the use of MBSE are ongoing. A few of these pro-
jects are partly EU financed and performed in coop-
eration with most of European aircraft industry
(Crescendo [3], Clean Sky [4]). The ambition is to:

• detect problems within a system or an engi-
neering domain early,

• detect problems between systems and engi-
neering domains early,

• increase the ability to optimize design for
different purposes (such as total fuel con-
sumption),

• detect ambiguous and/or conflicting re-
quirements early,

• reduce the amount of implementation errors
detected late,

• reduce project risks,
• gain better control of model variants, model

fidelity and approved usage of models,
• get more effective system engineering,
• reduce testing time and cost,
• effectively use data from tests,
• get better secondary products, such as train-

ing simulators for pilots and technicians,
• give more fun for systems engineers as hap-

py engineers perform better.

The rest of the paper is outlined as follows. Sec-

tion 2 contains a description of the model based
process and different aspects of models and Mode-
lica usage within this process. A deeper discussion
on models and tools integration is presented in sec-
tion 3, section 4 reports the potential future needs
and section 5 concludes the paper.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

856

2 Model Based Development

The model based development process can be de-
scribed from many different viewpoints, see e. g. [8].
Here, the viewpoint from a systems engineer special-
ized in systems modeling and simulation is taken. In
Figure 1, an overview of the process is given. The
basic idea is that as much as possible of system func-
tional and nonfunctional aspects should be tested as
completely and cheap as possible to find system de-
sign and implementation errors as close to their ori-
gin as possible. Each engineer takes responsibility
that his or her work is well done and checked. The
practice follows typically ARP4754 [5], but the
NASA Standard 7009 [7] give many useful ideas.
Another driving factor is that MBSE supports mul-
tidisciplinary optimization, a fact utilized in research
projects as CleanSky [4]. To make MBSE possible, a
set of tools is needed. The applications for these

tools cover many aspects of the engineering tasks;
from requirement tracking, construction, configura-
tion management, specification, modeling, simula-
tion, report writing, archiving, project planning etc.
There are many technical disciplines involved, most
with specific specialist tools. This paper mostly fo-
cuses on the technical discipline of fluid dynamics
with embedded hardware and software, but might be
applicable to any mechatronic system.

The major reason to migrate from previous gen-
eration of simulation tools, which was made for
simulation only, to Dymola is that Dymola supports
all the mandatory aspects of tool integration, as de-
scribed below. The choice of Dymola in front of
other Modelica tools that also fulfills the technical
requirements depends mostly on two aspects. It is
owned by a large tool vendor and can thereby be
trusted to live long enough (10-30 years) and there
are consultants available that speaks Swedish.

Figure 1 Model based development process. The first loop is small and fast and involves desk top simulation of
one model, either control software specification or the model of the physical part, with the other model run as
hosted simulation. The second loop demands more work to close the loop. Code should be made for the target
computer, code for the physical part of the system might need to be exported to the simulator platform, and/or
the physical parts of the rig or simulator prepared. To feed back results to the models good comparison and tun-
ing facilities are needed. The third loop involves the airplane, which means typically expensive tests. For success-
ful feedback, measurement, comparison and tuning facilities are needed.

2.1 Typical Parts in an Aircraft System

Aircraft systems typically involve three major
types of parts; equipment, avionics with embed-
ded software and surrounding. Equipment is
things like gear boxes, valves and pipes, batteries,
sensors, heat exchangers, reservoirs, etc. Avionics
is computer hardware and software which fulfills
requirements for aviation use. The surrounding is

everything from connected aircraft systems, am-
bient conditions to pilot commands.

2.2 Modeling systems of physical equipment

First, the physical part of the system is modeled,
from first principles using supplier data, bench
test data, previous experience, geometrical data,
and sometimes also results from continuous fluid
dynamics computations. To make the modeling
effective, it is important to have a library of mod-

M

u y

M

 y

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

857

eling components built for actual purpose and in
an appropriate level of detail. For environmental
control systems and fuel systems, Saab has to-
gether with Modelon AB developed libraries
based on the stream construct in Modelica. These
are commercially available [1]. It is also impor-
tant to have a good tool for tuning parameters of
model components to fit well with available data.
Identifiability, which means that there exists a
unique parameterization of the model or solution
to the optimization problem of fitting the model
output to measurement data [2], is often an issue,
since physically parameterized components often
have several ways to affect the same property. It
can be hard to determine which parameters that
are affected by identifiability problems for the
identification problem at hand, so any means to
support this task would be welcome.

The model is (partly) reused in several differ-

ent environments on different platforms with and
without real time requirements and with different
interfaces. This requires special care in designing
the model architecture and the libraries. The
Modelica construct of replaceable classes is useful
for making desktop simulations faster when parts
of the model can be switched off before transla-
tion, which implies that whole sections of equa-
tions don’t turn up as compiled code. A typical
example is the model of a fuel drop tank that can
be either present and attached or not present. We
miss the possibility to do the same type of switch
in the generated code, so that the choice of variant
can be done after translation, preferably in run
time, but without the code related to those sec-
tions of equations always slowing down simula-
tion, see further discussion in Section 3.3.

It is also useful to have model switches that
can turn off a complete section of the model, as
the slow temperature dynamics in the fuel system
model, which makes it easier to reach real time
performance for the model without rebuilding it
using another component library.

As the model is reused for many different pur-
poses, the concept of power ports inherent in
Modelica is essential. The higher abstraction level
used for implementing models with non-fixed
causality compared to other languages means that
modeling effort can be used elsewhere.

It is important to build all components and the

model such that an analytical Jacobian can be cre-
ated. The reason is that the models for aircraft
fluid systems tend to be large with several hun-
dred time-continuous states, to include nonlinear

equation systems, and tend also to be stiff. Our
experience is that a completely analytical Jaco-
bian decreases simulation time compared to a par-
tly numerical Jacobian with at least a factor 5-10,
but that still means a single typical simulation run
takes between 5 and 30 minutes. We have also
experienced a tendency that the solvers fail more
easily if the analytical Jacobian is not available.

Using the model for the system of physical

equipment, tasks as first concept validation,
equipment sizing, sensitivity analysis, and per-
formance estimation can be performed. But the
involved systems are so complex that it is not suf-
ficient to base further design decisions on these
results. The control software is needed to e.g.
close the loop.

2.3 Software specification

The control software is used to make sure that the
system reaches its control goal and to perform
safety functions such as functional monitoring
(FM), redundancy management (RM), and built-in
test (BIT), see further [9]. Physical limitations
often make it necessary to introduce new control
actions. An executable model of the control soft-
ware is developed in a modeling and simulation
tool. In vehicle systems design at Saab Aeronau-
tics, Mathworks Simulink and Stateflow is used
together with UML tools to develop software. The
tools are used to build an executable specification
of the code.

Depending on conditions such as criticality as-
sessments, target avionics, review process, tool
integration, and license model, code for target is
either auto generated from the tool or hand coded
using the model as specification, as reported in
[12]. As all information about requirements trac-
ing, purpose and descriptions are included in the
model, it is possible to automatically generate
parts of the software documentation from the
software models.

2.4 Close the loop

By closing the loop by hosted simulation both in
Dymola and in Simulink several tasks can be per-
formed, as further described in [10]. By using the
FMI standard [6] when generating code for the
hosted part an efficient handling of the connected
models is achieved. It might seem as double work
to make a closed loop environment in two tools,
but this means that engineers can perform their

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

858

tasks respectively in the tool which they are most
acquainted with and which is most suited to do the
tests and changes their task depends on. The
closed loop simulation is useful for rapid proto-
typing both for the physical part of the system and
for the control software. It supports safety as-
sessment of the system and can be used to give
input to computation of static and fatigue loads as
well as for performance evaluation and detailed
design of the system.

2.5 Large scale simulators

An aircraft consist of a large number of interact-
ing systems. There are needs ranging from early
interaction tests between systems to training of
pilots, technicians and maintenance staff that can
be met using large scale simulators. The large
scale simulators involve many of the aircraft sys-
tems to a varying level of detail. Some large scale
simulators include target avionics (that is, are
partly hardware rigs) with real time performance
constraints while others are completely software
based without real time constraints. Control soft-
ware can either be included as a model or as target
code. Equipment models are needed, but often
simplified models are sufficient for the use. The
highest demands on accuracy on fluid mechanical
system models in this context often comes from
usage in training simulator for technicians and
maintenance staff or from development tasks
where the interaction between several complex
systems is investigated. An interesting aspect of
simulator models is that correct behavior when
system faults occur is required. This means that
all sensors and actuators need to have several dif-
ferent types of faulty behavior implemented [11].

2.6 System test rigs

The aircraft systems for environmental control
and fuel management are so complex that system
test rigs are necessary. The system test rigs are
used to test that avionics and equipment have cor-
rect electrical interfaces, that all equipment has
correct mechanical interface and that pressure
drops, and other functional characteristics live up
to the given specifications and work well together.
Depending on the flight criticality class of the sys-
tem and status of the system test rig, the system
test rig can also be used for flight safety checks,
often in combination with ground tests in the air-
craft. As the avionics is also used in large-scale
simulators where the equipment is not available,

the equipment model must have an interface com-
pliant with the real equipment.

The closed loop simulation can be used to run

test before they are run in the system test rig to
make sure the test will give the information
needed. The results from the system test rig
should be fed back into the equipment and soft-
ware specification models, to improve confidence
and quality.

2.7 Ground and flight tests

Ground and flight tests are used primarily to as-
certain flight worthiness and for validation of re-
quirements on aircraft level. As the use of MBSE
increases we see an increased usage of ground and
flight tests in order to get measurement data for
model validation. At the same time, the need for
ground and flight tests decreases, partly due to
that more validation can be done using the model
based techniques.

To use model based techniques to support the

certification of an aircraft, that is, ascertain flight
worthiness and validate all requirements from au-
thorities such as EASA, is partly treated in the
ongoing research program Crescendo [3].

2.8 Feedback data to models

This task needs careful planning and considera-
tion of many aspects. First, the placements of sen-
sors in the aircraft need to be decided upon sev-
eral years to several months before use. Sensor
placement is expensive to change with long lead
times due to the mechanical, electrical and instal-
lation work needed, if the optimal placement is
not reached at the first try. Sensors are subject to a
constant revision and trade off between usability
versus weight and signal storage availability,
which means planned sensors are easily removed,
but not easily reinserted. This makes measurement
data scarce.

Most flights are non-informative from a model

validation perspective. The informative flights in
the outskirts of the normal envelop can be hard to
reach due to weather and climate conditions, safe-
ty constraints and complex conditions to be ful-
filled to reach a given state. One example is ice
build up in heat exchangers, which happens in
some weather and flight conditions but can be
close to impossible to achieve in a dedicated flight
test.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

859

To find informative data sets in the ground and

flight test measurement data base is a task that
requires experience and special care to make sure
that the data set is fit for use. It is often less com-
plicated to use data from a dedicated test since the
control of all conditions can be monitored with
the validation task in mind.

When appropriate data sets are found these

should be compared with model output. The easy
part of this is to simulate the model using the
same ambient conditions and the same inputs
from the surrounding systems. As the complete
signal interface between equipment and avionics
(up to 200 signals for a single system) is not sub-
ject to monitoring during ground or flight tests it
is not possible to fully provide the same condi-
tions for the equipment model as for the real
equipment. The output can be compared to the
measurements to give an idea of the model quality
with regard to the measured quantity. To general-
ize the estimate of the model quality to other
quantities of interest in the complex nonlinear
models is more difficult. We find the tool support
at the moment not sufficient for our needs. There
is ongoing research on what validation methods
are industrially useful for that purpose e. g. within
the Swedish National Aviation Engineering Pro-
gramme (NFFP), [13].

For tuning of model parameters to make the

model better fit the measurement data the Dymola
Model Calibration Tool has been useful to some
degree, even if a larger variety of system identifi-
cation methods and better control and possibility
to select optimization objectives and optimization
methods is desired. When using identification,
different methods sometimes give different results
and which method is preferred depends on the
application and the validation result.

3 Integration of models and tools

In simulation of an aircraft or any other complex
product, the total model is usually composed of
several sub models to be manageable. The aircraft
model architecture is created and maintained in
order to get explicit and clear model interfaces. It
is convenient to map the “model breakdown struc-
ture” onto the breakdown structure of the repre-
sented product so that e.g. system interface defini-
tions and responsibility allocation can be reused
more easily. An example of several simulation

models connected to form a larger integrated
model is shown in Figure 2.

Figure 2. This is a simplified view of an integrated
simulation model consisting of models for Engine,
Fuel system, Environmental control system, Avion-
ics and a Pilot model.

A smaller set of aircraft subsystem models may
today be integrated in Dymola, but for larger sets
of models some more specialized and powerful
integration framework is still needed.

3.1 Configuration handling

Several aspects regarding configuration of models
has to be handled. A simulation model is a repre-
sentation of a (specified or built) aircraft system
which itself is under configuration control in e.g.
a Product Data Management (PDM) system. A
PDM system is used for e.g. structuring, storage,
change and validity control of product data related
to delivery and maintenance of the products.
Equipment data such as specifications, change
requests of parts or documentation for certifica-
tion is mature in these systems. Simulation mod-
els that represent systems/parts of the product are
normally not kept within the PDM system. Infor-
mation such as specification of interfaces and eq-
uations, model change requests or status account-
ing of models is not part of the traditional PDM
scope.

Software Configuration Management (SCM)
systems are suited for code management and as
the simulation models are code in some format,
the support for model management on code level
(e.g. revision and release management) is best
supported by a SCM system. Dymola supports
version control of models using e.g. the SCM tool
subversion (SVN).

Needed cooling
capacity Thrust

Cooled air

Fuel

.

Bleed air

Fuel tank
pressurization

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

860

The division of data between the PDM and

SCM domains is unfortunate for many reasons,
not only storage and control of simulation models.
It is especially problematic in the vehicle systems
modeling domain though, because data about the
systems and equipment to be represented in the
models are basically handled in PDM, but the
model software “belongs” to SCM. So this is one
of the challenges for the future to solve.

3.2 Variability

Two concepts in variability and configuration
handling are variants and versions. A variant is
“an option of an item which customers can
choose”. Versions are sequential revisions replac-
ing each other. Variants exist in parallel, whiles
versions exist in a series. If an error occurs in an
item it needs to be revised, and a new version is
created.

As aircrafts are developed and maintained for a

long period of time, the systems usually exist in
several variants and versions. Also the models
exist in variants and versions, but there is usually
not a straight-on mapping between the PDM de-
velopment tree and the model development tree.
Rigor tracing has to be maintained for models
used for verification, certification, and training
purposes.

Models are often parameterized, meaning that

one model can be used to represent a set of air-
craft system variants/versions. This implies that
both the parametric model (interfaces, equations,
algorithms etc.) and all the parameter sets need to
be under configuration control.

One driving force for parametric models or

other kinds of variability is to enable reuse. In
aircraft simulation it is of major importance to
reuse existing models (if possible) because the
verification effort for each single model drives
time and cost. The number of variants should
therefore be minimized, but there are situations
where the requirements are incompatible and
model variants are unavoidable, such as:

• different level of fidelity
• customer specific equipment models
• security (e.g. IPR)

3.3 Binding time

Binding time describes when a variable model
part or function is to be bound, i.e. selected to be-
come a mandatory part of a simulation model in-
stance. Possible binding times include model time
(also referred to as “design time”), translation
time, compile time, link time, load time, and run
time.

Choosing different binding time for elements
affects their properties. For example, deciding to
bind two model components during translation
time will yield different system properties than
deciding to bind these two components at run time
[14].

Example of a setting is whether the simulation

is to represent a single seater or a dual seater air-
craft. Another example was given in Section 2.2.
It is however not sure that all models with this
feature as a possible choice use the same binding
time as mechanism for this setting. One model
may have a translation time alternatives whiles
another uses run time switch for the same varia-
tion.

Run time binding provides in general shorter

turnaround time when shifting feature. There are
situations when run time binding not is sufficient,
for example when propriety models are integrated
in a training simulator and delivered to a cus-
tomer. In this case only functionality relevant for
that customer is allowed to be present in that
model variant. Specific customer oriented model
variants are maintained and binding is done in e.g.
model time.

3.4 Integration methods

There are different kinds of integration. One is
integration of software- and hardware models to
form closed loop simulation. This can be per-
formed using the hosted simulation method with
Dymola or Simulink as hosting environment as
mentioned above.

To integrate models into a complete aircraft
simulation require models from different domains
often including legacy models developed with
older methods and with different software genera-
tions. A large portion of the software used for
simulation in the aircraft industry is for example
still implemented in different versions of FOR-
TRAN. Some suppliers of equipment also provide

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

861

their existing models to the aircraft integrator for
functional- and integration verification.

To enable integration of a wider variety of

model formats, an integration framework is
needed. At Saab Aeronautics there are different
simulation integration frameworks based on the
ADA and FORTRAN languages respectively. To
be able to connect models implemented in differ-
ent languages one used method is to use adaptors
(or wrappers). Figure 3 shows an example of ar-
chitecture for model integration.

Figure 3. Example of an architecture for model in-
tegration with defined layers. The model layer is the
actual simulation code in some for the framework
accepted language (e.g. FORTRAN, C and/or
ADA). Purpose of the connector layer is to connect
models with each other and with the simulation
kernel, and the adaption layer is responsible for the
software language adaption (e.g. to connect C with
ADA).

The emerging FMI standard [6] for model in-

tegration has the C language as a basis for soft-
ware integration, which fits well with simulation
code generated from Dymola. The standard also
provides interface specifications in XML, which
gives a powerful tool to support integration in
other frameworks as it is fairly easy to map one
XML scheme to another. A Modelica model cre-
ated with Dymola is thereby easily integrated in a
simulator with respect to the signal interface defi-
nition.

4 Future needs

Apart from the needs expressed in Section 2, the
following issues are things we would like to do
but have not yet found solutions to or the time to
learn existing solutions.

There is a need to simulate several large sys-

tem models together in a desktop environment.
Each of the system models is close in size to what
Dymola today handles with ease and result files
get close to Windows limitations on file sizes if
important signals are chosen to be stored. We do
have possibility to use clusters for computation,
but we lack tool support for distributing computa-
tions and results.

A related issue is support for effective code

generation for multi-thread and multi-processor
platforms with real-time operating systems to
make complex models run able in real time.

Simple set up of batch simulations as compli-

cated parameter sweeps or running the same simu-
lation with several different models with good
control of result files and connected with report
generation is missing. Parts of it is possible to
script in Modelica but especially support for de-
tailed plot layouts and generation to reports has
not yet been solved to our knowledge.

We are not yet satisfied with the auto genera-

tion of model descriptions, but this is partly due to
too small amount of invested time. We would like
to include more information than seem possible to
do at the moment, but that might depend on that
we have not yet understood how to do it.

As references for the scripting and generating

capabilities related to batch simulation, plot- and
document generation we have the tools MA-
TRIXx and Matlab. These tools are according to
our experience more mature in the respect of e.g.
pre- and post-processing of data. There are also
usable alternatives such as the python program-
ming language [15] for data processing and
spreadsheet applications for plotting.

5 Conclusions

In this paper the driver for and experiences made
when shifting to Modelica as a modeling language
for vehicle systems simulation at Saab Aeronau-
tics are presented. The benefits of model based
engineering are e.g. deeper insight of the systems
behavior and performance as well as earlier detec-
tion of errors as compared to document based sys-
tems engineering.

Simulation kernel

C1

A1

M1

C2

A2

M2

C3

A3

M3

Connection
layer

Adaption
layer

Model layer

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

862

For vehicle systems simulation the introduc-
tion of Modelica has largely been positive. This
said there are several areas where method and tool
support must be improved before MBSE and
Modelica/Dymola will be the natural method to
apply in all projects developing complex vehicle
systems.

Areas of needed improvements are to our ex-

perience:
• better support for large size models
• support for model uncertainty and quality

tracking
• support for validation of complex models

using measurement data
• scripting language features for set-up,

execution and post-processing of batch
simulations

• better performance of code generated for
real-time simulation

• code generation support for multi-thread
and multi-processor targets

• generation of model documentation
adapted to industry/aerospace standard

As with all methods/tools/processes there are
potential for improvement, but for one of the most
important ambitions we believe we have come
closer to the goal; to gain happier engineers with
insight and a feeling of control of their problem
solving efforts.

Acknowledgments

The development methods reported in this paper
has been partly inspired by and based on research
funded by the research projects The Swedish
Governments Agency VINNOVA’s NFFP 2006-
02705, 2009-01359 and 2010-01262; VIN-
NOVA’s 2007-010019 and The European Com-
munity’s Seventh Framework Programmes
(FP7/2007-2013) CRESCENDO (grant agreement
n˚234344) and JTI CleanSky.

References

[1] Modelon AB website: www.modelon.se

[2] Ljung, L.: System Identification, Theory
for the User, 2nd edition, Prentice Hall,
1999

[3] Crescendo website to appear at:
http://www.crescendo-fp7.eu

[4] CleanSky website:
http://www.cleansky.eu/index.php?arbo_i
d=83&set_language=en

[5] SAE Aerospace: Aerospace Recom-
mended Practice ARP4754a, Guidance for
Development, Validation and Verification
of Aircraft Systems, 2008

[6] FMI website http://functional-mockup-
interface.org

[7] NASA-STD-7009: Standard for Models
and Simulations, National Aeronautics
and Space Administration, Washington,
DC 20546-0001, 2008.
http://www.everyspec.com/NASA/NASA
+-+NASA-STD/NASA-STD-
7009_16145/

[8] Steinkellner, S., Andersson, H., Gavel, H.,
Krus, P.: Modeling and Simulation of
Saab Gripen’s vehicle systems, AIAA
Modeling and Simulation Technologies
Conference, Chicago, Illinois, 2009

[9] Lantto, B., Jareland, M.: Model-Based Di-
agnosis Studies of Complex Fluid Me-
chanical Aircraft Systems, In proceedings
of the 25th International Congress of the
Aeronautical Sciences, Hamburg, 2006

[10] Steinkellner, S., Andersson, H., Krus, P.,
Lind, I.: Hosted Simulation for Heteroge-
neous Aircraft System Development, In
proceedings of the 26th International
Congress of the Aeronautical Sciences,
Anchorage, Alaska, 2008

[11] Andersson, H.: Aircraft systems modeling
- model based systems engineering in avi-
onics design and aircraft simulation.
Linköping Studies in Science and Tech-
nology, Licentiate Thesis No. 1394, ISBN
978-91-7393-692-7, Liu-Tryck Linköping
2009.

[12] Andersson, H., Weitman, A., Ölvander, J.:
Simulink as a Core Tool in Development
of Next Generation Gripen, In proceedings
of Nordic Matlab User Conference,
Stockholm, Sweden, 2008.

[13] National Aviation Engineering Pro-
gramme at Vinnova website:
http://www.vinnova.se/en/Activities/Natio
nal-Aviation-Engineering-Research-
Programme

[14] Vrani
�
, V., Šípka, M,: Binding Time

Based Concept Instantiation in Feature
Modeling. In proceedings of the 9th Inter-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

863

national Conference on Software Reuse
(ICSR 2006), LNCS 4039, Turin, Italy,
June 2006.

[15] Python official website
http://wiki.python.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

864

Productivity improvement tool for configuration of Modelica plant

models and integration with Simulink controller models

Emerson Jacob Jeganathan, Anand Pitchaikani, Elavarasan Dharumaseelan

LMS Emmeskay Solutions Private Limited

20, Kannadasan Salai, T. Nagar, Chennai – 600017, INDIA

{Emerson.Jacob, Anand.Pitchaikani, Elavarasan.Dharumaseelan}@lmsintl.com

Abstract

Engineers practicing model based system design

in an automotive sub-system supplier often use

Modelica for modeling physical plant models and

MATLAB/Simulink® for modeling the controller.

Model-in-loop (MIL) simulations are performed us-

ing the S-function generated from the chosen Mod-

elica plant model, integrated with the appropriate

controller model and then simulated in Simulink.

These steps are carried out by the engineer manually

for the many different plant-controller configurations

available in the organization. This repetitive

workflow provides significant opportunities to

streamline and automate the model based develop-

ment process and improve productivity.

This paper presents an in-house MATLAB® GUI

tool that can be used to configure the plant, select the

controller, automatically generate an integrated mod-

el with the plant and controller, and simulate the re-

sulting model. The plant model configuration infor-

mation is passed on to Dymola® (the simulation en-

vironment) using the available communication

(COM or DDE) to generate the plant model S-

function. This tool includes post processing capabili-

ties such as plotting the simulation results and cus-

tom plotting of metrics that are generated post-

simulation.

Keywords: Automation; MIL; model configuration;

simulation management

1 Introduction

Model-in-loop (MIL) simulation in non-real time

environments is used to perform verification and va-

lidation testing of the controller model by the simula-

tion engineer or test engineer, who will be referred to

as “user” throughout this paper. Significant amounts

of time need to be spent on configuring the plant

models appropriately in Dymola and then combining

them with matching controller models in MAT-

LAB®.

Automation of plant model configuration reduces

the burden on the user who would otherwise need to

spend more time understanding and configuring the

plant models. The tool discussed in this paper is used

with a vehicle air-conditioning system model and its

controller. The development of the plant models for

both vehicle and air-conditioning system is exten-

sively described in the previous work [1]. The way in

which the plant model is packaged in Modelica helps

the tool in configuring the models easily and auto-

matically.

The tool couples two different modeling plat-

forms and, as a result, a communication channel has

to be established between them to exchange configu-

ration information. The use of DDE Server as a

communication protocol for data exchange and simu-

lation between two simulation applications (MAT-

LAB and Dymola) was described in [2]. The various

pros and cons of using various communication pro-

tocols (DDE Server, TCP/IP) for communication

between MATLAB and Dymola were discussed in

depth in [3].

The in-house tool that is described in this paper

has communication needs only while configuring the

models and not during the simulation stage. Hence

DDE Server communication offers a good solution

[3] for data exchange between MATLAB and Dymo-

la.

2 Tools

The in-house tool was developed in MATLAB®

R2006b version as a graphical user interface (GUI).

The plant models were developed using the Modeli-

ca language version 2.2.1. The data choices for the

plant models (parameters) are made available as Mi-

crosoft® Office Excel spreadsheets for ease of use.

The Dymola®-Simulink® interface is used to create

the S-function of the developed plant models by the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

865

MATLAB GUI Tool. The controller S-function and

plant model S-function are integrated by the MAT-

LAB GUI Tool.

3 Plant and Controller Models

contr...

HVAC
atmo... cabin

trans... chas...engine

auxilli...

driver

cabi...
deg_tr_out

atm
o...

deg_tam
...

HV
A

...
deg_teo...

engi...
deg_tw

_...

der(...
speed_out

send...
send

drive...
speed_t...

trans...
gear_si...

engi...
engine_...

S16_...
deg_ap_...

HV
A

...
TA

O
_si...

S16_...
deg_m

p...

engi...
t_eng_out

HV
A

...
t_com

p_...

send...
send

send...
send

send...
send

send...
send

cabi...
solar_Int...

engi...
engine_...

drive...
driver_s...

engi...
deg_thc...

HV
A

...
deg_tein...

A_PT...
send

ACS

pdr...

sp...

de...

de...

de...

de...

TA
...

de...

de...

sp...
ge...

en...

t_e...

t_c...

S16...

S16...

REC

sol...

en...

dri...

de...

de...

driv...

A_...

Figure 1: Plant model Architecture

The plant model architecture shown in Figure 1

consisting of the vehicle subsystems (driver, control-

ler, engine, transmission and chassis) and the vehicle

air-conditioning subsystems (compressor drive-pad,

HVAC systems, cabin and atmosphere) in Modelica

is made with all the main subsystems being replace-

able. The variants of a particular subsystem are made

by extending the same interface.

This scheme provides flexibility to choose differ-

ent implementations for each subsystem as only their

interface models are instantiated as replaceable in the

architecture. Thus the same architecture model can

be configured to represent different vehicle platforms

easily.

The climate system controller model was availa-

ble as a Simulink S-function. The controller exercis-

es its control action over various components of the

HVAC system to maintain the cabin at a set tempera-

ture. The controller receives sensor signals from var-

ious plant systems as feedback inputs.

A successfully integrated simulation of the devel-

oped plant models with the controller model is the

main goal of the tool developed. An integrated plant

and controller model is shown in Figure 2.

Figure 2: Integrated plant and controller model

4 Manual Process

Figure 3: Flow chart - Manual process

Start

Develop plant models (Modelica)

Plant model architecture:

Select model choices manually (Modelica)

Plant model architecture:

Select model data choices manually

 (Modelica)

Generate plant model S-function manually

(MATLAB/Simulink & Dymola/Modelica)

Integrate plant model S-function and suitable

controller manually

(MATLAB/Simulink)

Integrated model simulation

(MATLAB/Simulink)

Post processing of results through custo-

mized scripts (MATLAB)

End

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

866

The existing process involves configuration of the

system model by applying the model choices and

data choices for all top-level subsystems in a Mod-

elica code layer by the user manually. Then the S-

function is generated for the plant model using Dy-

mola. This S-function is used in MATLAB/Simulink

environment along with the controller model. The

plant S-function and controller model are integrated

manually and simulated in Simulink. Post-processing

is done through customized m-scripts for plotting the

simulation results. This process flow is depicted in a

flow chart in Figure 3.

5 Modeling Guidelines

The power of object-oriented, acausal modeling

language Modelica is utilized to the fullest in devel-

oping the plant models. The plant model consists

primarily of components from the Modelica Standard

Library (MSL). Some special needs were satisfied by

creating additional custom models in Modelica as

explained in [3], [4] and [5].

The plant models used in this work were done as

a separate package i.e., library following certain

guidelines so that the models can be interpreted and

used in an easy and efficient manner by both the

MATLAB GUI tool as well as the plant engineer

who develops / updates the Modelica plant model.

All the top level subsystems are abstracted and

individual interface models that are partial models

are made. The complete plant subsystem model is

created by extending the respective interface model

(5 speed AT as well as 6 speed AT are extended

from base class “Transmission”) and filled in with

system equations. The package structure of the Mod-

elica plant models is shown in Figure 4 and is dis-

cussed in more detail below.

5.1 Interfaces

Interfaces are partial Modelica models that form

the base models for components and implementa-

tions containing just the interface details. An Inter-

face contains the ports which interact with other

models and the icon for identification.

For example, “Transmission” interface will have

only two mechanical ports i.e., one for connecting to

the engine and the other to the wheels. The interfaces

also contain bus connectors to provide interface to

the controller model.

5.2 Components

Apart from the Modelica Standard Library (MSL)

components for this HVAC system simulation, the

special needs were satisfied by creating additional

custom models in Modelica. These are used as con-

stituents of the top-level subsystem models.

Figure 4: Library package

5.3 Implementations

Implementations are the variants of each sub-

system model, which were developed extending the

“interfaces” employing the “Components” described

above and from the MSL library. These are complete

models with respect to equations that represent the

actual system.

For example “Six speed AT”, “Five speed AT”,

“CVT” were variants of transmission i.e., created by

extending the “Transmission” interface model. This

package is parsed by the SysInit GUI tool shown in

Figure 7, to populate the list of various variants

available for a particular model.

The GUI bins all the implementations based on

the interfaces from which they are extended. As long

as new implementations are added to the package

following the structure explained above, the tool will

automatically add the new variant to the list of

choices for that sub-system.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

867

5.4 Data

The data for each model - the set of parameters

required by the “Implementations” and “Compo-

nents” is implemented using the “record” class in

Modelica. For example a “Six speed transmission

data” record has the gear ratios and engagement time

for a six speed transmission.

To facilitate data handling by SysInit GUI tool

shown in Figure 7, separate Excel sheets are created

in line with the records in Modelica to allow the user

to quickly edit/create the data parameters for a par-

ticular model. A sample Excel data sheet (“Six

Speed AT Data”) for a “Six speed AT” model is

shown in Figure 5.

Figure 5: Excel data sheet

The tool covert the data in the Excel sheet into

appropriate record when writing the S-function mod-

el. Consistency in data set has to be ensured between

Modelica sub-system model choice’s base record and

the parameter excel file, which is uniquely identified

by having its file name same as the model choice

name.

5.5 Architecture

Architecture is the representative assembly of all

top-level subsystem partial models with connections

between them (conventional vehicle, parallel hybrid

vehicle etc.). This has the interconnection of the in-

terface models to create the skeleton of the overall

vehicle system i.e., driver, engine, transmission,

HVAC, cabin, etc., are connected to form the vehicle

system.

The overall plant model architecture (Figure 1) in

Modelica is made such that all the main subsystems

are replaceable. This architecture provides flexibility

to choose different implementations for each subsys-

tem.

In this way, the same model can be configured to

model different vehicle systems easily. The tool can

use this architecture model as selected by the user as

the base model on top of which it applies the model

choices and data choices.

5.6 S-function

An “architecture” in which the sub-systems are

completely defined (by re-declaring the interface

models i.e., “Interfaces” with complete models i.e.,

“Implementations”) with the chosen model and data

choices is the S-function model. The model and data

choices can be reconfigured by re-declaring them.

This model is written by the GUI tool and sent to

Dymola for S-function generation.

An example of a Modelica model that would be

compiled into an S-function is given below:

model ClimateControlSFunction

 "Plant S-function"

 extends Architechture.ClimateControl(

 redeclare Implementa-

tions.Mechanical.SixSpeedAT transmis-

sion (redeclare Da-

ta.TransmissionData.SixSpeedATData

transmission_data));

...

end ClimateControlSFunction;

6 GUI Tool Functionalities

6.1 High level configuration

The top-level GUI which is shown in Figure 6 has

various fields for selection of plant system configu-

ration (e.g. Class A Vehicle), controller (Class A

Vehicle Controller), drive cycle and fields to indicate

the location of the simulation results file and sum-

mary file to be written.

Figure 6: Top-level GUI

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

868

Using the “Browse” and “View” buttons the vari-

ous choices available can be either selected or

viewed respectively. The plant and controller models

can be integrated and simulated using “Prepare” and

“Start/Stop” buttons, while other buttons and menus

provide additional functionalities such as report gen-

eration, saving the system configuration (plant and

controller combination) etc.

The plant model configuration (which is stored as

an Excel file) is managed by another GUI (called the

SysInit GUI), which configures the plant model with

appropriate sub-system model and data choices. This

GUI is invoked by the “Edit” button corresponding

to the System Configuration File field in the above

GUI. The functionality of SysInit GUI is explained

in the next section.

6.2 Plant configuration

The vehicle plant model is configured using the

SysInit GUI shown in Figure 7. The SysInit GUI has

three columns namely Models, Model choices and

Data choices.

For each of the top-level vehicle subsystem mod-

el (say transmission), the model choices available for

that model (5 speed AT, 6 speed AT, CVT etc) are

displayed in the middle column and the data choices

(Excel data sheets which have parameters like iner-

tia, efficiency, gear ratio) for the chosen model

choice are displayed in the last column as drop down

menus.

These drop-down menus are automatically popu-

lated with model and data choices from the Modelica

plant model package as explained in the best practic-

es section.

Figure 7: SysInit GUI Tool

The data for populating the model choices in the

SysInit GUI is obtained by parsing the Modelica sub-

system models that are developed following the

“Best Practices” described previously in this paper.

The data choices are obtained by parsing the Excel

files which are in correspondence with the model

choices.

The model and data choice displayed by default

are loaded from the system configuration Excel file

and can be changed as per the user’s needs. The

changed configuration can once again be saved as an

Excel spreadsheet with appropriate name. Once the

desired choices are made for the selected plant mod-

el, a Simulink S-function can be generated using the

“Prepare S-Fun” button.

The plant model configuration information is

written as a Modelica model file using the architec-

ture model specified by the user. This model is

passed on to Dymola by establishing a DDE (Dy-

namic Data Exchange) server communication be-

tween MATLAB and Dymola to generate the plant

model S-function. This simplified process enables

the user to quickly create variants of plant models

via different configurations of the sub-system models

and parameter data choices.

The plant model Modelica file (.mo file), which

may be useful for debugging can be generated using

“Save Model” button, while that particular chosen

system configuration can be saved to an Excel file

for retrieval at a later time.

6.3 Integration with controller

After the S-function is generated for a particular

plant model configuration, the top-level GUI tool

integrates the chosen controller and drive cycle for

simulation with the plant S-function based on match-

ing input and output signals names in them. The

drive cycle and controller library are shown in Figure

8. An integrated plant and controller model is shown

in Figure 2.

Figure 8: Drive cycle and Controller library

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

869

6.4 Simulation and post-processing

Figure 9: Generic Post Processing GUI

The integrated plant and controller model is simu-

lated from the top-level GUI tool, which stores the

result and summary in the specified files once simu-

lation is done. Post processing of the results can be

done by two plot GUI’s which are shown in Figures

9 and 11.

The plot GUI shown in Figure 9 is a generic one

capable of plotting same variables between multiple

files and one such sample result is shown in Figure

10.

Figure 10: Sample Result (Generic Post Processing

GUI)

The plot GUI shown in Figure 11, Custom Post

Processing GUI is a specific one which can be used

to get “metrics” i.e., some processing of results in

different files to get a specific plot. This processing

can be done through a MATLAB m-script and ap-

plied on the results to get the specific plot.

These post-processing methods can be quite use-

ful for users, say in benchmarking different control-

lers with the same plant model.

Figure 11: Custom Post Processing GUI

6.5 Flow chart

Figure 12: Flow chart – MATLAB GUI Tool process

Start

Launch top-level GUI & select any plant model

configuration (MATLAB GUI & Excel)

Launch SysInit GUI, Select model and model

data choices. Edit model data choices if required

(MATLAB GUI & Excel)

Generate plant model S-function

(MATLAB GUI)

Prepare plant model S-function, integrate and

simulate with suitable controller

(MATLAB GUI)

Post process results using Generic/Custom Post

Processing GUI (MATLAB GUI)

End

Develop plant models following

“Best Practices” (Modelica)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

870

The flow chart of the processes followed in the

in-house developed MATLAB GUI Tool is shown in

Figure 12.

7 Practical Implementation - Climate

control

The Modelica plant models developed for usage

with the MATLAB GUI Tool explained in this paper

was related to Climate Controller testing using Mod-

elica plant models [1]. Best practices explained pre-

viously were taken care while modeling the plant

(vehicle with HVAC system). The climate system

controller model was available as a Simulink S-

function. The exercise of running the closed loop

model establishes the proper compatibility achieved

between the developed Modelica plant models with

the chosen controller.

The closed loop simulation was very beneficial

for validation of control strategies and functionality

of control elements related to HVAC like heater, in-

let door, etc., comparison of different control strate-

gies and in fuel economy prediction of the vehicle.

8 Future Scope

This GUI tool is developed for a particular plant

model architecture, which deals with vehicle with

HVAC system simulation. This tool can be quickly

reconfigured to work with any plant model architec-

ture of interest for MIL or SIL simulations (Hybrid

electric vehicle controller study, etc,). The scope of

the tool can also be extended to include processor-in-

loop (PIL) and hardware-in-loop (HIL) simulations.

9 Conclusions

This MATLAB based GUI tool enables the user

in validating or benchmarking the controller models

which are in MATLAB/Simulink against various

configurations of plant models which are in Modeli-

ca for model-in-loop (MIL) simulations. The most

important thing the tool achieves is that it takes the

user away from the model development environment

so that he remains more objective. The errors that the

user can introduce while configuring the plant mod-

els in Modelica are eliminated but at a cost that the

plant model engineer has to pay by sticking to the

guidelines established. It was observed that the time

taken by user to configure a new plant model and get

the controller tested has drastically reduced by the

use of this tool. The tool helps in reducing the inte-

ractions between the user and plant engineer with

respect to the plant models which helps reduce the

development time.

10 Acknowledgments

This work was supported by Dr. Yasunori Yoko-

jima (LMS Japan) and Dr. Shiva Sivashankar (LMS

North America). Authors wish to thank Mr. S. A.

Sundaresan (LMS Emmeskay Solutions Private Li-

mited, INDIA) for his guidance throughout this

work. Authors wish to thank Mr. Bharani Shivaku-

mar (LMS Emmeskay Solutions Private Limited,

INDIA) for improving the tool considerably.

References

[1] Anand Pitchaikani et al, Real-time Drive

Cycle Simulation of Automotive Climate

Control System, pp. 839-846, Proceedings of

the 7th International Modelica Conference,

Como, Italy, 20-22 September 2009

[2] S.E. Pohl and J. Ungethüm, A Simulation

Management Environment for Dymola, pp.

173-176, Proceedings of the 4th International

Modelica Conference, Hamburg, 7-8 March,

2005.

[3] C. Schlegel, R. Finsterwalder, H. Olsson, Us-

ing Dymola generated C-Code in specialized

Client/Server Simulation Environments, Not

published, Proceedings of the 4th Interna-

tional Modelica Conference, Hamburg,

March 7-8, 2005.

[4] M. Tiller, "Introduction to Physical Modeling

with Modelica", Kluwer Academic Publish-

ers, ISBN 0-7923-7367-7.

[5] Dymola. Dynamic Modeling Laboratory,

Dynasim AB, Lund, Sweden,

http://www.Dynasim.se.

[6] Mathworks, http://www.mathworks.com.

[7] Modelica, http://www.modelica.org.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

871

	ecp11063001
	1 Introduction
	2 Vehicle models
	3 Getting automotive control software into the loop
	4 Using the system model during automotive development
	5 Costs and benefits
	6 Conclusion

	ecp11063002
	ecp11063003
	ecp11063004
	ecp11063005
	ecp11063006
	ecp11063007
	ecp11063008
	ecp11063009
	ecp11063010
	1 Introduction
	2 Nonlinear Equation Solversand Homotopy
	2.1 Established Homotopy Methods
	2.2 General Problem-Specific Homotopy

	3 Implementation in Modelica Tools
	4 Application Examples
	4.2 Analog Electronic Circuit
	4.3 Hydraulic Networks
	4.4 Calibration of A/C Heat Exchanger

	5 Ill-posed Examples
	5.1 Singular Simplified System
	5.2 Singular Intermediate System
	5.3 Bifurcation of Intermediate System

	6 Conclusions
	7 Acknowledgements

	ecp11063011
	ecp11063012
	ecp11063013
	ecp11063014
	ecp11063015
	ecp11063016
	ecp11063017
	ecp11063018
	1 Introduction
	2 OpenModelica Platform
	3 OMWeb architecture
	4 OMWEb – OpenModelica Virtual Web-based Learning Platform
	4.1 Frontend: Teacher Client, TC
	4.2 Frontend: Student Client, SC
	4.3 Middleware, E-learning Community Server, ECS
	4.4 Backend: Computation Client, CC

	5 Related Work
	5.1 NumLab Architecture
	5.2 Intelligent Tutoring System
	5.3 DrModelica
	5.4 OMScheme
	5.5 DrControl

	6 Future Work
	7 Conclusions
	8 Acknowledgements

	ecp11063019
	ecp11063020
	ecp11063021
	1 Introduction
	2 Speed profile generation
	2.1 Assumptions
	2.2 Forces acting on the vehicle
	2.3 Constraints on longitudinal dynamics
	2.4 Numeric speed profile calculation formulae
	2.5 Numeric maximal speed profile calculation
	2.6 Reference speed profile definition

	3 Speed control based on reference speed profiles
	3.1 Using acceleration as control variable
	3.2 Prediction of the speed error
	3.3 Limited proportional feedback

	4 Simulation results
	4.1 Modelica implementation
	4.2 Prototype simulation

	5 Experimental results and applicational issues
	6 Conclusions
	7 Acknowledgement

	ecp11063022
	ecp11063023
	ecp11063024
	ecp11063025
	ecp11063026
	ecp11063027
	Media Modeling for Distillation Process with Modelica/MWorks
	Abstract
	1 Introduction
	2 Methods of VLE based on the two-parameter EoS
	2.1 Two-parameter EoS
	2.2 mixing rule

	3 Implement in MWorks
	4 Test case
	5 Conclusions
	Acknowledgments

	References

	ecp11063028
	ecp11063029
	ecp11063030
	Introduction
	Summary of the Buildings Library
	Updates of the Buildings Library
	Package Airflow
	Package Controls
	Package Fluid
	Package Fluid.Chillers
	Package Fluid.Interfaces
	Package Fluid.Actuators
	Package Fluid.HeatExchangers
	Package Fluid.Movers
	Package Fluid.Sensors
	Package Fluid.Sources
	Package Fluid.Storage

	Package HeatTransfer
	Package Media
	Package Utilities

	Applications
	Multizone Air Flow Model
	Modelica EnergyPlus Co-simulation for the Control of a VAV System

	Ongoing Work
	Conclusion
	Acknowledgments

	ecp11063031
	ecp11063032
	ecp11063033
	ecp11063034
	ecp11063035
	ecp11063036
	ecp11063037
	ecp11063038
	ecp11063039
	ecp11063040
	ecp11063041
	ecp11063042
	ecp11063043
	ecp11063044
	ecp11063045
	ecp11063046
	Modeling and Simulation of Gear Pumps based on Modelica/MWorks®
	Abstract
	Nomenclature
	1 Introduction
	2 Pump Description
	3 Model Description
	3.1 Overview
	3.2 Control Volumes
	3.2.1 Volume
	3.2.2 Pressure distribution
	3.2.3 Radial Force Produced by Pressure
	3.2.4 Torque

	3.3 Internal Leakages
	3.4 Mechanical Parts
	3.5 Radial Forces
	3.6 Channels from CVs to Inlet/Outlet Volumes
	3.7 Viscosity Torque
	3.8 System Model

	4 Simulation Results
	5 Conclusions and Future Work
	Acknowledgments
	References

	ecp11063047
	1 Introduction
	2 Air brake system components
	2.1 Brake Valve
	2.2 Relay Valve
	2.3 Brake Chamber

	3 Modeling vehicle air brake system
	3.1 Standard pneumatic components
	3.2 Air brake components
	3.3 Air brake system

	4 Simulation results
	5 Conclusions

	ecp11063048
	Introduction
	Library structure
	Batteries
	Cells
	Stacks

	Battery Management
	Chargers
	Loads
	Sensors
	Icons
	Interfaces

	Examples
	Conclusions

	ecp11063049
	ecp11063050
	1 Introduction
	2 Simulation of Fluid Models with OpenModelica
	3 Parameter Estimation for a Hybrid System using JModelica
	4 Nonlinear Model Predictive Control using JModelica
	5 Conclusions

	ecp11063051
	ecp11063052
	Introduction
	Modeling
	Hydraulic Part
	Mechanic Part

	Control
	Simulation Results
	Summary and Outlook
	References

	ecp11063053
	ecp11063054
	1 Introduction
	2 Functional Mockup Interface
	3 Introduction to AUTOSAR
	4 FMI to AUTOSAR Software Component conversion
	4.1 Establishing a relation between FMI and AUTOSAR software component specification methodology
	4.2 Mapping FMI inputs/outputs to AUTOSAR SW-Cs Ports
	4.3 Mapping of FMI parameters to AUTOSAR calibration ports
	4.4 Wrapping the FMU C-code into an AUTOSAR Runnable Entity

	5 Example application
	6 Conclusions
	6.1 Acknowledgements

	ecp11063055
	1 Introduction
	1.1 Modelica world versus Dynaplant
	1.2 Use cases, where best of two worlds is needed

	2 Routes to couple in-house tools with Modelica using FMU
	2.1 Introduction to FMU
	2.2 Sadida: An Interface to FMU
	2.3 Co-simulation: FMU simulator included in Dynaplant
	2.4 Next step: FMU equations included in Dynaplant (single solver)

	3 Co-simulation Restrictions and Challenges
	3.1 Restrictions of co-simulation based on FMU
	3.2 Challenges
	3.3 First experiences

	4 Conclusions

	ecp11063056
	ecp11063057
	ecp11063058
	ecp11063059
	ecp11063060
	ecp11063061
	Introduction
	Strategies to adapt a model for real-time execution
	RTO by adapting the system behavior
	RTO by mathematical reduction of complexity
	Solver

	Comparing model variants
	RT-Profiling for simulation models
	RT-Profiling SimulationX models
	Implementation on a RT Target
	RT-profiling OpenModelica models
	Mapping Profiling Results to Model Positions

	Case Studies
	Case 1: Electric circuit with saturating inductors
	System Description
	Nonlinearity of the System
	RTO by Introducing Capacities
	Deviation Analysis

	Case 2: Nonlinear Thermal Resistor Circuit
	Case Description
	RTO by Introducing Capacities
	Deviation Analysis

	Conclusion

	ecp11063062
	ecp11063063
	1 Introduction
	2 Petri Nets
	3 Petri Net Library
	3.1 Place Model
	3.2 Transition Model
	3.3 Reactions Sub-Library
	3.4 Animation in Dymola

	4 Model Calibration and Analysis
	4.1 Connection Dymola and Matlab Simulink
	4.2 Sensitivity Analysis
	4.3 Parameter Identification
	4.4 Stochastic Simulation

	5 Example: Modeling the metabolism of Chinese Ovary Cells
	6 Conclusions
	References

	ecp11063064
	ecp11063065
	ecp11063066
	ecp11063067
	Introduction
	Wind turbine system simulation
	Components of the library
	Wind
	Aerodynamics
	Rotor blade structure
	Hub and nacelle
	Drive train and generator
	Control
	Tower and substructure
	Soil and water
	Connectors

	Verification of the OnWind library
	The NREL 5-MW baseline wind turbine
	The OC3 project
	Results comparison

	Conclusion

	ecp11063068
	ecp11063069
	1 Introduction
	2 Modelling Approach and Outline of Reliability and Safety Analysis Method
	2.1 Component Fault Modelling
	2.2 Concept of Model Library with Included Analysis Procedures
	2.3 Modelling of Electric System Operating Modes
	2.4 Visualisation of System Operation and Interactive Checking
	2.5 Automated Analysis Procedures
	2.5.1 Electrical Loads
	2.5.2 Safety
	2.5.3 Reliability
	2.5.4 Minimising the Computational Effort Involved with Safety Analysis

	3 Modelling and Analysis Case Study
	3.1 Electric Power System Modelling Example
	3.1.1 System Functionality
	3.1.2 Degraded System Operation

	3.2 Safety Analysis Example Result
	3.3 Reliability Analysis Example Result

	4 Conclusion

	ecp11063070
	ecp11063071
	1 Introduction
	2 Analysis of the problem
	3 Proposal to enable the definition of reliable discrete models in Modelica
	3.1 Introduction to clocks and signals
	3.2 Why do clocks and signals solve the issues
	3.3 Considerations about the compilation of synchronous programs
	3.4 Clock calculus

	4 Application to Modelica
	5 Example
	6 Conclusions
	7 Acknoledgements

	ecp11063072
	ecp11063073
	ecp11063074
	ecp11063075
	ecp11063076
	1 Introduction
	1.1 Approaches for frequency response determination
	1.2 Frequency response vs. model linearization
	1.3 Frequency response of nonlinear systems
	1.4 Contribution of the Modelica package and this paper

	2 Plant stimulation
	2.1 Quasi-harmonic plant excitation
	2.2 Scheduling of excitation amplitudes

	3 Frequency response calculation algorithm
	4 Describing functions und dual locus method
	4.1 Assumptions
	4.2 Harmonic linearization
	4.3 Dual locus method
	4.4 Example: Describing function of a rate limiter

	5 Application of the Modelica package and examples
	5.1 Stimulus signal generator implementation in Modelica
	5.2 Implementation of the algorithms for frequency response data recording
	5.3 Example: Frequency response of a mass-spring-damper system
	5.4 Example: Frequency response of a complex multi-body vehicle model
	5.5 Frequence response of multi-input multi-output (MIMO) models
	5.6 Application example for describing functions
	5.7 System identification from frequency response data

	6 Conclusions
	7 Acknowledgement

	ecp11063077
	ecp11063078
	ecp11063079
	ecp11063080
	1 Introduction
	2 Power Transmission Library
	3 Vehicle Dynamic Library
	3.1 Leaf Spring Modeling
	3.2 Front Suspension Modeling
	3.3 Steering Modeling
	3.4 Rear Suspension Modeling
	3.5 Vehicle Assembly

	4 Simulation and Results
	4.1 Fuel Economy Simulation
	4.2 Vehicle Dynamic Simulation

	5 Conclusions

	ecp11063081
	ecp11063082
	1 Introduction
	1.1 Structure of the Paper

	2 Requirements and Motivation
	3 Using OMEdit
	3.1 Introductory Model in OMEdit
	3.1.1 Creating a new file
	3.1.2 Adding Component Models
	3.1.3 Making Connections
	3.1.4 Simulating the model
	3.1.5 Plotting Variables from Simulated Models

	4 Communication with OMC
	4.1 OMC CORBA Interface
	4.2 The CORBA Client Server Architecture
	4.3 Invoking OMC through CORBA
	4.4 What to do with the CORBA IOR File?
	4.5 OMC API Enhancements

	5 Annotations
	5.1 Shapes/Component Models Annotations
	5.2 Connection Annotation
	5.3 Documentation Annotation

	6 Interactive Simulation
	7 Interaction with OMNotebook
	8 Related Work
	9 Future Work
	10 Acknowledgements

	ecp11063083
	Functional Digital Mock-up and the Functional Mock-up Interface – Two Complementary Approaches fo...
	Abstract
	1 Introduction
	2 FDMU
	2.1 Basic idea
	2.2 Conceptual properties
	FBB and FSM
	Master Simulator
	Web services
	Wrappers
	Data Transfer
	Visualization

	2.3 Realization

	3 FMI
	3.1 Basic idea
	3.2 Concept
	3.3 FMI for Co-Simulation

	4 Comparing FDMU and FMI
	4.1 Type of coupling
	4.2 Coupling technology
	4.3 Programming language bindings
	4.4 Co-simulation algorithms
	4.5 Implementation
	4.6 Summary

	5 Proposals for combining FDMU and FMI approaches
	6 Summary
	References

	ecp11063084
	ecp11063085
	ecp11063086
	ecp11063087
	ecp11063088
	ecp11063089
	ecp11063090
	1 Introduction
	1.1 Limitations
	1.2 Core requirements
	1.3 Additional functionality

	2 Parsing the Modelica model
	2.1 Parsing the model and the parameter input
	2.2 Consistency check
	2.3 GUI setup

	3 The generated simulator GUI
	3.1 General description
	3.2 Performing simulation experiments
	3.3 Reading data from file
	3.4 Trajectory and report display

	4 Conclusion

	ecp11063091
	1 Introduction
	1.1 Structure of the Paper

	2 OMNotebook – An Active Electronic Notebook
	2.1 DrControl

	3 Content and Learning Goals of DrControl
	3.1 Feedback Loop
	3.2 Mathematical Modeling
	3.3 Transfer Function
	3.4 State-space Formulation
	3.5 Observers and Reconstructed systems
	3.6 Linear Quadratic Optimization
	3.7 Linearization

	4 Other OMNotebook Applications
	4.1 DrModelica
	4.2 OMScheme

	5 Future Work
	6 Conclusions
	7 Acknowledgements

	ecp11063092
	Abstract
	1 Introduction
	2 Snapshot on Modelica tool compatibility
	2.1 Lacking support of language elements
	2.2 The generated code
	2.3 Different interpretation of language element

	3 Suggestion of semi-automatic test and verification frameworks
	4 Levels of compatibility and quality control
	5 Conclusions
	References

	ecp11063093
	ecp11063094
	1 Introduction
	2 Clutch Model
	2.1 Clutch Plate
	2.2 Diaphragm Spring
	2.3 Clutch Lever
	2.4 Clutch damper
	2.5 Clutch Model Assembly

	3 GearBox Model
	3.1 Gear Model
	3.2 Planetary Gearbox
	3.3 Synchronizer Model
	3.4 Gearbox Assembly Model

	4 Actuator Model
	5 Simulation and Results
	5.1 Synchronizer Simulation
	5.2 Clutch System Actuation Simulation
	5.3 Co-simulation with Vehicle Model

	6 Conclusions and Further Study

	ecp11063095
	ecp11063096
	1 Introduction
	2 Shock Absorber Modeling
	3 Simulation
	4 Conclusions

	ecp11063097
	ecp11063098
	ecp11063099

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

